VirtualBox

source: vbox/trunk/src/recompiler/fpu/softfloat-native.c@ 37675

最後變更 在這個檔案從37675是 37675,由 vboxsync 提交於 14 年 前

rem: Synced with v0.12.5.

  • 屬性 svn:eol-style 設為 native
檔案大小: 11.9 KB
 
1/* Native implementation of soft float functions. Only a single status
2 context is supported */
3#include "softfloat.h"
4#include <math.h>
5#if defined(CONFIG_SOLARIS)
6#include <fenv.h>
7#endif
8
9void set_float_rounding_mode(int val STATUS_PARAM)
10{
11 STATUS(float_rounding_mode) = val;
12#if (defined(CONFIG_BSD) && !defined(__APPLE__) && !defined(__GLIBC__)) || \
13 (defined(CONFIG_SOLARIS) && (CONFIG_SOLARIS_VERSION < 10 || CONFIG_SOLARIS_VERSION == 11)) /* VBOX adds sol 11 */
14 fpsetround(val);
15#elif defined(__arm__)
16 /* nothing to do */
17#else
18 fesetround(val);
19#endif
20}
21
22#ifdef FLOATX80
23void set_floatx80_rounding_precision(int val STATUS_PARAM)
24{
25 STATUS(floatx80_rounding_precision) = val;
26}
27#endif
28
29#if defined(CONFIG_BSD) || \
30 (defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
31#define lrint(d) ((int32_t)rint(d))
32#define llrint(d) ((int64_t)rint(d))
33#define lrintf(f) ((int32_t)rint(f))
34#define llrintf(f) ((int64_t)rint(f))
35#define sqrtf(f) ((float)sqrt(f))
36#define remainderf(fa, fb) ((float)remainder(fa, fb))
37#define rintf(f) ((float)rint(f))
38/* Some defines which only apply to *BSD */
39# if defined(VBOX) && defined(HOST_BSD)
40# define lrintl(f) ((int32_t)rint(f))
41# define llrintl(f) ((int64_t)rint(f))
42# define rintl(d) ((int32_t)rint(d))
43# define sqrtl(f) (sqrt(f))
44# define remainderl(fa, fb) (remainder(fa, fb))
45# endif /* VBOX && _BSD */
46#if !defined(__sparc__) && \
47 (defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
48extern long double rintl(long double);
49extern long double scalbnl(long double, int);
50
51long long
52llrintl(long double x) {
53 return ((long long) rintl(x));
54}
55
56long
57lrintl(long double x) {
58 return ((long) rintl(x));
59}
60
61long double
62ldexpl(long double x, int n) {
63 return (scalbnl(x, n));
64}
65#endif
66#endif
67
68#if defined(_ARCH_PPC)
69
70/* correct (but slow) PowerPC rint() (glibc version is incorrect) */
71static double qemu_rint(double x)
72{
73 double y = 4503599627370496.0;
74 if (fabs(x) >= y)
75 return x;
76 if (x < 0)
77 y = -y;
78 y = (x + y) - y;
79 if (y == 0.0)
80 y = copysign(y, x);
81 return y;
82}
83
84#define rint qemu_rint
85#endif
86
87/*----------------------------------------------------------------------------
88| Software IEC/IEEE integer-to-floating-point conversion routines.
89*----------------------------------------------------------------------------*/
90float32 int32_to_float32(int v STATUS_PARAM)
91{
92 return (float32)v;
93}
94
95float32 uint32_to_float32(unsigned int v STATUS_PARAM)
96{
97 return (float32)v;
98}
99
100float64 int32_to_float64(int v STATUS_PARAM)
101{
102 return (float64)v;
103}
104
105float64 uint32_to_float64(unsigned int v STATUS_PARAM)
106{
107 return (float64)v;
108}
109
110#ifdef FLOATX80
111floatx80 int32_to_floatx80(int v STATUS_PARAM)
112{
113 return (floatx80)v;
114}
115#endif
116float32 int64_to_float32( int64_t v STATUS_PARAM)
117{
118 return (float32)v;
119}
120float32 uint64_to_float32( uint64_t v STATUS_PARAM)
121{
122 return (float32)v;
123}
124float64 int64_to_float64( int64_t v STATUS_PARAM)
125{
126 return (float64)v;
127}
128float64 uint64_to_float64( uint64_t v STATUS_PARAM)
129{
130 return (float64)v;
131}
132#ifdef FLOATX80
133floatx80 int64_to_floatx80( int64_t v STATUS_PARAM)
134{
135 return (floatx80)v;
136}
137#endif
138
139/* XXX: this code implements the x86 behaviour, not the IEEE one. */
140#if HOST_LONG_BITS == 32
141static inline int long_to_int32(long a)
142{
143 return a;
144}
145#else
146static inline int long_to_int32(long a)
147{
148 if (a != (int32_t)a)
149 a = 0x80000000;
150 return a;
151}
152#endif
153
154/*----------------------------------------------------------------------------
155| Software IEC/IEEE single-precision conversion routines.
156*----------------------------------------------------------------------------*/
157int float32_to_int32( float32 a STATUS_PARAM)
158{
159 return long_to_int32(lrintf(a));
160}
161int float32_to_int32_round_to_zero( float32 a STATUS_PARAM)
162{
163 return (int)a;
164}
165int64_t float32_to_int64( float32 a STATUS_PARAM)
166{
167 return llrintf(a);
168}
169
170int64_t float32_to_int64_round_to_zero( float32 a STATUS_PARAM)
171{
172 return (int64_t)a;
173}
174
175float64 float32_to_float64( float32 a STATUS_PARAM)
176{
177 return a;
178}
179#ifdef FLOATX80
180floatx80 float32_to_floatx80( float32 a STATUS_PARAM)
181{
182 return a;
183}
184#endif
185
186unsigned int float32_to_uint32( float32 a STATUS_PARAM)
187{
188 int64_t v;
189 unsigned int res;
190
191 v = llrintf(a);
192 if (v < 0) {
193 res = 0;
194 } else if (v > 0xffffffff) {
195 res = 0xffffffff;
196 } else {
197 res = v;
198 }
199 return res;
200}
201unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM)
202{
203 int64_t v;
204 unsigned int res;
205
206 v = (int64_t)a;
207 if (v < 0) {
208 res = 0;
209 } else if (v > 0xffffffff) {
210 res = 0xffffffff;
211 } else {
212 res = v;
213 }
214 return res;
215}
216
217/*----------------------------------------------------------------------------
218| Software IEC/IEEE single-precision operations.
219*----------------------------------------------------------------------------*/
220float32 float32_round_to_int( float32 a STATUS_PARAM)
221{
222 return rintf(a);
223}
224
225float32 float32_rem( float32 a, float32 b STATUS_PARAM)
226{
227 return remainderf(a, b);
228}
229
230float32 float32_sqrt( float32 a STATUS_PARAM)
231{
232 return sqrtf(a);
233}
234int float32_compare( float32 a, float32 b STATUS_PARAM )
235{
236 if (a < b) {
237 return float_relation_less;
238 } else if (a == b) {
239 return float_relation_equal;
240 } else if (a > b) {
241 return float_relation_greater;
242 } else {
243 return float_relation_unordered;
244 }
245}
246int float32_compare_quiet( float32 a, float32 b STATUS_PARAM )
247{
248 if (isless(a, b)) {
249 return float_relation_less;
250 } else if (a == b) {
251 return float_relation_equal;
252 } else if (isgreater(a, b)) {
253 return float_relation_greater;
254 } else {
255 return float_relation_unordered;
256 }
257}
258int float32_is_signaling_nan( float32 a1)
259{
260 float32u u;
261 uint32_t a;
262 u.f = a1;
263 a = u.i;
264 return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
265}
266
267int float32_is_nan( float32 a1 )
268{
269 float32u u;
270 uint64_t a;
271 u.f = a1;
272 a = u.i;
273 return ( 0xFF800000 < ( a<<1 ) );
274}
275
276/*----------------------------------------------------------------------------
277| Software IEC/IEEE double-precision conversion routines.
278*----------------------------------------------------------------------------*/
279int float64_to_int32( float64 a STATUS_PARAM)
280{
281 return long_to_int32(lrint(a));
282}
283int float64_to_int32_round_to_zero( float64 a STATUS_PARAM)
284{
285 return (int)a;
286}
287int64_t float64_to_int64( float64 a STATUS_PARAM)
288{
289 return llrint(a);
290}
291int64_t float64_to_int64_round_to_zero( float64 a STATUS_PARAM)
292{
293 return (int64_t)a;
294}
295float32 float64_to_float32( float64 a STATUS_PARAM)
296{
297 return a;
298}
299#ifdef FLOATX80
300floatx80 float64_to_floatx80( float64 a STATUS_PARAM)
301{
302 return a;
303}
304#endif
305#ifdef FLOAT128
306float128 float64_to_float128( float64 a STATUS_PARAM)
307{
308 return a;
309}
310#endif
311
312unsigned int float64_to_uint32( float64 a STATUS_PARAM)
313{
314 int64_t v;
315 unsigned int res;
316
317 v = llrint(a);
318 if (v < 0) {
319 res = 0;
320 } else if (v > 0xffffffff) {
321 res = 0xffffffff;
322 } else {
323 res = v;
324 }
325 return res;
326}
327unsigned int float64_to_uint32_round_to_zero( float64 a STATUS_PARAM)
328{
329 int64_t v;
330 unsigned int res;
331
332 v = (int64_t)a;
333 if (v < 0) {
334 res = 0;
335 } else if (v > 0xffffffff) {
336 res = 0xffffffff;
337 } else {
338 res = v;
339 }
340 return res;
341}
342uint64_t float64_to_uint64 (float64 a STATUS_PARAM)
343{
344 int64_t v;
345
346 v = llrint(a + (float64)INT64_MIN);
347
348 return v - INT64_MIN;
349}
350uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM)
351{
352 int64_t v;
353
354 v = (int64_t)(a + (float64)INT64_MIN);
355
356 return v - INT64_MIN;
357}
358
359/*----------------------------------------------------------------------------
360| Software IEC/IEEE double-precision operations.
361*----------------------------------------------------------------------------*/
362#if defined(__sun__) && \
363 (defined(CONFIG_SOLARIS) && CONFIG_SOLARIS_VERSION < 10)
364static inline float64 trunc(float64 x)
365{
366 return x < 0 ? -floor(-x) : floor(x);
367}
368#endif
369float64 float64_trunc_to_int( float64 a STATUS_PARAM )
370{
371 return trunc(a);
372}
373
374float64 float64_round_to_int( float64 a STATUS_PARAM )
375{
376#if defined(__arm__)
377 switch(STATUS(float_rounding_mode)) {
378 default:
379 case float_round_nearest_even:
380 asm("rndd %0, %1" : "=f" (a) : "f"(a));
381 break;
382 case float_round_down:
383 asm("rnddm %0, %1" : "=f" (a) : "f"(a));
384 break;
385 case float_round_up:
386 asm("rnddp %0, %1" : "=f" (a) : "f"(a));
387 break;
388 case float_round_to_zero:
389 asm("rnddz %0, %1" : "=f" (a) : "f"(a));
390 break;
391 }
392#else
393 return rint(a);
394#endif
395}
396
397float64 float64_rem( float64 a, float64 b STATUS_PARAM)
398{
399 return remainder(a, b);
400}
401
402float64 float64_sqrt( float64 a STATUS_PARAM)
403{
404 return sqrt(a);
405}
406int float64_compare( float64 a, float64 b STATUS_PARAM )
407{
408 if (a < b) {
409 return float_relation_less;
410 } else if (a == b) {
411 return float_relation_equal;
412 } else if (a > b) {
413 return float_relation_greater;
414 } else {
415 return float_relation_unordered;
416 }
417}
418int float64_compare_quiet( float64 a, float64 b STATUS_PARAM )
419{
420 if (isless(a, b)) {
421 return float_relation_less;
422 } else if (a == b) {
423 return float_relation_equal;
424 } else if (isgreater(a, b)) {
425 return float_relation_greater;
426 } else {
427 return float_relation_unordered;
428 }
429}
430int float64_is_signaling_nan( float64 a1)
431{
432 float64u u;
433 uint64_t a;
434 u.f = a1;
435 a = u.i;
436 return
437 ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
438 && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
439
440}
441
442int float64_is_nan( float64 a1 )
443{
444 float64u u;
445 uint64_t a;
446 u.f = a1;
447 a = u.i;
448
449 return ( LIT64( 0xFFF0000000000000 ) < (bits64) ( a<<1 ) );
450
451}
452
453#ifdef FLOATX80
454
455/*----------------------------------------------------------------------------
456| Software IEC/IEEE extended double-precision conversion routines.
457*----------------------------------------------------------------------------*/
458int floatx80_to_int32( floatx80 a STATUS_PARAM)
459{
460 return long_to_int32(lrintl(a));
461}
462int floatx80_to_int32_round_to_zero( floatx80 a STATUS_PARAM)
463{
464 return (int)a;
465}
466int64_t floatx80_to_int64( floatx80 a STATUS_PARAM)
467{
468 return llrintl(a);
469}
470int64_t floatx80_to_int64_round_to_zero( floatx80 a STATUS_PARAM)
471{
472 return (int64_t)a;
473}
474float32 floatx80_to_float32( floatx80 a STATUS_PARAM)
475{
476 return a;
477}
478float64 floatx80_to_float64( floatx80 a STATUS_PARAM)
479{
480 return a;
481}
482
483/*----------------------------------------------------------------------------
484| Software IEC/IEEE extended double-precision operations.
485*----------------------------------------------------------------------------*/
486floatx80 floatx80_round_to_int( floatx80 a STATUS_PARAM)
487{
488 return rintl(a);
489}
490floatx80 floatx80_rem( floatx80 a, floatx80 b STATUS_PARAM)
491{
492 return remainderl(a, b);
493}
494floatx80 floatx80_sqrt( floatx80 a STATUS_PARAM)
495{
496 return sqrtl(a);
497}
498int floatx80_compare( floatx80 a, floatx80 b STATUS_PARAM )
499{
500 if (a < b) {
501 return float_relation_less;
502 } else if (a == b) {
503 return float_relation_equal;
504 } else if (a > b) {
505 return float_relation_greater;
506 } else {
507 return float_relation_unordered;
508 }
509}
510int floatx80_compare_quiet( floatx80 a, floatx80 b STATUS_PARAM )
511{
512 if (isless(a, b)) {
513 return float_relation_less;
514 } else if (a == b) {
515 return float_relation_equal;
516 } else if (isgreater(a, b)) {
517 return float_relation_greater;
518 } else {
519 return float_relation_unordered;
520 }
521}
522int floatx80_is_signaling_nan( floatx80 a1)
523{
524 floatx80u u;
525 uint64_t aLow;
526 u.f = a1;
527
528 aLow = u.i.low & ~ LIT64( 0x4000000000000000 );
529 return
530 ( ( u.i.high & 0x7FFF ) == 0x7FFF )
531 && (bits64) ( aLow<<1 )
532 && ( u.i.low == aLow );
533}
534
535int floatx80_is_nan( floatx80 a1 )
536{
537 floatx80u u;
538 u.f = a1;
539 return ( ( u.i.high & 0x7FFF ) == 0x7FFF ) && (bits64) ( u.i.low<<1 );
540}
541
542#endif
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette