1 | /*
|
---|
2 | * Copyright 2022-2023 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include <stdio.h>
|
---|
11 | #include <string.h>
|
---|
12 | #include <openssl/core_names.h>
|
---|
13 | #include <openssl/evp.h>
|
---|
14 |
|
---|
15 | /*
|
---|
16 | * This is a demonstration of key exchange using X25519.
|
---|
17 | *
|
---|
18 | * The variables beginning `peer1_` / `peer2_` are data which would normally be
|
---|
19 | * accessible to that peer.
|
---|
20 | *
|
---|
21 | * Ordinarily you would use random keys, which are demonstrated
|
---|
22 | * below when use_kat=0. A known answer test is demonstrated
|
---|
23 | * when use_kat=1.
|
---|
24 | */
|
---|
25 |
|
---|
26 | /* A property query used for selecting the X25519 implementation. */
|
---|
27 | static const char *propq = NULL;
|
---|
28 |
|
---|
29 | static const unsigned char peer1_privk_data[32] = {
|
---|
30 | 0x80, 0x5b, 0x30, 0x20, 0x25, 0x4a, 0x70, 0x2c,
|
---|
31 | 0xad, 0xa9, 0x8d, 0x7d, 0x47, 0xf8, 0x1b, 0x20,
|
---|
32 | 0x89, 0xd2, 0xf9, 0x14, 0xac, 0x92, 0x27, 0xf2,
|
---|
33 | 0x10, 0x7e, 0xdb, 0x21, 0xbd, 0x73, 0x73, 0x5d
|
---|
34 | };
|
---|
35 |
|
---|
36 | static const unsigned char peer2_privk_data[32] = {
|
---|
37 | 0xf8, 0x84, 0x19, 0x69, 0x79, 0x13, 0x0d, 0xbd,
|
---|
38 | 0xb1, 0x76, 0xd7, 0x0e, 0x7e, 0x0f, 0xb6, 0xf4,
|
---|
39 | 0x8c, 0x4a, 0x8c, 0x5f, 0xd8, 0x15, 0x09, 0x0a,
|
---|
40 | 0x71, 0x78, 0x74, 0x92, 0x0f, 0x85, 0xc8, 0x43
|
---|
41 | };
|
---|
42 |
|
---|
43 | static const unsigned char expected_result[32] = {
|
---|
44 | 0x19, 0x71, 0x26, 0x12, 0x74, 0xb5, 0xb1, 0xce,
|
---|
45 | 0x77, 0xd0, 0x79, 0x24, 0xb6, 0x0a, 0x5c, 0x72,
|
---|
46 | 0x0c, 0xa6, 0x56, 0xc0, 0x11, 0xeb, 0x43, 0x11,
|
---|
47 | 0x94, 0x3b, 0x01, 0x45, 0xca, 0x19, 0xfe, 0x09
|
---|
48 | };
|
---|
49 |
|
---|
50 | typedef struct peer_data_st {
|
---|
51 | const char *name; /* name of peer */
|
---|
52 | EVP_PKEY *privk; /* privk generated for peer */
|
---|
53 | unsigned char pubk_data[32]; /* generated pubk to send to other peer */
|
---|
54 |
|
---|
55 | unsigned char *secret; /* allocated shared secret buffer */
|
---|
56 | size_t secret_len;
|
---|
57 | } PEER_DATA;
|
---|
58 |
|
---|
59 | /*
|
---|
60 | * Prepare for X25519 key exchange. The public key to be sent to the remote peer
|
---|
61 | * is put in pubk_data, which should be a 32-byte buffer. Returns 1 on success.
|
---|
62 | */
|
---|
63 | static int keyexch_x25519_before(
|
---|
64 | OSSL_LIB_CTX *libctx,
|
---|
65 | const unsigned char *kat_privk_data,
|
---|
66 | PEER_DATA *local_peer)
|
---|
67 | {
|
---|
68 | int ret = 0;
|
---|
69 | size_t pubk_data_len = 0;
|
---|
70 |
|
---|
71 | /* Generate or load X25519 key for the peer */
|
---|
72 | if (kat_privk_data != NULL)
|
---|
73 | local_peer->privk =
|
---|
74 | EVP_PKEY_new_raw_private_key_ex(libctx, "X25519", propq,
|
---|
75 | kat_privk_data,
|
---|
76 | sizeof(peer1_privk_data));
|
---|
77 | else
|
---|
78 | local_peer->privk = EVP_PKEY_Q_keygen(libctx, propq, "X25519");
|
---|
79 |
|
---|
80 | if (local_peer->privk == NULL) {
|
---|
81 | fprintf(stderr, "Could not load or generate private key\n");
|
---|
82 | goto end;
|
---|
83 | }
|
---|
84 |
|
---|
85 | /* Get public key corresponding to the private key */
|
---|
86 | if (EVP_PKEY_get_octet_string_param(local_peer->privk,
|
---|
87 | OSSL_PKEY_PARAM_PUB_KEY,
|
---|
88 | local_peer->pubk_data,
|
---|
89 | sizeof(local_peer->pubk_data),
|
---|
90 | &pubk_data_len) == 0) {
|
---|
91 | fprintf(stderr, "EVP_PKEY_get_octet_string_param() failed\n");
|
---|
92 | goto end;
|
---|
93 | }
|
---|
94 |
|
---|
95 | /* X25519 public keys are always 32 bytes */
|
---|
96 | if (pubk_data_len != 32) {
|
---|
97 | fprintf(stderr, "EVP_PKEY_get_octet_string_param() "
|
---|
98 | "yielded wrong length\n");
|
---|
99 | goto end;
|
---|
100 | }
|
---|
101 |
|
---|
102 | ret = 1;
|
---|
103 | end:
|
---|
104 | if (ret == 0) {
|
---|
105 | EVP_PKEY_free(local_peer->privk);
|
---|
106 | local_peer->privk = NULL;
|
---|
107 | }
|
---|
108 |
|
---|
109 | return ret;
|
---|
110 | }
|
---|
111 |
|
---|
112 | /*
|
---|
113 | * Complete X25519 key exchange. remote_peer_pubk_data should be the 32 byte
|
---|
114 | * public key value received from the remote peer. On success, returns 1 and the
|
---|
115 | * secret is pointed to by *secret. The caller must free it.
|
---|
116 | */
|
---|
117 | static int keyexch_x25519_after(
|
---|
118 | OSSL_LIB_CTX *libctx,
|
---|
119 | int use_kat,
|
---|
120 | PEER_DATA *local_peer,
|
---|
121 | const unsigned char *remote_peer_pubk_data)
|
---|
122 | {
|
---|
123 | int ret = 0;
|
---|
124 | EVP_PKEY *remote_peer_pubk = NULL;
|
---|
125 | EVP_PKEY_CTX *ctx = NULL;
|
---|
126 |
|
---|
127 | local_peer->secret = NULL;
|
---|
128 |
|
---|
129 | /* Load public key for remote peer. */
|
---|
130 | remote_peer_pubk =
|
---|
131 | EVP_PKEY_new_raw_public_key_ex(libctx, "X25519", propq,
|
---|
132 | remote_peer_pubk_data, 32);
|
---|
133 | if (remote_peer_pubk == NULL) {
|
---|
134 | fprintf(stderr, "EVP_PKEY_new_raw_public_key_ex() failed\n");
|
---|
135 | goto end;
|
---|
136 | }
|
---|
137 |
|
---|
138 | /* Create key exchange context. */
|
---|
139 | ctx = EVP_PKEY_CTX_new_from_pkey(libctx, local_peer->privk, propq);
|
---|
140 | if (ctx == NULL) {
|
---|
141 | fprintf(stderr, "EVP_PKEY_CTX_new_from_pkey() failed\n");
|
---|
142 | goto end;
|
---|
143 | }
|
---|
144 |
|
---|
145 | /* Initialize derivation process. */
|
---|
146 | if (EVP_PKEY_derive_init(ctx) == 0) {
|
---|
147 | fprintf(stderr, "EVP_PKEY_derive_init() failed\n");
|
---|
148 | goto end;
|
---|
149 | }
|
---|
150 |
|
---|
151 | /* Configure each peer with the other peer's public key. */
|
---|
152 | if (EVP_PKEY_derive_set_peer(ctx, remote_peer_pubk) == 0) {
|
---|
153 | fprintf(stderr, "EVP_PKEY_derive_set_peer() failed\n");
|
---|
154 | goto end;
|
---|
155 | }
|
---|
156 |
|
---|
157 | /* Determine the secret length. */
|
---|
158 | if (EVP_PKEY_derive(ctx, NULL, &local_peer->secret_len) == 0) {
|
---|
159 | fprintf(stderr, "EVP_PKEY_derive() failed\n");
|
---|
160 | goto end;
|
---|
161 | }
|
---|
162 |
|
---|
163 | /*
|
---|
164 | * We are using X25519, so the secret generated will always be 32 bytes.
|
---|
165 | * However for exposition, the code below demonstrates a generic
|
---|
166 | * implementation for arbitrary lengths.
|
---|
167 | */
|
---|
168 | if (local_peer->secret_len != 32) { /* unreachable */
|
---|
169 | fprintf(stderr, "Secret is always 32 bytes for X25519\n");
|
---|
170 | goto end;
|
---|
171 | }
|
---|
172 |
|
---|
173 | /* Allocate memory for shared secrets. */
|
---|
174 | local_peer->secret = OPENSSL_malloc(local_peer->secret_len);
|
---|
175 | if (local_peer->secret == NULL) {
|
---|
176 | fprintf(stderr, "Could not allocate memory for secret\n");
|
---|
177 | goto end;
|
---|
178 | }
|
---|
179 |
|
---|
180 | /* Derive the shared secret. */
|
---|
181 | if (EVP_PKEY_derive(ctx, local_peer->secret,
|
---|
182 | &local_peer->secret_len) == 0) {
|
---|
183 | fprintf(stderr, "EVP_PKEY_derive() failed\n");
|
---|
184 | goto end;
|
---|
185 | }
|
---|
186 |
|
---|
187 | printf("Shared secret (%s):\n", local_peer->name);
|
---|
188 | BIO_dump_indent_fp(stdout, local_peer->secret, local_peer->secret_len, 2);
|
---|
189 | putchar('\n');
|
---|
190 |
|
---|
191 | ret = 1;
|
---|
192 | end:
|
---|
193 | EVP_PKEY_CTX_free(ctx);
|
---|
194 | EVP_PKEY_free(remote_peer_pubk);
|
---|
195 | if (ret == 0) {
|
---|
196 | OPENSSL_clear_free(local_peer->secret, local_peer->secret_len);
|
---|
197 | local_peer->secret = NULL;
|
---|
198 | }
|
---|
199 |
|
---|
200 | return ret;
|
---|
201 | }
|
---|
202 |
|
---|
203 | static int keyexch_x25519(int use_kat)
|
---|
204 | {
|
---|
205 | int ret = 0;
|
---|
206 | OSSL_LIB_CTX *libctx = NULL;
|
---|
207 | PEER_DATA peer1 = {"peer 1"}, peer2 = {"peer 2"};
|
---|
208 |
|
---|
209 | /*
|
---|
210 | * Each peer generates its private key and sends its public key
|
---|
211 | * to the other peer. The private key is stored locally for
|
---|
212 | * later use.
|
---|
213 | */
|
---|
214 | if (keyexch_x25519_before(libctx, use_kat ? peer1_privk_data : NULL,
|
---|
215 | &peer1) == 0)
|
---|
216 | return 0;
|
---|
217 |
|
---|
218 | if (keyexch_x25519_before(libctx, use_kat ? peer2_privk_data : NULL,
|
---|
219 | &peer2) == 0)
|
---|
220 | return 0;
|
---|
221 |
|
---|
222 | /*
|
---|
223 | * Each peer uses the other peer's public key to perform key exchange.
|
---|
224 | * After this succeeds, each peer has the same secret in its
|
---|
225 | * PEER_DATA.
|
---|
226 | */
|
---|
227 | if (keyexch_x25519_after(libctx, use_kat, &peer1, peer2.pubk_data) == 0)
|
---|
228 | return 0;
|
---|
229 |
|
---|
230 | if (keyexch_x25519_after(libctx, use_kat, &peer2, peer1.pubk_data) == 0)
|
---|
231 | return 0;
|
---|
232 |
|
---|
233 | /*
|
---|
234 | * Here we demonstrate the secrets are equal for exposition purposes.
|
---|
235 | *
|
---|
236 | * Although in practice you will generally not need to compare secrets
|
---|
237 | * produced through key exchange, if you do compare cryptographic secrets,
|
---|
238 | * always do so using a constant-time function such as CRYPTO_memcmp, never
|
---|
239 | * using memcmp(3).
|
---|
240 | */
|
---|
241 | if (CRYPTO_memcmp(peer1.secret, peer2.secret, peer1.secret_len) != 0) {
|
---|
242 | fprintf(stderr, "Negotiated secrets do not match\n");
|
---|
243 | goto end;
|
---|
244 | }
|
---|
245 |
|
---|
246 | /* If we are doing the KAT, the secret should equal our reference result. */
|
---|
247 | if (use_kat && CRYPTO_memcmp(peer1.secret, expected_result,
|
---|
248 | peer1.secret_len) != 0) {
|
---|
249 | fprintf(stderr, "Did not get expected result\n");
|
---|
250 | goto end;
|
---|
251 | }
|
---|
252 |
|
---|
253 | ret = 1;
|
---|
254 | end:
|
---|
255 | /* The secrets are sensitive, so ensure they are erased before freeing. */
|
---|
256 | OPENSSL_clear_free(peer1.secret, peer1.secret_len);
|
---|
257 | OPENSSL_clear_free(peer2.secret, peer2.secret_len);
|
---|
258 |
|
---|
259 | EVP_PKEY_free(peer1.privk);
|
---|
260 | EVP_PKEY_free(peer2.privk);
|
---|
261 | OSSL_LIB_CTX_free(libctx);
|
---|
262 | return ret;
|
---|
263 | }
|
---|
264 |
|
---|
265 | int main(int argc, char **argv)
|
---|
266 | {
|
---|
267 | /* Test X25519 key exchange with known result. */
|
---|
268 | printf("Key exchange using known answer (deterministic):\n");
|
---|
269 | if (keyexch_x25519(1) == 0)
|
---|
270 | return EXIT_FAILURE;
|
---|
271 |
|
---|
272 | /* Test X25519 key exchange with random keys. */
|
---|
273 | printf("Key exchange using random keys:\n");
|
---|
274 | if (keyexch_x25519(0) == 0)
|
---|
275 | return EXIT_FAILURE;
|
---|
276 |
|
---|
277 | return EXIT_SUCCESS;
|
---|
278 | }
|
---|