1 | /*
|
---|
2 | * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <stdio.h>
|
---|
11 | #include "internal/e_os.h"
|
---|
12 | #include <stdlib.h>
|
---|
13 | #include <openssl/objects.h>
|
---|
14 | #include <openssl/evp.h>
|
---|
15 | #include <openssl/hmac.h>
|
---|
16 | #include <openssl/core_names.h>
|
---|
17 | #include <openssl/ocsp.h>
|
---|
18 | #include <openssl/conf.h>
|
---|
19 | #include <openssl/x509v3.h>
|
---|
20 | #include <openssl/dh.h>
|
---|
21 | #include <openssl/bn.h>
|
---|
22 | #include <openssl/provider.h>
|
---|
23 | #include <openssl/param_build.h>
|
---|
24 | #include "internal/nelem.h"
|
---|
25 | #include "internal/sizes.h"
|
---|
26 | #include "internal/tlsgroups.h"
|
---|
27 | #include "ssl_local.h"
|
---|
28 | #include "quic/quic_local.h"
|
---|
29 | #include <openssl/ct.h>
|
---|
30 |
|
---|
31 | static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
|
---|
32 | static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
|
---|
33 |
|
---|
34 | SSL3_ENC_METHOD const TLSv1_enc_data = {
|
---|
35 | tls1_setup_key_block,
|
---|
36 | tls1_generate_master_secret,
|
---|
37 | tls1_change_cipher_state,
|
---|
38 | tls1_final_finish_mac,
|
---|
39 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
---|
40 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
|
---|
41 | tls1_alert_code,
|
---|
42 | tls1_export_keying_material,
|
---|
43 | 0,
|
---|
44 | ssl3_set_handshake_header,
|
---|
45 | tls_close_construct_packet,
|
---|
46 | ssl3_handshake_write
|
---|
47 | };
|
---|
48 |
|
---|
49 | SSL3_ENC_METHOD const TLSv1_1_enc_data = {
|
---|
50 | tls1_setup_key_block,
|
---|
51 | tls1_generate_master_secret,
|
---|
52 | tls1_change_cipher_state,
|
---|
53 | tls1_final_finish_mac,
|
---|
54 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
---|
55 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
|
---|
56 | tls1_alert_code,
|
---|
57 | tls1_export_keying_material,
|
---|
58 | SSL_ENC_FLAG_EXPLICIT_IV,
|
---|
59 | ssl3_set_handshake_header,
|
---|
60 | tls_close_construct_packet,
|
---|
61 | ssl3_handshake_write
|
---|
62 | };
|
---|
63 |
|
---|
64 | SSL3_ENC_METHOD const TLSv1_2_enc_data = {
|
---|
65 | tls1_setup_key_block,
|
---|
66 | tls1_generate_master_secret,
|
---|
67 | tls1_change_cipher_state,
|
---|
68 | tls1_final_finish_mac,
|
---|
69 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
---|
70 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
|
---|
71 | tls1_alert_code,
|
---|
72 | tls1_export_keying_material,
|
---|
73 | SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
|
---|
74 | | SSL_ENC_FLAG_TLS1_2_CIPHERS,
|
---|
75 | ssl3_set_handshake_header,
|
---|
76 | tls_close_construct_packet,
|
---|
77 | ssl3_handshake_write
|
---|
78 | };
|
---|
79 |
|
---|
80 | SSL3_ENC_METHOD const TLSv1_3_enc_data = {
|
---|
81 | tls13_setup_key_block,
|
---|
82 | tls13_generate_master_secret,
|
---|
83 | tls13_change_cipher_state,
|
---|
84 | tls13_final_finish_mac,
|
---|
85 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
|
---|
86 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
|
---|
87 | tls13_alert_code,
|
---|
88 | tls13_export_keying_material,
|
---|
89 | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
|
---|
90 | ssl3_set_handshake_header,
|
---|
91 | tls_close_construct_packet,
|
---|
92 | ssl3_handshake_write
|
---|
93 | };
|
---|
94 |
|
---|
95 | OSSL_TIME tls1_default_timeout(void)
|
---|
96 | {
|
---|
97 | /*
|
---|
98 | * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
|
---|
99 | * http, the cache would over fill
|
---|
100 | */
|
---|
101 | return ossl_seconds2time(60 * 60 * 2);
|
---|
102 | }
|
---|
103 |
|
---|
104 | int tls1_new(SSL *s)
|
---|
105 | {
|
---|
106 | if (!ssl3_new(s))
|
---|
107 | return 0;
|
---|
108 | if (!s->method->ssl_clear(s))
|
---|
109 | return 0;
|
---|
110 |
|
---|
111 | return 1;
|
---|
112 | }
|
---|
113 |
|
---|
114 | void tls1_free(SSL *s)
|
---|
115 | {
|
---|
116 | SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
|
---|
117 |
|
---|
118 | if (sc == NULL)
|
---|
119 | return;
|
---|
120 |
|
---|
121 | OPENSSL_free(sc->ext.session_ticket);
|
---|
122 | ssl3_free(s);
|
---|
123 | }
|
---|
124 |
|
---|
125 | int tls1_clear(SSL *s)
|
---|
126 | {
|
---|
127 | SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
|
---|
128 |
|
---|
129 | if (sc == NULL)
|
---|
130 | return 0;
|
---|
131 |
|
---|
132 | if (!ssl3_clear(s))
|
---|
133 | return 0;
|
---|
134 |
|
---|
135 | if (s->method->version == TLS_ANY_VERSION)
|
---|
136 | sc->version = TLS_MAX_VERSION_INTERNAL;
|
---|
137 | else
|
---|
138 | sc->version = s->method->version;
|
---|
139 |
|
---|
140 | return 1;
|
---|
141 | }
|
---|
142 |
|
---|
143 | /* Legacy NID to group_id mapping. Only works for groups we know about */
|
---|
144 | static const struct {
|
---|
145 | int nid;
|
---|
146 | uint16_t group_id;
|
---|
147 | } nid_to_group[] = {
|
---|
148 | {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
|
---|
149 | {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
|
---|
150 | {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
|
---|
151 | {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
|
---|
152 | {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
|
---|
153 | {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
|
---|
154 | {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
|
---|
155 | {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
|
---|
156 | {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
|
---|
157 | {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
|
---|
158 | {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
|
---|
159 | {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
|
---|
160 | {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
|
---|
161 | {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
|
---|
162 | {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
|
---|
163 | {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
|
---|
164 | {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
|
---|
165 | {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
|
---|
166 | {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
|
---|
167 | {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
|
---|
168 | {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
|
---|
169 | {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
|
---|
170 | {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
|
---|
171 | {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
|
---|
172 | {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
|
---|
173 | {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
|
---|
174 | {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
|
---|
175 | {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
|
---|
176 | {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
|
---|
177 | {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
|
---|
178 | {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
|
---|
179 | {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
|
---|
180 | {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
|
---|
181 | {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
|
---|
182 | {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
|
---|
183 | {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
|
---|
184 | {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
|
---|
185 | {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
|
---|
186 | {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
|
---|
187 | {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
|
---|
188 | {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
|
---|
189 | {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
|
---|
190 | {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
|
---|
191 | {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
|
---|
192 | {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
|
---|
193 | };
|
---|
194 |
|
---|
195 | static const unsigned char ecformats_default[] = {
|
---|
196 | TLSEXT_ECPOINTFORMAT_uncompressed,
|
---|
197 | TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
|
---|
198 | TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
|
---|
199 | };
|
---|
200 |
|
---|
201 | /* The default curves */
|
---|
202 | static const uint16_t supported_groups_default[] = {
|
---|
203 | OSSL_TLS_GROUP_ID_x25519, /* X25519 (29) */
|
---|
204 | OSSL_TLS_GROUP_ID_secp256r1, /* secp256r1 (23) */
|
---|
205 | OSSL_TLS_GROUP_ID_x448, /* X448 (30) */
|
---|
206 | OSSL_TLS_GROUP_ID_secp521r1, /* secp521r1 (25) */
|
---|
207 | OSSL_TLS_GROUP_ID_secp384r1, /* secp384r1 (24) */
|
---|
208 | OSSL_TLS_GROUP_ID_gc256A, /* GC256A (34) */
|
---|
209 | OSSL_TLS_GROUP_ID_gc256B, /* GC256B (35) */
|
---|
210 | OSSL_TLS_GROUP_ID_gc256C, /* GC256C (36) */
|
---|
211 | OSSL_TLS_GROUP_ID_gc256D, /* GC256D (37) */
|
---|
212 | OSSL_TLS_GROUP_ID_gc512A, /* GC512A (38) */
|
---|
213 | OSSL_TLS_GROUP_ID_gc512B, /* GC512B (39) */
|
---|
214 | OSSL_TLS_GROUP_ID_gc512C, /* GC512C (40) */
|
---|
215 | OSSL_TLS_GROUP_ID_ffdhe2048, /* ffdhe2048 (0x100) */
|
---|
216 | OSSL_TLS_GROUP_ID_ffdhe3072, /* ffdhe3072 (0x101) */
|
---|
217 | OSSL_TLS_GROUP_ID_ffdhe4096, /* ffdhe4096 (0x102) */
|
---|
218 | OSSL_TLS_GROUP_ID_ffdhe6144, /* ffdhe6144 (0x103) */
|
---|
219 | OSSL_TLS_GROUP_ID_ffdhe8192, /* ffdhe8192 (0x104) */
|
---|
220 | };
|
---|
221 |
|
---|
222 | static const uint16_t suiteb_curves[] = {
|
---|
223 | OSSL_TLS_GROUP_ID_secp256r1,
|
---|
224 | OSSL_TLS_GROUP_ID_secp384r1,
|
---|
225 | };
|
---|
226 |
|
---|
227 | struct provider_ctx_data_st {
|
---|
228 | SSL_CTX *ctx;
|
---|
229 | OSSL_PROVIDER *provider;
|
---|
230 | };
|
---|
231 |
|
---|
232 | #define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
|
---|
233 | static OSSL_CALLBACK add_provider_groups;
|
---|
234 | static int add_provider_groups(const OSSL_PARAM params[], void *data)
|
---|
235 | {
|
---|
236 | struct provider_ctx_data_st *pgd = data;
|
---|
237 | SSL_CTX *ctx = pgd->ctx;
|
---|
238 | OSSL_PROVIDER *provider = pgd->provider;
|
---|
239 | const OSSL_PARAM *p;
|
---|
240 | TLS_GROUP_INFO *ginf = NULL;
|
---|
241 | EVP_KEYMGMT *keymgmt;
|
---|
242 | unsigned int gid;
|
---|
243 | unsigned int is_kem = 0;
|
---|
244 | int ret = 0;
|
---|
245 |
|
---|
246 | if (ctx->group_list_max_len == ctx->group_list_len) {
|
---|
247 | TLS_GROUP_INFO *tmp = NULL;
|
---|
248 |
|
---|
249 | if (ctx->group_list_max_len == 0)
|
---|
250 | tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
|
---|
251 | * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
|
---|
252 | else
|
---|
253 | tmp = OPENSSL_realloc(ctx->group_list,
|
---|
254 | (ctx->group_list_max_len
|
---|
255 | + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
|
---|
256 | * sizeof(TLS_GROUP_INFO));
|
---|
257 | if (tmp == NULL)
|
---|
258 | return 0;
|
---|
259 | ctx->group_list = tmp;
|
---|
260 | memset(tmp + ctx->group_list_max_len,
|
---|
261 | 0,
|
---|
262 | sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
|
---|
263 | ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
|
---|
264 | }
|
---|
265 |
|
---|
266 | ginf = &ctx->group_list[ctx->group_list_len];
|
---|
267 |
|
---|
268 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
|
---|
269 | if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
|
---|
270 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
271 | goto err;
|
---|
272 | }
|
---|
273 | ginf->tlsname = OPENSSL_strdup(p->data);
|
---|
274 | if (ginf->tlsname == NULL)
|
---|
275 | goto err;
|
---|
276 |
|
---|
277 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
|
---|
278 | if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
|
---|
279 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
280 | goto err;
|
---|
281 | }
|
---|
282 | ginf->realname = OPENSSL_strdup(p->data);
|
---|
283 | if (ginf->realname == NULL)
|
---|
284 | goto err;
|
---|
285 |
|
---|
286 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
|
---|
287 | if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
|
---|
288 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
289 | goto err;
|
---|
290 | }
|
---|
291 | ginf->group_id = (uint16_t)gid;
|
---|
292 |
|
---|
293 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
|
---|
294 | if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
|
---|
295 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
296 | goto err;
|
---|
297 | }
|
---|
298 | ginf->algorithm = OPENSSL_strdup(p->data);
|
---|
299 | if (ginf->algorithm == NULL)
|
---|
300 | goto err;
|
---|
301 |
|
---|
302 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
|
---|
303 | if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
|
---|
304 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
305 | goto err;
|
---|
306 | }
|
---|
307 |
|
---|
308 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
|
---|
309 | if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
|
---|
310 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
311 | goto err;
|
---|
312 | }
|
---|
313 | ginf->is_kem = 1 & is_kem;
|
---|
314 |
|
---|
315 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
|
---|
316 | if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
|
---|
317 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
318 | goto err;
|
---|
319 | }
|
---|
320 |
|
---|
321 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
|
---|
322 | if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
|
---|
323 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
324 | goto err;
|
---|
325 | }
|
---|
326 |
|
---|
327 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
|
---|
328 | if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
|
---|
329 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
330 | goto err;
|
---|
331 | }
|
---|
332 |
|
---|
333 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
|
---|
334 | if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
|
---|
335 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
336 | goto err;
|
---|
337 | }
|
---|
338 | /*
|
---|
339 | * Now check that the algorithm is actually usable for our property query
|
---|
340 | * string. Regardless of the result we still return success because we have
|
---|
341 | * successfully processed this group, even though we may decide not to use
|
---|
342 | * it.
|
---|
343 | */
|
---|
344 | ret = 1;
|
---|
345 | ERR_set_mark();
|
---|
346 | keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
|
---|
347 | if (keymgmt != NULL) {
|
---|
348 | /*
|
---|
349 | * We have successfully fetched the algorithm - however if the provider
|
---|
350 | * doesn't match this one then we ignore it.
|
---|
351 | *
|
---|
352 | * Note: We're cheating a little here. Technically if the same algorithm
|
---|
353 | * is available from more than one provider then it is undefined which
|
---|
354 | * implementation you will get back. Theoretically this could be
|
---|
355 | * different every time...we assume here that you'll always get the
|
---|
356 | * same one back if you repeat the exact same fetch. Is this a reasonable
|
---|
357 | * assumption to make (in which case perhaps we should document this
|
---|
358 | * behaviour)?
|
---|
359 | */
|
---|
360 | if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
|
---|
361 | /* We have a match - so we will use this group */
|
---|
362 | ctx->group_list_len++;
|
---|
363 | ginf = NULL;
|
---|
364 | }
|
---|
365 | EVP_KEYMGMT_free(keymgmt);
|
---|
366 | }
|
---|
367 | ERR_pop_to_mark();
|
---|
368 | err:
|
---|
369 | if (ginf != NULL) {
|
---|
370 | OPENSSL_free(ginf->tlsname);
|
---|
371 | OPENSSL_free(ginf->realname);
|
---|
372 | OPENSSL_free(ginf->algorithm);
|
---|
373 | ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
|
---|
374 | }
|
---|
375 | return ret;
|
---|
376 | }
|
---|
377 |
|
---|
378 | static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
|
---|
379 | {
|
---|
380 | struct provider_ctx_data_st pgd;
|
---|
381 |
|
---|
382 | pgd.ctx = vctx;
|
---|
383 | pgd.provider = provider;
|
---|
384 | return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
|
---|
385 | add_provider_groups, &pgd);
|
---|
386 | }
|
---|
387 |
|
---|
388 | int ssl_load_groups(SSL_CTX *ctx)
|
---|
389 | {
|
---|
390 | size_t i, j, num_deflt_grps = 0;
|
---|
391 | uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
|
---|
392 |
|
---|
393 | if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
|
---|
394 | return 0;
|
---|
395 |
|
---|
396 | for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
|
---|
397 | for (j = 0; j < ctx->group_list_len; j++) {
|
---|
398 | if (ctx->group_list[j].group_id == supported_groups_default[i]) {
|
---|
399 | tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
|
---|
400 | break;
|
---|
401 | }
|
---|
402 | }
|
---|
403 | }
|
---|
404 |
|
---|
405 | if (num_deflt_grps == 0)
|
---|
406 | return 1;
|
---|
407 |
|
---|
408 | ctx->ext.supported_groups_default
|
---|
409 | = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
|
---|
410 |
|
---|
411 | if (ctx->ext.supported_groups_default == NULL)
|
---|
412 | return 0;
|
---|
413 |
|
---|
414 | memcpy(ctx->ext.supported_groups_default,
|
---|
415 | tmp_supp_groups,
|
---|
416 | num_deflt_grps * sizeof(tmp_supp_groups[0]));
|
---|
417 | ctx->ext.supported_groups_default_len = num_deflt_grps;
|
---|
418 |
|
---|
419 | return 1;
|
---|
420 | }
|
---|
421 |
|
---|
422 | #define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
|
---|
423 | static OSSL_CALLBACK add_provider_sigalgs;
|
---|
424 | static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
|
---|
425 | {
|
---|
426 | struct provider_ctx_data_st *pgd = data;
|
---|
427 | SSL_CTX *ctx = pgd->ctx;
|
---|
428 | OSSL_PROVIDER *provider = pgd->provider;
|
---|
429 | const OSSL_PARAM *p;
|
---|
430 | TLS_SIGALG_INFO *sinf = NULL;
|
---|
431 | EVP_KEYMGMT *keymgmt;
|
---|
432 | const char *keytype;
|
---|
433 | unsigned int code_point = 0;
|
---|
434 | int ret = 0;
|
---|
435 |
|
---|
436 | if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
|
---|
437 | TLS_SIGALG_INFO *tmp = NULL;
|
---|
438 |
|
---|
439 | if (ctx->sigalg_list_max_len == 0)
|
---|
440 | tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
|
---|
441 | * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
|
---|
442 | else
|
---|
443 | tmp = OPENSSL_realloc(ctx->sigalg_list,
|
---|
444 | (ctx->sigalg_list_max_len
|
---|
445 | + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
|
---|
446 | * sizeof(TLS_SIGALG_INFO));
|
---|
447 | if (tmp == NULL)
|
---|
448 | return 0;
|
---|
449 | ctx->sigalg_list = tmp;
|
---|
450 | memset(tmp + ctx->sigalg_list_max_len, 0,
|
---|
451 | sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
|
---|
452 | ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
|
---|
453 | }
|
---|
454 |
|
---|
455 | sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
|
---|
456 |
|
---|
457 | /* First, mandatory parameters */
|
---|
458 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
|
---|
459 | if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
|
---|
460 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
461 | goto err;
|
---|
462 | }
|
---|
463 | OPENSSL_free(sinf->sigalg_name);
|
---|
464 | sinf->sigalg_name = OPENSSL_strdup(p->data);
|
---|
465 | if (sinf->sigalg_name == NULL)
|
---|
466 | goto err;
|
---|
467 |
|
---|
468 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
|
---|
469 | if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
|
---|
470 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
471 | goto err;
|
---|
472 | }
|
---|
473 | OPENSSL_free(sinf->name);
|
---|
474 | sinf->name = OPENSSL_strdup(p->data);
|
---|
475 | if (sinf->name == NULL)
|
---|
476 | goto err;
|
---|
477 |
|
---|
478 | p = OSSL_PARAM_locate_const(params,
|
---|
479 | OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
|
---|
480 | if (p == NULL
|
---|
481 | || !OSSL_PARAM_get_uint(p, &code_point)
|
---|
482 | || code_point > UINT16_MAX) {
|
---|
483 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
484 | goto err;
|
---|
485 | }
|
---|
486 | sinf->code_point = (uint16_t)code_point;
|
---|
487 |
|
---|
488 | p = OSSL_PARAM_locate_const(params,
|
---|
489 | OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
|
---|
490 | if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
|
---|
491 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
492 | goto err;
|
---|
493 | }
|
---|
494 |
|
---|
495 | /* Now, optional parameters */
|
---|
496 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
|
---|
497 | if (p == NULL) {
|
---|
498 | sinf->sigalg_oid = NULL;
|
---|
499 | } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
|
---|
500 | goto err;
|
---|
501 | } else {
|
---|
502 | OPENSSL_free(sinf->sigalg_oid);
|
---|
503 | sinf->sigalg_oid = OPENSSL_strdup(p->data);
|
---|
504 | if (sinf->sigalg_oid == NULL)
|
---|
505 | goto err;
|
---|
506 | }
|
---|
507 |
|
---|
508 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
|
---|
509 | if (p == NULL) {
|
---|
510 | sinf->sig_name = NULL;
|
---|
511 | } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
|
---|
512 | goto err;
|
---|
513 | } else {
|
---|
514 | OPENSSL_free(sinf->sig_name);
|
---|
515 | sinf->sig_name = OPENSSL_strdup(p->data);
|
---|
516 | if (sinf->sig_name == NULL)
|
---|
517 | goto err;
|
---|
518 | }
|
---|
519 |
|
---|
520 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
|
---|
521 | if (p == NULL) {
|
---|
522 | sinf->sig_oid = NULL;
|
---|
523 | } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
|
---|
524 | goto err;
|
---|
525 | } else {
|
---|
526 | OPENSSL_free(sinf->sig_oid);
|
---|
527 | sinf->sig_oid = OPENSSL_strdup(p->data);
|
---|
528 | if (sinf->sig_oid == NULL)
|
---|
529 | goto err;
|
---|
530 | }
|
---|
531 |
|
---|
532 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
|
---|
533 | if (p == NULL) {
|
---|
534 | sinf->hash_name = NULL;
|
---|
535 | } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
|
---|
536 | goto err;
|
---|
537 | } else {
|
---|
538 | OPENSSL_free(sinf->hash_name);
|
---|
539 | sinf->hash_name = OPENSSL_strdup(p->data);
|
---|
540 | if (sinf->hash_name == NULL)
|
---|
541 | goto err;
|
---|
542 | }
|
---|
543 |
|
---|
544 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
|
---|
545 | if (p == NULL) {
|
---|
546 | sinf->hash_oid = NULL;
|
---|
547 | } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
|
---|
548 | goto err;
|
---|
549 | } else {
|
---|
550 | OPENSSL_free(sinf->hash_oid);
|
---|
551 | sinf->hash_oid = OPENSSL_strdup(p->data);
|
---|
552 | if (sinf->hash_oid == NULL)
|
---|
553 | goto err;
|
---|
554 | }
|
---|
555 |
|
---|
556 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
|
---|
557 | if (p == NULL) {
|
---|
558 | sinf->keytype = NULL;
|
---|
559 | } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
|
---|
560 | goto err;
|
---|
561 | } else {
|
---|
562 | OPENSSL_free(sinf->keytype);
|
---|
563 | sinf->keytype = OPENSSL_strdup(p->data);
|
---|
564 | if (sinf->keytype == NULL)
|
---|
565 | goto err;
|
---|
566 | }
|
---|
567 |
|
---|
568 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
|
---|
569 | if (p == NULL) {
|
---|
570 | sinf->keytype_oid = NULL;
|
---|
571 | } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
|
---|
572 | goto err;
|
---|
573 | } else {
|
---|
574 | OPENSSL_free(sinf->keytype_oid);
|
---|
575 | sinf->keytype_oid = OPENSSL_strdup(p->data);
|
---|
576 | if (sinf->keytype_oid == NULL)
|
---|
577 | goto err;
|
---|
578 | }
|
---|
579 |
|
---|
580 | /* The remaining parameters below are mandatory again */
|
---|
581 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
|
---|
582 | if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
|
---|
583 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
584 | goto err;
|
---|
585 | }
|
---|
586 | if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
|
---|
587 | ((sinf->mintls < TLS1_3_VERSION))) {
|
---|
588 | /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
|
---|
589 | ret = 1;
|
---|
590 | goto err;
|
---|
591 | }
|
---|
592 |
|
---|
593 | p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
|
---|
594 | if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
|
---|
595 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
596 | goto err;
|
---|
597 | }
|
---|
598 | if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
|
---|
599 | ((sinf->maxtls < sinf->mintls))) {
|
---|
600 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
601 | goto err;
|
---|
602 | }
|
---|
603 | if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
|
---|
604 | ((sinf->maxtls < TLS1_3_VERSION))) {
|
---|
605 | /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
|
---|
606 | ret = 1;
|
---|
607 | goto err;
|
---|
608 | }
|
---|
609 |
|
---|
610 | /*
|
---|
611 | * Now check that the algorithm is actually usable for our property query
|
---|
612 | * string. Regardless of the result we still return success because we have
|
---|
613 | * successfully processed this signature, even though we may decide not to
|
---|
614 | * use it.
|
---|
615 | */
|
---|
616 | ret = 1;
|
---|
617 | ERR_set_mark();
|
---|
618 | keytype = (sinf->keytype != NULL
|
---|
619 | ? sinf->keytype
|
---|
620 | : (sinf->sig_name != NULL
|
---|
621 | ? sinf->sig_name
|
---|
622 | : sinf->sigalg_name));
|
---|
623 | keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
|
---|
624 | if (keymgmt != NULL) {
|
---|
625 | /*
|
---|
626 | * We have successfully fetched the algorithm - however if the provider
|
---|
627 | * doesn't match this one then we ignore it.
|
---|
628 | *
|
---|
629 | * Note: We're cheating a little here. Technically if the same algorithm
|
---|
630 | * is available from more than one provider then it is undefined which
|
---|
631 | * implementation you will get back. Theoretically this could be
|
---|
632 | * different every time...we assume here that you'll always get the
|
---|
633 | * same one back if you repeat the exact same fetch. Is this a reasonable
|
---|
634 | * assumption to make (in which case perhaps we should document this
|
---|
635 | * behaviour)?
|
---|
636 | */
|
---|
637 | if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
|
---|
638 | /*
|
---|
639 | * We have a match - so we could use this signature;
|
---|
640 | * Check proper object registration first, though.
|
---|
641 | * Don't care about return value as this may have been
|
---|
642 | * done within providers or previous calls to
|
---|
643 | * add_provider_sigalgs.
|
---|
644 | */
|
---|
645 | OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
|
---|
646 | /* sanity check: Without successful registration don't use alg */
|
---|
647 | if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
|
---|
648 | (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
|
---|
649 | ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
|
---|
650 | goto err;
|
---|
651 | }
|
---|
652 | if (sinf->sig_name != NULL)
|
---|
653 | OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
|
---|
654 | if (sinf->keytype != NULL)
|
---|
655 | OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
|
---|
656 | if (sinf->hash_name != NULL)
|
---|
657 | OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
|
---|
658 | OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
|
---|
659 | (sinf->hash_name != NULL
|
---|
660 | ? OBJ_txt2nid(sinf->hash_name)
|
---|
661 | : NID_undef),
|
---|
662 | OBJ_txt2nid(keytype));
|
---|
663 | ctx->sigalg_list_len++;
|
---|
664 | sinf = NULL;
|
---|
665 | }
|
---|
666 | EVP_KEYMGMT_free(keymgmt);
|
---|
667 | }
|
---|
668 | ERR_pop_to_mark();
|
---|
669 | err:
|
---|
670 | if (sinf != NULL) {
|
---|
671 | OPENSSL_free(sinf->name);
|
---|
672 | sinf->name = NULL;
|
---|
673 | OPENSSL_free(sinf->sigalg_name);
|
---|
674 | sinf->sigalg_name = NULL;
|
---|
675 | OPENSSL_free(sinf->sigalg_oid);
|
---|
676 | sinf->sigalg_oid = NULL;
|
---|
677 | OPENSSL_free(sinf->sig_name);
|
---|
678 | sinf->sig_name = NULL;
|
---|
679 | OPENSSL_free(sinf->sig_oid);
|
---|
680 | sinf->sig_oid = NULL;
|
---|
681 | OPENSSL_free(sinf->hash_name);
|
---|
682 | sinf->hash_name = NULL;
|
---|
683 | OPENSSL_free(sinf->hash_oid);
|
---|
684 | sinf->hash_oid = NULL;
|
---|
685 | OPENSSL_free(sinf->keytype);
|
---|
686 | sinf->keytype = NULL;
|
---|
687 | OPENSSL_free(sinf->keytype_oid);
|
---|
688 | sinf->keytype_oid = NULL;
|
---|
689 | }
|
---|
690 | return ret;
|
---|
691 | }
|
---|
692 |
|
---|
693 | static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
|
---|
694 | {
|
---|
695 | struct provider_ctx_data_st pgd;
|
---|
696 |
|
---|
697 | pgd.ctx = vctx;
|
---|
698 | pgd.provider = provider;
|
---|
699 | OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
|
---|
700 | add_provider_sigalgs, &pgd);
|
---|
701 | /*
|
---|
702 | * Always OK, even if provider doesn't support the capability:
|
---|
703 | * Reconsider testing retval when legacy sigalgs are also loaded this way.
|
---|
704 | */
|
---|
705 | return 1;
|
---|
706 | }
|
---|
707 |
|
---|
708 | int ssl_load_sigalgs(SSL_CTX *ctx)
|
---|
709 | {
|
---|
710 | size_t i;
|
---|
711 | SSL_CERT_LOOKUP lu;
|
---|
712 |
|
---|
713 | if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
|
---|
714 | return 0;
|
---|
715 |
|
---|
716 | /* now populate ctx->ssl_cert_info */
|
---|
717 | if (ctx->sigalg_list_len > 0) {
|
---|
718 | OPENSSL_free(ctx->ssl_cert_info);
|
---|
719 | ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
|
---|
720 | if (ctx->ssl_cert_info == NULL)
|
---|
721 | return 0;
|
---|
722 | for(i = 0; i < ctx->sigalg_list_len; i++) {
|
---|
723 | ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
|
---|
724 | ctx->ssl_cert_info[i].amask = SSL_aANY;
|
---|
725 | }
|
---|
726 | }
|
---|
727 |
|
---|
728 | /*
|
---|
729 | * For now, leave it at this: legacy sigalgs stay in their own
|
---|
730 | * data structures until "legacy cleanup" occurs.
|
---|
731 | */
|
---|
732 |
|
---|
733 | return 1;
|
---|
734 | }
|
---|
735 |
|
---|
736 | static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
|
---|
737 | {
|
---|
738 | size_t i;
|
---|
739 |
|
---|
740 | for (i = 0; i < ctx->group_list_len; i++) {
|
---|
741 | if (strcmp(ctx->group_list[i].tlsname, name) == 0
|
---|
742 | || strcmp(ctx->group_list[i].realname, name) == 0)
|
---|
743 | return ctx->group_list[i].group_id;
|
---|
744 | }
|
---|
745 |
|
---|
746 | return 0;
|
---|
747 | }
|
---|
748 |
|
---|
749 | const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
|
---|
750 | {
|
---|
751 | size_t i;
|
---|
752 |
|
---|
753 | for (i = 0; i < ctx->group_list_len; i++) {
|
---|
754 | if (ctx->group_list[i].group_id == group_id)
|
---|
755 | return &ctx->group_list[i];
|
---|
756 | }
|
---|
757 |
|
---|
758 | return NULL;
|
---|
759 | }
|
---|
760 |
|
---|
761 | const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
|
---|
762 | {
|
---|
763 | const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
|
---|
764 |
|
---|
765 | if (tls_group_info == NULL)
|
---|
766 | return NULL;
|
---|
767 |
|
---|
768 | return tls_group_info->tlsname;
|
---|
769 | }
|
---|
770 |
|
---|
771 | int tls1_group_id2nid(uint16_t group_id, int include_unknown)
|
---|
772 | {
|
---|
773 | size_t i;
|
---|
774 |
|
---|
775 | if (group_id == 0)
|
---|
776 | return NID_undef;
|
---|
777 |
|
---|
778 | /*
|
---|
779 | * Return well known Group NIDs - for backwards compatibility. This won't
|
---|
780 | * work for groups we don't know about.
|
---|
781 | */
|
---|
782 | for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
|
---|
783 | {
|
---|
784 | if (nid_to_group[i].group_id == group_id)
|
---|
785 | return nid_to_group[i].nid;
|
---|
786 | }
|
---|
787 | if (!include_unknown)
|
---|
788 | return NID_undef;
|
---|
789 | return TLSEXT_nid_unknown | (int)group_id;
|
---|
790 | }
|
---|
791 |
|
---|
792 | uint16_t tls1_nid2group_id(int nid)
|
---|
793 | {
|
---|
794 | size_t i;
|
---|
795 |
|
---|
796 | /*
|
---|
797 | * Return well known Group ids - for backwards compatibility. This won't
|
---|
798 | * work for groups we don't know about.
|
---|
799 | */
|
---|
800 | for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
|
---|
801 | {
|
---|
802 | if (nid_to_group[i].nid == nid)
|
---|
803 | return nid_to_group[i].group_id;
|
---|
804 | }
|
---|
805 |
|
---|
806 | return 0;
|
---|
807 | }
|
---|
808 |
|
---|
809 | /*
|
---|
810 | * Set *pgroups to the supported groups list and *pgroupslen to
|
---|
811 | * the number of groups supported.
|
---|
812 | */
|
---|
813 | void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
|
---|
814 | size_t *pgroupslen)
|
---|
815 | {
|
---|
816 | SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
|
---|
817 |
|
---|
818 | /* For Suite B mode only include P-256, P-384 */
|
---|
819 | switch (tls1_suiteb(s)) {
|
---|
820 | case SSL_CERT_FLAG_SUITEB_128_LOS:
|
---|
821 | *pgroups = suiteb_curves;
|
---|
822 | *pgroupslen = OSSL_NELEM(suiteb_curves);
|
---|
823 | break;
|
---|
824 |
|
---|
825 | case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
|
---|
826 | *pgroups = suiteb_curves;
|
---|
827 | *pgroupslen = 1;
|
---|
828 | break;
|
---|
829 |
|
---|
830 | case SSL_CERT_FLAG_SUITEB_192_LOS:
|
---|
831 | *pgroups = suiteb_curves + 1;
|
---|
832 | *pgroupslen = 1;
|
---|
833 | break;
|
---|
834 |
|
---|
835 | default:
|
---|
836 | if (s->ext.supportedgroups == NULL) {
|
---|
837 | *pgroups = sctx->ext.supported_groups_default;
|
---|
838 | *pgroupslen = sctx->ext.supported_groups_default_len;
|
---|
839 | } else {
|
---|
840 | *pgroups = s->ext.supportedgroups;
|
---|
841 | *pgroupslen = s->ext.supportedgroups_len;
|
---|
842 | }
|
---|
843 | break;
|
---|
844 | }
|
---|
845 | }
|
---|
846 |
|
---|
847 | int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
|
---|
848 | int minversion, int maxversion,
|
---|
849 | int isec, int *okfortls13)
|
---|
850 | {
|
---|
851 | const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
|
---|
852 | group_id);
|
---|
853 | int ret;
|
---|
854 | int group_minversion, group_maxversion;
|
---|
855 |
|
---|
856 | if (okfortls13 != NULL)
|
---|
857 | *okfortls13 = 0;
|
---|
858 |
|
---|
859 | if (ginfo == NULL)
|
---|
860 | return 0;
|
---|
861 |
|
---|
862 | group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
|
---|
863 | group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
|
---|
864 |
|
---|
865 | if (group_minversion < 0 || group_maxversion < 0)
|
---|
866 | return 0;
|
---|
867 | if (group_maxversion == 0)
|
---|
868 | ret = 1;
|
---|
869 | else
|
---|
870 | ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
|
---|
871 | if (group_minversion > 0)
|
---|
872 | ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
|
---|
873 |
|
---|
874 | if (!SSL_CONNECTION_IS_DTLS(s)) {
|
---|
875 | if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
|
---|
876 | *okfortls13 = (group_maxversion == 0)
|
---|
877 | || (group_maxversion >= TLS1_3_VERSION);
|
---|
878 | }
|
---|
879 | ret &= !isec
|
---|
880 | || strcmp(ginfo->algorithm, "EC") == 0
|
---|
881 | || strcmp(ginfo->algorithm, "X25519") == 0
|
---|
882 | || strcmp(ginfo->algorithm, "X448") == 0;
|
---|
883 |
|
---|
884 | return ret;
|
---|
885 | }
|
---|
886 |
|
---|
887 | /* See if group is allowed by security callback */
|
---|
888 | int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
|
---|
889 | {
|
---|
890 | const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
|
---|
891 | group);
|
---|
892 | unsigned char gtmp[2];
|
---|
893 |
|
---|
894 | if (ginfo == NULL)
|
---|
895 | return 0;
|
---|
896 |
|
---|
897 | gtmp[0] = group >> 8;
|
---|
898 | gtmp[1] = group & 0xff;
|
---|
899 | return ssl_security(s, op, ginfo->secbits,
|
---|
900 | tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
|
---|
901 | }
|
---|
902 |
|
---|
903 | /* Return 1 if "id" is in "list" */
|
---|
904 | static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
|
---|
905 | {
|
---|
906 | size_t i;
|
---|
907 | for (i = 0; i < listlen; i++)
|
---|
908 | if (list[i] == id)
|
---|
909 | return 1;
|
---|
910 | return 0;
|
---|
911 | }
|
---|
912 |
|
---|
913 | /*-
|
---|
914 | * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
|
---|
915 | * if there is no match.
|
---|
916 | * For nmatch == -1, return number of matches
|
---|
917 | * For nmatch == -2, return the id of the group to use for
|
---|
918 | * a tmp key, or 0 if there is no match.
|
---|
919 | */
|
---|
920 | uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
|
---|
921 | {
|
---|
922 | const uint16_t *pref, *supp;
|
---|
923 | size_t num_pref, num_supp, i;
|
---|
924 | int k;
|
---|
925 | SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
|
---|
926 |
|
---|
927 | /* Can't do anything on client side */
|
---|
928 | if (s->server == 0)
|
---|
929 | return 0;
|
---|
930 | if (nmatch == -2) {
|
---|
931 | if (tls1_suiteb(s)) {
|
---|
932 | /*
|
---|
933 | * For Suite B ciphersuite determines curve: we already know
|
---|
934 | * these are acceptable due to previous checks.
|
---|
935 | */
|
---|
936 | unsigned long cid = s->s3.tmp.new_cipher->id;
|
---|
937 |
|
---|
938 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
|
---|
939 | return OSSL_TLS_GROUP_ID_secp256r1;
|
---|
940 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
|
---|
941 | return OSSL_TLS_GROUP_ID_secp384r1;
|
---|
942 | /* Should never happen */
|
---|
943 | return 0;
|
---|
944 | }
|
---|
945 | /* If not Suite B just return first preference shared curve */
|
---|
946 | nmatch = 0;
|
---|
947 | }
|
---|
948 | /*
|
---|
949 | * If server preference set, our groups are the preference order
|
---|
950 | * otherwise peer decides.
|
---|
951 | */
|
---|
952 | if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
|
---|
953 | tls1_get_supported_groups(s, &pref, &num_pref);
|
---|
954 | tls1_get_peer_groups(s, &supp, &num_supp);
|
---|
955 | } else {
|
---|
956 | tls1_get_peer_groups(s, &pref, &num_pref);
|
---|
957 | tls1_get_supported_groups(s, &supp, &num_supp);
|
---|
958 | }
|
---|
959 |
|
---|
960 | for (k = 0, i = 0; i < num_pref; i++) {
|
---|
961 | uint16_t id = pref[i];
|
---|
962 | const TLS_GROUP_INFO *inf;
|
---|
963 | int minversion, maxversion;
|
---|
964 |
|
---|
965 | if (!tls1_in_list(id, supp, num_supp)
|
---|
966 | || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
|
---|
967 | continue;
|
---|
968 | inf = tls1_group_id_lookup(ctx, id);
|
---|
969 | if (!ossl_assert(inf != NULL))
|
---|
970 | return 0;
|
---|
971 |
|
---|
972 | minversion = SSL_CONNECTION_IS_DTLS(s)
|
---|
973 | ? inf->mindtls : inf->mintls;
|
---|
974 | maxversion = SSL_CONNECTION_IS_DTLS(s)
|
---|
975 | ? inf->maxdtls : inf->maxtls;
|
---|
976 | if (maxversion == -1)
|
---|
977 | continue;
|
---|
978 | if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
|
---|
979 | || (maxversion != 0
|
---|
980 | && ssl_version_cmp(s, s->version, maxversion) > 0))
|
---|
981 | continue;
|
---|
982 |
|
---|
983 | if (nmatch == k)
|
---|
984 | return id;
|
---|
985 | k++;
|
---|
986 | }
|
---|
987 | if (nmatch == -1)
|
---|
988 | return k;
|
---|
989 | /* Out of range (nmatch > k). */
|
---|
990 | return 0;
|
---|
991 | }
|
---|
992 |
|
---|
993 | int tls1_set_groups(uint16_t **pext, size_t *pextlen,
|
---|
994 | int *groups, size_t ngroups)
|
---|
995 | {
|
---|
996 | uint16_t *glist;
|
---|
997 | size_t i;
|
---|
998 | /*
|
---|
999 | * Bitmap of groups included to detect duplicates: two variables are added
|
---|
1000 | * to detect duplicates as some values are more than 32.
|
---|
1001 | */
|
---|
1002 | unsigned long *dup_list = NULL;
|
---|
1003 | unsigned long dup_list_egrp = 0;
|
---|
1004 | unsigned long dup_list_dhgrp = 0;
|
---|
1005 |
|
---|
1006 | if (ngroups == 0) {
|
---|
1007 | ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
|
---|
1008 | return 0;
|
---|
1009 | }
|
---|
1010 | if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
|
---|
1011 | return 0;
|
---|
1012 | for (i = 0; i < ngroups; i++) {
|
---|
1013 | unsigned long idmask;
|
---|
1014 | uint16_t id;
|
---|
1015 | id = tls1_nid2group_id(groups[i]);
|
---|
1016 | if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
|
---|
1017 | goto err;
|
---|
1018 | idmask = 1L << (id & 0x00FF);
|
---|
1019 | dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
|
---|
1020 | if (!id || ((*dup_list) & idmask))
|
---|
1021 | goto err;
|
---|
1022 | *dup_list |= idmask;
|
---|
1023 | glist[i] = id;
|
---|
1024 | }
|
---|
1025 | OPENSSL_free(*pext);
|
---|
1026 | *pext = glist;
|
---|
1027 | *pextlen = ngroups;
|
---|
1028 | return 1;
|
---|
1029 | err:
|
---|
1030 | OPENSSL_free(glist);
|
---|
1031 | return 0;
|
---|
1032 | }
|
---|
1033 |
|
---|
1034 | # define GROUPLIST_INCREMENT 40
|
---|
1035 | # define GROUP_NAME_BUFFER_LENGTH 64
|
---|
1036 | typedef struct {
|
---|
1037 | SSL_CTX *ctx;
|
---|
1038 | size_t gidcnt;
|
---|
1039 | size_t gidmax;
|
---|
1040 | uint16_t *gid_arr;
|
---|
1041 | } gid_cb_st;
|
---|
1042 |
|
---|
1043 | static int gid_cb(const char *elem, int len, void *arg)
|
---|
1044 | {
|
---|
1045 | gid_cb_st *garg = arg;
|
---|
1046 | size_t i;
|
---|
1047 | uint16_t gid = 0;
|
---|
1048 | char etmp[GROUP_NAME_BUFFER_LENGTH];
|
---|
1049 | int ignore_unknown = 0;
|
---|
1050 |
|
---|
1051 | if (elem == NULL)
|
---|
1052 | return 0;
|
---|
1053 | if (elem[0] == '?') {
|
---|
1054 | ignore_unknown = 1;
|
---|
1055 | ++elem;
|
---|
1056 | --len;
|
---|
1057 | }
|
---|
1058 | if (garg->gidcnt == garg->gidmax) {
|
---|
1059 | uint16_t *tmp =
|
---|
1060 | OPENSSL_realloc(garg->gid_arr,
|
---|
1061 | (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
|
---|
1062 | if (tmp == NULL)
|
---|
1063 | return 0;
|
---|
1064 | garg->gidmax += GROUPLIST_INCREMENT;
|
---|
1065 | garg->gid_arr = tmp;
|
---|
1066 | }
|
---|
1067 | if (len > (int)(sizeof(etmp) - 1))
|
---|
1068 | return 0;
|
---|
1069 | memcpy(etmp, elem, len);
|
---|
1070 | etmp[len] = 0;
|
---|
1071 |
|
---|
1072 | gid = tls1_group_name2id(garg->ctx, etmp);
|
---|
1073 | if (gid == 0) {
|
---|
1074 | /* Unknown group - ignore, if ignore_unknown */
|
---|
1075 | return ignore_unknown;
|
---|
1076 | }
|
---|
1077 | for (i = 0; i < garg->gidcnt; i++)
|
---|
1078 | if (garg->gid_arr[i] == gid) {
|
---|
1079 | /* Duplicate group - ignore */
|
---|
1080 | return 1;
|
---|
1081 | }
|
---|
1082 | garg->gid_arr[garg->gidcnt++] = gid;
|
---|
1083 | return 1;
|
---|
1084 | }
|
---|
1085 |
|
---|
1086 | /* Set groups based on a colon separated list */
|
---|
1087 | int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
|
---|
1088 | const char *str)
|
---|
1089 | {
|
---|
1090 | gid_cb_st gcb;
|
---|
1091 | uint16_t *tmparr;
|
---|
1092 | int ret = 0;
|
---|
1093 |
|
---|
1094 | gcb.gidcnt = 0;
|
---|
1095 | gcb.gidmax = GROUPLIST_INCREMENT;
|
---|
1096 | gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
|
---|
1097 | if (gcb.gid_arr == NULL)
|
---|
1098 | return 0;
|
---|
1099 | gcb.ctx = ctx;
|
---|
1100 | if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
|
---|
1101 | goto end;
|
---|
1102 | if (gcb.gidcnt == 0) {
|
---|
1103 | ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
|
---|
1104 | "No valid groups in '%s'", str);
|
---|
1105 | goto end;
|
---|
1106 | }
|
---|
1107 | if (pext == NULL) {
|
---|
1108 | ret = 1;
|
---|
1109 | goto end;
|
---|
1110 | }
|
---|
1111 |
|
---|
1112 | /*
|
---|
1113 | * gid_cb ensurse there are no duplicates so we can just go ahead and set
|
---|
1114 | * the result
|
---|
1115 | */
|
---|
1116 | tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
|
---|
1117 | if (tmparr == NULL)
|
---|
1118 | goto end;
|
---|
1119 | OPENSSL_free(*pext);
|
---|
1120 | *pext = tmparr;
|
---|
1121 | *pextlen = gcb.gidcnt;
|
---|
1122 | ret = 1;
|
---|
1123 | end:
|
---|
1124 | OPENSSL_free(gcb.gid_arr);
|
---|
1125 | return ret;
|
---|
1126 | }
|
---|
1127 |
|
---|
1128 | /* Check a group id matches preferences */
|
---|
1129 | int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
|
---|
1130 | int check_own_groups)
|
---|
1131 | {
|
---|
1132 | const uint16_t *groups;
|
---|
1133 | size_t groups_len;
|
---|
1134 |
|
---|
1135 | if (group_id == 0)
|
---|
1136 | return 0;
|
---|
1137 |
|
---|
1138 | /* Check for Suite B compliance */
|
---|
1139 | if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
|
---|
1140 | unsigned long cid = s->s3.tmp.new_cipher->id;
|
---|
1141 |
|
---|
1142 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
|
---|
1143 | if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
|
---|
1144 | return 0;
|
---|
1145 | } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
|
---|
1146 | if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
|
---|
1147 | return 0;
|
---|
1148 | } else {
|
---|
1149 | /* Should never happen */
|
---|
1150 | return 0;
|
---|
1151 | }
|
---|
1152 | }
|
---|
1153 |
|
---|
1154 | if (check_own_groups) {
|
---|
1155 | /* Check group is one of our preferences */
|
---|
1156 | tls1_get_supported_groups(s, &groups, &groups_len);
|
---|
1157 | if (!tls1_in_list(group_id, groups, groups_len))
|
---|
1158 | return 0;
|
---|
1159 | }
|
---|
1160 |
|
---|
1161 | if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
|
---|
1162 | return 0;
|
---|
1163 |
|
---|
1164 | /* For clients, nothing more to check */
|
---|
1165 | if (!s->server)
|
---|
1166 | return 1;
|
---|
1167 |
|
---|
1168 | /* Check group is one of peers preferences */
|
---|
1169 | tls1_get_peer_groups(s, &groups, &groups_len);
|
---|
1170 |
|
---|
1171 | /*
|
---|
1172 | * RFC 4492 does not require the supported elliptic curves extension
|
---|
1173 | * so if it is not sent we can just choose any curve.
|
---|
1174 | * It is invalid to send an empty list in the supported groups
|
---|
1175 | * extension, so groups_len == 0 always means no extension.
|
---|
1176 | */
|
---|
1177 | if (groups_len == 0)
|
---|
1178 | return 1;
|
---|
1179 | return tls1_in_list(group_id, groups, groups_len);
|
---|
1180 | }
|
---|
1181 |
|
---|
1182 | void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
|
---|
1183 | size_t *num_formats)
|
---|
1184 | {
|
---|
1185 | /*
|
---|
1186 | * If we have a custom point format list use it otherwise use default
|
---|
1187 | */
|
---|
1188 | if (s->ext.ecpointformats) {
|
---|
1189 | *pformats = s->ext.ecpointformats;
|
---|
1190 | *num_formats = s->ext.ecpointformats_len;
|
---|
1191 | } else {
|
---|
1192 | *pformats = ecformats_default;
|
---|
1193 | /* For Suite B we don't support char2 fields */
|
---|
1194 | if (tls1_suiteb(s))
|
---|
1195 | *num_formats = sizeof(ecformats_default) - 1;
|
---|
1196 | else
|
---|
1197 | *num_formats = sizeof(ecformats_default);
|
---|
1198 | }
|
---|
1199 | }
|
---|
1200 |
|
---|
1201 | /* Check a key is compatible with compression extension */
|
---|
1202 | static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
|
---|
1203 | {
|
---|
1204 | unsigned char comp_id;
|
---|
1205 | size_t i;
|
---|
1206 | int point_conv;
|
---|
1207 |
|
---|
1208 | /* If not an EC key nothing to check */
|
---|
1209 | if (!EVP_PKEY_is_a(pkey, "EC"))
|
---|
1210 | return 1;
|
---|
1211 |
|
---|
1212 |
|
---|
1213 | /* Get required compression id */
|
---|
1214 | point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
|
---|
1215 | if (point_conv == 0)
|
---|
1216 | return 0;
|
---|
1217 | if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
|
---|
1218 | comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
|
---|
1219 | } else if (SSL_CONNECTION_IS_TLS13(s)) {
|
---|
1220 | /*
|
---|
1221 | * ec_point_formats extension is not used in TLSv1.3 so we ignore
|
---|
1222 | * this check.
|
---|
1223 | */
|
---|
1224 | return 1;
|
---|
1225 | } else {
|
---|
1226 | int field_type = EVP_PKEY_get_field_type(pkey);
|
---|
1227 |
|
---|
1228 | if (field_type == NID_X9_62_prime_field)
|
---|
1229 | comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
|
---|
1230 | else if (field_type == NID_X9_62_characteristic_two_field)
|
---|
1231 | comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
|
---|
1232 | else
|
---|
1233 | return 0;
|
---|
1234 | }
|
---|
1235 | /*
|
---|
1236 | * If point formats extension present check it, otherwise everything is
|
---|
1237 | * supported (see RFC4492).
|
---|
1238 | */
|
---|
1239 | if (s->ext.peer_ecpointformats == NULL)
|
---|
1240 | return 1;
|
---|
1241 |
|
---|
1242 | for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
|
---|
1243 | if (s->ext.peer_ecpointformats[i] == comp_id)
|
---|
1244 | return 1;
|
---|
1245 | }
|
---|
1246 | return 0;
|
---|
1247 | }
|
---|
1248 |
|
---|
1249 | /* Return group id of a key */
|
---|
1250 | static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
|
---|
1251 | {
|
---|
1252 | int curve_nid = ssl_get_EC_curve_nid(pkey);
|
---|
1253 |
|
---|
1254 | if (curve_nid == NID_undef)
|
---|
1255 | return 0;
|
---|
1256 | return tls1_nid2group_id(curve_nid);
|
---|
1257 | }
|
---|
1258 |
|
---|
1259 | /*
|
---|
1260 | * Check cert parameters compatible with extensions: currently just checks EC
|
---|
1261 | * certificates have compatible curves and compression.
|
---|
1262 | */
|
---|
1263 | static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
|
---|
1264 | {
|
---|
1265 | uint16_t group_id;
|
---|
1266 | EVP_PKEY *pkey;
|
---|
1267 | pkey = X509_get0_pubkey(x);
|
---|
1268 | if (pkey == NULL)
|
---|
1269 | return 0;
|
---|
1270 | /* If not EC nothing to do */
|
---|
1271 | if (!EVP_PKEY_is_a(pkey, "EC"))
|
---|
1272 | return 1;
|
---|
1273 | /* Check compression */
|
---|
1274 | if (!tls1_check_pkey_comp(s, pkey))
|
---|
1275 | return 0;
|
---|
1276 | group_id = tls1_get_group_id(pkey);
|
---|
1277 | /*
|
---|
1278 | * For a server we allow the certificate to not be in our list of supported
|
---|
1279 | * groups.
|
---|
1280 | */
|
---|
1281 | if (!tls1_check_group_id(s, group_id, !s->server))
|
---|
1282 | return 0;
|
---|
1283 | /*
|
---|
1284 | * Special case for suite B. We *MUST* sign using SHA256+P-256 or
|
---|
1285 | * SHA384+P-384.
|
---|
1286 | */
|
---|
1287 | if (check_ee_md && tls1_suiteb(s)) {
|
---|
1288 | int check_md;
|
---|
1289 | size_t i;
|
---|
1290 |
|
---|
1291 | /* Check to see we have necessary signing algorithm */
|
---|
1292 | if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
|
---|
1293 | check_md = NID_ecdsa_with_SHA256;
|
---|
1294 | else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
|
---|
1295 | check_md = NID_ecdsa_with_SHA384;
|
---|
1296 | else
|
---|
1297 | return 0; /* Should never happen */
|
---|
1298 | for (i = 0; i < s->shared_sigalgslen; i++) {
|
---|
1299 | if (check_md == s->shared_sigalgs[i]->sigandhash)
|
---|
1300 | return 1;
|
---|
1301 | }
|
---|
1302 | return 0;
|
---|
1303 | }
|
---|
1304 | return 1;
|
---|
1305 | }
|
---|
1306 |
|
---|
1307 | /*
|
---|
1308 | * tls1_check_ec_tmp_key - Check EC temporary key compatibility
|
---|
1309 | * @s: SSL connection
|
---|
1310 | * @cid: Cipher ID we're considering using
|
---|
1311 | *
|
---|
1312 | * Checks that the kECDHE cipher suite we're considering using
|
---|
1313 | * is compatible with the client extensions.
|
---|
1314 | *
|
---|
1315 | * Returns 0 when the cipher can't be used or 1 when it can.
|
---|
1316 | */
|
---|
1317 | int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
|
---|
1318 | {
|
---|
1319 | /* If not Suite B just need a shared group */
|
---|
1320 | if (!tls1_suiteb(s))
|
---|
1321 | return tls1_shared_group(s, 0) != 0;
|
---|
1322 | /*
|
---|
1323 | * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
|
---|
1324 | * curves permitted.
|
---|
1325 | */
|
---|
1326 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
|
---|
1327 | return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
|
---|
1328 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
|
---|
1329 | return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
|
---|
1330 |
|
---|
1331 | return 0;
|
---|
1332 | }
|
---|
1333 |
|
---|
1334 | /* Default sigalg schemes */
|
---|
1335 | static const uint16_t tls12_sigalgs[] = {
|
---|
1336 | TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
|
---|
1337 | TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
|
---|
1338 | TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
|
---|
1339 | TLSEXT_SIGALG_ed25519,
|
---|
1340 | TLSEXT_SIGALG_ed448,
|
---|
1341 | TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
|
---|
1342 | TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
|
---|
1343 | TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
|
---|
1344 |
|
---|
1345 | TLSEXT_SIGALG_rsa_pss_pss_sha256,
|
---|
1346 | TLSEXT_SIGALG_rsa_pss_pss_sha384,
|
---|
1347 | TLSEXT_SIGALG_rsa_pss_pss_sha512,
|
---|
1348 | TLSEXT_SIGALG_rsa_pss_rsae_sha256,
|
---|
1349 | TLSEXT_SIGALG_rsa_pss_rsae_sha384,
|
---|
1350 | TLSEXT_SIGALG_rsa_pss_rsae_sha512,
|
---|
1351 |
|
---|
1352 | TLSEXT_SIGALG_rsa_pkcs1_sha256,
|
---|
1353 | TLSEXT_SIGALG_rsa_pkcs1_sha384,
|
---|
1354 | TLSEXT_SIGALG_rsa_pkcs1_sha512,
|
---|
1355 |
|
---|
1356 | TLSEXT_SIGALG_ecdsa_sha224,
|
---|
1357 | TLSEXT_SIGALG_ecdsa_sha1,
|
---|
1358 |
|
---|
1359 | TLSEXT_SIGALG_rsa_pkcs1_sha224,
|
---|
1360 | TLSEXT_SIGALG_rsa_pkcs1_sha1,
|
---|
1361 |
|
---|
1362 | TLSEXT_SIGALG_dsa_sha224,
|
---|
1363 | TLSEXT_SIGALG_dsa_sha1,
|
---|
1364 |
|
---|
1365 | TLSEXT_SIGALG_dsa_sha256,
|
---|
1366 | TLSEXT_SIGALG_dsa_sha384,
|
---|
1367 | TLSEXT_SIGALG_dsa_sha512,
|
---|
1368 |
|
---|
1369 | #ifndef OPENSSL_NO_GOST
|
---|
1370 | TLSEXT_SIGALG_gostr34102012_256_intrinsic,
|
---|
1371 | TLSEXT_SIGALG_gostr34102012_512_intrinsic,
|
---|
1372 | TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
|
---|
1373 | TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
|
---|
1374 | TLSEXT_SIGALG_gostr34102001_gostr3411,
|
---|
1375 | #endif
|
---|
1376 | };
|
---|
1377 |
|
---|
1378 |
|
---|
1379 | static const uint16_t suiteb_sigalgs[] = {
|
---|
1380 | TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
|
---|
1381 | TLSEXT_SIGALG_ecdsa_secp384r1_sha384
|
---|
1382 | };
|
---|
1383 |
|
---|
1384 | static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
|
---|
1385 | {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
|
---|
1386 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
---|
1387 | NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
|
---|
1388 | {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
|
---|
1389 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
---|
1390 | NID_ecdsa_with_SHA384, NID_secp384r1, 1},
|
---|
1391 | {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
|
---|
1392 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
---|
1393 | NID_ecdsa_with_SHA512, NID_secp521r1, 1},
|
---|
1394 | {"ed25519", TLSEXT_SIGALG_ed25519,
|
---|
1395 | NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
|
---|
1396 | NID_undef, NID_undef, 1},
|
---|
1397 | {"ed448", TLSEXT_SIGALG_ed448,
|
---|
1398 | NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
|
---|
1399 | NID_undef, NID_undef, 1},
|
---|
1400 | {NULL, TLSEXT_SIGALG_ecdsa_sha224,
|
---|
1401 | NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
---|
1402 | NID_ecdsa_with_SHA224, NID_undef, 1},
|
---|
1403 | {NULL, TLSEXT_SIGALG_ecdsa_sha1,
|
---|
1404 | NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
---|
1405 | NID_ecdsa_with_SHA1, NID_undef, 1},
|
---|
1406 | {"ecdsa_brainpoolP256r1_sha256", TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
|
---|
1407 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
---|
1408 | NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},
|
---|
1409 | {"ecdsa_brainpoolP384r1_sha384", TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
|
---|
1410 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
---|
1411 | NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},
|
---|
1412 | {"ecdsa_brainpoolP512r1_sha512", TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
|
---|
1413 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
|
---|
1414 | NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},
|
---|
1415 | {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
|
---|
1416 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
|
---|
1417 | NID_undef, NID_undef, 1},
|
---|
1418 | {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
|
---|
1419 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
|
---|
1420 | NID_undef, NID_undef, 1},
|
---|
1421 | {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
|
---|
1422 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
|
---|
1423 | NID_undef, NID_undef, 1},
|
---|
1424 | {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
|
---|
1425 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
|
---|
1426 | NID_undef, NID_undef, 1},
|
---|
1427 | {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
|
---|
1428 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
|
---|
1429 | NID_undef, NID_undef, 1},
|
---|
1430 | {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
|
---|
1431 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
|
---|
1432 | NID_undef, NID_undef, 1},
|
---|
1433 | {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
|
---|
1434 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
|
---|
1435 | NID_sha256WithRSAEncryption, NID_undef, 1},
|
---|
1436 | {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
|
---|
1437 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
|
---|
1438 | NID_sha384WithRSAEncryption, NID_undef, 1},
|
---|
1439 | {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
|
---|
1440 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
|
---|
1441 | NID_sha512WithRSAEncryption, NID_undef, 1},
|
---|
1442 | {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
|
---|
1443 | NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
|
---|
1444 | NID_sha224WithRSAEncryption, NID_undef, 1},
|
---|
1445 | {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
|
---|
1446 | NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
|
---|
1447 | NID_sha1WithRSAEncryption, NID_undef, 1},
|
---|
1448 | {NULL, TLSEXT_SIGALG_dsa_sha256,
|
---|
1449 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
|
---|
1450 | NID_dsa_with_SHA256, NID_undef, 1},
|
---|
1451 | {NULL, TLSEXT_SIGALG_dsa_sha384,
|
---|
1452 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
|
---|
1453 | NID_undef, NID_undef, 1},
|
---|
1454 | {NULL, TLSEXT_SIGALG_dsa_sha512,
|
---|
1455 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
|
---|
1456 | NID_undef, NID_undef, 1},
|
---|
1457 | {NULL, TLSEXT_SIGALG_dsa_sha224,
|
---|
1458 | NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
|
---|
1459 | NID_undef, NID_undef, 1},
|
---|
1460 | {NULL, TLSEXT_SIGALG_dsa_sha1,
|
---|
1461 | NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
|
---|
1462 | NID_dsaWithSHA1, NID_undef, 1},
|
---|
1463 | #ifndef OPENSSL_NO_GOST
|
---|
1464 | {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
|
---|
1465 | NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
|
---|
1466 | NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
|
---|
1467 | NID_undef, NID_undef, 1},
|
---|
1468 | {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
|
---|
1469 | NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
|
---|
1470 | NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
|
---|
1471 | NID_undef, NID_undef, 1},
|
---|
1472 | {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
|
---|
1473 | NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
|
---|
1474 | NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
|
---|
1475 | NID_undef, NID_undef, 1},
|
---|
1476 | {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
|
---|
1477 | NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
|
---|
1478 | NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
|
---|
1479 | NID_undef, NID_undef, 1},
|
---|
1480 | {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
|
---|
1481 | NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
|
---|
1482 | NID_id_GostR3410_2001, SSL_PKEY_GOST01,
|
---|
1483 | NID_undef, NID_undef, 1}
|
---|
1484 | #endif
|
---|
1485 | };
|
---|
1486 | /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
|
---|
1487 | static const SIGALG_LOOKUP legacy_rsa_sigalg = {
|
---|
1488 | "rsa_pkcs1_md5_sha1", 0,
|
---|
1489 | NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
|
---|
1490 | EVP_PKEY_RSA, SSL_PKEY_RSA,
|
---|
1491 | NID_undef, NID_undef, 1
|
---|
1492 | };
|
---|
1493 |
|
---|
1494 | /*
|
---|
1495 | * Default signature algorithm values used if signature algorithms not present.
|
---|
1496 | * From RFC5246. Note: order must match certificate index order.
|
---|
1497 | */
|
---|
1498 | static const uint16_t tls_default_sigalg[] = {
|
---|
1499 | TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
|
---|
1500 | 0, /* SSL_PKEY_RSA_PSS_SIGN */
|
---|
1501 | TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
|
---|
1502 | TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
|
---|
1503 | TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
|
---|
1504 | TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
|
---|
1505 | TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
|
---|
1506 | 0, /* SSL_PKEY_ED25519 */
|
---|
1507 | 0, /* SSL_PKEY_ED448 */
|
---|
1508 | };
|
---|
1509 |
|
---|
1510 | int ssl_setup_sigalgs(SSL_CTX *ctx)
|
---|
1511 | {
|
---|
1512 | size_t i, cache_idx, sigalgs_len;
|
---|
1513 | const SIGALG_LOOKUP *lu;
|
---|
1514 | SIGALG_LOOKUP *cache = NULL;
|
---|
1515 | uint16_t *tls12_sigalgs_list = NULL;
|
---|
1516 | EVP_PKEY *tmpkey = EVP_PKEY_new();
|
---|
1517 | int ret = 0;
|
---|
1518 |
|
---|
1519 | if (ctx == NULL)
|
---|
1520 | goto err;
|
---|
1521 |
|
---|
1522 | sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
|
---|
1523 |
|
---|
1524 | cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
|
---|
1525 | if (cache == NULL || tmpkey == NULL)
|
---|
1526 | goto err;
|
---|
1527 |
|
---|
1528 | tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);
|
---|
1529 | if (tls12_sigalgs_list == NULL)
|
---|
1530 | goto err;
|
---|
1531 |
|
---|
1532 | ERR_set_mark();
|
---|
1533 | /* First fill cache and tls12_sigalgs list from legacy algorithm list */
|
---|
1534 | for (i = 0, lu = sigalg_lookup_tbl;
|
---|
1535 | i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
|
---|
1536 | EVP_PKEY_CTX *pctx;
|
---|
1537 |
|
---|
1538 | cache[i] = *lu;
|
---|
1539 | tls12_sigalgs_list[i] = tls12_sigalgs[i];
|
---|
1540 |
|
---|
1541 | /*
|
---|
1542 | * Check hash is available.
|
---|
1543 | * This test is not perfect. A provider could have support
|
---|
1544 | * for a signature scheme, but not a particular hash. However the hash
|
---|
1545 | * could be available from some other loaded provider. In that case it
|
---|
1546 | * could be that the signature is available, and the hash is available
|
---|
1547 | * independently - but not as a combination. We ignore this for now.
|
---|
1548 | */
|
---|
1549 | if (lu->hash != NID_undef
|
---|
1550 | && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
|
---|
1551 | cache[i].enabled = 0;
|
---|
1552 | continue;
|
---|
1553 | }
|
---|
1554 |
|
---|
1555 | if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
|
---|
1556 | cache[i].enabled = 0;
|
---|
1557 | continue;
|
---|
1558 | }
|
---|
1559 | pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
|
---|
1560 | /* If unable to create pctx we assume the sig algorithm is unavailable */
|
---|
1561 | if (pctx == NULL)
|
---|
1562 | cache[i].enabled = 0;
|
---|
1563 | EVP_PKEY_CTX_free(pctx);
|
---|
1564 | }
|
---|
1565 |
|
---|
1566 | /* Now complete cache and tls12_sigalgs list with provider sig information */
|
---|
1567 | cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
|
---|
1568 | for (i = 0; i < ctx->sigalg_list_len; i++) {
|
---|
1569 | TLS_SIGALG_INFO si = ctx->sigalg_list[i];
|
---|
1570 | cache[cache_idx].name = si.name;
|
---|
1571 | cache[cache_idx].sigalg = si.code_point;
|
---|
1572 | tls12_sigalgs_list[cache_idx] = si.code_point;
|
---|
1573 | cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
|
---|
1574 | cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
|
---|
1575 | cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
|
---|
1576 | cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
|
---|
1577 | cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
|
---|
1578 | cache[cache_idx].curve = NID_undef;
|
---|
1579 | /* all provided sigalgs are enabled by load */
|
---|
1580 | cache[cache_idx].enabled = 1;
|
---|
1581 | cache_idx++;
|
---|
1582 | }
|
---|
1583 | ERR_pop_to_mark();
|
---|
1584 | ctx->sigalg_lookup_cache = cache;
|
---|
1585 | ctx->tls12_sigalgs = tls12_sigalgs_list;
|
---|
1586 | ctx->tls12_sigalgs_len = sigalgs_len;
|
---|
1587 | cache = NULL;
|
---|
1588 | tls12_sigalgs_list = NULL;
|
---|
1589 |
|
---|
1590 | ret = 1;
|
---|
1591 | err:
|
---|
1592 | OPENSSL_free(cache);
|
---|
1593 | OPENSSL_free(tls12_sigalgs_list);
|
---|
1594 | EVP_PKEY_free(tmpkey);
|
---|
1595 | return ret;
|
---|
1596 | }
|
---|
1597 |
|
---|
1598 | /* Lookup TLS signature algorithm */
|
---|
1599 | static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
|
---|
1600 | uint16_t sigalg)
|
---|
1601 | {
|
---|
1602 | size_t i;
|
---|
1603 | const SIGALG_LOOKUP *lu;
|
---|
1604 |
|
---|
1605 | for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
|
---|
1606 | i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
|
---|
1607 | lu++, i++) {
|
---|
1608 | if (lu->sigalg == sigalg) {
|
---|
1609 | if (!lu->enabled)
|
---|
1610 | return NULL;
|
---|
1611 | return lu;
|
---|
1612 | }
|
---|
1613 | }
|
---|
1614 | return NULL;
|
---|
1615 | }
|
---|
1616 | /* Lookup hash: return 0 if invalid or not enabled */
|
---|
1617 | int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
|
---|
1618 | {
|
---|
1619 | const EVP_MD *md;
|
---|
1620 |
|
---|
1621 | if (lu == NULL)
|
---|
1622 | return 0;
|
---|
1623 | /* lu->hash == NID_undef means no associated digest */
|
---|
1624 | if (lu->hash == NID_undef) {
|
---|
1625 | md = NULL;
|
---|
1626 | } else {
|
---|
1627 | md = ssl_md(ctx, lu->hash_idx);
|
---|
1628 | if (md == NULL)
|
---|
1629 | return 0;
|
---|
1630 | }
|
---|
1631 | if (pmd)
|
---|
1632 | *pmd = md;
|
---|
1633 | return 1;
|
---|
1634 | }
|
---|
1635 |
|
---|
1636 | /*
|
---|
1637 | * Check if key is large enough to generate RSA-PSS signature.
|
---|
1638 | *
|
---|
1639 | * The key must greater than or equal to 2 * hash length + 2.
|
---|
1640 | * SHA512 has a hash length of 64 bytes, which is incompatible
|
---|
1641 | * with a 128 byte (1024 bit) key.
|
---|
1642 | */
|
---|
1643 | #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
|
---|
1644 | static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
|
---|
1645 | const SIGALG_LOOKUP *lu)
|
---|
1646 | {
|
---|
1647 | const EVP_MD *md;
|
---|
1648 |
|
---|
1649 | if (pkey == NULL)
|
---|
1650 | return 0;
|
---|
1651 | if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
|
---|
1652 | return 0;
|
---|
1653 | if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
|
---|
1654 | return 0;
|
---|
1655 | return 1;
|
---|
1656 | }
|
---|
1657 |
|
---|
1658 | /*
|
---|
1659 | * Returns a signature algorithm when the peer did not send a list of supported
|
---|
1660 | * signature algorithms. The signature algorithm is fixed for the certificate
|
---|
1661 | * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
|
---|
1662 | * certificate type from |s| will be used.
|
---|
1663 | * Returns the signature algorithm to use, or NULL on error.
|
---|
1664 | */
|
---|
1665 | static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
|
---|
1666 | int idx)
|
---|
1667 | {
|
---|
1668 | if (idx == -1) {
|
---|
1669 | if (s->server) {
|
---|
1670 | size_t i;
|
---|
1671 |
|
---|
1672 | /* Work out index corresponding to ciphersuite */
|
---|
1673 | for (i = 0; i < s->ssl_pkey_num; i++) {
|
---|
1674 | const SSL_CERT_LOOKUP *clu
|
---|
1675 | = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
|
---|
1676 |
|
---|
1677 | if (clu == NULL)
|
---|
1678 | continue;
|
---|
1679 | if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
|
---|
1680 | idx = i;
|
---|
1681 | break;
|
---|
1682 | }
|
---|
1683 | }
|
---|
1684 |
|
---|
1685 | /*
|
---|
1686 | * Some GOST ciphersuites allow more than one signature algorithms
|
---|
1687 | * */
|
---|
1688 | if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
|
---|
1689 | int real_idx;
|
---|
1690 |
|
---|
1691 | for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
|
---|
1692 | real_idx--) {
|
---|
1693 | if (s->cert->pkeys[real_idx].privatekey != NULL) {
|
---|
1694 | idx = real_idx;
|
---|
1695 | break;
|
---|
1696 | }
|
---|
1697 | }
|
---|
1698 | }
|
---|
1699 | /*
|
---|
1700 | * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
|
---|
1701 | * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
|
---|
1702 | */
|
---|
1703 | else if (idx == SSL_PKEY_GOST12_256) {
|
---|
1704 | int real_idx;
|
---|
1705 |
|
---|
1706 | for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
|
---|
1707 | real_idx--) {
|
---|
1708 | if (s->cert->pkeys[real_idx].privatekey != NULL) {
|
---|
1709 | idx = real_idx;
|
---|
1710 | break;
|
---|
1711 | }
|
---|
1712 | }
|
---|
1713 | }
|
---|
1714 | } else {
|
---|
1715 | idx = s->cert->key - s->cert->pkeys;
|
---|
1716 | }
|
---|
1717 | }
|
---|
1718 | if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
|
---|
1719 | return NULL;
|
---|
1720 |
|
---|
1721 | if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
|
---|
1722 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
|
---|
1723 |
|
---|
1724 | if (lu == NULL)
|
---|
1725 | return NULL;
|
---|
1726 | if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
|
---|
1727 | return NULL;
|
---|
1728 | if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
|
---|
1729 | return NULL;
|
---|
1730 | return lu;
|
---|
1731 | }
|
---|
1732 | if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
|
---|
1733 | return NULL;
|
---|
1734 | return &legacy_rsa_sigalg;
|
---|
1735 | }
|
---|
1736 | /* Set peer sigalg based key type */
|
---|
1737 | int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
|
---|
1738 | {
|
---|
1739 | size_t idx;
|
---|
1740 | const SIGALG_LOOKUP *lu;
|
---|
1741 |
|
---|
1742 | if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
|
---|
1743 | return 0;
|
---|
1744 | lu = tls1_get_legacy_sigalg(s, idx);
|
---|
1745 | if (lu == NULL)
|
---|
1746 | return 0;
|
---|
1747 | s->s3.tmp.peer_sigalg = lu;
|
---|
1748 | return 1;
|
---|
1749 | }
|
---|
1750 |
|
---|
1751 | size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
|
---|
1752 | {
|
---|
1753 | /*
|
---|
1754 | * If Suite B mode use Suite B sigalgs only, ignore any other
|
---|
1755 | * preferences.
|
---|
1756 | */
|
---|
1757 | switch (tls1_suiteb(s)) {
|
---|
1758 | case SSL_CERT_FLAG_SUITEB_128_LOS:
|
---|
1759 | *psigs = suiteb_sigalgs;
|
---|
1760 | return OSSL_NELEM(suiteb_sigalgs);
|
---|
1761 |
|
---|
1762 | case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
|
---|
1763 | *psigs = suiteb_sigalgs;
|
---|
1764 | return 1;
|
---|
1765 |
|
---|
1766 | case SSL_CERT_FLAG_SUITEB_192_LOS:
|
---|
1767 | *psigs = suiteb_sigalgs + 1;
|
---|
1768 | return 1;
|
---|
1769 | }
|
---|
1770 | /*
|
---|
1771 | * We use client_sigalgs (if not NULL) if we're a server
|
---|
1772 | * and sending a certificate request or if we're a client and
|
---|
1773 | * determining which shared algorithm to use.
|
---|
1774 | */
|
---|
1775 | if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
|
---|
1776 | *psigs = s->cert->client_sigalgs;
|
---|
1777 | return s->cert->client_sigalgslen;
|
---|
1778 | } else if (s->cert->conf_sigalgs) {
|
---|
1779 | *psigs = s->cert->conf_sigalgs;
|
---|
1780 | return s->cert->conf_sigalgslen;
|
---|
1781 | } else {
|
---|
1782 | *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
|
---|
1783 | return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
|
---|
1784 | }
|
---|
1785 | }
|
---|
1786 |
|
---|
1787 | /*
|
---|
1788 | * Called by servers only. Checks that we have a sig alg that supports the
|
---|
1789 | * specified EC curve.
|
---|
1790 | */
|
---|
1791 | int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
|
---|
1792 | {
|
---|
1793 | const uint16_t *sigs;
|
---|
1794 | size_t siglen, i;
|
---|
1795 |
|
---|
1796 | if (s->cert->conf_sigalgs) {
|
---|
1797 | sigs = s->cert->conf_sigalgs;
|
---|
1798 | siglen = s->cert->conf_sigalgslen;
|
---|
1799 | } else {
|
---|
1800 | sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
|
---|
1801 | siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
|
---|
1802 | }
|
---|
1803 |
|
---|
1804 | for (i = 0; i < siglen; i++) {
|
---|
1805 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
|
---|
1806 |
|
---|
1807 | if (lu == NULL)
|
---|
1808 | continue;
|
---|
1809 | if (lu->sig == EVP_PKEY_EC
|
---|
1810 | && lu->curve != NID_undef
|
---|
1811 | && curve == lu->curve)
|
---|
1812 | return 1;
|
---|
1813 | }
|
---|
1814 |
|
---|
1815 | return 0;
|
---|
1816 | }
|
---|
1817 |
|
---|
1818 | /*
|
---|
1819 | * Return the number of security bits for the signature algorithm, or 0 on
|
---|
1820 | * error.
|
---|
1821 | */
|
---|
1822 | static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
|
---|
1823 | {
|
---|
1824 | const EVP_MD *md = NULL;
|
---|
1825 | int secbits = 0;
|
---|
1826 |
|
---|
1827 | if (!tls1_lookup_md(ctx, lu, &md))
|
---|
1828 | return 0;
|
---|
1829 | if (md != NULL)
|
---|
1830 | {
|
---|
1831 | int md_type = EVP_MD_get_type(md);
|
---|
1832 |
|
---|
1833 | /* Security bits: half digest bits */
|
---|
1834 | secbits = EVP_MD_get_size(md) * 4;
|
---|
1835 | /*
|
---|
1836 | * SHA1 and MD5 are known to be broken. Reduce security bits so that
|
---|
1837 | * they're no longer accepted at security level 1. The real values don't
|
---|
1838 | * really matter as long as they're lower than 80, which is our
|
---|
1839 | * security level 1.
|
---|
1840 | * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
|
---|
1841 | * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
|
---|
1842 | * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
|
---|
1843 | * puts a chosen-prefix attack for MD5 at 2^39.
|
---|
1844 | */
|
---|
1845 | if (md_type == NID_sha1)
|
---|
1846 | secbits = 64;
|
---|
1847 | else if (md_type == NID_md5_sha1)
|
---|
1848 | secbits = 67;
|
---|
1849 | else if (md_type == NID_md5)
|
---|
1850 | secbits = 39;
|
---|
1851 | } else {
|
---|
1852 | /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
|
---|
1853 | if (lu->sigalg == TLSEXT_SIGALG_ed25519)
|
---|
1854 | secbits = 128;
|
---|
1855 | else if (lu->sigalg == TLSEXT_SIGALG_ed448)
|
---|
1856 | secbits = 224;
|
---|
1857 | }
|
---|
1858 | /*
|
---|
1859 | * For provider-based sigalgs we have secbits information available
|
---|
1860 | * in the (provider-loaded) sigalg_list structure
|
---|
1861 | */
|
---|
1862 | if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
|
---|
1863 | && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
|
---|
1864 | secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
|
---|
1865 | }
|
---|
1866 | return secbits;
|
---|
1867 | }
|
---|
1868 |
|
---|
1869 | /*
|
---|
1870 | * Check signature algorithm is consistent with sent supported signature
|
---|
1871 | * algorithms and if so set relevant digest and signature scheme in
|
---|
1872 | * s.
|
---|
1873 | */
|
---|
1874 | int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
|
---|
1875 | {
|
---|
1876 | const uint16_t *sent_sigs;
|
---|
1877 | const EVP_MD *md = NULL;
|
---|
1878 | char sigalgstr[2];
|
---|
1879 | size_t sent_sigslen, i, cidx;
|
---|
1880 | int pkeyid = -1;
|
---|
1881 | const SIGALG_LOOKUP *lu;
|
---|
1882 | int secbits = 0;
|
---|
1883 |
|
---|
1884 | pkeyid = EVP_PKEY_get_id(pkey);
|
---|
1885 |
|
---|
1886 | if (SSL_CONNECTION_IS_TLS13(s)) {
|
---|
1887 | /* Disallow DSA for TLS 1.3 */
|
---|
1888 | if (pkeyid == EVP_PKEY_DSA) {
|
---|
1889 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
1890 | return 0;
|
---|
1891 | }
|
---|
1892 | /* Only allow PSS for TLS 1.3 */
|
---|
1893 | if (pkeyid == EVP_PKEY_RSA)
|
---|
1894 | pkeyid = EVP_PKEY_RSA_PSS;
|
---|
1895 | }
|
---|
1896 | lu = tls1_lookup_sigalg(s, sig);
|
---|
1897 | /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
|
---|
1898 | if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))
|
---|
1899 | pkeyid = lu->sig;
|
---|
1900 |
|
---|
1901 | /* Should never happen */
|
---|
1902 | if (pkeyid == -1)
|
---|
1903 | return -1;
|
---|
1904 |
|
---|
1905 | /*
|
---|
1906 | * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
|
---|
1907 | * is consistent with signature: RSA keys can be used for RSA-PSS
|
---|
1908 | */
|
---|
1909 | if (lu == NULL
|
---|
1910 | || (SSL_CONNECTION_IS_TLS13(s)
|
---|
1911 | && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
|
---|
1912 | || (pkeyid != lu->sig
|
---|
1913 | && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
|
---|
1914 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
1915 | return 0;
|
---|
1916 | }
|
---|
1917 | /* Check the sigalg is consistent with the key OID */
|
---|
1918 | if (!ssl_cert_lookup_by_nid(
|
---|
1919 | (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
|
---|
1920 | &cidx, SSL_CONNECTION_GET_CTX(s))
|
---|
1921 | || lu->sig_idx != (int)cidx) {
|
---|
1922 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
1923 | return 0;
|
---|
1924 | }
|
---|
1925 |
|
---|
1926 | if (pkeyid == EVP_PKEY_EC) {
|
---|
1927 |
|
---|
1928 | /* Check point compression is permitted */
|
---|
1929 | if (!tls1_check_pkey_comp(s, pkey)) {
|
---|
1930 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
|
---|
1931 | SSL_R_ILLEGAL_POINT_COMPRESSION);
|
---|
1932 | return 0;
|
---|
1933 | }
|
---|
1934 |
|
---|
1935 | /* For TLS 1.3 or Suite B check curve matches signature algorithm */
|
---|
1936 | if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
|
---|
1937 | int curve = ssl_get_EC_curve_nid(pkey);
|
---|
1938 |
|
---|
1939 | if (lu->curve != NID_undef && curve != lu->curve) {
|
---|
1940 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
|
---|
1941 | return 0;
|
---|
1942 | }
|
---|
1943 | }
|
---|
1944 | if (!SSL_CONNECTION_IS_TLS13(s)) {
|
---|
1945 | /* Check curve matches extensions */
|
---|
1946 | if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
|
---|
1947 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
|
---|
1948 | return 0;
|
---|
1949 | }
|
---|
1950 | if (tls1_suiteb(s)) {
|
---|
1951 | /* Check sigalg matches a permissible Suite B value */
|
---|
1952 | if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
|
---|
1953 | && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
|
---|
1954 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
---|
1955 | SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
1956 | return 0;
|
---|
1957 | }
|
---|
1958 | }
|
---|
1959 | }
|
---|
1960 | } else if (tls1_suiteb(s)) {
|
---|
1961 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
1962 | return 0;
|
---|
1963 | }
|
---|
1964 |
|
---|
1965 | /* Check signature matches a type we sent */
|
---|
1966 | sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
|
---|
1967 | for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
|
---|
1968 | if (sig == *sent_sigs)
|
---|
1969 | break;
|
---|
1970 | }
|
---|
1971 | /* Allow fallback to SHA1 if not strict mode */
|
---|
1972 | if (i == sent_sigslen && (lu->hash != NID_sha1
|
---|
1973 | || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
|
---|
1974 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
1975 | return 0;
|
---|
1976 | }
|
---|
1977 | if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
|
---|
1978 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
|
---|
1979 | return 0;
|
---|
1980 | }
|
---|
1981 | /*
|
---|
1982 | * Make sure security callback allows algorithm. For historical
|
---|
1983 | * reasons we have to pass the sigalg as a two byte char array.
|
---|
1984 | */
|
---|
1985 | sigalgstr[0] = (sig >> 8) & 0xff;
|
---|
1986 | sigalgstr[1] = sig & 0xff;
|
---|
1987 | secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
|
---|
1988 | if (secbits == 0 ||
|
---|
1989 | !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
|
---|
1990 | md != NULL ? EVP_MD_get_type(md) : NID_undef,
|
---|
1991 | (void *)sigalgstr)) {
|
---|
1992 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
1993 | return 0;
|
---|
1994 | }
|
---|
1995 | /* Store the sigalg the peer uses */
|
---|
1996 | s->s3.tmp.peer_sigalg = lu;
|
---|
1997 | return 1;
|
---|
1998 | }
|
---|
1999 |
|
---|
2000 | int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
|
---|
2001 | {
|
---|
2002 | const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
|
---|
2003 |
|
---|
2004 | if (sc == NULL)
|
---|
2005 | return 0;
|
---|
2006 |
|
---|
2007 | if (sc->s3.tmp.peer_sigalg == NULL)
|
---|
2008 | return 0;
|
---|
2009 | *pnid = sc->s3.tmp.peer_sigalg->sig;
|
---|
2010 | return 1;
|
---|
2011 | }
|
---|
2012 |
|
---|
2013 | int SSL_get_signature_type_nid(const SSL *s, int *pnid)
|
---|
2014 | {
|
---|
2015 | const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
|
---|
2016 |
|
---|
2017 | if (sc == NULL)
|
---|
2018 | return 0;
|
---|
2019 |
|
---|
2020 | if (sc->s3.tmp.sigalg == NULL)
|
---|
2021 | return 0;
|
---|
2022 | *pnid = sc->s3.tmp.sigalg->sig;
|
---|
2023 | return 1;
|
---|
2024 | }
|
---|
2025 |
|
---|
2026 | /*
|
---|
2027 | * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
|
---|
2028 | * supported, doesn't appear in supported signature algorithms, isn't supported
|
---|
2029 | * by the enabled protocol versions or by the security level.
|
---|
2030 | *
|
---|
2031 | * This function should only be used for checking which ciphers are supported
|
---|
2032 | * by the client.
|
---|
2033 | *
|
---|
2034 | * Call ssl_cipher_disabled() to check that it's enabled or not.
|
---|
2035 | */
|
---|
2036 | int ssl_set_client_disabled(SSL_CONNECTION *s)
|
---|
2037 | {
|
---|
2038 | s->s3.tmp.mask_a = 0;
|
---|
2039 | s->s3.tmp.mask_k = 0;
|
---|
2040 | ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
|
---|
2041 | if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
|
---|
2042 | &s->s3.tmp.max_ver, NULL) != 0)
|
---|
2043 | return 0;
|
---|
2044 | #ifndef OPENSSL_NO_PSK
|
---|
2045 | /* with PSK there must be client callback set */
|
---|
2046 | if (!s->psk_client_callback) {
|
---|
2047 | s->s3.tmp.mask_a |= SSL_aPSK;
|
---|
2048 | s->s3.tmp.mask_k |= SSL_PSK;
|
---|
2049 | }
|
---|
2050 | #endif /* OPENSSL_NO_PSK */
|
---|
2051 | #ifndef OPENSSL_NO_SRP
|
---|
2052 | if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
|
---|
2053 | s->s3.tmp.mask_a |= SSL_aSRP;
|
---|
2054 | s->s3.tmp.mask_k |= SSL_kSRP;
|
---|
2055 | }
|
---|
2056 | #endif
|
---|
2057 | return 1;
|
---|
2058 | }
|
---|
2059 |
|
---|
2060 | /*
|
---|
2061 | * ssl_cipher_disabled - check that a cipher is disabled or not
|
---|
2062 | * @s: SSL connection that you want to use the cipher on
|
---|
2063 | * @c: cipher to check
|
---|
2064 | * @op: Security check that you want to do
|
---|
2065 | * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
|
---|
2066 | *
|
---|
2067 | * Returns 1 when it's disabled, 0 when enabled.
|
---|
2068 | */
|
---|
2069 | int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
|
---|
2070 | int op, int ecdhe)
|
---|
2071 | {
|
---|
2072 | int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
|
---|
2073 | int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
|
---|
2074 |
|
---|
2075 | if (c->algorithm_mkey & s->s3.tmp.mask_k
|
---|
2076 | || c->algorithm_auth & s->s3.tmp.mask_a)
|
---|
2077 | return 1;
|
---|
2078 | if (s->s3.tmp.max_ver == 0)
|
---|
2079 | return 1;
|
---|
2080 |
|
---|
2081 | if (SSL_IS_QUIC_HANDSHAKE(s))
|
---|
2082 | /* For QUIC, only allow these ciphersuites. */
|
---|
2083 | switch (SSL_CIPHER_get_id(c)) {
|
---|
2084 | case TLS1_3_CK_AES_128_GCM_SHA256:
|
---|
2085 | case TLS1_3_CK_AES_256_GCM_SHA384:
|
---|
2086 | case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
|
---|
2087 | break;
|
---|
2088 | default:
|
---|
2089 | return 1;
|
---|
2090 | }
|
---|
2091 |
|
---|
2092 | /*
|
---|
2093 | * For historical reasons we will allow ECHDE to be selected by a server
|
---|
2094 | * in SSLv3 if we are a client
|
---|
2095 | */
|
---|
2096 | if (minversion == TLS1_VERSION
|
---|
2097 | && ecdhe
|
---|
2098 | && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
|
---|
2099 | minversion = SSL3_VERSION;
|
---|
2100 |
|
---|
2101 | if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
|
---|
2102 | || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
|
---|
2103 | return 1;
|
---|
2104 |
|
---|
2105 | return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
|
---|
2106 | }
|
---|
2107 |
|
---|
2108 | int tls_use_ticket(SSL_CONNECTION *s)
|
---|
2109 | {
|
---|
2110 | if ((s->options & SSL_OP_NO_TICKET))
|
---|
2111 | return 0;
|
---|
2112 | return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
|
---|
2113 | }
|
---|
2114 |
|
---|
2115 | int tls1_set_server_sigalgs(SSL_CONNECTION *s)
|
---|
2116 | {
|
---|
2117 | size_t i;
|
---|
2118 |
|
---|
2119 | /* Clear any shared signature algorithms */
|
---|
2120 | OPENSSL_free(s->shared_sigalgs);
|
---|
2121 | s->shared_sigalgs = NULL;
|
---|
2122 | s->shared_sigalgslen = 0;
|
---|
2123 |
|
---|
2124 | /* Clear certificate validity flags */
|
---|
2125 | if (s->s3.tmp.valid_flags)
|
---|
2126 | memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
|
---|
2127 | else
|
---|
2128 | s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
|
---|
2129 | if (s->s3.tmp.valid_flags == NULL)
|
---|
2130 | return 0;
|
---|
2131 | /*
|
---|
2132 | * If peer sent no signature algorithms check to see if we support
|
---|
2133 | * the default algorithm for each certificate type
|
---|
2134 | */
|
---|
2135 | if (s->s3.tmp.peer_cert_sigalgs == NULL
|
---|
2136 | && s->s3.tmp.peer_sigalgs == NULL) {
|
---|
2137 | const uint16_t *sent_sigs;
|
---|
2138 | size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
|
---|
2139 |
|
---|
2140 | for (i = 0; i < s->ssl_pkey_num; i++) {
|
---|
2141 | const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
|
---|
2142 | size_t j;
|
---|
2143 |
|
---|
2144 | if (lu == NULL)
|
---|
2145 | continue;
|
---|
2146 | /* Check default matches a type we sent */
|
---|
2147 | for (j = 0; j < sent_sigslen; j++) {
|
---|
2148 | if (lu->sigalg == sent_sigs[j]) {
|
---|
2149 | s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
|
---|
2150 | break;
|
---|
2151 | }
|
---|
2152 | }
|
---|
2153 | }
|
---|
2154 | return 1;
|
---|
2155 | }
|
---|
2156 |
|
---|
2157 | if (!tls1_process_sigalgs(s)) {
|
---|
2158 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
|
---|
2159 | return 0;
|
---|
2160 | }
|
---|
2161 | if (s->shared_sigalgs != NULL)
|
---|
2162 | return 1;
|
---|
2163 |
|
---|
2164 | /* Fatal error if no shared signature algorithms */
|
---|
2165 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
---|
2166 | SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
|
---|
2167 | return 0;
|
---|
2168 | }
|
---|
2169 |
|
---|
2170 | /*-
|
---|
2171 | * Gets the ticket information supplied by the client if any.
|
---|
2172 | *
|
---|
2173 | * hello: The parsed ClientHello data
|
---|
2174 | * ret: (output) on return, if a ticket was decrypted, then this is set to
|
---|
2175 | * point to the resulting session.
|
---|
2176 | */
|
---|
2177 | SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
|
---|
2178 | CLIENTHELLO_MSG *hello,
|
---|
2179 | SSL_SESSION **ret)
|
---|
2180 | {
|
---|
2181 | size_t size;
|
---|
2182 | RAW_EXTENSION *ticketext;
|
---|
2183 |
|
---|
2184 | *ret = NULL;
|
---|
2185 | s->ext.ticket_expected = 0;
|
---|
2186 |
|
---|
2187 | /*
|
---|
2188 | * If tickets disabled or not supported by the protocol version
|
---|
2189 | * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
|
---|
2190 | * resumption.
|
---|
2191 | */
|
---|
2192 | if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
|
---|
2193 | return SSL_TICKET_NONE;
|
---|
2194 |
|
---|
2195 | ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
|
---|
2196 | if (!ticketext->present)
|
---|
2197 | return SSL_TICKET_NONE;
|
---|
2198 |
|
---|
2199 | size = PACKET_remaining(&ticketext->data);
|
---|
2200 |
|
---|
2201 | return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
|
---|
2202 | hello->session_id, hello->session_id_len, ret);
|
---|
2203 | }
|
---|
2204 |
|
---|
2205 | /*-
|
---|
2206 | * tls_decrypt_ticket attempts to decrypt a session ticket.
|
---|
2207 | *
|
---|
2208 | * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
|
---|
2209 | * expecting a pre-shared key ciphersuite, in which case we have no use for
|
---|
2210 | * session tickets and one will never be decrypted, nor will
|
---|
2211 | * s->ext.ticket_expected be set to 1.
|
---|
2212 | *
|
---|
2213 | * Side effects:
|
---|
2214 | * Sets s->ext.ticket_expected to 1 if the server will have to issue
|
---|
2215 | * a new session ticket to the client because the client indicated support
|
---|
2216 | * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
|
---|
2217 | * a session ticket or we couldn't use the one it gave us, or if
|
---|
2218 | * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
|
---|
2219 | * Otherwise, s->ext.ticket_expected is set to 0.
|
---|
2220 | *
|
---|
2221 | * etick: points to the body of the session ticket extension.
|
---|
2222 | * eticklen: the length of the session tickets extension.
|
---|
2223 | * sess_id: points at the session ID.
|
---|
2224 | * sesslen: the length of the session ID.
|
---|
2225 | * psess: (output) on return, if a ticket was decrypted, then this is set to
|
---|
2226 | * point to the resulting session.
|
---|
2227 | */
|
---|
2228 | SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
|
---|
2229 | const unsigned char *etick,
|
---|
2230 | size_t eticklen,
|
---|
2231 | const unsigned char *sess_id,
|
---|
2232 | size_t sesslen, SSL_SESSION **psess)
|
---|
2233 | {
|
---|
2234 | SSL_SESSION *sess = NULL;
|
---|
2235 | unsigned char *sdec;
|
---|
2236 | const unsigned char *p;
|
---|
2237 | int slen, ivlen, renew_ticket = 0, declen;
|
---|
2238 | SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
2239 | size_t mlen;
|
---|
2240 | unsigned char tick_hmac[EVP_MAX_MD_SIZE];
|
---|
2241 | SSL_HMAC *hctx = NULL;
|
---|
2242 | EVP_CIPHER_CTX *ctx = NULL;
|
---|
2243 | SSL_CTX *tctx = s->session_ctx;
|
---|
2244 | SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
|
---|
2245 |
|
---|
2246 | if (eticklen == 0) {
|
---|
2247 | /*
|
---|
2248 | * The client will accept a ticket but doesn't currently have
|
---|
2249 | * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
|
---|
2250 | */
|
---|
2251 | ret = SSL_TICKET_EMPTY;
|
---|
2252 | goto end;
|
---|
2253 | }
|
---|
2254 | if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
|
---|
2255 | /*
|
---|
2256 | * Indicate that the ticket couldn't be decrypted rather than
|
---|
2257 | * generating the session from ticket now, trigger
|
---|
2258 | * abbreviated handshake based on external mechanism to
|
---|
2259 | * calculate the master secret later.
|
---|
2260 | */
|
---|
2261 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
2262 | goto end;
|
---|
2263 | }
|
---|
2264 |
|
---|
2265 | /* Need at least keyname + iv */
|
---|
2266 | if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
|
---|
2267 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
2268 | goto end;
|
---|
2269 | }
|
---|
2270 |
|
---|
2271 | /* Initialize session ticket encryption and HMAC contexts */
|
---|
2272 | hctx = ssl_hmac_new(tctx);
|
---|
2273 | if (hctx == NULL) {
|
---|
2274 | ret = SSL_TICKET_FATAL_ERR_MALLOC;
|
---|
2275 | goto end;
|
---|
2276 | }
|
---|
2277 | ctx = EVP_CIPHER_CTX_new();
|
---|
2278 | if (ctx == NULL) {
|
---|
2279 | ret = SSL_TICKET_FATAL_ERR_MALLOC;
|
---|
2280 | goto end;
|
---|
2281 | }
|
---|
2282 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
2283 | if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
|
---|
2284 | #else
|
---|
2285 | if (tctx->ext.ticket_key_evp_cb != NULL)
|
---|
2286 | #endif
|
---|
2287 | {
|
---|
2288 | unsigned char *nctick = (unsigned char *)etick;
|
---|
2289 | int rv = 0;
|
---|
2290 |
|
---|
2291 | if (tctx->ext.ticket_key_evp_cb != NULL)
|
---|
2292 | rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_SSL(s), nctick,
|
---|
2293 | nctick + TLSEXT_KEYNAME_LENGTH,
|
---|
2294 | ctx,
|
---|
2295 | ssl_hmac_get0_EVP_MAC_CTX(hctx),
|
---|
2296 | 0);
|
---|
2297 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
2298 | else if (tctx->ext.ticket_key_cb != NULL)
|
---|
2299 | /* if 0 is returned, write an empty ticket */
|
---|
2300 | rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_SSL(s), nctick,
|
---|
2301 | nctick + TLSEXT_KEYNAME_LENGTH,
|
---|
2302 | ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
|
---|
2303 | #endif
|
---|
2304 | if (rv < 0) {
|
---|
2305 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
2306 | goto end;
|
---|
2307 | }
|
---|
2308 | if (rv == 0) {
|
---|
2309 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
2310 | goto end;
|
---|
2311 | }
|
---|
2312 | if (rv == 2)
|
---|
2313 | renew_ticket = 1;
|
---|
2314 | } else {
|
---|
2315 | EVP_CIPHER *aes256cbc = NULL;
|
---|
2316 |
|
---|
2317 | /* Check key name matches */
|
---|
2318 | if (memcmp(etick, tctx->ext.tick_key_name,
|
---|
2319 | TLSEXT_KEYNAME_LENGTH) != 0) {
|
---|
2320 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
2321 | goto end;
|
---|
2322 | }
|
---|
2323 |
|
---|
2324 | aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
|
---|
2325 | sctx->propq);
|
---|
2326 | if (aes256cbc == NULL
|
---|
2327 | || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
|
---|
2328 | sizeof(tctx->ext.secure->tick_hmac_key),
|
---|
2329 | "SHA256") <= 0
|
---|
2330 | || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
|
---|
2331 | tctx->ext.secure->tick_aes_key,
|
---|
2332 | etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
|
---|
2333 | EVP_CIPHER_free(aes256cbc);
|
---|
2334 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
2335 | goto end;
|
---|
2336 | }
|
---|
2337 | EVP_CIPHER_free(aes256cbc);
|
---|
2338 | if (SSL_CONNECTION_IS_TLS13(s))
|
---|
2339 | renew_ticket = 1;
|
---|
2340 | }
|
---|
2341 | /*
|
---|
2342 | * Attempt to process session ticket, first conduct sanity and integrity
|
---|
2343 | * checks on ticket.
|
---|
2344 | */
|
---|
2345 | mlen = ssl_hmac_size(hctx);
|
---|
2346 | if (mlen == 0) {
|
---|
2347 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
2348 | goto end;
|
---|
2349 | }
|
---|
2350 |
|
---|
2351 | ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
|
---|
2352 | if (ivlen < 0) {
|
---|
2353 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
2354 | goto end;
|
---|
2355 | }
|
---|
2356 |
|
---|
2357 | /* Sanity check ticket length: must exceed keyname + IV + HMAC */
|
---|
2358 | if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
|
---|
2359 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
2360 | goto end;
|
---|
2361 | }
|
---|
2362 | eticklen -= mlen;
|
---|
2363 | /* Check HMAC of encrypted ticket */
|
---|
2364 | if (ssl_hmac_update(hctx, etick, eticklen) <= 0
|
---|
2365 | || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
|
---|
2366 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
2367 | goto end;
|
---|
2368 | }
|
---|
2369 |
|
---|
2370 | if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
|
---|
2371 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
2372 | goto end;
|
---|
2373 | }
|
---|
2374 | /* Attempt to decrypt session data */
|
---|
2375 | /* Move p after IV to start of encrypted ticket, update length */
|
---|
2376 | p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
|
---|
2377 | eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
|
---|
2378 | sdec = OPENSSL_malloc(eticklen);
|
---|
2379 | if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
|
---|
2380 | (int)eticklen) <= 0) {
|
---|
2381 | OPENSSL_free(sdec);
|
---|
2382 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
2383 | goto end;
|
---|
2384 | }
|
---|
2385 | if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
|
---|
2386 | OPENSSL_free(sdec);
|
---|
2387 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
2388 | goto end;
|
---|
2389 | }
|
---|
2390 | slen += declen;
|
---|
2391 | p = sdec;
|
---|
2392 |
|
---|
2393 | sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
|
---|
2394 | slen -= p - sdec;
|
---|
2395 | OPENSSL_free(sdec);
|
---|
2396 | if (sess) {
|
---|
2397 | /* Some additional consistency checks */
|
---|
2398 | if (slen != 0) {
|
---|
2399 | SSL_SESSION_free(sess);
|
---|
2400 | sess = NULL;
|
---|
2401 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
2402 | goto end;
|
---|
2403 | }
|
---|
2404 | /*
|
---|
2405 | * The session ID, if non-empty, is used by some clients to detect
|
---|
2406 | * that the ticket has been accepted. So we copy it to the session
|
---|
2407 | * structure. If it is empty set length to zero as required by
|
---|
2408 | * standard.
|
---|
2409 | */
|
---|
2410 | if (sesslen) {
|
---|
2411 | memcpy(sess->session_id, sess_id, sesslen);
|
---|
2412 | sess->session_id_length = sesslen;
|
---|
2413 | }
|
---|
2414 | if (renew_ticket)
|
---|
2415 | ret = SSL_TICKET_SUCCESS_RENEW;
|
---|
2416 | else
|
---|
2417 | ret = SSL_TICKET_SUCCESS;
|
---|
2418 | goto end;
|
---|
2419 | }
|
---|
2420 | ERR_clear_error();
|
---|
2421 | /*
|
---|
2422 | * For session parse failure, indicate that we need to send a new ticket.
|
---|
2423 | */
|
---|
2424 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
2425 |
|
---|
2426 | end:
|
---|
2427 | EVP_CIPHER_CTX_free(ctx);
|
---|
2428 | ssl_hmac_free(hctx);
|
---|
2429 |
|
---|
2430 | /*
|
---|
2431 | * If set, the decrypt_ticket_cb() is called unless a fatal error was
|
---|
2432 | * detected above. The callback is responsible for checking |ret| before it
|
---|
2433 | * performs any action
|
---|
2434 | */
|
---|
2435 | if (s->session_ctx->decrypt_ticket_cb != NULL
|
---|
2436 | && (ret == SSL_TICKET_EMPTY
|
---|
2437 | || ret == SSL_TICKET_NO_DECRYPT
|
---|
2438 | || ret == SSL_TICKET_SUCCESS
|
---|
2439 | || ret == SSL_TICKET_SUCCESS_RENEW)) {
|
---|
2440 | size_t keyname_len = eticklen;
|
---|
2441 | int retcb;
|
---|
2442 |
|
---|
2443 | if (keyname_len > TLSEXT_KEYNAME_LENGTH)
|
---|
2444 | keyname_len = TLSEXT_KEYNAME_LENGTH;
|
---|
2445 | retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
|
---|
2446 | sess, etick, keyname_len,
|
---|
2447 | ret,
|
---|
2448 | s->session_ctx->ticket_cb_data);
|
---|
2449 | switch (retcb) {
|
---|
2450 | case SSL_TICKET_RETURN_ABORT:
|
---|
2451 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
2452 | break;
|
---|
2453 |
|
---|
2454 | case SSL_TICKET_RETURN_IGNORE:
|
---|
2455 | ret = SSL_TICKET_NONE;
|
---|
2456 | SSL_SESSION_free(sess);
|
---|
2457 | sess = NULL;
|
---|
2458 | break;
|
---|
2459 |
|
---|
2460 | case SSL_TICKET_RETURN_IGNORE_RENEW:
|
---|
2461 | if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
|
---|
2462 | ret = SSL_TICKET_NO_DECRYPT;
|
---|
2463 | /* else the value of |ret| will already do the right thing */
|
---|
2464 | SSL_SESSION_free(sess);
|
---|
2465 | sess = NULL;
|
---|
2466 | break;
|
---|
2467 |
|
---|
2468 | case SSL_TICKET_RETURN_USE:
|
---|
2469 | case SSL_TICKET_RETURN_USE_RENEW:
|
---|
2470 | if (ret != SSL_TICKET_SUCCESS
|
---|
2471 | && ret != SSL_TICKET_SUCCESS_RENEW)
|
---|
2472 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
2473 | else if (retcb == SSL_TICKET_RETURN_USE)
|
---|
2474 | ret = SSL_TICKET_SUCCESS;
|
---|
2475 | else
|
---|
2476 | ret = SSL_TICKET_SUCCESS_RENEW;
|
---|
2477 | break;
|
---|
2478 |
|
---|
2479 | default:
|
---|
2480 | ret = SSL_TICKET_FATAL_ERR_OTHER;
|
---|
2481 | }
|
---|
2482 | }
|
---|
2483 |
|
---|
2484 | if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
|
---|
2485 | switch (ret) {
|
---|
2486 | case SSL_TICKET_NO_DECRYPT:
|
---|
2487 | case SSL_TICKET_SUCCESS_RENEW:
|
---|
2488 | case SSL_TICKET_EMPTY:
|
---|
2489 | s->ext.ticket_expected = 1;
|
---|
2490 | }
|
---|
2491 | }
|
---|
2492 |
|
---|
2493 | *psess = sess;
|
---|
2494 |
|
---|
2495 | return ret;
|
---|
2496 | }
|
---|
2497 |
|
---|
2498 | /* Check to see if a signature algorithm is allowed */
|
---|
2499 | static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
|
---|
2500 | const SIGALG_LOOKUP *lu)
|
---|
2501 | {
|
---|
2502 | unsigned char sigalgstr[2];
|
---|
2503 | int secbits;
|
---|
2504 |
|
---|
2505 | if (lu == NULL || !lu->enabled)
|
---|
2506 | return 0;
|
---|
2507 | /* DSA is not allowed in TLS 1.3 */
|
---|
2508 | if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
|
---|
2509 | return 0;
|
---|
2510 | /*
|
---|
2511 | * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
|
---|
2512 | * spec
|
---|
2513 | */
|
---|
2514 | if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
|
---|
2515 | && s->s3.tmp.min_ver >= TLS1_3_VERSION
|
---|
2516 | && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
|
---|
2517 | || lu->hash_idx == SSL_MD_MD5_IDX
|
---|
2518 | || lu->hash_idx == SSL_MD_SHA224_IDX))
|
---|
2519 | return 0;
|
---|
2520 |
|
---|
2521 | /* See if public key algorithm allowed */
|
---|
2522 | if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
|
---|
2523 | return 0;
|
---|
2524 |
|
---|
2525 | if (lu->sig == NID_id_GostR3410_2012_256
|
---|
2526 | || lu->sig == NID_id_GostR3410_2012_512
|
---|
2527 | || lu->sig == NID_id_GostR3410_2001) {
|
---|
2528 | /* We never allow GOST sig algs on the server with TLSv1.3 */
|
---|
2529 | if (s->server && SSL_CONNECTION_IS_TLS13(s))
|
---|
2530 | return 0;
|
---|
2531 | if (!s->server
|
---|
2532 | && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
|
---|
2533 | && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
|
---|
2534 | int i, num;
|
---|
2535 | STACK_OF(SSL_CIPHER) *sk;
|
---|
2536 |
|
---|
2537 | /*
|
---|
2538 | * We're a client that could negotiate TLSv1.3. We only allow GOST
|
---|
2539 | * sig algs if we could negotiate TLSv1.2 or below and we have GOST
|
---|
2540 | * ciphersuites enabled.
|
---|
2541 | */
|
---|
2542 |
|
---|
2543 | if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
|
---|
2544 | return 0;
|
---|
2545 |
|
---|
2546 | sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
|
---|
2547 | num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
|
---|
2548 | for (i = 0; i < num; i++) {
|
---|
2549 | const SSL_CIPHER *c;
|
---|
2550 |
|
---|
2551 | c = sk_SSL_CIPHER_value(sk, i);
|
---|
2552 | /* Skip disabled ciphers */
|
---|
2553 | if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
|
---|
2554 | continue;
|
---|
2555 |
|
---|
2556 | if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
|
---|
2557 | break;
|
---|
2558 | }
|
---|
2559 | if (i == num)
|
---|
2560 | return 0;
|
---|
2561 | }
|
---|
2562 | }
|
---|
2563 |
|
---|
2564 | /* Finally see if security callback allows it */
|
---|
2565 | secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
|
---|
2566 | sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
|
---|
2567 | sigalgstr[1] = lu->sigalg & 0xff;
|
---|
2568 | return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
|
---|
2569 | }
|
---|
2570 |
|
---|
2571 | /*
|
---|
2572 | * Get a mask of disabled public key algorithms based on supported signature
|
---|
2573 | * algorithms. For example if no signature algorithm supports RSA then RSA is
|
---|
2574 | * disabled.
|
---|
2575 | */
|
---|
2576 |
|
---|
2577 | void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
|
---|
2578 | {
|
---|
2579 | const uint16_t *sigalgs;
|
---|
2580 | size_t i, sigalgslen;
|
---|
2581 | uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
|
---|
2582 | /*
|
---|
2583 | * Go through all signature algorithms seeing if we support any
|
---|
2584 | * in disabled_mask.
|
---|
2585 | */
|
---|
2586 | sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
|
---|
2587 | for (i = 0; i < sigalgslen; i++, sigalgs++) {
|
---|
2588 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
|
---|
2589 | const SSL_CERT_LOOKUP *clu;
|
---|
2590 |
|
---|
2591 | if (lu == NULL)
|
---|
2592 | continue;
|
---|
2593 |
|
---|
2594 | clu = ssl_cert_lookup_by_idx(lu->sig_idx,
|
---|
2595 | SSL_CONNECTION_GET_CTX(s));
|
---|
2596 | if (clu == NULL)
|
---|
2597 | continue;
|
---|
2598 |
|
---|
2599 | /* If algorithm is disabled see if we can enable it */
|
---|
2600 | if ((clu->amask & disabled_mask) != 0
|
---|
2601 | && tls12_sigalg_allowed(s, op, lu))
|
---|
2602 | disabled_mask &= ~clu->amask;
|
---|
2603 | }
|
---|
2604 | *pmask_a |= disabled_mask;
|
---|
2605 | }
|
---|
2606 |
|
---|
2607 | int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
|
---|
2608 | const uint16_t *psig, size_t psiglen)
|
---|
2609 | {
|
---|
2610 | size_t i;
|
---|
2611 | int rv = 0;
|
---|
2612 |
|
---|
2613 | for (i = 0; i < psiglen; i++, psig++) {
|
---|
2614 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
|
---|
2615 |
|
---|
2616 | if (lu == NULL
|
---|
2617 | || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
|
---|
2618 | continue;
|
---|
2619 | if (!WPACKET_put_bytes_u16(pkt, *psig))
|
---|
2620 | return 0;
|
---|
2621 | /*
|
---|
2622 | * If TLS 1.3 must have at least one valid TLS 1.3 message
|
---|
2623 | * signing algorithm: i.e. neither RSA nor SHA1/SHA224
|
---|
2624 | */
|
---|
2625 | if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
|
---|
2626 | || (lu->sig != EVP_PKEY_RSA
|
---|
2627 | && lu->hash != NID_sha1
|
---|
2628 | && lu->hash != NID_sha224)))
|
---|
2629 | rv = 1;
|
---|
2630 | }
|
---|
2631 | if (rv == 0)
|
---|
2632 | ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
---|
2633 | return rv;
|
---|
2634 | }
|
---|
2635 |
|
---|
2636 | /* Given preference and allowed sigalgs set shared sigalgs */
|
---|
2637 | static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
|
---|
2638 | const SIGALG_LOOKUP **shsig,
|
---|
2639 | const uint16_t *pref, size_t preflen,
|
---|
2640 | const uint16_t *allow, size_t allowlen)
|
---|
2641 | {
|
---|
2642 | const uint16_t *ptmp, *atmp;
|
---|
2643 | size_t i, j, nmatch = 0;
|
---|
2644 | for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
|
---|
2645 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
|
---|
2646 |
|
---|
2647 | /* Skip disabled hashes or signature algorithms */
|
---|
2648 | if (lu == NULL
|
---|
2649 | || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
|
---|
2650 | continue;
|
---|
2651 | for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
|
---|
2652 | if (*ptmp == *atmp) {
|
---|
2653 | nmatch++;
|
---|
2654 | if (shsig)
|
---|
2655 | *shsig++ = lu;
|
---|
2656 | break;
|
---|
2657 | }
|
---|
2658 | }
|
---|
2659 | }
|
---|
2660 | return nmatch;
|
---|
2661 | }
|
---|
2662 |
|
---|
2663 | /* Set shared signature algorithms for SSL structures */
|
---|
2664 | static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
|
---|
2665 | {
|
---|
2666 | const uint16_t *pref, *allow, *conf;
|
---|
2667 | size_t preflen, allowlen, conflen;
|
---|
2668 | size_t nmatch;
|
---|
2669 | const SIGALG_LOOKUP **salgs = NULL;
|
---|
2670 | CERT *c = s->cert;
|
---|
2671 | unsigned int is_suiteb = tls1_suiteb(s);
|
---|
2672 |
|
---|
2673 | OPENSSL_free(s->shared_sigalgs);
|
---|
2674 | s->shared_sigalgs = NULL;
|
---|
2675 | s->shared_sigalgslen = 0;
|
---|
2676 | /* If client use client signature algorithms if not NULL */
|
---|
2677 | if (!s->server && c->client_sigalgs && !is_suiteb) {
|
---|
2678 | conf = c->client_sigalgs;
|
---|
2679 | conflen = c->client_sigalgslen;
|
---|
2680 | } else if (c->conf_sigalgs && !is_suiteb) {
|
---|
2681 | conf = c->conf_sigalgs;
|
---|
2682 | conflen = c->conf_sigalgslen;
|
---|
2683 | } else
|
---|
2684 | conflen = tls12_get_psigalgs(s, 0, &conf);
|
---|
2685 | if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
|
---|
2686 | pref = conf;
|
---|
2687 | preflen = conflen;
|
---|
2688 | allow = s->s3.tmp.peer_sigalgs;
|
---|
2689 | allowlen = s->s3.tmp.peer_sigalgslen;
|
---|
2690 | } else {
|
---|
2691 | allow = conf;
|
---|
2692 | allowlen = conflen;
|
---|
2693 | pref = s->s3.tmp.peer_sigalgs;
|
---|
2694 | preflen = s->s3.tmp.peer_sigalgslen;
|
---|
2695 | }
|
---|
2696 | nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
|
---|
2697 | if (nmatch) {
|
---|
2698 | if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
|
---|
2699 | return 0;
|
---|
2700 | nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
|
---|
2701 | } else {
|
---|
2702 | salgs = NULL;
|
---|
2703 | }
|
---|
2704 | s->shared_sigalgs = salgs;
|
---|
2705 | s->shared_sigalgslen = nmatch;
|
---|
2706 | return 1;
|
---|
2707 | }
|
---|
2708 |
|
---|
2709 | int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
|
---|
2710 | {
|
---|
2711 | unsigned int stmp;
|
---|
2712 | size_t size, i;
|
---|
2713 | uint16_t *buf;
|
---|
2714 |
|
---|
2715 | size = PACKET_remaining(pkt);
|
---|
2716 |
|
---|
2717 | /* Invalid data length */
|
---|
2718 | if (size == 0 || (size & 1) != 0)
|
---|
2719 | return 0;
|
---|
2720 |
|
---|
2721 | size >>= 1;
|
---|
2722 |
|
---|
2723 | if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
|
---|
2724 | return 0;
|
---|
2725 | for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
|
---|
2726 | buf[i] = stmp;
|
---|
2727 |
|
---|
2728 | if (i != size) {
|
---|
2729 | OPENSSL_free(buf);
|
---|
2730 | return 0;
|
---|
2731 | }
|
---|
2732 |
|
---|
2733 | OPENSSL_free(*pdest);
|
---|
2734 | *pdest = buf;
|
---|
2735 | *pdestlen = size;
|
---|
2736 |
|
---|
2737 | return 1;
|
---|
2738 | }
|
---|
2739 |
|
---|
2740 | int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
|
---|
2741 | {
|
---|
2742 | /* Extension ignored for inappropriate versions */
|
---|
2743 | if (!SSL_USE_SIGALGS(s))
|
---|
2744 | return 1;
|
---|
2745 | /* Should never happen */
|
---|
2746 | if (s->cert == NULL)
|
---|
2747 | return 0;
|
---|
2748 |
|
---|
2749 | if (cert)
|
---|
2750 | return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
|
---|
2751 | &s->s3.tmp.peer_cert_sigalgslen);
|
---|
2752 | else
|
---|
2753 | return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
|
---|
2754 | &s->s3.tmp.peer_sigalgslen);
|
---|
2755 |
|
---|
2756 | }
|
---|
2757 |
|
---|
2758 | /* Set preferred digest for each key type */
|
---|
2759 |
|
---|
2760 | int tls1_process_sigalgs(SSL_CONNECTION *s)
|
---|
2761 | {
|
---|
2762 | size_t i;
|
---|
2763 | uint32_t *pvalid = s->s3.tmp.valid_flags;
|
---|
2764 |
|
---|
2765 | if (!tls1_set_shared_sigalgs(s))
|
---|
2766 | return 0;
|
---|
2767 |
|
---|
2768 | for (i = 0; i < s->ssl_pkey_num; i++)
|
---|
2769 | pvalid[i] = 0;
|
---|
2770 |
|
---|
2771 | for (i = 0; i < s->shared_sigalgslen; i++) {
|
---|
2772 | const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
|
---|
2773 | int idx = sigptr->sig_idx;
|
---|
2774 |
|
---|
2775 | /* Ignore PKCS1 based sig algs in TLSv1.3 */
|
---|
2776 | if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
|
---|
2777 | continue;
|
---|
2778 | /* If not disabled indicate we can explicitly sign */
|
---|
2779 | if (pvalid[idx] == 0
|
---|
2780 | && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
|
---|
2781 | pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
|
---|
2782 | }
|
---|
2783 | return 1;
|
---|
2784 | }
|
---|
2785 |
|
---|
2786 | int SSL_get_sigalgs(SSL *s, int idx,
|
---|
2787 | int *psign, int *phash, int *psignhash,
|
---|
2788 | unsigned char *rsig, unsigned char *rhash)
|
---|
2789 | {
|
---|
2790 | uint16_t *psig;
|
---|
2791 | size_t numsigalgs;
|
---|
2792 | SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
|
---|
2793 |
|
---|
2794 | if (sc == NULL)
|
---|
2795 | return 0;
|
---|
2796 |
|
---|
2797 | psig = sc->s3.tmp.peer_sigalgs;
|
---|
2798 | numsigalgs = sc->s3.tmp.peer_sigalgslen;
|
---|
2799 |
|
---|
2800 | if (psig == NULL || numsigalgs > INT_MAX)
|
---|
2801 | return 0;
|
---|
2802 | if (idx >= 0) {
|
---|
2803 | const SIGALG_LOOKUP *lu;
|
---|
2804 |
|
---|
2805 | if (idx >= (int)numsigalgs)
|
---|
2806 | return 0;
|
---|
2807 | psig += idx;
|
---|
2808 | if (rhash != NULL)
|
---|
2809 | *rhash = (unsigned char)((*psig >> 8) & 0xff);
|
---|
2810 | if (rsig != NULL)
|
---|
2811 | *rsig = (unsigned char)(*psig & 0xff);
|
---|
2812 | lu = tls1_lookup_sigalg(sc, *psig);
|
---|
2813 | if (psign != NULL)
|
---|
2814 | *psign = lu != NULL ? lu->sig : NID_undef;
|
---|
2815 | if (phash != NULL)
|
---|
2816 | *phash = lu != NULL ? lu->hash : NID_undef;
|
---|
2817 | if (psignhash != NULL)
|
---|
2818 | *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
|
---|
2819 | }
|
---|
2820 | return (int)numsigalgs;
|
---|
2821 | }
|
---|
2822 |
|
---|
2823 | int SSL_get_shared_sigalgs(SSL *s, int idx,
|
---|
2824 | int *psign, int *phash, int *psignhash,
|
---|
2825 | unsigned char *rsig, unsigned char *rhash)
|
---|
2826 | {
|
---|
2827 | const SIGALG_LOOKUP *shsigalgs;
|
---|
2828 | SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
|
---|
2829 |
|
---|
2830 | if (sc == NULL)
|
---|
2831 | return 0;
|
---|
2832 |
|
---|
2833 | if (sc->shared_sigalgs == NULL
|
---|
2834 | || idx < 0
|
---|
2835 | || idx >= (int)sc->shared_sigalgslen
|
---|
2836 | || sc->shared_sigalgslen > INT_MAX)
|
---|
2837 | return 0;
|
---|
2838 | shsigalgs = sc->shared_sigalgs[idx];
|
---|
2839 | if (phash != NULL)
|
---|
2840 | *phash = shsigalgs->hash;
|
---|
2841 | if (psign != NULL)
|
---|
2842 | *psign = shsigalgs->sig;
|
---|
2843 | if (psignhash != NULL)
|
---|
2844 | *psignhash = shsigalgs->sigandhash;
|
---|
2845 | if (rsig != NULL)
|
---|
2846 | *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
|
---|
2847 | if (rhash != NULL)
|
---|
2848 | *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
|
---|
2849 | return (int)sc->shared_sigalgslen;
|
---|
2850 | }
|
---|
2851 |
|
---|
2852 | /* Maximum possible number of unique entries in sigalgs array */
|
---|
2853 | #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
|
---|
2854 |
|
---|
2855 | typedef struct {
|
---|
2856 | size_t sigalgcnt;
|
---|
2857 | /* TLSEXT_SIGALG_XXX values */
|
---|
2858 | uint16_t sigalgs[TLS_MAX_SIGALGCNT];
|
---|
2859 | SSL_CTX *ctx;
|
---|
2860 | } sig_cb_st;
|
---|
2861 |
|
---|
2862 | static void get_sigorhash(int *psig, int *phash, const char *str)
|
---|
2863 | {
|
---|
2864 | if (strcmp(str, "RSA") == 0) {
|
---|
2865 | *psig = EVP_PKEY_RSA;
|
---|
2866 | } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
|
---|
2867 | *psig = EVP_PKEY_RSA_PSS;
|
---|
2868 | } else if (strcmp(str, "DSA") == 0) {
|
---|
2869 | *psig = EVP_PKEY_DSA;
|
---|
2870 | } else if (strcmp(str, "ECDSA") == 0) {
|
---|
2871 | *psig = EVP_PKEY_EC;
|
---|
2872 | } else {
|
---|
2873 | *phash = OBJ_sn2nid(str);
|
---|
2874 | if (*phash == NID_undef)
|
---|
2875 | *phash = OBJ_ln2nid(str);
|
---|
2876 | }
|
---|
2877 | }
|
---|
2878 | /* Maximum length of a signature algorithm string component */
|
---|
2879 | #define TLS_MAX_SIGSTRING_LEN 40
|
---|
2880 |
|
---|
2881 | static int sig_cb(const char *elem, int len, void *arg)
|
---|
2882 | {
|
---|
2883 | sig_cb_st *sarg = arg;
|
---|
2884 | size_t i = 0;
|
---|
2885 | const SIGALG_LOOKUP *s;
|
---|
2886 | char etmp[TLS_MAX_SIGSTRING_LEN], *p;
|
---|
2887 | int sig_alg = NID_undef, hash_alg = NID_undef;
|
---|
2888 | int ignore_unknown = 0;
|
---|
2889 |
|
---|
2890 | if (elem == NULL)
|
---|
2891 | return 0;
|
---|
2892 | if (elem[0] == '?') {
|
---|
2893 | ignore_unknown = 1;
|
---|
2894 | ++elem;
|
---|
2895 | --len;
|
---|
2896 | }
|
---|
2897 | if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
|
---|
2898 | return 0;
|
---|
2899 | if (len > (int)(sizeof(etmp) - 1))
|
---|
2900 | return 0;
|
---|
2901 | memcpy(etmp, elem, len);
|
---|
2902 | etmp[len] = 0;
|
---|
2903 | p = strchr(etmp, '+');
|
---|
2904 | /*
|
---|
2905 | * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
|
---|
2906 | * if there's no '+' in the provided name, look for the new-style combined
|
---|
2907 | * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
|
---|
2908 | * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
|
---|
2909 | * rsa_pss_rsae_* that differ only by public key OID; in such cases
|
---|
2910 | * we will pick the _rsae_ variant, by virtue of them appearing earlier
|
---|
2911 | * in the table.
|
---|
2912 | */
|
---|
2913 | if (p == NULL) {
|
---|
2914 | /* Load provider sigalgs */
|
---|
2915 | if (sarg->ctx != NULL) {
|
---|
2916 | /* Check if a provider supports the sigalg */
|
---|
2917 | for (i = 0; i < sarg->ctx->sigalg_list_len; i++) {
|
---|
2918 | if (sarg->ctx->sigalg_list[i].sigalg_name != NULL
|
---|
2919 | && strcmp(etmp,
|
---|
2920 | sarg->ctx->sigalg_list[i].sigalg_name) == 0) {
|
---|
2921 | sarg->sigalgs[sarg->sigalgcnt++] =
|
---|
2922 | sarg->ctx->sigalg_list[i].code_point;
|
---|
2923 | break;
|
---|
2924 | }
|
---|
2925 | }
|
---|
2926 | }
|
---|
2927 | /* Check the built-in sigalgs */
|
---|
2928 | if (sarg->ctx == NULL || i == sarg->ctx->sigalg_list_len) {
|
---|
2929 | for (i = 0, s = sigalg_lookup_tbl;
|
---|
2930 | i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
|
---|
2931 | if (s->name != NULL && strcmp(etmp, s->name) == 0) {
|
---|
2932 | sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
|
---|
2933 | break;
|
---|
2934 | }
|
---|
2935 | }
|
---|
2936 | if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
|
---|
2937 | /* Ignore unknown algorithms if ignore_unknown */
|
---|
2938 | return ignore_unknown;
|
---|
2939 | }
|
---|
2940 | }
|
---|
2941 | } else {
|
---|
2942 | *p = 0;
|
---|
2943 | p++;
|
---|
2944 | if (*p == 0)
|
---|
2945 | return 0;
|
---|
2946 | get_sigorhash(&sig_alg, &hash_alg, etmp);
|
---|
2947 | get_sigorhash(&sig_alg, &hash_alg, p);
|
---|
2948 | if (sig_alg == NID_undef || hash_alg == NID_undef) {
|
---|
2949 | /* Ignore unknown algorithms if ignore_unknown */
|
---|
2950 | return ignore_unknown;
|
---|
2951 | }
|
---|
2952 | for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
|
---|
2953 | i++, s++) {
|
---|
2954 | if (s->hash == hash_alg && s->sig == sig_alg) {
|
---|
2955 | sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
|
---|
2956 | break;
|
---|
2957 | }
|
---|
2958 | }
|
---|
2959 | if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
|
---|
2960 | /* Ignore unknown algorithms if ignore_unknown */
|
---|
2961 | return ignore_unknown;
|
---|
2962 | }
|
---|
2963 | }
|
---|
2964 |
|
---|
2965 | /* Ignore duplicates */
|
---|
2966 | for (i = 0; i < sarg->sigalgcnt - 1; i++) {
|
---|
2967 | if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
|
---|
2968 | sarg->sigalgcnt--;
|
---|
2969 | return 1;
|
---|
2970 | }
|
---|
2971 | }
|
---|
2972 | return 1;
|
---|
2973 | }
|
---|
2974 |
|
---|
2975 | /*
|
---|
2976 | * Set supported signature algorithms based on a colon separated list of the
|
---|
2977 | * form sig+hash e.g. RSA+SHA512:DSA+SHA512
|
---|
2978 | */
|
---|
2979 | int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
|
---|
2980 | {
|
---|
2981 | sig_cb_st sig;
|
---|
2982 | sig.sigalgcnt = 0;
|
---|
2983 |
|
---|
2984 | if (ctx != NULL && ssl_load_sigalgs(ctx)) {
|
---|
2985 | sig.ctx = ctx;
|
---|
2986 | }
|
---|
2987 | if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
|
---|
2988 | return 0;
|
---|
2989 | if (sig.sigalgcnt == 0) {
|
---|
2990 | ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
|
---|
2991 | "No valid signature algorithms in '%s'", str);
|
---|
2992 | return 0;
|
---|
2993 | }
|
---|
2994 | if (c == NULL)
|
---|
2995 | return 1;
|
---|
2996 | return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
|
---|
2997 | }
|
---|
2998 |
|
---|
2999 | int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
|
---|
3000 | int client)
|
---|
3001 | {
|
---|
3002 | uint16_t *sigalgs;
|
---|
3003 |
|
---|
3004 | if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
|
---|
3005 | return 0;
|
---|
3006 | memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
|
---|
3007 |
|
---|
3008 | if (client) {
|
---|
3009 | OPENSSL_free(c->client_sigalgs);
|
---|
3010 | c->client_sigalgs = sigalgs;
|
---|
3011 | c->client_sigalgslen = salglen;
|
---|
3012 | } else {
|
---|
3013 | OPENSSL_free(c->conf_sigalgs);
|
---|
3014 | c->conf_sigalgs = sigalgs;
|
---|
3015 | c->conf_sigalgslen = salglen;
|
---|
3016 | }
|
---|
3017 |
|
---|
3018 | return 1;
|
---|
3019 | }
|
---|
3020 |
|
---|
3021 | int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
|
---|
3022 | {
|
---|
3023 | uint16_t *sigalgs, *sptr;
|
---|
3024 | size_t i;
|
---|
3025 |
|
---|
3026 | if (salglen & 1)
|
---|
3027 | return 0;
|
---|
3028 | if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
|
---|
3029 | return 0;
|
---|
3030 | for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
|
---|
3031 | size_t j;
|
---|
3032 | const SIGALG_LOOKUP *curr;
|
---|
3033 | int md_id = *psig_nids++;
|
---|
3034 | int sig_id = *psig_nids++;
|
---|
3035 |
|
---|
3036 | for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
|
---|
3037 | j++, curr++) {
|
---|
3038 | if (curr->hash == md_id && curr->sig == sig_id) {
|
---|
3039 | *sptr++ = curr->sigalg;
|
---|
3040 | break;
|
---|
3041 | }
|
---|
3042 | }
|
---|
3043 |
|
---|
3044 | if (j == OSSL_NELEM(sigalg_lookup_tbl))
|
---|
3045 | goto err;
|
---|
3046 | }
|
---|
3047 |
|
---|
3048 | if (client) {
|
---|
3049 | OPENSSL_free(c->client_sigalgs);
|
---|
3050 | c->client_sigalgs = sigalgs;
|
---|
3051 | c->client_sigalgslen = salglen / 2;
|
---|
3052 | } else {
|
---|
3053 | OPENSSL_free(c->conf_sigalgs);
|
---|
3054 | c->conf_sigalgs = sigalgs;
|
---|
3055 | c->conf_sigalgslen = salglen / 2;
|
---|
3056 | }
|
---|
3057 |
|
---|
3058 | return 1;
|
---|
3059 |
|
---|
3060 | err:
|
---|
3061 | OPENSSL_free(sigalgs);
|
---|
3062 | return 0;
|
---|
3063 | }
|
---|
3064 |
|
---|
3065 | static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
|
---|
3066 | {
|
---|
3067 | int sig_nid, use_pc_sigalgs = 0;
|
---|
3068 | size_t i;
|
---|
3069 | const SIGALG_LOOKUP *sigalg;
|
---|
3070 | size_t sigalgslen;
|
---|
3071 |
|
---|
3072 | if (default_nid == -1)
|
---|
3073 | return 1;
|
---|
3074 | sig_nid = X509_get_signature_nid(x);
|
---|
3075 | if (default_nid)
|
---|
3076 | return sig_nid == default_nid ? 1 : 0;
|
---|
3077 |
|
---|
3078 | if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
|
---|
3079 | /*
|
---|
3080 | * If we're in TLSv1.3 then we only get here if we're checking the
|
---|
3081 | * chain. If the peer has specified peer_cert_sigalgs then we use them
|
---|
3082 | * otherwise we default to normal sigalgs.
|
---|
3083 | */
|
---|
3084 | sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
|
---|
3085 | use_pc_sigalgs = 1;
|
---|
3086 | } else {
|
---|
3087 | sigalgslen = s->shared_sigalgslen;
|
---|
3088 | }
|
---|
3089 | for (i = 0; i < sigalgslen; i++) {
|
---|
3090 | sigalg = use_pc_sigalgs
|
---|
3091 | ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
|
---|
3092 | : s->shared_sigalgs[i];
|
---|
3093 | if (sigalg != NULL && sig_nid == sigalg->sigandhash)
|
---|
3094 | return 1;
|
---|
3095 | }
|
---|
3096 | return 0;
|
---|
3097 | }
|
---|
3098 |
|
---|
3099 | /* Check to see if a certificate issuer name matches list of CA names */
|
---|
3100 | static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
|
---|
3101 | {
|
---|
3102 | const X509_NAME *nm;
|
---|
3103 | int i;
|
---|
3104 | nm = X509_get_issuer_name(x);
|
---|
3105 | for (i = 0; i < sk_X509_NAME_num(names); i++) {
|
---|
3106 | if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
|
---|
3107 | return 1;
|
---|
3108 | }
|
---|
3109 | return 0;
|
---|
3110 | }
|
---|
3111 |
|
---|
3112 | /*
|
---|
3113 | * Check certificate chain is consistent with TLS extensions and is usable by
|
---|
3114 | * server. This servers two purposes: it allows users to check chains before
|
---|
3115 | * passing them to the server and it allows the server to check chains before
|
---|
3116 | * attempting to use them.
|
---|
3117 | */
|
---|
3118 |
|
---|
3119 | /* Flags which need to be set for a certificate when strict mode not set */
|
---|
3120 |
|
---|
3121 | #define CERT_PKEY_VALID_FLAGS \
|
---|
3122 | (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
|
---|
3123 | /* Strict mode flags */
|
---|
3124 | #define CERT_PKEY_STRICT_FLAGS \
|
---|
3125 | (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
|
---|
3126 | | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
|
---|
3127 |
|
---|
3128 | int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
|
---|
3129 | STACK_OF(X509) *chain, int idx)
|
---|
3130 | {
|
---|
3131 | int i;
|
---|
3132 | int rv = 0;
|
---|
3133 | int check_flags = 0, strict_mode;
|
---|
3134 | CERT_PKEY *cpk = NULL;
|
---|
3135 | CERT *c = s->cert;
|
---|
3136 | uint32_t *pvalid;
|
---|
3137 | unsigned int suiteb_flags = tls1_suiteb(s);
|
---|
3138 |
|
---|
3139 | /*
|
---|
3140 | * Meaning of idx:
|
---|
3141 | * idx == -1 means SSL_check_chain() invocation
|
---|
3142 | * idx == -2 means checking client certificate chains
|
---|
3143 | * idx >= 0 means checking SSL_PKEY index
|
---|
3144 | *
|
---|
3145 | * For RPK, where there may be no cert, we ignore -1
|
---|
3146 | */
|
---|
3147 | if (idx != -1) {
|
---|
3148 | if (idx == -2) {
|
---|
3149 | cpk = c->key;
|
---|
3150 | idx = (int)(cpk - c->pkeys);
|
---|
3151 | } else
|
---|
3152 | cpk = c->pkeys + idx;
|
---|
3153 | pvalid = s->s3.tmp.valid_flags + idx;
|
---|
3154 | x = cpk->x509;
|
---|
3155 | pk = cpk->privatekey;
|
---|
3156 | chain = cpk->chain;
|
---|
3157 | strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
|
---|
3158 | if (tls12_rpk_and_privkey(s, idx)) {
|
---|
3159 | if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
|
---|
3160 | return 0;
|
---|
3161 | *pvalid = rv = CERT_PKEY_RPK;
|
---|
3162 | return rv;
|
---|
3163 | }
|
---|
3164 | /* If no cert or key, forget it */
|
---|
3165 | if (x == NULL || pk == NULL)
|
---|
3166 | goto end;
|
---|
3167 | } else {
|
---|
3168 | size_t certidx;
|
---|
3169 |
|
---|
3170 | if (x == NULL || pk == NULL)
|
---|
3171 | return 0;
|
---|
3172 |
|
---|
3173 | if (ssl_cert_lookup_by_pkey(pk, &certidx,
|
---|
3174 | SSL_CONNECTION_GET_CTX(s)) == NULL)
|
---|
3175 | return 0;
|
---|
3176 | idx = certidx;
|
---|
3177 | pvalid = s->s3.tmp.valid_flags + idx;
|
---|
3178 |
|
---|
3179 | if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
|
---|
3180 | check_flags = CERT_PKEY_STRICT_FLAGS;
|
---|
3181 | else
|
---|
3182 | check_flags = CERT_PKEY_VALID_FLAGS;
|
---|
3183 | strict_mode = 1;
|
---|
3184 | }
|
---|
3185 |
|
---|
3186 | if (suiteb_flags) {
|
---|
3187 | int ok;
|
---|
3188 | if (check_flags)
|
---|
3189 | check_flags |= CERT_PKEY_SUITEB;
|
---|
3190 | ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
|
---|
3191 | if (ok == X509_V_OK)
|
---|
3192 | rv |= CERT_PKEY_SUITEB;
|
---|
3193 | else if (!check_flags)
|
---|
3194 | goto end;
|
---|
3195 | }
|
---|
3196 |
|
---|
3197 | /*
|
---|
3198 | * Check all signature algorithms are consistent with signature
|
---|
3199 | * algorithms extension if TLS 1.2 or later and strict mode.
|
---|
3200 | */
|
---|
3201 | if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
|
---|
3202 | && strict_mode) {
|
---|
3203 | int default_nid;
|
---|
3204 | int rsign = 0;
|
---|
3205 |
|
---|
3206 | if (s->s3.tmp.peer_cert_sigalgs != NULL
|
---|
3207 | || s->s3.tmp.peer_sigalgs != NULL) {
|
---|
3208 | default_nid = 0;
|
---|
3209 | /* If no sigalgs extension use defaults from RFC5246 */
|
---|
3210 | } else {
|
---|
3211 | switch (idx) {
|
---|
3212 | case SSL_PKEY_RSA:
|
---|
3213 | rsign = EVP_PKEY_RSA;
|
---|
3214 | default_nid = NID_sha1WithRSAEncryption;
|
---|
3215 | break;
|
---|
3216 |
|
---|
3217 | case SSL_PKEY_DSA_SIGN:
|
---|
3218 | rsign = EVP_PKEY_DSA;
|
---|
3219 | default_nid = NID_dsaWithSHA1;
|
---|
3220 | break;
|
---|
3221 |
|
---|
3222 | case SSL_PKEY_ECC:
|
---|
3223 | rsign = EVP_PKEY_EC;
|
---|
3224 | default_nid = NID_ecdsa_with_SHA1;
|
---|
3225 | break;
|
---|
3226 |
|
---|
3227 | case SSL_PKEY_GOST01:
|
---|
3228 | rsign = NID_id_GostR3410_2001;
|
---|
3229 | default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
|
---|
3230 | break;
|
---|
3231 |
|
---|
3232 | case SSL_PKEY_GOST12_256:
|
---|
3233 | rsign = NID_id_GostR3410_2012_256;
|
---|
3234 | default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
|
---|
3235 | break;
|
---|
3236 |
|
---|
3237 | case SSL_PKEY_GOST12_512:
|
---|
3238 | rsign = NID_id_GostR3410_2012_512;
|
---|
3239 | default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
|
---|
3240 | break;
|
---|
3241 |
|
---|
3242 | default:
|
---|
3243 | default_nid = -1;
|
---|
3244 | break;
|
---|
3245 | }
|
---|
3246 | }
|
---|
3247 | /*
|
---|
3248 | * If peer sent no signature algorithms extension and we have set
|
---|
3249 | * preferred signature algorithms check we support sha1.
|
---|
3250 | */
|
---|
3251 | if (default_nid > 0 && c->conf_sigalgs) {
|
---|
3252 | size_t j;
|
---|
3253 | const uint16_t *p = c->conf_sigalgs;
|
---|
3254 | for (j = 0; j < c->conf_sigalgslen; j++, p++) {
|
---|
3255 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
|
---|
3256 |
|
---|
3257 | if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
|
---|
3258 | break;
|
---|
3259 | }
|
---|
3260 | if (j == c->conf_sigalgslen) {
|
---|
3261 | if (check_flags)
|
---|
3262 | goto skip_sigs;
|
---|
3263 | else
|
---|
3264 | goto end;
|
---|
3265 | }
|
---|
3266 | }
|
---|
3267 | /* Check signature algorithm of each cert in chain */
|
---|
3268 | if (SSL_CONNECTION_IS_TLS13(s)) {
|
---|
3269 | /*
|
---|
3270 | * We only get here if the application has called SSL_check_chain(),
|
---|
3271 | * so check_flags is always set.
|
---|
3272 | */
|
---|
3273 | if (find_sig_alg(s, x, pk) != NULL)
|
---|
3274 | rv |= CERT_PKEY_EE_SIGNATURE;
|
---|
3275 | } else if (!tls1_check_sig_alg(s, x, default_nid)) {
|
---|
3276 | if (!check_flags)
|
---|
3277 | goto end;
|
---|
3278 | } else
|
---|
3279 | rv |= CERT_PKEY_EE_SIGNATURE;
|
---|
3280 | rv |= CERT_PKEY_CA_SIGNATURE;
|
---|
3281 | for (i = 0; i < sk_X509_num(chain); i++) {
|
---|
3282 | if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
|
---|
3283 | if (check_flags) {
|
---|
3284 | rv &= ~CERT_PKEY_CA_SIGNATURE;
|
---|
3285 | break;
|
---|
3286 | } else
|
---|
3287 | goto end;
|
---|
3288 | }
|
---|
3289 | }
|
---|
3290 | }
|
---|
3291 | /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
|
---|
3292 | else if (check_flags)
|
---|
3293 | rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
|
---|
3294 | skip_sigs:
|
---|
3295 | /* Check cert parameters are consistent */
|
---|
3296 | if (tls1_check_cert_param(s, x, 1))
|
---|
3297 | rv |= CERT_PKEY_EE_PARAM;
|
---|
3298 | else if (!check_flags)
|
---|
3299 | goto end;
|
---|
3300 | if (!s->server)
|
---|
3301 | rv |= CERT_PKEY_CA_PARAM;
|
---|
3302 | /* In strict mode check rest of chain too */
|
---|
3303 | else if (strict_mode) {
|
---|
3304 | rv |= CERT_PKEY_CA_PARAM;
|
---|
3305 | for (i = 0; i < sk_X509_num(chain); i++) {
|
---|
3306 | X509 *ca = sk_X509_value(chain, i);
|
---|
3307 | if (!tls1_check_cert_param(s, ca, 0)) {
|
---|
3308 | if (check_flags) {
|
---|
3309 | rv &= ~CERT_PKEY_CA_PARAM;
|
---|
3310 | break;
|
---|
3311 | } else
|
---|
3312 | goto end;
|
---|
3313 | }
|
---|
3314 | }
|
---|
3315 | }
|
---|
3316 | if (!s->server && strict_mode) {
|
---|
3317 | STACK_OF(X509_NAME) *ca_dn;
|
---|
3318 | int check_type = 0;
|
---|
3319 |
|
---|
3320 | if (EVP_PKEY_is_a(pk, "RSA"))
|
---|
3321 | check_type = TLS_CT_RSA_SIGN;
|
---|
3322 | else if (EVP_PKEY_is_a(pk, "DSA"))
|
---|
3323 | check_type = TLS_CT_DSS_SIGN;
|
---|
3324 | else if (EVP_PKEY_is_a(pk, "EC"))
|
---|
3325 | check_type = TLS_CT_ECDSA_SIGN;
|
---|
3326 |
|
---|
3327 | if (check_type) {
|
---|
3328 | const uint8_t *ctypes = s->s3.tmp.ctype;
|
---|
3329 | size_t j;
|
---|
3330 |
|
---|
3331 | for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
|
---|
3332 | if (*ctypes == check_type) {
|
---|
3333 | rv |= CERT_PKEY_CERT_TYPE;
|
---|
3334 | break;
|
---|
3335 | }
|
---|
3336 | }
|
---|
3337 | if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
|
---|
3338 | goto end;
|
---|
3339 | } else {
|
---|
3340 | rv |= CERT_PKEY_CERT_TYPE;
|
---|
3341 | }
|
---|
3342 |
|
---|
3343 | ca_dn = s->s3.tmp.peer_ca_names;
|
---|
3344 |
|
---|
3345 | if (ca_dn == NULL
|
---|
3346 | || sk_X509_NAME_num(ca_dn) == 0
|
---|
3347 | || ssl_check_ca_name(ca_dn, x))
|
---|
3348 | rv |= CERT_PKEY_ISSUER_NAME;
|
---|
3349 | else
|
---|
3350 | for (i = 0; i < sk_X509_num(chain); i++) {
|
---|
3351 | X509 *xtmp = sk_X509_value(chain, i);
|
---|
3352 |
|
---|
3353 | if (ssl_check_ca_name(ca_dn, xtmp)) {
|
---|
3354 | rv |= CERT_PKEY_ISSUER_NAME;
|
---|
3355 | break;
|
---|
3356 | }
|
---|
3357 | }
|
---|
3358 |
|
---|
3359 | if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
|
---|
3360 | goto end;
|
---|
3361 | } else
|
---|
3362 | rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
|
---|
3363 |
|
---|
3364 | if (!check_flags || (rv & check_flags) == check_flags)
|
---|
3365 | rv |= CERT_PKEY_VALID;
|
---|
3366 |
|
---|
3367 | end:
|
---|
3368 |
|
---|
3369 | if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
|
---|
3370 | rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
|
---|
3371 | else
|
---|
3372 | rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
|
---|
3373 |
|
---|
3374 | /*
|
---|
3375 | * When checking a CERT_PKEY structure all flags are irrelevant if the
|
---|
3376 | * chain is invalid.
|
---|
3377 | */
|
---|
3378 | if (!check_flags) {
|
---|
3379 | if (rv & CERT_PKEY_VALID) {
|
---|
3380 | *pvalid = rv;
|
---|
3381 | } else {
|
---|
3382 | /* Preserve sign and explicit sign flag, clear rest */
|
---|
3383 | *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
|
---|
3384 | return 0;
|
---|
3385 | }
|
---|
3386 | }
|
---|
3387 | return rv;
|
---|
3388 | }
|
---|
3389 |
|
---|
3390 | /* Set validity of certificates in an SSL structure */
|
---|
3391 | void tls1_set_cert_validity(SSL_CONNECTION *s)
|
---|
3392 | {
|
---|
3393 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
|
---|
3394 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
|
---|
3395 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
|
---|
3396 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
|
---|
3397 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
|
---|
3398 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
|
---|
3399 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
|
---|
3400 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
|
---|
3401 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
|
---|
3402 | }
|
---|
3403 |
|
---|
3404 | /* User level utility function to check a chain is suitable */
|
---|
3405 | int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
|
---|
3406 | {
|
---|
3407 | SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
|
---|
3408 |
|
---|
3409 | if (sc == NULL)
|
---|
3410 | return 0;
|
---|
3411 |
|
---|
3412 | return tls1_check_chain(sc, x, pk, chain, -1);
|
---|
3413 | }
|
---|
3414 |
|
---|
3415 | EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
|
---|
3416 | {
|
---|
3417 | EVP_PKEY *dhp = NULL;
|
---|
3418 | BIGNUM *p;
|
---|
3419 | int dh_secbits = 80, sec_level_bits;
|
---|
3420 | EVP_PKEY_CTX *pctx = NULL;
|
---|
3421 | OSSL_PARAM_BLD *tmpl = NULL;
|
---|
3422 | OSSL_PARAM *params = NULL;
|
---|
3423 | SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
|
---|
3424 |
|
---|
3425 | if (s->cert->dh_tmp_auto != 2) {
|
---|
3426 | if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
|
---|
3427 | if (s->s3.tmp.new_cipher->strength_bits == 256)
|
---|
3428 | dh_secbits = 128;
|
---|
3429 | else
|
---|
3430 | dh_secbits = 80;
|
---|
3431 | } else {
|
---|
3432 | if (s->s3.tmp.cert == NULL)
|
---|
3433 | return NULL;
|
---|
3434 | dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
|
---|
3435 | }
|
---|
3436 | }
|
---|
3437 |
|
---|
3438 | /* Do not pick a prime that is too weak for the current security level */
|
---|
3439 | sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
|
---|
3440 | NULL, NULL);
|
---|
3441 | if (dh_secbits < sec_level_bits)
|
---|
3442 | dh_secbits = sec_level_bits;
|
---|
3443 |
|
---|
3444 | if (dh_secbits >= 192)
|
---|
3445 | p = BN_get_rfc3526_prime_8192(NULL);
|
---|
3446 | else if (dh_secbits >= 152)
|
---|
3447 | p = BN_get_rfc3526_prime_4096(NULL);
|
---|
3448 | else if (dh_secbits >= 128)
|
---|
3449 | p = BN_get_rfc3526_prime_3072(NULL);
|
---|
3450 | else if (dh_secbits >= 112)
|
---|
3451 | p = BN_get_rfc3526_prime_2048(NULL);
|
---|
3452 | else
|
---|
3453 | p = BN_get_rfc2409_prime_1024(NULL);
|
---|
3454 | if (p == NULL)
|
---|
3455 | goto err;
|
---|
3456 |
|
---|
3457 | pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
|
---|
3458 | if (pctx == NULL
|
---|
3459 | || EVP_PKEY_fromdata_init(pctx) != 1)
|
---|
3460 | goto err;
|
---|
3461 |
|
---|
3462 | tmpl = OSSL_PARAM_BLD_new();
|
---|
3463 | if (tmpl == NULL
|
---|
3464 | || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
|
---|
3465 | || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
|
---|
3466 | goto err;
|
---|
3467 |
|
---|
3468 | params = OSSL_PARAM_BLD_to_param(tmpl);
|
---|
3469 | if (params == NULL
|
---|
3470 | || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
|
---|
3471 | goto err;
|
---|
3472 |
|
---|
3473 | err:
|
---|
3474 | OSSL_PARAM_free(params);
|
---|
3475 | OSSL_PARAM_BLD_free(tmpl);
|
---|
3476 | EVP_PKEY_CTX_free(pctx);
|
---|
3477 | BN_free(p);
|
---|
3478 | return dhp;
|
---|
3479 | }
|
---|
3480 |
|
---|
3481 | static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
|
---|
3482 | int op)
|
---|
3483 | {
|
---|
3484 | int secbits = -1;
|
---|
3485 | EVP_PKEY *pkey = X509_get0_pubkey(x);
|
---|
3486 |
|
---|
3487 | if (pkey) {
|
---|
3488 | /*
|
---|
3489 | * If no parameters this will return -1 and fail using the default
|
---|
3490 | * security callback for any non-zero security level. This will
|
---|
3491 | * reject keys which omit parameters but this only affects DSA and
|
---|
3492 | * omission of parameters is never (?) done in practice.
|
---|
3493 | */
|
---|
3494 | secbits = EVP_PKEY_get_security_bits(pkey);
|
---|
3495 | }
|
---|
3496 | if (s != NULL)
|
---|
3497 | return ssl_security(s, op, secbits, 0, x);
|
---|
3498 | else
|
---|
3499 | return ssl_ctx_security(ctx, op, secbits, 0, x);
|
---|
3500 | }
|
---|
3501 |
|
---|
3502 | static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
|
---|
3503 | int op)
|
---|
3504 | {
|
---|
3505 | /* Lookup signature algorithm digest */
|
---|
3506 | int secbits, nid, pknid;
|
---|
3507 |
|
---|
3508 | /* Don't check signature if self signed */
|
---|
3509 | if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
|
---|
3510 | return 1;
|
---|
3511 | if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
|
---|
3512 | secbits = -1;
|
---|
3513 | /* If digest NID not defined use signature NID */
|
---|
3514 | if (nid == NID_undef)
|
---|
3515 | nid = pknid;
|
---|
3516 | if (s != NULL)
|
---|
3517 | return ssl_security(s, op, secbits, nid, x);
|
---|
3518 | else
|
---|
3519 | return ssl_ctx_security(ctx, op, secbits, nid, x);
|
---|
3520 | }
|
---|
3521 |
|
---|
3522 | int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
|
---|
3523 | int is_ee)
|
---|
3524 | {
|
---|
3525 | if (vfy)
|
---|
3526 | vfy = SSL_SECOP_PEER;
|
---|
3527 | if (is_ee) {
|
---|
3528 | if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
|
---|
3529 | return SSL_R_EE_KEY_TOO_SMALL;
|
---|
3530 | } else {
|
---|
3531 | if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
|
---|
3532 | return SSL_R_CA_KEY_TOO_SMALL;
|
---|
3533 | }
|
---|
3534 | if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
|
---|
3535 | return SSL_R_CA_MD_TOO_WEAK;
|
---|
3536 | return 1;
|
---|
3537 | }
|
---|
3538 |
|
---|
3539 | /*
|
---|
3540 | * Check security of a chain, if |sk| includes the end entity certificate then
|
---|
3541 | * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
|
---|
3542 | * one to the peer. Return values: 1 if ok otherwise error code to use
|
---|
3543 | */
|
---|
3544 |
|
---|
3545 | int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
|
---|
3546 | X509 *x, int vfy)
|
---|
3547 | {
|
---|
3548 | int rv, start_idx, i;
|
---|
3549 |
|
---|
3550 | if (x == NULL) {
|
---|
3551 | x = sk_X509_value(sk, 0);
|
---|
3552 | if (x == NULL)
|
---|
3553 | return ERR_R_INTERNAL_ERROR;
|
---|
3554 | start_idx = 1;
|
---|
3555 | } else
|
---|
3556 | start_idx = 0;
|
---|
3557 |
|
---|
3558 | rv = ssl_security_cert(s, NULL, x, vfy, 1);
|
---|
3559 | if (rv != 1)
|
---|
3560 | return rv;
|
---|
3561 |
|
---|
3562 | for (i = start_idx; i < sk_X509_num(sk); i++) {
|
---|
3563 | x = sk_X509_value(sk, i);
|
---|
3564 | rv = ssl_security_cert(s, NULL, x, vfy, 0);
|
---|
3565 | if (rv != 1)
|
---|
3566 | return rv;
|
---|
3567 | }
|
---|
3568 | return 1;
|
---|
3569 | }
|
---|
3570 |
|
---|
3571 | /*
|
---|
3572 | * For TLS 1.2 servers check if we have a certificate which can be used
|
---|
3573 | * with the signature algorithm "lu" and return index of certificate.
|
---|
3574 | */
|
---|
3575 |
|
---|
3576 | static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
|
---|
3577 | const SIGALG_LOOKUP *lu)
|
---|
3578 | {
|
---|
3579 | int sig_idx = lu->sig_idx;
|
---|
3580 | const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
|
---|
3581 | SSL_CONNECTION_GET_CTX(s));
|
---|
3582 |
|
---|
3583 | /* If not recognised or not supported by cipher mask it is not suitable */
|
---|
3584 | if (clu == NULL
|
---|
3585 | || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
|
---|
3586 | || (clu->nid == EVP_PKEY_RSA_PSS
|
---|
3587 | && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
|
---|
3588 | return -1;
|
---|
3589 |
|
---|
3590 | /* If doing RPK, the CERT_PKEY won't be "valid" */
|
---|
3591 | if (tls12_rpk_and_privkey(s, sig_idx))
|
---|
3592 | return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
|
---|
3593 |
|
---|
3594 | return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
|
---|
3595 | }
|
---|
3596 |
|
---|
3597 | /*
|
---|
3598 | * Checks the given cert against signature_algorithm_cert restrictions sent by
|
---|
3599 | * the peer (if any) as well as whether the hash from the sigalg is usable with
|
---|
3600 | * the key.
|
---|
3601 | * Returns true if the cert is usable and false otherwise.
|
---|
3602 | */
|
---|
3603 | static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
|
---|
3604 | X509 *x, EVP_PKEY *pkey)
|
---|
3605 | {
|
---|
3606 | const SIGALG_LOOKUP *lu;
|
---|
3607 | int mdnid, pknid, supported;
|
---|
3608 | size_t i;
|
---|
3609 | const char *mdname = NULL;
|
---|
3610 | SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
|
---|
3611 |
|
---|
3612 | /*
|
---|
3613 | * If the given EVP_PKEY cannot support signing with this digest,
|
---|
3614 | * the answer is simply 'no'.
|
---|
3615 | */
|
---|
3616 | if (sig->hash != NID_undef)
|
---|
3617 | mdname = OBJ_nid2sn(sig->hash);
|
---|
3618 | supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
|
---|
3619 | mdname,
|
---|
3620 | sctx->propq);
|
---|
3621 | if (supported <= 0)
|
---|
3622 | return 0;
|
---|
3623 |
|
---|
3624 | /*
|
---|
3625 | * The TLS 1.3 signature_algorithms_cert extension places restrictions
|
---|
3626 | * on the sigalg with which the certificate was signed (by its issuer).
|
---|
3627 | */
|
---|
3628 | if (s->s3.tmp.peer_cert_sigalgs != NULL) {
|
---|
3629 | if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
|
---|
3630 | return 0;
|
---|
3631 | for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
|
---|
3632 | lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
|
---|
3633 | if (lu == NULL)
|
---|
3634 | continue;
|
---|
3635 |
|
---|
3636 | /*
|
---|
3637 | * This does not differentiate between the
|
---|
3638 | * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
|
---|
3639 | * have a chain here that lets us look at the key OID in the
|
---|
3640 | * signing certificate.
|
---|
3641 | */
|
---|
3642 | if (mdnid == lu->hash && pknid == lu->sig)
|
---|
3643 | return 1;
|
---|
3644 | }
|
---|
3645 | return 0;
|
---|
3646 | }
|
---|
3647 |
|
---|
3648 | /*
|
---|
3649 | * Without signat_algorithms_cert, any certificate for which we have
|
---|
3650 | * a viable public key is permitted.
|
---|
3651 | */
|
---|
3652 | return 1;
|
---|
3653 | }
|
---|
3654 |
|
---|
3655 | /*
|
---|
3656 | * Returns true if |s| has a usable certificate configured for use
|
---|
3657 | * with signature scheme |sig|.
|
---|
3658 | * "Usable" includes a check for presence as well as applying
|
---|
3659 | * the signature_algorithm_cert restrictions sent by the peer (if any).
|
---|
3660 | * Returns false if no usable certificate is found.
|
---|
3661 | */
|
---|
3662 | static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
|
---|
3663 | {
|
---|
3664 | /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
|
---|
3665 | if (idx == -1)
|
---|
3666 | idx = sig->sig_idx;
|
---|
3667 | if (!ssl_has_cert(s, idx))
|
---|
3668 | return 0;
|
---|
3669 |
|
---|
3670 | return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
|
---|
3671 | s->cert->pkeys[idx].privatekey);
|
---|
3672 | }
|
---|
3673 |
|
---|
3674 | /*
|
---|
3675 | * Returns true if the supplied cert |x| and key |pkey| is usable with the
|
---|
3676 | * specified signature scheme |sig|, or false otherwise.
|
---|
3677 | */
|
---|
3678 | static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
|
---|
3679 | EVP_PKEY *pkey)
|
---|
3680 | {
|
---|
3681 | size_t idx;
|
---|
3682 |
|
---|
3683 | if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
|
---|
3684 | return 0;
|
---|
3685 |
|
---|
3686 | /* Check the key is consistent with the sig alg */
|
---|
3687 | if ((int)idx != sig->sig_idx)
|
---|
3688 | return 0;
|
---|
3689 |
|
---|
3690 | return check_cert_usable(s, sig, x, pkey);
|
---|
3691 | }
|
---|
3692 |
|
---|
3693 | /*
|
---|
3694 | * Find a signature scheme that works with the supplied certificate |x| and key
|
---|
3695 | * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
|
---|
3696 | * available certs/keys to find one that works.
|
---|
3697 | */
|
---|
3698 | static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
|
---|
3699 | EVP_PKEY *pkey)
|
---|
3700 | {
|
---|
3701 | const SIGALG_LOOKUP *lu = NULL;
|
---|
3702 | size_t i;
|
---|
3703 | int curve = -1;
|
---|
3704 | EVP_PKEY *tmppkey;
|
---|
3705 | SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
|
---|
3706 |
|
---|
3707 | /* Look for a shared sigalgs matching possible certificates */
|
---|
3708 | for (i = 0; i < s->shared_sigalgslen; i++) {
|
---|
3709 | lu = s->shared_sigalgs[i];
|
---|
3710 |
|
---|
3711 | /* Skip SHA1, SHA224, DSA and RSA if not PSS */
|
---|
3712 | if (lu->hash == NID_sha1
|
---|
3713 | || lu->hash == NID_sha224
|
---|
3714 | || lu->sig == EVP_PKEY_DSA
|
---|
3715 | || lu->sig == EVP_PKEY_RSA)
|
---|
3716 | continue;
|
---|
3717 | /* Check that we have a cert, and signature_algorithms_cert */
|
---|
3718 | if (!tls1_lookup_md(sctx, lu, NULL))
|
---|
3719 | continue;
|
---|
3720 | if ((pkey == NULL && !has_usable_cert(s, lu, -1))
|
---|
3721 | || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
|
---|
3722 | continue;
|
---|
3723 |
|
---|
3724 | tmppkey = (pkey != NULL) ? pkey
|
---|
3725 | : s->cert->pkeys[lu->sig_idx].privatekey;
|
---|
3726 |
|
---|
3727 | if (lu->sig == EVP_PKEY_EC) {
|
---|
3728 | if (curve == -1)
|
---|
3729 | curve = ssl_get_EC_curve_nid(tmppkey);
|
---|
3730 | if (lu->curve != NID_undef && curve != lu->curve)
|
---|
3731 | continue;
|
---|
3732 | } else if (lu->sig == EVP_PKEY_RSA_PSS) {
|
---|
3733 | /* validate that key is large enough for the signature algorithm */
|
---|
3734 | if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
|
---|
3735 | continue;
|
---|
3736 | }
|
---|
3737 | break;
|
---|
3738 | }
|
---|
3739 |
|
---|
3740 | if (i == s->shared_sigalgslen)
|
---|
3741 | return NULL;
|
---|
3742 |
|
---|
3743 | return lu;
|
---|
3744 | }
|
---|
3745 |
|
---|
3746 | /*
|
---|
3747 | * Choose an appropriate signature algorithm based on available certificates
|
---|
3748 | * Sets chosen certificate and signature algorithm.
|
---|
3749 | *
|
---|
3750 | * For servers if we fail to find a required certificate it is a fatal error,
|
---|
3751 | * an appropriate error code is set and a TLS alert is sent.
|
---|
3752 | *
|
---|
3753 | * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
|
---|
3754 | * a fatal error: we will either try another certificate or not present one
|
---|
3755 | * to the server. In this case no error is set.
|
---|
3756 | */
|
---|
3757 | int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
|
---|
3758 | {
|
---|
3759 | const SIGALG_LOOKUP *lu = NULL;
|
---|
3760 | int sig_idx = -1;
|
---|
3761 |
|
---|
3762 | s->s3.tmp.cert = NULL;
|
---|
3763 | s->s3.tmp.sigalg = NULL;
|
---|
3764 |
|
---|
3765 | if (SSL_CONNECTION_IS_TLS13(s)) {
|
---|
3766 | lu = find_sig_alg(s, NULL, NULL);
|
---|
3767 | if (lu == NULL) {
|
---|
3768 | if (!fatalerrs)
|
---|
3769 | return 1;
|
---|
3770 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
---|
3771 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
---|
3772 | return 0;
|
---|
3773 | }
|
---|
3774 | } else {
|
---|
3775 | /* If ciphersuite doesn't require a cert nothing to do */
|
---|
3776 | if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
|
---|
3777 | return 1;
|
---|
3778 | if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
|
---|
3779 | return 1;
|
---|
3780 |
|
---|
3781 | if (SSL_USE_SIGALGS(s)) {
|
---|
3782 | size_t i;
|
---|
3783 | if (s->s3.tmp.peer_sigalgs != NULL) {
|
---|
3784 | int curve = -1;
|
---|
3785 | SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
|
---|
3786 |
|
---|
3787 | /* For Suite B need to match signature algorithm to curve */
|
---|
3788 | if (tls1_suiteb(s))
|
---|
3789 | curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
|
---|
3790 | .privatekey);
|
---|
3791 |
|
---|
3792 | /*
|
---|
3793 | * Find highest preference signature algorithm matching
|
---|
3794 | * cert type
|
---|
3795 | */
|
---|
3796 | for (i = 0; i < s->shared_sigalgslen; i++) {
|
---|
3797 | lu = s->shared_sigalgs[i];
|
---|
3798 |
|
---|
3799 | if (s->server) {
|
---|
3800 | if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
|
---|
3801 | continue;
|
---|
3802 | } else {
|
---|
3803 | int cc_idx = s->cert->key - s->cert->pkeys;
|
---|
3804 |
|
---|
3805 | sig_idx = lu->sig_idx;
|
---|
3806 | if (cc_idx != sig_idx)
|
---|
3807 | continue;
|
---|
3808 | }
|
---|
3809 | /* Check that we have a cert, and sig_algs_cert */
|
---|
3810 | if (!has_usable_cert(s, lu, sig_idx))
|
---|
3811 | continue;
|
---|
3812 | if (lu->sig == EVP_PKEY_RSA_PSS) {
|
---|
3813 | /* validate that key is large enough for the signature algorithm */
|
---|
3814 | EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
|
---|
3815 |
|
---|
3816 | if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
|
---|
3817 | continue;
|
---|
3818 | }
|
---|
3819 | if (curve == -1 || lu->curve == curve)
|
---|
3820 | break;
|
---|
3821 | }
|
---|
3822 | #ifndef OPENSSL_NO_GOST
|
---|
3823 | /*
|
---|
3824 | * Some Windows-based implementations do not send GOST algorithms indication
|
---|
3825 | * in supported_algorithms extension, so when we have GOST-based ciphersuite,
|
---|
3826 | * we have to assume GOST support.
|
---|
3827 | */
|
---|
3828 | if (i == s->shared_sigalgslen
|
---|
3829 | && (s->s3.tmp.new_cipher->algorithm_auth
|
---|
3830 | & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
|
---|
3831 | if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
|
---|
3832 | if (!fatalerrs)
|
---|
3833 | return 1;
|
---|
3834 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
---|
3835 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
---|
3836 | return 0;
|
---|
3837 | } else {
|
---|
3838 | i = 0;
|
---|
3839 | sig_idx = lu->sig_idx;
|
---|
3840 | }
|
---|
3841 | }
|
---|
3842 | #endif
|
---|
3843 | if (i == s->shared_sigalgslen) {
|
---|
3844 | if (!fatalerrs)
|
---|
3845 | return 1;
|
---|
3846 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
---|
3847 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
---|
3848 | return 0;
|
---|
3849 | }
|
---|
3850 | } else {
|
---|
3851 | /*
|
---|
3852 | * If we have no sigalg use defaults
|
---|
3853 | */
|
---|
3854 | const uint16_t *sent_sigs;
|
---|
3855 | size_t sent_sigslen;
|
---|
3856 |
|
---|
3857 | if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
|
---|
3858 | if (!fatalerrs)
|
---|
3859 | return 1;
|
---|
3860 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
---|
3861 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
---|
3862 | return 0;
|
---|
3863 | }
|
---|
3864 |
|
---|
3865 | /* Check signature matches a type we sent */
|
---|
3866 | sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
|
---|
3867 | for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
|
---|
3868 | if (lu->sigalg == *sent_sigs
|
---|
3869 | && has_usable_cert(s, lu, lu->sig_idx))
|
---|
3870 | break;
|
---|
3871 | }
|
---|
3872 | if (i == sent_sigslen) {
|
---|
3873 | if (!fatalerrs)
|
---|
3874 | return 1;
|
---|
3875 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
|
---|
3876 | SSL_R_WRONG_SIGNATURE_TYPE);
|
---|
3877 | return 0;
|
---|
3878 | }
|
---|
3879 | }
|
---|
3880 | } else {
|
---|
3881 | if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
|
---|
3882 | if (!fatalerrs)
|
---|
3883 | return 1;
|
---|
3884 | SSLfatal(s, SSL_AD_INTERNAL_ERROR,
|
---|
3885 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
|
---|
3886 | return 0;
|
---|
3887 | }
|
---|
3888 | }
|
---|
3889 | }
|
---|
3890 | if (sig_idx == -1)
|
---|
3891 | sig_idx = lu->sig_idx;
|
---|
3892 | s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
|
---|
3893 | s->cert->key = s->s3.tmp.cert;
|
---|
3894 | s->s3.tmp.sigalg = lu;
|
---|
3895 | return 1;
|
---|
3896 | }
|
---|
3897 |
|
---|
3898 | int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
|
---|
3899 | {
|
---|
3900 | if (mode != TLSEXT_max_fragment_length_DISABLED
|
---|
3901 | && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
|
---|
3902 | ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
|
---|
3903 | return 0;
|
---|
3904 | }
|
---|
3905 |
|
---|
3906 | ctx->ext.max_fragment_len_mode = mode;
|
---|
3907 | return 1;
|
---|
3908 | }
|
---|
3909 |
|
---|
3910 | int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
|
---|
3911 | {
|
---|
3912 | SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
|
---|
3913 |
|
---|
3914 | if (sc == NULL
|
---|
3915 | || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
|
---|
3916 | return 0;
|
---|
3917 |
|
---|
3918 | if (mode != TLSEXT_max_fragment_length_DISABLED
|
---|
3919 | && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
|
---|
3920 | ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
|
---|
3921 | return 0;
|
---|
3922 | }
|
---|
3923 |
|
---|
3924 | sc->ext.max_fragment_len_mode = mode;
|
---|
3925 | return 1;
|
---|
3926 | }
|
---|
3927 |
|
---|
3928 | uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
|
---|
3929 | {
|
---|
3930 | if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
|
---|
3931 | return TLSEXT_max_fragment_length_DISABLED;
|
---|
3932 | return session->ext.max_fragment_len_mode;
|
---|
3933 | }
|
---|
3934 |
|
---|
3935 | /*
|
---|
3936 | * Helper functions for HMAC access with legacy support included.
|
---|
3937 | */
|
---|
3938 | SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
|
---|
3939 | {
|
---|
3940 | SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
|
---|
3941 | EVP_MAC *mac = NULL;
|
---|
3942 |
|
---|
3943 | if (ret == NULL)
|
---|
3944 | return NULL;
|
---|
3945 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
3946 | if (ctx->ext.ticket_key_evp_cb == NULL
|
---|
3947 | && ctx->ext.ticket_key_cb != NULL) {
|
---|
3948 | if (!ssl_hmac_old_new(ret))
|
---|
3949 | goto err;
|
---|
3950 | return ret;
|
---|
3951 | }
|
---|
3952 | #endif
|
---|
3953 | mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
|
---|
3954 | if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
|
---|
3955 | goto err;
|
---|
3956 | EVP_MAC_free(mac);
|
---|
3957 | return ret;
|
---|
3958 | err:
|
---|
3959 | EVP_MAC_CTX_free(ret->ctx);
|
---|
3960 | EVP_MAC_free(mac);
|
---|
3961 | OPENSSL_free(ret);
|
---|
3962 | return NULL;
|
---|
3963 | }
|
---|
3964 |
|
---|
3965 | void ssl_hmac_free(SSL_HMAC *ctx)
|
---|
3966 | {
|
---|
3967 | if (ctx != NULL) {
|
---|
3968 | EVP_MAC_CTX_free(ctx->ctx);
|
---|
3969 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
3970 | ssl_hmac_old_free(ctx);
|
---|
3971 | #endif
|
---|
3972 | OPENSSL_free(ctx);
|
---|
3973 | }
|
---|
3974 | }
|
---|
3975 |
|
---|
3976 | EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
|
---|
3977 | {
|
---|
3978 | return ctx->ctx;
|
---|
3979 | }
|
---|
3980 |
|
---|
3981 | int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
|
---|
3982 | {
|
---|
3983 | OSSL_PARAM params[2], *p = params;
|
---|
3984 |
|
---|
3985 | if (ctx->ctx != NULL) {
|
---|
3986 | *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
|
---|
3987 | *p = OSSL_PARAM_construct_end();
|
---|
3988 | if (EVP_MAC_init(ctx->ctx, key, len, params))
|
---|
3989 | return 1;
|
---|
3990 | }
|
---|
3991 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
3992 | if (ctx->old_ctx != NULL)
|
---|
3993 | return ssl_hmac_old_init(ctx, key, len, md);
|
---|
3994 | #endif
|
---|
3995 | return 0;
|
---|
3996 | }
|
---|
3997 |
|
---|
3998 | int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
|
---|
3999 | {
|
---|
4000 | if (ctx->ctx != NULL)
|
---|
4001 | return EVP_MAC_update(ctx->ctx, data, len);
|
---|
4002 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
4003 | if (ctx->old_ctx != NULL)
|
---|
4004 | return ssl_hmac_old_update(ctx, data, len);
|
---|
4005 | #endif
|
---|
4006 | return 0;
|
---|
4007 | }
|
---|
4008 |
|
---|
4009 | int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
|
---|
4010 | size_t max_size)
|
---|
4011 | {
|
---|
4012 | if (ctx->ctx != NULL)
|
---|
4013 | return EVP_MAC_final(ctx->ctx, md, len, max_size);
|
---|
4014 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
4015 | if (ctx->old_ctx != NULL)
|
---|
4016 | return ssl_hmac_old_final(ctx, md, len);
|
---|
4017 | #endif
|
---|
4018 | return 0;
|
---|
4019 | }
|
---|
4020 |
|
---|
4021 | size_t ssl_hmac_size(const SSL_HMAC *ctx)
|
---|
4022 | {
|
---|
4023 | if (ctx->ctx != NULL)
|
---|
4024 | return EVP_MAC_CTX_get_mac_size(ctx->ctx);
|
---|
4025 | #ifndef OPENSSL_NO_DEPRECATED_3_0
|
---|
4026 | if (ctx->old_ctx != NULL)
|
---|
4027 | return ssl_hmac_old_size(ctx);
|
---|
4028 | #endif
|
---|
4029 | return 0;
|
---|
4030 | }
|
---|
4031 |
|
---|
4032 | int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
|
---|
4033 | {
|
---|
4034 | char gname[OSSL_MAX_NAME_SIZE];
|
---|
4035 |
|
---|
4036 | if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
|
---|
4037 | return OBJ_txt2nid(gname);
|
---|
4038 |
|
---|
4039 | return NID_undef;
|
---|
4040 | }
|
---|
4041 |
|
---|
4042 | __owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
|
---|
4043 | const unsigned char *enckey,
|
---|
4044 | size_t enckeylen)
|
---|
4045 | {
|
---|
4046 | if (EVP_PKEY_is_a(pkey, "DH")) {
|
---|
4047 | int bits = EVP_PKEY_get_bits(pkey);
|
---|
4048 |
|
---|
4049 | if (bits <= 0 || enckeylen != (size_t)bits / 8)
|
---|
4050 | /* the encoded key must be padded to the length of the p */
|
---|
4051 | return 0;
|
---|
4052 | } else if (EVP_PKEY_is_a(pkey, "EC")) {
|
---|
4053 | if (enckeylen < 3 /* point format and at least 1 byte for x and y */
|
---|
4054 | || enckey[0] != 0x04)
|
---|
4055 | return 0;
|
---|
4056 | }
|
---|
4057 |
|
---|
4058 | return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
|
---|
4059 | }
|
---|