VirtualBox

source: vbox/trunk/src/recompiler_new/VBoxRecompiler.c@ 13504

最後變更 在這個檔案從13504是 13504,由 vboxsync 提交於 16 年 前

amd64 TCG stated breathing (not much code executed yet)

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Author Date Id Revision
檔案大小: 157.2 KB
 
1/* $Id: VBoxRecompiler.c 13504 2008-10-22 16:59:34Z vboxsync $ */
2/** @file
3 * VBox Recompiler - QEMU.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_REM
27#include "vl.h"
28#include "osdep.h"
29#include "exec-all.h"
30
31void cpu_exec_init_all(unsigned long tb_size);
32
33#include <VBox/rem.h>
34#include <VBox/vmapi.h>
35#include <VBox/tm.h>
36#include <VBox/ssm.h>
37#include <VBox/em.h>
38#include <VBox/trpm.h>
39#include <VBox/iom.h>
40#include <VBox/mm.h>
41#include <VBox/pgm.h>
42#include <VBox/pdm.h>
43#include <VBox/dbgf.h>
44#include <VBox/dbg.h>
45#include <VBox/hwaccm.h>
46#include <VBox/patm.h>
47#include <VBox/csam.h>
48#include "REMInternal.h"
49#include <VBox/vm.h>
50#include <VBox/param.h>
51#include <VBox/err.h>
52
53#include <VBox/log.h>
54#include <iprt/semaphore.h>
55#include <iprt/asm.h>
56#include <iprt/assert.h>
57#include <iprt/thread.h>
58#include <iprt/string.h>
59
60/* Don't wanna include everything. */
61extern void cpu_x86_update_cr3(CPUX86State *env, target_ulong new_cr3);
62extern void cpu_x86_update_cr0(CPUX86State *env, uint32_t new_cr0);
63extern void cpu_x86_update_cr4(CPUX86State *env, uint32_t new_cr4);
64extern void tlb_flush_page(CPUX86State *env, target_ulong addr);
65extern void tlb_flush(CPUState *env, int flush_global);
66extern void sync_seg(CPUX86State *env1, int seg_reg, int selector);
67extern void sync_ldtr(CPUX86State *env1, int selector);
68extern int sync_tr(CPUX86State *env1, int selector);
69
70#ifdef VBOX_STRICT
71unsigned long get_phys_page_offset(target_ulong addr);
72#endif
73
74
75/*******************************************************************************
76* Defined Constants And Macros *
77*******************************************************************************/
78
79/** Copy 80-bit fpu register at pSrc to pDst.
80 * This is probably faster than *calling* memcpy.
81 */
82#define REM_COPY_FPU_REG(pDst, pSrc) \
83 do { *(PX86FPUMMX)(pDst) = *(const X86FPUMMX *)(pSrc); } while (0)
84
85
86/*******************************************************************************
87* Internal Functions *
88*******************************************************************************/
89static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM);
90static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
91static void remR3StateUpdate(PVM pVM);
92
93static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys);
94static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys);
95static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys);
96static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
97static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
98static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
99
100static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys);
101static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys);
102static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys);
103static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
104static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
105static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32);
106
107
108/*******************************************************************************
109* Global Variables *
110*******************************************************************************/
111
112/** @todo Move stats to REM::s some rainy day we have nothing do to. */
113#ifdef VBOX_WITH_STATISTICS
114static STAMPROFILEADV gStatExecuteSingleInstr;
115static STAMPROFILEADV gStatCompilationQEmu;
116static STAMPROFILEADV gStatRunCodeQEmu;
117static STAMPROFILEADV gStatTotalTimeQEmu;
118static STAMPROFILEADV gStatTimers;
119static STAMPROFILEADV gStatTBLookup;
120static STAMPROFILEADV gStatIRQ;
121static STAMPROFILEADV gStatRawCheck;
122static STAMPROFILEADV gStatMemRead;
123static STAMPROFILEADV gStatMemWrite;
124static STAMPROFILE gStatGCPhys2HCVirt;
125static STAMPROFILE gStatHCVirt2GCPhys;
126static STAMCOUNTER gStatCpuGetTSC;
127static STAMCOUNTER gStatRefuseTFInhibit;
128static STAMCOUNTER gStatRefuseVM86;
129static STAMCOUNTER gStatRefusePaging;
130static STAMCOUNTER gStatRefusePAE;
131static STAMCOUNTER gStatRefuseIOPLNot0;
132static STAMCOUNTER gStatRefuseIF0;
133static STAMCOUNTER gStatRefuseCode16;
134static STAMCOUNTER gStatRefuseWP0;
135static STAMCOUNTER gStatRefuseRing1or2;
136static STAMCOUNTER gStatRefuseCanExecute;
137static STAMCOUNTER gStatREMGDTChange;
138static STAMCOUNTER gStatREMIDTChange;
139static STAMCOUNTER gStatREMLDTRChange;
140static STAMCOUNTER gStatREMTRChange;
141static STAMCOUNTER gStatSelOutOfSync[6];
142static STAMCOUNTER gStatSelOutOfSyncStateBack[6];
143static STAMCOUNTER gStatFlushTBs;
144#endif
145
146/*
147 * Global stuff.
148 */
149
150/** MMIO read callbacks. */
151CPUReadMemoryFunc *g_apfnMMIORead[3] =
152{
153 remR3MMIOReadU8,
154 remR3MMIOReadU16,
155 remR3MMIOReadU32
156};
157
158/** MMIO write callbacks. */
159CPUWriteMemoryFunc *g_apfnMMIOWrite[3] =
160{
161 remR3MMIOWriteU8,
162 remR3MMIOWriteU16,
163 remR3MMIOWriteU32
164};
165
166/** Handler read callbacks. */
167CPUReadMemoryFunc *g_apfnHandlerRead[3] =
168{
169 remR3HandlerReadU8,
170 remR3HandlerReadU16,
171 remR3HandlerReadU32
172};
173
174/** Handler write callbacks. */
175CPUWriteMemoryFunc *g_apfnHandlerWrite[3] =
176{
177 remR3HandlerWriteU8,
178 remR3HandlerWriteU16,
179 remR3HandlerWriteU32
180};
181
182
183#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
184/*
185 * Debugger commands.
186 */
187static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
188
189/** '.remstep' arguments. */
190static const DBGCVARDESC g_aArgRemStep[] =
191{
192 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
193 { 0, ~0, DBGCVAR_CAT_NUMBER, 0, "on/off", "Boolean value/mnemonic indicating the new state." },
194};
195
196/** Command descriptors. */
197static const DBGCCMD g_aCmds[] =
198{
199 {
200 .pszCmd ="remstep",
201 .cArgsMin = 0,
202 .cArgsMax = 1,
203 .paArgDescs = &g_aArgRemStep[0],
204 .cArgDescs = ELEMENTS(g_aArgRemStep),
205 .pResultDesc = NULL,
206 .fFlags = 0,
207 .pfnHandler = remR3CmdDisasEnableStepping,
208 .pszSyntax = "[on/off]",
209 .pszDescription = "Enable or disable the single stepping with logged disassembly. "
210 "If no arguments show the current state."
211 }
212};
213#endif
214
215
216/*******************************************************************************
217* Internal Functions *
218*******************************************************************************/
219static void remAbort(int rc, const char *pszTip);
220extern int testmath(void);
221
222/* Put them here to avoid unused variable warning. */
223AssertCompile(RT_SIZEOFMEMB(VM, rem.padding) >= RT_SIZEOFMEMB(VM, rem.s));
224#if !defined(IPRT_NO_CRT) && (defined(RT_OS_LINUX) || defined(RT_OS_DARWIN) || defined(RT_OS_WINDOWS))
225//AssertCompileMemberSize(REM, Env, REM_ENV_SIZE);
226/* Why did this have to be identical?? */
227AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
228#else
229AssertCompile(RT_SIZEOFMEMB(REM, Env) <= REM_ENV_SIZE);
230#endif
231
232
233/* Prologue code, must be in lower 4G to simplify jumps to/from generated code */
234uint8_t* code_gen_prologue;
235
236/**
237 * Initializes the REM.
238 *
239 * @returns VBox status code.
240 * @param pVM The VM to operate on.
241 */
242REMR3DECL(int) REMR3Init(PVM pVM)
243{
244 uint32_t u32Dummy;
245 unsigned i;
246 int rc;
247
248 /*
249 * Assert sanity.
250 */
251 AssertReleaseMsg(sizeof(pVM->rem.padding) >= sizeof(pVM->rem.s), ("%#x >= %#x; sizeof(Env)=%#x\n", sizeof(pVM->rem.padding), sizeof(pVM->rem.s), sizeof(pVM->rem.s.Env)));
252 AssertReleaseMsg(sizeof(pVM->rem.s.Env) <= REM_ENV_SIZE, ("%#x == %#x\n", sizeof(pVM->rem.s.Env), REM_ENV_SIZE));
253 AssertReleaseMsg(!(RT_OFFSETOF(VM, rem) & 31), ("off=%#x\n", RT_OFFSETOF(VM, rem)));
254#if defined(DEBUG) && !defined(RT_OS_SOLARIS) /// @todo fix the solaris math stuff.
255 Assert(!testmath());
256#endif
257 /*
258 * Init some internal data members.
259 */
260 pVM->rem.s.offVM = RT_OFFSETOF(VM, rem.s);
261 pVM->rem.s.Env.pVM = pVM;
262#ifdef CPU_RAW_MODE_INIT
263 pVM->rem.s.state |= CPU_RAW_MODE_INIT;
264#endif
265
266 /* ctx. */
267 rc = CPUMQueryGuestCtxPtr(pVM, &pVM->rem.s.pCtx);
268 if (VBOX_FAILURE(rc))
269 {
270 AssertMsgFailed(("Failed to obtain guest ctx pointer. rc=%Vrc\n", rc));
271 return rc;
272 }
273 AssertMsg(MMR3PhysGetRamSize(pVM) == 0, ("Init order have changed! REM depends on notification about ALL physical memory registrations\n"));
274
275 /* ignore all notifications */
276 pVM->rem.s.fIgnoreAll = true;
277
278 code_gen_prologue = RTMemExecAlloc(_1K);
279
280 cpu_exec_init_all(0);
281
282 /*
283 * Init the recompiler.
284 */
285 if (!cpu_x86_init(&pVM->rem.s.Env, "vbox"))
286 {
287 AssertMsgFailed(("cpu_x86_init failed - impossible!\n"));
288 return VERR_GENERAL_FAILURE;
289 }
290 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
291 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext3_features, &pVM->rem.s.Env.cpuid_ext2_features);
292
293 /* allocate code buffer for single instruction emulation. */
294 pVM->rem.s.Env.cbCodeBuffer = 4096;
295 pVM->rem.s.Env.pvCodeBuffer = RTMemExecAlloc(pVM->rem.s.Env.cbCodeBuffer);
296 AssertMsgReturn(pVM->rem.s.Env.pvCodeBuffer, ("Failed to allocate code buffer!\n"), VERR_NO_MEMORY);
297
298 /* finally, set the cpu_single_env global. */
299 cpu_single_env = &pVM->rem.s.Env;
300
301 /* Nothing is pending by default */
302 pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
303
304 /*
305 * Register ram types.
306 */
307 pVM->rem.s.iMMIOMemType = cpu_register_io_memory(-1, g_apfnMMIORead, g_apfnMMIOWrite, pVM);
308 AssertReleaseMsg(pVM->rem.s.iMMIOMemType >= 0, ("pVM->rem.s.iMMIOMemType=%d\n", pVM->rem.s.iMMIOMemType));
309 pVM->rem.s.iHandlerMemType = cpu_register_io_memory(-1, g_apfnHandlerRead, g_apfnHandlerWrite, pVM);
310 AssertReleaseMsg(pVM->rem.s.iHandlerMemType >= 0, ("pVM->rem.s.iHandlerMemType=%d\n", pVM->rem.s.iHandlerMemType));
311 Log2(("REM: iMMIOMemType=%d iHandlerMemType=%d\n", pVM->rem.s.iMMIOMemType, pVM->rem.s.iHandlerMemType));
312
313 /* stop ignoring. */
314 pVM->rem.s.fIgnoreAll = false;
315
316 /*
317 * Register the saved state data unit.
318 */
319 rc = SSMR3RegisterInternal(pVM, "rem", 1, REM_SAVED_STATE_VERSION, sizeof(uint32_t) * 10,
320 NULL, remR3Save, NULL,
321 NULL, remR3Load, NULL);
322 if (VBOX_FAILURE(rc))
323 return rc;
324
325#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
326 /*
327 * Debugger commands.
328 */
329 static bool fRegisteredCmds = false;
330 if (!fRegisteredCmds)
331 {
332 int rc = DBGCRegisterCommands(&g_aCmds[0], ELEMENTS(g_aCmds));
333 if (VBOX_SUCCESS(rc))
334 fRegisteredCmds = true;
335 }
336#endif
337
338#ifdef VBOX_WITH_STATISTICS
339 /*
340 * Statistics.
341 */
342 STAM_REG(pVM, &gStatExecuteSingleInstr, STAMTYPE_PROFILE, "/PROF/REM/SingleInstr",STAMUNIT_TICKS_PER_CALL, "Profiling single instruction emulation.");
343 STAM_REG(pVM, &gStatCompilationQEmu, STAMTYPE_PROFILE, "/PROF/REM/Compile", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu compilation.");
344 STAM_REG(pVM, &gStatRunCodeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Runcode", STAMUNIT_TICKS_PER_CALL, "Profiling QEmu code execution.");
345 STAM_REG(pVM, &gStatTotalTimeQEmu, STAMTYPE_PROFILE, "/PROF/REM/Emulate", STAMUNIT_TICKS_PER_CALL, "Profiling code emulation.");
346 STAM_REG(pVM, &gStatTimers, STAMTYPE_PROFILE, "/PROF/REM/Timers", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
347 STAM_REG(pVM, &gStatTBLookup, STAMTYPE_PROFILE, "/PROF/REM/TBLookup", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
348 STAM_REG(pVM, &gStatIRQ, STAMTYPE_PROFILE, "/PROF/REM/IRQ", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
349 STAM_REG(pVM, &gStatRawCheck, STAMTYPE_PROFILE, "/PROF/REM/RawCheck", STAMUNIT_TICKS_PER_CALL, "Profiling timer scheduling.");
350 STAM_REG(pVM, &gStatMemRead, STAMTYPE_PROFILE, "/PROF/REM/MemRead", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
351 STAM_REG(pVM, &gStatMemWrite, STAMTYPE_PROFILE, "/PROF/REM/MemWrite", STAMUNIT_TICKS_PER_CALL, "Profiling memory access.");
352 STAM_REG(pVM, &gStatHCVirt2GCPhys, STAMTYPE_PROFILE, "/PROF/REM/HCVirt2GCPhys", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
353 STAM_REG(pVM, &gStatGCPhys2HCVirt, STAMTYPE_PROFILE, "/PROF/REM/GCPhys2HCVirt", STAMUNIT_TICKS_PER_CALL, "Profiling memory convertion.");
354
355 STAM_REG(pVM, &gStatCpuGetTSC, STAMTYPE_COUNTER, "/REM/CpuGetTSC", STAMUNIT_OCCURENCES, "cpu_get_tsc calls");
356
357 STAM_REG(pVM, &gStatRefuseTFInhibit, STAMTYPE_COUNTER, "/REM/Refuse/TFInibit", STAMUNIT_OCCURENCES, "Raw mode refused because of TF or irq inhibit");
358 STAM_REG(pVM, &gStatRefuseVM86, STAMTYPE_COUNTER, "/REM/Refuse/VM86", STAMUNIT_OCCURENCES, "Raw mode refused because of VM86");
359 STAM_REG(pVM, &gStatRefusePaging, STAMTYPE_COUNTER, "/REM/Refuse/Paging", STAMUNIT_OCCURENCES, "Raw mode refused because of disabled paging/pm");
360 STAM_REG(pVM, &gStatRefusePAE, STAMTYPE_COUNTER, "/REM/Refuse/PAE", STAMUNIT_OCCURENCES, "Raw mode refused because of PAE");
361 STAM_REG(pVM, &gStatRefuseIOPLNot0, STAMTYPE_COUNTER, "/REM/Refuse/IOPLNot0", STAMUNIT_OCCURENCES, "Raw mode refused because of IOPL != 0");
362 STAM_REG(pVM, &gStatRefuseIF0, STAMTYPE_COUNTER, "/REM/Refuse/IF0", STAMUNIT_OCCURENCES, "Raw mode refused because of IF=0");
363 STAM_REG(pVM, &gStatRefuseCode16, STAMTYPE_COUNTER, "/REM/Refuse/Code16", STAMUNIT_OCCURENCES, "Raw mode refused because of 16 bit code");
364 STAM_REG(pVM, &gStatRefuseWP0, STAMTYPE_COUNTER, "/REM/Refuse/WP0", STAMUNIT_OCCURENCES, "Raw mode refused because of WP=0");
365 STAM_REG(pVM, &gStatRefuseRing1or2, STAMTYPE_COUNTER, "/REM/Refuse/Ring1or2", STAMUNIT_OCCURENCES, "Raw mode refused because of ring 1/2 execution");
366 STAM_REG(pVM, &gStatRefuseCanExecute, STAMTYPE_COUNTER, "/REM/Refuse/CanExecuteRaw", STAMUNIT_OCCURENCES, "Raw mode refused because of cCanExecuteRaw");
367 STAM_REG(pVM, &gStatFlushTBs, STAMTYPE_COUNTER, "/REM/FlushTB", STAMUNIT_OCCURENCES, "Number of TB flushes");
368
369 STAM_REG(pVM, &gStatREMGDTChange, STAMTYPE_COUNTER, "/REM/Change/GDTBase", STAMUNIT_OCCURENCES, "GDT base changes");
370 STAM_REG(pVM, &gStatREMLDTRChange, STAMTYPE_COUNTER, "/REM/Change/LDTR", STAMUNIT_OCCURENCES, "LDTR changes");
371 STAM_REG(pVM, &gStatREMIDTChange, STAMTYPE_COUNTER, "/REM/Change/IDTBase", STAMUNIT_OCCURENCES, "IDT base changes");
372 STAM_REG(pVM, &gStatREMTRChange, STAMTYPE_COUNTER, "/REM/Change/TR", STAMUNIT_OCCURENCES, "TR selector changes");
373
374 STAM_REG(pVM, &gStatSelOutOfSync[0], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
375 STAM_REG(pVM, &gStatSelOutOfSync[1], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
376 STAM_REG(pVM, &gStatSelOutOfSync[2], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
377 STAM_REG(pVM, &gStatSelOutOfSync[3], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
378 STAM_REG(pVM, &gStatSelOutOfSync[4], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
379 STAM_REG(pVM, &gStatSelOutOfSync[5], STAMTYPE_COUNTER, "/REM/State/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
380
381 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[0], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/ES", STAMUNIT_OCCURENCES, "ES out of sync");
382 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[1], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/CS", STAMUNIT_OCCURENCES, "CS out of sync");
383 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[2], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/SS", STAMUNIT_OCCURENCES, "SS out of sync");
384 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[3], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/DS", STAMUNIT_OCCURENCES, "DS out of sync");
385 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[4], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/FS", STAMUNIT_OCCURENCES, "FS out of sync");
386 STAM_REG(pVM, &gStatSelOutOfSyncStateBack[5], STAMTYPE_COUNTER, "/REM/StateBack/SelOutOfSync/GS", STAMUNIT_OCCURENCES, "GS out of sync");
387
388
389#endif
390
391#ifdef DEBUG_ALL_LOGGING
392 loglevel = ~0;
393#endif
394
395 return rc;
396}
397
398
399/**
400 * Terminates the REM.
401 *
402 * Termination means cleaning up and freeing all resources,
403 * the VM it self is at this point powered off or suspended.
404 *
405 * @returns VBox status code.
406 * @param pVM The VM to operate on.
407 */
408REMR3DECL(int) REMR3Term(PVM pVM)
409{
410 return VINF_SUCCESS;
411}
412
413
414/**
415 * The VM is being reset.
416 *
417 * For the REM component this means to call the cpu_reset() and
418 * reinitialize some state variables.
419 *
420 * @param pVM VM handle.
421 */
422REMR3DECL(void) REMR3Reset(PVM pVM)
423{
424 /*
425 * Reset the REM cpu.
426 */
427 pVM->rem.s.fIgnoreAll = true;
428 cpu_reset(&pVM->rem.s.Env);
429 pVM->rem.s.cInvalidatedPages = 0;
430 pVM->rem.s.fIgnoreAll = false;
431
432 /* Clear raw ring 0 init state */
433 pVM->rem.s.Env.state &= ~CPU_RAW_RING0;
434}
435
436
437/**
438 * Execute state save operation.
439 *
440 * @returns VBox status code.
441 * @param pVM VM Handle.
442 * @param pSSM SSM operation handle.
443 */
444static DECLCALLBACK(int) remR3Save(PVM pVM, PSSMHANDLE pSSM)
445{
446 /*
447 * Save the required CPU Env bits.
448 * (Not much because we're never in REM when doing the save.)
449 */
450 PREM pRem = &pVM->rem.s;
451 LogFlow(("remR3Save:\n"));
452 Assert(!pRem->fInREM);
453 SSMR3PutU32(pSSM, pRem->Env.hflags);
454 SSMR3PutU32(pSSM, ~0); /* separator */
455
456 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
457 SSMR3PutU32(pSSM, !!(pRem->Env.state & CPU_RAW_RING0));
458 SSMR3PutUInt(pSSM, pVM->rem.s.u32PendingInterrupt);
459
460 return SSMR3PutU32(pSSM, ~0); /* terminator */
461}
462
463
464/**
465 * Execute state load operation.
466 *
467 * @returns VBox status code.
468 * @param pVM VM Handle.
469 * @param pSSM SSM operation handle.
470 * @param u32Version Data layout version.
471 */
472static DECLCALLBACK(int) remR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
473{
474 uint32_t u32Dummy;
475 uint32_t fRawRing0 = false;
476 uint32_t u32Sep;
477 int rc;
478 PREM pRem;
479 LogFlow(("remR3Load:\n"));
480
481 /*
482 * Validate version.
483 */
484 if ( u32Version != REM_SAVED_STATE_VERSION
485 && u32Version != REM_SAVED_STATE_VERSION_VER1_6)
486 {
487 AssertMsgFailed(("remR3Load: Invalid version u32Version=%d!\n", u32Version));
488 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
489 }
490
491 /*
492 * Do a reset to be on the safe side...
493 */
494 REMR3Reset(pVM);
495
496 /*
497 * Ignore all ignorable notifications.
498 * (Not doing this will cause serious trouble.)
499 */
500 pVM->rem.s.fIgnoreAll = true;
501
502 /*
503 * Load the required CPU Env bits.
504 * (Not much because we're never in REM when doing the save.)
505 */
506 pRem = &pVM->rem.s;
507 Assert(!pRem->fInREM);
508 SSMR3GetU32(pSSM, &pRem->Env.hflags);
509 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
510 {
511 /* Redundant REM CPU state has to be loaded, but can be ignored. */
512 CPUX86State_Ver16 temp;
513 SSMR3GetMem(pSSM, &temp, RT_OFFSETOF(CPUX86State_Ver16, jmp_env));
514 }
515
516 rc = SSMR3GetU32(pSSM, &u32Sep); /* separator */
517 if (VBOX_FAILURE(rc))
518 return rc;
519 if (u32Sep != ~0U)
520 {
521 AssertMsgFailed(("u32Sep=%#x\n", u32Sep));
522 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
523 }
524
525 /* Remember if we've entered raw mode (vital for ring 1 checks in e.g. iret emulation). */
526 SSMR3GetUInt(pSSM, &fRawRing0);
527 if (fRawRing0)
528 pRem->Env.state |= CPU_RAW_RING0;
529
530 if (u32Version == REM_SAVED_STATE_VERSION_VER1_6)
531 {
532 unsigned i;
533
534 /*
535 * Load the REM stuff.
536 */
537 rc = SSMR3GetUInt(pSSM, &pRem->cInvalidatedPages);
538 if (VBOX_FAILURE(rc))
539 return rc;
540 if (pRem->cInvalidatedPages > ELEMENTS(pRem->aGCPtrInvalidatedPages))
541 {
542 AssertMsgFailed(("cInvalidatedPages=%#x\n", pRem->cInvalidatedPages));
543 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
544 }
545 for (i = 0; i < pRem->cInvalidatedPages; i++)
546 SSMR3GetGCPtr(pSSM, &pRem->aGCPtrInvalidatedPages[i]);
547 }
548
549 rc = SSMR3GetUInt(pSSM, &pVM->rem.s.u32PendingInterrupt);
550 if (VBOX_FAILURE(rc))
551 return rc;
552
553 /* check the terminator. */
554 rc = SSMR3GetU32(pSSM, &u32Sep);
555 if (VBOX_FAILURE(rc))
556 return rc;
557 if (u32Sep != ~0U)
558 {
559 AssertMsgFailed(("u32Sep=%#x (term)\n", u32Sep));
560 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
561 }
562
563 /*
564 * Get the CPUID features.
565 */
566 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
567 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
568
569 /*
570 * Sync the Load Flush the TLB
571 */
572 tlb_flush(&pRem->Env, 1);
573
574 /*
575 * Stop ignoring ignornable notifications.
576 */
577 pVM->rem.s.fIgnoreAll = false;
578
579 /*
580 * Sync the whole CPU state when executing code in the recompiler.
581 */
582 CPUMSetChangedFlags(pVM, CPUM_CHANGED_ALL);
583 return VINF_SUCCESS;
584}
585
586
587
588#undef LOG_GROUP
589#define LOG_GROUP LOG_GROUP_REM_RUN
590
591/**
592 * Single steps an instruction in recompiled mode.
593 *
594 * Before calling this function the REM state needs to be in sync with
595 * the VM. Call REMR3State() to perform the sync. It's only necessary
596 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
597 * and after calling REMR3StateBack().
598 *
599 * @returns VBox status code.
600 *
601 * @param pVM VM Handle.
602 */
603REMR3DECL(int) REMR3Step(PVM pVM)
604{
605 int rc, interrupt_request;
606 RTGCPTR GCPtrPC;
607 bool fBp;
608
609 /*
610 * Lock the REM - we don't wanna have anyone interrupting us
611 * while stepping - and enabled single stepping. We also ignore
612 * pending interrupts and suchlike.
613 */
614 interrupt_request = pVM->rem.s.Env.interrupt_request;
615 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
616 pVM->rem.s.Env.interrupt_request = 0;
617 cpu_single_step(&pVM->rem.s.Env, 1);
618
619 /*
620 * If we're standing at a breakpoint, that have to be disabled before we start stepping.
621 */
622 GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
623 fBp = !cpu_breakpoint_remove(&pVM->rem.s.Env, GCPtrPC);
624
625 /*
626 * Execute and handle the return code.
627 * We execute without enabling the cpu tick, so on success we'll
628 * just flip it on and off to make sure it moves
629 */
630 rc = cpu_exec(&pVM->rem.s.Env);
631 if (rc == EXCP_DEBUG)
632 {
633 TMCpuTickResume(pVM);
634 TMCpuTickPause(pVM);
635 TMVirtualResume(pVM);
636 TMVirtualPause(pVM);
637 rc = VINF_EM_DBG_STEPPED;
638 }
639 else
640 {
641 AssertMsgFailed(("Damn, this shouldn't happen! cpu_exec returned %d while singlestepping\n", rc));
642 switch (rc)
643 {
644 case EXCP_INTERRUPT: rc = VINF_SUCCESS; break;
645 case EXCP_HLT:
646 case EXCP_HALTED: rc = VINF_EM_HALT; break;
647 case EXCP_RC:
648 rc = pVM->rem.s.rc;
649 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
650 break;
651 default:
652 AssertReleaseMsgFailed(("This really shouldn't happen, rc=%d!\n", rc));
653 rc = VERR_INTERNAL_ERROR;
654 break;
655 }
656 }
657
658 /*
659 * Restore the stuff we changed to prevent interruption.
660 * Unlock the REM.
661 */
662 if (fBp)
663 {
664 int rc2 = cpu_breakpoint_insert(&pVM->rem.s.Env, GCPtrPC);
665 Assert(rc2 == 0); NOREF(rc2);
666 }
667 cpu_single_step(&pVM->rem.s.Env, 0);
668 pVM->rem.s.Env.interrupt_request = interrupt_request;
669
670 return rc;
671}
672
673
674/**
675 * Set a breakpoint using the REM facilities.
676 *
677 * @returns VBox status code.
678 * @param pVM The VM handle.
679 * @param Address The breakpoint address.
680 * @thread The emulation thread.
681 */
682REMR3DECL(int) REMR3BreakpointSet(PVM pVM, RTGCUINTPTR Address)
683{
684 VM_ASSERT_EMT(pVM);
685 if (!cpu_breakpoint_insert(&pVM->rem.s.Env, Address))
686 {
687 LogFlow(("REMR3BreakpointSet: Address=%VGv\n", Address));
688 return VINF_SUCCESS;
689 }
690 LogFlow(("REMR3BreakpointSet: Address=%VGv - failed!\n", Address));
691 return VERR_REM_NO_MORE_BP_SLOTS;
692}
693
694
695/**
696 * Clears a breakpoint set by REMR3BreakpointSet().
697 *
698 * @returns VBox status code.
699 * @param pVM The VM handle.
700 * @param Address The breakpoint address.
701 * @thread The emulation thread.
702 */
703REMR3DECL(int) REMR3BreakpointClear(PVM pVM, RTGCUINTPTR Address)
704{
705 VM_ASSERT_EMT(pVM);
706 if (!cpu_breakpoint_remove(&pVM->rem.s.Env, Address))
707 {
708 LogFlow(("REMR3BreakpointClear: Address=%VGv\n", Address));
709 return VINF_SUCCESS;
710 }
711 LogFlow(("REMR3BreakpointClear: Address=%VGv - not found!\n", Address));
712 return VERR_REM_BP_NOT_FOUND;
713}
714
715
716/**
717 * Emulate an instruction.
718 *
719 * This function executes one instruction without letting anyone
720 * interrupt it. This is intended for being called while being in
721 * raw mode and thus will take care of all the state syncing between
722 * REM and the rest.
723 *
724 * @returns VBox status code.
725 * @param pVM VM handle.
726 */
727REMR3DECL(int) REMR3EmulateInstruction(PVM pVM)
728{
729 int rc, rc2;
730 Log2(("REMR3EmulateInstruction: (cs:eip=%04x:%08x)\n", CPUMGetGuestCS(pVM), CPUMGetGuestEIP(pVM)));
731
732 /* Make sure this flag is set; we might never execute remR3CanExecuteRaw in the AMD-V case.
733 * CPU_RAW_HWACC makes sure we never execute interrupt handlers in the recompiler.
734 */
735 if (HWACCMIsEnabled(pVM))
736 pVM->rem.s.Env.state |= CPU_RAW_HWACC;
737
738 /*
739 * Sync the state and enable single instruction / single stepping.
740 */
741 rc = REMR3State(pVM, false /* no need to flush the TBs; we always compile. */);
742 if (VBOX_SUCCESS(rc))
743 {
744 int interrupt_request = pVM->rem.s.Env.interrupt_request;
745 Assert(!(interrupt_request & ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER | CPU_INTERRUPT_EXTERNAL_HARD | CPU_INTERRUPT_EXTERNAL_EXIT | CPU_INTERRUPT_EXTERNAL_TIMER)));
746 Assert(!pVM->rem.s.Env.singlestep_enabled);
747#if 1
748
749 /*
750 * Now we set the execute single instruction flag and enter the cpu_exec loop.
751 */
752 TMNotifyStartOfExecution(pVM);
753 pVM->rem.s.Env.interrupt_request = CPU_INTERRUPT_SINGLE_INSTR;
754 rc = cpu_exec(&pVM->rem.s.Env);
755 TMNotifyEndOfExecution(pVM);
756 switch (rc)
757 {
758 /*
759 * Executed without anything out of the way happening.
760 */
761 case EXCP_SINGLE_INSTR:
762 rc = VINF_EM_RESCHEDULE;
763 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_SINGLE_INSTR\n"));
764 break;
765
766 /*
767 * If we take a trap or start servicing a pending interrupt, we might end up here.
768 * (Timer thread or some other thread wishing EMT's attention.)
769 */
770 case EXCP_INTERRUPT:
771 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_INTERRUPT\n"));
772 rc = VINF_EM_RESCHEDULE;
773 break;
774
775 /*
776 * Single step, we assume!
777 * If there was a breakpoint there we're fucked now.
778 */
779 case EXCP_DEBUG:
780 {
781 /* breakpoint or single step? */
782 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
783 int iBP;
784 rc = VINF_EM_DBG_STEPPED;
785 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
786 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
787 {
788 rc = VINF_EM_DBG_BREAKPOINT;
789 break;
790 }
791 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
792 break;
793 }
794
795 /*
796 * hlt instruction.
797 */
798 case EXCP_HLT:
799 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
800 rc = VINF_EM_HALT;
801 break;
802
803 /*
804 * The VM has halted.
805 */
806 case EXCP_HALTED:
807 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
808 rc = VINF_EM_HALT;
809 break;
810
811 /*
812 * Switch to RAW-mode.
813 */
814 case EXCP_EXECUTE_RAW:
815 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
816 rc = VINF_EM_RESCHEDULE_RAW;
817 break;
818
819 /*
820 * Switch to hardware accelerated RAW-mode.
821 */
822 case EXCP_EXECUTE_HWACC:
823 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
824 rc = VINF_EM_RESCHEDULE_HWACC;
825 break;
826
827 /*
828 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
829 */
830 case EXCP_RC:
831 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC\n"));
832 rc = pVM->rem.s.rc;
833 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
834 break;
835
836 /*
837 * Figure out the rest when they arrive....
838 */
839 default:
840 AssertMsgFailed(("rc=%d\n", rc));
841 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
842 rc = VINF_EM_RESCHEDULE;
843 break;
844 }
845
846 /*
847 * Switch back the state.
848 */
849#else
850 pVM->rem.s.Env.interrupt_request = 0;
851 cpu_single_step(&pVM->rem.s.Env, 1);
852
853 /*
854 * Execute and handle the return code.
855 * We execute without enabling the cpu tick, so on success we'll
856 * just flip it on and off to make sure it moves.
857 *
858 * (We do not use emulate_single_instr() because that doesn't enter the
859 * right way in will cause serious trouble if a longjmp was attempted.)
860 */
861# ifdef DEBUG_bird
862 remR3DisasInstr(&pVM->rem.s.Env, 1, "REMR3EmulateInstruction");
863# endif
864 TMNotifyStartOfExecution(pVM);
865 int cTimesMax = 16384;
866 uint32_t eip = pVM->rem.s.Env.eip;
867 do
868 {
869 rc = cpu_exec(&pVM->rem.s.Env);
870
871 } while ( eip == pVM->rem.s.Env.eip
872 && (rc == EXCP_DEBUG || rc == EXCP_EXECUTE_RAW)
873 && --cTimesMax > 0);
874 TMNotifyEndOfExecution(pVM);
875 switch (rc)
876 {
877 /*
878 * Single step, we assume!
879 * If there was a breakpoint there we're fucked now.
880 */
881 case EXCP_DEBUG:
882 {
883 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_DEBUG\n"));
884 rc = VINF_EM_RESCHEDULE;
885 break;
886 }
887
888 /*
889 * We cannot be interrupted!
890 */
891 case EXCP_INTERRUPT:
892 AssertMsgFailed(("Shouldn't happen! Everything was locked!\n"));
893 rc = VERR_INTERNAL_ERROR;
894 break;
895
896 /*
897 * hlt instruction.
898 */
899 case EXCP_HLT:
900 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HLT\n"));
901 rc = VINF_EM_HALT;
902 break;
903
904 /*
905 * The VM has halted.
906 */
907 case EXCP_HALTED:
908 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_HALTED\n"));
909 rc = VINF_EM_HALT;
910 break;
911
912 /*
913 * Switch to RAW-mode.
914 */
915 case EXCP_EXECUTE_RAW:
916 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_RAW\n"));
917 rc = VINF_EM_RESCHEDULE_RAW;
918 break;
919
920 /*
921 * Switch to hardware accelerated RAW-mode.
922 */
923 case EXCP_EXECUTE_HWACC:
924 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
925 rc = VINF_EM_RESCHEDULE_HWACC;
926 break;
927
928 /*
929 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
930 */
931 case EXCP_RC:
932 Log2(("REMR3EmulateInstruction: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
933 rc = pVM->rem.s.rc;
934 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
935 break;
936
937 /*
938 * Figure out the rest when they arrive....
939 */
940 default:
941 AssertMsgFailed(("rc=%d\n", rc));
942 Log2(("REMR3EmulateInstruction: cpu_exec -> %d\n", rc));
943 rc = VINF_SUCCESS;
944 break;
945 }
946
947 /*
948 * Switch back the state.
949 */
950 cpu_single_step(&pVM->rem.s.Env, 0);
951#endif
952 pVM->rem.s.Env.interrupt_request = interrupt_request;
953 rc2 = REMR3StateBack(pVM);
954 AssertRC(rc2);
955 }
956
957 Log2(("REMR3EmulateInstruction: returns %Vrc (cs:eip=%04x:%VGv)\n",
958 rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
959 return rc;
960}
961
962
963/**
964 * Runs code in recompiled mode.
965 *
966 * Before calling this function the REM state needs to be in sync with
967 * the VM. Call REMR3State() to perform the sync. It's only necessary
968 * (and permitted) to sync at the first call to REMR3Step()/REMR3Run()
969 * and after calling REMR3StateBack().
970 *
971 * @returns VBox status code.
972 *
973 * @param pVM VM Handle.
974 */
975REMR3DECL(int) REMR3Run(PVM pVM)
976{
977 int rc;
978 Log2(("REMR3Run: (cs:eip=%04x:%VGv)\n", pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
979 Assert(pVM->rem.s.fInREM);
980
981 TMNotifyStartOfExecution(pVM);
982 rc = cpu_exec(&pVM->rem.s.Env);
983 TMNotifyEndOfExecution(pVM);
984 switch (rc)
985 {
986 /*
987 * This happens when the execution was interrupted
988 * by an external event, like pending timers.
989 */
990 case EXCP_INTERRUPT:
991 Log2(("REMR3Run: cpu_exec -> EXCP_INTERRUPT\n"));
992 rc = VINF_SUCCESS;
993 break;
994
995 /*
996 * hlt instruction.
997 */
998 case EXCP_HLT:
999 Log2(("REMR3Run: cpu_exec -> EXCP_HLT\n"));
1000 rc = VINF_EM_HALT;
1001 break;
1002
1003 /*
1004 * The VM has halted.
1005 */
1006 case EXCP_HALTED:
1007 Log2(("REMR3Run: cpu_exec -> EXCP_HALTED\n"));
1008 rc = VINF_EM_HALT;
1009 break;
1010
1011 /*
1012 * Breakpoint/single step.
1013 */
1014 case EXCP_DEBUG:
1015 {
1016#if 0//def DEBUG_bird
1017 static int iBP = 0;
1018 printf("howdy, breakpoint! iBP=%d\n", iBP);
1019 switch (iBP)
1020 {
1021 case 0:
1022 cpu_breakpoint_remove(&pVM->rem.s.Env, pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base);
1023 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
1024 //pVM->rem.s.Env.interrupt_request = 0;
1025 //pVM->rem.s.Env.exception_index = -1;
1026 //g_fInterruptDisabled = 1;
1027 rc = VINF_SUCCESS;
1028 asm("int3");
1029 break;
1030 default:
1031 asm("int3");
1032 break;
1033 }
1034 iBP++;
1035#else
1036 /* breakpoint or single step? */
1037 RTGCPTR GCPtrPC = pVM->rem.s.Env.eip + pVM->rem.s.Env.segs[R_CS].base;
1038 int iBP;
1039 rc = VINF_EM_DBG_STEPPED;
1040 for (iBP = 0; iBP < pVM->rem.s.Env.nb_breakpoints; iBP++)
1041 if (pVM->rem.s.Env.breakpoints[iBP] == GCPtrPC)
1042 {
1043 rc = VINF_EM_DBG_BREAKPOINT;
1044 break;
1045 }
1046 Log2(("REMR3Run: cpu_exec -> EXCP_DEBUG rc=%Vrc iBP=%d GCPtrPC=%VGv\n", rc, iBP, GCPtrPC));
1047#endif
1048 break;
1049 }
1050
1051 /*
1052 * Switch to RAW-mode.
1053 */
1054 case EXCP_EXECUTE_RAW:
1055 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_RAW\n"));
1056 rc = VINF_EM_RESCHEDULE_RAW;
1057 break;
1058
1059 /*
1060 * Switch to hardware accelerated RAW-mode.
1061 */
1062 case EXCP_EXECUTE_HWACC:
1063 Log2(("REMR3Run: cpu_exec -> EXCP_EXECUTE_HWACC\n"));
1064 rc = VINF_EM_RESCHEDULE_HWACC;
1065 break;
1066
1067 /*
1068 * An EM RC was raised (VMR3Reset/Suspend/PowerOff/some-fatal-error).
1069 */
1070 case EXCP_RC:
1071 Log2(("REMR3Run: cpu_exec -> EXCP_RC rc=%Vrc\n", pVM->rem.s.rc));
1072 rc = pVM->rem.s.rc;
1073 pVM->rem.s.rc = VERR_INTERNAL_ERROR;
1074 break;
1075
1076 /*
1077 * Figure out the rest when they arrive....
1078 */
1079 default:
1080 AssertMsgFailed(("rc=%d\n", rc));
1081 Log2(("REMR3Run: cpu_exec -> %d\n", rc));
1082 rc = VINF_SUCCESS;
1083 break;
1084 }
1085
1086 Log2(("REMR3Run: returns %Vrc (cs:eip=%04x:%VGv)\n", rc, pVM->rem.s.Env.segs[R_CS].selector, pVM->rem.s.Env.eip));
1087 return rc;
1088}
1089
1090
1091/**
1092 * Check if the cpu state is suitable for Raw execution.
1093 *
1094 * @returns boolean
1095 * @param env The CPU env struct.
1096 * @param eip The EIP to check this for (might differ from env->eip).
1097 * @param fFlags hflags OR'ed with IOPL, TF and VM from eflags.
1098 * @param piException Stores EXCP_EXECUTE_RAW/HWACC in case raw mode is supported in this context
1099 *
1100 * @remark This function must be kept in perfect sync with the scheduler in EM.cpp!
1101 */
1102bool remR3CanExecuteRaw(CPUState *env, RTGCPTR eip, unsigned fFlags, int *piException)
1103{
1104 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1105 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1106 /* !!! THIS MUST BE IN SYNC WITH emR3Reschedule !!! */
1107 uint32_t u32CR0;
1108
1109 /* Update counter. */
1110 env->pVM->rem.s.cCanExecuteRaw++;
1111
1112 if (HWACCMIsEnabled(env->pVM))
1113 {
1114 CPUMCTX Ctx;
1115
1116 env->state |= CPU_RAW_HWACC;
1117
1118 /*
1119 * Create partial context for HWACCMR3CanExecuteGuest
1120 */
1121 Ctx.cr0 = env->cr[0];
1122 Ctx.cr3 = env->cr[3];
1123 Ctx.cr4 = env->cr[4];
1124
1125 Ctx.tr = env->tr.selector;
1126 Ctx.trHid.u64Base = env->tr.base;
1127 Ctx.trHid.u32Limit = env->tr.limit;
1128 Ctx.trHid.Attr.u = (env->tr.flags >> 8) & 0xF0FF;
1129
1130 Ctx.idtr.cbIdt = env->idt.limit;
1131 Ctx.idtr.pIdt = env->idt.base;
1132
1133 Ctx.eflags.u32 = env->eflags;
1134
1135 Ctx.cs = env->segs[R_CS].selector;
1136 Ctx.csHid.u64Base = env->segs[R_CS].base;
1137 Ctx.csHid.u32Limit = env->segs[R_CS].limit;
1138 Ctx.csHid.Attr.u = (env->segs[R_CS].flags >> 8) & 0xF0FF;
1139
1140 Ctx.ds = env->segs[R_DS].selector;
1141 Ctx.dsHid.u64Base = env->segs[R_DS].base;
1142 Ctx.dsHid.u32Limit = env->segs[R_DS].limit;
1143 Ctx.dsHid.Attr.u = (env->segs[R_DS].flags >> 8) & 0xF0FF;
1144
1145 Ctx.es = env->segs[R_ES].selector;
1146 Ctx.esHid.u64Base = env->segs[R_ES].base;
1147 Ctx.esHid.u32Limit = env->segs[R_ES].limit;
1148 Ctx.esHid.Attr.u = (env->segs[R_ES].flags >> 8) & 0xF0FF;
1149
1150 Ctx.fs = env->segs[R_FS].selector;
1151 Ctx.fsHid.u64Base = env->segs[R_FS].base;
1152 Ctx.fsHid.u32Limit = env->segs[R_FS].limit;
1153 Ctx.fsHid.Attr.u = (env->segs[R_FS].flags >> 8) & 0xF0FF;
1154
1155 Ctx.gs = env->segs[R_GS].selector;
1156 Ctx.gsHid.u64Base = env->segs[R_GS].base;
1157 Ctx.gsHid.u32Limit = env->segs[R_GS].limit;
1158 Ctx.gsHid.Attr.u = (env->segs[R_GS].flags >> 8) & 0xF0FF;
1159
1160 Ctx.ss = env->segs[R_SS].selector;
1161 Ctx.ssHid.u64Base = env->segs[R_SS].base;
1162 Ctx.ssHid.u32Limit = env->segs[R_SS].limit;
1163 Ctx.ssHid.Attr.u = (env->segs[R_SS].flags >> 8) & 0xF0FF;
1164
1165 Ctx.msrEFER = env->efer;
1166
1167 /* Hardware accelerated raw-mode:
1168 *
1169 * Typically only 32-bits protected mode, with paging enabled, code is allowed here.
1170 */
1171 if (HWACCMR3CanExecuteGuest(env->pVM, &Ctx) == true)
1172 {
1173 *piException = EXCP_EXECUTE_HWACC;
1174 return true;
1175 }
1176 return false;
1177 }
1178
1179 /*
1180 * Here we only support 16 & 32 bits protected mode ring 3 code that has no IO privileges
1181 * or 32 bits protected mode ring 0 code
1182 *
1183 * The tests are ordered by the likelyhood of being true during normal execution.
1184 */
1185 if (fFlags & (HF_TF_MASK | HF_INHIBIT_IRQ_MASK))
1186 {
1187 STAM_COUNTER_INC(&gStatRefuseTFInhibit);
1188 Log2(("raw mode refused: fFlags=%#x\n", fFlags));
1189 return false;
1190 }
1191
1192#ifndef VBOX_RAW_V86
1193 if (fFlags & VM_MASK) {
1194 STAM_COUNTER_INC(&gStatRefuseVM86);
1195 Log2(("raw mode refused: VM_MASK\n"));
1196 return false;
1197 }
1198#endif
1199
1200 if (env->state & CPU_EMULATE_SINGLE_INSTR)
1201 {
1202#ifndef DEBUG_bird
1203 Log2(("raw mode refused: CPU_EMULATE_SINGLE_INSTR\n"));
1204#endif
1205 return false;
1206 }
1207
1208 if (env->singlestep_enabled)
1209 {
1210 //Log2(("raw mode refused: Single step\n"));
1211 return false;
1212 }
1213
1214 if (env->nb_breakpoints > 0)
1215 {
1216 //Log2(("raw mode refused: Breakpoints\n"));
1217 return false;
1218 }
1219
1220 u32CR0 = env->cr[0];
1221 if ((u32CR0 & (X86_CR0_PG | X86_CR0_PE)) != (X86_CR0_PG | X86_CR0_PE))
1222 {
1223 STAM_COUNTER_INC(&gStatRefusePaging);
1224 //Log2(("raw mode refused: %s%s%s\n", (u32CR0 & X86_CR0_PG) ? "" : " !PG", (u32CR0 & X86_CR0_PE) ? "" : " !PE", (u32CR0 & X86_CR0_AM) ? "" : " !AM"));
1225 return false;
1226 }
1227
1228 if (env->cr[4] & CR4_PAE_MASK)
1229 {
1230 if (!(env->cpuid_features & X86_CPUID_FEATURE_EDX_PAE))
1231 {
1232 STAM_COUNTER_INC(&gStatRefusePAE);
1233 return false;
1234 }
1235 }
1236
1237 if (((fFlags >> HF_CPL_SHIFT) & 3) == 3)
1238 {
1239 if (!EMIsRawRing3Enabled(env->pVM))
1240 return false;
1241
1242 if (!(env->eflags & IF_MASK))
1243 {
1244 STAM_COUNTER_INC(&gStatRefuseIF0);
1245 Log2(("raw mode refused: IF (RawR3)\n"));
1246 return false;
1247 }
1248
1249 if (!(u32CR0 & CR0_WP_MASK) && EMIsRawRing0Enabled(env->pVM))
1250 {
1251 STAM_COUNTER_INC(&gStatRefuseWP0);
1252 Log2(("raw mode refused: CR0.WP + RawR0\n"));
1253 return false;
1254 }
1255 }
1256 else
1257 {
1258 if (!EMIsRawRing0Enabled(env->pVM))
1259 return false;
1260
1261 // Let's start with pure 32 bits ring 0 code first
1262 if ((fFlags & (HF_SS32_MASK | HF_CS32_MASK)) != (HF_SS32_MASK | HF_CS32_MASK))
1263 {
1264 STAM_COUNTER_INC(&gStatRefuseCode16);
1265 Log2(("raw r0 mode refused: HF_[S|C]S32_MASK fFlags=%#x\n", fFlags));
1266 return false;
1267 }
1268
1269 // Only R0
1270 if (((fFlags >> HF_CPL_SHIFT) & 3) != 0)
1271 {
1272 STAM_COUNTER_INC(&gStatRefuseRing1or2);
1273 Log2(("raw r0 mode refused: CPL %d\n", ((fFlags >> HF_CPL_SHIFT) & 3) ));
1274 return false;
1275 }
1276
1277 if (!(u32CR0 & CR0_WP_MASK))
1278 {
1279 STAM_COUNTER_INC(&gStatRefuseWP0);
1280 Log2(("raw r0 mode refused: CR0.WP=0!\n"));
1281 return false;
1282 }
1283
1284 if (PATMIsPatchGCAddr(env->pVM, eip))
1285 {
1286 Log2(("raw r0 mode forced: patch code\n"));
1287 *piException = EXCP_EXECUTE_RAW;
1288 return true;
1289 }
1290
1291#if !defined(VBOX_ALLOW_IF0) && !defined(VBOX_RUN_INTERRUPT_GATE_HANDLERS)
1292 if (!(env->eflags & IF_MASK))
1293 {
1294 STAM_COUNTER_INC(&gStatRefuseIF0);
1295 ////Log2(("R0: IF=0 VIF=%d %08X\n", eip, *env->pVMeflags));
1296 //Log2(("RR0: Interrupts turned off; fall back to emulation\n"));
1297 return false;
1298 }
1299#endif
1300
1301 env->state |= CPU_RAW_RING0;
1302 }
1303
1304 /*
1305 * Don't reschedule the first time we're called, because there might be
1306 * special reasons why we're here that is not covered by the above checks.
1307 */
1308 if (env->pVM->rem.s.cCanExecuteRaw == 1)
1309 {
1310 Log2(("raw mode refused: first scheduling\n"));
1311 STAM_COUNTER_INC(&gStatRefuseCanExecute);
1312 return false;
1313 }
1314
1315 Assert(PGMPhysIsA20Enabled(env->pVM));
1316 *piException = EXCP_EXECUTE_RAW;
1317 return true;
1318}
1319
1320
1321/**
1322 * Fetches a code byte.
1323 *
1324 * @returns Success indicator (bool) for ease of use.
1325 * @param env The CPU environment structure.
1326 * @param GCPtrInstr Where to fetch code.
1327 * @param pu8Byte Where to store the byte on success
1328 */
1329bool remR3GetOpcode(CPUState *env, RTGCPTR GCPtrInstr, uint8_t *pu8Byte)
1330{
1331 int rc = PATMR3QueryOpcode(env->pVM, GCPtrInstr, pu8Byte);
1332 if (VBOX_SUCCESS(rc))
1333 return true;
1334 return false;
1335}
1336
1337
1338/**
1339 * Flush (or invalidate if you like) page table/dir entry.
1340 *
1341 * (invlpg instruction; tlb_flush_page)
1342 *
1343 * @param env Pointer to cpu environment.
1344 * @param GCPtr The virtual address which page table/dir entry should be invalidated.
1345 */
1346void remR3FlushPage(CPUState *env, RTGCPTR GCPtr)
1347{
1348 PVM pVM = env->pVM;
1349 PCPUMCTX pCtx;
1350 int rc;
1351
1352 /*
1353 * When we're replaying invlpg instructions or restoring a saved
1354 * state we disable this path.
1355 */
1356 if (pVM->rem.s.fIgnoreInvlPg || pVM->rem.s.fIgnoreAll)
1357 return;
1358 Log(("remR3FlushPage: GCPtr=%VGv\n", GCPtr));
1359 Assert(pVM->rem.s.fInREM || pVM->rem.s.fInStateSync);
1360
1361 //RAWEx_ProfileStop(env, STATS_QEMU_TOTAL);
1362
1363 /*
1364 * Update the control registers before calling PGMFlushPage.
1365 */
1366 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1367 pCtx->cr0 = env->cr[0];
1368 pCtx->cr3 = env->cr[3];
1369 pCtx->cr4 = env->cr[4];
1370
1371 /*
1372 * Let PGM do the rest.
1373 */
1374 rc = PGMInvalidatePage(pVM, GCPtr);
1375 if (VBOX_FAILURE(rc))
1376 {
1377 AssertMsgFailed(("remR3FlushPage %VGv failed with %d!!\n", GCPtr, rc));
1378 VM_FF_SET(pVM, VM_FF_PGM_SYNC_CR3);
1379 }
1380 //RAWEx_ProfileStart(env, STATS_QEMU_TOTAL);
1381}
1382
1383
1384/**
1385 * Called from tlb_protect_code in order to write monitor a code page.
1386 *
1387 * @param env Pointer to the CPU environment.
1388 * @param GCPtr Code page to monitor
1389 */
1390void remR3ProtectCode(CPUState *env, RTGCPTR GCPtr)
1391{
1392#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1393 Assert(env->pVM->rem.s.fInREM);
1394 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1395 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1396 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1397 && !(env->eflags & VM_MASK) /* no V86 mode */
1398 && !HWACCMIsEnabled(env->pVM))
1399 CSAMR3MonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1400#endif
1401}
1402
1403/**
1404 * Called from tlb_unprotect_code in order to clear write monitoring for a code page.
1405 *
1406 * @param env Pointer to the CPU environment.
1407 * @param GCPtr Code page to monitor
1408 */
1409void remR3UnprotectCode(CPUState *env, RTGCPTR GCPtr)
1410{
1411 Assert(env->pVM->rem.s.fInREM);
1412#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
1413 if ( (env->cr[0] & X86_CR0_PG) /* paging must be enabled */
1414 && !(env->state & CPU_EMULATE_SINGLE_INSTR) /* ignore during single instruction execution */
1415 && (((env->hflags >> HF_CPL_SHIFT) & 3) == 0) /* supervisor mode only */
1416 && !(env->eflags & VM_MASK) /* no V86 mode */
1417 && !HWACCMIsEnabled(env->pVM))
1418 CSAMR3UnmonitorPage(env->pVM, GCPtr, CSAM_TAG_REM);
1419#endif
1420}
1421
1422
1423/**
1424 * Called when the CPU is initialized, any of the CRx registers are changed or
1425 * when the A20 line is modified.
1426 *
1427 * @param env Pointer to the CPU environment.
1428 * @param fGlobal Set if the flush is global.
1429 */
1430void remR3FlushTLB(CPUState *env, bool fGlobal)
1431{
1432 PVM pVM = env->pVM;
1433 PCPUMCTX pCtx;
1434
1435 /*
1436 * When we're replaying invlpg instructions or restoring a saved
1437 * state we disable this path.
1438 */
1439 if (pVM->rem.s.fIgnoreCR3Load || pVM->rem.s.fIgnoreAll)
1440 return;
1441 Assert(pVM->rem.s.fInREM);
1442
1443 /*
1444 * The caller doesn't check cr4, so we have to do that for ourselves.
1445 */
1446 if (!fGlobal && !(env->cr[4] & X86_CR4_PGE))
1447 fGlobal = true;
1448 Log(("remR3FlushTLB: CR0=%RGr CR3=%RGr CR4=%RGr %s\n", env->cr[0], env->cr[3], env->cr[4], fGlobal ? " global" : ""));
1449
1450 /*
1451 * Update the control registers before calling PGMR3FlushTLB.
1452 */
1453 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1454 pCtx->cr0 = env->cr[0];
1455 pCtx->cr3 = env->cr[3];
1456 pCtx->cr4 = env->cr[4];
1457
1458 /*
1459 * Let PGM do the rest.
1460 */
1461 PGMFlushTLB(pVM, env->cr[3], fGlobal);
1462}
1463
1464
1465/**
1466 * Called when any of the cr0, cr4 or efer registers is updated.
1467 *
1468 * @param env Pointer to the CPU environment.
1469 */
1470void remR3ChangeCpuMode(CPUState *env)
1471{
1472 int rc;
1473 PVM pVM = env->pVM;
1474 PCPUMCTX pCtx;
1475
1476 /*
1477 * When we're replaying loads or restoring a saved
1478 * state this path is disabled.
1479 */
1480 if (pVM->rem.s.fIgnoreCpuMode || pVM->rem.s.fIgnoreAll)
1481 return;
1482 Assert(pVM->rem.s.fInREM);
1483
1484 /*
1485 * Update the control registers before calling PGMChangeMode()
1486 * as it may need to map whatever cr3 is pointing to.
1487 */
1488 pCtx = (PCPUMCTX)pVM->rem.s.pCtx;
1489 pCtx->cr0 = env->cr[0];
1490 pCtx->cr3 = env->cr[3];
1491 pCtx->cr4 = env->cr[4];
1492
1493#ifdef TARGET_X86_64
1494 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], env->efer);
1495 if (rc != VINF_SUCCESS)
1496 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], env->efer, rc);
1497#else
1498 rc = PGMChangeMode(pVM, env->cr[0], env->cr[4], 0);
1499 if (rc != VINF_SUCCESS)
1500 cpu_abort(env, "PGMChangeMode(, %RX64, %RX64, %RX64) -> %Vrc\n", env->cr[0], env->cr[4], 0LL, rc);
1501#endif
1502}
1503
1504
1505/**
1506 * Called from compiled code to run dma.
1507 *
1508 * @param env Pointer to the CPU environment.
1509 */
1510void remR3DmaRun(CPUState *env)
1511{
1512 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1513 PDMR3DmaRun(env->pVM);
1514 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1515}
1516
1517
1518/**
1519 * Called from compiled code to schedule pending timers in VMM
1520 *
1521 * @param env Pointer to the CPU environment.
1522 */
1523void remR3TimersRun(CPUState *env)
1524{
1525 remR3ProfileStop(STATS_QEMU_RUN_EMULATED_CODE);
1526 remR3ProfileStart(STATS_QEMU_RUN_TIMERS);
1527 TMR3TimerQueuesDo(env->pVM);
1528 remR3ProfileStop(STATS_QEMU_RUN_TIMERS);
1529 remR3ProfileStart(STATS_QEMU_RUN_EMULATED_CODE);
1530}
1531
1532
1533/**
1534 * Record trap occurance
1535 *
1536 * @returns VBox status code
1537 * @param env Pointer to the CPU environment.
1538 * @param uTrap Trap nr
1539 * @param uErrorCode Error code
1540 * @param pvNextEIP Next EIP
1541 */
1542int remR3NotifyTrap(CPUState *env, uint32_t uTrap, uint32_t uErrorCode, uint32_t pvNextEIP)
1543{
1544 PVM pVM = env->pVM;
1545#ifdef VBOX_WITH_STATISTICS
1546 static STAMCOUNTER s_aStatTrap[255];
1547 static bool s_aRegisters[RT_ELEMENTS(s_aStatTrap)];
1548#endif
1549
1550#ifdef VBOX_WITH_STATISTICS
1551 if (uTrap < 255)
1552 {
1553 if (!s_aRegisters[uTrap])
1554 {
1555 char szStatName[64];
1556 s_aRegisters[uTrap] = true;
1557 RTStrPrintf(szStatName, sizeof(szStatName), "/REM/Trap/0x%02X", uTrap);
1558 STAM_REG(env->pVM, &s_aStatTrap[uTrap], STAMTYPE_COUNTER, szStatName, STAMUNIT_OCCURENCES, "Trap stats.");
1559 }
1560 STAM_COUNTER_INC(&s_aStatTrap[uTrap]);
1561 }
1562#endif
1563 Log(("remR3NotifyTrap: uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1564 if( uTrap < 0x20
1565 && (env->cr[0] & X86_CR0_PE)
1566 && !(env->eflags & X86_EFL_VM))
1567 {
1568#ifdef DEBUG
1569 remR3DisasInstr(env, 1, "remR3NotifyTrap: ");
1570#endif
1571 if(pVM->rem.s.uPendingException == uTrap && ++pVM->rem.s.cPendingExceptions > 512)
1572 {
1573 LogRel(("VERR_REM_TOO_MANY_TRAPS -> uTrap=%x error=%x next_eip=%VGv eip=%VGv cr2=%VGv\n", uTrap, uErrorCode, pvNextEIP, env->eip, env->cr[2]));
1574 remR3RaiseRC(env->pVM, VERR_REM_TOO_MANY_TRAPS);
1575 return VERR_REM_TOO_MANY_TRAPS;
1576 }
1577 if(pVM->rem.s.uPendingException != uTrap || pVM->rem.s.uPendingExcptEIP != env->eip || pVM->rem.s.uPendingExcptCR2 != env->cr[2])
1578 pVM->rem.s.cPendingExceptions = 1;
1579 pVM->rem.s.uPendingException = uTrap;
1580 pVM->rem.s.uPendingExcptEIP = env->eip;
1581 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1582 }
1583 else
1584 {
1585 pVM->rem.s.cPendingExceptions = 0;
1586 pVM->rem.s.uPendingException = uTrap;
1587 pVM->rem.s.uPendingExcptEIP = env->eip;
1588 pVM->rem.s.uPendingExcptCR2 = env->cr[2];
1589 }
1590 return VINF_SUCCESS;
1591}
1592
1593
1594/*
1595 * Clear current active trap
1596 *
1597 * @param pVM VM Handle.
1598 */
1599void remR3TrapClear(PVM pVM)
1600{
1601 pVM->rem.s.cPendingExceptions = 0;
1602 pVM->rem.s.uPendingException = 0;
1603 pVM->rem.s.uPendingExcptEIP = 0;
1604 pVM->rem.s.uPendingExcptCR2 = 0;
1605}
1606
1607
1608/*
1609 * Record previous call instruction addresses
1610 *
1611 * @param env Pointer to the CPU environment.
1612 */
1613void remR3RecordCall(CPUState *env)
1614{
1615 CSAMR3RecordCallAddress(env->pVM, env->eip);
1616}
1617
1618
1619/**
1620 * Syncs the internal REM state with the VM.
1621 *
1622 * This must be called before REMR3Run() is invoked whenever when the REM
1623 * state is not up to date. Calling it several times in a row is not
1624 * permitted.
1625 *
1626 * @returns VBox status code.
1627 *
1628 * @param pVM VM Handle.
1629 * @param fFlushTBs Flush all translation blocks before executing code
1630 *
1631 * @remark The caller has to check for important FFs before calling REMR3Run. REMR3State will
1632 * no do this since the majority of the callers don't want any unnecessary of events
1633 * pending that would immediatly interrupt execution.
1634 */
1635REMR3DECL(int) REMR3State(PVM pVM, bool fFlushTBs)
1636{
1637 register const CPUMCTX *pCtx;
1638 register unsigned fFlags;
1639 bool fHiddenSelRegsValid;
1640 unsigned i;
1641 TRPMEVENT enmType;
1642 uint8_t u8TrapNo;
1643 int rc;
1644
1645 STAM_PROFILE_START(&pVM->rem.s.StatsState, a);
1646 Log2(("REMR3State:\n"));
1647
1648 pCtx = pVM->rem.s.pCtx;
1649 fHiddenSelRegsValid = CPUMAreHiddenSelRegsValid(pVM);
1650
1651 Assert(!pVM->rem.s.fInREM);
1652 pVM->rem.s.fInStateSync = true;
1653
1654 if (fFlushTBs)
1655 {
1656 STAM_COUNTER_INC(&gStatFlushTBs);
1657 tb_flush(&pVM->rem.s.Env);
1658 }
1659
1660 /*
1661 * Copy the registers which require no special handling.
1662 */
1663#ifdef TARGET_X86_64
1664 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
1665 Assert(R_EAX == 0);
1666 pVM->rem.s.Env.regs[R_EAX] = pCtx->rax;
1667 Assert(R_ECX == 1);
1668 pVM->rem.s.Env.regs[R_ECX] = pCtx->rcx;
1669 Assert(R_EDX == 2);
1670 pVM->rem.s.Env.regs[R_EDX] = pCtx->rdx;
1671 Assert(R_EBX == 3);
1672 pVM->rem.s.Env.regs[R_EBX] = pCtx->rbx;
1673 Assert(R_ESP == 4);
1674 pVM->rem.s.Env.regs[R_ESP] = pCtx->rsp;
1675 Assert(R_EBP == 5);
1676 pVM->rem.s.Env.regs[R_EBP] = pCtx->rbp;
1677 Assert(R_ESI == 6);
1678 pVM->rem.s.Env.regs[R_ESI] = pCtx->rsi;
1679 Assert(R_EDI == 7);
1680 pVM->rem.s.Env.regs[R_EDI] = pCtx->rdi;
1681 pVM->rem.s.Env.regs[8] = pCtx->r8;
1682 pVM->rem.s.Env.regs[9] = pCtx->r9;
1683 pVM->rem.s.Env.regs[10] = pCtx->r10;
1684 pVM->rem.s.Env.regs[11] = pCtx->r11;
1685 pVM->rem.s.Env.regs[12] = pCtx->r12;
1686 pVM->rem.s.Env.regs[13] = pCtx->r13;
1687 pVM->rem.s.Env.regs[14] = pCtx->r14;
1688 pVM->rem.s.Env.regs[15] = pCtx->r15;
1689
1690 pVM->rem.s.Env.eip = pCtx->rip;
1691
1692 pVM->rem.s.Env.eflags = pCtx->rflags.u64;
1693#else
1694 Assert(R_EAX == 0);
1695 pVM->rem.s.Env.regs[R_EAX] = pCtx->eax;
1696 Assert(R_ECX == 1);
1697 pVM->rem.s.Env.regs[R_ECX] = pCtx->ecx;
1698 Assert(R_EDX == 2);
1699 pVM->rem.s.Env.regs[R_EDX] = pCtx->edx;
1700 Assert(R_EBX == 3);
1701 pVM->rem.s.Env.regs[R_EBX] = pCtx->ebx;
1702 Assert(R_ESP == 4);
1703 pVM->rem.s.Env.regs[R_ESP] = pCtx->esp;
1704 Assert(R_EBP == 5);
1705 pVM->rem.s.Env.regs[R_EBP] = pCtx->ebp;
1706 Assert(R_ESI == 6);
1707 pVM->rem.s.Env.regs[R_ESI] = pCtx->esi;
1708 Assert(R_EDI == 7);
1709 pVM->rem.s.Env.regs[R_EDI] = pCtx->edi;
1710 pVM->rem.s.Env.eip = pCtx->eip;
1711
1712 pVM->rem.s.Env.eflags = pCtx->eflags.u32;
1713#endif
1714
1715 pVM->rem.s.Env.cr[2] = pCtx->cr2;
1716
1717 /** @todo we could probably benefit from using a CPUM_CHANGED_DRx flag too! */
1718 for (i=0;i<8;i++)
1719 pVM->rem.s.Env.dr[i] = pCtx->dr[i];
1720
1721 /*
1722 * Clear the halted hidden flag (the interrupt waking up the CPU can
1723 * have been dispatched in raw mode).
1724 */
1725 pVM->rem.s.Env.hflags &= ~HF_HALTED_MASK;
1726
1727 /*
1728 * Replay invlpg?
1729 */
1730 if (pVM->rem.s.cInvalidatedPages)
1731 {
1732 RTUINT i;
1733
1734 pVM->rem.s.fIgnoreInvlPg = true;
1735 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
1736 {
1737 Log2(("REMR3State: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
1738 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
1739 }
1740 pVM->rem.s.fIgnoreInvlPg = false;
1741 pVM->rem.s.cInvalidatedPages = 0;
1742 }
1743
1744 /* Replay notification changes? */
1745 if (pVM->rem.s.cHandlerNotifications)
1746 REMR3ReplayHandlerNotifications(pVM);
1747
1748 /* Update MSRs; before CRx registers! */
1749 pVM->rem.s.Env.efer = pCtx->msrEFER;
1750 pVM->rem.s.Env.star = pCtx->msrSTAR;
1751 pVM->rem.s.Env.pat = pCtx->msrPAT;
1752#ifdef TARGET_X86_64
1753 pVM->rem.s.Env.lstar = pCtx->msrLSTAR;
1754 pVM->rem.s.Env.cstar = pCtx->msrCSTAR;
1755 pVM->rem.s.Env.fmask = pCtx->msrSFMASK;
1756 pVM->rem.s.Env.kernelgsbase = pCtx->msrKERNELGSBASE;
1757
1758 /* Update the internal long mode activate flag according to the new EFER value. */
1759 if (pCtx->msrEFER & MSR_K6_EFER_LMA)
1760 pVM->rem.s.Env.hflags |= HF_LMA_MASK;
1761 else
1762 pVM->rem.s.Env.hflags &= ~(HF_LMA_MASK | HF_CS64_MASK);
1763#endif
1764
1765
1766 /*
1767 * Registers which are rarely changed and require special handling / order when changed.
1768 */
1769 fFlags = CPUMGetAndClearChangedFlagsREM(pVM);
1770 LogFlow(("CPUMGetAndClearChangedFlagsREM %x\n", fFlags));
1771 if (fFlags & ( CPUM_CHANGED_CR4 | CPUM_CHANGED_CR3 | CPUM_CHANGED_CR0
1772 | CPUM_CHANGED_GDTR | CPUM_CHANGED_IDTR | CPUM_CHANGED_LDTR | CPUM_CHANGED_TR
1773 | CPUM_CHANGED_FPU_REM | CPUM_CHANGED_SYSENTER_MSR | CPUM_CHANGED_CPUID))
1774 {
1775 if (fFlags & CPUM_CHANGED_FPU_REM)
1776 save_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu); /* 'save' is an excellent name. */
1777
1778 if (fFlags & CPUM_CHANGED_GLOBAL_TLB_FLUSH)
1779 {
1780 pVM->rem.s.fIgnoreCR3Load = true;
1781 tlb_flush(&pVM->rem.s.Env, true);
1782 pVM->rem.s.fIgnoreCR3Load = false;
1783 }
1784
1785 /* CR4 before CR0! */
1786 if (fFlags & CPUM_CHANGED_CR4)
1787 {
1788 pVM->rem.s.fIgnoreCR3Load = true;
1789 pVM->rem.s.fIgnoreCpuMode = true;
1790 cpu_x86_update_cr4(&pVM->rem.s.Env, pCtx->cr4);
1791 pVM->rem.s.fIgnoreCpuMode = false;
1792 pVM->rem.s.fIgnoreCR3Load = false;
1793 }
1794
1795 if (fFlags & CPUM_CHANGED_CR0)
1796 {
1797 pVM->rem.s.fIgnoreCR3Load = true;
1798 pVM->rem.s.fIgnoreCpuMode = true;
1799 cpu_x86_update_cr0(&pVM->rem.s.Env, pCtx->cr0);
1800 pVM->rem.s.fIgnoreCpuMode = false;
1801 pVM->rem.s.fIgnoreCR3Load = false;
1802 }
1803
1804 if (fFlags & CPUM_CHANGED_CR3)
1805 {
1806 pVM->rem.s.fIgnoreCR3Load = true;
1807 cpu_x86_update_cr3(&pVM->rem.s.Env, pCtx->cr3);
1808 pVM->rem.s.fIgnoreCR3Load = false;
1809 }
1810
1811 if (fFlags & CPUM_CHANGED_GDTR)
1812 {
1813 pVM->rem.s.Env.gdt.base = pCtx->gdtr.pGdt;
1814 pVM->rem.s.Env.gdt.limit = pCtx->gdtr.cbGdt;
1815 }
1816
1817 if (fFlags & CPUM_CHANGED_IDTR)
1818 {
1819 pVM->rem.s.Env.idt.base = pCtx->idtr.pIdt;
1820 pVM->rem.s.Env.idt.limit = pCtx->idtr.cbIdt;
1821 }
1822
1823 if (fFlags & CPUM_CHANGED_SYSENTER_MSR)
1824 {
1825 pVM->rem.s.Env.sysenter_cs = pCtx->SysEnter.cs;
1826 pVM->rem.s.Env.sysenter_eip = pCtx->SysEnter.eip;
1827 pVM->rem.s.Env.sysenter_esp = pCtx->SysEnter.esp;
1828 }
1829
1830 if (fFlags & CPUM_CHANGED_LDTR)
1831 {
1832 if (fHiddenSelRegsValid)
1833 {
1834 pVM->rem.s.Env.ldt.selector = pCtx->ldtr;
1835 pVM->rem.s.Env.ldt.base = pCtx->ldtrHid.u64Base;
1836 pVM->rem.s.Env.ldt.limit = pCtx->ldtrHid.u32Limit;
1837 pVM->rem.s.Env.ldt.flags = (pCtx->ldtrHid.Attr.u << 8) & 0xFFFFFF;;
1838 }
1839 else
1840 sync_ldtr(&pVM->rem.s.Env, pCtx->ldtr);
1841 }
1842
1843 if (fFlags & CPUM_CHANGED_TR)
1844 {
1845 if (fHiddenSelRegsValid)
1846 {
1847 pVM->rem.s.Env.tr.selector = pCtx->tr;
1848 pVM->rem.s.Env.tr.base = pCtx->trHid.u64Base;
1849 pVM->rem.s.Env.tr.limit = pCtx->trHid.u32Limit;
1850 pVM->rem.s.Env.tr.flags = (pCtx->trHid.Attr.u << 8) & 0xFFFFFF;;
1851 }
1852 else
1853 sync_tr(&pVM->rem.s.Env, pCtx->tr);
1854
1855 /** @note do_interrupt will fault if the busy flag is still set.... */
1856 pVM->rem.s.Env.tr.flags &= ~DESC_TSS_BUSY_MASK;
1857 }
1858
1859 if (fFlags & CPUM_CHANGED_CPUID)
1860 {
1861 uint32_t u32Dummy;
1862
1863 /*
1864 * Get the CPUID features.
1865 */
1866 CPUMGetGuestCpuId(pVM, 1, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext_features, &pVM->rem.s.Env.cpuid_features);
1867 CPUMGetGuestCpuId(pVM, 0x80000001, &u32Dummy, &u32Dummy, &u32Dummy, &pVM->rem.s.Env.cpuid_ext2_features);
1868 }
1869 }
1870
1871 /*
1872 * Update selector registers.
1873 * This must be done *after* we've synced gdt, ldt and crX registers
1874 * since we're reading the GDT/LDT om sync_seg. This will happen with
1875 * saved state which takes a quick dip into rawmode for instance.
1876 */
1877 /*
1878 * Stack; Note first check this one as the CPL might have changed. The
1879 * wrong CPL can cause QEmu to raise an exception in sync_seg!!
1880 */
1881
1882 if (fHiddenSelRegsValid)
1883 {
1884 /* The hidden selector registers are valid in the CPU context. */
1885 /** @note QEmu saves the 2nd dword of the descriptor; we should convert the attribute word back! */
1886
1887 /* Set current CPL */
1888 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1889
1890 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_CS, pCtx->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, (pCtx->csHid.Attr.u << 8) & 0xFFFFFF);
1891 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_SS, pCtx->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, (pCtx->ssHid.Attr.u << 8) & 0xFFFFFF);
1892 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_DS, pCtx->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, (pCtx->dsHid.Attr.u << 8) & 0xFFFFFF);
1893 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_ES, pCtx->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, (pCtx->esHid.Attr.u << 8) & 0xFFFFFF);
1894 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_FS, pCtx->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, (pCtx->fsHid.Attr.u << 8) & 0xFFFFFF);
1895 cpu_x86_load_seg_cache(&pVM->rem.s.Env, R_GS, pCtx->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, (pCtx->gsHid.Attr.u << 8) & 0xFFFFFF);
1896 }
1897 else
1898 {
1899 /* In 'normal' raw mode we don't have access to the hidden selector registers. */
1900 if (pVM->rem.s.Env.segs[R_SS].selector != (uint16_t)pCtx->ss)
1901 {
1902 Log2(("REMR3State: SS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_SS].selector, pCtx->ss));
1903
1904 cpu_x86_set_cpl(&pVM->rem.s.Env, CPUMGetGuestCPL(pVM, CPUMCTX2CORE(pCtx)));
1905 sync_seg(&pVM->rem.s.Env, R_SS, pCtx->ss);
1906#ifdef VBOX_WITH_STATISTICS
1907 if (pVM->rem.s.Env.segs[R_SS].newselector)
1908 {
1909 STAM_COUNTER_INC(&gStatSelOutOfSync[R_SS]);
1910 }
1911#endif
1912 }
1913 else
1914 pVM->rem.s.Env.segs[R_SS].newselector = 0;
1915
1916 if (pVM->rem.s.Env.segs[R_ES].selector != pCtx->es)
1917 {
1918 Log2(("REMR3State: ES changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_ES].selector, pCtx->es));
1919 sync_seg(&pVM->rem.s.Env, R_ES, pCtx->es);
1920#ifdef VBOX_WITH_STATISTICS
1921 if (pVM->rem.s.Env.segs[R_ES].newselector)
1922 {
1923 STAM_COUNTER_INC(&gStatSelOutOfSync[R_ES]);
1924 }
1925#endif
1926 }
1927 else
1928 pVM->rem.s.Env.segs[R_ES].newselector = 0;
1929
1930 if (pVM->rem.s.Env.segs[R_CS].selector != pCtx->cs)
1931 {
1932 Log2(("REMR3State: CS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_CS].selector, pCtx->cs));
1933 sync_seg(&pVM->rem.s.Env, R_CS, pCtx->cs);
1934#ifdef VBOX_WITH_STATISTICS
1935 if (pVM->rem.s.Env.segs[R_CS].newselector)
1936 {
1937 STAM_COUNTER_INC(&gStatSelOutOfSync[R_CS]);
1938 }
1939#endif
1940 }
1941 else
1942 pVM->rem.s.Env.segs[R_CS].newselector = 0;
1943
1944 if (pVM->rem.s.Env.segs[R_DS].selector != pCtx->ds)
1945 {
1946 Log2(("REMR3State: DS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_DS].selector, pCtx->ds));
1947 sync_seg(&pVM->rem.s.Env, R_DS, pCtx->ds);
1948#ifdef VBOX_WITH_STATISTICS
1949 if (pVM->rem.s.Env.segs[R_DS].newselector)
1950 {
1951 STAM_COUNTER_INC(&gStatSelOutOfSync[R_DS]);
1952 }
1953#endif
1954 }
1955 else
1956 pVM->rem.s.Env.segs[R_DS].newselector = 0;
1957
1958 /** @todo need to find a way to communicate potential GDT/LDT changes and thread switches. The selector might
1959 * be the same but not the base/limit. */
1960 if (pVM->rem.s.Env.segs[R_FS].selector != pCtx->fs)
1961 {
1962 Log2(("REMR3State: FS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_FS].selector, pCtx->fs));
1963 sync_seg(&pVM->rem.s.Env, R_FS, pCtx->fs);
1964#ifdef VBOX_WITH_STATISTICS
1965 if (pVM->rem.s.Env.segs[R_FS].newselector)
1966 {
1967 STAM_COUNTER_INC(&gStatSelOutOfSync[R_FS]);
1968 }
1969#endif
1970 }
1971 else
1972 pVM->rem.s.Env.segs[R_FS].newselector = 0;
1973
1974 if (pVM->rem.s.Env.segs[R_GS].selector != pCtx->gs)
1975 {
1976 Log2(("REMR3State: GS changed from %04x to %04x!\n", pVM->rem.s.Env.segs[R_GS].selector, pCtx->gs));
1977 sync_seg(&pVM->rem.s.Env, R_GS, pCtx->gs);
1978#ifdef VBOX_WITH_STATISTICS
1979 if (pVM->rem.s.Env.segs[R_GS].newselector)
1980 {
1981 STAM_COUNTER_INC(&gStatSelOutOfSync[R_GS]);
1982 }
1983#endif
1984 }
1985 else
1986 pVM->rem.s.Env.segs[R_GS].newselector = 0;
1987 }
1988
1989 /*
1990 * Check for traps.
1991 */
1992 pVM->rem.s.Env.exception_index = -1; /** @todo this won't work :/ */
1993 rc = TRPMQueryTrap(pVM, &u8TrapNo, &enmType);
1994 if (VBOX_SUCCESS(rc))
1995 {
1996#ifdef DEBUG
1997 if (u8TrapNo == 0x80)
1998 {
1999 remR3DumpLnxSyscall(pVM);
2000 remR3DumpOBsdSyscall(pVM);
2001 }
2002#endif
2003
2004 pVM->rem.s.Env.exception_index = u8TrapNo;
2005 if (enmType != TRPM_SOFTWARE_INT)
2006 {
2007 pVM->rem.s.Env.exception_is_int = 0;
2008 pVM->rem.s.Env.exception_next_eip = pVM->rem.s.Env.eip;
2009 }
2010 else
2011 {
2012 /*
2013 * The there are two 1 byte opcodes and one 2 byte opcode for software interrupts.
2014 * We ASSUME that there are no prefixes and sets the default to 2 byte, and checks
2015 * for int03 and into.
2016 */
2017 pVM->rem.s.Env.exception_is_int = 1;
2018 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 2;
2019 /* int 3 may be generated by one-byte 0xcc */
2020 if (u8TrapNo == 3)
2021 {
2022 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xcc)
2023 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2024 }
2025 /* int 4 may be generated by one-byte 0xce */
2026 else if (u8TrapNo == 4)
2027 {
2028 if (read_byte(&pVM->rem.s.Env, pVM->rem.s.Env.segs[R_CS].base + pCtx->rip) == 0xce)
2029 pVM->rem.s.Env.exception_next_eip = pCtx->rip + 1;
2030 }
2031 }
2032
2033 /* get error code and cr2 if needed. */
2034 switch (u8TrapNo)
2035 {
2036 case 0x0e:
2037 pVM->rem.s.Env.cr[2] = TRPMGetFaultAddress(pVM);
2038 /* fallthru */
2039 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2040 pVM->rem.s.Env.error_code = TRPMGetErrorCode(pVM);
2041 break;
2042
2043 case 0x11: case 0x08:
2044 default:
2045 pVM->rem.s.Env.error_code = 0;
2046 break;
2047 }
2048
2049 /*
2050 * We can now reset the active trap since the recompiler is gonna have a go at it.
2051 */
2052 rc = TRPMResetTrap(pVM);
2053 AssertRC(rc);
2054 Log2(("REMR3State: trap=%02x errcd=%VGv cr2=%VGv nexteip=%VGv%s\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.error_code,
2055 pVM->rem.s.Env.cr[2], pVM->rem.s.Env.exception_next_eip, pVM->rem.s.Env.exception_is_int ? " software" : ""));
2056 }
2057
2058 /*
2059 * Clear old interrupt request flags; Check for pending hardware interrupts.
2060 * (See @remark for why we don't check for other FFs.)
2061 */
2062 pVM->rem.s.Env.interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXIT | CPU_INTERRUPT_EXITTB | CPU_INTERRUPT_TIMER);
2063 if ( pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ
2064 || VM_FF_ISPENDING(pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
2065 pVM->rem.s.Env.interrupt_request |= CPU_INTERRUPT_HARD;
2066
2067 /*
2068 * We're now in REM mode.
2069 */
2070 pVM->rem.s.fInREM = true;
2071 pVM->rem.s.fInStateSync = false;
2072 pVM->rem.s.cCanExecuteRaw = 0;
2073 STAM_PROFILE_STOP(&pVM->rem.s.StatsState, a);
2074 Log2(("REMR3State: returns VINF_SUCCESS\n"));
2075 return VINF_SUCCESS;
2076}
2077
2078
2079/**
2080 * Syncs back changes in the REM state to the the VM state.
2081 *
2082 * This must be called after invoking REMR3Run().
2083 * Calling it several times in a row is not permitted.
2084 *
2085 * @returns VBox status code.
2086 *
2087 * @param pVM VM Handle.
2088 */
2089REMR3DECL(int) REMR3StateBack(PVM pVM)
2090{
2091 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2092 unsigned i;
2093
2094 STAM_PROFILE_START(&pVM->rem.s.StatsStateBack, a);
2095 Log2(("REMR3StateBack:\n"));
2096 Assert(pVM->rem.s.fInREM);
2097
2098 /*
2099 * Copy back the registers.
2100 * This is done in the order they are declared in the CPUMCTX structure.
2101 */
2102
2103 /** @todo FOP */
2104 /** @todo FPUIP */
2105 /** @todo CS */
2106 /** @todo FPUDP */
2107 /** @todo DS */
2108 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2109 pCtx->fpu.MXCSR = 0;
2110 pCtx->fpu.MXCSR_MASK = 0;
2111
2112 /** @todo check if FPU/XMM was actually used in the recompiler */
2113 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2114//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2115
2116#ifdef TARGET_X86_64
2117 /* Note that the high dwords of 64 bits registers are undefined in 32 bits mode and are undefined after a mode change. */
2118 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2119 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2120 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2121 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2122 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2123 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2124 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2125 pCtx->r8 = pVM->rem.s.Env.regs[8];
2126 pCtx->r9 = pVM->rem.s.Env.regs[9];
2127 pCtx->r10 = pVM->rem.s.Env.regs[10];
2128 pCtx->r11 = pVM->rem.s.Env.regs[11];
2129 pCtx->r12 = pVM->rem.s.Env.regs[12];
2130 pCtx->r13 = pVM->rem.s.Env.regs[13];
2131 pCtx->r14 = pVM->rem.s.Env.regs[14];
2132 pCtx->r15 = pVM->rem.s.Env.regs[15];
2133
2134 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2135
2136#else
2137 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2138 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2139 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2140 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2141 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2142 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2143 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2144
2145 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2146#endif
2147
2148 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2149
2150#ifdef VBOX_WITH_STATISTICS
2151 if (pVM->rem.s.Env.segs[R_SS].newselector)
2152 {
2153 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_SS]);
2154 }
2155 if (pVM->rem.s.Env.segs[R_GS].newselector)
2156 {
2157 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_GS]);
2158 }
2159 if (pVM->rem.s.Env.segs[R_FS].newselector)
2160 {
2161 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_FS]);
2162 }
2163 if (pVM->rem.s.Env.segs[R_ES].newselector)
2164 {
2165 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_ES]);
2166 }
2167 if (pVM->rem.s.Env.segs[R_DS].newselector)
2168 {
2169 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_DS]);
2170 }
2171 if (pVM->rem.s.Env.segs[R_CS].newselector)
2172 {
2173 STAM_COUNTER_INC(&gStatSelOutOfSyncStateBack[R_CS]);
2174 }
2175#endif
2176 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2177 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2178 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2179 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2180 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2181
2182#ifdef TARGET_X86_64
2183 pCtx->rip = pVM->rem.s.Env.eip;
2184 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2185#else
2186 pCtx->eip = pVM->rem.s.Env.eip;
2187 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2188#endif
2189
2190 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2191 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2192 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2193 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2194
2195 for (i=0;i<8;i++)
2196 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2197
2198 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2199 if (pCtx->gdtr.pGdt != pVM->rem.s.Env.gdt.base)
2200 {
2201 pCtx->gdtr.pGdt = pVM->rem.s.Env.gdt.base;
2202 STAM_COUNTER_INC(&gStatREMGDTChange);
2203 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2204 }
2205
2206 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2207 if (pCtx->idtr.pIdt != pVM->rem.s.Env.idt.base)
2208 {
2209 pCtx->idtr.pIdt = pVM->rem.s.Env.idt.base;
2210 STAM_COUNTER_INC(&gStatREMIDTChange);
2211 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2212 }
2213
2214 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2215 {
2216 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2217 STAM_COUNTER_INC(&gStatREMLDTRChange);
2218 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2219 }
2220 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2221 {
2222 pCtx->tr = pVM->rem.s.Env.tr.selector;
2223 STAM_COUNTER_INC(&gStatREMTRChange);
2224 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2225 }
2226
2227 /** @todo These values could still be out of sync! */
2228 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2229 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2230 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2231 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xF0FF;
2232
2233 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2234 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2235 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xF0FF;
2236
2237 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2238 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2239 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xF0FF;
2240
2241 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2242 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2243 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xF0FF;
2244
2245 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2246 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2247 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xF0FF;
2248
2249 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2250 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2251 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xF0FF;
2252
2253 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2254 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2255 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xF0FF;
2256
2257 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2258 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2259 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xF0FF;
2260
2261 /* Sysenter MSR */
2262 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2263 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2264 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2265
2266 /* System MSRs. */
2267 pCtx->msrEFER = pVM->rem.s.Env.efer;
2268 pCtx->msrSTAR = pVM->rem.s.Env.star;
2269 pCtx->msrPAT = pVM->rem.s.Env.pat;
2270#ifdef TARGET_X86_64
2271 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2272 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2273 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2274 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2275#endif
2276
2277 remR3TrapClear(pVM);
2278
2279 /*
2280 * Check for traps.
2281 */
2282 if ( pVM->rem.s.Env.exception_index >= 0
2283 && pVM->rem.s.Env.exception_index < 256)
2284 {
2285 int rc;
2286
2287 Log(("REMR3StateBack: Pending trap %x %d\n", pVM->rem.s.Env.exception_index, pVM->rem.s.Env.exception_is_int));
2288 rc = TRPMAssertTrap(pVM, pVM->rem.s.Env.exception_index, (pVM->rem.s.Env.exception_is_int) ? TRPM_SOFTWARE_INT : TRPM_HARDWARE_INT);
2289 AssertRC(rc);
2290 switch (pVM->rem.s.Env.exception_index)
2291 {
2292 case 0x0e:
2293 TRPMSetFaultAddress(pVM, pCtx->cr2);
2294 /* fallthru */
2295 case 0x0a: case 0x0b: case 0x0c: case 0x0d:
2296 case 0x11: case 0x08: /* 0 */
2297 TRPMSetErrorCode(pVM, pVM->rem.s.Env.error_code);
2298 break;
2299 }
2300
2301 }
2302
2303 /*
2304 * We're not longer in REM mode.
2305 */
2306 pVM->rem.s.fInREM = false;
2307 STAM_PROFILE_STOP(&pVM->rem.s.StatsStateBack, a);
2308 Log2(("REMR3StateBack: returns VINF_SUCCESS\n"));
2309 return VINF_SUCCESS;
2310}
2311
2312
2313/**
2314 * This is called by the disassembler when it wants to update the cpu state
2315 * before for instance doing a register dump.
2316 */
2317static void remR3StateUpdate(PVM pVM)
2318{
2319 register PCPUMCTX pCtx = pVM->rem.s.pCtx;
2320 unsigned i;
2321
2322 Assert(pVM->rem.s.fInREM);
2323
2324 /*
2325 * Copy back the registers.
2326 * This is done in the order they are declared in the CPUMCTX structure.
2327 */
2328
2329 /** @todo FOP */
2330 /** @todo FPUIP */
2331 /** @todo CS */
2332 /** @todo FPUDP */
2333 /** @todo DS */
2334 /** @todo Fix MXCSR support in QEMU so we don't overwrite MXCSR with 0 when we shouldn't! */
2335 pCtx->fpu.MXCSR = 0;
2336 pCtx->fpu.MXCSR_MASK = 0;
2337
2338 /** @todo check if FPU/XMM was actually used in the recompiler */
2339 restore_raw_fp_state(&pVM->rem.s.Env, (uint8_t *)&pCtx->fpu);
2340//// dprintf2(("FPU state CW=%04X TT=%04X SW=%04X (%04X)\n", env->fpuc, env->fpstt, env->fpus, pVMCtx->fpu.FSW));
2341
2342#ifdef TARGET_X86_64
2343 pCtx->rdi = pVM->rem.s.Env.regs[R_EDI];
2344 pCtx->rsi = pVM->rem.s.Env.regs[R_ESI];
2345 pCtx->rbp = pVM->rem.s.Env.regs[R_EBP];
2346 pCtx->rax = pVM->rem.s.Env.regs[R_EAX];
2347 pCtx->rbx = pVM->rem.s.Env.regs[R_EBX];
2348 pCtx->rdx = pVM->rem.s.Env.regs[R_EDX];
2349 pCtx->rcx = pVM->rem.s.Env.regs[R_ECX];
2350 pCtx->r8 = pVM->rem.s.Env.regs[8];
2351 pCtx->r9 = pVM->rem.s.Env.regs[9];
2352 pCtx->r10 = pVM->rem.s.Env.regs[10];
2353 pCtx->r11 = pVM->rem.s.Env.regs[11];
2354 pCtx->r12 = pVM->rem.s.Env.regs[12];
2355 pCtx->r13 = pVM->rem.s.Env.regs[13];
2356 pCtx->r14 = pVM->rem.s.Env.regs[14];
2357 pCtx->r15 = pVM->rem.s.Env.regs[15];
2358
2359 pCtx->rsp = pVM->rem.s.Env.regs[R_ESP];
2360#else
2361 pCtx->edi = pVM->rem.s.Env.regs[R_EDI];
2362 pCtx->esi = pVM->rem.s.Env.regs[R_ESI];
2363 pCtx->ebp = pVM->rem.s.Env.regs[R_EBP];
2364 pCtx->eax = pVM->rem.s.Env.regs[R_EAX];
2365 pCtx->ebx = pVM->rem.s.Env.regs[R_EBX];
2366 pCtx->edx = pVM->rem.s.Env.regs[R_EDX];
2367 pCtx->ecx = pVM->rem.s.Env.regs[R_ECX];
2368
2369 pCtx->esp = pVM->rem.s.Env.regs[R_ESP];
2370#endif
2371
2372 pCtx->ss = pVM->rem.s.Env.segs[R_SS].selector;
2373
2374 pCtx->gs = pVM->rem.s.Env.segs[R_GS].selector;
2375 pCtx->fs = pVM->rem.s.Env.segs[R_FS].selector;
2376 pCtx->es = pVM->rem.s.Env.segs[R_ES].selector;
2377 pCtx->ds = pVM->rem.s.Env.segs[R_DS].selector;
2378 pCtx->cs = pVM->rem.s.Env.segs[R_CS].selector;
2379
2380#ifdef TARGET_X86_64
2381 pCtx->rip = pVM->rem.s.Env.eip;
2382 pCtx->rflags.u64 = pVM->rem.s.Env.eflags;
2383#else
2384 pCtx->eip = pVM->rem.s.Env.eip;
2385 pCtx->eflags.u32 = pVM->rem.s.Env.eflags;
2386#endif
2387
2388 pCtx->cr0 = pVM->rem.s.Env.cr[0];
2389 pCtx->cr2 = pVM->rem.s.Env.cr[2];
2390 pCtx->cr3 = pVM->rem.s.Env.cr[3];
2391 pCtx->cr4 = pVM->rem.s.Env.cr[4];
2392
2393 for (i=0;i<8;i++)
2394 pCtx->dr[i] = pVM->rem.s.Env.dr[i];
2395
2396 pCtx->gdtr.cbGdt = pVM->rem.s.Env.gdt.limit;
2397 if (pCtx->gdtr.pGdt != (uint32_t)pVM->rem.s.Env.gdt.base)
2398 {
2399 pCtx->gdtr.pGdt = (uint32_t)pVM->rem.s.Env.gdt.base;
2400 STAM_COUNTER_INC(&gStatREMGDTChange);
2401 VM_FF_SET(pVM, VM_FF_SELM_SYNC_GDT);
2402 }
2403
2404 pCtx->idtr.cbIdt = pVM->rem.s.Env.idt.limit;
2405 if (pCtx->idtr.pIdt != (uint32_t)pVM->rem.s.Env.idt.base)
2406 {
2407 pCtx->idtr.pIdt = (uint32_t)pVM->rem.s.Env.idt.base;
2408 STAM_COUNTER_INC(&gStatREMIDTChange);
2409 VM_FF_SET(pVM, VM_FF_TRPM_SYNC_IDT);
2410 }
2411
2412 if (pCtx->ldtr != pVM->rem.s.Env.ldt.selector)
2413 {
2414 pCtx->ldtr = pVM->rem.s.Env.ldt.selector;
2415 STAM_COUNTER_INC(&gStatREMLDTRChange);
2416 VM_FF_SET(pVM, VM_FF_SELM_SYNC_LDT);
2417 }
2418 if (pCtx->tr != pVM->rem.s.Env.tr.selector)
2419 {
2420 pCtx->tr = pVM->rem.s.Env.tr.selector;
2421 STAM_COUNTER_INC(&gStatREMTRChange);
2422 VM_FF_SET(pVM, VM_FF_SELM_SYNC_TSS);
2423 }
2424
2425 /** @todo These values could still be out of sync! */
2426 pCtx->csHid.u64Base = pVM->rem.s.Env.segs[R_CS].base;
2427 pCtx->csHid.u32Limit = pVM->rem.s.Env.segs[R_CS].limit;
2428 /** @note QEmu saves the 2nd dword of the descriptor; we should store the attribute word only! */
2429 pCtx->csHid.Attr.u = (pVM->rem.s.Env.segs[R_CS].flags >> 8) & 0xFFFF;
2430
2431 pCtx->dsHid.u64Base = pVM->rem.s.Env.segs[R_DS].base;
2432 pCtx->dsHid.u32Limit = pVM->rem.s.Env.segs[R_DS].limit;
2433 pCtx->dsHid.Attr.u = (pVM->rem.s.Env.segs[R_DS].flags >> 8) & 0xFFFF;
2434
2435 pCtx->esHid.u64Base = pVM->rem.s.Env.segs[R_ES].base;
2436 pCtx->esHid.u32Limit = pVM->rem.s.Env.segs[R_ES].limit;
2437 pCtx->esHid.Attr.u = (pVM->rem.s.Env.segs[R_ES].flags >> 8) & 0xFFFF;
2438
2439 pCtx->fsHid.u64Base = pVM->rem.s.Env.segs[R_FS].base;
2440 pCtx->fsHid.u32Limit = pVM->rem.s.Env.segs[R_FS].limit;
2441 pCtx->fsHid.Attr.u = (pVM->rem.s.Env.segs[R_FS].flags >> 8) & 0xFFFF;
2442
2443 pCtx->gsHid.u64Base = pVM->rem.s.Env.segs[R_GS].base;
2444 pCtx->gsHid.u32Limit = pVM->rem.s.Env.segs[R_GS].limit;
2445 pCtx->gsHid.Attr.u = (pVM->rem.s.Env.segs[R_GS].flags >> 8) & 0xFFFF;
2446
2447 pCtx->ssHid.u64Base = pVM->rem.s.Env.segs[R_SS].base;
2448 pCtx->ssHid.u32Limit = pVM->rem.s.Env.segs[R_SS].limit;
2449 pCtx->ssHid.Attr.u = (pVM->rem.s.Env.segs[R_SS].flags >> 8) & 0xFFFF;
2450
2451 pCtx->ldtrHid.u64Base = pVM->rem.s.Env.ldt.base;
2452 pCtx->ldtrHid.u32Limit = pVM->rem.s.Env.ldt.limit;
2453 pCtx->ldtrHid.Attr.u = (pVM->rem.s.Env.ldt.flags >> 8) & 0xFFFF;
2454
2455 pCtx->trHid.u64Base = pVM->rem.s.Env.tr.base;
2456 pCtx->trHid.u32Limit = pVM->rem.s.Env.tr.limit;
2457 pCtx->trHid.Attr.u = (pVM->rem.s.Env.tr.flags >> 8) & 0xFFFF;
2458
2459 /* Sysenter MSR */
2460 pCtx->SysEnter.cs = pVM->rem.s.Env.sysenter_cs;
2461 pCtx->SysEnter.eip = pVM->rem.s.Env.sysenter_eip;
2462 pCtx->SysEnter.esp = pVM->rem.s.Env.sysenter_esp;
2463
2464 /* System MSRs. */
2465 pCtx->msrEFER = pVM->rem.s.Env.efer;
2466 pCtx->msrSTAR = pVM->rem.s.Env.star;
2467 pCtx->msrPAT = pVM->rem.s.Env.pat;
2468#ifdef TARGET_X86_64
2469 pCtx->msrLSTAR = pVM->rem.s.Env.lstar;
2470 pCtx->msrCSTAR = pVM->rem.s.Env.cstar;
2471 pCtx->msrSFMASK = pVM->rem.s.Env.fmask;
2472 pCtx->msrKERNELGSBASE = pVM->rem.s.Env.kernelgsbase;
2473#endif
2474
2475}
2476
2477
2478/**
2479 * Update the VMM state information if we're currently in REM.
2480 *
2481 * This method is used by the DBGF and PDMDevice when there is any uncertainty of whether
2482 * we're currently executing in REM and the VMM state is invalid. This method will of
2483 * course check that we're executing in REM before syncing any data over to the VMM.
2484 *
2485 * @param pVM The VM handle.
2486 */
2487REMR3DECL(void) REMR3StateUpdate(PVM pVM)
2488{
2489 if (pVM->rem.s.fInREM)
2490 remR3StateUpdate(pVM);
2491}
2492
2493
2494#undef LOG_GROUP
2495#define LOG_GROUP LOG_GROUP_REM
2496
2497
2498/**
2499 * Notify the recompiler about Address Gate 20 state change.
2500 *
2501 * This notification is required since A20 gate changes are
2502 * initialized from a device driver and the VM might just as
2503 * well be in REM mode as in RAW mode.
2504 *
2505 * @param pVM VM handle.
2506 * @param fEnable True if the gate should be enabled.
2507 * False if the gate should be disabled.
2508 */
2509REMR3DECL(void) REMR3A20Set(PVM pVM, bool fEnable)
2510{
2511 bool fSaved;
2512
2513 LogFlow(("REMR3A20Set: fEnable=%d\n", fEnable));
2514 VM_ASSERT_EMT(pVM);
2515
2516 fSaved = pVM->rem.s.fIgnoreAll; /* just in case. */
2517 pVM->rem.s.fIgnoreAll = fSaved || !pVM->rem.s.fInREM;
2518
2519 cpu_x86_set_a20(&pVM->rem.s.Env, fEnable);
2520
2521 pVM->rem.s.fIgnoreAll = fSaved;
2522}
2523
2524
2525/**
2526 * Replays the invalidated recorded pages.
2527 * Called in response to VERR_REM_FLUSHED_PAGES_OVERFLOW from the RAW execution loop.
2528 *
2529 * @param pVM VM handle.
2530 */
2531REMR3DECL(void) REMR3ReplayInvalidatedPages(PVM pVM)
2532{
2533 RTUINT i;
2534
2535 VM_ASSERT_EMT(pVM);
2536
2537 /*
2538 * Sync the required registers.
2539 */
2540 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2541 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2542 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2543 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2544
2545 /*
2546 * Replay the flushes.
2547 */
2548 pVM->rem.s.fIgnoreInvlPg = true;
2549 for (i = 0; i < pVM->rem.s.cInvalidatedPages; i++)
2550 {
2551 Log2(("REMR3ReplayInvalidatedPages: invlpg %VGv\n", pVM->rem.s.aGCPtrInvalidatedPages[i]));
2552 tlb_flush_page(&pVM->rem.s.Env, pVM->rem.s.aGCPtrInvalidatedPages[i]);
2553 }
2554 pVM->rem.s.fIgnoreInvlPg = false;
2555 pVM->rem.s.cInvalidatedPages = 0;
2556}
2557
2558
2559/**
2560 * Replays the handler notification changes
2561 * Called in response to VM_FF_REM_HANDLER_NOTIFY from the RAW execution loop.
2562 *
2563 * @param pVM VM handle.
2564 */
2565REMR3DECL(void) REMR3ReplayHandlerNotifications(PVM pVM)
2566{
2567 /*
2568 * Replay the flushes.
2569 */
2570 RTUINT i;
2571 const RTUINT c = pVM->rem.s.cHandlerNotifications;
2572
2573 LogFlow(("REMR3ReplayInvalidatedPages:\n"));
2574 VM_ASSERT_EMT(pVM);
2575
2576 pVM->rem.s.cHandlerNotifications = 0;
2577 for (i = 0; i < c; i++)
2578 {
2579 PREMHANDLERNOTIFICATION pRec = &pVM->rem.s.aHandlerNotifications[i];
2580 switch (pRec->enmKind)
2581 {
2582 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_REGISTER:
2583 REMR3NotifyHandlerPhysicalRegister(pVM,
2584 pRec->u.PhysicalRegister.enmType,
2585 pRec->u.PhysicalRegister.GCPhys,
2586 pRec->u.PhysicalRegister.cb,
2587 pRec->u.PhysicalRegister.fHasHCHandler);
2588 break;
2589
2590 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_DEREGISTER:
2591 REMR3NotifyHandlerPhysicalDeregister(pVM,
2592 pRec->u.PhysicalDeregister.enmType,
2593 pRec->u.PhysicalDeregister.GCPhys,
2594 pRec->u.PhysicalDeregister.cb,
2595 pRec->u.PhysicalDeregister.fHasHCHandler,
2596 pRec->u.PhysicalDeregister.fRestoreAsRAM);
2597 break;
2598
2599 case REMHANDLERNOTIFICATIONKIND_PHYSICAL_MODIFY:
2600 REMR3NotifyHandlerPhysicalModify(pVM,
2601 pRec->u.PhysicalModify.enmType,
2602 pRec->u.PhysicalModify.GCPhysOld,
2603 pRec->u.PhysicalModify.GCPhysNew,
2604 pRec->u.PhysicalModify.cb,
2605 pRec->u.PhysicalModify.fHasHCHandler,
2606 pRec->u.PhysicalModify.fRestoreAsRAM);
2607 break;
2608
2609 default:
2610 AssertReleaseMsgFailed(("enmKind=%d\n", pRec->enmKind));
2611 break;
2612 }
2613 }
2614 VM_FF_CLEAR(pVM, VM_FF_REM_HANDLER_NOTIFY);
2615}
2616
2617
2618/**
2619 * Notify REM about changed code page.
2620 *
2621 * @returns VBox status code.
2622 * @param pVM VM handle.
2623 * @param pvCodePage Code page address
2624 */
2625REMR3DECL(int) REMR3NotifyCodePageChanged(PVM pVM, RTGCPTR pvCodePage)
2626{
2627#ifdef VBOX_REM_PROTECT_PAGES_FROM_SMC
2628 int rc;
2629 RTGCPHYS PhysGC;
2630 uint64_t flags;
2631
2632 VM_ASSERT_EMT(pVM);
2633
2634 /*
2635 * Get the physical page address.
2636 */
2637 rc = PGMGstGetPage(pVM, pvCodePage, &flags, &PhysGC);
2638 if (rc == VINF_SUCCESS)
2639 {
2640 /*
2641 * Sync the required registers and flush the whole page.
2642 * (Easier to do the whole page than notifying it about each physical
2643 * byte that was changed.
2644 */
2645 pVM->rem.s.Env.cr[0] = pVM->rem.s.pCtx->cr0;
2646 pVM->rem.s.Env.cr[2] = pVM->rem.s.pCtx->cr2;
2647 pVM->rem.s.Env.cr[3] = pVM->rem.s.pCtx->cr3;
2648 pVM->rem.s.Env.cr[4] = pVM->rem.s.pCtx->cr4;
2649
2650 tb_invalidate_phys_page_range(PhysGC, PhysGC + PAGE_SIZE - 1, 0);
2651 }
2652#endif
2653 return VINF_SUCCESS;
2654}
2655
2656
2657/**
2658 * Notification about a successful MMR3PhysRegister() call.
2659 *
2660 * @param pVM VM handle.
2661 * @param GCPhys The physical address the RAM.
2662 * @param cb Size of the memory.
2663 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2664 */
2665REMR3DECL(void) REMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, unsigned fFlags)
2666{
2667 uint32_t cbBitmap;
2668 int rc;
2669 Log(("REMR3NotifyPhysRamRegister: GCPhys=%VGp cb=%d fFlags=%d\n", GCPhys, cb, fFlags));
2670 VM_ASSERT_EMT(pVM);
2671
2672 /*
2673 * Validate input - we trust the caller.
2674 */
2675 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2676 Assert(cb);
2677 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2678
2679 /*
2680 * Base ram?
2681 */
2682 if (!GCPhys)
2683 {
2684 phys_ram_size = cb;
2685 phys_ram_dirty_size = cb >> PAGE_SHIFT;
2686#ifndef VBOX_STRICT
2687 phys_ram_dirty = MMR3HeapAlloc(pVM, MM_TAG_REM, phys_ram_dirty_size);
2688 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", phys_ram_dirty_size));
2689#else /* VBOX_STRICT: allocate a full map and make the out of bounds pages invalid. */
2690 phys_ram_dirty = RTMemPageAlloc(_4G >> PAGE_SHIFT);
2691 AssertReleaseMsg(phys_ram_dirty, ("failed to allocate %d bytes of dirty bytes\n", _4G >> PAGE_SHIFT));
2692 cbBitmap = RT_ALIGN_32(phys_ram_dirty_size, PAGE_SIZE);
2693 rc = RTMemProtect(phys_ram_dirty + cbBitmap, (_4G >> PAGE_SHIFT) - cbBitmap, RTMEM_PROT_NONE);
2694 AssertRC(rc);
2695 phys_ram_dirty += cbBitmap - phys_ram_dirty_size;
2696#endif
2697 memset(phys_ram_dirty, 0xff, phys_ram_dirty_size);
2698 }
2699
2700 /*
2701 * Register the ram.
2702 */
2703 Assert(!pVM->rem.s.fIgnoreAll);
2704 pVM->rem.s.fIgnoreAll = true;
2705
2706#ifdef VBOX_WITH_NEW_PHYS_CODE
2707 if (fFlags & MM_RAM_FLAGS_RESERVED)
2708 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2709 else
2710 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2711#else
2712 if (!GCPhys)
2713 cpu_register_physical_memory(GCPhys, cb, GCPhys | IO_MEM_RAM_MISSING);
2714 else
2715 {
2716 if (fFlags & MM_RAM_FLAGS_RESERVED)
2717 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2718 else
2719 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2720 }
2721#endif
2722 Assert(pVM->rem.s.fIgnoreAll);
2723 pVM->rem.s.fIgnoreAll = false;
2724}
2725
2726#ifndef VBOX_WITH_NEW_PHYS_CODE
2727
2728/**
2729 * Notification about a successful PGMR3PhysRegisterChunk() call.
2730 *
2731 * @param pVM VM handle.
2732 * @param GCPhys The physical address the RAM.
2733 * @param cb Size of the memory.
2734 * @param pvRam The HC address of the RAM.
2735 * @param fFlags Flags of the MM_RAM_FLAGS_* defines.
2736 */
2737REMR3DECL(void) REMR3NotifyPhysRamChunkRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, RTHCUINTPTR pvRam, unsigned fFlags)
2738{
2739 Log(("REMR3NotifyPhysRamChunkRegister: GCPhys=%VGp cb=%d pvRam=%p fFlags=%d\n", GCPhys, cb, pvRam, fFlags));
2740 VM_ASSERT_EMT(pVM);
2741
2742 /*
2743 * Validate input - we trust the caller.
2744 */
2745 Assert(pvRam);
2746 Assert(RT_ALIGN(pvRam, PAGE_SIZE) == pvRam);
2747 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2748 Assert(cb == PGM_DYNAMIC_CHUNK_SIZE);
2749 Assert(fFlags == 0 /* normal RAM */);
2750 Assert(!pVM->rem.s.fIgnoreAll);
2751 pVM->rem.s.fIgnoreAll = true;
2752
2753 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2754
2755 Assert(pVM->rem.s.fIgnoreAll);
2756 pVM->rem.s.fIgnoreAll = false;
2757}
2758
2759
2760/**
2761 * Grows dynamically allocated guest RAM.
2762 * Will raise a fatal error if the operation fails.
2763 *
2764 * @param physaddr The physical address.
2765 */
2766void remR3GrowDynRange(unsigned long physaddr)
2767{
2768 int rc;
2769 PVM pVM = cpu_single_env->pVM;
2770 const RTGCPHYS GCPhys = physaddr;
2771
2772 LogFlow(("remR3GrowDynRange %VGp\n", physaddr));
2773 rc = PGM3PhysGrowRange(pVM, &GCPhys);
2774 if (VBOX_SUCCESS(rc))
2775 return;
2776
2777 LogRel(("\nUnable to allocate guest RAM chunk at %VGp\n", physaddr));
2778 cpu_abort(cpu_single_env, "Unable to allocate guest RAM chunk at %VGp\n", physaddr);
2779 AssertFatalFailed();
2780}
2781
2782#endif /* !VBOX_WITH_NEW_PHYS_CODE */
2783
2784/**
2785 * Notification about a successful MMR3PhysRomRegister() call.
2786 *
2787 * @param pVM VM handle.
2788 * @param GCPhys The physical address of the ROM.
2789 * @param cb The size of the ROM.
2790 * @param pvCopy Pointer to the ROM copy.
2791 * @param fShadow Whether it's currently writable shadow ROM or normal readonly ROM.
2792 * This function will be called when ever the protection of the
2793 * shadow ROM changes (at reset and end of POST).
2794 */
2795REMR3DECL(void) REMR3NotifyPhysRomRegister(PVM pVM, RTGCPHYS GCPhys, RTUINT cb, void *pvCopy, bool fShadow)
2796{
2797 Log(("REMR3NotifyPhysRomRegister: GCPhys=%VGp cb=%d pvCopy=%p fShadow=%RTbool\n", GCPhys, cb, pvCopy, fShadow));
2798 VM_ASSERT_EMT(pVM);
2799
2800 /*
2801 * Validate input - we trust the caller.
2802 */
2803 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2804 Assert(cb);
2805 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2806 Assert(pvCopy);
2807 Assert(RT_ALIGN_P(pvCopy, PAGE_SIZE) == pvCopy);
2808
2809 /*
2810 * Register the rom.
2811 */
2812 Assert(!pVM->rem.s.fIgnoreAll);
2813 pVM->rem.s.fIgnoreAll = true;
2814
2815 cpu_register_physical_memory(GCPhys, cb, GCPhys | (fShadow ? 0 : IO_MEM_ROM));
2816
2817 Log2(("%.64Vhxd\n", (char *)pvCopy + cb - 64));
2818
2819 Assert(pVM->rem.s.fIgnoreAll);
2820 pVM->rem.s.fIgnoreAll = false;
2821}
2822
2823
2824/**
2825 * Notification about a successful memory deregistration or reservation.
2826 *
2827 * @param pVM VM Handle.
2828 * @param GCPhys Start physical address.
2829 * @param cb The size of the range.
2830 * @todo Rename to REMR3NotifyPhysRamDeregister (for MMIO2) as we won't
2831 * reserve any memory soon.
2832 */
2833REMR3DECL(void) REMR3NotifyPhysReserve(PVM pVM, RTGCPHYS GCPhys, RTUINT cb)
2834{
2835 Log(("REMR3NotifyPhysReserve: GCPhys=%VGp cb=%d\n", GCPhys, cb));
2836 VM_ASSERT_EMT(pVM);
2837
2838 /*
2839 * Validate input - we trust the caller.
2840 */
2841 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2842 Assert(cb);
2843 Assert(RT_ALIGN_Z(cb, PAGE_SIZE) == cb);
2844
2845 /*
2846 * Unassigning the memory.
2847 */
2848 Assert(!pVM->rem.s.fIgnoreAll);
2849 pVM->rem.s.fIgnoreAll = true;
2850
2851 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2852
2853 Assert(pVM->rem.s.fIgnoreAll);
2854 pVM->rem.s.fIgnoreAll = false;
2855}
2856
2857
2858/**
2859 * Notification about a successful PGMR3HandlerPhysicalRegister() call.
2860 *
2861 * @param pVM VM Handle.
2862 * @param enmType Handler type.
2863 * @param GCPhys Handler range address.
2864 * @param cb Size of the handler range.
2865 * @param fHasHCHandler Set if the handler has a HC callback function.
2866 *
2867 * @remark MMR3PhysRomRegister assumes that this function will not apply the
2868 * Handler memory type to memory which has no HC handler.
2869 */
2870REMR3DECL(void) REMR3NotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler)
2871{
2872 Log(("REMR3NotifyHandlerPhysicalRegister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%d\n",
2873 enmType, GCPhys, cb, fHasHCHandler));
2874 VM_ASSERT_EMT(pVM);
2875 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2876 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2877
2878 if (pVM->rem.s.cHandlerNotifications)
2879 REMR3ReplayHandlerNotifications(pVM);
2880
2881 Assert(!pVM->rem.s.fIgnoreAll);
2882 pVM->rem.s.fIgnoreAll = true;
2883
2884 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2885 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iMMIOMemType);
2886 else if (fHasHCHandler)
2887 cpu_register_physical_memory(GCPhys, cb, pVM->rem.s.iHandlerMemType);
2888
2889 Assert(pVM->rem.s.fIgnoreAll);
2890 pVM->rem.s.fIgnoreAll = false;
2891}
2892
2893
2894/**
2895 * Notification about a successful PGMR3HandlerPhysicalDeregister() operation.
2896 *
2897 * @param pVM VM Handle.
2898 * @param enmType Handler type.
2899 * @param GCPhys Handler range address.
2900 * @param cb Size of the handler range.
2901 * @param fHasHCHandler Set if the handler has a HC callback function.
2902 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2903 */
2904REMR3DECL(void) REMR3NotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhys, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2905{
2906 Log(("REMR3NotifyHandlerPhysicalDeregister: enmType=%d GCPhys=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool RAM=%08x\n",
2907 enmType, GCPhys, cb, fHasHCHandler, fRestoreAsRAM, MMR3PhysGetRamSize(pVM)));
2908 VM_ASSERT_EMT(pVM);
2909
2910 if (pVM->rem.s.cHandlerNotifications)
2911 REMR3ReplayHandlerNotifications(pVM);
2912
2913 Assert(!pVM->rem.s.fIgnoreAll);
2914 pVM->rem.s.fIgnoreAll = true;
2915
2916/** @todo this isn't right, MMIO can (in theory) be restored as RAM. */
2917 if (enmType == PGMPHYSHANDLERTYPE_MMIO)
2918 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2919 else if (fHasHCHandler)
2920 {
2921 if (!fRestoreAsRAM)
2922 {
2923 Assert(GCPhys > MMR3PhysGetRamSize(pVM));
2924 cpu_register_physical_memory(GCPhys, cb, IO_MEM_UNASSIGNED);
2925 }
2926 else
2927 {
2928 Assert(RT_ALIGN_T(GCPhys, PAGE_SIZE, RTGCPHYS) == GCPhys);
2929 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2930 cpu_register_physical_memory(GCPhys, cb, GCPhys);
2931 }
2932 }
2933
2934 Assert(pVM->rem.s.fIgnoreAll);
2935 pVM->rem.s.fIgnoreAll = false;
2936}
2937
2938
2939/**
2940 * Notification about a successful PGMR3HandlerPhysicalModify() call.
2941 *
2942 * @param pVM VM Handle.
2943 * @param enmType Handler type.
2944 * @param GCPhysOld Old handler range address.
2945 * @param GCPhysNew New handler range address.
2946 * @param cb Size of the handler range.
2947 * @param fHasHCHandler Set if the handler has a HC callback function.
2948 * @param fRestoreAsRAM Whether the to restore it as normal RAM or as unassigned memory.
2949 */
2950REMR3DECL(void) REMR3NotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERTYPE enmType, RTGCPHYS GCPhysOld, RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fHasHCHandler, bool fRestoreAsRAM)
2951{
2952 Log(("REMR3NotifyHandlerPhysicalModify: enmType=%d GCPhysOld=%VGp GCPhysNew=%VGp cb=%VGp fHasHCHandler=%RTbool fRestoreAsRAM=%RTbool\n",
2953 enmType, GCPhysOld, GCPhysNew, cb, fHasHCHandler, fRestoreAsRAM));
2954 VM_ASSERT_EMT(pVM);
2955 AssertReleaseMsg(enmType != PGMPHYSHANDLERTYPE_MMIO, ("enmType=%d\n", enmType));
2956
2957 if (pVM->rem.s.cHandlerNotifications)
2958 REMR3ReplayHandlerNotifications(pVM);
2959
2960 if (fHasHCHandler)
2961 {
2962 Assert(!pVM->rem.s.fIgnoreAll);
2963 pVM->rem.s.fIgnoreAll = true;
2964
2965 /*
2966 * Reset the old page.
2967 */
2968 if (!fRestoreAsRAM)
2969 cpu_register_physical_memory(GCPhysOld, cb, IO_MEM_UNASSIGNED);
2970 else
2971 {
2972 /* This is not perfect, but it'll do for PD monitoring... */
2973 Assert(cb == PAGE_SIZE);
2974 Assert(RT_ALIGN_T(GCPhysOld, PAGE_SIZE, RTGCPHYS) == GCPhysOld);
2975 cpu_register_physical_memory(GCPhysOld, cb, GCPhysOld);
2976 }
2977
2978 /*
2979 * Update the new page.
2980 */
2981 Assert(RT_ALIGN_T(GCPhysNew, PAGE_SIZE, RTGCPHYS) == GCPhysNew);
2982 Assert(RT_ALIGN_T(cb, PAGE_SIZE, RTGCPHYS) == cb);
2983 cpu_register_physical_memory(GCPhysNew, cb, pVM->rem.s.iHandlerMemType);
2984
2985 Assert(pVM->rem.s.fIgnoreAll);
2986 pVM->rem.s.fIgnoreAll = false;
2987 }
2988}
2989
2990
2991/**
2992 * Checks if we're handling access to this page or not.
2993 *
2994 * @returns true if we're trapping access.
2995 * @returns false if we aren't.
2996 * @param pVM The VM handle.
2997 * @param GCPhys The physical address.
2998 *
2999 * @remark This function will only work correctly in VBOX_STRICT builds!
3000 */
3001REMR3DECL(bool) REMR3IsPageAccessHandled(PVM pVM, RTGCPHYS GCPhys)
3002{
3003#ifdef VBOX_STRICT
3004 unsigned long off;
3005 if (pVM->rem.s.cHandlerNotifications)
3006 REMR3ReplayHandlerNotifications(pVM);
3007
3008 off = get_phys_page_offset(GCPhys);
3009 return (off & PAGE_OFFSET_MASK) == pVM->rem.s.iHandlerMemType
3010 || (off & PAGE_OFFSET_MASK) == pVM->rem.s.iMMIOMemType
3011 || (off & PAGE_OFFSET_MASK) == IO_MEM_ROM;
3012#else
3013 return false;
3014#endif
3015}
3016
3017
3018/**
3019 * Deals with a rare case in get_phys_addr_code where the code
3020 * is being monitored.
3021 *
3022 * It could also be an MMIO page, in which case we will raise a fatal error.
3023 *
3024 * @returns The physical address corresponding to addr.
3025 * @param env The cpu environment.
3026 * @param addr The virtual address.
3027 * @param pTLBEntry The TLB entry.
3028 */
3029target_ulong remR3PhysGetPhysicalAddressCode(CPUState *env, target_ulong addr, CPUTLBEntry *pTLBEntry)
3030{
3031 PVM pVM = env->pVM;
3032 if ((pTLBEntry->addr_code & ~TARGET_PAGE_MASK) == pVM->rem.s.iHandlerMemType)
3033 {
3034 target_ulong ret = pTLBEntry->addend + addr;
3035 AssertMsg2("remR3PhysGetPhysicalAddressCode: addr=%VGv addr_code=%VGv addend=%VGp ret=%VGp\n",
3036 (RTGCPTR)addr, (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, ret);
3037 return ret;
3038 }
3039 LogRel(("\nTrying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv! (iHandlerMemType=%#x iMMIOMemType=%#x)\n"
3040 "*** handlers\n",
3041 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType));
3042 DBGFR3Info(pVM, "handlers", NULL, DBGFR3InfoLogRelHlp());
3043 LogRel(("*** mmio\n"));
3044 DBGFR3Info(pVM, "mmio", NULL, DBGFR3InfoLogRelHlp());
3045 LogRel(("*** phys\n"));
3046 DBGFR3Info(pVM, "phys", NULL, DBGFR3InfoLogRelHlp());
3047 cpu_abort(env, "Trying to execute code with memory type addr_code=%VGv addend=%VGp at %VGv. (iHandlerMemType=%#x iMMIOMemType=%#x)\n",
3048 (RTGCPTR)pTLBEntry->addr_code, (RTGCPHYS)pTLBEntry->addend, (RTGCPTR)addr, pVM->rem.s.iHandlerMemType, pVM->rem.s.iMMIOMemType);
3049 AssertFatalFailed();
3050}
3051
3052
3053/** Validate the physical address passed to the read functions.
3054 * Useful for finding non-guest-ram reads/writes. */
3055#if 0 //1 /* disable if it becomes bothersome... */
3056# define VBOX_CHECK_ADDR(GCPhys) AssertMsg(PGMPhysIsGCPhysValid(cpu_single_env->pVM, (GCPhys)), ("%VGp\n", (GCPhys)))
3057#else
3058# define VBOX_CHECK_ADDR(GCPhys) do { } while (0)
3059#endif
3060
3061/**
3062 * Read guest RAM and ROM.
3063 *
3064 * @param SrcGCPhys The source address (guest physical).
3065 * @param pvDst The destination address.
3066 * @param cb Number of bytes
3067 */
3068void remR3PhysRead(RTGCPHYS SrcGCPhys, void *pvDst, unsigned cb)
3069{
3070 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3071 VBOX_CHECK_ADDR(SrcGCPhys);
3072 PGMPhysRead(cpu_single_env->pVM, SrcGCPhys, pvDst, cb);
3073 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3074}
3075
3076
3077/**
3078 * Read guest RAM and ROM, unsigned 8-bit.
3079 *
3080 * @param SrcGCPhys The source address (guest physical).
3081 */
3082uint8_t remR3PhysReadU8(RTGCPHYS SrcGCPhys)
3083{
3084 uint8_t val;
3085 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3086 VBOX_CHECK_ADDR(SrcGCPhys);
3087 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3088 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3089 return val;
3090}
3091
3092
3093/**
3094 * Read guest RAM and ROM, signed 8-bit.
3095 *
3096 * @param SrcGCPhys The source address (guest physical).
3097 */
3098int8_t remR3PhysReadS8(RTGCPHYS SrcGCPhys)
3099{
3100 int8_t val;
3101 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3102 VBOX_CHECK_ADDR(SrcGCPhys);
3103 val = PGMR3PhysReadU8(cpu_single_env->pVM, SrcGCPhys);
3104 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3105 return val;
3106}
3107
3108
3109/**
3110 * Read guest RAM and ROM, unsigned 16-bit.
3111 *
3112 * @param SrcGCPhys The source address (guest physical).
3113 */
3114uint16_t remR3PhysReadU16(RTGCPHYS SrcGCPhys)
3115{
3116 uint16_t val;
3117 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3118 VBOX_CHECK_ADDR(SrcGCPhys);
3119 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3120 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3121 return val;
3122}
3123
3124
3125/**
3126 * Read guest RAM and ROM, signed 16-bit.
3127 *
3128 * @param SrcGCPhys The source address (guest physical).
3129 */
3130int16_t remR3PhysReadS16(RTGCPHYS SrcGCPhys)
3131{
3132 uint16_t val;
3133 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3134 VBOX_CHECK_ADDR(SrcGCPhys);
3135 val = PGMR3PhysReadU16(cpu_single_env->pVM, SrcGCPhys);
3136 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3137 return val;
3138}
3139
3140
3141/**
3142 * Read guest RAM and ROM, unsigned 32-bit.
3143 *
3144 * @param SrcGCPhys The source address (guest physical).
3145 */
3146uint32_t remR3PhysReadU32(RTGCPHYS SrcGCPhys)
3147{
3148 uint32_t val;
3149 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3150 VBOX_CHECK_ADDR(SrcGCPhys);
3151 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3152 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3153 return val;
3154}
3155
3156
3157/**
3158 * Read guest RAM and ROM, signed 32-bit.
3159 *
3160 * @param SrcGCPhys The source address (guest physical).
3161 */
3162int32_t remR3PhysReadS32(RTGCPHYS SrcGCPhys)
3163{
3164 int32_t val;
3165 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3166 VBOX_CHECK_ADDR(SrcGCPhys);
3167 val = PGMR3PhysReadU32(cpu_single_env->pVM, SrcGCPhys);
3168 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3169 return val;
3170}
3171
3172
3173/**
3174 * Read guest RAM and ROM, unsigned 64-bit.
3175 *
3176 * @param SrcGCPhys The source address (guest physical).
3177 */
3178uint64_t remR3PhysReadU64(RTGCPHYS SrcGCPhys)
3179{
3180 uint64_t val;
3181 STAM_PROFILE_ADV_START(&gStatMemRead, a);
3182 VBOX_CHECK_ADDR(SrcGCPhys);
3183 val = PGMR3PhysReadU64(cpu_single_env->pVM, SrcGCPhys);
3184 STAM_PROFILE_ADV_STOP(&gStatMemRead, a);
3185 return val;
3186}
3187
3188
3189/**
3190 * Write guest RAM.
3191 *
3192 * @param DstGCPhys The destination address (guest physical).
3193 * @param pvSrc The source address.
3194 * @param cb Number of bytes to write
3195 */
3196void remR3PhysWrite(RTGCPHYS DstGCPhys, const void *pvSrc, unsigned cb)
3197{
3198 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3199 VBOX_CHECK_ADDR(DstGCPhys);
3200 PGMPhysWrite(cpu_single_env->pVM, DstGCPhys, pvSrc, cb);
3201 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3202}
3203
3204
3205/**
3206 * Write guest RAM, unsigned 8-bit.
3207 *
3208 * @param DstGCPhys The destination address (guest physical).
3209 * @param val Value
3210 */
3211void remR3PhysWriteU8(RTGCPHYS DstGCPhys, uint8_t val)
3212{
3213 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3214 VBOX_CHECK_ADDR(DstGCPhys);
3215 PGMR3PhysWriteU8(cpu_single_env->pVM, DstGCPhys, val);
3216 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3217}
3218
3219
3220/**
3221 * Write guest RAM, unsigned 8-bit.
3222 *
3223 * @param DstGCPhys The destination address (guest physical).
3224 * @param val Value
3225 */
3226void remR3PhysWriteU16(RTGCPHYS DstGCPhys, uint16_t val)
3227{
3228 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3229 VBOX_CHECK_ADDR(DstGCPhys);
3230 PGMR3PhysWriteU16(cpu_single_env->pVM, DstGCPhys, val);
3231 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3232}
3233
3234
3235/**
3236 * Write guest RAM, unsigned 32-bit.
3237 *
3238 * @param DstGCPhys The destination address (guest physical).
3239 * @param val Value
3240 */
3241void remR3PhysWriteU32(RTGCPHYS DstGCPhys, uint32_t val)
3242{
3243 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3244 VBOX_CHECK_ADDR(DstGCPhys);
3245 PGMR3PhysWriteU32(cpu_single_env->pVM, DstGCPhys, val);
3246 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3247}
3248
3249
3250/**
3251 * Write guest RAM, unsigned 64-bit.
3252 *
3253 * @param DstGCPhys The destination address (guest physical).
3254 * @param val Value
3255 */
3256void remR3PhysWriteU64(RTGCPHYS DstGCPhys, uint64_t val)
3257{
3258 STAM_PROFILE_ADV_START(&gStatMemWrite, a);
3259 VBOX_CHECK_ADDR(DstGCPhys);
3260 PGMR3PhysWriteU64(cpu_single_env->pVM, DstGCPhys, val);
3261 STAM_PROFILE_ADV_STOP(&gStatMemWrite, a);
3262}
3263
3264#undef LOG_GROUP
3265#define LOG_GROUP LOG_GROUP_REM_MMIO
3266
3267/** Read MMIO memory. */
3268static uint32_t remR3MMIOReadU8(void *pvVM, target_phys_addr_t GCPhys)
3269{
3270 uint32_t u32 = 0;
3271 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 1);
3272 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3273 Log2(("remR3MMIOReadU8: GCPhys=%VGp -> %02x\n", GCPhys, u32));
3274 return u32;
3275}
3276
3277/** Read MMIO memory. */
3278static uint32_t remR3MMIOReadU16(void *pvVM, target_phys_addr_t GCPhys)
3279{
3280 uint32_t u32 = 0;
3281 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 2);
3282 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3283 Log2(("remR3MMIOReadU16: GCPhys=%VGp -> %04x\n", GCPhys, u32));
3284 return u32;
3285}
3286
3287/** Read MMIO memory. */
3288static uint32_t remR3MMIOReadU32(void *pvVM, target_phys_addr_t GCPhys)
3289{
3290 uint32_t u32 = 0;
3291 int rc = IOMMMIORead((PVM)pvVM, GCPhys, &u32, 4);
3292 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3293 Log2(("remR3MMIOReadU32: GCPhys=%VGp -> %08x\n", GCPhys, u32));
3294 return u32;
3295}
3296
3297/** Write to MMIO memory. */
3298static void remR3MMIOWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3299{
3300 int rc;
3301 Log2(("remR3MMIOWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3302 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 1);
3303 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3304}
3305
3306/** Write to MMIO memory. */
3307static void remR3MMIOWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3308{
3309 int rc;
3310 Log2(("remR3MMIOWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3311 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 2);
3312 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3313}
3314
3315/** Write to MMIO memory. */
3316static void remR3MMIOWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3317{
3318 int rc;
3319 Log2(("remR3MMIOWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3320 rc = IOMMMIOWrite((PVM)pvVM, GCPhys, u32, 4);
3321 AssertMsg(rc == VINF_SUCCESS, ("rc=%Vrc\n", rc)); NOREF(rc);
3322}
3323
3324
3325#undef LOG_GROUP
3326#define LOG_GROUP LOG_GROUP_REM_HANDLER
3327
3328/* !!!WARNING!!! This is extremely hackish right now, we assume it's only for LFB access! !!!WARNING!!! */
3329
3330static uint32_t remR3HandlerReadU8(void *pvVM, target_phys_addr_t GCPhys)
3331{
3332 uint8_t u8;
3333 Log2(("remR3HandlerReadU8: GCPhys=%VGp\n", GCPhys));
3334 PGMPhysRead((PVM)pvVM, GCPhys, &u8, sizeof(u8));
3335 return u8;
3336}
3337
3338static uint32_t remR3HandlerReadU16(void *pvVM, target_phys_addr_t GCPhys)
3339{
3340 uint16_t u16;
3341 Log2(("remR3HandlerReadU16: GCPhys=%VGp\n", GCPhys));
3342 PGMPhysRead((PVM)pvVM, GCPhys, &u16, sizeof(u16));
3343 return u16;
3344}
3345
3346static uint32_t remR3HandlerReadU32(void *pvVM, target_phys_addr_t GCPhys)
3347{
3348 uint32_t u32;
3349 Log2(("remR3HandlerReadU32: GCPhys=%VGp\n", GCPhys));
3350 PGMPhysRead((PVM)pvVM, GCPhys, &u32, sizeof(u32));
3351 return u32;
3352}
3353
3354static void remR3HandlerWriteU8(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3355{
3356 Log2(("remR3HandlerWriteU8: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3357 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint8_t));
3358}
3359
3360static void remR3HandlerWriteU16(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3361{
3362 Log2(("remR3HandlerWriteU16: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3363 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint16_t));
3364}
3365
3366static void remR3HandlerWriteU32(void *pvVM, target_phys_addr_t GCPhys, uint32_t u32)
3367{
3368 Log2(("remR3HandlerWriteU32: GCPhys=%VGp u32=%#x\n", GCPhys, u32));
3369 PGMPhysWrite((PVM)pvVM, GCPhys, &u32, sizeof(uint32_t));
3370}
3371
3372/* -+- disassembly -+- */
3373
3374#undef LOG_GROUP
3375#define LOG_GROUP LOG_GROUP_REM_DISAS
3376
3377
3378/**
3379 * Enables or disables singled stepped disassembly.
3380 *
3381 * @returns VBox status code.
3382 * @param pVM VM handle.
3383 * @param fEnable To enable set this flag, to disable clear it.
3384 */
3385static DECLCALLBACK(int) remR3DisasEnableStepping(PVM pVM, bool fEnable)
3386{
3387 LogFlow(("remR3DisasEnableStepping: fEnable=%d\n", fEnable));
3388 VM_ASSERT_EMT(pVM);
3389
3390 if (fEnable)
3391 pVM->rem.s.Env.state |= CPU_EMULATE_SINGLE_STEP;
3392 else
3393 pVM->rem.s.Env.state &= ~CPU_EMULATE_SINGLE_STEP;
3394 return VINF_SUCCESS;
3395}
3396
3397
3398/**
3399 * Enables or disables singled stepped disassembly.
3400 *
3401 * @returns VBox status code.
3402 * @param pVM VM handle.
3403 * @param fEnable To enable set this flag, to disable clear it.
3404 */
3405REMR3DECL(int) REMR3DisasEnableStepping(PVM pVM, bool fEnable)
3406{
3407 PVMREQ pReq;
3408 int rc;
3409
3410 LogFlow(("REMR3DisasEnableStepping: fEnable=%d\n", fEnable));
3411 if (VM_IS_EMT(pVM))
3412 return remR3DisasEnableStepping(pVM, fEnable);
3413
3414 rc = VMR3ReqCall(pVM, &pReq, RT_INDEFINITE_WAIT, (PFNRT)remR3DisasEnableStepping, 2, pVM, fEnable);
3415 AssertRC(rc);
3416 if (VBOX_SUCCESS(rc))
3417 rc = pReq->iStatus;
3418 VMR3ReqFree(pReq);
3419 return rc;
3420}
3421
3422
3423#if defined(VBOX_WITH_DEBUGGER) && !(defined(RT_OS_WINDOWS) && defined(RT_ARCH_AMD64))
3424/**
3425 * External Debugger Command: .remstep [on|off|1|0]
3426 */
3427static DECLCALLBACK(int) remR3CmdDisasEnableStepping(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
3428{
3429 bool fEnable;
3430 int rc;
3431
3432 /* print status */
3433 if (cArgs == 0)
3434 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "DisasStepping is %s\n",
3435 pVM->rem.s.Env.state & CPU_EMULATE_SINGLE_STEP ? "enabled" : "disabled");
3436
3437 /* convert the argument and change the mode. */
3438 rc = pCmdHlp->pfnVarToBool(pCmdHlp, &paArgs[0], &fEnable);
3439 if (VBOX_FAILURE(rc))
3440 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "boolean conversion failed!\n");
3441 rc = REMR3DisasEnableStepping(pVM, fEnable);
3442 if (VBOX_FAILURE(rc))
3443 return pCmdHlp->pfnVBoxError(pCmdHlp, rc, "REMR3DisasEnableStepping failed!\n");
3444 return rc;
3445}
3446#endif
3447
3448
3449/**
3450 * Disassembles n instructions and prints them to the log.
3451 *
3452 * @returns Success indicator.
3453 * @param env Pointer to the recompiler CPU structure.
3454 * @param f32BitCode Indicates that whether or not the code should
3455 * be disassembled as 16 or 32 bit. If -1 the CS
3456 * selector will be inspected.
3457 * @param nrInstructions Nr of instructions to disassemble
3458 * @param pszPrefix
3459 * @remark not currently used for anything but ad-hoc debugging.
3460 */
3461bool remR3DisasBlock(CPUState *env, int f32BitCode, int nrInstructions, char *pszPrefix)
3462{
3463 int i, rc;
3464 RTGCPTR GCPtrPC;
3465 uint8_t *pvPC;
3466 RTINTPTR off;
3467 DISCPUSTATE Cpu;
3468
3469 /*
3470 * Determin 16/32 bit mode.
3471 */
3472 if (f32BitCode == -1)
3473 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3474
3475 /*
3476 * Convert cs:eip to host context address.
3477 * We don't care to much about cross page correctness presently.
3478 */
3479 GCPtrPC = env->segs[R_CS].base + env->eip;
3480 if (f32BitCode && (env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3481 {
3482 Assert(PGMGetGuestMode(env->pVM) < PGMMODE_AMD64);
3483
3484 /* convert eip to physical address. */
3485 rc = PGMPhysGCPtr2HCPtrByGstCR3(env->pVM,
3486 GCPtrPC,
3487 env->cr[3],
3488 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE), /** @todo add longmode flag */
3489 (void**)&pvPC);
3490 if (VBOX_FAILURE(rc))
3491 {
3492 if (!PATMIsPatchGCAddr(env->pVM, GCPtrPC))
3493 return false;
3494 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(env->pVM, NULL)
3495 + (GCPtrPC - PATMR3QueryPatchMemGC(env->pVM, NULL));
3496 }
3497 }
3498 else
3499 {
3500 /* physical address */
3501 rc = PGMPhysGCPhys2HCPtr(env->pVM, (RTGCPHYS)GCPtrPC, nrInstructions * 16,
3502 (void**)&pvPC);
3503 if (VBOX_FAILURE(rc))
3504 return false;
3505 }
3506
3507 /*
3508 * Disassemble.
3509 */
3510 off = env->eip - (RTGCUINTPTR)pvPC;
3511 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3512 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3513 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3514 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3515 //Cpu.dwUserData[2] = GCPtrPC;
3516
3517 for (i=0;i<nrInstructions;i++)
3518 {
3519 char szOutput[256];
3520 uint32_t cbOp;
3521 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3522 return false;
3523 if (pszPrefix)
3524 Log(("%s: %s", pszPrefix, szOutput));
3525 else
3526 Log(("%s", szOutput));
3527
3528 pvPC += cbOp;
3529 }
3530 return true;
3531}
3532
3533
3534/** @todo need to test the new code, using the old code in the mean while. */
3535#define USE_OLD_DUMP_AND_DISASSEMBLY
3536
3537/**
3538 * Disassembles one instruction and prints it to the log.
3539 *
3540 * @returns Success indicator.
3541 * @param env Pointer to the recompiler CPU structure.
3542 * @param f32BitCode Indicates that whether or not the code should
3543 * be disassembled as 16 or 32 bit. If -1 the CS
3544 * selector will be inspected.
3545 * @param pszPrefix
3546 */
3547bool remR3DisasInstr(CPUState *env, int f32BitCode, char *pszPrefix)
3548{
3549#ifdef USE_OLD_DUMP_AND_DISASSEMBLY
3550 PVM pVM = env->pVM;
3551 RTGCPTR GCPtrPC;
3552 uint8_t *pvPC;
3553 char szOutput[256];
3554 uint32_t cbOp;
3555 RTINTPTR off;
3556 DISCPUSTATE Cpu;
3557
3558
3559 /* Doesn't work in long mode. */
3560 if (env->hflags & HF_LMA_MASK)
3561 return false;
3562
3563 /*
3564 * Determin 16/32 bit mode.
3565 */
3566 if (f32BitCode == -1)
3567 f32BitCode = !!(env->segs[R_CS].flags & X86_DESC_DB); /** @todo is this right?!!?!?!?!? */
3568
3569 /*
3570 * Log registers
3571 */
3572 if (LogIs2Enabled())
3573 {
3574 remR3StateUpdate(pVM);
3575 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3576 }
3577
3578 /*
3579 * Convert cs:eip to host context address.
3580 * We don't care to much about cross page correctness presently.
3581 */
3582 GCPtrPC = env->segs[R_CS].base + env->eip;
3583 if ((env->cr[0] & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG))
3584 {
3585 /* convert eip to physical address. */
3586 int rc = PGMPhysGCPtr2HCPtrByGstCR3(pVM,
3587 GCPtrPC,
3588 env->cr[3],
3589 env->cr[4] & (X86_CR4_PSE | X86_CR4_PAE),
3590 (void**)&pvPC);
3591 if (VBOX_FAILURE(rc))
3592 {
3593 if (!PATMIsPatchGCAddr(pVM, GCPtrPC))
3594 return false;
3595 pvPC = (uint8_t *)PATMR3QueryPatchMemHC(pVM, NULL)
3596 + (GCPtrPC - PATMR3QueryPatchMemGC(pVM, NULL));
3597 }
3598 }
3599 else
3600 {
3601
3602 /* physical address */
3603 int rc = PGMPhysGCPhys2HCPtr(pVM, (RTGCPHYS)GCPtrPC, 16, (void**)&pvPC);
3604 if (VBOX_FAILURE(rc))
3605 return false;
3606 }
3607
3608 /*
3609 * Disassemble.
3610 */
3611 off = env->eip - (RTGCUINTPTR)pvPC;
3612 Cpu.mode = f32BitCode ? CPUMODE_32BIT : CPUMODE_16BIT;
3613 Cpu.pfnReadBytes = NULL; /** @todo make cs:eip reader for the disassembler. */
3614 //Cpu.dwUserData[0] = (uintptr_t)pVM;
3615 //Cpu.dwUserData[1] = (uintptr_t)pvPC;
3616 //Cpu.dwUserData[2] = GCPtrPC;
3617 if (RT_FAILURE(DISInstr(&Cpu, (uintptr_t)pvPC, off, &cbOp, &szOutput[0])))
3618 return false;
3619
3620 if (!f32BitCode)
3621 {
3622 if (pszPrefix)
3623 Log(("%s: %04X:%s", pszPrefix, env->segs[R_CS].selector, szOutput));
3624 else
3625 Log(("%04X:%s", env->segs[R_CS].selector, szOutput));
3626 }
3627 else
3628 {
3629 if (pszPrefix)
3630 Log(("%s: %s", pszPrefix, szOutput));
3631 else
3632 Log(("%s", szOutput));
3633 }
3634 return true;
3635
3636#else /* !USE_OLD_DUMP_AND_DISASSEMBLY */
3637 PVM pVM = env->pVM;
3638 const bool fLog = LogIsEnabled();
3639 const bool fLog2 = LogIs2Enabled();
3640 int rc = VINF_SUCCESS;
3641
3642 /*
3643 * Don't bother if there ain't any log output to do.
3644 */
3645 if (!fLog && !fLog2)
3646 return true;
3647
3648 /*
3649 * Update the state so DBGF reads the correct register values.
3650 */
3651 remR3StateUpdate(pVM);
3652
3653 /*
3654 * Log registers if requested.
3655 */
3656 if (!fLog2)
3657 DBGFR3InfoLog(pVM, "cpumguest", pszPrefix);
3658
3659 /*
3660 * Disassemble to log.
3661 */
3662 if (fLog)
3663 rc = DBGFR3DisasInstrCurrentLogInternal(pVM, pszPrefix);
3664
3665 return VBOX_SUCCESS(rc);
3666#endif
3667}
3668
3669
3670/**
3671 * Disassemble recompiled code.
3672 *
3673 * @param phFileIgnored Ignored, logfile usually.
3674 * @param pvCode Pointer to the code block.
3675 * @param cb Size of the code block.
3676 */
3677void disas(FILE *phFileIgnored, void *pvCode, unsigned long cb)
3678{
3679 if (LogIs2Enabled())
3680 {
3681 unsigned off = 0;
3682 char szOutput[256];
3683 DISCPUSTATE Cpu;
3684
3685 memset(&Cpu, 0, sizeof(Cpu));
3686#ifdef RT_ARCH_X86
3687 Cpu.mode = CPUMODE_32BIT;
3688#else
3689 Cpu.mode = CPUMODE_64BIT;
3690#endif
3691
3692 RTLogPrintf("Recompiled Code: %p %#lx (%ld) bytes\n", pvCode, cb, cb);
3693 while (off < cb)
3694 {
3695 uint32_t cbInstr;
3696 if (RT_SUCCESS(DISInstr(&Cpu, (uintptr_t)pvCode + off, 0, &cbInstr, szOutput)))
3697 RTLogPrintf("%s", szOutput);
3698 else
3699 {
3700 RTLogPrintf("disas error\n");
3701 cbInstr = 1;
3702#ifdef RT_ARCH_AMD64 /** @todo remove when DISInstr starts supporing 64-bit code. */
3703 break;
3704#endif
3705 }
3706 off += cbInstr;
3707 }
3708 }
3709 NOREF(phFileIgnored);
3710}
3711
3712
3713/**
3714 * Disassemble guest code.
3715 *
3716 * @param phFileIgnored Ignored, logfile usually.
3717 * @param uCode The guest address of the code to disassemble. (flat?)
3718 * @param cb Number of bytes to disassemble.
3719 * @param fFlags Flags, probably something which tells if this is 16, 32 or 64 bit code.
3720 */
3721void target_disas(FILE *phFileIgnored, target_ulong uCode, target_ulong cb, int fFlags)
3722{
3723 if (LogIs2Enabled())
3724 {
3725 PVM pVM = cpu_single_env->pVM;
3726 RTSEL cs;
3727 RTGCUINTPTR eip;
3728
3729 /*
3730 * Update the state so DBGF reads the correct register values (flags).
3731 */
3732 remR3StateUpdate(pVM);
3733
3734 /*
3735 * Do the disassembling.
3736 */
3737 RTLogPrintf("Guest Code: PC=%VGp #VGp (%VGp) bytes fFlags=%d\n", uCode, cb, cb, fFlags);
3738 cs = cpu_single_env->segs[R_CS].selector;
3739 eip = uCode - cpu_single_env->segs[R_CS].base;
3740 for (;;)
3741 {
3742 char szBuf[256];
3743 uint32_t cbInstr;
3744 int rc = DBGFR3DisasInstrEx(pVM,
3745 cs,
3746 eip,
3747 0,
3748 szBuf, sizeof(szBuf),
3749 &cbInstr);
3750 if (VBOX_SUCCESS(rc))
3751 RTLogPrintf("%VGp %s\n", uCode, szBuf);
3752 else
3753 {
3754 RTLogPrintf("%VGp %04x:%VGp: %s\n", uCode, cs, eip, szBuf);
3755 cbInstr = 1;
3756 }
3757
3758 /* next */
3759 if (cb <= cbInstr)
3760 break;
3761 cb -= cbInstr;
3762 uCode += cbInstr;
3763 eip += cbInstr;
3764 }
3765 }
3766 NOREF(phFileIgnored);
3767}
3768
3769
3770/**
3771 * Looks up a guest symbol.
3772 *
3773 * @returns Pointer to symbol name. This is a static buffer.
3774 * @param orig_addr The address in question.
3775 */
3776const char *lookup_symbol(target_ulong orig_addr)
3777{
3778 RTGCINTPTR off = 0;
3779 DBGFSYMBOL Sym;
3780 PVM pVM = cpu_single_env->pVM;
3781 int rc = DBGFR3SymbolByAddr(pVM, orig_addr, &off, &Sym);
3782 if (VBOX_SUCCESS(rc))
3783 {
3784 static char szSym[sizeof(Sym.szName) + 48];
3785 if (!off)
3786 RTStrPrintf(szSym, sizeof(szSym), "%s\n", Sym.szName);
3787 else if (off > 0)
3788 RTStrPrintf(szSym, sizeof(szSym), "%s+%x\n", Sym.szName, off);
3789 else
3790 RTStrPrintf(szSym, sizeof(szSym), "%s-%x\n", Sym.szName, -off);
3791 return szSym;
3792 }
3793 return "<N/A>";
3794}
3795
3796
3797#undef LOG_GROUP
3798#define LOG_GROUP LOG_GROUP_REM
3799
3800
3801/* -+- FF notifications -+- */
3802
3803
3804/**
3805 * Notification about a pending interrupt.
3806 *
3807 * @param pVM VM Handle.
3808 * @param u8Interrupt Interrupt
3809 * @thread The emulation thread.
3810 */
3811REMR3DECL(void) REMR3NotifyPendingInterrupt(PVM pVM, uint8_t u8Interrupt)
3812{
3813 Assert(pVM->rem.s.u32PendingInterrupt == REM_NO_PENDING_IRQ);
3814 pVM->rem.s.u32PendingInterrupt = u8Interrupt;
3815}
3816
3817/**
3818 * Notification about a pending interrupt.
3819 *
3820 * @returns Pending interrupt or REM_NO_PENDING_IRQ
3821 * @param pVM VM Handle.
3822 * @thread The emulation thread.
3823 */
3824REMR3DECL(uint32_t) REMR3QueryPendingInterrupt(PVM pVM)
3825{
3826 return pVM->rem.s.u32PendingInterrupt;
3827}
3828
3829/**
3830 * Notification about the interrupt FF being set.
3831 *
3832 * @param pVM VM Handle.
3833 * @thread The emulation thread.
3834 */
3835REMR3DECL(void) REMR3NotifyInterruptSet(PVM pVM)
3836{
3837 LogFlow(("REMR3NotifyInterruptSet: fInRem=%d interrupts %s\n", pVM->rem.s.fInREM,
3838 (pVM->rem.s.Env.eflags & IF_MASK) && !(pVM->rem.s.Env.hflags & HF_INHIBIT_IRQ_MASK) ? "enabled" : "disabled"));
3839 if (pVM->rem.s.fInREM)
3840 {
3841 if (VM_IS_EMT(pVM))
3842 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3843 else
3844 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3845 CPU_INTERRUPT_EXTERNAL_HARD);
3846 }
3847}
3848
3849
3850/**
3851 * Notification about the interrupt FF being set.
3852 *
3853 * @param pVM VM Handle.
3854 * @thread Any.
3855 */
3856REMR3DECL(void) REMR3NotifyInterruptClear(PVM pVM)
3857{
3858 LogFlow(("REMR3NotifyInterruptClear:\n"));
3859 if (pVM->rem.s.fInREM)
3860 cpu_reset_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
3861}
3862
3863
3864/**
3865 * Notification about pending timer(s).
3866 *
3867 * @param pVM VM Handle.
3868 * @thread Any.
3869 */
3870REMR3DECL(void) REMR3NotifyTimerPending(PVM pVM)
3871{
3872#ifndef DEBUG_bird
3873 LogFlow(("REMR3NotifyTimerPending: fInRem=%d\n", pVM->rem.s.fInREM));
3874#endif
3875 if (pVM->rem.s.fInREM)
3876 {
3877 if (VM_IS_EMT(pVM))
3878 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3879 else
3880 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3881 CPU_INTERRUPT_EXTERNAL_TIMER);
3882 }
3883}
3884
3885
3886/**
3887 * Notification about pending DMA transfers.
3888 *
3889 * @param pVM VM Handle.
3890 * @thread Any.
3891 */
3892REMR3DECL(void) REMR3NotifyDmaPending(PVM pVM)
3893{
3894 LogFlow(("REMR3NotifyDmaPending: fInRem=%d\n", pVM->rem.s.fInREM));
3895 if (pVM->rem.s.fInREM)
3896 {
3897 if (VM_IS_EMT(pVM))
3898 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3899 else
3900 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3901 CPU_INTERRUPT_EXTERNAL_DMA);
3902 }
3903}
3904
3905
3906/**
3907 * Notification about pending timer(s).
3908 *
3909 * @param pVM VM Handle.
3910 * @thread Any.
3911 */
3912REMR3DECL(void) REMR3NotifyQueuePending(PVM pVM)
3913{
3914 LogFlow(("REMR3NotifyQueuePending: fInRem=%d\n", pVM->rem.s.fInREM));
3915 if (pVM->rem.s.fInREM)
3916 {
3917 if (VM_IS_EMT(pVM))
3918 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3919 else
3920 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3921 CPU_INTERRUPT_EXTERNAL_EXIT);
3922 }
3923}
3924
3925
3926/**
3927 * Notification about pending FF set by an external thread.
3928 *
3929 * @param pVM VM handle.
3930 * @thread Any.
3931 */
3932REMR3DECL(void) REMR3NotifyFF(PVM pVM)
3933{
3934 LogFlow(("REMR3NotifyFF: fInRem=%d\n", pVM->rem.s.fInREM));
3935 if (pVM->rem.s.fInREM)
3936 {
3937 if (VM_IS_EMT(pVM))
3938 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3939 else
3940 ASMAtomicOrS32((int32_t volatile *)&cpu_single_env->interrupt_request,
3941 CPU_INTERRUPT_EXTERNAL_EXIT);
3942 }
3943}
3944
3945
3946#ifdef VBOX_WITH_STATISTICS
3947void remR3ProfileStart(int statcode)
3948{
3949 STAMPROFILEADV *pStat;
3950 switch(statcode)
3951 {
3952 case STATS_EMULATE_SINGLE_INSTR:
3953 pStat = &gStatExecuteSingleInstr;
3954 break;
3955 case STATS_QEMU_COMPILATION:
3956 pStat = &gStatCompilationQEmu;
3957 break;
3958 case STATS_QEMU_RUN_EMULATED_CODE:
3959 pStat = &gStatRunCodeQEmu;
3960 break;
3961 case STATS_QEMU_TOTAL:
3962 pStat = &gStatTotalTimeQEmu;
3963 break;
3964 case STATS_QEMU_RUN_TIMERS:
3965 pStat = &gStatTimers;
3966 break;
3967 case STATS_TLB_LOOKUP:
3968 pStat= &gStatTBLookup;
3969 break;
3970 case STATS_IRQ_HANDLING:
3971 pStat= &gStatIRQ;
3972 break;
3973 case STATS_RAW_CHECK:
3974 pStat = &gStatRawCheck;
3975 break;
3976
3977 default:
3978 AssertMsgFailed(("unknown stat %d\n", statcode));
3979 return;
3980 }
3981 STAM_PROFILE_ADV_START(pStat, a);
3982}
3983
3984
3985void remR3ProfileStop(int statcode)
3986{
3987 STAMPROFILEADV *pStat;
3988 switch(statcode)
3989 {
3990 case STATS_EMULATE_SINGLE_INSTR:
3991 pStat = &gStatExecuteSingleInstr;
3992 break;
3993 case STATS_QEMU_COMPILATION:
3994 pStat = &gStatCompilationQEmu;
3995 break;
3996 case STATS_QEMU_RUN_EMULATED_CODE:
3997 pStat = &gStatRunCodeQEmu;
3998 break;
3999 case STATS_QEMU_TOTAL:
4000 pStat = &gStatTotalTimeQEmu;
4001 break;
4002 case STATS_QEMU_RUN_TIMERS:
4003 pStat = &gStatTimers;
4004 break;
4005 case STATS_TLB_LOOKUP:
4006 pStat= &gStatTBLookup;
4007 break;
4008 case STATS_IRQ_HANDLING:
4009 pStat= &gStatIRQ;
4010 break;
4011 case STATS_RAW_CHECK:
4012 pStat = &gStatRawCheck;
4013 break;
4014 default:
4015 AssertMsgFailed(("unknown stat %d\n", statcode));
4016 return;
4017 }
4018 STAM_PROFILE_ADV_STOP(pStat, a);
4019}
4020#endif
4021
4022/**
4023 * Raise an RC, force rem exit.
4024 *
4025 * @param pVM VM handle.
4026 * @param rc The rc.
4027 */
4028void remR3RaiseRC(PVM pVM, int rc)
4029{
4030 Log(("remR3RaiseRC: rc=%Vrc\n", rc));
4031 Assert(pVM->rem.s.fInREM);
4032 VM_ASSERT_EMT(pVM);
4033 pVM->rem.s.rc = rc;
4034 cpu_interrupt(&pVM->rem.s.Env, CPU_INTERRUPT_RC);
4035}
4036
4037
4038/* -+- timers -+- */
4039
4040uint64_t cpu_get_tsc(CPUX86State *env)
4041{
4042 STAM_COUNTER_INC(&gStatCpuGetTSC);
4043 return TMCpuTickGet(env->pVM);
4044}
4045
4046
4047/* -+- interrupts -+- */
4048
4049void cpu_set_ferr(CPUX86State *env)
4050{
4051 int rc = PDMIsaSetIrq(env->pVM, 13, 1);
4052 LogFlow(("cpu_set_ferr: rc=%d\n", rc)); NOREF(rc);
4053}
4054
4055int cpu_get_pic_interrupt(CPUState *env)
4056{
4057 uint8_t u8Interrupt;
4058 int rc;
4059
4060 /* When we fail to forward interrupts directly in raw mode, we fall back to the recompiler.
4061 * In that case we can't call PDMGetInterrupt anymore, because it has already cleared the interrupt
4062 * with the (a)pic.
4063 */
4064 /** @note We assume we will go directly to the recompiler to handle the pending interrupt! */
4065 /** @todo r=bird: In the long run we should just do the interrupt handling in EM/CPUM/TRPM/somewhere and
4066 * if we cannot execute the interrupt handler in raw-mode just reschedule to REM. Once that is done we
4067 * remove this kludge. */
4068 if (env->pVM->rem.s.u32PendingInterrupt != REM_NO_PENDING_IRQ)
4069 {
4070 rc = VINF_SUCCESS;
4071 Assert(env->pVM->rem.s.u32PendingInterrupt <= 255);
4072 u8Interrupt = env->pVM->rem.s.u32PendingInterrupt;
4073 env->pVM->rem.s.u32PendingInterrupt = REM_NO_PENDING_IRQ;
4074 }
4075 else
4076 rc = PDMGetInterrupt(env->pVM, &u8Interrupt);
4077
4078 LogFlow(("cpu_get_pic_interrupt: u8Interrupt=%d rc=%Vrc\n", u8Interrupt, rc));
4079 if (VBOX_SUCCESS(rc))
4080 {
4081 if (VM_FF_ISPENDING(env->pVM, VM_FF_INTERRUPT_APIC | VM_FF_INTERRUPT_PIC))
4082 env->interrupt_request |= CPU_INTERRUPT_HARD;
4083 return u8Interrupt;
4084 }
4085 return -1;
4086}
4087
4088
4089/* -+- local apic -+- */
4090
4091void cpu_set_apic_base(CPUX86State *env, uint64_t val)
4092{
4093 int rc = PDMApicSetBase(env->pVM, val);
4094 LogFlow(("cpu_set_apic_base: val=%#llx rc=%Vrc\n", val, rc)); NOREF(rc);
4095}
4096
4097uint64_t cpu_get_apic_base(CPUX86State *env)
4098{
4099 uint64_t u64;
4100 int rc = PDMApicGetBase(env->pVM, &u64);
4101 if (VBOX_SUCCESS(rc))
4102 {
4103 LogFlow(("cpu_get_apic_base: returns %#llx \n", u64));
4104 return u64;
4105 }
4106 LogFlow(("cpu_get_apic_base: returns 0 (rc=%Vrc)\n", rc));
4107 return 0;
4108}
4109
4110void cpu_set_apic_tpr(CPUX86State *env, uint8_t val)
4111{
4112 int rc = PDMApicSetTPR(env->pVM, val);
4113 LogFlow(("cpu_set_apic_tpr: val=%#x rc=%Vrc\n", val, rc)); NOREF(rc);
4114}
4115
4116uint8_t cpu_get_apic_tpr(CPUX86State *env)
4117{
4118 uint8_t u8;
4119 int rc = PDMApicGetTPR(env->pVM, &u8, NULL);
4120 if (VBOX_SUCCESS(rc))
4121 {
4122 LogFlow(("cpu_get_apic_tpr: returns %#x\n", u8));
4123 return u8;
4124 }
4125 LogFlow(("cpu_get_apic_tpr: returns 0 (rc=%Vrc)\n", rc));
4126 return 0;
4127}
4128
4129
4130uint64_t cpu_apic_rdmsr(CPUX86State *env, uint32_t reg)
4131{
4132 uint64_t value;
4133 int rc = PDMApicReadMSR(env->pVM, 0/* cpu */, reg, &value);
4134 if (VBOX_SUCCESS(rc))
4135 {
4136 LogFlow(("cpu_apic_rdms returns %#x\n", value));
4137 return value;
4138 }
4139 /** @todo: exception ? */
4140 LogFlow(("cpu_apic_rdms returns 0 (rc=%Vrc)\n", rc));
4141 return value;
4142}
4143
4144void cpu_apic_wrmsr(CPUX86State *env, uint32_t reg, uint64_t value)
4145{
4146 int rc = PDMApicWriteMSR(env->pVM, 0 /* cpu */, reg, value);
4147 /** @todo: exception if error ? */
4148 LogFlow(("cpu_apic_wrmsr: rc=%Vrc\n", rc)); NOREF(rc);
4149}
4150/* -+- I/O Ports -+- */
4151
4152#undef LOG_GROUP
4153#define LOG_GROUP LOG_GROUP_REM_IOPORT
4154
4155void cpu_outb(CPUState *env, int addr, int val)
4156{
4157 int rc;
4158
4159 if (addr != 0x80 && addr != 0x70 && addr != 0x61)
4160 Log2(("cpu_outb: addr=%#06x val=%#x\n", addr, val));
4161
4162 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 1);
4163 if (RT_LIKELY(rc == VINF_SUCCESS))
4164 return;
4165 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4166 {
4167 Log(("cpu_outb: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4168 remR3RaiseRC(env->pVM, rc);
4169 return;
4170 }
4171 remAbort(rc, __FUNCTION__);
4172}
4173
4174void cpu_outw(CPUState *env, int addr, int val)
4175{
4176 //Log2(("cpu_outw: addr=%#06x val=%#x\n", addr, val));
4177 int rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 2);
4178 if (RT_LIKELY(rc == VINF_SUCCESS))
4179 return;
4180 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4181 {
4182 Log(("cpu_outw: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4183 remR3RaiseRC(env->pVM, rc);
4184 return;
4185 }
4186 remAbort(rc, __FUNCTION__);
4187}
4188
4189void cpu_outl(CPUState *env, int addr, int val)
4190{
4191 int rc;
4192 Log2(("cpu_outl: addr=%#06x val=%#x\n", addr, val));
4193 rc = IOMIOPortWrite(env->pVM, (RTIOPORT)addr, val, 4);
4194 if (RT_LIKELY(rc == VINF_SUCCESS))
4195 return;
4196 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4197 {
4198 Log(("cpu_outl: addr=%#06x val=%#x -> %Vrc\n", addr, val, rc));
4199 remR3RaiseRC(env->pVM, rc);
4200 return;
4201 }
4202 remAbort(rc, __FUNCTION__);
4203}
4204
4205int cpu_inb(CPUState *env, int addr)
4206{
4207 uint32_t u32 = 0;
4208 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 1);
4209 if (RT_LIKELY(rc == VINF_SUCCESS))
4210 {
4211 if (/*addr != 0x61 && */addr != 0x71)
4212 Log2(("cpu_inb: addr=%#06x -> %#x\n", addr, u32));
4213 return (int)u32;
4214 }
4215 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4216 {
4217 Log(("cpu_inb: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4218 remR3RaiseRC(env->pVM, rc);
4219 return (int)u32;
4220 }
4221 remAbort(rc, __FUNCTION__);
4222 return 0xff;
4223}
4224
4225int cpu_inw(CPUState *env, int addr)
4226{
4227 uint32_t u32 = 0;
4228 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 2);
4229 if (RT_LIKELY(rc == VINF_SUCCESS))
4230 {
4231 Log2(("cpu_inw: addr=%#06x -> %#x\n", addr, u32));
4232 return (int)u32;
4233 }
4234 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4235 {
4236 Log(("cpu_inw: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4237 remR3RaiseRC(env->pVM, rc);
4238 return (int)u32;
4239 }
4240 remAbort(rc, __FUNCTION__);
4241 return 0xffff;
4242}
4243
4244int cpu_inl(CPUState *env, int addr)
4245{
4246 uint32_t u32 = 0;
4247 int rc = IOMIOPortRead(env->pVM, (RTIOPORT)addr, &u32, 4);
4248 if (RT_LIKELY(rc == VINF_SUCCESS))
4249 {
4250//if (addr==0x01f0 && u32 == 0x6b6d)
4251// loglevel = ~0;
4252 Log2(("cpu_inl: addr=%#06x -> %#x\n", addr, u32));
4253 return (int)u32;
4254 }
4255 if (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST)
4256 {
4257 Log(("cpu_inl: addr=%#06x -> %#x rc=%Vrc\n", addr, u32, rc));
4258 remR3RaiseRC(env->pVM, rc);
4259 return (int)u32;
4260 }
4261 remAbort(rc, __FUNCTION__);
4262 return 0xffffffff;
4263}
4264
4265#undef LOG_GROUP
4266#define LOG_GROUP LOG_GROUP_REM
4267
4268
4269/* -+- helpers and misc other interfaces -+- */
4270
4271/**
4272 * Perform the CPUID instruction.
4273 *
4274 * ASMCpuId cannot be invoked from some source files where this is used because of global
4275 * register allocations.
4276 *
4277 * @param env Pointer to the recompiler CPU structure.
4278 * @param uOperator CPUID operation (eax).
4279 * @param pvEAX Where to store eax.
4280 * @param pvEBX Where to store ebx.
4281 * @param pvECX Where to store ecx.
4282 * @param pvEDX Where to store edx.
4283 */
4284void remR3CpuId(CPUState *env, unsigned uOperator, void *pvEAX, void *pvEBX, void *pvECX, void *pvEDX)
4285{
4286 CPUMGetGuestCpuId(env->pVM, uOperator, (uint32_t *)pvEAX, (uint32_t *)pvEBX, (uint32_t *)pvECX, (uint32_t *)pvEDX);
4287}
4288
4289
4290#if 0 /* not used */
4291/**
4292 * Interface for qemu hardware to report back fatal errors.
4293 */
4294void hw_error(const char *pszFormat, ...)
4295{
4296 /*
4297 * Bitch about it.
4298 */
4299 /** @todo Add support for nested arg lists in the LogPrintfV routine! I've code for
4300 * this in my Odin32 tree at home! */
4301 va_list args;
4302 va_start(args, pszFormat);
4303 RTLogPrintf("fatal error in virtual hardware:");
4304 RTLogPrintfV(pszFormat, args);
4305 va_end(args);
4306 AssertReleaseMsgFailed(("fatal error in virtual hardware: %s\n", pszFormat));
4307
4308 /*
4309 * If we're in REM context we'll sync back the state before 'jumping' to
4310 * the EMs failure handling.
4311 */
4312 PVM pVM = cpu_single_env->pVM;
4313 if (pVM->rem.s.fInREM)
4314 REMR3StateBack(pVM);
4315 EMR3FatalError(pVM, VERR_REM_VIRTUAL_HARDWARE_ERROR);
4316 AssertMsgFailed(("EMR3FatalError returned!\n"));
4317}
4318#endif
4319
4320/**
4321 * Interface for the qemu cpu to report unhandled situation
4322 * raising a fatal VM error.
4323 */
4324void cpu_abort(CPUState *env, const char *pszFormat, ...)
4325{
4326 va_list args;
4327 PVM pVM;
4328
4329 /*
4330 * Bitch about it.
4331 */
4332#ifndef _MSC_VER
4333 /** @todo: MSVC is right - it's not valid C */
4334 RTLogFlags(NULL, "nodisabled nobuffered");
4335#endif
4336 va_start(args, pszFormat);
4337 RTLogPrintf("fatal error in recompiler cpu: %N\n", pszFormat, &args);
4338 va_end(args);
4339 va_start(args, pszFormat);
4340 AssertReleaseMsgFailed(("fatal error in recompiler cpu: %N\n", pszFormat, &args));
4341 va_end(args);
4342
4343 /*
4344 * If we're in REM context we'll sync back the state before 'jumping' to
4345 * the EMs failure handling.
4346 */
4347 pVM = cpu_single_env->pVM;
4348 if (pVM->rem.s.fInREM)
4349 REMR3StateBack(pVM);
4350 EMR3FatalError(pVM, VERR_REM_VIRTUAL_CPU_ERROR);
4351 AssertMsgFailed(("EMR3FatalError returned!\n"));
4352}
4353
4354
4355/**
4356 * Aborts the VM.
4357 *
4358 * @param rc VBox error code.
4359 * @param pszTip Hint about why/when this happend.
4360 */
4361static void remAbort(int rc, const char *pszTip)
4362{
4363 PVM pVM;
4364
4365 /*
4366 * Bitch about it.
4367 */
4368 RTLogPrintf("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip);
4369 AssertReleaseMsgFailed(("internal REM fatal error: rc=%Vrc %s\n", rc, pszTip));
4370
4371 /*
4372 * Jump back to where we entered the recompiler.
4373 */
4374 pVM = cpu_single_env->pVM;
4375 if (pVM->rem.s.fInREM)
4376 REMR3StateBack(pVM);
4377 EMR3FatalError(pVM, rc);
4378 AssertMsgFailed(("EMR3FatalError returned!\n"));
4379}
4380
4381
4382/**
4383 * Dumps a linux system call.
4384 * @param pVM VM handle.
4385 */
4386void remR3DumpLnxSyscall(PVM pVM)
4387{
4388 static const char *apsz[] =
4389 {
4390 "sys_restart_syscall", /* 0 - old "setup()" system call, used for restarting */
4391 "sys_exit",
4392 "sys_fork",
4393 "sys_read",
4394 "sys_write",
4395 "sys_open", /* 5 */
4396 "sys_close",
4397 "sys_waitpid",
4398 "sys_creat",
4399 "sys_link",
4400 "sys_unlink", /* 10 */
4401 "sys_execve",
4402 "sys_chdir",
4403 "sys_time",
4404 "sys_mknod",
4405 "sys_chmod", /* 15 */
4406 "sys_lchown16",
4407 "sys_ni_syscall", /* old break syscall holder */
4408 "sys_stat",
4409 "sys_lseek",
4410 "sys_getpid", /* 20 */
4411 "sys_mount",
4412 "sys_oldumount",
4413 "sys_setuid16",
4414 "sys_getuid16",
4415 "sys_stime", /* 25 */
4416 "sys_ptrace",
4417 "sys_alarm",
4418 "sys_fstat",
4419 "sys_pause",
4420 "sys_utime", /* 30 */
4421 "sys_ni_syscall", /* old stty syscall holder */
4422 "sys_ni_syscall", /* old gtty syscall holder */
4423 "sys_access",
4424 "sys_nice",
4425 "sys_ni_syscall", /* 35 - old ftime syscall holder */
4426 "sys_sync",
4427 "sys_kill",
4428 "sys_rename",
4429 "sys_mkdir",
4430 "sys_rmdir", /* 40 */
4431 "sys_dup",
4432 "sys_pipe",
4433 "sys_times",
4434 "sys_ni_syscall", /* old prof syscall holder */
4435 "sys_brk", /* 45 */
4436 "sys_setgid16",
4437 "sys_getgid16",
4438 "sys_signal",
4439 "sys_geteuid16",
4440 "sys_getegid16", /* 50 */
4441 "sys_acct",
4442 "sys_umount", /* recycled never used phys() */
4443 "sys_ni_syscall", /* old lock syscall holder */
4444 "sys_ioctl",
4445 "sys_fcntl", /* 55 */
4446 "sys_ni_syscall", /* old mpx syscall holder */
4447 "sys_setpgid",
4448 "sys_ni_syscall", /* old ulimit syscall holder */
4449 "sys_olduname",
4450 "sys_umask", /* 60 */
4451 "sys_chroot",
4452 "sys_ustat",
4453 "sys_dup2",
4454 "sys_getppid",
4455 "sys_getpgrp", /* 65 */
4456 "sys_setsid",
4457 "sys_sigaction",
4458 "sys_sgetmask",
4459 "sys_ssetmask",
4460 "sys_setreuid16", /* 70 */
4461 "sys_setregid16",
4462 "sys_sigsuspend",
4463 "sys_sigpending",
4464 "sys_sethostname",
4465 "sys_setrlimit", /* 75 */
4466 "sys_old_getrlimit",
4467 "sys_getrusage",
4468 "sys_gettimeofday",
4469 "sys_settimeofday",
4470 "sys_getgroups16", /* 80 */
4471 "sys_setgroups16",
4472 "old_select",
4473 "sys_symlink",
4474 "sys_lstat",
4475 "sys_readlink", /* 85 */
4476 "sys_uselib",
4477 "sys_swapon",
4478 "sys_reboot",
4479 "old_readdir",
4480 "old_mmap", /* 90 */
4481 "sys_munmap",
4482 "sys_truncate",
4483 "sys_ftruncate",
4484 "sys_fchmod",
4485 "sys_fchown16", /* 95 */
4486 "sys_getpriority",
4487 "sys_setpriority",
4488 "sys_ni_syscall", /* old profil syscall holder */
4489 "sys_statfs",
4490 "sys_fstatfs", /* 100 */
4491 "sys_ioperm",
4492 "sys_socketcall",
4493 "sys_syslog",
4494 "sys_setitimer",
4495 "sys_getitimer", /* 105 */
4496 "sys_newstat",
4497 "sys_newlstat",
4498 "sys_newfstat",
4499 "sys_uname",
4500 "sys_iopl", /* 110 */
4501 "sys_vhangup",
4502 "sys_ni_syscall", /* old "idle" system call */
4503 "sys_vm86old",
4504 "sys_wait4",
4505 "sys_swapoff", /* 115 */
4506 "sys_sysinfo",
4507 "sys_ipc",
4508 "sys_fsync",
4509 "sys_sigreturn",
4510 "sys_clone", /* 120 */
4511 "sys_setdomainname",
4512 "sys_newuname",
4513 "sys_modify_ldt",
4514 "sys_adjtimex",
4515 "sys_mprotect", /* 125 */
4516 "sys_sigprocmask",
4517 "sys_ni_syscall", /* old "create_module" */
4518 "sys_init_module",
4519 "sys_delete_module",
4520 "sys_ni_syscall", /* 130: old "get_kernel_syms" */
4521 "sys_quotactl",
4522 "sys_getpgid",
4523 "sys_fchdir",
4524 "sys_bdflush",
4525 "sys_sysfs", /* 135 */
4526 "sys_personality",
4527 "sys_ni_syscall", /* reserved for afs_syscall */
4528 "sys_setfsuid16",
4529 "sys_setfsgid16",
4530 "sys_llseek", /* 140 */
4531 "sys_getdents",
4532 "sys_select",
4533 "sys_flock",
4534 "sys_msync",
4535 "sys_readv", /* 145 */
4536 "sys_writev",
4537 "sys_getsid",
4538 "sys_fdatasync",
4539 "sys_sysctl",
4540 "sys_mlock", /* 150 */
4541 "sys_munlock",
4542 "sys_mlockall",
4543 "sys_munlockall",
4544 "sys_sched_setparam",
4545 "sys_sched_getparam", /* 155 */
4546 "sys_sched_setscheduler",
4547 "sys_sched_getscheduler",
4548 "sys_sched_yield",
4549 "sys_sched_get_priority_max",
4550 "sys_sched_get_priority_min", /* 160 */
4551 "sys_sched_rr_get_interval",
4552 "sys_nanosleep",
4553 "sys_mremap",
4554 "sys_setresuid16",
4555 "sys_getresuid16", /* 165 */
4556 "sys_vm86",
4557 "sys_ni_syscall", /* Old sys_query_module */
4558 "sys_poll",
4559 "sys_nfsservctl",
4560 "sys_setresgid16", /* 170 */
4561 "sys_getresgid16",
4562 "sys_prctl",
4563 "sys_rt_sigreturn",
4564 "sys_rt_sigaction",
4565 "sys_rt_sigprocmask", /* 175 */
4566 "sys_rt_sigpending",
4567 "sys_rt_sigtimedwait",
4568 "sys_rt_sigqueueinfo",
4569 "sys_rt_sigsuspend",
4570 "sys_pread64", /* 180 */
4571 "sys_pwrite64",
4572 "sys_chown16",
4573 "sys_getcwd",
4574 "sys_capget",
4575 "sys_capset", /* 185 */
4576 "sys_sigaltstack",
4577 "sys_sendfile",
4578 "sys_ni_syscall", /* reserved for streams1 */
4579 "sys_ni_syscall", /* reserved for streams2 */
4580 "sys_vfork", /* 190 */
4581 "sys_getrlimit",
4582 "sys_mmap2",
4583 "sys_truncate64",
4584 "sys_ftruncate64",
4585 "sys_stat64", /* 195 */
4586 "sys_lstat64",
4587 "sys_fstat64",
4588 "sys_lchown",
4589 "sys_getuid",
4590 "sys_getgid", /* 200 */
4591 "sys_geteuid",
4592 "sys_getegid",
4593 "sys_setreuid",
4594 "sys_setregid",
4595 "sys_getgroups", /* 205 */
4596 "sys_setgroups",
4597 "sys_fchown",
4598 "sys_setresuid",
4599 "sys_getresuid",
4600 "sys_setresgid", /* 210 */
4601 "sys_getresgid",
4602 "sys_chown",
4603 "sys_setuid",
4604 "sys_setgid",
4605 "sys_setfsuid", /* 215 */
4606 "sys_setfsgid",
4607 "sys_pivot_root",
4608 "sys_mincore",
4609 "sys_madvise",
4610 "sys_getdents64", /* 220 */
4611 "sys_fcntl64",
4612 "sys_ni_syscall", /* reserved for TUX */
4613 "sys_ni_syscall",
4614 "sys_gettid",
4615 "sys_readahead", /* 225 */
4616 "sys_setxattr",
4617 "sys_lsetxattr",
4618 "sys_fsetxattr",
4619 "sys_getxattr",
4620 "sys_lgetxattr", /* 230 */
4621 "sys_fgetxattr",
4622 "sys_listxattr",
4623 "sys_llistxattr",
4624 "sys_flistxattr",
4625 "sys_removexattr", /* 235 */
4626 "sys_lremovexattr",
4627 "sys_fremovexattr",
4628 "sys_tkill",
4629 "sys_sendfile64",
4630 "sys_futex", /* 240 */
4631 "sys_sched_setaffinity",
4632 "sys_sched_getaffinity",
4633 "sys_set_thread_area",
4634 "sys_get_thread_area",
4635 "sys_io_setup", /* 245 */
4636 "sys_io_destroy",
4637 "sys_io_getevents",
4638 "sys_io_submit",
4639 "sys_io_cancel",
4640 "sys_fadvise64", /* 250 */
4641 "sys_ni_syscall",
4642 "sys_exit_group",
4643 "sys_lookup_dcookie",
4644 "sys_epoll_create",
4645 "sys_epoll_ctl", /* 255 */
4646 "sys_epoll_wait",
4647 "sys_remap_file_pages",
4648 "sys_set_tid_address",
4649 "sys_timer_create",
4650 "sys_timer_settime", /* 260 */
4651 "sys_timer_gettime",
4652 "sys_timer_getoverrun",
4653 "sys_timer_delete",
4654 "sys_clock_settime",
4655 "sys_clock_gettime", /* 265 */
4656 "sys_clock_getres",
4657 "sys_clock_nanosleep",
4658 "sys_statfs64",
4659 "sys_fstatfs64",
4660 "sys_tgkill", /* 270 */
4661 "sys_utimes",
4662 "sys_fadvise64_64",
4663 "sys_ni_syscall" /* sys_vserver */
4664 };
4665
4666 uint32_t uEAX = CPUMGetGuestEAX(pVM);
4667 switch (uEAX)
4668 {
4669 default:
4670 if (uEAX < ELEMENTS(apsz))
4671 Log(("REM: linux syscall %3d: %s (eip=%08x ebx=%08x ecx=%08x edx=%08x esi=%08x edi=%08x ebp=%08x)\n",
4672 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), CPUMGetGuestEBX(pVM), CPUMGetGuestECX(pVM),
4673 CPUMGetGuestEDX(pVM), CPUMGetGuestESI(pVM), CPUMGetGuestEDI(pVM), CPUMGetGuestEBP(pVM)));
4674 else
4675 Log(("eip=%08x: linux syscall %d (#%x) unknown\n", CPUMGetGuestEIP(pVM), uEAX, uEAX));
4676 break;
4677
4678 }
4679}
4680
4681
4682/**
4683 * Dumps an OpenBSD system call.
4684 * @param pVM VM handle.
4685 */
4686void remR3DumpOBsdSyscall(PVM pVM)
4687{
4688 static const char *apsz[] =
4689 {
4690 "SYS_syscall", //0
4691 "SYS_exit", //1
4692 "SYS_fork", //2
4693 "SYS_read", //3
4694 "SYS_write", //4
4695 "SYS_open", //5
4696 "SYS_close", //6
4697 "SYS_wait4", //7
4698 "SYS_8",
4699 "SYS_link", //9
4700 "SYS_unlink", //10
4701 "SYS_11",
4702 "SYS_chdir", //12
4703 "SYS_fchdir", //13
4704 "SYS_mknod", //14
4705 "SYS_chmod", //15
4706 "SYS_chown", //16
4707 "SYS_break", //17
4708 "SYS_18",
4709 "SYS_19",
4710 "SYS_getpid", //20
4711 "SYS_mount", //21
4712 "SYS_unmount", //22
4713 "SYS_setuid", //23
4714 "SYS_getuid", //24
4715 "SYS_geteuid", //25
4716 "SYS_ptrace", //26
4717 "SYS_recvmsg", //27
4718 "SYS_sendmsg", //28
4719 "SYS_recvfrom", //29
4720 "SYS_accept", //30
4721 "SYS_getpeername", //31
4722 "SYS_getsockname", //32
4723 "SYS_access", //33
4724 "SYS_chflags", //34
4725 "SYS_fchflags", //35
4726 "SYS_sync", //36
4727 "SYS_kill", //37
4728 "SYS_38",
4729 "SYS_getppid", //39
4730 "SYS_40",
4731 "SYS_dup", //41
4732 "SYS_opipe", //42
4733 "SYS_getegid", //43
4734 "SYS_profil", //44
4735 "SYS_ktrace", //45
4736 "SYS_sigaction", //46
4737 "SYS_getgid", //47
4738 "SYS_sigprocmask", //48
4739 "SYS_getlogin", //49
4740 "SYS_setlogin", //50
4741 "SYS_acct", //51
4742 "SYS_sigpending", //52
4743 "SYS_osigaltstack", //53
4744 "SYS_ioctl", //54
4745 "SYS_reboot", //55
4746 "SYS_revoke", //56
4747 "SYS_symlink", //57
4748 "SYS_readlink", //58
4749 "SYS_execve", //59
4750 "SYS_umask", //60
4751 "SYS_chroot", //61
4752 "SYS_62",
4753 "SYS_63",
4754 "SYS_64",
4755 "SYS_65",
4756 "SYS_vfork", //66
4757 "SYS_67",
4758 "SYS_68",
4759 "SYS_sbrk", //69
4760 "SYS_sstk", //70
4761 "SYS_61",
4762 "SYS_vadvise", //72
4763 "SYS_munmap", //73
4764 "SYS_mprotect", //74
4765 "SYS_madvise", //75
4766 "SYS_76",
4767 "SYS_77",
4768 "SYS_mincore", //78
4769 "SYS_getgroups", //79
4770 "SYS_setgroups", //80
4771 "SYS_getpgrp", //81
4772 "SYS_setpgid", //82
4773 "SYS_setitimer", //83
4774 "SYS_84",
4775 "SYS_85",
4776 "SYS_getitimer", //86
4777 "SYS_87",
4778 "SYS_88",
4779 "SYS_89",
4780 "SYS_dup2", //90
4781 "SYS_91",
4782 "SYS_fcntl", //92
4783 "SYS_select", //93
4784 "SYS_94",
4785 "SYS_fsync", //95
4786 "SYS_setpriority", //96
4787 "SYS_socket", //97
4788 "SYS_connect", //98
4789 "SYS_99",
4790 "SYS_getpriority", //100
4791 "SYS_101",
4792 "SYS_102",
4793 "SYS_sigreturn", //103
4794 "SYS_bind", //104
4795 "SYS_setsockopt", //105
4796 "SYS_listen", //106
4797 "SYS_107",
4798 "SYS_108",
4799 "SYS_109",
4800 "SYS_110",
4801 "SYS_sigsuspend", //111
4802 "SYS_112",
4803 "SYS_113",
4804 "SYS_114",
4805 "SYS_115",
4806 "SYS_gettimeofday", //116
4807 "SYS_getrusage", //117
4808 "SYS_getsockopt", //118
4809 "SYS_119",
4810 "SYS_readv", //120
4811 "SYS_writev", //121
4812 "SYS_settimeofday", //122
4813 "SYS_fchown", //123
4814 "SYS_fchmod", //124
4815 "SYS_125",
4816 "SYS_setreuid", //126
4817 "SYS_setregid", //127
4818 "SYS_rename", //128
4819 "SYS_129",
4820 "SYS_130",
4821 "SYS_flock", //131
4822 "SYS_mkfifo", //132
4823 "SYS_sendto", //133
4824 "SYS_shutdown", //134
4825 "SYS_socketpair", //135
4826 "SYS_mkdir", //136
4827 "SYS_rmdir", //137
4828 "SYS_utimes", //138
4829 "SYS_139",
4830 "SYS_adjtime", //140
4831 "SYS_141",
4832 "SYS_142",
4833 "SYS_143",
4834 "SYS_144",
4835 "SYS_145",
4836 "SYS_146",
4837 "SYS_setsid", //147
4838 "SYS_quotactl", //148
4839 "SYS_149",
4840 "SYS_150",
4841 "SYS_151",
4842 "SYS_152",
4843 "SYS_153",
4844 "SYS_154",
4845 "SYS_nfssvc", //155
4846 "SYS_156",
4847 "SYS_157",
4848 "SYS_158",
4849 "SYS_159",
4850 "SYS_160",
4851 "SYS_getfh", //161
4852 "SYS_162",
4853 "SYS_163",
4854 "SYS_164",
4855 "SYS_sysarch", //165
4856 "SYS_166",
4857 "SYS_167",
4858 "SYS_168",
4859 "SYS_169",
4860 "SYS_170",
4861 "SYS_171",
4862 "SYS_172",
4863 "SYS_pread", //173
4864 "SYS_pwrite", //174
4865 "SYS_175",
4866 "SYS_176",
4867 "SYS_177",
4868 "SYS_178",
4869 "SYS_179",
4870 "SYS_180",
4871 "SYS_setgid", //181
4872 "SYS_setegid", //182
4873 "SYS_seteuid", //183
4874 "SYS_lfs_bmapv", //184
4875 "SYS_lfs_markv", //185
4876 "SYS_lfs_segclean", //186
4877 "SYS_lfs_segwait", //187
4878 "SYS_188",
4879 "SYS_189",
4880 "SYS_190",
4881 "SYS_pathconf", //191
4882 "SYS_fpathconf", //192
4883 "SYS_swapctl", //193
4884 "SYS_getrlimit", //194
4885 "SYS_setrlimit", //195
4886 "SYS_getdirentries", //196
4887 "SYS_mmap", //197
4888 "SYS___syscall", //198
4889 "SYS_lseek", //199
4890 "SYS_truncate", //200
4891 "SYS_ftruncate", //201
4892 "SYS___sysctl", //202
4893 "SYS_mlock", //203
4894 "SYS_munlock", //204
4895 "SYS_205",
4896 "SYS_futimes", //206
4897 "SYS_getpgid", //207
4898 "SYS_xfspioctl", //208
4899 "SYS_209",
4900 "SYS_210",
4901 "SYS_211",
4902 "SYS_212",
4903 "SYS_213",
4904 "SYS_214",
4905 "SYS_215",
4906 "SYS_216",
4907 "SYS_217",
4908 "SYS_218",
4909 "SYS_219",
4910 "SYS_220",
4911 "SYS_semget", //221
4912 "SYS_222",
4913 "SYS_223",
4914 "SYS_224",
4915 "SYS_msgget", //225
4916 "SYS_msgsnd", //226
4917 "SYS_msgrcv", //227
4918 "SYS_shmat", //228
4919 "SYS_229",
4920 "SYS_shmdt", //230
4921 "SYS_231",
4922 "SYS_clock_gettime", //232
4923 "SYS_clock_settime", //233
4924 "SYS_clock_getres", //234
4925 "SYS_235",
4926 "SYS_236",
4927 "SYS_237",
4928 "SYS_238",
4929 "SYS_239",
4930 "SYS_nanosleep", //240
4931 "SYS_241",
4932 "SYS_242",
4933 "SYS_243",
4934 "SYS_244",
4935 "SYS_245",
4936 "SYS_246",
4937 "SYS_247",
4938 "SYS_248",
4939 "SYS_249",
4940 "SYS_minherit", //250
4941 "SYS_rfork", //251
4942 "SYS_poll", //252
4943 "SYS_issetugid", //253
4944 "SYS_lchown", //254
4945 "SYS_getsid", //255
4946 "SYS_msync", //256
4947 "SYS_257",
4948 "SYS_258",
4949 "SYS_259",
4950 "SYS_getfsstat", //260
4951 "SYS_statfs", //261
4952 "SYS_fstatfs", //262
4953 "SYS_pipe", //263
4954 "SYS_fhopen", //264
4955 "SYS_265",
4956 "SYS_fhstatfs", //266
4957 "SYS_preadv", //267
4958 "SYS_pwritev", //268
4959 "SYS_kqueue", //269
4960 "SYS_kevent", //270
4961 "SYS_mlockall", //271
4962 "SYS_munlockall", //272
4963 "SYS_getpeereid", //273
4964 "SYS_274",
4965 "SYS_275",
4966 "SYS_276",
4967 "SYS_277",
4968 "SYS_278",
4969 "SYS_279",
4970 "SYS_280",
4971 "SYS_getresuid", //281
4972 "SYS_setresuid", //282
4973 "SYS_getresgid", //283
4974 "SYS_setresgid", //284
4975 "SYS_285",
4976 "SYS_mquery", //286
4977 "SYS_closefrom", //287
4978 "SYS_sigaltstack", //288
4979 "SYS_shmget", //289
4980 "SYS_semop", //290
4981 "SYS_stat", //291
4982 "SYS_fstat", //292
4983 "SYS_lstat", //293
4984 "SYS_fhstat", //294
4985 "SYS___semctl", //295
4986 "SYS_shmctl", //296
4987 "SYS_msgctl", //297
4988 "SYS_MAXSYSCALL", //298
4989 //299
4990 //300
4991 };
4992 uint32_t uEAX;
4993 if (!LogIsEnabled())
4994 return;
4995 uEAX = CPUMGetGuestEAX(pVM);
4996 switch (uEAX)
4997 {
4998 default:
4999 if (uEAX < ELEMENTS(apsz))
5000 {
5001 uint32_t au32Args[8] = {0};
5002 PGMPhysSimpleReadGCPtr(pVM, au32Args, CPUMGetGuestESP(pVM), sizeof(au32Args));
5003 RTLogPrintf("REM: OpenBSD syscall %3d: %s (eip=%08x %08x %08x %08x %08x %08x %08x %08x %08x)\n",
5004 uEAX, apsz[uEAX], CPUMGetGuestEIP(pVM), au32Args[0], au32Args[1], au32Args[2], au32Args[3],
5005 au32Args[4], au32Args[5], au32Args[6], au32Args[7]);
5006 }
5007 else
5008 RTLogPrintf("eip=%08x: OpenBSD syscall %d (#%x) unknown!!\n", CPUMGetGuestEIP(pVM), uEAX, uEAX);
5009 break;
5010 }
5011}
5012
5013
5014#if defined(IPRT_NO_CRT) && defined(RT_OS_WINDOWS) && defined(RT_ARCH_X86)
5015/**
5016 * The Dll main entry point (stub).
5017 */
5018bool __stdcall _DllMainCRTStartup(void *hModule, uint32_t dwReason, void *pvReserved)
5019{
5020 return true;
5021}
5022
5023void *memcpy(void *dst, const void *src, size_t size)
5024{
5025 uint8_t*pbDst = dst, *pbSrc = src;
5026 while (size-- > 0)
5027 *pbDst++ = *pbSrc++;
5028 return dst;
5029}
5030
5031#endif
5032
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette