VirtualBox

source: vbox/trunk/src/recompiler_new/exec.c@ 14974

最後變更 在這個檔案從14974是 14974,由 vboxsync 提交於 16 年 前

reenabled VA in TLB code

  • 屬性 svn:eol-style 設為 native
檔案大小: 110.8 KB
 
1/*
2 * virtual page mapping and translated block handling
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21/*
22 * Sun LGPL Disclaimer: For the avoidance of doubt, except that if any license choice
23 * other than GPL or LGPL is available it will apply instead, Sun elects to use only
24 * the Lesser General Public License version 2.1 (LGPLv2) at this time for any software where
25 * a choice of LGPL license versions is made available with the language indicating
26 * that LGPLv2 or any later version may be used, or where a choice of which version
27 * of the LGPL is applied is otherwise unspecified.
28 */
29#include "config.h"
30#ifndef VBOX
31#ifdef _WIN32
32#include <windows.h>
33#else
34#include <sys/types.h>
35#include <sys/mman.h>
36#endif
37#include <stdlib.h>
38#include <stdio.h>
39#include <stdarg.h>
40#include <string.h>
41#include <errno.h>
42#include <unistd.h>
43#include <inttypes.h>
44#else /* VBOX */
45# include <stdlib.h>
46# include <stdio.h>
47# include <iprt/alloc.h>
48# include <iprt/string.h>
49# include <iprt/param.h>
50# include <VBox/pgm.h> /* PGM_DYNAMIC_RAM_ALLOC */
51#endif /* VBOX */
52
53#include "cpu.h"
54#include "exec-all.h"
55#if defined(CONFIG_USER_ONLY)
56#include <qemu.h>
57#endif
58
59//#define DEBUG_TB_INVALIDATE
60//#define DEBUG_FLUSH
61//#define DEBUG_TLB
62//#define DEBUG_UNASSIGNED
63
64/* make various TB consistency checks */
65//#define DEBUG_TB_CHECK
66//#define DEBUG_TLB_CHECK
67
68#if !defined(CONFIG_USER_ONLY)
69/* TB consistency checks only implemented for usermode emulation. */
70#undef DEBUG_TB_CHECK
71#endif
72
73#define SMC_BITMAP_USE_THRESHOLD 10
74
75#define MMAP_AREA_START 0x00000000
76#define MMAP_AREA_END 0xa8000000
77
78#if defined(TARGET_SPARC64)
79#define TARGET_PHYS_ADDR_SPACE_BITS 41
80#elif defined(TARGET_SPARC)
81#define TARGET_PHYS_ADDR_SPACE_BITS 36
82#elif defined(TARGET_ALPHA)
83#define TARGET_PHYS_ADDR_SPACE_BITS 42
84#define TARGET_VIRT_ADDR_SPACE_BITS 42
85#elif defined(TARGET_PPC64)
86#define TARGET_PHYS_ADDR_SPACE_BITS 42
87#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
88#define TARGET_PHYS_ADDR_SPACE_BITS 42
89#elif defined(TARGET_I386) && !defined(USE_KQEMU)
90#define TARGET_PHYS_ADDR_SPACE_BITS 36
91#else
92/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
93#define TARGET_PHYS_ADDR_SPACE_BITS 32
94#endif
95
96static TranslationBlock *tbs;
97int code_gen_max_blocks;
98TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
99static int nb_tbs;
100/* any access to the tbs or the page table must use this lock */
101spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
102
103#ifndef VBOX
104#if defined(__arm__) || defined(__sparc_v9__)
105/* The prologue must be reachable with a direct jump. ARM and Sparc64
106 have limited branch ranges (possibly also PPC) so place it in a
107 section close to code segment. */
108#define code_gen_section \
109 __attribute__((__section__(".gen_code"))) \
110 __attribute__((aligned (32)))
111#else
112#define code_gen_section \
113 __attribute__((aligned (32)))
114#endif
115uint8_t code_gen_prologue[1024] code_gen_section;
116
117#else /* VBOX */
118extern uint8_t* code_gen_prologue;
119#endif /* VBOX */
120
121static uint8_t *code_gen_buffer;
122static unsigned long code_gen_buffer_size;
123/* threshold to flush the translated code buffer */
124static unsigned long code_gen_buffer_max_size;
125uint8_t *code_gen_ptr;
126
127#ifndef VBOX
128#if !defined(CONFIG_USER_ONLY)
129ram_addr_t phys_ram_size;
130int phys_ram_fd;
131uint8_t *phys_ram_base;
132uint8_t *phys_ram_dirty;
133static int in_migration;
134static ram_addr_t phys_ram_alloc_offset = 0;
135#endif
136#else /* VBOX */
137RTGCPHYS phys_ram_size;
138/* we have memory ranges (the high PC-BIOS mapping) which
139 causes some pages to fall outside the dirty map here. */
140uint32_t phys_ram_dirty_size;
141#endif /* VBOX */
142#if !defined(VBOX)
143uint8_t *phys_ram_base;
144#endif
145uint8_t *phys_ram_dirty;
146
147CPUState *first_cpu;
148/* current CPU in the current thread. It is only valid inside
149 cpu_exec() */
150CPUState *cpu_single_env;
151/* 0 = Do not count executed instructions.
152 1 = Precise instruction counting.
153 2 = Adaptive rate instruction counting. */
154int use_icount = 0;
155/* Current instruction counter. While executing translated code this may
156 include some instructions that have not yet been executed. */
157int64_t qemu_icount;
158
159typedef struct PageDesc {
160 /* list of TBs intersecting this ram page */
161 TranslationBlock *first_tb;
162 /* in order to optimize self modifying code, we count the number
163 of lookups we do to a given page to use a bitmap */
164 unsigned int code_write_count;
165 uint8_t *code_bitmap;
166#if defined(CONFIG_USER_ONLY)
167 unsigned long flags;
168#endif
169} PageDesc;
170
171typedef struct PhysPageDesc {
172 /* offset in host memory of the page + io_index in the low 12 bits */
173 ram_addr_t phys_offset;
174} PhysPageDesc;
175
176#define L2_BITS 10
177#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
178/* XXX: this is a temporary hack for alpha target.
179 * In the future, this is to be replaced by a multi-level table
180 * to actually be able to handle the complete 64 bits address space.
181 */
182#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
183#else
184#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
185#endif
186
187#define L1_SIZE (1 << L1_BITS)
188#define L2_SIZE (1 << L2_BITS)
189
190static void io_mem_init(void);
191
192unsigned long qemu_real_host_page_size;
193unsigned long qemu_host_page_bits;
194unsigned long qemu_host_page_size;
195unsigned long qemu_host_page_mask;
196
197/* XXX: for system emulation, it could just be an array */
198static PageDesc *l1_map[L1_SIZE];
199static PhysPageDesc **l1_phys_map;
200
201#if !defined(CONFIG_USER_ONLY)
202static void io_mem_init(void);
203
204/* io memory support */
205CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
206CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
207void *io_mem_opaque[IO_MEM_NB_ENTRIES];
208static int io_mem_nb;
209static int io_mem_watch;
210#endif
211
212#ifndef VBOX
213/* log support */
214static const char *logfilename = "/tmp/qemu.log";
215#endif /* !VBOX */
216FILE *logfile;
217int loglevel;
218#ifndef VBOX
219static int log_append = 0;
220#endif
221
222/* statistics */
223static int tlb_flush_count;
224static int tb_flush_count;
225#ifndef VBOX
226static int tb_phys_invalidate_count;
227#endif /* !VBOX */
228
229#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
230typedef struct subpage_t {
231 target_phys_addr_t base;
232 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
233 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
234 void *opaque[TARGET_PAGE_SIZE][2][4];
235} subpage_t;
236
237
238#ifndef VBOX
239#ifdef _WIN32
240static void map_exec(void *addr, long size)
241{
242 DWORD old_protect;
243 VirtualProtect(addr, size,
244 PAGE_EXECUTE_READWRITE, &old_protect);
245
246}
247#else
248static void map_exec(void *addr, long size)
249{
250 unsigned long start, end, page_size;
251
252 page_size = getpagesize();
253 start = (unsigned long)addr;
254 start &= ~(page_size - 1);
255
256 end = (unsigned long)addr + size;
257 end += page_size - 1;
258 end &= ~(page_size - 1);
259
260 mprotect((void *)start, end - start,
261 PROT_READ | PROT_WRITE | PROT_EXEC);
262}
263#endif
264#else // VBOX
265static void map_exec(void *addr, long size)
266{
267 RTMemProtect(addr, size,
268 RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE);
269}
270#endif
271
272static void page_init(void)
273{
274 /* NOTE: we can always suppose that qemu_host_page_size >=
275 TARGET_PAGE_SIZE */
276#ifdef VBOX
277 RTMemProtect(code_gen_buffer, sizeof(code_gen_buffer),
278 RTMEM_PROT_EXEC | RTMEM_PROT_READ | RTMEM_PROT_WRITE);
279 qemu_real_host_page_size = PAGE_SIZE;
280#else /* !VBOX */
281#ifdef _WIN32
282 {
283 SYSTEM_INFO system_info;
284 DWORD old_protect;
285
286 GetSystemInfo(&system_info);
287 qemu_real_host_page_size = system_info.dwPageSize;
288 }
289#else
290 qemu_real_host_page_size = getpagesize();
291#endif
292#endif /* !VBOX */
293
294 if (qemu_host_page_size == 0)
295 qemu_host_page_size = qemu_real_host_page_size;
296 if (qemu_host_page_size < TARGET_PAGE_SIZE)
297 qemu_host_page_size = TARGET_PAGE_SIZE;
298 qemu_host_page_bits = 0;
299#ifndef VBOX
300 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
301#else
302 while ((1 << qemu_host_page_bits) < (int)qemu_host_page_size)
303#endif
304 qemu_host_page_bits++;
305 qemu_host_page_mask = ~(qemu_host_page_size - 1);
306 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
307 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
308#ifdef VBOX
309 /* We use other means to set reserved bit on our pages */
310#else
311#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
312 {
313 long long startaddr, endaddr;
314 FILE *f;
315 int n;
316
317 mmap_lock();
318 last_brk = (unsigned long)sbrk(0);
319 f = fopen("/proc/self/maps", "r");
320 if (f) {
321 do {
322 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
323 if (n == 2) {
324 startaddr = MIN(startaddr,
325 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
326 endaddr = MIN(endaddr,
327 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
328 page_set_flags(startaddr & TARGET_PAGE_MASK,
329 TARGET_PAGE_ALIGN(endaddr),
330 PAGE_RESERVED);
331 }
332 } while (!feof(f));
333 fclose(f);
334 }
335 mmap_unlock();
336 }
337#endif
338#endif
339}
340
341#ifndef VBOX
342static inline PageDesc **page_l1_map(target_ulong index)
343#else
344DECLINLINE(PageDesc **) page_l1_map(target_ulong index)
345#endif
346{
347#if TARGET_LONG_BITS > 32
348 /* Host memory outside guest VM. For 32-bit targets we have already
349 excluded high addresses. */
350 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
351 return NULL;
352#endif
353 return &l1_map[index >> L2_BITS];
354}
355
356#ifndef VBOX
357static inline PageDesc *page_find_alloc(target_ulong index)
358#else
359DECLINLINE(PageDesc *) page_find_alloc(target_ulong index)
360#endif
361{
362 PageDesc **lp, *p;
363 lp = page_l1_map(index);
364 if (!lp)
365 return NULL;
366
367 p = *lp;
368 if (!p) {
369 /* allocate if not found */
370#if defined(CONFIG_USER_ONLY)
371 unsigned long addr;
372 size_t len = sizeof(PageDesc) * L2_SIZE;
373 /* Don't use qemu_malloc because it may recurse. */
374 p = mmap(0, len, PROT_READ | PROT_WRITE,
375 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
376 *lp = p;
377 addr = h2g(p);
378 if (addr == (target_ulong)addr) {
379 page_set_flags(addr & TARGET_PAGE_MASK,
380 TARGET_PAGE_ALIGN(addr + len),
381 PAGE_RESERVED);
382 }
383#else
384 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
385 *lp = p;
386#endif
387 }
388 return p + (index & (L2_SIZE - 1));
389}
390
391#ifndef VBOX
392static inline PageDesc *page_find(target_ulong index)
393#else
394DECLINLINE(PageDesc *) page_find(target_ulong index)
395#endif
396{
397 PageDesc **lp, *p;
398 lp = page_l1_map(index);
399 if (!lp)
400 return NULL;
401
402 p = *lp;
403 if (!p)
404 return 0;
405 return p + (index & (L2_SIZE - 1));
406}
407
408static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
409{
410 void **lp, **p;
411 PhysPageDesc *pd;
412
413 p = (void **)l1_phys_map;
414#if TARGET_PHYS_ADDR_SPACE_BITS > 32
415
416#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
417#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
418#endif
419 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
420 p = *lp;
421 if (!p) {
422 /* allocate if not found */
423 if (!alloc)
424 return NULL;
425 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
426 memset(p, 0, sizeof(void *) * L1_SIZE);
427 *lp = p;
428 }
429#endif
430 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
431 pd = *lp;
432 if (!pd) {
433 int i;
434 /* allocate if not found */
435 if (!alloc)
436 return NULL;
437 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
438 *lp = pd;
439 for (i = 0; i < L2_SIZE; i++)
440 pd[i].phys_offset = IO_MEM_UNASSIGNED;
441 }
442#if defined(VBOX) && !defined(VBOX_WITH_NEW_PHYS_CODE)
443 pd = ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
444 if (RT_UNLIKELY((pd->phys_offset & ~TARGET_PAGE_MASK) == IO_MEM_RAM_MISSING))
445 remR3GrowDynRange(pd->phys_offset & TARGET_PAGE_MASK);
446 return pd;
447#else
448 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
449#endif
450}
451
452#ifndef VBOX
453static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
454#else
455DECLINLINE(PhysPageDesc *) phys_page_find(target_phys_addr_t index)
456#endif
457{
458 return phys_page_find_alloc(index, 0);
459}
460
461#if !defined(CONFIG_USER_ONLY)
462static void tlb_protect_code(ram_addr_t ram_addr);
463static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
464 target_ulong vaddr);
465#define mmap_lock() do { } while(0)
466#define mmap_unlock() do { } while(0)
467#endif
468
469#ifdef VBOX
470/** @todo nike: isn't 32M too much ? */
471#endif
472#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
473
474#if defined(CONFIG_USER_ONLY)
475/* Currently it is not recommanded to allocate big chunks of data in
476 user mode. It will change when a dedicated libc will be used */
477#define USE_STATIC_CODE_GEN_BUFFER
478#endif
479
480/* VBox allocates codegen buffer dynamically */
481#ifndef VBOX
482#ifdef USE_STATIC_CODE_GEN_BUFFER
483static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
484#endif
485#endif
486
487static void code_gen_alloc(unsigned long tb_size)
488{
489#ifdef USE_STATIC_CODE_GEN_BUFFER
490 code_gen_buffer = static_code_gen_buffer;
491 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
492 map_exec(code_gen_buffer, code_gen_buffer_size);
493#else
494 code_gen_buffer_size = tb_size;
495 if (code_gen_buffer_size == 0) {
496#if defined(CONFIG_USER_ONLY)
497 /* in user mode, phys_ram_size is not meaningful */
498 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
499#else
500 /* XXX: needs ajustments */
501 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
502#endif
503 }
504 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
505 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
506 /* The code gen buffer location may have constraints depending on
507 the host cpu and OS */
508#ifdef VBOX
509 code_gen_buffer = RTMemExecAlloc(code_gen_buffer_size);
510
511 if (!code_gen_buffer) {
512 LogRel(("REM: failed allocate codegen buffer %lld\n",
513 code_gen_buffer_size));
514 return;
515 }
516#else //!VBOX
517#if defined(__linux__)
518 {
519 int flags;
520 void *start = NULL;
521
522 flags = MAP_PRIVATE | MAP_ANONYMOUS;
523#if defined(__x86_64__)
524 flags |= MAP_32BIT;
525 /* Cannot map more than that */
526 if (code_gen_buffer_size > (800 * 1024 * 1024))
527 code_gen_buffer_size = (800 * 1024 * 1024);
528#elif defined(__sparc_v9__)
529 // Map the buffer below 2G, so we can use direct calls and branches
530 flags |= MAP_FIXED;
531 start = (void *) 0x60000000UL;
532 if (code_gen_buffer_size > (512 * 1024 * 1024))
533 code_gen_buffer_size = (512 * 1024 * 1024);
534#endif
535 code_gen_buffer = mmap(start, code_gen_buffer_size,
536 PROT_WRITE | PROT_READ | PROT_EXEC,
537 flags, -1, 0);
538 if (code_gen_buffer == MAP_FAILED) {
539 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
540 exit(1);
541 }
542 }
543#elif defined(__FreeBSD__)
544 {
545 int flags;
546 void *addr = NULL;
547 flags = MAP_PRIVATE | MAP_ANONYMOUS;
548#if defined(__x86_64__)
549 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
550 * 0x40000000 is free */
551 flags |= MAP_FIXED;
552 addr = (void *)0x40000000;
553 /* Cannot map more than that */
554 if (code_gen_buffer_size > (800 * 1024 * 1024))
555 code_gen_buffer_size = (800 * 1024 * 1024);
556#endif
557 code_gen_buffer = mmap(addr, code_gen_buffer_size,
558 PROT_WRITE | PROT_READ | PROT_EXEC,
559 flags, -1, 0);
560 if (code_gen_buffer == MAP_FAILED) {
561 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
562 exit(1);
563 }
564 }
565#else
566 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
567 if (!code_gen_buffer) {
568 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
569 exit(1);
570 }
571 map_exec(code_gen_buffer, code_gen_buffer_size);
572#endif
573 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
574#endif /* !VBOX */
575#endif /* !USE_STATIC_CODE_GEN_BUFFER */
576#ifndef VBOX
577 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
578#else
579 map_exec(code_gen_prologue, _1K);
580#endif
581
582 code_gen_buffer_max_size = code_gen_buffer_size -
583 code_gen_max_block_size();
584 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
585 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
586}
587
588/* Must be called before using the QEMU cpus. 'tb_size' is the size
589 (in bytes) allocated to the translation buffer. Zero means default
590 size. */
591void cpu_exec_init_all(unsigned long tb_size)
592{
593 cpu_gen_init();
594 code_gen_alloc(tb_size);
595 code_gen_ptr = code_gen_buffer;
596 page_init();
597#if !defined(CONFIG_USER_ONLY)
598 io_mem_init();
599#endif
600}
601
602#ifndef VBOX
603#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
604
605#define CPU_COMMON_SAVE_VERSION 1
606
607static void cpu_common_save(QEMUFile *f, void *opaque)
608{
609 CPUState *env = opaque;
610
611 qemu_put_be32s(f, &env->halted);
612 qemu_put_be32s(f, &env->interrupt_request);
613}
614
615static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
616{
617 CPUState *env = opaque;
618
619 if (version_id != CPU_COMMON_SAVE_VERSION)
620 return -EINVAL;
621
622 qemu_get_be32s(f, &env->halted);
623 qemu_get_be32s(f, &env->interrupt_request);
624 tlb_flush(env, 1);
625
626 return 0;
627}
628#endif
629#endif //!VBOX
630
631void cpu_exec_init(CPUState *env)
632{
633 CPUState **penv;
634 int cpu_index;
635
636 env->next_cpu = NULL;
637 penv = &first_cpu;
638 cpu_index = 0;
639 while (*penv != NULL) {
640 penv = (CPUState **)&(*penv)->next_cpu;
641 cpu_index++;
642 }
643 env->cpu_index = cpu_index;
644 env->nb_watchpoints = 0;
645 *penv = env;
646#ifndef VBOX
647#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
648 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
649 cpu_common_save, cpu_common_load, env);
650 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
651 cpu_save, cpu_load, env);
652#endif
653#endif // !VBOX
654}
655
656#ifndef VBOX
657static inline void invalidate_page_bitmap(PageDesc *p)
658#else
659DECLINLINE(void) invalidate_page_bitmap(PageDesc *p)
660#endif
661{
662 if (p->code_bitmap) {
663 qemu_free(p->code_bitmap);
664 p->code_bitmap = NULL;
665 }
666 p->code_write_count = 0;
667}
668
669/* set to NULL all the 'first_tb' fields in all PageDescs */
670static void page_flush_tb(void)
671{
672 int i, j;
673 PageDesc *p;
674
675 for(i = 0; i < L1_SIZE; i++) {
676 p = l1_map[i];
677 if (p) {
678 for(j = 0; j < L2_SIZE; j++) {
679 p->first_tb = NULL;
680 invalidate_page_bitmap(p);
681 p++;
682 }
683 }
684 }
685}
686
687/* flush all the translation blocks */
688/* XXX: tb_flush is currently not thread safe */
689void tb_flush(CPUState *env1)
690{
691 CPUState *env;
692#if defined(DEBUG_FLUSH)
693 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
694 (unsigned long)(code_gen_ptr - code_gen_buffer),
695 nb_tbs, nb_tbs > 0 ?
696 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
697#endif
698 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
699 cpu_abort(env1, "Internal error: code buffer overflow\n");
700
701 nb_tbs = 0;
702
703 for(env = first_cpu; env != NULL; env = env->next_cpu) {
704 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
705 }
706
707 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
708 page_flush_tb();
709
710 code_gen_ptr = code_gen_buffer;
711 /* XXX: flush processor icache at this point if cache flush is
712 expensive */
713 tb_flush_count++;
714}
715
716#ifdef DEBUG_TB_CHECK
717static void tb_invalidate_check(target_ulong address)
718{
719 TranslationBlock *tb;
720 int i;
721 address &= TARGET_PAGE_MASK;
722 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
723 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
724 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
725 address >= tb->pc + tb->size)) {
726 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
727 address, (long)tb->pc, tb->size);
728 }
729 }
730 }
731}
732
733/* verify that all the pages have correct rights for code */
734static void tb_page_check(void)
735{
736 TranslationBlock *tb;
737 int i, flags1, flags2;
738
739 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
740 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
741 flags1 = page_get_flags(tb->pc);
742 flags2 = page_get_flags(tb->pc + tb->size - 1);
743 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
744 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
745 (long)tb->pc, tb->size, flags1, flags2);
746 }
747 }
748 }
749}
750
751static void tb_jmp_check(TranslationBlock *tb)
752{
753 TranslationBlock *tb1;
754 unsigned int n1;
755
756 /* suppress any remaining jumps to this TB */
757 tb1 = tb->jmp_first;
758 for(;;) {
759 n1 = (long)tb1 & 3;
760 tb1 = (TranslationBlock *)((long)tb1 & ~3);
761 if (n1 == 2)
762 break;
763 tb1 = tb1->jmp_next[n1];
764 }
765 /* check end of list */
766 if (tb1 != tb) {
767 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
768 }
769}
770#endif // DEBUG_TB_CHECK
771
772/* invalidate one TB */
773#ifndef VBOX
774static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
775 int next_offset)
776#else
777DECLINLINE(void) tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
778 int next_offset)
779#endif
780{
781 TranslationBlock *tb1;
782 for(;;) {
783 tb1 = *ptb;
784 if (tb1 == tb) {
785 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
786 break;
787 }
788 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
789 }
790}
791
792#ifndef VBOX
793static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
794#else
795DECLINLINE(void) tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
796#endif
797{
798 TranslationBlock *tb1;
799 unsigned int n1;
800
801 for(;;) {
802 tb1 = *ptb;
803 n1 = (long)tb1 & 3;
804 tb1 = (TranslationBlock *)((long)tb1 & ~3);
805 if (tb1 == tb) {
806 *ptb = tb1->page_next[n1];
807 break;
808 }
809 ptb = &tb1->page_next[n1];
810 }
811}
812
813#ifndef VBOX
814static inline void tb_jmp_remove(TranslationBlock *tb, int n)
815#else
816DECLINLINE(void) tb_jmp_remove(TranslationBlock *tb, int n)
817#endif
818{
819 TranslationBlock *tb1, **ptb;
820 unsigned int n1;
821
822 ptb = &tb->jmp_next[n];
823 tb1 = *ptb;
824 if (tb1) {
825 /* find tb(n) in circular list */
826 for(;;) {
827 tb1 = *ptb;
828 n1 = (long)tb1 & 3;
829 tb1 = (TranslationBlock *)((long)tb1 & ~3);
830 if (n1 == n && tb1 == tb)
831 break;
832 if (n1 == 2) {
833 ptb = &tb1->jmp_first;
834 } else {
835 ptb = &tb1->jmp_next[n1];
836 }
837 }
838 /* now we can suppress tb(n) from the list */
839 *ptb = tb->jmp_next[n];
840
841 tb->jmp_next[n] = NULL;
842 }
843}
844
845/* reset the jump entry 'n' of a TB so that it is not chained to
846 another TB */
847#ifndef VBOX
848static inline void tb_reset_jump(TranslationBlock *tb, int n)
849#else
850DECLINLINE(void) tb_reset_jump(TranslationBlock *tb, int n)
851#endif
852{
853 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
854}
855
856void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
857{
858 CPUState *env;
859 PageDesc *p;
860 unsigned int h, n1;
861 target_phys_addr_t phys_pc;
862 TranslationBlock *tb1, *tb2;
863
864 /* remove the TB from the hash list */
865 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
866 h = tb_phys_hash_func(phys_pc);
867 tb_remove(&tb_phys_hash[h], tb,
868 offsetof(TranslationBlock, phys_hash_next));
869
870 /* remove the TB from the page list */
871 if (tb->page_addr[0] != page_addr) {
872 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
873 tb_page_remove(&p->first_tb, tb);
874 invalidate_page_bitmap(p);
875 }
876 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
877 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
878 tb_page_remove(&p->first_tb, tb);
879 invalidate_page_bitmap(p);
880 }
881
882 tb_invalidated_flag = 1;
883
884 /* remove the TB from the hash list */
885 h = tb_jmp_cache_hash_func(tb->pc);
886 for(env = first_cpu; env != NULL; env = env->next_cpu) {
887 if (env->tb_jmp_cache[h] == tb)
888 env->tb_jmp_cache[h] = NULL;
889 }
890
891 /* suppress this TB from the two jump lists */
892 tb_jmp_remove(tb, 0);
893 tb_jmp_remove(tb, 1);
894
895 /* suppress any remaining jumps to this TB */
896 tb1 = tb->jmp_first;
897 for(;;) {
898 n1 = (long)tb1 & 3;
899 if (n1 == 2)
900 break;
901 tb1 = (TranslationBlock *)((long)tb1 & ~3);
902 tb2 = tb1->jmp_next[n1];
903 tb_reset_jump(tb1, n1);
904 tb1->jmp_next[n1] = NULL;
905 tb1 = tb2;
906 }
907 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
908
909#ifndef VBOX
910 tb_phys_invalidate_count++;
911#endif
912}
913
914
915#ifdef VBOX
916void tb_invalidate_virt(CPUState *env, uint32_t eip)
917{
918# if 1
919 tb_flush(env);
920# else
921 uint8_t *cs_base, *pc;
922 unsigned int flags, h, phys_pc;
923 TranslationBlock *tb, **ptb;
924
925 flags = env->hflags;
926 flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
927 cs_base = env->segs[R_CS].base;
928 pc = cs_base + eip;
929
930 tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
931 flags);
932
933 if(tb)
934 {
935# ifdef DEBUG
936 printf("invalidating TB (%08X) at %08X\n", tb, eip);
937# endif
938 tb_invalidate(tb);
939 //Note: this will leak TBs, but the whole cache will be flushed
940 // when it happens too often
941 tb->pc = 0;
942 tb->cs_base = 0;
943 tb->flags = 0;
944 }
945# endif
946}
947
948# ifdef VBOX_STRICT
949/**
950 * Gets the page offset.
951 */
952unsigned long get_phys_page_offset(target_ulong addr)
953{
954 PhysPageDesc *p = phys_page_find(addr >> TARGET_PAGE_BITS);
955 return p ? p->phys_offset : 0;
956}
957# endif /* VBOX_STRICT */
958#endif /* VBOX */
959
960#ifndef VBOX
961static inline void set_bits(uint8_t *tab, int start, int len)
962#else
963DECLINLINE(void) set_bits(uint8_t *tab, int start, int len)
964#endif
965{
966 int end, mask, end1;
967
968 end = start + len;
969 tab += start >> 3;
970 mask = 0xff << (start & 7);
971 if ((start & ~7) == (end & ~7)) {
972 if (start < end) {
973 mask &= ~(0xff << (end & 7));
974 *tab |= mask;
975 }
976 } else {
977 *tab++ |= mask;
978 start = (start + 8) & ~7;
979 end1 = end & ~7;
980 while (start < end1) {
981 *tab++ = 0xff;
982 start += 8;
983 }
984 if (start < end) {
985 mask = ~(0xff << (end & 7));
986 *tab |= mask;
987 }
988 }
989}
990
991static void build_page_bitmap(PageDesc *p)
992{
993 int n, tb_start, tb_end;
994 TranslationBlock *tb;
995
996 p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
997 if (!p->code_bitmap)
998 return;
999 memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
1000
1001 tb = p->first_tb;
1002 while (tb != NULL) {
1003 n = (long)tb & 3;
1004 tb = (TranslationBlock *)((long)tb & ~3);
1005 /* NOTE: this is subtle as a TB may span two physical pages */
1006 if (n == 0) {
1007 /* NOTE: tb_end may be after the end of the page, but
1008 it is not a problem */
1009 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1010 tb_end = tb_start + tb->size;
1011 if (tb_end > TARGET_PAGE_SIZE)
1012 tb_end = TARGET_PAGE_SIZE;
1013 } else {
1014 tb_start = 0;
1015 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1016 }
1017 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1018 tb = tb->page_next[n];
1019 }
1020}
1021
1022TranslationBlock *tb_gen_code(CPUState *env,
1023 target_ulong pc, target_ulong cs_base,
1024 int flags, int cflags)
1025{
1026 TranslationBlock *tb;
1027 uint8_t *tc_ptr;
1028 target_ulong phys_pc, phys_page2, virt_page2;
1029 int code_gen_size;
1030
1031 phys_pc = get_phys_addr_code(env, pc);
1032 tb = tb_alloc(pc);
1033 if (!tb) {
1034 /* flush must be done */
1035 tb_flush(env);
1036 /* cannot fail at this point */
1037 tb = tb_alloc(pc);
1038 /* Don't forget to invalidate previous TB info. */
1039 tb_invalidated_flag = 1;
1040 }
1041 tc_ptr = code_gen_ptr;
1042 tb->tc_ptr = tc_ptr;
1043 tb->cs_base = cs_base;
1044 tb->flags = flags;
1045 tb->cflags = cflags;
1046 cpu_gen_code(env, tb, &code_gen_size);
1047 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
1048
1049 /* check next page if needed */
1050 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1051 phys_page2 = -1;
1052 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1053 phys_page2 = get_phys_addr_code(env, virt_page2);
1054 }
1055 tb_link_phys(tb, phys_pc, phys_page2);
1056 return tb;
1057}
1058
1059/* invalidate all TBs which intersect with the target physical page
1060 starting in range [start;end[. NOTE: start and end must refer to
1061 the same physical page. 'is_cpu_write_access' should be true if called
1062 from a real cpu write access: the virtual CPU will exit the current
1063 TB if code is modified inside this TB. */
1064void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
1065 int is_cpu_write_access)
1066{
1067 int n, current_tb_modified, current_tb_not_found, current_flags;
1068 CPUState *env = cpu_single_env;
1069 PageDesc *p;
1070 TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
1071 target_ulong tb_start, tb_end;
1072 target_ulong current_pc, current_cs_base;
1073
1074 p = page_find(start >> TARGET_PAGE_BITS);
1075 if (!p)
1076 return;
1077 if (!p->code_bitmap &&
1078 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1079 is_cpu_write_access) {
1080 /* build code bitmap */
1081 build_page_bitmap(p);
1082 }
1083
1084 /* we remove all the TBs in the range [start, end[ */
1085 /* XXX: see if in some cases it could be faster to invalidate all the code */
1086 current_tb_not_found = is_cpu_write_access;
1087 current_tb_modified = 0;
1088 current_tb = NULL; /* avoid warning */
1089 current_pc = 0; /* avoid warning */
1090 current_cs_base = 0; /* avoid warning */
1091 current_flags = 0; /* avoid warning */
1092 tb = p->first_tb;
1093 while (tb != NULL) {
1094 n = (long)tb & 3;
1095 tb = (TranslationBlock *)((long)tb & ~3);
1096 tb_next = tb->page_next[n];
1097 /* NOTE: this is subtle as a TB may span two physical pages */
1098 if (n == 0) {
1099 /* NOTE: tb_end may be after the end of the page, but
1100 it is not a problem */
1101 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1102 tb_end = tb_start + tb->size;
1103 } else {
1104 tb_start = tb->page_addr[1];
1105 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1106 }
1107 if (!(tb_end <= start || tb_start >= end)) {
1108#ifdef TARGET_HAS_PRECISE_SMC
1109 if (current_tb_not_found) {
1110 current_tb_not_found = 0;
1111 current_tb = NULL;
1112 if (env->mem_io_pc) {
1113 /* now we have a real cpu fault */
1114 current_tb = tb_find_pc(env->mem_io_pc);
1115 }
1116 }
1117 if (current_tb == tb &&
1118 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1119 /* If we are modifying the current TB, we must stop
1120 its execution. We could be more precise by checking
1121 that the modification is after the current PC, but it
1122 would require a specialized function to partially
1123 restore the CPU state */
1124
1125 current_tb_modified = 1;
1126 cpu_restore_state(current_tb, env,
1127 env->mem_io_pc, NULL);
1128#if defined(TARGET_I386)
1129 current_flags = env->hflags;
1130 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
1131 current_cs_base = (target_ulong)env->segs[R_CS].base;
1132 current_pc = current_cs_base + env->eip;
1133#else
1134#error unsupported CPU
1135#endif
1136 }
1137#endif /* TARGET_HAS_PRECISE_SMC */
1138 /* we need to do that to handle the case where a signal
1139 occurs while doing tb_phys_invalidate() */
1140 saved_tb = NULL;
1141 if (env) {
1142 saved_tb = env->current_tb;
1143 env->current_tb = NULL;
1144 }
1145 tb_phys_invalidate(tb, -1);
1146 if (env) {
1147 env->current_tb = saved_tb;
1148 if (env->interrupt_request && env->current_tb)
1149 cpu_interrupt(env, env->interrupt_request);
1150 }
1151 }
1152 tb = tb_next;
1153 }
1154#if !defined(CONFIG_USER_ONLY)
1155 /* if no code remaining, no need to continue to use slow writes */
1156 if (!p->first_tb) {
1157 invalidate_page_bitmap(p);
1158 if (is_cpu_write_access) {
1159 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1160 }
1161 }
1162#endif
1163#ifdef TARGET_HAS_PRECISE_SMC
1164 if (current_tb_modified) {
1165 /* we generate a block containing just the instruction
1166 modifying the memory. It will ensure that it cannot modify
1167 itself */
1168 env->current_tb = NULL;
1169 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1170 cpu_resume_from_signal(env, NULL);
1171 }
1172#endif
1173}
1174
1175
1176/* len must be <= 8 and start must be a multiple of len */
1177#ifndef VBOX
1178static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1179#else
1180DECLINLINE(void) tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
1181#endif
1182{
1183 PageDesc *p;
1184 int offset, b;
1185#if 0
1186 if (1) {
1187 if (loglevel) {
1188 fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1189 cpu_single_env->mem_io_vaddr, len,
1190 cpu_single_env->eip,
1191 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1192 }
1193 }
1194#endif
1195 p = page_find(start >> TARGET_PAGE_BITS);
1196 if (!p)
1197 return;
1198 if (p->code_bitmap) {
1199 offset = start & ~TARGET_PAGE_MASK;
1200 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1201 if (b & ((1 << len) - 1))
1202 goto do_invalidate;
1203 } else {
1204 do_invalidate:
1205 tb_invalidate_phys_page_range(start, start + len, 1);
1206 }
1207}
1208
1209
1210#if !defined(CONFIG_SOFTMMU)
1211static void tb_invalidate_phys_page(target_phys_addr_t addr,
1212 unsigned long pc, void *puc)
1213{
1214 int n, current_flags, current_tb_modified;
1215 target_ulong current_pc, current_cs_base;
1216 PageDesc *p;
1217 TranslationBlock *tb, *current_tb;
1218#ifdef TARGET_HAS_PRECISE_SMC
1219 CPUState *env = cpu_single_env;
1220#endif
1221
1222 addr &= TARGET_PAGE_MASK;
1223 p = page_find(addr >> TARGET_PAGE_BITS);
1224 if (!p)
1225 return;
1226 tb = p->first_tb;
1227 current_tb_modified = 0;
1228 current_tb = NULL;
1229 current_pc = 0; /* avoid warning */
1230 current_cs_base = 0; /* avoid warning */
1231 current_flags = 0; /* avoid warning */
1232#ifdef TARGET_HAS_PRECISE_SMC
1233 if (tb && pc != 0) {
1234 current_tb = tb_find_pc(pc);
1235 }
1236#endif
1237 while (tb != NULL) {
1238 n = (long)tb & 3;
1239 tb = (TranslationBlock *)((long)tb & ~3);
1240#ifdef TARGET_HAS_PRECISE_SMC
1241 if (current_tb == tb &&
1242 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1243 /* If we are modifying the current TB, we must stop
1244 its execution. We could be more precise by checking
1245 that the modification is after the current PC, but it
1246 would require a specialized function to partially
1247 restore the CPU state */
1248
1249 current_tb_modified = 1;
1250 cpu_restore_state(current_tb, env, pc, puc);
1251#if defined(TARGET_I386)
1252 current_flags = env->hflags;
1253 current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
1254 current_cs_base = (target_ulong)env->segs[R_CS].base;
1255 current_pc = current_cs_base + env->eip;
1256#else
1257#error unsupported CPU
1258#endif
1259 }
1260#endif /* TARGET_HAS_PRECISE_SMC */
1261 tb_phys_invalidate(tb, addr);
1262 tb = tb->page_next[n];
1263 }
1264 p->first_tb = NULL;
1265#ifdef TARGET_HAS_PRECISE_SMC
1266 if (current_tb_modified) {
1267 /* we generate a block containing just the instruction
1268 modifying the memory. It will ensure that it cannot modify
1269 itself */
1270 env->current_tb = NULL;
1271 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1272 cpu_resume_from_signal(env, puc);
1273 }
1274#endif
1275}
1276#endif
1277
1278/* add the tb in the target page and protect it if necessary */
1279#ifndef VBOX
1280static inline void tb_alloc_page(TranslationBlock *tb,
1281 unsigned int n, target_ulong page_addr)
1282#else
1283DECLINLINE(void) tb_alloc_page(TranslationBlock *tb,
1284 unsigned int n, target_ulong page_addr)
1285#endif
1286{
1287 PageDesc *p;
1288 TranslationBlock *last_first_tb;
1289
1290 tb->page_addr[n] = page_addr;
1291 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1292 tb->page_next[n] = p->first_tb;
1293 last_first_tb = p->first_tb;
1294 p->first_tb = (TranslationBlock *)((long)tb | n);
1295 invalidate_page_bitmap(p);
1296
1297#if defined(TARGET_HAS_SMC) || 1
1298
1299#if defined(CONFIG_USER_ONLY)
1300 if (p->flags & PAGE_WRITE) {
1301 target_ulong addr;
1302 PageDesc *p2;
1303 int prot;
1304
1305 /* force the host page as non writable (writes will have a
1306 page fault + mprotect overhead) */
1307 page_addr &= qemu_host_page_mask;
1308 prot = 0;
1309 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1310 addr += TARGET_PAGE_SIZE) {
1311
1312 p2 = page_find (addr >> TARGET_PAGE_BITS);
1313 if (!p2)
1314 continue;
1315 prot |= p2->flags;
1316 p2->flags &= ~PAGE_WRITE;
1317 page_get_flags(addr);
1318 }
1319 mprotect(g2h(page_addr), qemu_host_page_size,
1320 (prot & PAGE_BITS) & ~PAGE_WRITE);
1321#ifdef DEBUG_TB_INVALIDATE
1322 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1323 page_addr);
1324#endif
1325 }
1326#else
1327 /* if some code is already present, then the pages are already
1328 protected. So we handle the case where only the first TB is
1329 allocated in a physical page */
1330 if (!last_first_tb) {
1331 tlb_protect_code(page_addr);
1332 }
1333#endif
1334
1335#endif /* TARGET_HAS_SMC */
1336}
1337
1338/* Allocate a new translation block. Flush the translation buffer if
1339 too many translation blocks or too much generated code. */
1340TranslationBlock *tb_alloc(target_ulong pc)
1341{
1342 TranslationBlock *tb;
1343
1344 if (nb_tbs >= code_gen_max_blocks ||
1345#ifndef VBOX
1346 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1347#else
1348 (code_gen_ptr - code_gen_buffer) >= (int)code_gen_buffer_max_size)
1349#endif
1350 return NULL;
1351 tb = &tbs[nb_tbs++];
1352 tb->pc = pc;
1353 tb->cflags = 0;
1354 return tb;
1355}
1356
1357void tb_free(TranslationBlock *tb)
1358{
1359 /* In practice this is mostly used for single use temporary TB
1360 Ignore the hard cases and just back up if this TB happens to
1361 be the last one generated. */
1362 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1363 code_gen_ptr = tb->tc_ptr;
1364 nb_tbs--;
1365 }
1366}
1367
1368/* add a new TB and link it to the physical page tables. phys_page2 is
1369 (-1) to indicate that only one page contains the TB. */
1370void tb_link_phys(TranslationBlock *tb,
1371 target_ulong phys_pc, target_ulong phys_page2)
1372{
1373 unsigned int h;
1374 TranslationBlock **ptb;
1375
1376 /* Grab the mmap lock to stop another thread invalidating this TB
1377 before we are done. */
1378 mmap_lock();
1379 /* add in the physical hash table */
1380 h = tb_phys_hash_func(phys_pc);
1381 ptb = &tb_phys_hash[h];
1382 tb->phys_hash_next = *ptb;
1383 *ptb = tb;
1384
1385 /* add in the page list */
1386 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1387 if (phys_page2 != -1)
1388 tb_alloc_page(tb, 1, phys_page2);
1389 else
1390 tb->page_addr[1] = -1;
1391
1392 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1393 tb->jmp_next[0] = NULL;
1394 tb->jmp_next[1] = NULL;
1395
1396 /* init original jump addresses */
1397 if (tb->tb_next_offset[0] != 0xffff)
1398 tb_reset_jump(tb, 0);
1399 if (tb->tb_next_offset[1] != 0xffff)
1400 tb_reset_jump(tb, 1);
1401
1402#ifdef DEBUG_TB_CHECK
1403 tb_page_check();
1404#endif
1405 mmap_unlock();
1406}
1407
1408/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1409 tb[1].tc_ptr. Return NULL if not found */
1410TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1411{
1412 int m_min, m_max, m;
1413 unsigned long v;
1414 TranslationBlock *tb;
1415
1416 if (nb_tbs <= 0)
1417 return NULL;
1418 if (tc_ptr < (unsigned long)code_gen_buffer ||
1419 tc_ptr >= (unsigned long)code_gen_ptr)
1420 return NULL;
1421 /* binary search (cf Knuth) */
1422 m_min = 0;
1423 m_max = nb_tbs - 1;
1424 while (m_min <= m_max) {
1425 m = (m_min + m_max) >> 1;
1426 tb = &tbs[m];
1427 v = (unsigned long)tb->tc_ptr;
1428 if (v == tc_ptr)
1429 return tb;
1430 else if (tc_ptr < v) {
1431 m_max = m - 1;
1432 } else {
1433 m_min = m + 1;
1434 }
1435 }
1436 return &tbs[m_max];
1437}
1438
1439static void tb_reset_jump_recursive(TranslationBlock *tb);
1440
1441#ifndef VBOX
1442static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1443#else
1444DECLINLINE(void) tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1445#endif
1446{
1447 TranslationBlock *tb1, *tb_next, **ptb;
1448 unsigned int n1;
1449
1450 tb1 = tb->jmp_next[n];
1451 if (tb1 != NULL) {
1452 /* find head of list */
1453 for(;;) {
1454 n1 = (long)tb1 & 3;
1455 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1456 if (n1 == 2)
1457 break;
1458 tb1 = tb1->jmp_next[n1];
1459 }
1460 /* we are now sure now that tb jumps to tb1 */
1461 tb_next = tb1;
1462
1463 /* remove tb from the jmp_first list */
1464 ptb = &tb_next->jmp_first;
1465 for(;;) {
1466 tb1 = *ptb;
1467 n1 = (long)tb1 & 3;
1468 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1469 if (n1 == n && tb1 == tb)
1470 break;
1471 ptb = &tb1->jmp_next[n1];
1472 }
1473 *ptb = tb->jmp_next[n];
1474 tb->jmp_next[n] = NULL;
1475
1476 /* suppress the jump to next tb in generated code */
1477 tb_reset_jump(tb, n);
1478
1479 /* suppress jumps in the tb on which we could have jumped */
1480 tb_reset_jump_recursive(tb_next);
1481 }
1482}
1483
1484static void tb_reset_jump_recursive(TranslationBlock *tb)
1485{
1486 tb_reset_jump_recursive2(tb, 0);
1487 tb_reset_jump_recursive2(tb, 1);
1488}
1489
1490#if defined(TARGET_HAS_ICE)
1491static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1492{
1493 target_ulong addr, pd;
1494 ram_addr_t ram_addr;
1495 PhysPageDesc *p;
1496
1497 addr = cpu_get_phys_page_debug(env, pc);
1498 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1499 if (!p) {
1500 pd = IO_MEM_UNASSIGNED;
1501 } else {
1502 pd = p->phys_offset;
1503 }
1504 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1505 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1506}
1507#endif
1508
1509/* Add a watchpoint. */
1510int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type)
1511{
1512 int i;
1513
1514 for (i = 0; i < env->nb_watchpoints; i++) {
1515 if (addr == env->watchpoint[i].vaddr)
1516 return 0;
1517 }
1518 if (env->nb_watchpoints >= MAX_WATCHPOINTS)
1519 return -1;
1520
1521 i = env->nb_watchpoints++;
1522 env->watchpoint[i].vaddr = addr;
1523 env->watchpoint[i].type = type;
1524 tlb_flush_page(env, addr);
1525 /* FIXME: This flush is needed because of the hack to make memory ops
1526 terminate the TB. It can be removed once the proper IO trap and
1527 re-execute bits are in. */
1528 tb_flush(env);
1529 return i;
1530}
1531
1532/* Remove a watchpoint. */
1533int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
1534{
1535 int i;
1536
1537 for (i = 0; i < env->nb_watchpoints; i++) {
1538 if (addr == env->watchpoint[i].vaddr) {
1539 env->nb_watchpoints--;
1540 env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
1541 tlb_flush_page(env, addr);
1542 return 0;
1543 }
1544 }
1545 return -1;
1546}
1547
1548/* Remove all watchpoints. */
1549void cpu_watchpoint_remove_all(CPUState *env) {
1550 int i;
1551
1552 for (i = 0; i < env->nb_watchpoints; i++) {
1553 tlb_flush_page(env, env->watchpoint[i].vaddr);
1554 }
1555 env->nb_watchpoints = 0;
1556}
1557
1558/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
1559 breakpoint is reached */
1560int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
1561{
1562#if defined(TARGET_HAS_ICE)
1563 int i;
1564
1565 for(i = 0; i < env->nb_breakpoints; i++) {
1566 if (env->breakpoints[i] == pc)
1567 return 0;
1568 }
1569
1570 if (env->nb_breakpoints >= MAX_BREAKPOINTS)
1571 return -1;
1572 env->breakpoints[env->nb_breakpoints++] = pc;
1573
1574 breakpoint_invalidate(env, pc);
1575 return 0;
1576#else
1577 return -1;
1578#endif
1579}
1580
1581/* remove all breakpoints */
1582void cpu_breakpoint_remove_all(CPUState *env) {
1583#if defined(TARGET_HAS_ICE)
1584 int i;
1585 for(i = 0; i < env->nb_breakpoints; i++) {
1586 breakpoint_invalidate(env, env->breakpoints[i]);
1587 }
1588 env->nb_breakpoints = 0;
1589#endif
1590}
1591
1592/* remove a breakpoint */
1593int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
1594{
1595#if defined(TARGET_HAS_ICE)
1596 int i;
1597 for(i = 0; i < env->nb_breakpoints; i++) {
1598 if (env->breakpoints[i] == pc)
1599 goto found;
1600 }
1601 return -1;
1602 found:
1603 env->nb_breakpoints--;
1604 if (i < env->nb_breakpoints)
1605 env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
1606
1607 breakpoint_invalidate(env, pc);
1608 return 0;
1609#else
1610 return -1;
1611#endif
1612}
1613
1614/* enable or disable single step mode. EXCP_DEBUG is returned by the
1615 CPU loop after each instruction */
1616void cpu_single_step(CPUState *env, int enabled)
1617{
1618#if defined(TARGET_HAS_ICE)
1619 if (env->singlestep_enabled != enabled) {
1620 env->singlestep_enabled = enabled;
1621 /* must flush all the translated code to avoid inconsistancies */
1622 /* XXX: only flush what is necessary */
1623 tb_flush(env);
1624 }
1625#endif
1626}
1627
1628#ifndef VBOX
1629/* enable or disable low levels log */
1630void cpu_set_log(int log_flags)
1631{
1632 loglevel = log_flags;
1633 if (loglevel && !logfile) {
1634 logfile = fopen(logfilename, "w");
1635 if (!logfile) {
1636 perror(logfilename);
1637 _exit(1);
1638 }
1639#if !defined(CONFIG_SOFTMMU)
1640 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1641 {
1642 static uint8_t logfile_buf[4096];
1643 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1644 }
1645#else
1646 setvbuf(logfile, NULL, _IOLBF, 0);
1647#endif
1648 }
1649}
1650
1651void cpu_set_log_filename(const char *filename)
1652{
1653 logfilename = strdup(filename);
1654}
1655#endif /* !VBOX */
1656
1657/* mask must never be zero, except for A20 change call */
1658void cpu_interrupt(CPUState *env, int mask)
1659{
1660#if !defined(USE_NPTL)
1661 TranslationBlock *tb;
1662 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1663#endif
1664 int old_mask;
1665
1666 old_mask = env->interrupt_request;
1667#ifdef VBOX
1668 VM_ASSERT_EMT(env->pVM);
1669 ASMAtomicOrS32((int32_t volatile *)&env->interrupt_request, mask);
1670#else /* !VBOX */
1671 /* FIXME: This is probably not threadsafe. A different thread could
1672 be in the middle of a read-modify-write operation. */
1673 env->interrupt_request |= mask;
1674#endif /* !VBOX */
1675#if defined(USE_NPTL)
1676 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1677 problem and hope the cpu will stop of its own accord. For userspace
1678 emulation this often isn't actually as bad as it sounds. Often
1679 signals are used primarily to interrupt blocking syscalls. */
1680#else
1681 if (use_icount) {
1682 env->icount_decr.u16.high = 0xffff;
1683#ifndef CONFIG_USER_ONLY
1684 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1685 an async event happened and we need to process it. */
1686 if (!can_do_io(env)
1687 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1688 cpu_abort(env, "Raised interrupt while not in I/O function");
1689 }
1690#endif
1691 } else {
1692 tb = env->current_tb;
1693 /* if the cpu is currently executing code, we must unlink it and
1694 all the potentially executing TB */
1695 if (tb && !testandset(&interrupt_lock)) {
1696 env->current_tb = NULL;
1697 tb_reset_jump_recursive(tb);
1698 resetlock(&interrupt_lock);
1699 }
1700 }
1701#endif
1702}
1703
1704void cpu_reset_interrupt(CPUState *env, int mask)
1705{
1706#ifdef VBOX
1707 /*
1708 * Note: the current implementation can be executed by another thread without problems; make sure this remains true
1709 * for future changes!
1710 */
1711 ASMAtomicAndS32((int32_t volatile *)&env->interrupt_request, ~mask);
1712#else /* !VBOX */
1713 env->interrupt_request &= ~mask;
1714#endif /* !VBOX */
1715}
1716
1717#ifndef VBOX
1718CPULogItem cpu_log_items[] = {
1719 { CPU_LOG_TB_OUT_ASM, "out_asm",
1720 "show generated host assembly code for each compiled TB" },
1721 { CPU_LOG_TB_IN_ASM, "in_asm",
1722 "show target assembly code for each compiled TB" },
1723 { CPU_LOG_TB_OP, "op",
1724 "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
1725#ifdef TARGET_I386
1726 { CPU_LOG_TB_OP_OPT, "op_opt",
1727 "show micro ops after optimization for each compiled TB" },
1728#endif
1729 { CPU_LOG_INT, "int",
1730 "show interrupts/exceptions in short format" },
1731 { CPU_LOG_EXEC, "exec",
1732 "show trace before each executed TB (lots of logs)" },
1733 { CPU_LOG_TB_CPU, "cpu",
1734 "show CPU state before bloc translation" },
1735#ifdef TARGET_I386
1736 { CPU_LOG_PCALL, "pcall",
1737 "show protected mode far calls/returns/exceptions" },
1738#endif
1739#ifdef DEBUG_IOPORT
1740 { CPU_LOG_IOPORT, "ioport",
1741 "show all i/o ports accesses" },
1742#endif
1743 { 0, NULL, NULL },
1744};
1745
1746static int cmp1(const char *s1, int n, const char *s2)
1747{
1748 if (strlen(s2) != n)
1749 return 0;
1750 return memcmp(s1, s2, n) == 0;
1751}
1752
1753/* takes a comma separated list of log masks. Return 0 if error. */
1754int cpu_str_to_log_mask(const char *str)
1755{
1756 CPULogItem *item;
1757 int mask;
1758 const char *p, *p1;
1759
1760 p = str;
1761 mask = 0;
1762 for(;;) {
1763 p1 = strchr(p, ',');
1764 if (!p1)
1765 p1 = p + strlen(p);
1766 if(cmp1(p,p1-p,"all")) {
1767 for(item = cpu_log_items; item->mask != 0; item++) {
1768 mask |= item->mask;
1769 }
1770 } else {
1771 for(item = cpu_log_items; item->mask != 0; item++) {
1772 if (cmp1(p, p1 - p, item->name))
1773 goto found;
1774 }
1775 return 0;
1776 }
1777 found:
1778 mask |= item->mask;
1779 if (*p1 != ',')
1780 break;
1781 p = p1 + 1;
1782 }
1783 return mask;
1784}
1785#endif /* !VBOX */
1786
1787#ifndef VBOX /* VBOX: we have our own routine. */
1788void cpu_abort(CPUState *env, const char *fmt, ...)
1789{
1790 va_list ap;
1791
1792 va_start(ap, fmt);
1793 fprintf(stderr, "qemu: fatal: ");
1794 vfprintf(stderr, fmt, ap);
1795 fprintf(stderr, "\n");
1796#ifdef TARGET_I386
1797 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1798#else
1799 cpu_dump_state(env, stderr, fprintf, 0);
1800#endif
1801 va_end(ap);
1802 abort();
1803}
1804#endif /* !VBOX */
1805
1806#ifndef VBOX
1807CPUState *cpu_copy(CPUState *env)
1808{
1809 CPUState *new_env = cpu_init(env->cpu_model_str);
1810 /* preserve chaining and index */
1811 CPUState *next_cpu = new_env->next_cpu;
1812 int cpu_index = new_env->cpu_index;
1813 memcpy(new_env, env, sizeof(CPUState));
1814 new_env->next_cpu = next_cpu;
1815 new_env->cpu_index = cpu_index;
1816 return new_env;
1817}
1818#endif
1819
1820#if !defined(CONFIG_USER_ONLY)
1821
1822#ifndef VBOX
1823static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1824#else
1825DECLINLINE(void) tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1826#endif
1827{
1828 unsigned int i;
1829
1830 /* Discard jump cache entries for any tb which might potentially
1831 overlap the flushed page. */
1832 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1833 memset (&env->tb_jmp_cache[i], 0,
1834 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1835
1836 i = tb_jmp_cache_hash_page(addr);
1837 memset (&env->tb_jmp_cache[i], 0,
1838 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1839
1840#ifdef VBOX
1841 /* inform raw mode about TLB page flush */
1842 remR3FlushPage(env, addr);
1843#endif /* VBOX */
1844}
1845
1846/* NOTE: if flush_global is true, also flush global entries (not
1847 implemented yet) */
1848void tlb_flush(CPUState *env, int flush_global)
1849{
1850 int i;
1851
1852#if defined(DEBUG_TLB)
1853 printf("tlb_flush:\n");
1854#endif
1855 /* must reset current TB so that interrupts cannot modify the
1856 links while we are modifying them */
1857 env->current_tb = NULL;
1858
1859 for(i = 0; i < CPU_TLB_SIZE; i++) {
1860 env->tlb_table[0][i].addr_read = -1;
1861 env->tlb_table[0][i].addr_write = -1;
1862 env->tlb_table[0][i].addr_code = -1;
1863 env->tlb_table[1][i].addr_read = -1;
1864 env->tlb_table[1][i].addr_write = -1;
1865 env->tlb_table[1][i].addr_code = -1;
1866#if (NB_MMU_MODES >= 3)
1867 env->tlb_table[2][i].addr_read = -1;
1868 env->tlb_table[2][i].addr_write = -1;
1869 env->tlb_table[2][i].addr_code = -1;
1870#if (NB_MMU_MODES == 4)
1871 env->tlb_table[3][i].addr_read = -1;
1872 env->tlb_table[3][i].addr_write = -1;
1873 env->tlb_table[3][i].addr_code = -1;
1874#endif
1875#endif
1876 }
1877
1878 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1879
1880#ifdef VBOX
1881 /* inform raw mode about TLB flush */
1882 remR3FlushTLB(env, flush_global);
1883#endif
1884#ifdef USE_KQEMU
1885 if (env->kqemu_enabled) {
1886 kqemu_flush(env, flush_global);
1887 }
1888#endif
1889 tlb_flush_count++;
1890}
1891
1892#ifndef VBOX
1893static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1894#else
1895DECLINLINE(void) tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1896#endif
1897{
1898 if (addr == (tlb_entry->addr_read &
1899 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1900 addr == (tlb_entry->addr_write &
1901 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1902 addr == (tlb_entry->addr_code &
1903 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1904 tlb_entry->addr_read = -1;
1905 tlb_entry->addr_write = -1;
1906 tlb_entry->addr_code = -1;
1907 }
1908}
1909
1910void tlb_flush_page(CPUState *env, target_ulong addr)
1911{
1912 int i;
1913
1914#if defined(DEBUG_TLB)
1915 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1916#endif
1917 /* must reset current TB so that interrupts cannot modify the
1918 links while we are modifying them */
1919 env->current_tb = NULL;
1920
1921 addr &= TARGET_PAGE_MASK;
1922 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1923 tlb_flush_entry(&env->tlb_table[0][i], addr);
1924 tlb_flush_entry(&env->tlb_table[1][i], addr);
1925#if (NB_MMU_MODES >= 3)
1926 tlb_flush_entry(&env->tlb_table[2][i], addr);
1927#if (NB_MMU_MODES == 4)
1928 tlb_flush_entry(&env->tlb_table[3][i], addr);
1929#endif
1930#endif
1931
1932 tlb_flush_jmp_cache(env, addr);
1933
1934#ifdef USE_KQEMU
1935 if (env->kqemu_enabled) {
1936 kqemu_flush_page(env, addr);
1937 }
1938#endif
1939}
1940
1941/* update the TLBs so that writes to code in the virtual page 'addr'
1942 can be detected */
1943static void tlb_protect_code(ram_addr_t ram_addr)
1944{
1945 cpu_physical_memory_reset_dirty(ram_addr,
1946 ram_addr + TARGET_PAGE_SIZE,
1947 CODE_DIRTY_FLAG);
1948#if defined(VBOX) && defined(REM_MONITOR_CODE_PAGES)
1949 /** @todo Retest this? This function has changed... */
1950 remR3ProtectCode(cpu_single_env, ram_addr);
1951#endif
1952}
1953
1954/* update the TLB so that writes in physical page 'phys_addr' are no longer
1955 tested for self modifying code */
1956static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1957 target_ulong vaddr)
1958{
1959#ifdef VBOX
1960 if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
1961#endif
1962 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1963}
1964
1965#ifndef VBOX
1966static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1967 unsigned long start, unsigned long length)
1968#else
1969DECLINLINE(void) tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1970 unsigned long start, unsigned long length)
1971#endif
1972{
1973 unsigned long addr;
1974
1975#ifdef VBOX
1976 if (start & 1)
1977 return;
1978#endif
1979 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1980 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1981 if ((addr - start) < length) {
1982 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
1983 }
1984 }
1985}
1986
1987void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1988 int dirty_flags)
1989{
1990 CPUState *env;
1991 unsigned long length, start1;
1992 int i, mask, len;
1993 uint8_t *p;
1994
1995 start &= TARGET_PAGE_MASK;
1996 end = TARGET_PAGE_ALIGN(end);
1997
1998 length = end - start;
1999 if (length == 0)
2000 return;
2001 len = length >> TARGET_PAGE_BITS;
2002#ifdef USE_KQEMU
2003 /* XXX: should not depend on cpu context */
2004 env = first_cpu;
2005 if (env->kqemu_enabled) {
2006 ram_addr_t addr;
2007 addr = start;
2008 for(i = 0; i < len; i++) {
2009 kqemu_set_notdirty(env, addr);
2010 addr += TARGET_PAGE_SIZE;
2011 }
2012 }
2013#endif
2014 mask = ~dirty_flags;
2015 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
2016#ifdef VBOX
2017 if (RT_LIKELY((start >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
2018#endif
2019 for(i = 0; i < len; i++)
2020 p[i] &= mask;
2021
2022 /* we modify the TLB cache so that the dirty bit will be set again
2023 when accessing the range */
2024#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
2025 start1 = start;
2026#elif !defined(VBOX)
2027 start1 = start + (unsigned long)phys_ram_base;
2028#else
2029 start1 = (unsigned long)remR3GCPhys2HCVirt(first_cpu, start, -1);
2030#endif
2031 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2032 for(i = 0; i < CPU_TLB_SIZE; i++)
2033 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
2034 for(i = 0; i < CPU_TLB_SIZE; i++)
2035 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
2036#if (NB_MMU_MODES >= 3)
2037 for(i = 0; i < CPU_TLB_SIZE; i++)
2038 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
2039#if (NB_MMU_MODES == 4)
2040 for(i = 0; i < CPU_TLB_SIZE; i++)
2041 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
2042#endif
2043#endif
2044 }
2045}
2046
2047#ifndef VBOX
2048int cpu_physical_memory_set_dirty_tracking(int enable)
2049{
2050 in_migration = enable;
2051 return 0;
2052}
2053
2054int cpu_physical_memory_get_dirty_tracking(void)
2055{
2056 return in_migration;
2057}
2058#endif
2059
2060#ifndef VBOX
2061static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2062#else
2063DECLINLINE(void) tlb_update_dirty(CPUTLBEntry *tlb_entry)
2064#endif
2065{
2066 ram_addr_t ram_addr;
2067
2068 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2069 /* RAM case */
2070#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
2071 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2072#elif !defined(VBOX)
2073 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
2074 tlb_entry->addend - (unsigned long)phys_ram_base;
2075#else
2076 ram_addr = remR3HCVirt2GCPhys(first_cpu, (void*)((tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend));
2077#endif
2078 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2079 tlb_entry->addr_write |= TLB_NOTDIRTY;
2080 }
2081 }
2082}
2083
2084/* update the TLB according to the current state of the dirty bits */
2085void cpu_tlb_update_dirty(CPUState *env)
2086{
2087 int i;
2088 for(i = 0; i < CPU_TLB_SIZE; i++)
2089 tlb_update_dirty(&env->tlb_table[0][i]);
2090 for(i = 0; i < CPU_TLB_SIZE; i++)
2091 tlb_update_dirty(&env->tlb_table[1][i]);
2092#if (NB_MMU_MODES >= 3)
2093 for(i = 0; i < CPU_TLB_SIZE; i++)
2094 tlb_update_dirty(&env->tlb_table[2][i]);
2095#if (NB_MMU_MODES == 4)
2096 for(i = 0; i < CPU_TLB_SIZE; i++)
2097 tlb_update_dirty(&env->tlb_table[3][i]);
2098#endif
2099#endif
2100}
2101
2102#ifndef VBOX
2103static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2104#else
2105DECLINLINE(void) tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2106#endif
2107{
2108 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2109 tlb_entry->addr_write = vaddr;
2110}
2111
2112
2113/* update the TLB corresponding to virtual page vaddr and phys addr
2114 addr so that it is no longer dirty */
2115#ifndef VBOX
2116static inline void tlb_set_dirty(CPUState *env,
2117 unsigned long addr, target_ulong vaddr)
2118#else
2119DECLINLINE(void) tlb_set_dirty(CPUState *env,
2120 unsigned long addr, target_ulong vaddr)
2121#endif
2122{
2123 int i;
2124
2125 addr &= TARGET_PAGE_MASK;
2126 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2127 tlb_set_dirty1(&env->tlb_table[0][i], addr);
2128 tlb_set_dirty1(&env->tlb_table[1][i], addr);
2129#if (NB_MMU_MODES >= 3)
2130 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
2131#if (NB_MMU_MODES == 4)
2132 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
2133#endif
2134#endif
2135}
2136
2137/* add a new TLB entry. At most one entry for a given virtual address
2138 is permitted. Return 0 if OK or 2 if the page could not be mapped
2139 (can only happen in non SOFTMMU mode for I/O pages or pages
2140 conflicting with the host address space). */
2141int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2142 target_phys_addr_t paddr, int prot,
2143 int mmu_idx, int is_softmmu)
2144{
2145 PhysPageDesc *p;
2146 unsigned long pd;
2147 unsigned int index;
2148 target_ulong address;
2149 target_ulong code_address;
2150 target_phys_addr_t addend;
2151 int ret;
2152 CPUTLBEntry *te;
2153 int i;
2154 target_phys_addr_t iotlb;
2155
2156 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2157 if (!p) {
2158 pd = IO_MEM_UNASSIGNED;
2159 } else {
2160 pd = p->phys_offset;
2161 }
2162#if defined(DEBUG_TLB)
2163 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
2164 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
2165#endif
2166
2167 ret = 0;
2168 address = vaddr;
2169 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2170 /* IO memory case (romd handled later) */
2171 address |= TLB_MMIO;
2172 }
2173#if defined(VBOX) && defined(REM_PHYS_ADDR_IN_TLB)
2174 addend = pd & TARGET_PAGE_MASK;
2175#elif !defined(VBOX)
2176 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
2177#else
2178 addend = (unsigned long)remR3GCPhys2HCVirt(env,
2179 pd & TARGET_PAGE_MASK,
2180 vaddr & TARGET_PAGE_MASK);
2181#endif
2182 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2183 /* Normal RAM. */
2184 iotlb = pd & TARGET_PAGE_MASK;
2185 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2186 iotlb |= IO_MEM_NOTDIRTY;
2187 else
2188 iotlb |= IO_MEM_ROM;
2189 } else {
2190 /* IO handlers are currently passed a phsical address.
2191 It would be nice to pass an offset from the base address
2192 of that region. This would avoid having to special case RAM,
2193 and avoid full address decoding in every device.
2194 We can't use the high bits of pd for this because
2195 IO_MEM_ROMD uses these as a ram address. */
2196 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
2197 }
2198
2199 code_address = address;
2200
2201#ifdef VBOX
2202# if !defined(REM_PHYS_ADDR_IN_TLB)
2203 if (addend & 0x1)
2204 {
2205 addend &= ~(target_ulong)0x1;
2206 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2207 {
2208 address |= TLB_MMIO;
2209 iotlb = (pd & ~TARGET_PAGE_MASK) + paddr +env->pVM->rem.s.iHandlerMemType;
2210 }
2211 }
2212# endif
2213#endif
2214
2215 /* Make accesses to pages with watchpoints go via the
2216 watchpoint trap routines. */
2217 for (i = 0; i < env->nb_watchpoints; i++) {
2218 if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
2219 iotlb = io_mem_watch + paddr;
2220 /* TODO: The memory case can be optimized by not trapping
2221 reads of pages with a write breakpoint. */
2222 address |= TLB_MMIO;
2223 }
2224 }
2225
2226 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2227 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2228 te = &env->tlb_table[mmu_idx][index];
2229 te->addend = addend - vaddr;
2230 if (prot & PAGE_READ) {
2231 te->addr_read = address;
2232 } else {
2233 te->addr_read = -1;
2234 }
2235
2236 if (prot & PAGE_EXEC) {
2237 te->addr_code = code_address;
2238 } else {
2239 te->addr_code = -1;
2240 }
2241 if (prot & PAGE_WRITE) {
2242 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2243 (pd & IO_MEM_ROMD)) {
2244 /* Write access calls the I/O callback. */
2245 te->addr_write = address | TLB_MMIO;
2246 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2247 !cpu_physical_memory_is_dirty(pd)) {
2248 te->addr_write = address | TLB_NOTDIRTY;
2249 } else {
2250 te->addr_write = address;
2251 }
2252 } else {
2253 te->addr_write = -1;
2254 }
2255#ifdef VBOX
2256 /* inform raw mode about TLB page change */
2257 remR3FlushPage(env, vaddr);
2258#endif
2259 return ret;
2260}
2261#if 0
2262/* called from signal handler: invalidate the code and unprotect the
2263 page. Return TRUE if the fault was succesfully handled. */
2264int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
2265{
2266#if !defined(CONFIG_SOFTMMU)
2267 VirtPageDesc *vp;
2268
2269#if defined(DEBUG_TLB)
2270 printf("page_unprotect: addr=0x%08x\n", addr);
2271#endif
2272 addr &= TARGET_PAGE_MASK;
2273
2274 /* if it is not mapped, no need to worry here */
2275 if (addr >= MMAP_AREA_END)
2276 return 0;
2277 vp = virt_page_find(addr >> TARGET_PAGE_BITS);
2278 if (!vp)
2279 return 0;
2280 /* NOTE: in this case, validate_tag is _not_ tested as it
2281 validates only the code TLB */
2282 if (vp->valid_tag != virt_valid_tag)
2283 return 0;
2284 if (!(vp->prot & PAGE_WRITE))
2285 return 0;
2286#if defined(DEBUG_TLB)
2287 printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
2288 addr, vp->phys_addr, vp->prot);
2289#endif
2290 if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
2291 cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
2292 (unsigned long)addr, vp->prot);
2293 /* set the dirty bit */
2294 phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
2295 /* flush the code inside */
2296 tb_invalidate_phys_page(vp->phys_addr, pc, puc);
2297 return 1;
2298#elif defined(VBOX)
2299 addr &= TARGET_PAGE_MASK;
2300
2301 /* if it is not mapped, no need to worry here */
2302 if (addr >= MMAP_AREA_END)
2303 return 0;
2304 return 1;
2305#else
2306 return 0;
2307#endif
2308}
2309#endif /* 0 */
2310
2311#else
2312
2313void tlb_flush(CPUState *env, int flush_global)
2314{
2315}
2316
2317void tlb_flush_page(CPUState *env, target_ulong addr)
2318{
2319}
2320
2321int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2322 target_phys_addr_t paddr, int prot,
2323 int mmu_idx, int is_softmmu)
2324{
2325 return 0;
2326}
2327
2328#ifndef VBOX
2329/* dump memory mappings */
2330void page_dump(FILE *f)
2331{
2332 unsigned long start, end;
2333 int i, j, prot, prot1;
2334 PageDesc *p;
2335
2336 fprintf(f, "%-8s %-8s %-8s %s\n",
2337 "start", "end", "size", "prot");
2338 start = -1;
2339 end = -1;
2340 prot = 0;
2341 for(i = 0; i <= L1_SIZE; i++) {
2342 if (i < L1_SIZE)
2343 p = l1_map[i];
2344 else
2345 p = NULL;
2346 for(j = 0;j < L2_SIZE; j++) {
2347 if (!p)
2348 prot1 = 0;
2349 else
2350 prot1 = p[j].flags;
2351 if (prot1 != prot) {
2352 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2353 if (start != -1) {
2354 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2355 start, end, end - start,
2356 prot & PAGE_READ ? 'r' : '-',
2357 prot & PAGE_WRITE ? 'w' : '-',
2358 prot & PAGE_EXEC ? 'x' : '-');
2359 }
2360 if (prot1 != 0)
2361 start = end;
2362 else
2363 start = -1;
2364 prot = prot1;
2365 }
2366 if (!p)
2367 break;
2368 }
2369 }
2370}
2371#endif /* !VBOX */
2372
2373int page_get_flags(target_ulong address)
2374{
2375 PageDesc *p;
2376
2377 p = page_find(address >> TARGET_PAGE_BITS);
2378 if (!p)
2379 return 0;
2380 return p->flags;
2381}
2382
2383/* modify the flags of a page and invalidate the code if
2384 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2385 depending on PAGE_WRITE */
2386void page_set_flags(target_ulong start, target_ulong end, int flags)
2387{
2388 PageDesc *p;
2389 target_ulong addr;
2390
2391 start = start & TARGET_PAGE_MASK;
2392 end = TARGET_PAGE_ALIGN(end);
2393 if (flags & PAGE_WRITE)
2394 flags |= PAGE_WRITE_ORG;
2395#ifdef VBOX
2396 AssertMsgFailed(("We shouldn't be here, and if we should, we must have an env to do the proper locking!\n"));
2397#endif
2398 spin_lock(&tb_lock);
2399 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2400 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2401 /* if the write protection is set, then we invalidate the code
2402 inside */
2403 if (!(p->flags & PAGE_WRITE) &&
2404 (flags & PAGE_WRITE) &&
2405 p->first_tb) {
2406 tb_invalidate_phys_page(addr, 0, NULL);
2407 }
2408 p->flags = flags;
2409 }
2410 spin_unlock(&tb_lock);
2411}
2412
2413int page_check_range(target_ulong start, target_ulong len, int flags)
2414{
2415 PageDesc *p;
2416 target_ulong end;
2417 target_ulong addr;
2418
2419 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2420 start = start & TARGET_PAGE_MASK;
2421
2422 if( end < start )
2423 /* we've wrapped around */
2424 return -1;
2425 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2426 p = page_find(addr >> TARGET_PAGE_BITS);
2427 if( !p )
2428 return -1;
2429 if( !(p->flags & PAGE_VALID) )
2430 return -1;
2431
2432 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2433 return -1;
2434 if (flags & PAGE_WRITE) {
2435 if (!(p->flags & PAGE_WRITE_ORG))
2436 return -1;
2437 /* unprotect the page if it was put read-only because it
2438 contains translated code */
2439 if (!(p->flags & PAGE_WRITE)) {
2440 if (!page_unprotect(addr, 0, NULL))
2441 return -1;
2442 }
2443 return 0;
2444 }
2445 }
2446 return 0;
2447}
2448
2449/* called from signal handler: invalidate the code and unprotect the
2450 page. Return TRUE if the fault was succesfully handled. */
2451int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2452{
2453 unsigned int page_index, prot, pindex;
2454 PageDesc *p, *p1;
2455 target_ulong host_start, host_end, addr;
2456
2457 /* Technically this isn't safe inside a signal handler. However we
2458 know this only ever happens in a synchronous SEGV handler, so in
2459 practice it seems to be ok. */
2460 mmap_lock();
2461
2462 host_start = address & qemu_host_page_mask;
2463 page_index = host_start >> TARGET_PAGE_BITS;
2464 p1 = page_find(page_index);
2465 if (!p1) {
2466 mmap_unlock();
2467 return 0;
2468 }
2469 host_end = host_start + qemu_host_page_size;
2470 p = p1;
2471 prot = 0;
2472 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2473 prot |= p->flags;
2474 p++;
2475 }
2476 /* if the page was really writable, then we change its
2477 protection back to writable */
2478 if (prot & PAGE_WRITE_ORG) {
2479 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2480 if (!(p1[pindex].flags & PAGE_WRITE)) {
2481 mprotect((void *)g2h(host_start), qemu_host_page_size,
2482 (prot & PAGE_BITS) | PAGE_WRITE);
2483 p1[pindex].flags |= PAGE_WRITE;
2484 /* and since the content will be modified, we must invalidate
2485 the corresponding translated code. */
2486 tb_invalidate_phys_page(address, pc, puc);
2487#ifdef DEBUG_TB_CHECK
2488 tb_invalidate_check(address);
2489#endif
2490 mmap_unlock();
2491 return 1;
2492 }
2493 }
2494 mmap_unlock();
2495 return 0;
2496}
2497
2498static inline void tlb_set_dirty(CPUState *env,
2499 unsigned long addr, target_ulong vaddr)
2500{
2501}
2502#endif /* defined(CONFIG_USER_ONLY) */
2503
2504#if !defined(CONFIG_USER_ONLY)
2505static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2506 ram_addr_t memory);
2507static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2508 ram_addr_t orig_memory);
2509#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2510 need_subpage) \
2511 do { \
2512 if (addr > start_addr) \
2513 start_addr2 = 0; \
2514 else { \
2515 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2516 if (start_addr2 > 0) \
2517 need_subpage = 1; \
2518 } \
2519 \
2520 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2521 end_addr2 = TARGET_PAGE_SIZE - 1; \
2522 else { \
2523 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2524 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2525 need_subpage = 1; \
2526 } \
2527 } while (0)
2528
2529
2530/* register physical memory. 'size' must be a multiple of the target
2531 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2532 io memory page */
2533void cpu_register_physical_memory(target_phys_addr_t start_addr,
2534 unsigned long size,
2535 unsigned long phys_offset)
2536{
2537 target_phys_addr_t addr, end_addr;
2538 PhysPageDesc *p;
2539 CPUState *env;
2540 ram_addr_t orig_size = size;
2541 void *subpage;
2542
2543#ifdef USE_KQEMU
2544 /* XXX: should not depend on cpu context */
2545 env = first_cpu;
2546 if (env->kqemu_enabled) {
2547 kqemu_set_phys_mem(start_addr, size, phys_offset);
2548 }
2549#endif
2550 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2551 end_addr = start_addr + (target_phys_addr_t)size;
2552 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2553 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2554 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2555 ram_addr_t orig_memory = p->phys_offset;
2556 target_phys_addr_t start_addr2, end_addr2;
2557 int need_subpage = 0;
2558
2559 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2560 need_subpage);
2561 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2562 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2563 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2564 &p->phys_offset, orig_memory);
2565 } else {
2566 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2567 >> IO_MEM_SHIFT];
2568 }
2569 subpage_register(subpage, start_addr2, end_addr2, phys_offset);
2570 } else {
2571 p->phys_offset = phys_offset;
2572#if !defined(VBOX) || defined(VBOX_WITH_NEW_PHYS_CODE)
2573 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2574 (phys_offset & IO_MEM_ROMD))
2575#else
2576 if ( (phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM
2577 || (phys_offset & IO_MEM_ROMD)
2578 || (phys_offset & ~TARGET_PAGE_MASK) == IO_MEM_RAM_MISSING)
2579#endif
2580 phys_offset += TARGET_PAGE_SIZE;
2581 }
2582 } else {
2583 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2584 p->phys_offset = phys_offset;
2585#if !defined(VBOX) || defined(VBOX_WITH_NEW_PHYS_CODE)
2586 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2587 (phys_offset & IO_MEM_ROMD))
2588#else
2589 if ( (phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM
2590 || (phys_offset & IO_MEM_ROMD)
2591 || (phys_offset & ~TARGET_PAGE_MASK) == IO_MEM_RAM_MISSING)
2592#endif
2593 phys_offset += TARGET_PAGE_SIZE;
2594 else {
2595 target_phys_addr_t start_addr2, end_addr2;
2596 int need_subpage = 0;
2597
2598 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2599 end_addr2, need_subpage);
2600
2601 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2602 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2603 &p->phys_offset, IO_MEM_UNASSIGNED);
2604 subpage_register(subpage, start_addr2, end_addr2,
2605 phys_offset);
2606 }
2607 }
2608 }
2609 }
2610 /* since each CPU stores ram addresses in its TLB cache, we must
2611 reset the modified entries */
2612 /* XXX: slow ! */
2613 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2614 tlb_flush(env, 1);
2615 }
2616}
2617
2618/* XXX: temporary until new memory mapping API */
2619uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2620{
2621 PhysPageDesc *p;
2622
2623 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2624 if (!p)
2625 return IO_MEM_UNASSIGNED;
2626 return p->phys_offset;
2627}
2628
2629#ifndef VBOX
2630/* XXX: better than nothing */
2631ram_addr_t qemu_ram_alloc(ram_addr_t size)
2632{
2633 ram_addr_t addr;
2634 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2635 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2636 (uint64_t)size, (uint64_t)phys_ram_size);
2637 abort();
2638 }
2639 addr = phys_ram_alloc_offset;
2640 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2641 return addr;
2642}
2643
2644void qemu_ram_free(ram_addr_t addr)
2645{
2646}
2647#endif
2648
2649
2650static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2651{
2652#ifdef DEBUG_UNASSIGNED
2653 printf("Unassigned mem read 0x%08x\n", (int)addr);
2654#endif
2655#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2656 do_unassigned_access(addr, 0, 0, 0, 1);
2657#endif
2658 return 0;
2659}
2660
2661static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2662{
2663#ifdef DEBUG_UNASSIGNED
2664 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2665#endif
2666#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2667 do_unassigned_access(addr, 0, 0, 0, 2);
2668#endif
2669 return 0;
2670}
2671
2672static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2673{
2674#ifdef DEBUG_UNASSIGNED
2675 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2676#endif
2677#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2678 do_unassigned_access(addr, 0, 0, 0, 4);
2679#endif
2680 return 0;
2681}
2682
2683static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2684{
2685#ifdef DEBUG_UNASSIGNED
2686 printf("Unassigned mem write 0x%08x = 0x%x\n", (int)addr, val);
2687#endif
2688}
2689
2690static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2691{
2692#ifdef DEBUG_UNASSIGNED
2693 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2694#endif
2695#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2696 do_unassigned_access(addr, 1, 0, 0, 2);
2697#endif
2698}
2699
2700static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2701{
2702#ifdef DEBUG_UNASSIGNED
2703 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2704#endif
2705#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
2706 do_unassigned_access(addr, 1, 0, 0, 4);
2707#endif
2708}
2709static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2710 unassigned_mem_readb,
2711 unassigned_mem_readw,
2712 unassigned_mem_readl,
2713};
2714
2715static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2716 unassigned_mem_writeb,
2717 unassigned_mem_writew,
2718 unassigned_mem_writel,
2719};
2720
2721static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2722{
2723 unsigned long ram_addr;
2724 int dirty_flags;
2725#if defined(VBOX)
2726 ram_addr = addr;
2727#elif
2728 ram_addr = addr - (unsigned long)phys_ram_base;
2729#endif
2730#ifdef VBOX
2731 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2732 dirty_flags = 0xff;
2733 else
2734#endif /* VBOX */
2735 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2736 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2737#if !defined(CONFIG_USER_ONLY)
2738 tb_invalidate_phys_page_fast(ram_addr, 1);
2739# ifdef VBOX
2740 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2741 dirty_flags = 0xff;
2742 else
2743# endif /* VBOX */
2744 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2745#endif
2746 }
2747#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
2748 remR3PhysWriteU8(addr, val);
2749#else
2750 stb_p((uint8_t *)(long)addr, val);
2751#endif
2752#ifdef USE_KQEMU
2753 if (cpu_single_env->kqemu_enabled &&
2754 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2755 kqemu_modify_page(cpu_single_env, ram_addr);
2756#endif
2757 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2758#ifdef VBOX
2759 if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
2760#endif /* !VBOX */
2761 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2762 /* we remove the notdirty callback only if the code has been
2763 flushed */
2764 if (dirty_flags == 0xff)
2765 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_io_vaddr);
2766}
2767
2768static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2769{
2770 unsigned long ram_addr;
2771 int dirty_flags;
2772#if defined(VBOX)
2773 ram_addr = addr;
2774#else
2775 ram_addr = addr - (unsigned long)phys_ram_base;
2776#endif
2777#ifdef VBOX
2778 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2779 dirty_flags = 0xff;
2780 else
2781#endif /* VBOX */
2782 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2783 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2784#if !defined(CONFIG_USER_ONLY)
2785 tb_invalidate_phys_page_fast(ram_addr, 2);
2786# ifdef VBOX
2787 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2788 dirty_flags = 0xff;
2789 else
2790# endif /* VBOX */
2791 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2792#endif
2793 }
2794#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
2795 remR3PhysWriteU16(addr, val);
2796#else
2797 stw_p((uint8_t *)(long)addr, val);
2798#endif
2799
2800#ifdef USE_KQEMU
2801 if (cpu_single_env->kqemu_enabled &&
2802 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2803 kqemu_modify_page(cpu_single_env, ram_addr);
2804#endif
2805 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2806#ifdef VBOX
2807 if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
2808#endif
2809 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2810 /* we remove the notdirty callback only if the code has been
2811 flushed */
2812 if (dirty_flags == 0xff)
2813 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_io_vaddr);
2814}
2815
2816static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2817{
2818 unsigned long ram_addr;
2819 int dirty_flags;
2820#if defined(VBOX)
2821 ram_addr = addr;
2822#else
2823 ram_addr = addr - (unsigned long)phys_ram_base;
2824#endif
2825#ifdef VBOX
2826 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2827 dirty_flags = 0xff;
2828 else
2829#endif /* VBOX */
2830 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2831 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2832#if !defined(CONFIG_USER_ONLY)
2833 tb_invalidate_phys_page_fast(ram_addr, 4);
2834# ifdef VBOX
2835 if (RT_UNLIKELY((ram_addr >> TARGET_PAGE_BITS) >= phys_ram_dirty_size))
2836 dirty_flags = 0xff;
2837 else
2838# endif /* VBOX */
2839 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2840#endif
2841 }
2842#if defined(VBOX) && !defined(REM_PHYS_ADDR_IN_TLB)
2843 remR3PhysWriteU32(addr, val);
2844#else
2845 stl_p((uint8_t *)(long)addr, val);
2846#endif
2847#ifdef USE_KQEMU
2848 if (cpu_single_env->kqemu_enabled &&
2849 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2850 kqemu_modify_page(cpu_single_env, ram_addr);
2851#endif
2852 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2853#ifdef VBOX
2854 if (RT_LIKELY((ram_addr >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
2855#endif
2856 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2857 /* we remove the notdirty callback only if the code has been
2858 flushed */
2859 if (dirty_flags == 0xff)
2860 tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_io_vaddr);
2861}
2862
2863static CPUReadMemoryFunc *error_mem_read[3] = {
2864 NULL, /* never used */
2865 NULL, /* never used */
2866 NULL, /* never used */
2867};
2868
2869static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2870 notdirty_mem_writeb,
2871 notdirty_mem_writew,
2872 notdirty_mem_writel,
2873};
2874
2875
2876/* Generate a debug exception if a watchpoint has been hit. */
2877static void check_watchpoint(int offset, int flags)
2878{
2879 CPUState *env = cpu_single_env;
2880 target_ulong vaddr;
2881 int i;
2882
2883 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2884 for (i = 0; i < env->nb_watchpoints; i++) {
2885 if (vaddr == env->watchpoint[i].vaddr
2886 && (env->watchpoint[i].type & flags)) {
2887 env->watchpoint_hit = i + 1;
2888 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2889 break;
2890 }
2891 }
2892}
2893
2894/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2895 so these check for a hit then pass through to the normal out-of-line
2896 phys routines. */
2897static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2898{
2899 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
2900 return ldub_phys(addr);
2901}
2902
2903static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2904{
2905 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
2906 return lduw_phys(addr);
2907}
2908
2909static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2910{
2911 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
2912 return ldl_phys(addr);
2913}
2914
2915static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2916 uint32_t val)
2917{
2918 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
2919 stb_phys(addr, val);
2920}
2921
2922static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2923 uint32_t val)
2924{
2925 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
2926 stw_phys(addr, val);
2927}
2928
2929static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2930 uint32_t val)
2931{
2932 check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
2933 stl_phys(addr, val);
2934}
2935
2936static CPUReadMemoryFunc *watch_mem_read[3] = {
2937 watch_mem_readb,
2938 watch_mem_readw,
2939 watch_mem_readl,
2940};
2941
2942static CPUWriteMemoryFunc *watch_mem_write[3] = {
2943 watch_mem_writeb,
2944 watch_mem_writew,
2945 watch_mem_writel,
2946};
2947
2948static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2949 unsigned int len)
2950{
2951 uint32_t ret;
2952 unsigned int idx;
2953
2954 idx = SUBPAGE_IDX(addr - mmio->base);
2955#if defined(DEBUG_SUBPAGE)
2956 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2957 mmio, len, addr, idx);
2958#endif
2959 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
2960
2961 return ret;
2962}
2963
2964static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2965 uint32_t value, unsigned int len)
2966{
2967 unsigned int idx;
2968
2969 idx = SUBPAGE_IDX(addr - mmio->base);
2970#if defined(DEBUG_SUBPAGE)
2971 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2972 mmio, len, addr, idx, value);
2973#endif
2974 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
2975}
2976
2977static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2978{
2979#if defined(DEBUG_SUBPAGE)
2980 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2981#endif
2982
2983 return subpage_readlen(opaque, addr, 0);
2984}
2985
2986static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2987 uint32_t value)
2988{
2989#if defined(DEBUG_SUBPAGE)
2990 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2991#endif
2992 subpage_writelen(opaque, addr, value, 0);
2993}
2994
2995static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2996{
2997#if defined(DEBUG_SUBPAGE)
2998 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2999#endif
3000
3001 return subpage_readlen(opaque, addr, 1);
3002}
3003
3004static void subpage_writew (void *opaque, target_phys_addr_t addr,
3005 uint32_t value)
3006{
3007#if defined(DEBUG_SUBPAGE)
3008 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3009#endif
3010 subpage_writelen(opaque, addr, value, 1);
3011}
3012
3013static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3014{
3015#if defined(DEBUG_SUBPAGE)
3016 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
3017#endif
3018
3019 return subpage_readlen(opaque, addr, 2);
3020}
3021
3022static void subpage_writel (void *opaque,
3023 target_phys_addr_t addr, uint32_t value)
3024{
3025#if defined(DEBUG_SUBPAGE)
3026 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
3027#endif
3028 subpage_writelen(opaque, addr, value, 2);
3029}
3030
3031static CPUReadMemoryFunc *subpage_read[] = {
3032 &subpage_readb,
3033 &subpage_readw,
3034 &subpage_readl,
3035};
3036
3037static CPUWriteMemoryFunc *subpage_write[] = {
3038 &subpage_writeb,
3039 &subpage_writew,
3040 &subpage_writel,
3041};
3042
3043static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3044 ram_addr_t memory)
3045{
3046 int idx, eidx;
3047 unsigned int i;
3048
3049 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3050 return -1;
3051 idx = SUBPAGE_IDX(start);
3052 eidx = SUBPAGE_IDX(end);
3053#if defined(DEBUG_SUBPAGE)
3054 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
3055 mmio, start, end, idx, eidx, memory);
3056#endif
3057 memory >>= IO_MEM_SHIFT;
3058 for (; idx <= eidx; idx++) {
3059 for (i = 0; i < 4; i++) {
3060 if (io_mem_read[memory][i]) {
3061 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
3062 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
3063 }
3064 if (io_mem_write[memory][i]) {
3065 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
3066 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
3067 }
3068 }
3069 }
3070
3071 return 0;
3072}
3073
3074static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3075 ram_addr_t orig_memory)
3076{
3077 subpage_t *mmio;
3078 int subpage_memory;
3079
3080 mmio = qemu_mallocz(sizeof(subpage_t));
3081 if (mmio != NULL) {
3082 mmio->base = base;
3083 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
3084#if defined(DEBUG_SUBPAGE)
3085 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3086 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3087#endif
3088 *phys = subpage_memory | IO_MEM_SUBPAGE;
3089 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
3090 }
3091
3092 return mmio;
3093}
3094
3095static void io_mem_init(void)
3096{
3097 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
3098 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3099 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
3100#if defined(VBOX) && !defined(VBOX_WITH_NEW_PHYS_CODE)
3101 cpu_register_io_memory(IO_MEM_RAM_MISSING >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
3102 io_mem_nb = 6;
3103#else
3104 io_mem_nb = 5;
3105#endif
3106
3107 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
3108 watch_mem_write, NULL);
3109
3110#ifndef VBOX /* VBOX: we do this later when the RAM is allocated. */
3111 /* alloc dirty bits array */
3112 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
3113 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
3114#endif /* !VBOX */
3115}
3116
3117/* mem_read and mem_write are arrays of functions containing the
3118 function to access byte (index 0), word (index 1) and dword (index
3119 2). Functions can be omitted with a NULL function pointer. The
3120 registered functions may be modified dynamically later.
3121 If io_index is non zero, the corresponding io zone is
3122 modified. If it is zero, a new io zone is allocated. The return
3123 value can be used with cpu_register_physical_memory(). (-1) is
3124 returned if error. */
3125int cpu_register_io_memory(int io_index,
3126 CPUReadMemoryFunc **mem_read,
3127 CPUWriteMemoryFunc **mem_write,
3128 void *opaque)
3129{
3130 int i, subwidth = 0;
3131
3132 if (io_index <= 0) {
3133 if (io_mem_nb >= IO_MEM_NB_ENTRIES)
3134 return -1;
3135 io_index = io_mem_nb++;
3136 } else {
3137 if (io_index >= IO_MEM_NB_ENTRIES)
3138 return -1;
3139 }
3140
3141 for(i = 0;i < 3; i++) {
3142 if (!mem_read[i] || !mem_write[i])
3143 subwidth = IO_MEM_SUBWIDTH;
3144 io_mem_read[io_index][i] = mem_read[i];
3145 io_mem_write[io_index][i] = mem_write[i];
3146 }
3147 io_mem_opaque[io_index] = opaque;
3148 return (io_index << IO_MEM_SHIFT) | subwidth;
3149}
3150
3151CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
3152{
3153 return io_mem_write[io_index >> IO_MEM_SHIFT];
3154}
3155
3156CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
3157{
3158 return io_mem_read[io_index >> IO_MEM_SHIFT];
3159}
3160#endif /* !defined(CONFIG_USER_ONLY) */
3161
3162/* physical memory access (slow version, mainly for debug) */
3163#if defined(CONFIG_USER_ONLY)
3164void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3165 int len, int is_write)
3166{
3167 int l, flags;
3168 target_ulong page;
3169 void * p;
3170
3171 while (len > 0) {
3172 page = addr & TARGET_PAGE_MASK;
3173 l = (page + TARGET_PAGE_SIZE) - addr;
3174 if (l > len)
3175 l = len;
3176 flags = page_get_flags(page);
3177 if (!(flags & PAGE_VALID))
3178 return;
3179 if (is_write) {
3180 if (!(flags & PAGE_WRITE))
3181 return;
3182 /* XXX: this code should not depend on lock_user */
3183 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3184 /* FIXME - should this return an error rather than just fail? */
3185 return;
3186 memcpy(p, buf, len);
3187 unlock_user(p, addr, len);
3188 } else {
3189 if (!(flags & PAGE_READ))
3190 return;
3191 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3192 /* FIXME - should this return an error rather than just fail? */
3193 return;
3194 memcpy(buf, p, len);
3195 unlock_user(p, addr, 0);
3196 }
3197 len -= l;
3198 buf += l;
3199 addr += l;
3200 }
3201}
3202
3203#else
3204void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3205 int len, int is_write)
3206{
3207 int l, io_index;
3208 uint8_t *ptr;
3209 uint32_t val;
3210 target_phys_addr_t page;
3211 unsigned long pd;
3212 PhysPageDesc *p;
3213
3214 while (len > 0) {
3215 page = addr & TARGET_PAGE_MASK;
3216 l = (page + TARGET_PAGE_SIZE) - addr;
3217 if (l > len)
3218 l = len;
3219 p = phys_page_find(page >> TARGET_PAGE_BITS);
3220 if (!p) {
3221 pd = IO_MEM_UNASSIGNED;
3222 } else {
3223 pd = p->phys_offset;
3224 }
3225
3226 if (is_write) {
3227 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3228 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3229 /* XXX: could force cpu_single_env to NULL to avoid
3230 potential bugs */
3231 if (l >= 4 && ((addr & 3) == 0)) {
3232 /* 32 bit write access */
3233#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
3234 val = ldl_p(buf);
3235#else
3236 val = *(const uint32_t *)buf;
3237#endif
3238 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3239 l = 4;
3240 } else if (l >= 2 && ((addr & 1) == 0)) {
3241 /* 16 bit write access */
3242#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
3243 val = lduw_p(buf);
3244#else
3245 val = *(const uint16_t *)buf;
3246#endif
3247 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
3248 l = 2;
3249 } else {
3250 /* 8 bit write access */
3251#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
3252 val = ldub_p(buf);
3253#else
3254 val = *(const uint8_t *)buf;
3255#endif
3256 io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
3257 l = 1;
3258 }
3259 } else {
3260 unsigned long addr1;
3261 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3262 /* RAM case */
3263#ifdef VBOX
3264 remR3PhysWrite(addr1, buf, l); NOREF(ptr);
3265#else
3266 ptr = phys_ram_base + addr1;
3267 memcpy(ptr, buf, l);
3268#endif
3269 if (!cpu_physical_memory_is_dirty(addr1)) {
3270 /* invalidate code */
3271 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3272 /* set dirty bit */
3273#ifdef VBOX
3274 if (RT_LIKELY((addr1 >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
3275#endif
3276 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3277 (0xff & ~CODE_DIRTY_FLAG);
3278 }
3279 }
3280 } else {
3281 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3282 !(pd & IO_MEM_ROMD)) {
3283 /* I/O case */
3284 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3285 if (l >= 4 && ((addr & 3) == 0)) {
3286 /* 32 bit read access */
3287 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3288#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
3289 stl_p(buf, val);
3290#else
3291 *(uint32_t *)buf = val;
3292#endif
3293 l = 4;
3294 } else if (l >= 2 && ((addr & 1) == 0)) {
3295 /* 16 bit read access */
3296 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3297#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
3298 stw_p(buf, val);
3299#else
3300 *(uint16_t *)buf = val;
3301#endif
3302 l = 2;
3303 } else {
3304 /* 8 bit read access */
3305 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
3306#if !defined(VBOX) || !defined(REM_PHYS_ADDR_IN_TLB)
3307 stb_p(buf, val);
3308#else
3309 *(uint8_t *)buf = val;
3310#endif
3311 l = 1;
3312 }
3313 } else {
3314 /* RAM case */
3315#ifdef VBOX
3316 remR3PhysRead((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), buf, l); NOREF(ptr);
3317#else
3318 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3319 (addr & ~TARGET_PAGE_MASK);
3320 memcpy(buf, ptr, l);
3321#endif
3322 }
3323 }
3324 len -= l;
3325 buf += l;
3326 addr += l;
3327 }
3328}
3329
3330#ifndef VBOX
3331/* used for ROM loading : can write in RAM and ROM */
3332void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3333 const uint8_t *buf, int len)
3334{
3335 int l;
3336 uint8_t *ptr;
3337 target_phys_addr_t page;
3338 unsigned long pd;
3339 PhysPageDesc *p;
3340
3341 while (len > 0) {
3342 page = addr & TARGET_PAGE_MASK;
3343 l = (page + TARGET_PAGE_SIZE) - addr;
3344 if (l > len)
3345 l = len;
3346 p = phys_page_find(page >> TARGET_PAGE_BITS);
3347 if (!p) {
3348 pd = IO_MEM_UNASSIGNED;
3349 } else {
3350 pd = p->phys_offset;
3351 }
3352
3353 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3354 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3355 !(pd & IO_MEM_ROMD)) {
3356 /* do nothing */
3357 } else {
3358 unsigned long addr1;
3359 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3360 /* ROM/RAM case */
3361 ptr = phys_ram_base + addr1;
3362 memcpy(ptr, buf, l);
3363 }
3364 len -= l;
3365 buf += l;
3366 addr += l;
3367 }
3368}
3369#endif /* !VBOX */
3370
3371
3372/* warning: addr must be aligned */
3373uint32_t ldl_phys(target_phys_addr_t addr)
3374{
3375 int io_index;
3376 uint8_t *ptr;
3377 uint32_t val;
3378 unsigned long pd;
3379 PhysPageDesc *p;
3380
3381 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3382 if (!p) {
3383 pd = IO_MEM_UNASSIGNED;
3384 } else {
3385 pd = p->phys_offset;
3386 }
3387
3388 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3389 !(pd & IO_MEM_ROMD)) {
3390 /* I/O case */
3391 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3392 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3393 } else {
3394 /* RAM case */
3395#ifndef VBOX
3396 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3397 (addr & ~TARGET_PAGE_MASK);
3398 val = ldl_p(ptr);
3399#else
3400 val = remR3PhysReadU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr);
3401#endif
3402 }
3403 return val;
3404}
3405
3406/* warning: addr must be aligned */
3407uint64_t ldq_phys(target_phys_addr_t addr)
3408{
3409 int io_index;
3410 uint8_t *ptr;
3411 uint64_t val;
3412 unsigned long pd;
3413 PhysPageDesc *p;
3414
3415 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3416 if (!p) {
3417 pd = IO_MEM_UNASSIGNED;
3418 } else {
3419 pd = p->phys_offset;
3420 }
3421
3422 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3423 !(pd & IO_MEM_ROMD)) {
3424 /* I/O case */
3425 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3426#ifdef TARGET_WORDS_BIGENDIAN
3427 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3428 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3429#else
3430 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3431 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3432#endif
3433 } else {
3434 /* RAM case */
3435#ifndef VBOX
3436 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3437 (addr & ~TARGET_PAGE_MASK);
3438 val = ldq_p(ptr);
3439#else
3440 val = remR3PhysReadU64((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK)); NOREF(ptr);
3441#endif
3442 }
3443 return val;
3444}
3445
3446/* XXX: optimize */
3447uint32_t ldub_phys(target_phys_addr_t addr)
3448{
3449 uint8_t val;
3450 cpu_physical_memory_read(addr, &val, 1);
3451 return val;
3452}
3453
3454/* XXX: optimize */
3455uint32_t lduw_phys(target_phys_addr_t addr)
3456{
3457 uint16_t val;
3458 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3459 return tswap16(val);
3460}
3461
3462/* warning: addr must be aligned. The ram page is not masked as dirty
3463 and the code inside is not invalidated. It is useful if the dirty
3464 bits are used to track modified PTEs */
3465void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3466{
3467 int io_index;
3468 uint8_t *ptr;
3469 unsigned long pd;
3470 PhysPageDesc *p;
3471
3472 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3473 if (!p) {
3474 pd = IO_MEM_UNASSIGNED;
3475 } else {
3476 pd = p->phys_offset;
3477 }
3478
3479 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3480 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3481 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3482 } else {
3483#ifndef VBOX
3484 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3485 (addr & ~TARGET_PAGE_MASK);
3486 stl_p(ptr, val);
3487#else
3488 remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
3489#endif
3490#ifndef VBOX
3491 if (unlikely(in_migration)) {
3492 if (!cpu_physical_memory_is_dirty(addr1)) {
3493 /* invalidate code */
3494 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3495 /* set dirty bit */
3496 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3497 (0xff & ~CODE_DIRTY_FLAG);
3498 }
3499 }
3500#endif
3501 }
3502}
3503
3504void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3505{
3506 int io_index;
3507 uint8_t *ptr;
3508 unsigned long pd;
3509 PhysPageDesc *p;
3510
3511 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3512 if (!p) {
3513 pd = IO_MEM_UNASSIGNED;
3514 } else {
3515 pd = p->phys_offset;
3516 }
3517
3518 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3519 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3520#ifdef TARGET_WORDS_BIGENDIAN
3521 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3522 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3523#else
3524 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3525 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3526#endif
3527 } else {
3528#ifndef VBOX
3529 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3530 (addr & ~TARGET_PAGE_MASK);
3531 stq_p(ptr, val);
3532#else
3533 remR3PhysWriteU64((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
3534#endif
3535 }
3536}
3537
3538
3539/* warning: addr must be aligned */
3540void stl_phys(target_phys_addr_t addr, uint32_t val)
3541{
3542 int io_index;
3543 uint8_t *ptr;
3544 unsigned long pd;
3545 PhysPageDesc *p;
3546
3547 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3548 if (!p) {
3549 pd = IO_MEM_UNASSIGNED;
3550 } else {
3551 pd = p->phys_offset;
3552 }
3553
3554 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3555 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3556 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3557 } else {
3558 unsigned long addr1;
3559 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3560 /* RAM case */
3561#ifndef VBOX
3562 ptr = phys_ram_base + addr1;
3563 stl_p(ptr, val);
3564#else
3565 remR3PhysWriteU32((pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK), val); NOREF(ptr);
3566#endif
3567 if (!cpu_physical_memory_is_dirty(addr1)) {
3568 /* invalidate code */
3569 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3570 /* set dirty bit */
3571#ifdef VBOX
3572 if (RT_LIKELY((addr1 >> TARGET_PAGE_BITS) < phys_ram_dirty_size))
3573#endif
3574 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3575 (0xff & ~CODE_DIRTY_FLAG);
3576 }
3577 }
3578}
3579
3580/* XXX: optimize */
3581void stb_phys(target_phys_addr_t addr, uint32_t val)
3582{
3583 uint8_t v = val;
3584 cpu_physical_memory_write(addr, &v, 1);
3585}
3586
3587/* XXX: optimize */
3588void stw_phys(target_phys_addr_t addr, uint32_t val)
3589{
3590 uint16_t v = tswap16(val);
3591 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3592}
3593
3594/* XXX: optimize */
3595void stq_phys(target_phys_addr_t addr, uint64_t val)
3596{
3597 val = tswap64(val);
3598 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3599}
3600
3601#endif
3602
3603/* virtual memory access for debug */
3604int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3605 uint8_t *buf, int len, int is_write)
3606{
3607 int l;
3608 target_ulong page, phys_addr;
3609
3610 while (len > 0) {
3611 page = addr & TARGET_PAGE_MASK;
3612 phys_addr = cpu_get_phys_page_debug(env, page);
3613 /* if no physical page mapped, return an error */
3614 if (phys_addr == -1)
3615 return -1;
3616 l = (page + TARGET_PAGE_SIZE) - addr;
3617 if (l > len)
3618 l = len;
3619 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
3620 buf, l, is_write);
3621 len -= l;
3622 buf += l;
3623 addr += l;
3624 }
3625 return 0;
3626}
3627
3628/* in deterministic execution mode, instructions doing device I/Os
3629 must be at the end of the TB */
3630void cpu_io_recompile(CPUState *env, void *retaddr)
3631{
3632 TranslationBlock *tb;
3633 uint32_t n, cflags;
3634 target_ulong pc, cs_base;
3635 uint64_t flags;
3636
3637 tb = tb_find_pc((unsigned long)retaddr);
3638 if (!tb) {
3639 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3640 retaddr);
3641 }
3642 n = env->icount_decr.u16.low + tb->icount;
3643 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3644 /* Calculate how many instructions had been executed before the fault
3645 occurred. */
3646 n = n - env->icount_decr.u16.low;
3647 /* Generate a new TB ending on the I/O insn. */
3648 n++;
3649 /* On MIPS and SH, delay slot instructions can only be restarted if
3650 they were already the first instruction in the TB. If this is not
3651 the first instruction in a TB then re-execute the preceding
3652 branch. */
3653#if defined(TARGET_MIPS)
3654 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3655 env->active_tc.PC -= 4;
3656 env->icount_decr.u16.low++;
3657 env->hflags &= ~MIPS_HFLAG_BMASK;
3658 }
3659#elif defined(TARGET_SH4)
3660 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3661 && n > 1) {
3662 env->pc -= 2;
3663 env->icount_decr.u16.low++;
3664 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3665 }
3666#endif
3667 /* This should never happen. */
3668 if (n > CF_COUNT_MASK)
3669 cpu_abort(env, "TB too big during recompile");
3670
3671 cflags = n | CF_LAST_IO;
3672 pc = tb->pc;
3673 cs_base = tb->cs_base;
3674 flags = tb->flags;
3675 tb_phys_invalidate(tb, -1);
3676 /* FIXME: In theory this could raise an exception. In practice
3677 we have already translated the block once so it's probably ok. */
3678 tb_gen_code(env, pc, cs_base, flags, cflags);
3679 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3680 the first in the TB) then we end up generating a whole new TB and
3681 repeating the fault, which is horribly inefficient.
3682 Better would be to execute just this insn uncached, or generate a
3683 second new TB. */
3684 cpu_resume_from_signal(env, NULL);
3685}
3686
3687#ifndef VBOX
3688void dump_exec_info(FILE *f,
3689 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3690{
3691 int i, target_code_size, max_target_code_size;
3692 int direct_jmp_count, direct_jmp2_count, cross_page;
3693 TranslationBlock *tb;
3694
3695 target_code_size = 0;
3696 max_target_code_size = 0;
3697 cross_page = 0;
3698 direct_jmp_count = 0;
3699 direct_jmp2_count = 0;
3700 for(i = 0; i < nb_tbs; i++) {
3701 tb = &tbs[i];
3702 target_code_size += tb->size;
3703 if (tb->size > max_target_code_size)
3704 max_target_code_size = tb->size;
3705 if (tb->page_addr[1] != -1)
3706 cross_page++;
3707 if (tb->tb_next_offset[0] != 0xffff) {
3708 direct_jmp_count++;
3709 if (tb->tb_next_offset[1] != 0xffff) {
3710 direct_jmp2_count++;
3711 }
3712 }
3713 }
3714 /* XXX: avoid using doubles ? */
3715 cpu_fprintf(f, "Translation buffer state:\n");
3716 cpu_fprintf(f, "gen code size %ld/%ld\n",
3717 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3718 cpu_fprintf(f, "TB count %d/%d\n",
3719 nb_tbs, code_gen_max_blocks);
3720 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3721 nb_tbs ? target_code_size / nb_tbs : 0,
3722 max_target_code_size);
3723 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3724 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3725 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3726 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3727 cross_page,
3728 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3729 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3730 direct_jmp_count,
3731 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3732 direct_jmp2_count,
3733 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3734 cpu_fprintf(f, "\nStatistics:\n");
3735 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3736 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3737 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3738 tcg_dump_info(f, cpu_fprintf);
3739}
3740#endif /* !VBOX */
3741
3742#if !defined(CONFIG_USER_ONLY)
3743
3744#define MMUSUFFIX _cmmu
3745#define GETPC() NULL
3746#define env cpu_single_env
3747#define SOFTMMU_CODE_ACCESS
3748
3749#define SHIFT 0
3750#include "softmmu_template.h"
3751
3752#define SHIFT 1
3753#include "softmmu_template.h"
3754
3755#define SHIFT 2
3756#include "softmmu_template.h"
3757
3758#define SHIFT 3
3759#include "softmmu_template.h"
3760
3761#undef env
3762
3763#endif
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette