VirtualBox

source: vbox/trunk/src/libs/openssl-3.3.2/ssl/t1_lib.c@ 108453

最後變更 在這個檔案從108453是 108206,由 vboxsync 提交於 4 週 前

openssl-3.3.2: Exported all files to OSE and removed .scm-settings ​bugref:10757

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Author Date Id Revision
檔案大小: 130.5 KB
 
1/*
2 * Copyright 1995-2024 The OpenSSL Project Authors. All Rights Reserved.
3 *
4 * Licensed under the Apache License 2.0 (the "License"). You may not use
5 * this file except in compliance with the License. You can obtain a copy
6 * in the file LICENSE in the source distribution or at
7 * https://www.openssl.org/source/license.html
8 */
9
10#include <stdio.h>
11#include "internal/e_os.h"
12#include <stdlib.h>
13#include <openssl/objects.h>
14#include <openssl/evp.h>
15#include <openssl/hmac.h>
16#include <openssl/core_names.h>
17#include <openssl/ocsp.h>
18#include <openssl/conf.h>
19#include <openssl/x509v3.h>
20#include <openssl/dh.h>
21#include <openssl/bn.h>
22#include <openssl/provider.h>
23#include <openssl/param_build.h>
24#include "internal/nelem.h"
25#include "internal/sizes.h"
26#include "internal/tlsgroups.h"
27#include "ssl_local.h"
28#include "quic/quic_local.h"
29#include <openssl/ct.h>
30
31static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pkey);
32static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op, const SIGALG_LOOKUP *lu);
33
34SSL3_ENC_METHOD const TLSv1_enc_data = {
35 tls1_setup_key_block,
36 tls1_generate_master_secret,
37 tls1_change_cipher_state,
38 tls1_final_finish_mac,
39 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
40 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
41 tls1_alert_code,
42 tls1_export_keying_material,
43 0,
44 ssl3_set_handshake_header,
45 tls_close_construct_packet,
46 ssl3_handshake_write
47};
48
49SSL3_ENC_METHOD const TLSv1_1_enc_data = {
50 tls1_setup_key_block,
51 tls1_generate_master_secret,
52 tls1_change_cipher_state,
53 tls1_final_finish_mac,
54 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
55 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
56 tls1_alert_code,
57 tls1_export_keying_material,
58 SSL_ENC_FLAG_EXPLICIT_IV,
59 ssl3_set_handshake_header,
60 tls_close_construct_packet,
61 ssl3_handshake_write
62};
63
64SSL3_ENC_METHOD const TLSv1_2_enc_data = {
65 tls1_setup_key_block,
66 tls1_generate_master_secret,
67 tls1_change_cipher_state,
68 tls1_final_finish_mac,
69 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
70 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
71 tls1_alert_code,
72 tls1_export_keying_material,
73 SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF
74 | SSL_ENC_FLAG_TLS1_2_CIPHERS,
75 ssl3_set_handshake_header,
76 tls_close_construct_packet,
77 ssl3_handshake_write
78};
79
80SSL3_ENC_METHOD const TLSv1_3_enc_data = {
81 tls13_setup_key_block,
82 tls13_generate_master_secret,
83 tls13_change_cipher_state,
84 tls13_final_finish_mac,
85 TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE,
86 TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE,
87 tls13_alert_code,
88 tls13_export_keying_material,
89 SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF,
90 ssl3_set_handshake_header,
91 tls_close_construct_packet,
92 ssl3_handshake_write
93};
94
95OSSL_TIME tls1_default_timeout(void)
96{
97 /*
98 * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for
99 * http, the cache would over fill
100 */
101 return ossl_seconds2time(60 * 60 * 2);
102}
103
104int tls1_new(SSL *s)
105{
106 if (!ssl3_new(s))
107 return 0;
108 if (!s->method->ssl_clear(s))
109 return 0;
110
111 return 1;
112}
113
114void tls1_free(SSL *s)
115{
116 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
117
118 if (sc == NULL)
119 return;
120
121 OPENSSL_free(sc->ext.session_ticket);
122 ssl3_free(s);
123}
124
125int tls1_clear(SSL *s)
126{
127 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
128
129 if (sc == NULL)
130 return 0;
131
132 if (!ssl3_clear(s))
133 return 0;
134
135 if (s->method->version == TLS_ANY_VERSION)
136 sc->version = TLS_MAX_VERSION_INTERNAL;
137 else
138 sc->version = s->method->version;
139
140 return 1;
141}
142
143/* Legacy NID to group_id mapping. Only works for groups we know about */
144static const struct {
145 int nid;
146 uint16_t group_id;
147} nid_to_group[] = {
148 {NID_sect163k1, OSSL_TLS_GROUP_ID_sect163k1},
149 {NID_sect163r1, OSSL_TLS_GROUP_ID_sect163r1},
150 {NID_sect163r2, OSSL_TLS_GROUP_ID_sect163r2},
151 {NID_sect193r1, OSSL_TLS_GROUP_ID_sect193r1},
152 {NID_sect193r2, OSSL_TLS_GROUP_ID_sect193r2},
153 {NID_sect233k1, OSSL_TLS_GROUP_ID_sect233k1},
154 {NID_sect233r1, OSSL_TLS_GROUP_ID_sect233r1},
155 {NID_sect239k1, OSSL_TLS_GROUP_ID_sect239k1},
156 {NID_sect283k1, OSSL_TLS_GROUP_ID_sect283k1},
157 {NID_sect283r1, OSSL_TLS_GROUP_ID_sect283r1},
158 {NID_sect409k1, OSSL_TLS_GROUP_ID_sect409k1},
159 {NID_sect409r1, OSSL_TLS_GROUP_ID_sect409r1},
160 {NID_sect571k1, OSSL_TLS_GROUP_ID_sect571k1},
161 {NID_sect571r1, OSSL_TLS_GROUP_ID_sect571r1},
162 {NID_secp160k1, OSSL_TLS_GROUP_ID_secp160k1},
163 {NID_secp160r1, OSSL_TLS_GROUP_ID_secp160r1},
164 {NID_secp160r2, OSSL_TLS_GROUP_ID_secp160r2},
165 {NID_secp192k1, OSSL_TLS_GROUP_ID_secp192k1},
166 {NID_X9_62_prime192v1, OSSL_TLS_GROUP_ID_secp192r1},
167 {NID_secp224k1, OSSL_TLS_GROUP_ID_secp224k1},
168 {NID_secp224r1, OSSL_TLS_GROUP_ID_secp224r1},
169 {NID_secp256k1, OSSL_TLS_GROUP_ID_secp256k1},
170 {NID_X9_62_prime256v1, OSSL_TLS_GROUP_ID_secp256r1},
171 {NID_secp384r1, OSSL_TLS_GROUP_ID_secp384r1},
172 {NID_secp521r1, OSSL_TLS_GROUP_ID_secp521r1},
173 {NID_brainpoolP256r1, OSSL_TLS_GROUP_ID_brainpoolP256r1},
174 {NID_brainpoolP384r1, OSSL_TLS_GROUP_ID_brainpoolP384r1},
175 {NID_brainpoolP512r1, OSSL_TLS_GROUP_ID_brainpoolP512r1},
176 {EVP_PKEY_X25519, OSSL_TLS_GROUP_ID_x25519},
177 {EVP_PKEY_X448, OSSL_TLS_GROUP_ID_x448},
178 {NID_brainpoolP256r1tls13, OSSL_TLS_GROUP_ID_brainpoolP256r1_tls13},
179 {NID_brainpoolP384r1tls13, OSSL_TLS_GROUP_ID_brainpoolP384r1_tls13},
180 {NID_brainpoolP512r1tls13, OSSL_TLS_GROUP_ID_brainpoolP512r1_tls13},
181 {NID_id_tc26_gost_3410_2012_256_paramSetA, OSSL_TLS_GROUP_ID_gc256A},
182 {NID_id_tc26_gost_3410_2012_256_paramSetB, OSSL_TLS_GROUP_ID_gc256B},
183 {NID_id_tc26_gost_3410_2012_256_paramSetC, OSSL_TLS_GROUP_ID_gc256C},
184 {NID_id_tc26_gost_3410_2012_256_paramSetD, OSSL_TLS_GROUP_ID_gc256D},
185 {NID_id_tc26_gost_3410_2012_512_paramSetA, OSSL_TLS_GROUP_ID_gc512A},
186 {NID_id_tc26_gost_3410_2012_512_paramSetB, OSSL_TLS_GROUP_ID_gc512B},
187 {NID_id_tc26_gost_3410_2012_512_paramSetC, OSSL_TLS_GROUP_ID_gc512C},
188 {NID_ffdhe2048, OSSL_TLS_GROUP_ID_ffdhe2048},
189 {NID_ffdhe3072, OSSL_TLS_GROUP_ID_ffdhe3072},
190 {NID_ffdhe4096, OSSL_TLS_GROUP_ID_ffdhe4096},
191 {NID_ffdhe6144, OSSL_TLS_GROUP_ID_ffdhe6144},
192 {NID_ffdhe8192, OSSL_TLS_GROUP_ID_ffdhe8192}
193};
194
195static const unsigned char ecformats_default[] = {
196 TLSEXT_ECPOINTFORMAT_uncompressed,
197 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime,
198 TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2
199};
200
201/* The default curves */
202static const uint16_t supported_groups_default[] = {
203 OSSL_TLS_GROUP_ID_x25519, /* X25519 (29) */
204 OSSL_TLS_GROUP_ID_secp256r1, /* secp256r1 (23) */
205 OSSL_TLS_GROUP_ID_x448, /* X448 (30) */
206 OSSL_TLS_GROUP_ID_secp521r1, /* secp521r1 (25) */
207 OSSL_TLS_GROUP_ID_secp384r1, /* secp384r1 (24) */
208 OSSL_TLS_GROUP_ID_gc256A, /* GC256A (34) */
209 OSSL_TLS_GROUP_ID_gc256B, /* GC256B (35) */
210 OSSL_TLS_GROUP_ID_gc256C, /* GC256C (36) */
211 OSSL_TLS_GROUP_ID_gc256D, /* GC256D (37) */
212 OSSL_TLS_GROUP_ID_gc512A, /* GC512A (38) */
213 OSSL_TLS_GROUP_ID_gc512B, /* GC512B (39) */
214 OSSL_TLS_GROUP_ID_gc512C, /* GC512C (40) */
215 OSSL_TLS_GROUP_ID_ffdhe2048, /* ffdhe2048 (0x100) */
216 OSSL_TLS_GROUP_ID_ffdhe3072, /* ffdhe3072 (0x101) */
217 OSSL_TLS_GROUP_ID_ffdhe4096, /* ffdhe4096 (0x102) */
218 OSSL_TLS_GROUP_ID_ffdhe6144, /* ffdhe6144 (0x103) */
219 OSSL_TLS_GROUP_ID_ffdhe8192, /* ffdhe8192 (0x104) */
220};
221
222static const uint16_t suiteb_curves[] = {
223 OSSL_TLS_GROUP_ID_secp256r1,
224 OSSL_TLS_GROUP_ID_secp384r1,
225};
226
227struct provider_ctx_data_st {
228 SSL_CTX *ctx;
229 OSSL_PROVIDER *provider;
230};
231
232#define TLS_GROUP_LIST_MALLOC_BLOCK_SIZE 10
233static OSSL_CALLBACK add_provider_groups;
234static int add_provider_groups(const OSSL_PARAM params[], void *data)
235{
236 struct provider_ctx_data_st *pgd = data;
237 SSL_CTX *ctx = pgd->ctx;
238 OSSL_PROVIDER *provider = pgd->provider;
239 const OSSL_PARAM *p;
240 TLS_GROUP_INFO *ginf = NULL;
241 EVP_KEYMGMT *keymgmt;
242 unsigned int gid;
243 unsigned int is_kem = 0;
244 int ret = 0;
245
246 if (ctx->group_list_max_len == ctx->group_list_len) {
247 TLS_GROUP_INFO *tmp = NULL;
248
249 if (ctx->group_list_max_len == 0)
250 tmp = OPENSSL_malloc(sizeof(TLS_GROUP_INFO)
251 * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
252 else
253 tmp = OPENSSL_realloc(ctx->group_list,
254 (ctx->group_list_max_len
255 + TLS_GROUP_LIST_MALLOC_BLOCK_SIZE)
256 * sizeof(TLS_GROUP_INFO));
257 if (tmp == NULL)
258 return 0;
259 ctx->group_list = tmp;
260 memset(tmp + ctx->group_list_max_len,
261 0,
262 sizeof(TLS_GROUP_INFO) * TLS_GROUP_LIST_MALLOC_BLOCK_SIZE);
263 ctx->group_list_max_len += TLS_GROUP_LIST_MALLOC_BLOCK_SIZE;
264 }
265
266 ginf = &ctx->group_list[ctx->group_list_len];
267
268 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME);
269 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
270 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
271 goto err;
272 }
273 ginf->tlsname = OPENSSL_strdup(p->data);
274 if (ginf->tlsname == NULL)
275 goto err;
276
277 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_NAME_INTERNAL);
278 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
279 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
280 goto err;
281 }
282 ginf->realname = OPENSSL_strdup(p->data);
283 if (ginf->realname == NULL)
284 goto err;
285
286 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ID);
287 if (p == NULL || !OSSL_PARAM_get_uint(p, &gid) || gid > UINT16_MAX) {
288 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
289 goto err;
290 }
291 ginf->group_id = (uint16_t)gid;
292
293 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_ALG);
294 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
295 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
296 goto err;
297 }
298 ginf->algorithm = OPENSSL_strdup(p->data);
299 if (ginf->algorithm == NULL)
300 goto err;
301
302 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_SECURITY_BITS);
303 if (p == NULL || !OSSL_PARAM_get_uint(p, &ginf->secbits)) {
304 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
305 goto err;
306 }
307
308 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_IS_KEM);
309 if (p != NULL && (!OSSL_PARAM_get_uint(p, &is_kem) || is_kem > 1)) {
310 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
311 goto err;
312 }
313 ginf->is_kem = 1 & is_kem;
314
315 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_TLS);
316 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mintls)) {
317 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
318 goto err;
319 }
320
321 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_TLS);
322 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxtls)) {
323 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
324 goto err;
325 }
326
327 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MIN_DTLS);
328 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->mindtls)) {
329 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
330 goto err;
331 }
332
333 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_GROUP_MAX_DTLS);
334 if (p == NULL || !OSSL_PARAM_get_int(p, &ginf->maxdtls)) {
335 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
336 goto err;
337 }
338 /*
339 * Now check that the algorithm is actually usable for our property query
340 * string. Regardless of the result we still return success because we have
341 * successfully processed this group, even though we may decide not to use
342 * it.
343 */
344 ret = 1;
345 ERR_set_mark();
346 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, ginf->algorithm, ctx->propq);
347 if (keymgmt != NULL) {
348 /*
349 * We have successfully fetched the algorithm - however if the provider
350 * doesn't match this one then we ignore it.
351 *
352 * Note: We're cheating a little here. Technically if the same algorithm
353 * is available from more than one provider then it is undefined which
354 * implementation you will get back. Theoretically this could be
355 * different every time...we assume here that you'll always get the
356 * same one back if you repeat the exact same fetch. Is this a reasonable
357 * assumption to make (in which case perhaps we should document this
358 * behaviour)?
359 */
360 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
361 /* We have a match - so we will use this group */
362 ctx->group_list_len++;
363 ginf = NULL;
364 }
365 EVP_KEYMGMT_free(keymgmt);
366 }
367 ERR_pop_to_mark();
368 err:
369 if (ginf != NULL) {
370 OPENSSL_free(ginf->tlsname);
371 OPENSSL_free(ginf->realname);
372 OPENSSL_free(ginf->algorithm);
373 ginf->algorithm = ginf->tlsname = ginf->realname = NULL;
374 }
375 return ret;
376}
377
378static int discover_provider_groups(OSSL_PROVIDER *provider, void *vctx)
379{
380 struct provider_ctx_data_st pgd;
381
382 pgd.ctx = vctx;
383 pgd.provider = provider;
384 return OSSL_PROVIDER_get_capabilities(provider, "TLS-GROUP",
385 add_provider_groups, &pgd);
386}
387
388int ssl_load_groups(SSL_CTX *ctx)
389{
390 size_t i, j, num_deflt_grps = 0;
391 uint16_t tmp_supp_groups[OSSL_NELEM(supported_groups_default)];
392
393 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_groups, ctx))
394 return 0;
395
396 for (i = 0; i < OSSL_NELEM(supported_groups_default); i++) {
397 for (j = 0; j < ctx->group_list_len; j++) {
398 if (ctx->group_list[j].group_id == supported_groups_default[i]) {
399 tmp_supp_groups[num_deflt_grps++] = ctx->group_list[j].group_id;
400 break;
401 }
402 }
403 }
404
405 if (num_deflt_grps == 0)
406 return 1;
407
408 ctx->ext.supported_groups_default
409 = OPENSSL_malloc(sizeof(uint16_t) * num_deflt_grps);
410
411 if (ctx->ext.supported_groups_default == NULL)
412 return 0;
413
414 memcpy(ctx->ext.supported_groups_default,
415 tmp_supp_groups,
416 num_deflt_grps * sizeof(tmp_supp_groups[0]));
417 ctx->ext.supported_groups_default_len = num_deflt_grps;
418
419 return 1;
420}
421
422#define TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE 10
423static OSSL_CALLBACK add_provider_sigalgs;
424static int add_provider_sigalgs(const OSSL_PARAM params[], void *data)
425{
426 struct provider_ctx_data_st *pgd = data;
427 SSL_CTX *ctx = pgd->ctx;
428 OSSL_PROVIDER *provider = pgd->provider;
429 const OSSL_PARAM *p;
430 TLS_SIGALG_INFO *sinf = NULL;
431 EVP_KEYMGMT *keymgmt;
432 const char *keytype;
433 unsigned int code_point = 0;
434 int ret = 0;
435
436 if (ctx->sigalg_list_max_len == ctx->sigalg_list_len) {
437 TLS_SIGALG_INFO *tmp = NULL;
438
439 if (ctx->sigalg_list_max_len == 0)
440 tmp = OPENSSL_malloc(sizeof(TLS_SIGALG_INFO)
441 * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
442 else
443 tmp = OPENSSL_realloc(ctx->sigalg_list,
444 (ctx->sigalg_list_max_len
445 + TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE)
446 * sizeof(TLS_SIGALG_INFO));
447 if (tmp == NULL)
448 return 0;
449 ctx->sigalg_list = tmp;
450 memset(tmp + ctx->sigalg_list_max_len, 0,
451 sizeof(TLS_SIGALG_INFO) * TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE);
452 ctx->sigalg_list_max_len += TLS_SIGALG_LIST_MALLOC_BLOCK_SIZE;
453 }
454
455 sinf = &ctx->sigalg_list[ctx->sigalg_list_len];
456
457 /* First, mandatory parameters */
458 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_NAME);
459 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
460 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
461 goto err;
462 }
463 OPENSSL_free(sinf->sigalg_name);
464 sinf->sigalg_name = OPENSSL_strdup(p->data);
465 if (sinf->sigalg_name == NULL)
466 goto err;
467
468 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_IANA_NAME);
469 if (p == NULL || p->data_type != OSSL_PARAM_UTF8_STRING) {
470 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
471 goto err;
472 }
473 OPENSSL_free(sinf->name);
474 sinf->name = OPENSSL_strdup(p->data);
475 if (sinf->name == NULL)
476 goto err;
477
478 p = OSSL_PARAM_locate_const(params,
479 OSSL_CAPABILITY_TLS_SIGALG_CODE_POINT);
480 if (p == NULL
481 || !OSSL_PARAM_get_uint(p, &code_point)
482 || code_point > UINT16_MAX) {
483 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
484 goto err;
485 }
486 sinf->code_point = (uint16_t)code_point;
487
488 p = OSSL_PARAM_locate_const(params,
489 OSSL_CAPABILITY_TLS_SIGALG_SECURITY_BITS);
490 if (p == NULL || !OSSL_PARAM_get_uint(p, &sinf->secbits)) {
491 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
492 goto err;
493 }
494
495 /* Now, optional parameters */
496 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_OID);
497 if (p == NULL) {
498 sinf->sigalg_oid = NULL;
499 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
500 goto err;
501 } else {
502 OPENSSL_free(sinf->sigalg_oid);
503 sinf->sigalg_oid = OPENSSL_strdup(p->data);
504 if (sinf->sigalg_oid == NULL)
505 goto err;
506 }
507
508 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_NAME);
509 if (p == NULL) {
510 sinf->sig_name = NULL;
511 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
512 goto err;
513 } else {
514 OPENSSL_free(sinf->sig_name);
515 sinf->sig_name = OPENSSL_strdup(p->data);
516 if (sinf->sig_name == NULL)
517 goto err;
518 }
519
520 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_SIG_OID);
521 if (p == NULL) {
522 sinf->sig_oid = NULL;
523 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
524 goto err;
525 } else {
526 OPENSSL_free(sinf->sig_oid);
527 sinf->sig_oid = OPENSSL_strdup(p->data);
528 if (sinf->sig_oid == NULL)
529 goto err;
530 }
531
532 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_NAME);
533 if (p == NULL) {
534 sinf->hash_name = NULL;
535 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
536 goto err;
537 } else {
538 OPENSSL_free(sinf->hash_name);
539 sinf->hash_name = OPENSSL_strdup(p->data);
540 if (sinf->hash_name == NULL)
541 goto err;
542 }
543
544 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_HASH_OID);
545 if (p == NULL) {
546 sinf->hash_oid = NULL;
547 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
548 goto err;
549 } else {
550 OPENSSL_free(sinf->hash_oid);
551 sinf->hash_oid = OPENSSL_strdup(p->data);
552 if (sinf->hash_oid == NULL)
553 goto err;
554 }
555
556 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE);
557 if (p == NULL) {
558 sinf->keytype = NULL;
559 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
560 goto err;
561 } else {
562 OPENSSL_free(sinf->keytype);
563 sinf->keytype = OPENSSL_strdup(p->data);
564 if (sinf->keytype == NULL)
565 goto err;
566 }
567
568 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_KEYTYPE_OID);
569 if (p == NULL) {
570 sinf->keytype_oid = NULL;
571 } else if (p->data_type != OSSL_PARAM_UTF8_STRING) {
572 goto err;
573 } else {
574 OPENSSL_free(sinf->keytype_oid);
575 sinf->keytype_oid = OPENSSL_strdup(p->data);
576 if (sinf->keytype_oid == NULL)
577 goto err;
578 }
579
580 /* The remaining parameters below are mandatory again */
581 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MIN_TLS);
582 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->mintls)) {
583 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
584 goto err;
585 }
586 if ((sinf->mintls != 0) && (sinf->mintls != -1) &&
587 ((sinf->mintls < TLS1_3_VERSION))) {
588 /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
589 ret = 1;
590 goto err;
591 }
592
593 p = OSSL_PARAM_locate_const(params, OSSL_CAPABILITY_TLS_SIGALG_MAX_TLS);
594 if (p == NULL || !OSSL_PARAM_get_int(p, &sinf->maxtls)) {
595 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
596 goto err;
597 }
598 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
599 ((sinf->maxtls < sinf->mintls))) {
600 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
601 goto err;
602 }
603 if ((sinf->maxtls != 0) && (sinf->maxtls != -1) &&
604 ((sinf->maxtls < TLS1_3_VERSION))) {
605 /* ignore this sigalg as this OpenSSL doesn't know how to handle it */
606 ret = 1;
607 goto err;
608 }
609
610 /*
611 * Now check that the algorithm is actually usable for our property query
612 * string. Regardless of the result we still return success because we have
613 * successfully processed this signature, even though we may decide not to
614 * use it.
615 */
616 ret = 1;
617 ERR_set_mark();
618 keytype = (sinf->keytype != NULL
619 ? sinf->keytype
620 : (sinf->sig_name != NULL
621 ? sinf->sig_name
622 : sinf->sigalg_name));
623 keymgmt = EVP_KEYMGMT_fetch(ctx->libctx, keytype, ctx->propq);
624 if (keymgmt != NULL) {
625 /*
626 * We have successfully fetched the algorithm - however if the provider
627 * doesn't match this one then we ignore it.
628 *
629 * Note: We're cheating a little here. Technically if the same algorithm
630 * is available from more than one provider then it is undefined which
631 * implementation you will get back. Theoretically this could be
632 * different every time...we assume here that you'll always get the
633 * same one back if you repeat the exact same fetch. Is this a reasonable
634 * assumption to make (in which case perhaps we should document this
635 * behaviour)?
636 */
637 if (EVP_KEYMGMT_get0_provider(keymgmt) == provider) {
638 /*
639 * We have a match - so we could use this signature;
640 * Check proper object registration first, though.
641 * Don't care about return value as this may have been
642 * done within providers or previous calls to
643 * add_provider_sigalgs.
644 */
645 OBJ_create(sinf->sigalg_oid, sinf->sigalg_name, NULL);
646 /* sanity check: Without successful registration don't use alg */
647 if ((OBJ_txt2nid(sinf->sigalg_name) == NID_undef) ||
648 (OBJ_nid2obj(OBJ_txt2nid(sinf->sigalg_name)) == NULL)) {
649 ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT);
650 goto err;
651 }
652 if (sinf->sig_name != NULL)
653 OBJ_create(sinf->sig_oid, sinf->sig_name, NULL);
654 if (sinf->keytype != NULL)
655 OBJ_create(sinf->keytype_oid, sinf->keytype, NULL);
656 if (sinf->hash_name != NULL)
657 OBJ_create(sinf->hash_oid, sinf->hash_name, NULL);
658 OBJ_add_sigid(OBJ_txt2nid(sinf->sigalg_name),
659 (sinf->hash_name != NULL
660 ? OBJ_txt2nid(sinf->hash_name)
661 : NID_undef),
662 OBJ_txt2nid(keytype));
663 ctx->sigalg_list_len++;
664 sinf = NULL;
665 }
666 EVP_KEYMGMT_free(keymgmt);
667 }
668 ERR_pop_to_mark();
669 err:
670 if (sinf != NULL) {
671 OPENSSL_free(sinf->name);
672 sinf->name = NULL;
673 OPENSSL_free(sinf->sigalg_name);
674 sinf->sigalg_name = NULL;
675 OPENSSL_free(sinf->sigalg_oid);
676 sinf->sigalg_oid = NULL;
677 OPENSSL_free(sinf->sig_name);
678 sinf->sig_name = NULL;
679 OPENSSL_free(sinf->sig_oid);
680 sinf->sig_oid = NULL;
681 OPENSSL_free(sinf->hash_name);
682 sinf->hash_name = NULL;
683 OPENSSL_free(sinf->hash_oid);
684 sinf->hash_oid = NULL;
685 OPENSSL_free(sinf->keytype);
686 sinf->keytype = NULL;
687 OPENSSL_free(sinf->keytype_oid);
688 sinf->keytype_oid = NULL;
689 }
690 return ret;
691}
692
693static int discover_provider_sigalgs(OSSL_PROVIDER *provider, void *vctx)
694{
695 struct provider_ctx_data_st pgd;
696
697 pgd.ctx = vctx;
698 pgd.provider = provider;
699 OSSL_PROVIDER_get_capabilities(provider, "TLS-SIGALG",
700 add_provider_sigalgs, &pgd);
701 /*
702 * Always OK, even if provider doesn't support the capability:
703 * Reconsider testing retval when legacy sigalgs are also loaded this way.
704 */
705 return 1;
706}
707
708int ssl_load_sigalgs(SSL_CTX *ctx)
709{
710 size_t i;
711 SSL_CERT_LOOKUP lu;
712
713 if (!OSSL_PROVIDER_do_all(ctx->libctx, discover_provider_sigalgs, ctx))
714 return 0;
715
716 /* now populate ctx->ssl_cert_info */
717 if (ctx->sigalg_list_len > 0) {
718 OPENSSL_free(ctx->ssl_cert_info);
719 ctx->ssl_cert_info = OPENSSL_zalloc(sizeof(lu) * ctx->sigalg_list_len);
720 if (ctx->ssl_cert_info == NULL)
721 return 0;
722 for(i = 0; i < ctx->sigalg_list_len; i++) {
723 ctx->ssl_cert_info[i].nid = OBJ_txt2nid(ctx->sigalg_list[i].sigalg_name);
724 ctx->ssl_cert_info[i].amask = SSL_aANY;
725 }
726 }
727
728 /*
729 * For now, leave it at this: legacy sigalgs stay in their own
730 * data structures until "legacy cleanup" occurs.
731 */
732
733 return 1;
734}
735
736static uint16_t tls1_group_name2id(SSL_CTX *ctx, const char *name)
737{
738 size_t i;
739
740 for (i = 0; i < ctx->group_list_len; i++) {
741 if (strcmp(ctx->group_list[i].tlsname, name) == 0
742 || strcmp(ctx->group_list[i].realname, name) == 0)
743 return ctx->group_list[i].group_id;
744 }
745
746 return 0;
747}
748
749const TLS_GROUP_INFO *tls1_group_id_lookup(SSL_CTX *ctx, uint16_t group_id)
750{
751 size_t i;
752
753 for (i = 0; i < ctx->group_list_len; i++) {
754 if (ctx->group_list[i].group_id == group_id)
755 return &ctx->group_list[i];
756 }
757
758 return NULL;
759}
760
761const char *tls1_group_id2name(SSL_CTX *ctx, uint16_t group_id)
762{
763 const TLS_GROUP_INFO *tls_group_info = tls1_group_id_lookup(ctx, group_id);
764
765 if (tls_group_info == NULL)
766 return NULL;
767
768 return tls_group_info->tlsname;
769}
770
771int tls1_group_id2nid(uint16_t group_id, int include_unknown)
772{
773 size_t i;
774
775 if (group_id == 0)
776 return NID_undef;
777
778 /*
779 * Return well known Group NIDs - for backwards compatibility. This won't
780 * work for groups we don't know about.
781 */
782 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
783 {
784 if (nid_to_group[i].group_id == group_id)
785 return nid_to_group[i].nid;
786 }
787 if (!include_unknown)
788 return NID_undef;
789 return TLSEXT_nid_unknown | (int)group_id;
790}
791
792uint16_t tls1_nid2group_id(int nid)
793{
794 size_t i;
795
796 /*
797 * Return well known Group ids - for backwards compatibility. This won't
798 * work for groups we don't know about.
799 */
800 for (i = 0; i < OSSL_NELEM(nid_to_group); i++)
801 {
802 if (nid_to_group[i].nid == nid)
803 return nid_to_group[i].group_id;
804 }
805
806 return 0;
807}
808
809/*
810 * Set *pgroups to the supported groups list and *pgroupslen to
811 * the number of groups supported.
812 */
813void tls1_get_supported_groups(SSL_CONNECTION *s, const uint16_t **pgroups,
814 size_t *pgroupslen)
815{
816 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
817
818 /* For Suite B mode only include P-256, P-384 */
819 switch (tls1_suiteb(s)) {
820 case SSL_CERT_FLAG_SUITEB_128_LOS:
821 *pgroups = suiteb_curves;
822 *pgroupslen = OSSL_NELEM(suiteb_curves);
823 break;
824
825 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
826 *pgroups = suiteb_curves;
827 *pgroupslen = 1;
828 break;
829
830 case SSL_CERT_FLAG_SUITEB_192_LOS:
831 *pgroups = suiteb_curves + 1;
832 *pgroupslen = 1;
833 break;
834
835 default:
836 if (s->ext.supportedgroups == NULL) {
837 *pgroups = sctx->ext.supported_groups_default;
838 *pgroupslen = sctx->ext.supported_groups_default_len;
839 } else {
840 *pgroups = s->ext.supportedgroups;
841 *pgroupslen = s->ext.supportedgroups_len;
842 }
843 break;
844 }
845}
846
847int tls_valid_group(SSL_CONNECTION *s, uint16_t group_id,
848 int minversion, int maxversion,
849 int isec, int *okfortls13)
850{
851 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
852 group_id);
853 int ret;
854 int group_minversion, group_maxversion;
855
856 if (okfortls13 != NULL)
857 *okfortls13 = 0;
858
859 if (ginfo == NULL)
860 return 0;
861
862 group_minversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->mindtls : ginfo->mintls;
863 group_maxversion = SSL_CONNECTION_IS_DTLS(s) ? ginfo->maxdtls : ginfo->maxtls;
864
865 if (group_minversion < 0 || group_maxversion < 0)
866 return 0;
867 if (group_maxversion == 0)
868 ret = 1;
869 else
870 ret = (ssl_version_cmp(s, minversion, group_maxversion) <= 0);
871 if (group_minversion > 0)
872 ret &= (ssl_version_cmp(s, maxversion, group_minversion) >= 0);
873
874 if (!SSL_CONNECTION_IS_DTLS(s)) {
875 if (ret && okfortls13 != NULL && maxversion == TLS1_3_VERSION)
876 *okfortls13 = (group_maxversion == 0)
877 || (group_maxversion >= TLS1_3_VERSION);
878 }
879 ret &= !isec
880 || strcmp(ginfo->algorithm, "EC") == 0
881 || strcmp(ginfo->algorithm, "X25519") == 0
882 || strcmp(ginfo->algorithm, "X448") == 0;
883
884 return ret;
885}
886
887/* See if group is allowed by security callback */
888int tls_group_allowed(SSL_CONNECTION *s, uint16_t group, int op)
889{
890 const TLS_GROUP_INFO *ginfo = tls1_group_id_lookup(SSL_CONNECTION_GET_CTX(s),
891 group);
892 unsigned char gtmp[2];
893
894 if (ginfo == NULL)
895 return 0;
896
897 gtmp[0] = group >> 8;
898 gtmp[1] = group & 0xff;
899 return ssl_security(s, op, ginfo->secbits,
900 tls1_group_id2nid(ginfo->group_id, 0), (void *)gtmp);
901}
902
903/* Return 1 if "id" is in "list" */
904static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen)
905{
906 size_t i;
907 for (i = 0; i < listlen; i++)
908 if (list[i] == id)
909 return 1;
910 return 0;
911}
912
913/*-
914 * For nmatch >= 0, return the id of the |nmatch|th shared group or 0
915 * if there is no match.
916 * For nmatch == -1, return number of matches
917 * For nmatch == -2, return the id of the group to use for
918 * a tmp key, or 0 if there is no match.
919 */
920uint16_t tls1_shared_group(SSL_CONNECTION *s, int nmatch)
921{
922 const uint16_t *pref, *supp;
923 size_t num_pref, num_supp, i;
924 int k;
925 SSL_CTX *ctx = SSL_CONNECTION_GET_CTX(s);
926
927 /* Can't do anything on client side */
928 if (s->server == 0)
929 return 0;
930 if (nmatch == -2) {
931 if (tls1_suiteb(s)) {
932 /*
933 * For Suite B ciphersuite determines curve: we already know
934 * these are acceptable due to previous checks.
935 */
936 unsigned long cid = s->s3.tmp.new_cipher->id;
937
938 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
939 return OSSL_TLS_GROUP_ID_secp256r1;
940 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
941 return OSSL_TLS_GROUP_ID_secp384r1;
942 /* Should never happen */
943 return 0;
944 }
945 /* If not Suite B just return first preference shared curve */
946 nmatch = 0;
947 }
948 /*
949 * If server preference set, our groups are the preference order
950 * otherwise peer decides.
951 */
952 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) {
953 tls1_get_supported_groups(s, &pref, &num_pref);
954 tls1_get_peer_groups(s, &supp, &num_supp);
955 } else {
956 tls1_get_peer_groups(s, &pref, &num_pref);
957 tls1_get_supported_groups(s, &supp, &num_supp);
958 }
959
960 for (k = 0, i = 0; i < num_pref; i++) {
961 uint16_t id = pref[i];
962 const TLS_GROUP_INFO *inf;
963 int minversion, maxversion;
964
965 if (!tls1_in_list(id, supp, num_supp)
966 || !tls_group_allowed(s, id, SSL_SECOP_CURVE_SHARED))
967 continue;
968 inf = tls1_group_id_lookup(ctx, id);
969 if (!ossl_assert(inf != NULL))
970 return 0;
971
972 minversion = SSL_CONNECTION_IS_DTLS(s)
973 ? inf->mindtls : inf->mintls;
974 maxversion = SSL_CONNECTION_IS_DTLS(s)
975 ? inf->maxdtls : inf->maxtls;
976 if (maxversion == -1)
977 continue;
978 if ((minversion != 0 && ssl_version_cmp(s, s->version, minversion) < 0)
979 || (maxversion != 0
980 && ssl_version_cmp(s, s->version, maxversion) > 0))
981 continue;
982
983 if (nmatch == k)
984 return id;
985 k++;
986 }
987 if (nmatch == -1)
988 return k;
989 /* Out of range (nmatch > k). */
990 return 0;
991}
992
993int tls1_set_groups(uint16_t **pext, size_t *pextlen,
994 int *groups, size_t ngroups)
995{
996 uint16_t *glist;
997 size_t i;
998 /*
999 * Bitmap of groups included to detect duplicates: two variables are added
1000 * to detect duplicates as some values are more than 32.
1001 */
1002 unsigned long *dup_list = NULL;
1003 unsigned long dup_list_egrp = 0;
1004 unsigned long dup_list_dhgrp = 0;
1005
1006 if (ngroups == 0) {
1007 ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH);
1008 return 0;
1009 }
1010 if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL)
1011 return 0;
1012 for (i = 0; i < ngroups; i++) {
1013 unsigned long idmask;
1014 uint16_t id;
1015 id = tls1_nid2group_id(groups[i]);
1016 if ((id & 0x00FF) >= (sizeof(unsigned long) * 8))
1017 goto err;
1018 idmask = 1L << (id & 0x00FF);
1019 dup_list = (id < 0x100) ? &dup_list_egrp : &dup_list_dhgrp;
1020 if (!id || ((*dup_list) & idmask))
1021 goto err;
1022 *dup_list |= idmask;
1023 glist[i] = id;
1024 }
1025 OPENSSL_free(*pext);
1026 *pext = glist;
1027 *pextlen = ngroups;
1028 return 1;
1029err:
1030 OPENSSL_free(glist);
1031 return 0;
1032}
1033
1034# define GROUPLIST_INCREMENT 40
1035# define GROUP_NAME_BUFFER_LENGTH 64
1036typedef struct {
1037 SSL_CTX *ctx;
1038 size_t gidcnt;
1039 size_t gidmax;
1040 uint16_t *gid_arr;
1041} gid_cb_st;
1042
1043static int gid_cb(const char *elem, int len, void *arg)
1044{
1045 gid_cb_st *garg = arg;
1046 size_t i;
1047 uint16_t gid = 0;
1048 char etmp[GROUP_NAME_BUFFER_LENGTH];
1049 int ignore_unknown = 0;
1050
1051 if (elem == NULL)
1052 return 0;
1053 if (elem[0] == '?') {
1054 ignore_unknown = 1;
1055 ++elem;
1056 --len;
1057 }
1058 if (garg->gidcnt == garg->gidmax) {
1059 uint16_t *tmp =
1060 OPENSSL_realloc(garg->gid_arr,
1061 (garg->gidmax + GROUPLIST_INCREMENT) * sizeof(*garg->gid_arr));
1062 if (tmp == NULL)
1063 return 0;
1064 garg->gidmax += GROUPLIST_INCREMENT;
1065 garg->gid_arr = tmp;
1066 }
1067 if (len > (int)(sizeof(etmp) - 1))
1068 return 0;
1069 memcpy(etmp, elem, len);
1070 etmp[len] = 0;
1071
1072 gid = tls1_group_name2id(garg->ctx, etmp);
1073 if (gid == 0) {
1074 /* Unknown group - ignore, if ignore_unknown */
1075 return ignore_unknown;
1076 }
1077 for (i = 0; i < garg->gidcnt; i++)
1078 if (garg->gid_arr[i] == gid) {
1079 /* Duplicate group - ignore */
1080 return 1;
1081 }
1082 garg->gid_arr[garg->gidcnt++] = gid;
1083 return 1;
1084}
1085
1086/* Set groups based on a colon separated list */
1087int tls1_set_groups_list(SSL_CTX *ctx, uint16_t **pext, size_t *pextlen,
1088 const char *str)
1089{
1090 gid_cb_st gcb;
1091 uint16_t *tmparr;
1092 int ret = 0;
1093
1094 gcb.gidcnt = 0;
1095 gcb.gidmax = GROUPLIST_INCREMENT;
1096 gcb.gid_arr = OPENSSL_malloc(gcb.gidmax * sizeof(*gcb.gid_arr));
1097 if (gcb.gid_arr == NULL)
1098 return 0;
1099 gcb.ctx = ctx;
1100 if (!CONF_parse_list(str, ':', 1, gid_cb, &gcb))
1101 goto end;
1102 if (gcb.gidcnt == 0) {
1103 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
1104 "No valid groups in '%s'", str);
1105 goto end;
1106 }
1107 if (pext == NULL) {
1108 ret = 1;
1109 goto end;
1110 }
1111
1112 /*
1113 * gid_cb ensurse there are no duplicates so we can just go ahead and set
1114 * the result
1115 */
1116 tmparr = OPENSSL_memdup(gcb.gid_arr, gcb.gidcnt * sizeof(*tmparr));
1117 if (tmparr == NULL)
1118 goto end;
1119 OPENSSL_free(*pext);
1120 *pext = tmparr;
1121 *pextlen = gcb.gidcnt;
1122 ret = 1;
1123 end:
1124 OPENSSL_free(gcb.gid_arr);
1125 return ret;
1126}
1127
1128/* Check a group id matches preferences */
1129int tls1_check_group_id(SSL_CONNECTION *s, uint16_t group_id,
1130 int check_own_groups)
1131 {
1132 const uint16_t *groups;
1133 size_t groups_len;
1134
1135 if (group_id == 0)
1136 return 0;
1137
1138 /* Check for Suite B compliance */
1139 if (tls1_suiteb(s) && s->s3.tmp.new_cipher != NULL) {
1140 unsigned long cid = s->s3.tmp.new_cipher->id;
1141
1142 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) {
1143 if (group_id != OSSL_TLS_GROUP_ID_secp256r1)
1144 return 0;
1145 } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) {
1146 if (group_id != OSSL_TLS_GROUP_ID_secp384r1)
1147 return 0;
1148 } else {
1149 /* Should never happen */
1150 return 0;
1151 }
1152 }
1153
1154 if (check_own_groups) {
1155 /* Check group is one of our preferences */
1156 tls1_get_supported_groups(s, &groups, &groups_len);
1157 if (!tls1_in_list(group_id, groups, groups_len))
1158 return 0;
1159 }
1160
1161 if (!tls_group_allowed(s, group_id, SSL_SECOP_CURVE_CHECK))
1162 return 0;
1163
1164 /* For clients, nothing more to check */
1165 if (!s->server)
1166 return 1;
1167
1168 /* Check group is one of peers preferences */
1169 tls1_get_peer_groups(s, &groups, &groups_len);
1170
1171 /*
1172 * RFC 4492 does not require the supported elliptic curves extension
1173 * so if it is not sent we can just choose any curve.
1174 * It is invalid to send an empty list in the supported groups
1175 * extension, so groups_len == 0 always means no extension.
1176 */
1177 if (groups_len == 0)
1178 return 1;
1179 return tls1_in_list(group_id, groups, groups_len);
1180}
1181
1182void tls1_get_formatlist(SSL_CONNECTION *s, const unsigned char **pformats,
1183 size_t *num_formats)
1184{
1185 /*
1186 * If we have a custom point format list use it otherwise use default
1187 */
1188 if (s->ext.ecpointformats) {
1189 *pformats = s->ext.ecpointformats;
1190 *num_formats = s->ext.ecpointformats_len;
1191 } else {
1192 *pformats = ecformats_default;
1193 /* For Suite B we don't support char2 fields */
1194 if (tls1_suiteb(s))
1195 *num_formats = sizeof(ecformats_default) - 1;
1196 else
1197 *num_formats = sizeof(ecformats_default);
1198 }
1199}
1200
1201/* Check a key is compatible with compression extension */
1202static int tls1_check_pkey_comp(SSL_CONNECTION *s, EVP_PKEY *pkey)
1203{
1204 unsigned char comp_id;
1205 size_t i;
1206 int point_conv;
1207
1208 /* If not an EC key nothing to check */
1209 if (!EVP_PKEY_is_a(pkey, "EC"))
1210 return 1;
1211
1212
1213 /* Get required compression id */
1214 point_conv = EVP_PKEY_get_ec_point_conv_form(pkey);
1215 if (point_conv == 0)
1216 return 0;
1217 if (point_conv == POINT_CONVERSION_UNCOMPRESSED) {
1218 comp_id = TLSEXT_ECPOINTFORMAT_uncompressed;
1219 } else if (SSL_CONNECTION_IS_TLS13(s)) {
1220 /*
1221 * ec_point_formats extension is not used in TLSv1.3 so we ignore
1222 * this check.
1223 */
1224 return 1;
1225 } else {
1226 int field_type = EVP_PKEY_get_field_type(pkey);
1227
1228 if (field_type == NID_X9_62_prime_field)
1229 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime;
1230 else if (field_type == NID_X9_62_characteristic_two_field)
1231 comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2;
1232 else
1233 return 0;
1234 }
1235 /*
1236 * If point formats extension present check it, otherwise everything is
1237 * supported (see RFC4492).
1238 */
1239 if (s->ext.peer_ecpointformats == NULL)
1240 return 1;
1241
1242 for (i = 0; i < s->ext.peer_ecpointformats_len; i++) {
1243 if (s->ext.peer_ecpointformats[i] == comp_id)
1244 return 1;
1245 }
1246 return 0;
1247}
1248
1249/* Return group id of a key */
1250static uint16_t tls1_get_group_id(EVP_PKEY *pkey)
1251{
1252 int curve_nid = ssl_get_EC_curve_nid(pkey);
1253
1254 if (curve_nid == NID_undef)
1255 return 0;
1256 return tls1_nid2group_id(curve_nid);
1257}
1258
1259/*
1260 * Check cert parameters compatible with extensions: currently just checks EC
1261 * certificates have compatible curves and compression.
1262 */
1263static int tls1_check_cert_param(SSL_CONNECTION *s, X509 *x, int check_ee_md)
1264{
1265 uint16_t group_id;
1266 EVP_PKEY *pkey;
1267 pkey = X509_get0_pubkey(x);
1268 if (pkey == NULL)
1269 return 0;
1270 /* If not EC nothing to do */
1271 if (!EVP_PKEY_is_a(pkey, "EC"))
1272 return 1;
1273 /* Check compression */
1274 if (!tls1_check_pkey_comp(s, pkey))
1275 return 0;
1276 group_id = tls1_get_group_id(pkey);
1277 /*
1278 * For a server we allow the certificate to not be in our list of supported
1279 * groups.
1280 */
1281 if (!tls1_check_group_id(s, group_id, !s->server))
1282 return 0;
1283 /*
1284 * Special case for suite B. We *MUST* sign using SHA256+P-256 or
1285 * SHA384+P-384.
1286 */
1287 if (check_ee_md && tls1_suiteb(s)) {
1288 int check_md;
1289 size_t i;
1290
1291 /* Check to see we have necessary signing algorithm */
1292 if (group_id == OSSL_TLS_GROUP_ID_secp256r1)
1293 check_md = NID_ecdsa_with_SHA256;
1294 else if (group_id == OSSL_TLS_GROUP_ID_secp384r1)
1295 check_md = NID_ecdsa_with_SHA384;
1296 else
1297 return 0; /* Should never happen */
1298 for (i = 0; i < s->shared_sigalgslen; i++) {
1299 if (check_md == s->shared_sigalgs[i]->sigandhash)
1300 return 1;
1301 }
1302 return 0;
1303 }
1304 return 1;
1305}
1306
1307/*
1308 * tls1_check_ec_tmp_key - Check EC temporary key compatibility
1309 * @s: SSL connection
1310 * @cid: Cipher ID we're considering using
1311 *
1312 * Checks that the kECDHE cipher suite we're considering using
1313 * is compatible with the client extensions.
1314 *
1315 * Returns 0 when the cipher can't be used or 1 when it can.
1316 */
1317int tls1_check_ec_tmp_key(SSL_CONNECTION *s, unsigned long cid)
1318{
1319 /* If not Suite B just need a shared group */
1320 if (!tls1_suiteb(s))
1321 return tls1_shared_group(s, 0) != 0;
1322 /*
1323 * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other
1324 * curves permitted.
1325 */
1326 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256)
1327 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp256r1, 1);
1328 if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384)
1329 return tls1_check_group_id(s, OSSL_TLS_GROUP_ID_secp384r1, 1);
1330
1331 return 0;
1332}
1333
1334/* Default sigalg schemes */
1335static const uint16_t tls12_sigalgs[] = {
1336 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1337 TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1338 TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1339 TLSEXT_SIGALG_ed25519,
1340 TLSEXT_SIGALG_ed448,
1341 TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1342 TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1343 TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1344
1345 TLSEXT_SIGALG_rsa_pss_pss_sha256,
1346 TLSEXT_SIGALG_rsa_pss_pss_sha384,
1347 TLSEXT_SIGALG_rsa_pss_pss_sha512,
1348 TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1349 TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1350 TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1351
1352 TLSEXT_SIGALG_rsa_pkcs1_sha256,
1353 TLSEXT_SIGALG_rsa_pkcs1_sha384,
1354 TLSEXT_SIGALG_rsa_pkcs1_sha512,
1355
1356 TLSEXT_SIGALG_ecdsa_sha224,
1357 TLSEXT_SIGALG_ecdsa_sha1,
1358
1359 TLSEXT_SIGALG_rsa_pkcs1_sha224,
1360 TLSEXT_SIGALG_rsa_pkcs1_sha1,
1361
1362 TLSEXT_SIGALG_dsa_sha224,
1363 TLSEXT_SIGALG_dsa_sha1,
1364
1365 TLSEXT_SIGALG_dsa_sha256,
1366 TLSEXT_SIGALG_dsa_sha384,
1367 TLSEXT_SIGALG_dsa_sha512,
1368
1369#ifndef OPENSSL_NO_GOST
1370 TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1371 TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1372 TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1373 TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1374 TLSEXT_SIGALG_gostr34102001_gostr3411,
1375#endif
1376};
1377
1378
1379static const uint16_t suiteb_sigalgs[] = {
1380 TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1381 TLSEXT_SIGALG_ecdsa_secp384r1_sha384
1382};
1383
1384static const SIGALG_LOOKUP sigalg_lookup_tbl[] = {
1385 {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256,
1386 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1387 NID_ecdsa_with_SHA256, NID_X9_62_prime256v1, 1},
1388 {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384,
1389 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1390 NID_ecdsa_with_SHA384, NID_secp384r1, 1},
1391 {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512,
1392 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1393 NID_ecdsa_with_SHA512, NID_secp521r1, 1},
1394 {"ed25519", TLSEXT_SIGALG_ed25519,
1395 NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519,
1396 NID_undef, NID_undef, 1},
1397 {"ed448", TLSEXT_SIGALG_ed448,
1398 NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448,
1399 NID_undef, NID_undef, 1},
1400 {NULL, TLSEXT_SIGALG_ecdsa_sha224,
1401 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1402 NID_ecdsa_with_SHA224, NID_undef, 1},
1403 {NULL, TLSEXT_SIGALG_ecdsa_sha1,
1404 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1405 NID_ecdsa_with_SHA1, NID_undef, 1},
1406 {"ecdsa_brainpoolP256r1_sha256", TLSEXT_SIGALG_ecdsa_brainpoolP256r1_sha256,
1407 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1408 NID_ecdsa_with_SHA256, NID_brainpoolP256r1, 1},
1409 {"ecdsa_brainpoolP384r1_sha384", TLSEXT_SIGALG_ecdsa_brainpoolP384r1_sha384,
1410 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1411 NID_ecdsa_with_SHA384, NID_brainpoolP384r1, 1},
1412 {"ecdsa_brainpoolP512r1_sha512", TLSEXT_SIGALG_ecdsa_brainpoolP512r1_sha512,
1413 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC,
1414 NID_ecdsa_with_SHA512, NID_brainpoolP512r1, 1},
1415 {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256,
1416 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1417 NID_undef, NID_undef, 1},
1418 {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384,
1419 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1420 NID_undef, NID_undef, 1},
1421 {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512,
1422 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA,
1423 NID_undef, NID_undef, 1},
1424 {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256,
1425 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1426 NID_undef, NID_undef, 1},
1427 {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384,
1428 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1429 NID_undef, NID_undef, 1},
1430 {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512,
1431 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN,
1432 NID_undef, NID_undef, 1},
1433 {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256,
1434 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1435 NID_sha256WithRSAEncryption, NID_undef, 1},
1436 {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384,
1437 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1438 NID_sha384WithRSAEncryption, NID_undef, 1},
1439 {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512,
1440 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1441 NID_sha512WithRSAEncryption, NID_undef, 1},
1442 {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224,
1443 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1444 NID_sha224WithRSAEncryption, NID_undef, 1},
1445 {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1,
1446 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA,
1447 NID_sha1WithRSAEncryption, NID_undef, 1},
1448 {NULL, TLSEXT_SIGALG_dsa_sha256,
1449 NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1450 NID_dsa_with_SHA256, NID_undef, 1},
1451 {NULL, TLSEXT_SIGALG_dsa_sha384,
1452 NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1453 NID_undef, NID_undef, 1},
1454 {NULL, TLSEXT_SIGALG_dsa_sha512,
1455 NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1456 NID_undef, NID_undef, 1},
1457 {NULL, TLSEXT_SIGALG_dsa_sha224,
1458 NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1459 NID_undef, NID_undef, 1},
1460 {NULL, TLSEXT_SIGALG_dsa_sha1,
1461 NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN,
1462 NID_dsaWithSHA1, NID_undef, 1},
1463#ifndef OPENSSL_NO_GOST
1464 {NULL, TLSEXT_SIGALG_gostr34102012_256_intrinsic,
1465 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1466 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1467 NID_undef, NID_undef, 1},
1468 {NULL, TLSEXT_SIGALG_gostr34102012_512_intrinsic,
1469 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1470 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1471 NID_undef, NID_undef, 1},
1472 {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256,
1473 NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX,
1474 NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256,
1475 NID_undef, NID_undef, 1},
1476 {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512,
1477 NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX,
1478 NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512,
1479 NID_undef, NID_undef, 1},
1480 {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411,
1481 NID_id_GostR3411_94, SSL_MD_GOST94_IDX,
1482 NID_id_GostR3410_2001, SSL_PKEY_GOST01,
1483 NID_undef, NID_undef, 1}
1484#endif
1485};
1486/* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */
1487static const SIGALG_LOOKUP legacy_rsa_sigalg = {
1488 "rsa_pkcs1_md5_sha1", 0,
1489 NID_md5_sha1, SSL_MD_MD5_SHA1_IDX,
1490 EVP_PKEY_RSA, SSL_PKEY_RSA,
1491 NID_undef, NID_undef, 1
1492};
1493
1494/*
1495 * Default signature algorithm values used if signature algorithms not present.
1496 * From RFC5246. Note: order must match certificate index order.
1497 */
1498static const uint16_t tls_default_sigalg[] = {
1499 TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */
1500 0, /* SSL_PKEY_RSA_PSS_SIGN */
1501 TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */
1502 TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */
1503 TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */
1504 TLSEXT_SIGALG_gostr34102012_256_intrinsic, /* SSL_PKEY_GOST12_256 */
1505 TLSEXT_SIGALG_gostr34102012_512_intrinsic, /* SSL_PKEY_GOST12_512 */
1506 0, /* SSL_PKEY_ED25519 */
1507 0, /* SSL_PKEY_ED448 */
1508};
1509
1510int ssl_setup_sigalgs(SSL_CTX *ctx)
1511{
1512 size_t i, cache_idx, sigalgs_len;
1513 const SIGALG_LOOKUP *lu;
1514 SIGALG_LOOKUP *cache = NULL;
1515 uint16_t *tls12_sigalgs_list = NULL;
1516 EVP_PKEY *tmpkey = EVP_PKEY_new();
1517 int ret = 0;
1518
1519 if (ctx == NULL)
1520 goto err;
1521
1522 sigalgs_len = OSSL_NELEM(sigalg_lookup_tbl) + ctx->sigalg_list_len;
1523
1524 cache = OPENSSL_malloc(sizeof(const SIGALG_LOOKUP) * sigalgs_len);
1525 if (cache == NULL || tmpkey == NULL)
1526 goto err;
1527
1528 tls12_sigalgs_list = OPENSSL_malloc(sizeof(uint16_t) * sigalgs_len);
1529 if (tls12_sigalgs_list == NULL)
1530 goto err;
1531
1532 ERR_set_mark();
1533 /* First fill cache and tls12_sigalgs list from legacy algorithm list */
1534 for (i = 0, lu = sigalg_lookup_tbl;
1535 i < OSSL_NELEM(sigalg_lookup_tbl); lu++, i++) {
1536 EVP_PKEY_CTX *pctx;
1537
1538 cache[i] = *lu;
1539 tls12_sigalgs_list[i] = tls12_sigalgs[i];
1540
1541 /*
1542 * Check hash is available.
1543 * This test is not perfect. A provider could have support
1544 * for a signature scheme, but not a particular hash. However the hash
1545 * could be available from some other loaded provider. In that case it
1546 * could be that the signature is available, and the hash is available
1547 * independently - but not as a combination. We ignore this for now.
1548 */
1549 if (lu->hash != NID_undef
1550 && ctx->ssl_digest_methods[lu->hash_idx] == NULL) {
1551 cache[i].enabled = 0;
1552 continue;
1553 }
1554
1555 if (!EVP_PKEY_set_type(tmpkey, lu->sig)) {
1556 cache[i].enabled = 0;
1557 continue;
1558 }
1559 pctx = EVP_PKEY_CTX_new_from_pkey(ctx->libctx, tmpkey, ctx->propq);
1560 /* If unable to create pctx we assume the sig algorithm is unavailable */
1561 if (pctx == NULL)
1562 cache[i].enabled = 0;
1563 EVP_PKEY_CTX_free(pctx);
1564 }
1565
1566 /* Now complete cache and tls12_sigalgs list with provider sig information */
1567 cache_idx = OSSL_NELEM(sigalg_lookup_tbl);
1568 for (i = 0; i < ctx->sigalg_list_len; i++) {
1569 TLS_SIGALG_INFO si = ctx->sigalg_list[i];
1570 cache[cache_idx].name = si.name;
1571 cache[cache_idx].sigalg = si.code_point;
1572 tls12_sigalgs_list[cache_idx] = si.code_point;
1573 cache[cache_idx].hash = si.hash_name?OBJ_txt2nid(si.hash_name):NID_undef;
1574 cache[cache_idx].hash_idx = ssl_get_md_idx(cache[cache_idx].hash);
1575 cache[cache_idx].sig = OBJ_txt2nid(si.sigalg_name);
1576 cache[cache_idx].sig_idx = i + SSL_PKEY_NUM;
1577 cache[cache_idx].sigandhash = OBJ_txt2nid(si.sigalg_name);
1578 cache[cache_idx].curve = NID_undef;
1579 /* all provided sigalgs are enabled by load */
1580 cache[cache_idx].enabled = 1;
1581 cache_idx++;
1582 }
1583 ERR_pop_to_mark();
1584 ctx->sigalg_lookup_cache = cache;
1585 ctx->tls12_sigalgs = tls12_sigalgs_list;
1586 ctx->tls12_sigalgs_len = sigalgs_len;
1587 cache = NULL;
1588 tls12_sigalgs_list = NULL;
1589
1590 ret = 1;
1591 err:
1592 OPENSSL_free(cache);
1593 OPENSSL_free(tls12_sigalgs_list);
1594 EVP_PKEY_free(tmpkey);
1595 return ret;
1596}
1597
1598/* Lookup TLS signature algorithm */
1599static const SIGALG_LOOKUP *tls1_lookup_sigalg(const SSL_CONNECTION *s,
1600 uint16_t sigalg)
1601{
1602 size_t i;
1603 const SIGALG_LOOKUP *lu;
1604
1605 for (i = 0, lu = SSL_CONNECTION_GET_CTX(s)->sigalg_lookup_cache;
1606 i < SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1607 lu++, i++) {
1608 if (lu->sigalg == sigalg) {
1609 if (!lu->enabled)
1610 return NULL;
1611 return lu;
1612 }
1613 }
1614 return NULL;
1615}
1616/* Lookup hash: return 0 if invalid or not enabled */
1617int tls1_lookup_md(SSL_CTX *ctx, const SIGALG_LOOKUP *lu, const EVP_MD **pmd)
1618{
1619 const EVP_MD *md;
1620
1621 if (lu == NULL)
1622 return 0;
1623 /* lu->hash == NID_undef means no associated digest */
1624 if (lu->hash == NID_undef) {
1625 md = NULL;
1626 } else {
1627 md = ssl_md(ctx, lu->hash_idx);
1628 if (md == NULL)
1629 return 0;
1630 }
1631 if (pmd)
1632 *pmd = md;
1633 return 1;
1634}
1635
1636/*
1637 * Check if key is large enough to generate RSA-PSS signature.
1638 *
1639 * The key must greater than or equal to 2 * hash length + 2.
1640 * SHA512 has a hash length of 64 bytes, which is incompatible
1641 * with a 128 byte (1024 bit) key.
1642 */
1643#define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_get_size(md) + 2)
1644static int rsa_pss_check_min_key_size(SSL_CTX *ctx, const EVP_PKEY *pkey,
1645 const SIGALG_LOOKUP *lu)
1646{
1647 const EVP_MD *md;
1648
1649 if (pkey == NULL)
1650 return 0;
1651 if (!tls1_lookup_md(ctx, lu, &md) || md == NULL)
1652 return 0;
1653 if (EVP_PKEY_get_size(pkey) < RSA_PSS_MINIMUM_KEY_SIZE(md))
1654 return 0;
1655 return 1;
1656}
1657
1658/*
1659 * Returns a signature algorithm when the peer did not send a list of supported
1660 * signature algorithms. The signature algorithm is fixed for the certificate
1661 * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the
1662 * certificate type from |s| will be used.
1663 * Returns the signature algorithm to use, or NULL on error.
1664 */
1665static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL_CONNECTION *s,
1666 int idx)
1667{
1668 if (idx == -1) {
1669 if (s->server) {
1670 size_t i;
1671
1672 /* Work out index corresponding to ciphersuite */
1673 for (i = 0; i < s->ssl_pkey_num; i++) {
1674 const SSL_CERT_LOOKUP *clu
1675 = ssl_cert_lookup_by_idx(i, SSL_CONNECTION_GET_CTX(s));
1676
1677 if (clu == NULL)
1678 continue;
1679 if (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) {
1680 idx = i;
1681 break;
1682 }
1683 }
1684
1685 /*
1686 * Some GOST ciphersuites allow more than one signature algorithms
1687 * */
1688 if (idx == SSL_PKEY_GOST01 && s->s3.tmp.new_cipher->algorithm_auth != SSL_aGOST01) {
1689 int real_idx;
1690
1691 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01;
1692 real_idx--) {
1693 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1694 idx = real_idx;
1695 break;
1696 }
1697 }
1698 }
1699 /*
1700 * As both SSL_PKEY_GOST12_512 and SSL_PKEY_GOST12_256 indices can be used
1701 * with new (aGOST12-only) ciphersuites, we should find out which one is available really.
1702 */
1703 else if (idx == SSL_PKEY_GOST12_256) {
1704 int real_idx;
1705
1706 for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST12_256;
1707 real_idx--) {
1708 if (s->cert->pkeys[real_idx].privatekey != NULL) {
1709 idx = real_idx;
1710 break;
1711 }
1712 }
1713 }
1714 } else {
1715 idx = s->cert->key - s->cert->pkeys;
1716 }
1717 }
1718 if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg))
1719 return NULL;
1720
1721 if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) {
1722 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, tls_default_sigalg[idx]);
1723
1724 if (lu == NULL)
1725 return NULL;
1726 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, NULL))
1727 return NULL;
1728 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
1729 return NULL;
1730 return lu;
1731 }
1732 if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg))
1733 return NULL;
1734 return &legacy_rsa_sigalg;
1735}
1736/* Set peer sigalg based key type */
1737int tls1_set_peer_legacy_sigalg(SSL_CONNECTION *s, const EVP_PKEY *pkey)
1738{
1739 size_t idx;
1740 const SIGALG_LOOKUP *lu;
1741
1742 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
1743 return 0;
1744 lu = tls1_get_legacy_sigalg(s, idx);
1745 if (lu == NULL)
1746 return 0;
1747 s->s3.tmp.peer_sigalg = lu;
1748 return 1;
1749}
1750
1751size_t tls12_get_psigalgs(SSL_CONNECTION *s, int sent, const uint16_t **psigs)
1752{
1753 /*
1754 * If Suite B mode use Suite B sigalgs only, ignore any other
1755 * preferences.
1756 */
1757 switch (tls1_suiteb(s)) {
1758 case SSL_CERT_FLAG_SUITEB_128_LOS:
1759 *psigs = suiteb_sigalgs;
1760 return OSSL_NELEM(suiteb_sigalgs);
1761
1762 case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY:
1763 *psigs = suiteb_sigalgs;
1764 return 1;
1765
1766 case SSL_CERT_FLAG_SUITEB_192_LOS:
1767 *psigs = suiteb_sigalgs + 1;
1768 return 1;
1769 }
1770 /*
1771 * We use client_sigalgs (if not NULL) if we're a server
1772 * and sending a certificate request or if we're a client and
1773 * determining which shared algorithm to use.
1774 */
1775 if ((s->server == sent) && s->cert->client_sigalgs != NULL) {
1776 *psigs = s->cert->client_sigalgs;
1777 return s->cert->client_sigalgslen;
1778 } else if (s->cert->conf_sigalgs) {
1779 *psigs = s->cert->conf_sigalgs;
1780 return s->cert->conf_sigalgslen;
1781 } else {
1782 *psigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1783 return SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1784 }
1785}
1786
1787/*
1788 * Called by servers only. Checks that we have a sig alg that supports the
1789 * specified EC curve.
1790 */
1791int tls_check_sigalg_curve(const SSL_CONNECTION *s, int curve)
1792{
1793 const uint16_t *sigs;
1794 size_t siglen, i;
1795
1796 if (s->cert->conf_sigalgs) {
1797 sigs = s->cert->conf_sigalgs;
1798 siglen = s->cert->conf_sigalgslen;
1799 } else {
1800 sigs = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs;
1801 siglen = SSL_CONNECTION_GET_CTX(s)->tls12_sigalgs_len;
1802 }
1803
1804 for (i = 0; i < siglen; i++) {
1805 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, sigs[i]);
1806
1807 if (lu == NULL)
1808 continue;
1809 if (lu->sig == EVP_PKEY_EC
1810 && lu->curve != NID_undef
1811 && curve == lu->curve)
1812 return 1;
1813 }
1814
1815 return 0;
1816}
1817
1818/*
1819 * Return the number of security bits for the signature algorithm, or 0 on
1820 * error.
1821 */
1822static int sigalg_security_bits(SSL_CTX *ctx, const SIGALG_LOOKUP *lu)
1823{
1824 const EVP_MD *md = NULL;
1825 int secbits = 0;
1826
1827 if (!tls1_lookup_md(ctx, lu, &md))
1828 return 0;
1829 if (md != NULL)
1830 {
1831 int md_type = EVP_MD_get_type(md);
1832
1833 /* Security bits: half digest bits */
1834 secbits = EVP_MD_get_size(md) * 4;
1835 /*
1836 * SHA1 and MD5 are known to be broken. Reduce security bits so that
1837 * they're no longer accepted at security level 1. The real values don't
1838 * really matter as long as they're lower than 80, which is our
1839 * security level 1.
1840 * https://eprint.iacr.org/2020/014 puts a chosen-prefix attack for
1841 * SHA1 at 2^63.4 and MD5+SHA1 at 2^67.2
1842 * https://documents.epfl.ch/users/l/le/lenstra/public/papers/lat.pdf
1843 * puts a chosen-prefix attack for MD5 at 2^39.
1844 */
1845 if (md_type == NID_sha1)
1846 secbits = 64;
1847 else if (md_type == NID_md5_sha1)
1848 secbits = 67;
1849 else if (md_type == NID_md5)
1850 secbits = 39;
1851 } else {
1852 /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */
1853 if (lu->sigalg == TLSEXT_SIGALG_ed25519)
1854 secbits = 128;
1855 else if (lu->sigalg == TLSEXT_SIGALG_ed448)
1856 secbits = 224;
1857 }
1858 /*
1859 * For provider-based sigalgs we have secbits information available
1860 * in the (provider-loaded) sigalg_list structure
1861 */
1862 if ((secbits == 0) && (lu->sig_idx >= SSL_PKEY_NUM)
1863 && ((lu->sig_idx - SSL_PKEY_NUM) < (int)ctx->sigalg_list_len)) {
1864 secbits = ctx->sigalg_list[lu->sig_idx - SSL_PKEY_NUM].secbits;
1865 }
1866 return secbits;
1867}
1868
1869/*
1870 * Check signature algorithm is consistent with sent supported signature
1871 * algorithms and if so set relevant digest and signature scheme in
1872 * s.
1873 */
1874int tls12_check_peer_sigalg(SSL_CONNECTION *s, uint16_t sig, EVP_PKEY *pkey)
1875{
1876 const uint16_t *sent_sigs;
1877 const EVP_MD *md = NULL;
1878 char sigalgstr[2];
1879 size_t sent_sigslen, i, cidx;
1880 int pkeyid = -1;
1881 const SIGALG_LOOKUP *lu;
1882 int secbits = 0;
1883
1884 pkeyid = EVP_PKEY_get_id(pkey);
1885
1886 if (SSL_CONNECTION_IS_TLS13(s)) {
1887 /* Disallow DSA for TLS 1.3 */
1888 if (pkeyid == EVP_PKEY_DSA) {
1889 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1890 return 0;
1891 }
1892 /* Only allow PSS for TLS 1.3 */
1893 if (pkeyid == EVP_PKEY_RSA)
1894 pkeyid = EVP_PKEY_RSA_PSS;
1895 }
1896 lu = tls1_lookup_sigalg(s, sig);
1897 /* if this sigalg is loaded, set so far unknown pkeyid to its sig NID */
1898 if ((pkeyid == EVP_PKEY_KEYMGMT) && (lu != NULL))
1899 pkeyid = lu->sig;
1900
1901 /* Should never happen */
1902 if (pkeyid == -1)
1903 return -1;
1904
1905 /*
1906 * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type
1907 * is consistent with signature: RSA keys can be used for RSA-PSS
1908 */
1909 if (lu == NULL
1910 || (SSL_CONNECTION_IS_TLS13(s)
1911 && (lu->hash == NID_sha1 || lu->hash == NID_sha224))
1912 || (pkeyid != lu->sig
1913 && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) {
1914 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1915 return 0;
1916 }
1917 /* Check the sigalg is consistent with the key OID */
1918 if (!ssl_cert_lookup_by_nid(
1919 (pkeyid == EVP_PKEY_RSA_PSS) ? EVP_PKEY_get_id(pkey) : pkeyid,
1920 &cidx, SSL_CONNECTION_GET_CTX(s))
1921 || lu->sig_idx != (int)cidx) {
1922 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_SIGNATURE_TYPE);
1923 return 0;
1924 }
1925
1926 if (pkeyid == EVP_PKEY_EC) {
1927
1928 /* Check point compression is permitted */
1929 if (!tls1_check_pkey_comp(s, pkey)) {
1930 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER,
1931 SSL_R_ILLEGAL_POINT_COMPRESSION);
1932 return 0;
1933 }
1934
1935 /* For TLS 1.3 or Suite B check curve matches signature algorithm */
1936 if (SSL_CONNECTION_IS_TLS13(s) || tls1_suiteb(s)) {
1937 int curve = ssl_get_EC_curve_nid(pkey);
1938
1939 if (lu->curve != NID_undef && curve != lu->curve) {
1940 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1941 return 0;
1942 }
1943 }
1944 if (!SSL_CONNECTION_IS_TLS13(s)) {
1945 /* Check curve matches extensions */
1946 if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) {
1947 SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_WRONG_CURVE);
1948 return 0;
1949 }
1950 if (tls1_suiteb(s)) {
1951 /* Check sigalg matches a permissible Suite B value */
1952 if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256
1953 && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) {
1954 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
1955 SSL_R_WRONG_SIGNATURE_TYPE);
1956 return 0;
1957 }
1958 }
1959 }
1960 } else if (tls1_suiteb(s)) {
1961 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1962 return 0;
1963 }
1964
1965 /* Check signature matches a type we sent */
1966 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
1967 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
1968 if (sig == *sent_sigs)
1969 break;
1970 }
1971 /* Allow fallback to SHA1 if not strict mode */
1972 if (i == sent_sigslen && (lu->hash != NID_sha1
1973 || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) {
1974 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1975 return 0;
1976 }
1977 if (!tls1_lookup_md(SSL_CONNECTION_GET_CTX(s), lu, &md)) {
1978 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_UNKNOWN_DIGEST);
1979 return 0;
1980 }
1981 /*
1982 * Make sure security callback allows algorithm. For historical
1983 * reasons we have to pass the sigalg as a two byte char array.
1984 */
1985 sigalgstr[0] = (sig >> 8) & 0xff;
1986 sigalgstr[1] = sig & 0xff;
1987 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
1988 if (secbits == 0 ||
1989 !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits,
1990 md != NULL ? EVP_MD_get_type(md) : NID_undef,
1991 (void *)sigalgstr)) {
1992 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_WRONG_SIGNATURE_TYPE);
1993 return 0;
1994 }
1995 /* Store the sigalg the peer uses */
1996 s->s3.tmp.peer_sigalg = lu;
1997 return 1;
1998}
1999
2000int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid)
2001{
2002 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2003
2004 if (sc == NULL)
2005 return 0;
2006
2007 if (sc->s3.tmp.peer_sigalg == NULL)
2008 return 0;
2009 *pnid = sc->s3.tmp.peer_sigalg->sig;
2010 return 1;
2011}
2012
2013int SSL_get_signature_type_nid(const SSL *s, int *pnid)
2014{
2015 const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s);
2016
2017 if (sc == NULL)
2018 return 0;
2019
2020 if (sc->s3.tmp.sigalg == NULL)
2021 return 0;
2022 *pnid = sc->s3.tmp.sigalg->sig;
2023 return 1;
2024}
2025
2026/*
2027 * Set a mask of disabled algorithms: an algorithm is disabled if it isn't
2028 * supported, doesn't appear in supported signature algorithms, isn't supported
2029 * by the enabled protocol versions or by the security level.
2030 *
2031 * This function should only be used for checking which ciphers are supported
2032 * by the client.
2033 *
2034 * Call ssl_cipher_disabled() to check that it's enabled or not.
2035 */
2036int ssl_set_client_disabled(SSL_CONNECTION *s)
2037{
2038 s->s3.tmp.mask_a = 0;
2039 s->s3.tmp.mask_k = 0;
2040 ssl_set_sig_mask(&s->s3.tmp.mask_a, s, SSL_SECOP_SIGALG_MASK);
2041 if (ssl_get_min_max_version(s, &s->s3.tmp.min_ver,
2042 &s->s3.tmp.max_ver, NULL) != 0)
2043 return 0;
2044#ifndef OPENSSL_NO_PSK
2045 /* with PSK there must be client callback set */
2046 if (!s->psk_client_callback) {
2047 s->s3.tmp.mask_a |= SSL_aPSK;
2048 s->s3.tmp.mask_k |= SSL_PSK;
2049 }
2050#endif /* OPENSSL_NO_PSK */
2051#ifndef OPENSSL_NO_SRP
2052 if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) {
2053 s->s3.tmp.mask_a |= SSL_aSRP;
2054 s->s3.tmp.mask_k |= SSL_kSRP;
2055 }
2056#endif
2057 return 1;
2058}
2059
2060/*
2061 * ssl_cipher_disabled - check that a cipher is disabled or not
2062 * @s: SSL connection that you want to use the cipher on
2063 * @c: cipher to check
2064 * @op: Security check that you want to do
2065 * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3
2066 *
2067 * Returns 1 when it's disabled, 0 when enabled.
2068 */
2069int ssl_cipher_disabled(const SSL_CONNECTION *s, const SSL_CIPHER *c,
2070 int op, int ecdhe)
2071{
2072 int minversion = SSL_CONNECTION_IS_DTLS(s) ? c->min_dtls : c->min_tls;
2073 int maxversion = SSL_CONNECTION_IS_DTLS(s) ? c->max_dtls : c->max_tls;
2074
2075 if (c->algorithm_mkey & s->s3.tmp.mask_k
2076 || c->algorithm_auth & s->s3.tmp.mask_a)
2077 return 1;
2078 if (s->s3.tmp.max_ver == 0)
2079 return 1;
2080
2081 if (SSL_IS_QUIC_HANDSHAKE(s))
2082 /* For QUIC, only allow these ciphersuites. */
2083 switch (SSL_CIPHER_get_id(c)) {
2084 case TLS1_3_CK_AES_128_GCM_SHA256:
2085 case TLS1_3_CK_AES_256_GCM_SHA384:
2086 case TLS1_3_CK_CHACHA20_POLY1305_SHA256:
2087 break;
2088 default:
2089 return 1;
2090 }
2091
2092 /*
2093 * For historical reasons we will allow ECHDE to be selected by a server
2094 * in SSLv3 if we are a client
2095 */
2096 if (minversion == TLS1_VERSION
2097 && ecdhe
2098 && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0)
2099 minversion = SSL3_VERSION;
2100
2101 if (ssl_version_cmp(s, minversion, s->s3.tmp.max_ver) > 0
2102 || ssl_version_cmp(s, maxversion, s->s3.tmp.min_ver) < 0)
2103 return 1;
2104
2105 return !ssl_security(s, op, c->strength_bits, 0, (void *)c);
2106}
2107
2108int tls_use_ticket(SSL_CONNECTION *s)
2109{
2110 if ((s->options & SSL_OP_NO_TICKET))
2111 return 0;
2112 return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL);
2113}
2114
2115int tls1_set_server_sigalgs(SSL_CONNECTION *s)
2116{
2117 size_t i;
2118
2119 /* Clear any shared signature algorithms */
2120 OPENSSL_free(s->shared_sigalgs);
2121 s->shared_sigalgs = NULL;
2122 s->shared_sigalgslen = 0;
2123
2124 /* Clear certificate validity flags */
2125 if (s->s3.tmp.valid_flags)
2126 memset(s->s3.tmp.valid_flags, 0, s->ssl_pkey_num * sizeof(uint32_t));
2127 else
2128 s->s3.tmp.valid_flags = OPENSSL_zalloc(s->ssl_pkey_num * sizeof(uint32_t));
2129 if (s->s3.tmp.valid_flags == NULL)
2130 return 0;
2131 /*
2132 * If peer sent no signature algorithms check to see if we support
2133 * the default algorithm for each certificate type
2134 */
2135 if (s->s3.tmp.peer_cert_sigalgs == NULL
2136 && s->s3.tmp.peer_sigalgs == NULL) {
2137 const uint16_t *sent_sigs;
2138 size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
2139
2140 for (i = 0; i < s->ssl_pkey_num; i++) {
2141 const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i);
2142 size_t j;
2143
2144 if (lu == NULL)
2145 continue;
2146 /* Check default matches a type we sent */
2147 for (j = 0; j < sent_sigslen; j++) {
2148 if (lu->sigalg == sent_sigs[j]) {
2149 s->s3.tmp.valid_flags[i] = CERT_PKEY_SIGN;
2150 break;
2151 }
2152 }
2153 }
2154 return 1;
2155 }
2156
2157 if (!tls1_process_sigalgs(s)) {
2158 SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR);
2159 return 0;
2160 }
2161 if (s->shared_sigalgs != NULL)
2162 return 1;
2163
2164 /* Fatal error if no shared signature algorithms */
2165 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
2166 SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS);
2167 return 0;
2168}
2169
2170/*-
2171 * Gets the ticket information supplied by the client if any.
2172 *
2173 * hello: The parsed ClientHello data
2174 * ret: (output) on return, if a ticket was decrypted, then this is set to
2175 * point to the resulting session.
2176 */
2177SSL_TICKET_STATUS tls_get_ticket_from_client(SSL_CONNECTION *s,
2178 CLIENTHELLO_MSG *hello,
2179 SSL_SESSION **ret)
2180{
2181 size_t size;
2182 RAW_EXTENSION *ticketext;
2183
2184 *ret = NULL;
2185 s->ext.ticket_expected = 0;
2186
2187 /*
2188 * If tickets disabled or not supported by the protocol version
2189 * (e.g. TLSv1.3) behave as if no ticket present to permit stateful
2190 * resumption.
2191 */
2192 if (s->version <= SSL3_VERSION || !tls_use_ticket(s))
2193 return SSL_TICKET_NONE;
2194
2195 ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket];
2196 if (!ticketext->present)
2197 return SSL_TICKET_NONE;
2198
2199 size = PACKET_remaining(&ticketext->data);
2200
2201 return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size,
2202 hello->session_id, hello->session_id_len, ret);
2203}
2204
2205/*-
2206 * tls_decrypt_ticket attempts to decrypt a session ticket.
2207 *
2208 * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are
2209 * expecting a pre-shared key ciphersuite, in which case we have no use for
2210 * session tickets and one will never be decrypted, nor will
2211 * s->ext.ticket_expected be set to 1.
2212 *
2213 * Side effects:
2214 * Sets s->ext.ticket_expected to 1 if the server will have to issue
2215 * a new session ticket to the client because the client indicated support
2216 * (and s->tls_session_secret_cb is NULL) but the client either doesn't have
2217 * a session ticket or we couldn't use the one it gave us, or if
2218 * s->ctx->ext.ticket_key_cb asked to renew the client's ticket.
2219 * Otherwise, s->ext.ticket_expected is set to 0.
2220 *
2221 * etick: points to the body of the session ticket extension.
2222 * eticklen: the length of the session tickets extension.
2223 * sess_id: points at the session ID.
2224 * sesslen: the length of the session ID.
2225 * psess: (output) on return, if a ticket was decrypted, then this is set to
2226 * point to the resulting session.
2227 */
2228SSL_TICKET_STATUS tls_decrypt_ticket(SSL_CONNECTION *s,
2229 const unsigned char *etick,
2230 size_t eticklen,
2231 const unsigned char *sess_id,
2232 size_t sesslen, SSL_SESSION **psess)
2233{
2234 SSL_SESSION *sess = NULL;
2235 unsigned char *sdec;
2236 const unsigned char *p;
2237 int slen, ivlen, renew_ticket = 0, declen;
2238 SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER;
2239 size_t mlen;
2240 unsigned char tick_hmac[EVP_MAX_MD_SIZE];
2241 SSL_HMAC *hctx = NULL;
2242 EVP_CIPHER_CTX *ctx = NULL;
2243 SSL_CTX *tctx = s->session_ctx;
2244 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
2245
2246 if (eticklen == 0) {
2247 /*
2248 * The client will accept a ticket but doesn't currently have
2249 * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3
2250 */
2251 ret = SSL_TICKET_EMPTY;
2252 goto end;
2253 }
2254 if (!SSL_CONNECTION_IS_TLS13(s) && s->ext.session_secret_cb) {
2255 /*
2256 * Indicate that the ticket couldn't be decrypted rather than
2257 * generating the session from ticket now, trigger
2258 * abbreviated handshake based on external mechanism to
2259 * calculate the master secret later.
2260 */
2261 ret = SSL_TICKET_NO_DECRYPT;
2262 goto end;
2263 }
2264
2265 /* Need at least keyname + iv */
2266 if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) {
2267 ret = SSL_TICKET_NO_DECRYPT;
2268 goto end;
2269 }
2270
2271 /* Initialize session ticket encryption and HMAC contexts */
2272 hctx = ssl_hmac_new(tctx);
2273 if (hctx == NULL) {
2274 ret = SSL_TICKET_FATAL_ERR_MALLOC;
2275 goto end;
2276 }
2277 ctx = EVP_CIPHER_CTX_new();
2278 if (ctx == NULL) {
2279 ret = SSL_TICKET_FATAL_ERR_MALLOC;
2280 goto end;
2281 }
2282#ifndef OPENSSL_NO_DEPRECATED_3_0
2283 if (tctx->ext.ticket_key_evp_cb != NULL || tctx->ext.ticket_key_cb != NULL)
2284#else
2285 if (tctx->ext.ticket_key_evp_cb != NULL)
2286#endif
2287 {
2288 unsigned char *nctick = (unsigned char *)etick;
2289 int rv = 0;
2290
2291 if (tctx->ext.ticket_key_evp_cb != NULL)
2292 rv = tctx->ext.ticket_key_evp_cb(SSL_CONNECTION_GET_SSL(s), nctick,
2293 nctick + TLSEXT_KEYNAME_LENGTH,
2294 ctx,
2295 ssl_hmac_get0_EVP_MAC_CTX(hctx),
2296 0);
2297#ifndef OPENSSL_NO_DEPRECATED_3_0
2298 else if (tctx->ext.ticket_key_cb != NULL)
2299 /* if 0 is returned, write an empty ticket */
2300 rv = tctx->ext.ticket_key_cb(SSL_CONNECTION_GET_SSL(s), nctick,
2301 nctick + TLSEXT_KEYNAME_LENGTH,
2302 ctx, ssl_hmac_get0_HMAC_CTX(hctx), 0);
2303#endif
2304 if (rv < 0) {
2305 ret = SSL_TICKET_FATAL_ERR_OTHER;
2306 goto end;
2307 }
2308 if (rv == 0) {
2309 ret = SSL_TICKET_NO_DECRYPT;
2310 goto end;
2311 }
2312 if (rv == 2)
2313 renew_ticket = 1;
2314 } else {
2315 EVP_CIPHER *aes256cbc = NULL;
2316
2317 /* Check key name matches */
2318 if (memcmp(etick, tctx->ext.tick_key_name,
2319 TLSEXT_KEYNAME_LENGTH) != 0) {
2320 ret = SSL_TICKET_NO_DECRYPT;
2321 goto end;
2322 }
2323
2324 aes256cbc = EVP_CIPHER_fetch(sctx->libctx, "AES-256-CBC",
2325 sctx->propq);
2326 if (aes256cbc == NULL
2327 || ssl_hmac_init(hctx, tctx->ext.secure->tick_hmac_key,
2328 sizeof(tctx->ext.secure->tick_hmac_key),
2329 "SHA256") <= 0
2330 || EVP_DecryptInit_ex(ctx, aes256cbc, NULL,
2331 tctx->ext.secure->tick_aes_key,
2332 etick + TLSEXT_KEYNAME_LENGTH) <= 0) {
2333 EVP_CIPHER_free(aes256cbc);
2334 ret = SSL_TICKET_FATAL_ERR_OTHER;
2335 goto end;
2336 }
2337 EVP_CIPHER_free(aes256cbc);
2338 if (SSL_CONNECTION_IS_TLS13(s))
2339 renew_ticket = 1;
2340 }
2341 /*
2342 * Attempt to process session ticket, first conduct sanity and integrity
2343 * checks on ticket.
2344 */
2345 mlen = ssl_hmac_size(hctx);
2346 if (mlen == 0) {
2347 ret = SSL_TICKET_FATAL_ERR_OTHER;
2348 goto end;
2349 }
2350
2351 ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
2352 if (ivlen < 0) {
2353 ret = SSL_TICKET_FATAL_ERR_OTHER;
2354 goto end;
2355 }
2356
2357 /* Sanity check ticket length: must exceed keyname + IV + HMAC */
2358 if (eticklen <= TLSEXT_KEYNAME_LENGTH + ivlen + mlen) {
2359 ret = SSL_TICKET_NO_DECRYPT;
2360 goto end;
2361 }
2362 eticklen -= mlen;
2363 /* Check HMAC of encrypted ticket */
2364 if (ssl_hmac_update(hctx, etick, eticklen) <= 0
2365 || ssl_hmac_final(hctx, tick_hmac, NULL, sizeof(tick_hmac)) <= 0) {
2366 ret = SSL_TICKET_FATAL_ERR_OTHER;
2367 goto end;
2368 }
2369
2370 if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) {
2371 ret = SSL_TICKET_NO_DECRYPT;
2372 goto end;
2373 }
2374 /* Attempt to decrypt session data */
2375 /* Move p after IV to start of encrypted ticket, update length */
2376 p = etick + TLSEXT_KEYNAME_LENGTH + ivlen;
2377 eticklen -= TLSEXT_KEYNAME_LENGTH + ivlen;
2378 sdec = OPENSSL_malloc(eticklen);
2379 if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p,
2380 (int)eticklen) <= 0) {
2381 OPENSSL_free(sdec);
2382 ret = SSL_TICKET_FATAL_ERR_OTHER;
2383 goto end;
2384 }
2385 if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) {
2386 OPENSSL_free(sdec);
2387 ret = SSL_TICKET_NO_DECRYPT;
2388 goto end;
2389 }
2390 slen += declen;
2391 p = sdec;
2392
2393 sess = d2i_SSL_SESSION_ex(NULL, &p, slen, sctx->libctx, sctx->propq);
2394 slen -= p - sdec;
2395 OPENSSL_free(sdec);
2396 if (sess) {
2397 /* Some additional consistency checks */
2398 if (slen != 0) {
2399 SSL_SESSION_free(sess);
2400 sess = NULL;
2401 ret = SSL_TICKET_NO_DECRYPT;
2402 goto end;
2403 }
2404 /*
2405 * The session ID, if non-empty, is used by some clients to detect
2406 * that the ticket has been accepted. So we copy it to the session
2407 * structure. If it is empty set length to zero as required by
2408 * standard.
2409 */
2410 if (sesslen) {
2411 memcpy(sess->session_id, sess_id, sesslen);
2412 sess->session_id_length = sesslen;
2413 }
2414 if (renew_ticket)
2415 ret = SSL_TICKET_SUCCESS_RENEW;
2416 else
2417 ret = SSL_TICKET_SUCCESS;
2418 goto end;
2419 }
2420 ERR_clear_error();
2421 /*
2422 * For session parse failure, indicate that we need to send a new ticket.
2423 */
2424 ret = SSL_TICKET_NO_DECRYPT;
2425
2426 end:
2427 EVP_CIPHER_CTX_free(ctx);
2428 ssl_hmac_free(hctx);
2429
2430 /*
2431 * If set, the decrypt_ticket_cb() is called unless a fatal error was
2432 * detected above. The callback is responsible for checking |ret| before it
2433 * performs any action
2434 */
2435 if (s->session_ctx->decrypt_ticket_cb != NULL
2436 && (ret == SSL_TICKET_EMPTY
2437 || ret == SSL_TICKET_NO_DECRYPT
2438 || ret == SSL_TICKET_SUCCESS
2439 || ret == SSL_TICKET_SUCCESS_RENEW)) {
2440 size_t keyname_len = eticklen;
2441 int retcb;
2442
2443 if (keyname_len > TLSEXT_KEYNAME_LENGTH)
2444 keyname_len = TLSEXT_KEYNAME_LENGTH;
2445 retcb = s->session_ctx->decrypt_ticket_cb(SSL_CONNECTION_GET_SSL(s),
2446 sess, etick, keyname_len,
2447 ret,
2448 s->session_ctx->ticket_cb_data);
2449 switch (retcb) {
2450 case SSL_TICKET_RETURN_ABORT:
2451 ret = SSL_TICKET_FATAL_ERR_OTHER;
2452 break;
2453
2454 case SSL_TICKET_RETURN_IGNORE:
2455 ret = SSL_TICKET_NONE;
2456 SSL_SESSION_free(sess);
2457 sess = NULL;
2458 break;
2459
2460 case SSL_TICKET_RETURN_IGNORE_RENEW:
2461 if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT)
2462 ret = SSL_TICKET_NO_DECRYPT;
2463 /* else the value of |ret| will already do the right thing */
2464 SSL_SESSION_free(sess);
2465 sess = NULL;
2466 break;
2467
2468 case SSL_TICKET_RETURN_USE:
2469 case SSL_TICKET_RETURN_USE_RENEW:
2470 if (ret != SSL_TICKET_SUCCESS
2471 && ret != SSL_TICKET_SUCCESS_RENEW)
2472 ret = SSL_TICKET_FATAL_ERR_OTHER;
2473 else if (retcb == SSL_TICKET_RETURN_USE)
2474 ret = SSL_TICKET_SUCCESS;
2475 else
2476 ret = SSL_TICKET_SUCCESS_RENEW;
2477 break;
2478
2479 default:
2480 ret = SSL_TICKET_FATAL_ERR_OTHER;
2481 }
2482 }
2483
2484 if (s->ext.session_secret_cb == NULL || SSL_CONNECTION_IS_TLS13(s)) {
2485 switch (ret) {
2486 case SSL_TICKET_NO_DECRYPT:
2487 case SSL_TICKET_SUCCESS_RENEW:
2488 case SSL_TICKET_EMPTY:
2489 s->ext.ticket_expected = 1;
2490 }
2491 }
2492
2493 *psess = sess;
2494
2495 return ret;
2496}
2497
2498/* Check to see if a signature algorithm is allowed */
2499static int tls12_sigalg_allowed(const SSL_CONNECTION *s, int op,
2500 const SIGALG_LOOKUP *lu)
2501{
2502 unsigned char sigalgstr[2];
2503 int secbits;
2504
2505 if (lu == NULL || !lu->enabled)
2506 return 0;
2507 /* DSA is not allowed in TLS 1.3 */
2508 if (SSL_CONNECTION_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA)
2509 return 0;
2510 /*
2511 * At some point we should fully axe DSA/etc. in ClientHello as per TLS 1.3
2512 * spec
2513 */
2514 if (!s->server && !SSL_CONNECTION_IS_DTLS(s)
2515 && s->s3.tmp.min_ver >= TLS1_3_VERSION
2516 && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX
2517 || lu->hash_idx == SSL_MD_MD5_IDX
2518 || lu->hash_idx == SSL_MD_SHA224_IDX))
2519 return 0;
2520
2521 /* See if public key algorithm allowed */
2522 if (ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), lu->sig_idx))
2523 return 0;
2524
2525 if (lu->sig == NID_id_GostR3410_2012_256
2526 || lu->sig == NID_id_GostR3410_2012_512
2527 || lu->sig == NID_id_GostR3410_2001) {
2528 /* We never allow GOST sig algs on the server with TLSv1.3 */
2529 if (s->server && SSL_CONNECTION_IS_TLS13(s))
2530 return 0;
2531 if (!s->server
2532 && SSL_CONNECTION_GET_SSL(s)->method->version == TLS_ANY_VERSION
2533 && s->s3.tmp.max_ver >= TLS1_3_VERSION) {
2534 int i, num;
2535 STACK_OF(SSL_CIPHER) *sk;
2536
2537 /*
2538 * We're a client that could negotiate TLSv1.3. We only allow GOST
2539 * sig algs if we could negotiate TLSv1.2 or below and we have GOST
2540 * ciphersuites enabled.
2541 */
2542
2543 if (s->s3.tmp.min_ver >= TLS1_3_VERSION)
2544 return 0;
2545
2546 sk = SSL_get_ciphers(SSL_CONNECTION_GET_SSL(s));
2547 num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0;
2548 for (i = 0; i < num; i++) {
2549 const SSL_CIPHER *c;
2550
2551 c = sk_SSL_CIPHER_value(sk, i);
2552 /* Skip disabled ciphers */
2553 if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0))
2554 continue;
2555
2556 if ((c->algorithm_mkey & (SSL_kGOST | SSL_kGOST18)) != 0)
2557 break;
2558 }
2559 if (i == num)
2560 return 0;
2561 }
2562 }
2563
2564 /* Finally see if security callback allows it */
2565 secbits = sigalg_security_bits(SSL_CONNECTION_GET_CTX(s), lu);
2566 sigalgstr[0] = (lu->sigalg >> 8) & 0xff;
2567 sigalgstr[1] = lu->sigalg & 0xff;
2568 return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr);
2569}
2570
2571/*
2572 * Get a mask of disabled public key algorithms based on supported signature
2573 * algorithms. For example if no signature algorithm supports RSA then RSA is
2574 * disabled.
2575 */
2576
2577void ssl_set_sig_mask(uint32_t *pmask_a, SSL_CONNECTION *s, int op)
2578{
2579 const uint16_t *sigalgs;
2580 size_t i, sigalgslen;
2581 uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA;
2582 /*
2583 * Go through all signature algorithms seeing if we support any
2584 * in disabled_mask.
2585 */
2586 sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs);
2587 for (i = 0; i < sigalgslen; i++, sigalgs++) {
2588 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *sigalgs);
2589 const SSL_CERT_LOOKUP *clu;
2590
2591 if (lu == NULL)
2592 continue;
2593
2594 clu = ssl_cert_lookup_by_idx(lu->sig_idx,
2595 SSL_CONNECTION_GET_CTX(s));
2596 if (clu == NULL)
2597 continue;
2598
2599 /* If algorithm is disabled see if we can enable it */
2600 if ((clu->amask & disabled_mask) != 0
2601 && tls12_sigalg_allowed(s, op, lu))
2602 disabled_mask &= ~clu->amask;
2603 }
2604 *pmask_a |= disabled_mask;
2605}
2606
2607int tls12_copy_sigalgs(SSL_CONNECTION *s, WPACKET *pkt,
2608 const uint16_t *psig, size_t psiglen)
2609{
2610 size_t i;
2611 int rv = 0;
2612
2613 for (i = 0; i < psiglen; i++, psig++) {
2614 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *psig);
2615
2616 if (lu == NULL
2617 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu))
2618 continue;
2619 if (!WPACKET_put_bytes_u16(pkt, *psig))
2620 return 0;
2621 /*
2622 * If TLS 1.3 must have at least one valid TLS 1.3 message
2623 * signing algorithm: i.e. neither RSA nor SHA1/SHA224
2624 */
2625 if (rv == 0 && (!SSL_CONNECTION_IS_TLS13(s)
2626 || (lu->sig != EVP_PKEY_RSA
2627 && lu->hash != NID_sha1
2628 && lu->hash != NID_sha224)))
2629 rv = 1;
2630 }
2631 if (rv == 0)
2632 ERR_raise(ERR_LIB_SSL, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
2633 return rv;
2634}
2635
2636/* Given preference and allowed sigalgs set shared sigalgs */
2637static size_t tls12_shared_sigalgs(SSL_CONNECTION *s,
2638 const SIGALG_LOOKUP **shsig,
2639 const uint16_t *pref, size_t preflen,
2640 const uint16_t *allow, size_t allowlen)
2641{
2642 const uint16_t *ptmp, *atmp;
2643 size_t i, j, nmatch = 0;
2644 for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) {
2645 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *ptmp);
2646
2647 /* Skip disabled hashes or signature algorithms */
2648 if (lu == NULL
2649 || !tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu))
2650 continue;
2651 for (j = 0, atmp = allow; j < allowlen; j++, atmp++) {
2652 if (*ptmp == *atmp) {
2653 nmatch++;
2654 if (shsig)
2655 *shsig++ = lu;
2656 break;
2657 }
2658 }
2659 }
2660 return nmatch;
2661}
2662
2663/* Set shared signature algorithms for SSL structures */
2664static int tls1_set_shared_sigalgs(SSL_CONNECTION *s)
2665{
2666 const uint16_t *pref, *allow, *conf;
2667 size_t preflen, allowlen, conflen;
2668 size_t nmatch;
2669 const SIGALG_LOOKUP **salgs = NULL;
2670 CERT *c = s->cert;
2671 unsigned int is_suiteb = tls1_suiteb(s);
2672
2673 OPENSSL_free(s->shared_sigalgs);
2674 s->shared_sigalgs = NULL;
2675 s->shared_sigalgslen = 0;
2676 /* If client use client signature algorithms if not NULL */
2677 if (!s->server && c->client_sigalgs && !is_suiteb) {
2678 conf = c->client_sigalgs;
2679 conflen = c->client_sigalgslen;
2680 } else if (c->conf_sigalgs && !is_suiteb) {
2681 conf = c->conf_sigalgs;
2682 conflen = c->conf_sigalgslen;
2683 } else
2684 conflen = tls12_get_psigalgs(s, 0, &conf);
2685 if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) {
2686 pref = conf;
2687 preflen = conflen;
2688 allow = s->s3.tmp.peer_sigalgs;
2689 allowlen = s->s3.tmp.peer_sigalgslen;
2690 } else {
2691 allow = conf;
2692 allowlen = conflen;
2693 pref = s->s3.tmp.peer_sigalgs;
2694 preflen = s->s3.tmp.peer_sigalgslen;
2695 }
2696 nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen);
2697 if (nmatch) {
2698 if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL)
2699 return 0;
2700 nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen);
2701 } else {
2702 salgs = NULL;
2703 }
2704 s->shared_sigalgs = salgs;
2705 s->shared_sigalgslen = nmatch;
2706 return 1;
2707}
2708
2709int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen)
2710{
2711 unsigned int stmp;
2712 size_t size, i;
2713 uint16_t *buf;
2714
2715 size = PACKET_remaining(pkt);
2716
2717 /* Invalid data length */
2718 if (size == 0 || (size & 1) != 0)
2719 return 0;
2720
2721 size >>= 1;
2722
2723 if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL)
2724 return 0;
2725 for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++)
2726 buf[i] = stmp;
2727
2728 if (i != size) {
2729 OPENSSL_free(buf);
2730 return 0;
2731 }
2732
2733 OPENSSL_free(*pdest);
2734 *pdest = buf;
2735 *pdestlen = size;
2736
2737 return 1;
2738}
2739
2740int tls1_save_sigalgs(SSL_CONNECTION *s, PACKET *pkt, int cert)
2741{
2742 /* Extension ignored for inappropriate versions */
2743 if (!SSL_USE_SIGALGS(s))
2744 return 1;
2745 /* Should never happen */
2746 if (s->cert == NULL)
2747 return 0;
2748
2749 if (cert)
2750 return tls1_save_u16(pkt, &s->s3.tmp.peer_cert_sigalgs,
2751 &s->s3.tmp.peer_cert_sigalgslen);
2752 else
2753 return tls1_save_u16(pkt, &s->s3.tmp.peer_sigalgs,
2754 &s->s3.tmp.peer_sigalgslen);
2755
2756}
2757
2758/* Set preferred digest for each key type */
2759
2760int tls1_process_sigalgs(SSL_CONNECTION *s)
2761{
2762 size_t i;
2763 uint32_t *pvalid = s->s3.tmp.valid_flags;
2764
2765 if (!tls1_set_shared_sigalgs(s))
2766 return 0;
2767
2768 for (i = 0; i < s->ssl_pkey_num; i++)
2769 pvalid[i] = 0;
2770
2771 for (i = 0; i < s->shared_sigalgslen; i++) {
2772 const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i];
2773 int idx = sigptr->sig_idx;
2774
2775 /* Ignore PKCS1 based sig algs in TLSv1.3 */
2776 if (SSL_CONNECTION_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA)
2777 continue;
2778 /* If not disabled indicate we can explicitly sign */
2779 if (pvalid[idx] == 0
2780 && !ssl_cert_is_disabled(SSL_CONNECTION_GET_CTX(s), idx))
2781 pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
2782 }
2783 return 1;
2784}
2785
2786int SSL_get_sigalgs(SSL *s, int idx,
2787 int *psign, int *phash, int *psignhash,
2788 unsigned char *rsig, unsigned char *rhash)
2789{
2790 uint16_t *psig;
2791 size_t numsigalgs;
2792 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2793
2794 if (sc == NULL)
2795 return 0;
2796
2797 psig = sc->s3.tmp.peer_sigalgs;
2798 numsigalgs = sc->s3.tmp.peer_sigalgslen;
2799
2800 if (psig == NULL || numsigalgs > INT_MAX)
2801 return 0;
2802 if (idx >= 0) {
2803 const SIGALG_LOOKUP *lu;
2804
2805 if (idx >= (int)numsigalgs)
2806 return 0;
2807 psig += idx;
2808 if (rhash != NULL)
2809 *rhash = (unsigned char)((*psig >> 8) & 0xff);
2810 if (rsig != NULL)
2811 *rsig = (unsigned char)(*psig & 0xff);
2812 lu = tls1_lookup_sigalg(sc, *psig);
2813 if (psign != NULL)
2814 *psign = lu != NULL ? lu->sig : NID_undef;
2815 if (phash != NULL)
2816 *phash = lu != NULL ? lu->hash : NID_undef;
2817 if (psignhash != NULL)
2818 *psignhash = lu != NULL ? lu->sigandhash : NID_undef;
2819 }
2820 return (int)numsigalgs;
2821}
2822
2823int SSL_get_shared_sigalgs(SSL *s, int idx,
2824 int *psign, int *phash, int *psignhash,
2825 unsigned char *rsig, unsigned char *rhash)
2826{
2827 const SIGALG_LOOKUP *shsigalgs;
2828 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
2829
2830 if (sc == NULL)
2831 return 0;
2832
2833 if (sc->shared_sigalgs == NULL
2834 || idx < 0
2835 || idx >= (int)sc->shared_sigalgslen
2836 || sc->shared_sigalgslen > INT_MAX)
2837 return 0;
2838 shsigalgs = sc->shared_sigalgs[idx];
2839 if (phash != NULL)
2840 *phash = shsigalgs->hash;
2841 if (psign != NULL)
2842 *psign = shsigalgs->sig;
2843 if (psignhash != NULL)
2844 *psignhash = shsigalgs->sigandhash;
2845 if (rsig != NULL)
2846 *rsig = (unsigned char)(shsigalgs->sigalg & 0xff);
2847 if (rhash != NULL)
2848 *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff);
2849 return (int)sc->shared_sigalgslen;
2850}
2851
2852/* Maximum possible number of unique entries in sigalgs array */
2853#define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2)
2854
2855typedef struct {
2856 size_t sigalgcnt;
2857 /* TLSEXT_SIGALG_XXX values */
2858 uint16_t sigalgs[TLS_MAX_SIGALGCNT];
2859 SSL_CTX *ctx;
2860} sig_cb_st;
2861
2862static void get_sigorhash(int *psig, int *phash, const char *str)
2863{
2864 if (strcmp(str, "RSA") == 0) {
2865 *psig = EVP_PKEY_RSA;
2866 } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) {
2867 *psig = EVP_PKEY_RSA_PSS;
2868 } else if (strcmp(str, "DSA") == 0) {
2869 *psig = EVP_PKEY_DSA;
2870 } else if (strcmp(str, "ECDSA") == 0) {
2871 *psig = EVP_PKEY_EC;
2872 } else {
2873 *phash = OBJ_sn2nid(str);
2874 if (*phash == NID_undef)
2875 *phash = OBJ_ln2nid(str);
2876 }
2877}
2878/* Maximum length of a signature algorithm string component */
2879#define TLS_MAX_SIGSTRING_LEN 40
2880
2881static int sig_cb(const char *elem, int len, void *arg)
2882{
2883 sig_cb_st *sarg = arg;
2884 size_t i = 0;
2885 const SIGALG_LOOKUP *s;
2886 char etmp[TLS_MAX_SIGSTRING_LEN], *p;
2887 int sig_alg = NID_undef, hash_alg = NID_undef;
2888 int ignore_unknown = 0;
2889
2890 if (elem == NULL)
2891 return 0;
2892 if (elem[0] == '?') {
2893 ignore_unknown = 1;
2894 ++elem;
2895 --len;
2896 }
2897 if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT)
2898 return 0;
2899 if (len > (int)(sizeof(etmp) - 1))
2900 return 0;
2901 memcpy(etmp, elem, len);
2902 etmp[len] = 0;
2903 p = strchr(etmp, '+');
2904 /*
2905 * We only allow SignatureSchemes listed in the sigalg_lookup_tbl;
2906 * if there's no '+' in the provided name, look for the new-style combined
2907 * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP.
2908 * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and
2909 * rsa_pss_rsae_* that differ only by public key OID; in such cases
2910 * we will pick the _rsae_ variant, by virtue of them appearing earlier
2911 * in the table.
2912 */
2913 if (p == NULL) {
2914 /* Load provider sigalgs */
2915 if (sarg->ctx != NULL) {
2916 /* Check if a provider supports the sigalg */
2917 for (i = 0; i < sarg->ctx->sigalg_list_len; i++) {
2918 if (sarg->ctx->sigalg_list[i].sigalg_name != NULL
2919 && strcmp(etmp,
2920 sarg->ctx->sigalg_list[i].sigalg_name) == 0) {
2921 sarg->sigalgs[sarg->sigalgcnt++] =
2922 sarg->ctx->sigalg_list[i].code_point;
2923 break;
2924 }
2925 }
2926 }
2927 /* Check the built-in sigalgs */
2928 if (sarg->ctx == NULL || i == sarg->ctx->sigalg_list_len) {
2929 for (i = 0, s = sigalg_lookup_tbl;
2930 i < OSSL_NELEM(sigalg_lookup_tbl); i++, s++) {
2931 if (s->name != NULL && strcmp(etmp, s->name) == 0) {
2932 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2933 break;
2934 }
2935 }
2936 if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
2937 /* Ignore unknown algorithms if ignore_unknown */
2938 return ignore_unknown;
2939 }
2940 }
2941 } else {
2942 *p = 0;
2943 p++;
2944 if (*p == 0)
2945 return 0;
2946 get_sigorhash(&sig_alg, &hash_alg, etmp);
2947 get_sigorhash(&sig_alg, &hash_alg, p);
2948 if (sig_alg == NID_undef || hash_alg == NID_undef) {
2949 /* Ignore unknown algorithms if ignore_unknown */
2950 return ignore_unknown;
2951 }
2952 for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl);
2953 i++, s++) {
2954 if (s->hash == hash_alg && s->sig == sig_alg) {
2955 sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg;
2956 break;
2957 }
2958 }
2959 if (i == OSSL_NELEM(sigalg_lookup_tbl)) {
2960 /* Ignore unknown algorithms if ignore_unknown */
2961 return ignore_unknown;
2962 }
2963 }
2964
2965 /* Ignore duplicates */
2966 for (i = 0; i < sarg->sigalgcnt - 1; i++) {
2967 if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) {
2968 sarg->sigalgcnt--;
2969 return 1;
2970 }
2971 }
2972 return 1;
2973}
2974
2975/*
2976 * Set supported signature algorithms based on a colon separated list of the
2977 * form sig+hash e.g. RSA+SHA512:DSA+SHA512
2978 */
2979int tls1_set_sigalgs_list(SSL_CTX *ctx, CERT *c, const char *str, int client)
2980{
2981 sig_cb_st sig;
2982 sig.sigalgcnt = 0;
2983
2984 if (ctx != NULL && ssl_load_sigalgs(ctx)) {
2985 sig.ctx = ctx;
2986 }
2987 if (!CONF_parse_list(str, ':', 1, sig_cb, &sig))
2988 return 0;
2989 if (sig.sigalgcnt == 0) {
2990 ERR_raise_data(ERR_LIB_SSL, ERR_R_PASSED_INVALID_ARGUMENT,
2991 "No valid signature algorithms in '%s'", str);
2992 return 0;
2993 }
2994 if (c == NULL)
2995 return 1;
2996 return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client);
2997}
2998
2999int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen,
3000 int client)
3001{
3002 uint16_t *sigalgs;
3003
3004 if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL)
3005 return 0;
3006 memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs));
3007
3008 if (client) {
3009 OPENSSL_free(c->client_sigalgs);
3010 c->client_sigalgs = sigalgs;
3011 c->client_sigalgslen = salglen;
3012 } else {
3013 OPENSSL_free(c->conf_sigalgs);
3014 c->conf_sigalgs = sigalgs;
3015 c->conf_sigalgslen = salglen;
3016 }
3017
3018 return 1;
3019}
3020
3021int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client)
3022{
3023 uint16_t *sigalgs, *sptr;
3024 size_t i;
3025
3026 if (salglen & 1)
3027 return 0;
3028 if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL)
3029 return 0;
3030 for (i = 0, sptr = sigalgs; i < salglen; i += 2) {
3031 size_t j;
3032 const SIGALG_LOOKUP *curr;
3033 int md_id = *psig_nids++;
3034 int sig_id = *psig_nids++;
3035
3036 for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl);
3037 j++, curr++) {
3038 if (curr->hash == md_id && curr->sig == sig_id) {
3039 *sptr++ = curr->sigalg;
3040 break;
3041 }
3042 }
3043
3044 if (j == OSSL_NELEM(sigalg_lookup_tbl))
3045 goto err;
3046 }
3047
3048 if (client) {
3049 OPENSSL_free(c->client_sigalgs);
3050 c->client_sigalgs = sigalgs;
3051 c->client_sigalgslen = salglen / 2;
3052 } else {
3053 OPENSSL_free(c->conf_sigalgs);
3054 c->conf_sigalgs = sigalgs;
3055 c->conf_sigalgslen = salglen / 2;
3056 }
3057
3058 return 1;
3059
3060 err:
3061 OPENSSL_free(sigalgs);
3062 return 0;
3063}
3064
3065static int tls1_check_sig_alg(SSL_CONNECTION *s, X509 *x, int default_nid)
3066{
3067 int sig_nid, use_pc_sigalgs = 0;
3068 size_t i;
3069 const SIGALG_LOOKUP *sigalg;
3070 size_t sigalgslen;
3071
3072 if (default_nid == -1)
3073 return 1;
3074 sig_nid = X509_get_signature_nid(x);
3075 if (default_nid)
3076 return sig_nid == default_nid ? 1 : 0;
3077
3078 if (SSL_CONNECTION_IS_TLS13(s) && s->s3.tmp.peer_cert_sigalgs != NULL) {
3079 /*
3080 * If we're in TLSv1.3 then we only get here if we're checking the
3081 * chain. If the peer has specified peer_cert_sigalgs then we use them
3082 * otherwise we default to normal sigalgs.
3083 */
3084 sigalgslen = s->s3.tmp.peer_cert_sigalgslen;
3085 use_pc_sigalgs = 1;
3086 } else {
3087 sigalgslen = s->shared_sigalgslen;
3088 }
3089 for (i = 0; i < sigalgslen; i++) {
3090 sigalg = use_pc_sigalgs
3091 ? tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i])
3092 : s->shared_sigalgs[i];
3093 if (sigalg != NULL && sig_nid == sigalg->sigandhash)
3094 return 1;
3095 }
3096 return 0;
3097}
3098
3099/* Check to see if a certificate issuer name matches list of CA names */
3100static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x)
3101{
3102 const X509_NAME *nm;
3103 int i;
3104 nm = X509_get_issuer_name(x);
3105 for (i = 0; i < sk_X509_NAME_num(names); i++) {
3106 if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i)))
3107 return 1;
3108 }
3109 return 0;
3110}
3111
3112/*
3113 * Check certificate chain is consistent with TLS extensions and is usable by
3114 * server. This servers two purposes: it allows users to check chains before
3115 * passing them to the server and it allows the server to check chains before
3116 * attempting to use them.
3117 */
3118
3119/* Flags which need to be set for a certificate when strict mode not set */
3120
3121#define CERT_PKEY_VALID_FLAGS \
3122 (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM)
3123/* Strict mode flags */
3124#define CERT_PKEY_STRICT_FLAGS \
3125 (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \
3126 | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE)
3127
3128int tls1_check_chain(SSL_CONNECTION *s, X509 *x, EVP_PKEY *pk,
3129 STACK_OF(X509) *chain, int idx)
3130{
3131 int i;
3132 int rv = 0;
3133 int check_flags = 0, strict_mode;
3134 CERT_PKEY *cpk = NULL;
3135 CERT *c = s->cert;
3136 uint32_t *pvalid;
3137 unsigned int suiteb_flags = tls1_suiteb(s);
3138
3139 /*
3140 * Meaning of idx:
3141 * idx == -1 means SSL_check_chain() invocation
3142 * idx == -2 means checking client certificate chains
3143 * idx >= 0 means checking SSL_PKEY index
3144 *
3145 * For RPK, where there may be no cert, we ignore -1
3146 */
3147 if (idx != -1) {
3148 if (idx == -2) {
3149 cpk = c->key;
3150 idx = (int)(cpk - c->pkeys);
3151 } else
3152 cpk = c->pkeys + idx;
3153 pvalid = s->s3.tmp.valid_flags + idx;
3154 x = cpk->x509;
3155 pk = cpk->privatekey;
3156 chain = cpk->chain;
3157 strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT;
3158 if (tls12_rpk_and_privkey(s, idx)) {
3159 if (EVP_PKEY_is_a(pk, "EC") && !tls1_check_pkey_comp(s, pk))
3160 return 0;
3161 *pvalid = rv = CERT_PKEY_RPK;
3162 return rv;
3163 }
3164 /* If no cert or key, forget it */
3165 if (x == NULL || pk == NULL)
3166 goto end;
3167 } else {
3168 size_t certidx;
3169
3170 if (x == NULL || pk == NULL)
3171 return 0;
3172
3173 if (ssl_cert_lookup_by_pkey(pk, &certidx,
3174 SSL_CONNECTION_GET_CTX(s)) == NULL)
3175 return 0;
3176 idx = certidx;
3177 pvalid = s->s3.tmp.valid_flags + idx;
3178
3179 if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)
3180 check_flags = CERT_PKEY_STRICT_FLAGS;
3181 else
3182 check_flags = CERT_PKEY_VALID_FLAGS;
3183 strict_mode = 1;
3184 }
3185
3186 if (suiteb_flags) {
3187 int ok;
3188 if (check_flags)
3189 check_flags |= CERT_PKEY_SUITEB;
3190 ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags);
3191 if (ok == X509_V_OK)
3192 rv |= CERT_PKEY_SUITEB;
3193 else if (!check_flags)
3194 goto end;
3195 }
3196
3197 /*
3198 * Check all signature algorithms are consistent with signature
3199 * algorithms extension if TLS 1.2 or later and strict mode.
3200 */
3201 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION
3202 && strict_mode) {
3203 int default_nid;
3204 int rsign = 0;
3205
3206 if (s->s3.tmp.peer_cert_sigalgs != NULL
3207 || s->s3.tmp.peer_sigalgs != NULL) {
3208 default_nid = 0;
3209 /* If no sigalgs extension use defaults from RFC5246 */
3210 } else {
3211 switch (idx) {
3212 case SSL_PKEY_RSA:
3213 rsign = EVP_PKEY_RSA;
3214 default_nid = NID_sha1WithRSAEncryption;
3215 break;
3216
3217 case SSL_PKEY_DSA_SIGN:
3218 rsign = EVP_PKEY_DSA;
3219 default_nid = NID_dsaWithSHA1;
3220 break;
3221
3222 case SSL_PKEY_ECC:
3223 rsign = EVP_PKEY_EC;
3224 default_nid = NID_ecdsa_with_SHA1;
3225 break;
3226
3227 case SSL_PKEY_GOST01:
3228 rsign = NID_id_GostR3410_2001;
3229 default_nid = NID_id_GostR3411_94_with_GostR3410_2001;
3230 break;
3231
3232 case SSL_PKEY_GOST12_256:
3233 rsign = NID_id_GostR3410_2012_256;
3234 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256;
3235 break;
3236
3237 case SSL_PKEY_GOST12_512:
3238 rsign = NID_id_GostR3410_2012_512;
3239 default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512;
3240 break;
3241
3242 default:
3243 default_nid = -1;
3244 break;
3245 }
3246 }
3247 /*
3248 * If peer sent no signature algorithms extension and we have set
3249 * preferred signature algorithms check we support sha1.
3250 */
3251 if (default_nid > 0 && c->conf_sigalgs) {
3252 size_t j;
3253 const uint16_t *p = c->conf_sigalgs;
3254 for (j = 0; j < c->conf_sigalgslen; j++, p++) {
3255 const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(s, *p);
3256
3257 if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign)
3258 break;
3259 }
3260 if (j == c->conf_sigalgslen) {
3261 if (check_flags)
3262 goto skip_sigs;
3263 else
3264 goto end;
3265 }
3266 }
3267 /* Check signature algorithm of each cert in chain */
3268 if (SSL_CONNECTION_IS_TLS13(s)) {
3269 /*
3270 * We only get here if the application has called SSL_check_chain(),
3271 * so check_flags is always set.
3272 */
3273 if (find_sig_alg(s, x, pk) != NULL)
3274 rv |= CERT_PKEY_EE_SIGNATURE;
3275 } else if (!tls1_check_sig_alg(s, x, default_nid)) {
3276 if (!check_flags)
3277 goto end;
3278 } else
3279 rv |= CERT_PKEY_EE_SIGNATURE;
3280 rv |= CERT_PKEY_CA_SIGNATURE;
3281 for (i = 0; i < sk_X509_num(chain); i++) {
3282 if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) {
3283 if (check_flags) {
3284 rv &= ~CERT_PKEY_CA_SIGNATURE;
3285 break;
3286 } else
3287 goto end;
3288 }
3289 }
3290 }
3291 /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */
3292 else if (check_flags)
3293 rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE;
3294 skip_sigs:
3295 /* Check cert parameters are consistent */
3296 if (tls1_check_cert_param(s, x, 1))
3297 rv |= CERT_PKEY_EE_PARAM;
3298 else if (!check_flags)
3299 goto end;
3300 if (!s->server)
3301 rv |= CERT_PKEY_CA_PARAM;
3302 /* In strict mode check rest of chain too */
3303 else if (strict_mode) {
3304 rv |= CERT_PKEY_CA_PARAM;
3305 for (i = 0; i < sk_X509_num(chain); i++) {
3306 X509 *ca = sk_X509_value(chain, i);
3307 if (!tls1_check_cert_param(s, ca, 0)) {
3308 if (check_flags) {
3309 rv &= ~CERT_PKEY_CA_PARAM;
3310 break;
3311 } else
3312 goto end;
3313 }
3314 }
3315 }
3316 if (!s->server && strict_mode) {
3317 STACK_OF(X509_NAME) *ca_dn;
3318 int check_type = 0;
3319
3320 if (EVP_PKEY_is_a(pk, "RSA"))
3321 check_type = TLS_CT_RSA_SIGN;
3322 else if (EVP_PKEY_is_a(pk, "DSA"))
3323 check_type = TLS_CT_DSS_SIGN;
3324 else if (EVP_PKEY_is_a(pk, "EC"))
3325 check_type = TLS_CT_ECDSA_SIGN;
3326
3327 if (check_type) {
3328 const uint8_t *ctypes = s->s3.tmp.ctype;
3329 size_t j;
3330
3331 for (j = 0; j < s->s3.tmp.ctype_len; j++, ctypes++) {
3332 if (*ctypes == check_type) {
3333 rv |= CERT_PKEY_CERT_TYPE;
3334 break;
3335 }
3336 }
3337 if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags)
3338 goto end;
3339 } else {
3340 rv |= CERT_PKEY_CERT_TYPE;
3341 }
3342
3343 ca_dn = s->s3.tmp.peer_ca_names;
3344
3345 if (ca_dn == NULL
3346 || sk_X509_NAME_num(ca_dn) == 0
3347 || ssl_check_ca_name(ca_dn, x))
3348 rv |= CERT_PKEY_ISSUER_NAME;
3349 else
3350 for (i = 0; i < sk_X509_num(chain); i++) {
3351 X509 *xtmp = sk_X509_value(chain, i);
3352
3353 if (ssl_check_ca_name(ca_dn, xtmp)) {
3354 rv |= CERT_PKEY_ISSUER_NAME;
3355 break;
3356 }
3357 }
3358
3359 if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME))
3360 goto end;
3361 } else
3362 rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE;
3363
3364 if (!check_flags || (rv & check_flags) == check_flags)
3365 rv |= CERT_PKEY_VALID;
3366
3367 end:
3368
3369 if (TLS1_get_version(SSL_CONNECTION_GET_SSL(s)) >= TLS1_2_VERSION)
3370 rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN);
3371 else
3372 rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN;
3373
3374 /*
3375 * When checking a CERT_PKEY structure all flags are irrelevant if the
3376 * chain is invalid.
3377 */
3378 if (!check_flags) {
3379 if (rv & CERT_PKEY_VALID) {
3380 *pvalid = rv;
3381 } else {
3382 /* Preserve sign and explicit sign flag, clear rest */
3383 *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN;
3384 return 0;
3385 }
3386 }
3387 return rv;
3388}
3389
3390/* Set validity of certificates in an SSL structure */
3391void tls1_set_cert_validity(SSL_CONNECTION *s)
3392{
3393 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA);
3394 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN);
3395 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN);
3396 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC);
3397 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01);
3398 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256);
3399 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512);
3400 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519);
3401 tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448);
3402}
3403
3404/* User level utility function to check a chain is suitable */
3405int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain)
3406{
3407 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s);
3408
3409 if (sc == NULL)
3410 return 0;
3411
3412 return tls1_check_chain(sc, x, pk, chain, -1);
3413}
3414
3415EVP_PKEY *ssl_get_auto_dh(SSL_CONNECTION *s)
3416{
3417 EVP_PKEY *dhp = NULL;
3418 BIGNUM *p;
3419 int dh_secbits = 80, sec_level_bits;
3420 EVP_PKEY_CTX *pctx = NULL;
3421 OSSL_PARAM_BLD *tmpl = NULL;
3422 OSSL_PARAM *params = NULL;
3423 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3424
3425 if (s->cert->dh_tmp_auto != 2) {
3426 if (s->s3.tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) {
3427 if (s->s3.tmp.new_cipher->strength_bits == 256)
3428 dh_secbits = 128;
3429 else
3430 dh_secbits = 80;
3431 } else {
3432 if (s->s3.tmp.cert == NULL)
3433 return NULL;
3434 dh_secbits = EVP_PKEY_get_security_bits(s->s3.tmp.cert->privatekey);
3435 }
3436 }
3437
3438 /* Do not pick a prime that is too weak for the current security level */
3439 sec_level_bits = ssl_get_security_level_bits(SSL_CONNECTION_GET_SSL(s),
3440 NULL, NULL);
3441 if (dh_secbits < sec_level_bits)
3442 dh_secbits = sec_level_bits;
3443
3444 if (dh_secbits >= 192)
3445 p = BN_get_rfc3526_prime_8192(NULL);
3446 else if (dh_secbits >= 152)
3447 p = BN_get_rfc3526_prime_4096(NULL);
3448 else if (dh_secbits >= 128)
3449 p = BN_get_rfc3526_prime_3072(NULL);
3450 else if (dh_secbits >= 112)
3451 p = BN_get_rfc3526_prime_2048(NULL);
3452 else
3453 p = BN_get_rfc2409_prime_1024(NULL);
3454 if (p == NULL)
3455 goto err;
3456
3457 pctx = EVP_PKEY_CTX_new_from_name(sctx->libctx, "DH", sctx->propq);
3458 if (pctx == NULL
3459 || EVP_PKEY_fromdata_init(pctx) != 1)
3460 goto err;
3461
3462 tmpl = OSSL_PARAM_BLD_new();
3463 if (tmpl == NULL
3464 || !OSSL_PARAM_BLD_push_BN(tmpl, OSSL_PKEY_PARAM_FFC_P, p)
3465 || !OSSL_PARAM_BLD_push_uint(tmpl, OSSL_PKEY_PARAM_FFC_G, 2))
3466 goto err;
3467
3468 params = OSSL_PARAM_BLD_to_param(tmpl);
3469 if (params == NULL
3470 || EVP_PKEY_fromdata(pctx, &dhp, EVP_PKEY_KEY_PARAMETERS, params) != 1)
3471 goto err;
3472
3473err:
3474 OSSL_PARAM_free(params);
3475 OSSL_PARAM_BLD_free(tmpl);
3476 EVP_PKEY_CTX_free(pctx);
3477 BN_free(p);
3478 return dhp;
3479}
3480
3481static int ssl_security_cert_key(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3482 int op)
3483{
3484 int secbits = -1;
3485 EVP_PKEY *pkey = X509_get0_pubkey(x);
3486
3487 if (pkey) {
3488 /*
3489 * If no parameters this will return -1 and fail using the default
3490 * security callback for any non-zero security level. This will
3491 * reject keys which omit parameters but this only affects DSA and
3492 * omission of parameters is never (?) done in practice.
3493 */
3494 secbits = EVP_PKEY_get_security_bits(pkey);
3495 }
3496 if (s != NULL)
3497 return ssl_security(s, op, secbits, 0, x);
3498 else
3499 return ssl_ctx_security(ctx, op, secbits, 0, x);
3500}
3501
3502static int ssl_security_cert_sig(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x,
3503 int op)
3504{
3505 /* Lookup signature algorithm digest */
3506 int secbits, nid, pknid;
3507
3508 /* Don't check signature if self signed */
3509 if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0)
3510 return 1;
3511 if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL))
3512 secbits = -1;
3513 /* If digest NID not defined use signature NID */
3514 if (nid == NID_undef)
3515 nid = pknid;
3516 if (s != NULL)
3517 return ssl_security(s, op, secbits, nid, x);
3518 else
3519 return ssl_ctx_security(ctx, op, secbits, nid, x);
3520}
3521
3522int ssl_security_cert(SSL_CONNECTION *s, SSL_CTX *ctx, X509 *x, int vfy,
3523 int is_ee)
3524{
3525 if (vfy)
3526 vfy = SSL_SECOP_PEER;
3527 if (is_ee) {
3528 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy))
3529 return SSL_R_EE_KEY_TOO_SMALL;
3530 } else {
3531 if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy))
3532 return SSL_R_CA_KEY_TOO_SMALL;
3533 }
3534 if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy))
3535 return SSL_R_CA_MD_TOO_WEAK;
3536 return 1;
3537}
3538
3539/*
3540 * Check security of a chain, if |sk| includes the end entity certificate then
3541 * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending
3542 * one to the peer. Return values: 1 if ok otherwise error code to use
3543 */
3544
3545int ssl_security_cert_chain(SSL_CONNECTION *s, STACK_OF(X509) *sk,
3546 X509 *x, int vfy)
3547{
3548 int rv, start_idx, i;
3549
3550 if (x == NULL) {
3551 x = sk_X509_value(sk, 0);
3552 if (x == NULL)
3553 return ERR_R_INTERNAL_ERROR;
3554 start_idx = 1;
3555 } else
3556 start_idx = 0;
3557
3558 rv = ssl_security_cert(s, NULL, x, vfy, 1);
3559 if (rv != 1)
3560 return rv;
3561
3562 for (i = start_idx; i < sk_X509_num(sk); i++) {
3563 x = sk_X509_value(sk, i);
3564 rv = ssl_security_cert(s, NULL, x, vfy, 0);
3565 if (rv != 1)
3566 return rv;
3567 }
3568 return 1;
3569}
3570
3571/*
3572 * For TLS 1.2 servers check if we have a certificate which can be used
3573 * with the signature algorithm "lu" and return index of certificate.
3574 */
3575
3576static int tls12_get_cert_sigalg_idx(const SSL_CONNECTION *s,
3577 const SIGALG_LOOKUP *lu)
3578{
3579 int sig_idx = lu->sig_idx;
3580 const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx,
3581 SSL_CONNECTION_GET_CTX(s));
3582
3583 /* If not recognised or not supported by cipher mask it is not suitable */
3584 if (clu == NULL
3585 || (clu->amask & s->s3.tmp.new_cipher->algorithm_auth) == 0
3586 || (clu->nid == EVP_PKEY_RSA_PSS
3587 && (s->s3.tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0))
3588 return -1;
3589
3590 /* If doing RPK, the CERT_PKEY won't be "valid" */
3591 if (tls12_rpk_and_privkey(s, sig_idx))
3592 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_RPK ? sig_idx : -1;
3593
3594 return s->s3.tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1;
3595}
3596
3597/*
3598 * Checks the given cert against signature_algorithm_cert restrictions sent by
3599 * the peer (if any) as well as whether the hash from the sigalg is usable with
3600 * the key.
3601 * Returns true if the cert is usable and false otherwise.
3602 */
3603static int check_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig,
3604 X509 *x, EVP_PKEY *pkey)
3605{
3606 const SIGALG_LOOKUP *lu;
3607 int mdnid, pknid, supported;
3608 size_t i;
3609 const char *mdname = NULL;
3610 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3611
3612 /*
3613 * If the given EVP_PKEY cannot support signing with this digest,
3614 * the answer is simply 'no'.
3615 */
3616 if (sig->hash != NID_undef)
3617 mdname = OBJ_nid2sn(sig->hash);
3618 supported = EVP_PKEY_digestsign_supports_digest(pkey, sctx->libctx,
3619 mdname,
3620 sctx->propq);
3621 if (supported <= 0)
3622 return 0;
3623
3624 /*
3625 * The TLS 1.3 signature_algorithms_cert extension places restrictions
3626 * on the sigalg with which the certificate was signed (by its issuer).
3627 */
3628 if (s->s3.tmp.peer_cert_sigalgs != NULL) {
3629 if (!X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL))
3630 return 0;
3631 for (i = 0; i < s->s3.tmp.peer_cert_sigalgslen; i++) {
3632 lu = tls1_lookup_sigalg(s, s->s3.tmp.peer_cert_sigalgs[i]);
3633 if (lu == NULL)
3634 continue;
3635
3636 /*
3637 * This does not differentiate between the
3638 * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not
3639 * have a chain here that lets us look at the key OID in the
3640 * signing certificate.
3641 */
3642 if (mdnid == lu->hash && pknid == lu->sig)
3643 return 1;
3644 }
3645 return 0;
3646 }
3647
3648 /*
3649 * Without signat_algorithms_cert, any certificate for which we have
3650 * a viable public key is permitted.
3651 */
3652 return 1;
3653}
3654
3655/*
3656 * Returns true if |s| has a usable certificate configured for use
3657 * with signature scheme |sig|.
3658 * "Usable" includes a check for presence as well as applying
3659 * the signature_algorithm_cert restrictions sent by the peer (if any).
3660 * Returns false if no usable certificate is found.
3661 */
3662static int has_usable_cert(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, int idx)
3663{
3664 /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */
3665 if (idx == -1)
3666 idx = sig->sig_idx;
3667 if (!ssl_has_cert(s, idx))
3668 return 0;
3669
3670 return check_cert_usable(s, sig, s->cert->pkeys[idx].x509,
3671 s->cert->pkeys[idx].privatekey);
3672}
3673
3674/*
3675 * Returns true if the supplied cert |x| and key |pkey| is usable with the
3676 * specified signature scheme |sig|, or false otherwise.
3677 */
3678static int is_cert_usable(SSL_CONNECTION *s, const SIGALG_LOOKUP *sig, X509 *x,
3679 EVP_PKEY *pkey)
3680{
3681 size_t idx;
3682
3683 if (ssl_cert_lookup_by_pkey(pkey, &idx, SSL_CONNECTION_GET_CTX(s)) == NULL)
3684 return 0;
3685
3686 /* Check the key is consistent with the sig alg */
3687 if ((int)idx != sig->sig_idx)
3688 return 0;
3689
3690 return check_cert_usable(s, sig, x, pkey);
3691}
3692
3693/*
3694 * Find a signature scheme that works with the supplied certificate |x| and key
3695 * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our
3696 * available certs/keys to find one that works.
3697 */
3698static const SIGALG_LOOKUP *find_sig_alg(SSL_CONNECTION *s, X509 *x,
3699 EVP_PKEY *pkey)
3700{
3701 const SIGALG_LOOKUP *lu = NULL;
3702 size_t i;
3703 int curve = -1;
3704 EVP_PKEY *tmppkey;
3705 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3706
3707 /* Look for a shared sigalgs matching possible certificates */
3708 for (i = 0; i < s->shared_sigalgslen; i++) {
3709 lu = s->shared_sigalgs[i];
3710
3711 /* Skip SHA1, SHA224, DSA and RSA if not PSS */
3712 if (lu->hash == NID_sha1
3713 || lu->hash == NID_sha224
3714 || lu->sig == EVP_PKEY_DSA
3715 || lu->sig == EVP_PKEY_RSA)
3716 continue;
3717 /* Check that we have a cert, and signature_algorithms_cert */
3718 if (!tls1_lookup_md(sctx, lu, NULL))
3719 continue;
3720 if ((pkey == NULL && !has_usable_cert(s, lu, -1))
3721 || (pkey != NULL && !is_cert_usable(s, lu, x, pkey)))
3722 continue;
3723
3724 tmppkey = (pkey != NULL) ? pkey
3725 : s->cert->pkeys[lu->sig_idx].privatekey;
3726
3727 if (lu->sig == EVP_PKEY_EC) {
3728 if (curve == -1)
3729 curve = ssl_get_EC_curve_nid(tmppkey);
3730 if (lu->curve != NID_undef && curve != lu->curve)
3731 continue;
3732 } else if (lu->sig == EVP_PKEY_RSA_PSS) {
3733 /* validate that key is large enough for the signature algorithm */
3734 if (!rsa_pss_check_min_key_size(sctx, tmppkey, lu))
3735 continue;
3736 }
3737 break;
3738 }
3739
3740 if (i == s->shared_sigalgslen)
3741 return NULL;
3742
3743 return lu;
3744}
3745
3746/*
3747 * Choose an appropriate signature algorithm based on available certificates
3748 * Sets chosen certificate and signature algorithm.
3749 *
3750 * For servers if we fail to find a required certificate it is a fatal error,
3751 * an appropriate error code is set and a TLS alert is sent.
3752 *
3753 * For clients fatalerrs is set to 0. If a certificate is not suitable it is not
3754 * a fatal error: we will either try another certificate or not present one
3755 * to the server. In this case no error is set.
3756 */
3757int tls_choose_sigalg(SSL_CONNECTION *s, int fatalerrs)
3758{
3759 const SIGALG_LOOKUP *lu = NULL;
3760 int sig_idx = -1;
3761
3762 s->s3.tmp.cert = NULL;
3763 s->s3.tmp.sigalg = NULL;
3764
3765 if (SSL_CONNECTION_IS_TLS13(s)) {
3766 lu = find_sig_alg(s, NULL, NULL);
3767 if (lu == NULL) {
3768 if (!fatalerrs)
3769 return 1;
3770 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3771 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3772 return 0;
3773 }
3774 } else {
3775 /* If ciphersuite doesn't require a cert nothing to do */
3776 if (!(s->s3.tmp.new_cipher->algorithm_auth & SSL_aCERT))
3777 return 1;
3778 if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys))
3779 return 1;
3780
3781 if (SSL_USE_SIGALGS(s)) {
3782 size_t i;
3783 if (s->s3.tmp.peer_sigalgs != NULL) {
3784 int curve = -1;
3785 SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(s);
3786
3787 /* For Suite B need to match signature algorithm to curve */
3788 if (tls1_suiteb(s))
3789 curve = ssl_get_EC_curve_nid(s->cert->pkeys[SSL_PKEY_ECC]
3790 .privatekey);
3791
3792 /*
3793 * Find highest preference signature algorithm matching
3794 * cert type
3795 */
3796 for (i = 0; i < s->shared_sigalgslen; i++) {
3797 lu = s->shared_sigalgs[i];
3798
3799 if (s->server) {
3800 if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1)
3801 continue;
3802 } else {
3803 int cc_idx = s->cert->key - s->cert->pkeys;
3804
3805 sig_idx = lu->sig_idx;
3806 if (cc_idx != sig_idx)
3807 continue;
3808 }
3809 /* Check that we have a cert, and sig_algs_cert */
3810 if (!has_usable_cert(s, lu, sig_idx))
3811 continue;
3812 if (lu->sig == EVP_PKEY_RSA_PSS) {
3813 /* validate that key is large enough for the signature algorithm */
3814 EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey;
3815
3816 if (!rsa_pss_check_min_key_size(sctx, pkey, lu))
3817 continue;
3818 }
3819 if (curve == -1 || lu->curve == curve)
3820 break;
3821 }
3822#ifndef OPENSSL_NO_GOST
3823 /*
3824 * Some Windows-based implementations do not send GOST algorithms indication
3825 * in supported_algorithms extension, so when we have GOST-based ciphersuite,
3826 * we have to assume GOST support.
3827 */
3828 if (i == s->shared_sigalgslen
3829 && (s->s3.tmp.new_cipher->algorithm_auth
3830 & (SSL_aGOST01 | SSL_aGOST12)) != 0) {
3831 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3832 if (!fatalerrs)
3833 return 1;
3834 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3835 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3836 return 0;
3837 } else {
3838 i = 0;
3839 sig_idx = lu->sig_idx;
3840 }
3841 }
3842#endif
3843 if (i == s->shared_sigalgslen) {
3844 if (!fatalerrs)
3845 return 1;
3846 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3847 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3848 return 0;
3849 }
3850 } else {
3851 /*
3852 * If we have no sigalg use defaults
3853 */
3854 const uint16_t *sent_sigs;
3855 size_t sent_sigslen;
3856
3857 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3858 if (!fatalerrs)
3859 return 1;
3860 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3861 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3862 return 0;
3863 }
3864
3865 /* Check signature matches a type we sent */
3866 sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs);
3867 for (i = 0; i < sent_sigslen; i++, sent_sigs++) {
3868 if (lu->sigalg == *sent_sigs
3869 && has_usable_cert(s, lu, lu->sig_idx))
3870 break;
3871 }
3872 if (i == sent_sigslen) {
3873 if (!fatalerrs)
3874 return 1;
3875 SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE,
3876 SSL_R_WRONG_SIGNATURE_TYPE);
3877 return 0;
3878 }
3879 }
3880 } else {
3881 if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) {
3882 if (!fatalerrs)
3883 return 1;
3884 SSLfatal(s, SSL_AD_INTERNAL_ERROR,
3885 SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM);
3886 return 0;
3887 }
3888 }
3889 }
3890 if (sig_idx == -1)
3891 sig_idx = lu->sig_idx;
3892 s->s3.tmp.cert = &s->cert->pkeys[sig_idx];
3893 s->cert->key = s->s3.tmp.cert;
3894 s->s3.tmp.sigalg = lu;
3895 return 1;
3896}
3897
3898int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode)
3899{
3900 if (mode != TLSEXT_max_fragment_length_DISABLED
3901 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3902 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3903 return 0;
3904 }
3905
3906 ctx->ext.max_fragment_len_mode = mode;
3907 return 1;
3908}
3909
3910int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode)
3911{
3912 SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl);
3913
3914 if (sc == NULL
3915 || (IS_QUIC(ssl) && mode != TLSEXT_max_fragment_length_DISABLED))
3916 return 0;
3917
3918 if (mode != TLSEXT_max_fragment_length_DISABLED
3919 && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) {
3920 ERR_raise(ERR_LIB_SSL, SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH);
3921 return 0;
3922 }
3923
3924 sc->ext.max_fragment_len_mode = mode;
3925 return 1;
3926}
3927
3928uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session)
3929{
3930 if (session->ext.max_fragment_len_mode == TLSEXT_max_fragment_length_UNSPECIFIED)
3931 return TLSEXT_max_fragment_length_DISABLED;
3932 return session->ext.max_fragment_len_mode;
3933}
3934
3935/*
3936 * Helper functions for HMAC access with legacy support included.
3937 */
3938SSL_HMAC *ssl_hmac_new(const SSL_CTX *ctx)
3939{
3940 SSL_HMAC *ret = OPENSSL_zalloc(sizeof(*ret));
3941 EVP_MAC *mac = NULL;
3942
3943 if (ret == NULL)
3944 return NULL;
3945#ifndef OPENSSL_NO_DEPRECATED_3_0
3946 if (ctx->ext.ticket_key_evp_cb == NULL
3947 && ctx->ext.ticket_key_cb != NULL) {
3948 if (!ssl_hmac_old_new(ret))
3949 goto err;
3950 return ret;
3951 }
3952#endif
3953 mac = EVP_MAC_fetch(ctx->libctx, "HMAC", ctx->propq);
3954 if (mac == NULL || (ret->ctx = EVP_MAC_CTX_new(mac)) == NULL)
3955 goto err;
3956 EVP_MAC_free(mac);
3957 return ret;
3958 err:
3959 EVP_MAC_CTX_free(ret->ctx);
3960 EVP_MAC_free(mac);
3961 OPENSSL_free(ret);
3962 return NULL;
3963}
3964
3965void ssl_hmac_free(SSL_HMAC *ctx)
3966{
3967 if (ctx != NULL) {
3968 EVP_MAC_CTX_free(ctx->ctx);
3969#ifndef OPENSSL_NO_DEPRECATED_3_0
3970 ssl_hmac_old_free(ctx);
3971#endif
3972 OPENSSL_free(ctx);
3973 }
3974}
3975
3976EVP_MAC_CTX *ssl_hmac_get0_EVP_MAC_CTX(SSL_HMAC *ctx)
3977{
3978 return ctx->ctx;
3979}
3980
3981int ssl_hmac_init(SSL_HMAC *ctx, void *key, size_t len, char *md)
3982{
3983 OSSL_PARAM params[2], *p = params;
3984
3985 if (ctx->ctx != NULL) {
3986 *p++ = OSSL_PARAM_construct_utf8_string(OSSL_MAC_PARAM_DIGEST, md, 0);
3987 *p = OSSL_PARAM_construct_end();
3988 if (EVP_MAC_init(ctx->ctx, key, len, params))
3989 return 1;
3990 }
3991#ifndef OPENSSL_NO_DEPRECATED_3_0
3992 if (ctx->old_ctx != NULL)
3993 return ssl_hmac_old_init(ctx, key, len, md);
3994#endif
3995 return 0;
3996}
3997
3998int ssl_hmac_update(SSL_HMAC *ctx, const unsigned char *data, size_t len)
3999{
4000 if (ctx->ctx != NULL)
4001 return EVP_MAC_update(ctx->ctx, data, len);
4002#ifndef OPENSSL_NO_DEPRECATED_3_0
4003 if (ctx->old_ctx != NULL)
4004 return ssl_hmac_old_update(ctx, data, len);
4005#endif
4006 return 0;
4007}
4008
4009int ssl_hmac_final(SSL_HMAC *ctx, unsigned char *md, size_t *len,
4010 size_t max_size)
4011{
4012 if (ctx->ctx != NULL)
4013 return EVP_MAC_final(ctx->ctx, md, len, max_size);
4014#ifndef OPENSSL_NO_DEPRECATED_3_0
4015 if (ctx->old_ctx != NULL)
4016 return ssl_hmac_old_final(ctx, md, len);
4017#endif
4018 return 0;
4019}
4020
4021size_t ssl_hmac_size(const SSL_HMAC *ctx)
4022{
4023 if (ctx->ctx != NULL)
4024 return EVP_MAC_CTX_get_mac_size(ctx->ctx);
4025#ifndef OPENSSL_NO_DEPRECATED_3_0
4026 if (ctx->old_ctx != NULL)
4027 return ssl_hmac_old_size(ctx);
4028#endif
4029 return 0;
4030}
4031
4032int ssl_get_EC_curve_nid(const EVP_PKEY *pkey)
4033{
4034 char gname[OSSL_MAX_NAME_SIZE];
4035
4036 if (EVP_PKEY_get_group_name(pkey, gname, sizeof(gname), NULL) > 0)
4037 return OBJ_txt2nid(gname);
4038
4039 return NID_undef;
4040}
4041
4042__owur int tls13_set_encoded_pub_key(EVP_PKEY *pkey,
4043 const unsigned char *enckey,
4044 size_t enckeylen)
4045{
4046 if (EVP_PKEY_is_a(pkey, "DH")) {
4047 int bits = EVP_PKEY_get_bits(pkey);
4048
4049 if (bits <= 0 || enckeylen != (size_t)bits / 8)
4050 /* the encoded key must be padded to the length of the p */
4051 return 0;
4052 } else if (EVP_PKEY_is_a(pkey, "EC")) {
4053 if (enckeylen < 3 /* point format and at least 1 byte for x and y */
4054 || enckey[0] != 0x04)
4055 return 0;
4056 }
4057
4058 return EVP_PKEY_set1_encoded_public_key(pkey, enckey, enckeylen);
4059}
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette