1 | /*
|
---|
2 | * Copyright 2006-2024 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /*
|
---|
11 | * Implementation of RFC 3779 section 2.2.
|
---|
12 | */
|
---|
13 |
|
---|
14 | #include <stdio.h>
|
---|
15 | #include <stdlib.h>
|
---|
16 | #include <assert.h>
|
---|
17 | #include <string.h>
|
---|
18 |
|
---|
19 | #include <openssl/conf.h>
|
---|
20 | #include <openssl/asn1.h>
|
---|
21 | #include <openssl/asn1t.h>
|
---|
22 | #include <openssl/buffer.h>
|
---|
23 | #include <openssl/x509v3.h>
|
---|
24 | #include "internal/cryptlib.h"
|
---|
25 | #include "crypto/asn1.h"
|
---|
26 | #include "crypto/x509.h"
|
---|
27 | #include "ext_dat.h"
|
---|
28 | #include "x509_local.h"
|
---|
29 |
|
---|
30 | #ifndef OPENSSL_NO_RFC3779
|
---|
31 |
|
---|
32 | /*
|
---|
33 | * OpenSSL ASN.1 template translation of RFC 3779 2.2.3.
|
---|
34 | */
|
---|
35 |
|
---|
36 | ASN1_SEQUENCE(IPAddressRange) = {
|
---|
37 | ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING),
|
---|
38 | ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING)
|
---|
39 | } ASN1_SEQUENCE_END(IPAddressRange)
|
---|
40 |
|
---|
41 | ASN1_CHOICE(IPAddressOrRange) = {
|
---|
42 | ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING),
|
---|
43 | ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange)
|
---|
44 | } ASN1_CHOICE_END(IPAddressOrRange)
|
---|
45 |
|
---|
46 | ASN1_CHOICE(IPAddressChoice) = {
|
---|
47 | ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL),
|
---|
48 | ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange)
|
---|
49 | } ASN1_CHOICE_END(IPAddressChoice)
|
---|
50 |
|
---|
51 | ASN1_SEQUENCE(IPAddressFamily) = {
|
---|
52 | ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING),
|
---|
53 | ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice)
|
---|
54 | } ASN1_SEQUENCE_END(IPAddressFamily)
|
---|
55 |
|
---|
56 | ASN1_ITEM_TEMPLATE(IPAddrBlocks) =
|
---|
57 | ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0,
|
---|
58 | IPAddrBlocks, IPAddressFamily)
|
---|
59 | static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks)
|
---|
60 |
|
---|
61 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange)
|
---|
62 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange)
|
---|
63 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice)
|
---|
64 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily)
|
---|
65 |
|
---|
66 | /*
|
---|
67 | * How much buffer space do we need for a raw address?
|
---|
68 | */
|
---|
69 | # define ADDR_RAW_BUF_LEN 16
|
---|
70 |
|
---|
71 | /*
|
---|
72 | * What's the address length associated with this AFI?
|
---|
73 | */
|
---|
74 | static int length_from_afi(const unsigned afi)
|
---|
75 | {
|
---|
76 | switch (afi) {
|
---|
77 | case IANA_AFI_IPV4:
|
---|
78 | return 4;
|
---|
79 | case IANA_AFI_IPV6:
|
---|
80 | return 16;
|
---|
81 | default:
|
---|
82 | return 0;
|
---|
83 | }
|
---|
84 | }
|
---|
85 |
|
---|
86 | /*
|
---|
87 | * Extract the AFI from an IPAddressFamily.
|
---|
88 | */
|
---|
89 | unsigned int X509v3_addr_get_afi(const IPAddressFamily *f)
|
---|
90 | {
|
---|
91 | if (f == NULL
|
---|
92 | || f->addressFamily == NULL
|
---|
93 | || f->addressFamily->data == NULL
|
---|
94 | || f->addressFamily->length < 2)
|
---|
95 | return 0;
|
---|
96 | return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1];
|
---|
97 | }
|
---|
98 |
|
---|
99 | /*
|
---|
100 | * Expand the bitstring form of an address into a raw byte array.
|
---|
101 | * At the moment this is coded for simplicity, not speed.
|
---|
102 | */
|
---|
103 | static int addr_expand(unsigned char *addr,
|
---|
104 | const ASN1_BIT_STRING *bs,
|
---|
105 | const int length, const unsigned char fill)
|
---|
106 | {
|
---|
107 | if (bs->length < 0 || bs->length > length)
|
---|
108 | return 0;
|
---|
109 | if (bs->length > 0) {
|
---|
110 | memcpy(addr, bs->data, bs->length);
|
---|
111 | if ((bs->flags & 7) != 0) {
|
---|
112 | unsigned char mask = 0xFF >> (8 - (bs->flags & 7));
|
---|
113 |
|
---|
114 | if (fill == 0)
|
---|
115 | addr[bs->length - 1] &= ~mask;
|
---|
116 | else
|
---|
117 | addr[bs->length - 1] |= mask;
|
---|
118 | }
|
---|
119 | }
|
---|
120 | memset(addr + bs->length, fill, length - bs->length);
|
---|
121 | return 1;
|
---|
122 | }
|
---|
123 |
|
---|
124 | /*
|
---|
125 | * Extract the prefix length from a bitstring.
|
---|
126 | */
|
---|
127 | # define addr_prefixlen(bs) ((int)((bs)->length * 8 - ((bs)->flags & 7)))
|
---|
128 |
|
---|
129 | /*
|
---|
130 | * i2r handler for one address bitstring.
|
---|
131 | */
|
---|
132 | static int i2r_address(BIO *out,
|
---|
133 | const unsigned afi,
|
---|
134 | const unsigned char fill, const ASN1_BIT_STRING *bs)
|
---|
135 | {
|
---|
136 | unsigned char addr[ADDR_RAW_BUF_LEN];
|
---|
137 | int i, n;
|
---|
138 |
|
---|
139 | if (bs->length < 0)
|
---|
140 | return 0;
|
---|
141 | switch (afi) {
|
---|
142 | case IANA_AFI_IPV4:
|
---|
143 | if (!addr_expand(addr, bs, 4, fill))
|
---|
144 | return 0;
|
---|
145 | BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]);
|
---|
146 | break;
|
---|
147 | case IANA_AFI_IPV6:
|
---|
148 | if (!addr_expand(addr, bs, 16, fill))
|
---|
149 | return 0;
|
---|
150 | for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00;
|
---|
151 | n -= 2) ;
|
---|
152 | for (i = 0; i < n; i += 2)
|
---|
153 | BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1],
|
---|
154 | (i < 14 ? ":" : ""));
|
---|
155 | if (i < 16)
|
---|
156 | BIO_puts(out, ":");
|
---|
157 | if (i == 0)
|
---|
158 | BIO_puts(out, ":");
|
---|
159 | break;
|
---|
160 | default:
|
---|
161 | for (i = 0; i < bs->length; i++)
|
---|
162 | BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]);
|
---|
163 | BIO_printf(out, "[%d]", (int)(bs->flags & 7));
|
---|
164 | break;
|
---|
165 | }
|
---|
166 | return 1;
|
---|
167 | }
|
---|
168 |
|
---|
169 | /*
|
---|
170 | * i2r handler for a sequence of addresses and ranges.
|
---|
171 | */
|
---|
172 | static int i2r_IPAddressOrRanges(BIO *out,
|
---|
173 | const int indent,
|
---|
174 | const IPAddressOrRanges *aors,
|
---|
175 | const unsigned afi)
|
---|
176 | {
|
---|
177 | int i;
|
---|
178 |
|
---|
179 | for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) {
|
---|
180 | const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i);
|
---|
181 |
|
---|
182 | BIO_printf(out, "%*s", indent, "");
|
---|
183 | switch (aor->type) {
|
---|
184 | case IPAddressOrRange_addressPrefix:
|
---|
185 | if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix))
|
---|
186 | return 0;
|
---|
187 | BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix));
|
---|
188 | continue;
|
---|
189 | case IPAddressOrRange_addressRange:
|
---|
190 | if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min))
|
---|
191 | return 0;
|
---|
192 | BIO_puts(out, "-");
|
---|
193 | if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max))
|
---|
194 | return 0;
|
---|
195 | BIO_puts(out, "\n");
|
---|
196 | continue;
|
---|
197 | }
|
---|
198 | }
|
---|
199 | return 1;
|
---|
200 | }
|
---|
201 |
|
---|
202 | /*
|
---|
203 | * i2r handler for an IPAddrBlocks extension.
|
---|
204 | */
|
---|
205 | static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method,
|
---|
206 | void *ext, BIO *out, int indent)
|
---|
207 | {
|
---|
208 | const IPAddrBlocks *addr = ext;
|
---|
209 | int i;
|
---|
210 |
|
---|
211 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
|
---|
212 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
|
---|
213 | const unsigned int afi = X509v3_addr_get_afi(f);
|
---|
214 |
|
---|
215 | switch (afi) {
|
---|
216 | case IANA_AFI_IPV4:
|
---|
217 | BIO_printf(out, "%*sIPv4", indent, "");
|
---|
218 | break;
|
---|
219 | case IANA_AFI_IPV6:
|
---|
220 | BIO_printf(out, "%*sIPv6", indent, "");
|
---|
221 | break;
|
---|
222 | default:
|
---|
223 | BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi);
|
---|
224 | break;
|
---|
225 | }
|
---|
226 | if (f->addressFamily->length > 2) {
|
---|
227 | switch (f->addressFamily->data[2]) {
|
---|
228 | case 1:
|
---|
229 | BIO_puts(out, " (Unicast)");
|
---|
230 | break;
|
---|
231 | case 2:
|
---|
232 | BIO_puts(out, " (Multicast)");
|
---|
233 | break;
|
---|
234 | case 3:
|
---|
235 | BIO_puts(out, " (Unicast/Multicast)");
|
---|
236 | break;
|
---|
237 | case 4:
|
---|
238 | BIO_puts(out, " (MPLS)");
|
---|
239 | break;
|
---|
240 | case 64:
|
---|
241 | BIO_puts(out, " (Tunnel)");
|
---|
242 | break;
|
---|
243 | case 65:
|
---|
244 | BIO_puts(out, " (VPLS)");
|
---|
245 | break;
|
---|
246 | case 66:
|
---|
247 | BIO_puts(out, " (BGP MDT)");
|
---|
248 | break;
|
---|
249 | case 128:
|
---|
250 | BIO_puts(out, " (MPLS-labeled VPN)");
|
---|
251 | break;
|
---|
252 | default:
|
---|
253 | BIO_printf(out, " (Unknown SAFI %u)",
|
---|
254 | (unsigned)f->addressFamily->data[2]);
|
---|
255 | break;
|
---|
256 | }
|
---|
257 | }
|
---|
258 | switch (f->ipAddressChoice->type) {
|
---|
259 | case IPAddressChoice_inherit:
|
---|
260 | BIO_puts(out, ": inherit\n");
|
---|
261 | break;
|
---|
262 | case IPAddressChoice_addressesOrRanges:
|
---|
263 | BIO_puts(out, ":\n");
|
---|
264 | if (!i2r_IPAddressOrRanges(out,
|
---|
265 | indent + 2,
|
---|
266 | f->ipAddressChoice->
|
---|
267 | u.addressesOrRanges, afi))
|
---|
268 | return 0;
|
---|
269 | break;
|
---|
270 | }
|
---|
271 | }
|
---|
272 | return 1;
|
---|
273 | }
|
---|
274 |
|
---|
275 | /*
|
---|
276 | * Sort comparison function for a sequence of IPAddressOrRange
|
---|
277 | * elements.
|
---|
278 | *
|
---|
279 | * There's no sane answer we can give if addr_expand() fails, and an
|
---|
280 | * assertion failure on externally supplied data is seriously uncool,
|
---|
281 | * so we just arbitrarily declare that if given invalid inputs this
|
---|
282 | * function returns -1. If this messes up your preferred sort order
|
---|
283 | * for garbage input, tough noogies.
|
---|
284 | */
|
---|
285 | static int IPAddressOrRange_cmp(const IPAddressOrRange *a,
|
---|
286 | const IPAddressOrRange *b, const int length)
|
---|
287 | {
|
---|
288 | unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN];
|
---|
289 | int prefixlen_a = 0, prefixlen_b = 0;
|
---|
290 | int r;
|
---|
291 |
|
---|
292 | switch (a->type) {
|
---|
293 | case IPAddressOrRange_addressPrefix:
|
---|
294 | if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00))
|
---|
295 | return -1;
|
---|
296 | prefixlen_a = addr_prefixlen(a->u.addressPrefix);
|
---|
297 | break;
|
---|
298 | case IPAddressOrRange_addressRange:
|
---|
299 | if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00))
|
---|
300 | return -1;
|
---|
301 | prefixlen_a = length * 8;
|
---|
302 | break;
|
---|
303 | default:
|
---|
304 | return -1;
|
---|
305 | }
|
---|
306 |
|
---|
307 | switch (b->type) {
|
---|
308 | case IPAddressOrRange_addressPrefix:
|
---|
309 | if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00))
|
---|
310 | return -1;
|
---|
311 | prefixlen_b = addr_prefixlen(b->u.addressPrefix);
|
---|
312 | break;
|
---|
313 | case IPAddressOrRange_addressRange:
|
---|
314 | if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00))
|
---|
315 | return -1;
|
---|
316 | prefixlen_b = length * 8;
|
---|
317 | break;
|
---|
318 | default:
|
---|
319 | return -1;
|
---|
320 | }
|
---|
321 |
|
---|
322 | if ((r = memcmp(addr_a, addr_b, length)) != 0)
|
---|
323 | return r;
|
---|
324 | else
|
---|
325 | return prefixlen_a - prefixlen_b;
|
---|
326 | }
|
---|
327 |
|
---|
328 | /*
|
---|
329 | * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort()
|
---|
330 | * comparison routines are only allowed two arguments.
|
---|
331 | */
|
---|
332 | static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
|
---|
333 | const IPAddressOrRange *const *b)
|
---|
334 | {
|
---|
335 | return IPAddressOrRange_cmp(*a, *b, 4);
|
---|
336 | }
|
---|
337 |
|
---|
338 | /*
|
---|
339 | * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort()
|
---|
340 | * comparison routines are only allowed two arguments.
|
---|
341 | */
|
---|
342 | static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a,
|
---|
343 | const IPAddressOrRange *const *b)
|
---|
344 | {
|
---|
345 | return IPAddressOrRange_cmp(*a, *b, 16);
|
---|
346 | }
|
---|
347 |
|
---|
348 | /*
|
---|
349 | * Calculate whether a range collapses to a prefix.
|
---|
350 | * See last paragraph of RFC 3779 2.2.3.7.
|
---|
351 | */
|
---|
352 | static int range_should_be_prefix(const unsigned char *min,
|
---|
353 | const unsigned char *max, const int length)
|
---|
354 | {
|
---|
355 | unsigned char mask;
|
---|
356 | int i, j;
|
---|
357 |
|
---|
358 | /*
|
---|
359 | * It is the responsibility of the caller to confirm min <= max. We don't
|
---|
360 | * use ossl_assert() here since we have no way of signalling an error from
|
---|
361 | * this function - so we just use a plain assert instead.
|
---|
362 | */
|
---|
363 | assert(memcmp(min, max, length) <= 0);
|
---|
364 |
|
---|
365 | for (i = 0; i < length && min[i] == max[i]; i++) ;
|
---|
366 | for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ;
|
---|
367 | if (i < j)
|
---|
368 | return -1;
|
---|
369 | if (i > j)
|
---|
370 | return i * 8;
|
---|
371 | mask = min[i] ^ max[i];
|
---|
372 | switch (mask) {
|
---|
373 | case 0x01:
|
---|
374 | j = 7;
|
---|
375 | break;
|
---|
376 | case 0x03:
|
---|
377 | j = 6;
|
---|
378 | break;
|
---|
379 | case 0x07:
|
---|
380 | j = 5;
|
---|
381 | break;
|
---|
382 | case 0x0F:
|
---|
383 | j = 4;
|
---|
384 | break;
|
---|
385 | case 0x1F:
|
---|
386 | j = 3;
|
---|
387 | break;
|
---|
388 | case 0x3F:
|
---|
389 | j = 2;
|
---|
390 | break;
|
---|
391 | case 0x7F:
|
---|
392 | j = 1;
|
---|
393 | break;
|
---|
394 | default:
|
---|
395 | return -1;
|
---|
396 | }
|
---|
397 | if ((min[i] & mask) != 0 || (max[i] & mask) != mask)
|
---|
398 | return -1;
|
---|
399 | else
|
---|
400 | return i * 8 + j;
|
---|
401 | }
|
---|
402 |
|
---|
403 | /*
|
---|
404 | * Construct a prefix.
|
---|
405 | */
|
---|
406 | static int make_addressPrefix(IPAddressOrRange **result, unsigned char *addr,
|
---|
407 | const int prefixlen, const int afilen)
|
---|
408 | {
|
---|
409 | int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8;
|
---|
410 | IPAddressOrRange *aor;
|
---|
411 |
|
---|
412 | if (prefixlen < 0 || prefixlen > (afilen * 8))
|
---|
413 | return 0;
|
---|
414 | if ((aor = IPAddressOrRange_new()) == NULL)
|
---|
415 | return 0;
|
---|
416 | aor->type = IPAddressOrRange_addressPrefix;
|
---|
417 | if (aor->u.addressPrefix == NULL &&
|
---|
418 | (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL)
|
---|
419 | goto err;
|
---|
420 | if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen))
|
---|
421 | goto err;
|
---|
422 | if (bitlen > 0)
|
---|
423 | aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen);
|
---|
424 | ossl_asn1_string_set_bits_left(aor->u.addressPrefix, 8 - bitlen);
|
---|
425 |
|
---|
426 | *result = aor;
|
---|
427 | return 1;
|
---|
428 |
|
---|
429 | err:
|
---|
430 | IPAddressOrRange_free(aor);
|
---|
431 | return 0;
|
---|
432 | }
|
---|
433 |
|
---|
434 | /*
|
---|
435 | * Construct a range. If it can be expressed as a prefix,
|
---|
436 | * return a prefix instead. Doing this here simplifies
|
---|
437 | * the rest of the code considerably.
|
---|
438 | */
|
---|
439 | static int make_addressRange(IPAddressOrRange **result,
|
---|
440 | unsigned char *min,
|
---|
441 | unsigned char *max, const int length)
|
---|
442 | {
|
---|
443 | IPAddressOrRange *aor;
|
---|
444 | int i, prefixlen;
|
---|
445 |
|
---|
446 | if (memcmp(min, max, length) > 0)
|
---|
447 | return 0;
|
---|
448 |
|
---|
449 | if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0)
|
---|
450 | return make_addressPrefix(result, min, prefixlen, length);
|
---|
451 |
|
---|
452 | if ((aor = IPAddressOrRange_new()) == NULL)
|
---|
453 | return 0;
|
---|
454 | aor->type = IPAddressOrRange_addressRange;
|
---|
455 | if ((aor->u.addressRange = IPAddressRange_new()) == NULL)
|
---|
456 | goto err;
|
---|
457 | if (aor->u.addressRange->min == NULL &&
|
---|
458 | (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL)
|
---|
459 | goto err;
|
---|
460 | if (aor->u.addressRange->max == NULL &&
|
---|
461 | (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL)
|
---|
462 | goto err;
|
---|
463 |
|
---|
464 | for (i = length; i > 0 && min[i - 1] == 0x00; --i) ;
|
---|
465 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i))
|
---|
466 | goto err;
|
---|
467 | ossl_asn1_string_set_bits_left(aor->u.addressRange->min, 0);
|
---|
468 | if (i > 0) {
|
---|
469 | unsigned char b = min[i - 1];
|
---|
470 | int j = 1;
|
---|
471 |
|
---|
472 | while ((b & (0xFFU >> j)) != 0)
|
---|
473 | ++j;
|
---|
474 | aor->u.addressRange->min->flags |= 8 - j;
|
---|
475 | }
|
---|
476 |
|
---|
477 | for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ;
|
---|
478 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i))
|
---|
479 | goto err;
|
---|
480 | ossl_asn1_string_set_bits_left(aor->u.addressRange->max, 0);
|
---|
481 | if (i > 0) {
|
---|
482 | unsigned char b = max[i - 1];
|
---|
483 | int j = 1;
|
---|
484 |
|
---|
485 | while ((b & (0xFFU >> j)) != (0xFFU >> j))
|
---|
486 | ++j;
|
---|
487 | aor->u.addressRange->max->flags |= 8 - j;
|
---|
488 | }
|
---|
489 |
|
---|
490 | *result = aor;
|
---|
491 | return 1;
|
---|
492 |
|
---|
493 | err:
|
---|
494 | IPAddressOrRange_free(aor);
|
---|
495 | return 0;
|
---|
496 | }
|
---|
497 |
|
---|
498 | /*
|
---|
499 | * Construct a new address family or find an existing one.
|
---|
500 | */
|
---|
501 | static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr,
|
---|
502 | const unsigned afi,
|
---|
503 | const unsigned *safi)
|
---|
504 | {
|
---|
505 | IPAddressFamily *f;
|
---|
506 | unsigned char key[3];
|
---|
507 | int keylen;
|
---|
508 | int i;
|
---|
509 |
|
---|
510 | key[0] = (afi >> 8) & 0xFF;
|
---|
511 | key[1] = afi & 0xFF;
|
---|
512 | if (safi != NULL) {
|
---|
513 | key[2] = *safi & 0xFF;
|
---|
514 | keylen = 3;
|
---|
515 | } else {
|
---|
516 | keylen = 2;
|
---|
517 | }
|
---|
518 |
|
---|
519 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
|
---|
520 | f = sk_IPAddressFamily_value(addr, i);
|
---|
521 | if (f->addressFamily->length == keylen &&
|
---|
522 | !memcmp(f->addressFamily->data, key, keylen))
|
---|
523 | return f;
|
---|
524 | }
|
---|
525 |
|
---|
526 | if ((f = IPAddressFamily_new()) == NULL)
|
---|
527 | goto err;
|
---|
528 | if (f->ipAddressChoice == NULL &&
|
---|
529 | (f->ipAddressChoice = IPAddressChoice_new()) == NULL)
|
---|
530 | goto err;
|
---|
531 | if (f->addressFamily == NULL &&
|
---|
532 | (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL)
|
---|
533 | goto err;
|
---|
534 | if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen))
|
---|
535 | goto err;
|
---|
536 | if (!sk_IPAddressFamily_push(addr, f))
|
---|
537 | goto err;
|
---|
538 |
|
---|
539 | return f;
|
---|
540 |
|
---|
541 | err:
|
---|
542 | IPAddressFamily_free(f);
|
---|
543 | return NULL;
|
---|
544 | }
|
---|
545 |
|
---|
546 | /*
|
---|
547 | * Add an inheritance element.
|
---|
548 | */
|
---|
549 | int X509v3_addr_add_inherit(IPAddrBlocks *addr,
|
---|
550 | const unsigned afi, const unsigned *safi)
|
---|
551 | {
|
---|
552 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
|
---|
553 |
|
---|
554 | if (f == NULL ||
|
---|
555 | f->ipAddressChoice == NULL ||
|
---|
556 | (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
|
---|
557 | f->ipAddressChoice->u.addressesOrRanges != NULL))
|
---|
558 | return 0;
|
---|
559 | if (f->ipAddressChoice->type == IPAddressChoice_inherit &&
|
---|
560 | f->ipAddressChoice->u.inherit != NULL)
|
---|
561 | return 1;
|
---|
562 | if (f->ipAddressChoice->u.inherit == NULL &&
|
---|
563 | (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL)
|
---|
564 | return 0;
|
---|
565 | f->ipAddressChoice->type = IPAddressChoice_inherit;
|
---|
566 | return 1;
|
---|
567 | }
|
---|
568 |
|
---|
569 | /*
|
---|
570 | * Construct an IPAddressOrRange sequence, or return an existing one.
|
---|
571 | */
|
---|
572 | static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr,
|
---|
573 | const unsigned afi,
|
---|
574 | const unsigned *safi)
|
---|
575 | {
|
---|
576 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi);
|
---|
577 | IPAddressOrRanges *aors = NULL;
|
---|
578 |
|
---|
579 | if (f == NULL ||
|
---|
580 | f->ipAddressChoice == NULL ||
|
---|
581 | (f->ipAddressChoice->type == IPAddressChoice_inherit &&
|
---|
582 | f->ipAddressChoice->u.inherit != NULL))
|
---|
583 | return NULL;
|
---|
584 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges)
|
---|
585 | aors = f->ipAddressChoice->u.addressesOrRanges;
|
---|
586 | if (aors != NULL)
|
---|
587 | return aors;
|
---|
588 | if ((aors = sk_IPAddressOrRange_new_null()) == NULL)
|
---|
589 | return NULL;
|
---|
590 | switch (afi) {
|
---|
591 | case IANA_AFI_IPV4:
|
---|
592 | (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp);
|
---|
593 | break;
|
---|
594 | case IANA_AFI_IPV6:
|
---|
595 | (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp);
|
---|
596 | break;
|
---|
597 | }
|
---|
598 | f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges;
|
---|
599 | f->ipAddressChoice->u.addressesOrRanges = aors;
|
---|
600 | return aors;
|
---|
601 | }
|
---|
602 |
|
---|
603 | /*
|
---|
604 | * Add a prefix.
|
---|
605 | */
|
---|
606 | int X509v3_addr_add_prefix(IPAddrBlocks *addr,
|
---|
607 | const unsigned afi,
|
---|
608 | const unsigned *safi,
|
---|
609 | unsigned char *a, const int prefixlen)
|
---|
610 | {
|
---|
611 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
|
---|
612 | IPAddressOrRange *aor;
|
---|
613 |
|
---|
614 | if (aors == NULL
|
---|
615 | || !make_addressPrefix(&aor, a, prefixlen, length_from_afi(afi)))
|
---|
616 | return 0;
|
---|
617 | if (sk_IPAddressOrRange_push(aors, aor))
|
---|
618 | return 1;
|
---|
619 | IPAddressOrRange_free(aor);
|
---|
620 | return 0;
|
---|
621 | }
|
---|
622 |
|
---|
623 | /*
|
---|
624 | * Add a range.
|
---|
625 | */
|
---|
626 | int X509v3_addr_add_range(IPAddrBlocks *addr,
|
---|
627 | const unsigned afi,
|
---|
628 | const unsigned *safi,
|
---|
629 | unsigned char *min, unsigned char *max)
|
---|
630 | {
|
---|
631 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi);
|
---|
632 | IPAddressOrRange *aor;
|
---|
633 | int length = length_from_afi(afi);
|
---|
634 |
|
---|
635 | if (aors == NULL)
|
---|
636 | return 0;
|
---|
637 | if (!make_addressRange(&aor, min, max, length))
|
---|
638 | return 0;
|
---|
639 | if (sk_IPAddressOrRange_push(aors, aor))
|
---|
640 | return 1;
|
---|
641 | IPAddressOrRange_free(aor);
|
---|
642 | return 0;
|
---|
643 | }
|
---|
644 |
|
---|
645 | /*
|
---|
646 | * Extract min and max values from an IPAddressOrRange.
|
---|
647 | */
|
---|
648 | static int extract_min_max(IPAddressOrRange *aor,
|
---|
649 | unsigned char *min, unsigned char *max, int length)
|
---|
650 | {
|
---|
651 | if (aor == NULL || min == NULL || max == NULL)
|
---|
652 | return 0;
|
---|
653 | switch (aor->type) {
|
---|
654 | case IPAddressOrRange_addressPrefix:
|
---|
655 | return (addr_expand(min, aor->u.addressPrefix, length, 0x00) &&
|
---|
656 | addr_expand(max, aor->u.addressPrefix, length, 0xFF));
|
---|
657 | case IPAddressOrRange_addressRange:
|
---|
658 | return (addr_expand(min, aor->u.addressRange->min, length, 0x00) &&
|
---|
659 | addr_expand(max, aor->u.addressRange->max, length, 0xFF));
|
---|
660 | }
|
---|
661 | return 0;
|
---|
662 | }
|
---|
663 |
|
---|
664 | /*
|
---|
665 | * Public wrapper for extract_min_max().
|
---|
666 | */
|
---|
667 | int X509v3_addr_get_range(IPAddressOrRange *aor,
|
---|
668 | const unsigned afi,
|
---|
669 | unsigned char *min,
|
---|
670 | unsigned char *max, const int length)
|
---|
671 | {
|
---|
672 | int afi_length = length_from_afi(afi);
|
---|
673 |
|
---|
674 | if (aor == NULL || min == NULL || max == NULL ||
|
---|
675 | afi_length == 0 || length < afi_length ||
|
---|
676 | (aor->type != IPAddressOrRange_addressPrefix &&
|
---|
677 | aor->type != IPAddressOrRange_addressRange) ||
|
---|
678 | !extract_min_max(aor, min, max, afi_length))
|
---|
679 | return 0;
|
---|
680 |
|
---|
681 | return afi_length;
|
---|
682 | }
|
---|
683 |
|
---|
684 | /*
|
---|
685 | * Sort comparison function for a sequence of IPAddressFamily.
|
---|
686 | *
|
---|
687 | * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about
|
---|
688 | * the ordering: I can read it as meaning that IPv6 without a SAFI
|
---|
689 | * comes before IPv4 with a SAFI, which seems pretty weird. The
|
---|
690 | * examples in appendix B suggest that the author intended the
|
---|
691 | * null-SAFI rule to apply only within a single AFI, which is what I
|
---|
692 | * would have expected and is what the following code implements.
|
---|
693 | */
|
---|
694 | static int IPAddressFamily_cmp(const IPAddressFamily *const *a_,
|
---|
695 | const IPAddressFamily *const *b_)
|
---|
696 | {
|
---|
697 | const ASN1_OCTET_STRING *a = (*a_)->addressFamily;
|
---|
698 | const ASN1_OCTET_STRING *b = (*b_)->addressFamily;
|
---|
699 | int len = ((a->length <= b->length) ? a->length : b->length);
|
---|
700 | int cmp = memcmp(a->data, b->data, len);
|
---|
701 |
|
---|
702 | return cmp ? cmp : a->length - b->length;
|
---|
703 | }
|
---|
704 |
|
---|
705 | static int IPAddressFamily_check_len(const IPAddressFamily *f)
|
---|
706 | {
|
---|
707 | if (f->addressFamily->length < 2 || f->addressFamily->length > 3)
|
---|
708 | return 0;
|
---|
709 | else
|
---|
710 | return 1;
|
---|
711 | }
|
---|
712 |
|
---|
713 | /*
|
---|
714 | * Check whether an IPAddrBLocks is in canonical form.
|
---|
715 | */
|
---|
716 | int X509v3_addr_is_canonical(IPAddrBlocks *addr)
|
---|
717 | {
|
---|
718 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
|
---|
719 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
|
---|
720 | IPAddressOrRanges *aors;
|
---|
721 | int i, j, k;
|
---|
722 |
|
---|
723 | /*
|
---|
724 | * Empty extension is canonical.
|
---|
725 | */
|
---|
726 | if (addr == NULL)
|
---|
727 | return 1;
|
---|
728 |
|
---|
729 | /*
|
---|
730 | * Check whether the top-level list is in order.
|
---|
731 | */
|
---|
732 | for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) {
|
---|
733 | const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i);
|
---|
734 | const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1);
|
---|
735 |
|
---|
736 | if (!IPAddressFamily_check_len(a) || !IPAddressFamily_check_len(b))
|
---|
737 | return 0;
|
---|
738 |
|
---|
739 | if (IPAddressFamily_cmp(&a, &b) >= 0)
|
---|
740 | return 0;
|
---|
741 | }
|
---|
742 |
|
---|
743 | /*
|
---|
744 | * Top level's ok, now check each address family.
|
---|
745 | */
|
---|
746 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
|
---|
747 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
|
---|
748 | int length = length_from_afi(X509v3_addr_get_afi(f));
|
---|
749 |
|
---|
750 | /*
|
---|
751 | * Inheritance is canonical. Anything other than inheritance or
|
---|
752 | * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something.
|
---|
753 | */
|
---|
754 | if (f == NULL || f->ipAddressChoice == NULL)
|
---|
755 | return 0;
|
---|
756 | switch (f->ipAddressChoice->type) {
|
---|
757 | case IPAddressChoice_inherit:
|
---|
758 | continue;
|
---|
759 | case IPAddressChoice_addressesOrRanges:
|
---|
760 | break;
|
---|
761 | default:
|
---|
762 | return 0;
|
---|
763 | }
|
---|
764 |
|
---|
765 | if (!IPAddressFamily_check_len(f))
|
---|
766 | return 0;
|
---|
767 |
|
---|
768 | /*
|
---|
769 | * It's an IPAddressOrRanges sequence, check it.
|
---|
770 | */
|
---|
771 | aors = f->ipAddressChoice->u.addressesOrRanges;
|
---|
772 | if (sk_IPAddressOrRange_num(aors) == 0)
|
---|
773 | return 0;
|
---|
774 | for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) {
|
---|
775 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
|
---|
776 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1);
|
---|
777 |
|
---|
778 | if (!extract_min_max(a, a_min, a_max, length) ||
|
---|
779 | !extract_min_max(b, b_min, b_max, length))
|
---|
780 | return 0;
|
---|
781 |
|
---|
782 | /*
|
---|
783 | * Punt misordered list, overlapping start, or inverted range.
|
---|
784 | */
|
---|
785 | if (memcmp(a_min, b_min, length) >= 0 ||
|
---|
786 | memcmp(a_min, a_max, length) > 0 ||
|
---|
787 | memcmp(b_min, b_max, length) > 0)
|
---|
788 | return 0;
|
---|
789 |
|
---|
790 | /*
|
---|
791 | * Punt if adjacent or overlapping. Check for adjacency by
|
---|
792 | * subtracting one from b_min first.
|
---|
793 | */
|
---|
794 | for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ;
|
---|
795 | if (memcmp(a_max, b_min, length) >= 0)
|
---|
796 | return 0;
|
---|
797 |
|
---|
798 | /*
|
---|
799 | * Check for range that should be expressed as a prefix.
|
---|
800 | */
|
---|
801 | if (a->type == IPAddressOrRange_addressRange &&
|
---|
802 | range_should_be_prefix(a_min, a_max, length) >= 0)
|
---|
803 | return 0;
|
---|
804 | }
|
---|
805 |
|
---|
806 | /*
|
---|
807 | * Check range to see if it's inverted or should be a
|
---|
808 | * prefix.
|
---|
809 | */
|
---|
810 | j = sk_IPAddressOrRange_num(aors) - 1;
|
---|
811 | {
|
---|
812 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
|
---|
813 |
|
---|
814 | if (a != NULL && a->type == IPAddressOrRange_addressRange) {
|
---|
815 | if (!extract_min_max(a, a_min, a_max, length))
|
---|
816 | return 0;
|
---|
817 | if (memcmp(a_min, a_max, length) > 0 ||
|
---|
818 | range_should_be_prefix(a_min, a_max, length) >= 0)
|
---|
819 | return 0;
|
---|
820 | }
|
---|
821 | }
|
---|
822 | }
|
---|
823 |
|
---|
824 | /*
|
---|
825 | * If we made it through all that, we're happy.
|
---|
826 | */
|
---|
827 | return 1;
|
---|
828 | }
|
---|
829 |
|
---|
830 | /*
|
---|
831 | * Whack an IPAddressOrRanges into canonical form.
|
---|
832 | */
|
---|
833 | static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors,
|
---|
834 | const unsigned afi)
|
---|
835 | {
|
---|
836 | int i, j, length = length_from_afi(afi);
|
---|
837 |
|
---|
838 | /*
|
---|
839 | * Sort the IPAddressOrRanges sequence.
|
---|
840 | */
|
---|
841 | sk_IPAddressOrRange_sort(aors);
|
---|
842 |
|
---|
843 | /*
|
---|
844 | * Clean up representation issues, punt on duplicates or overlaps.
|
---|
845 | */
|
---|
846 | for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) {
|
---|
847 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i);
|
---|
848 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1);
|
---|
849 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
|
---|
850 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN];
|
---|
851 |
|
---|
852 | if (!extract_min_max(a, a_min, a_max, length) ||
|
---|
853 | !extract_min_max(b, b_min, b_max, length))
|
---|
854 | return 0;
|
---|
855 |
|
---|
856 | /*
|
---|
857 | * Punt inverted ranges.
|
---|
858 | */
|
---|
859 | if (memcmp(a_min, a_max, length) > 0 ||
|
---|
860 | memcmp(b_min, b_max, length) > 0)
|
---|
861 | return 0;
|
---|
862 |
|
---|
863 | /*
|
---|
864 | * Punt overlaps.
|
---|
865 | */
|
---|
866 | if (memcmp(a_max, b_min, length) >= 0)
|
---|
867 | return 0;
|
---|
868 |
|
---|
869 | /*
|
---|
870 | * Merge if a and b are adjacent. We check for
|
---|
871 | * adjacency by subtracting one from b_min first.
|
---|
872 | */
|
---|
873 | for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ;
|
---|
874 | if (memcmp(a_max, b_min, length) == 0) {
|
---|
875 | IPAddressOrRange *merged;
|
---|
876 |
|
---|
877 | if (!make_addressRange(&merged, a_min, b_max, length))
|
---|
878 | return 0;
|
---|
879 | (void)sk_IPAddressOrRange_set(aors, i, merged);
|
---|
880 | (void)sk_IPAddressOrRange_delete(aors, i + 1);
|
---|
881 | IPAddressOrRange_free(a);
|
---|
882 | IPAddressOrRange_free(b);
|
---|
883 | --i;
|
---|
884 | continue;
|
---|
885 | }
|
---|
886 | }
|
---|
887 |
|
---|
888 | /*
|
---|
889 | * Check for inverted final range.
|
---|
890 | */
|
---|
891 | j = sk_IPAddressOrRange_num(aors) - 1;
|
---|
892 | {
|
---|
893 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j);
|
---|
894 |
|
---|
895 | if (a != NULL && a->type == IPAddressOrRange_addressRange) {
|
---|
896 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN];
|
---|
897 |
|
---|
898 | if (!extract_min_max(a, a_min, a_max, length))
|
---|
899 | return 0;
|
---|
900 | if (memcmp(a_min, a_max, length) > 0)
|
---|
901 | return 0;
|
---|
902 | }
|
---|
903 | }
|
---|
904 |
|
---|
905 | return 1;
|
---|
906 | }
|
---|
907 |
|
---|
908 | /*
|
---|
909 | * Whack an IPAddrBlocks extension into canonical form.
|
---|
910 | */
|
---|
911 | int X509v3_addr_canonize(IPAddrBlocks *addr)
|
---|
912 | {
|
---|
913 | int i;
|
---|
914 |
|
---|
915 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
|
---|
916 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
|
---|
917 |
|
---|
918 | if (!IPAddressFamily_check_len(f))
|
---|
919 | return 0;
|
---|
920 |
|
---|
921 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges &&
|
---|
922 | !IPAddressOrRanges_canonize(f->ipAddressChoice->
|
---|
923 | u.addressesOrRanges,
|
---|
924 | X509v3_addr_get_afi(f)))
|
---|
925 | return 0;
|
---|
926 | }
|
---|
927 | (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp);
|
---|
928 | sk_IPAddressFamily_sort(addr);
|
---|
929 | if (!ossl_assert(X509v3_addr_is_canonical(addr)))
|
---|
930 | return 0;
|
---|
931 | return 1;
|
---|
932 | }
|
---|
933 |
|
---|
934 | /*
|
---|
935 | * v2i handler for the IPAddrBlocks extension.
|
---|
936 | */
|
---|
937 | static void *v2i_IPAddrBlocks(const struct v3_ext_method *method,
|
---|
938 | struct v3_ext_ctx *ctx,
|
---|
939 | STACK_OF(CONF_VALUE) *values)
|
---|
940 | {
|
---|
941 | static const char v4addr_chars[] = "0123456789.";
|
---|
942 | static const char v6addr_chars[] = "0123456789.:abcdefABCDEF";
|
---|
943 | IPAddrBlocks *addr = NULL;
|
---|
944 | char *s = NULL, *t;
|
---|
945 | int i;
|
---|
946 |
|
---|
947 | if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) {
|
---|
948 | ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB);
|
---|
949 | return NULL;
|
---|
950 | }
|
---|
951 |
|
---|
952 | for (i = 0; i < sk_CONF_VALUE_num(values); i++) {
|
---|
953 | CONF_VALUE *val = sk_CONF_VALUE_value(values, i);
|
---|
954 | unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN];
|
---|
955 | unsigned afi, *safi = NULL, safi_;
|
---|
956 | const char *addr_chars = NULL;
|
---|
957 | int prefixlen, i1, i2, delim, length;
|
---|
958 |
|
---|
959 | if (!ossl_v3_name_cmp(val->name, "IPv4")) {
|
---|
960 | afi = IANA_AFI_IPV4;
|
---|
961 | } else if (!ossl_v3_name_cmp(val->name, "IPv6")) {
|
---|
962 | afi = IANA_AFI_IPV6;
|
---|
963 | } else if (!ossl_v3_name_cmp(val->name, "IPv4-SAFI")) {
|
---|
964 | afi = IANA_AFI_IPV4;
|
---|
965 | safi = &safi_;
|
---|
966 | } else if (!ossl_v3_name_cmp(val->name, "IPv6-SAFI")) {
|
---|
967 | afi = IANA_AFI_IPV6;
|
---|
968 | safi = &safi_;
|
---|
969 | } else {
|
---|
970 | ERR_raise_data(ERR_LIB_X509V3, X509V3_R_EXTENSION_NAME_ERROR,
|
---|
971 | "%s", val->name);
|
---|
972 | goto err;
|
---|
973 | }
|
---|
974 |
|
---|
975 | switch (afi) {
|
---|
976 | case IANA_AFI_IPV4:
|
---|
977 | addr_chars = v4addr_chars;
|
---|
978 | break;
|
---|
979 | case IANA_AFI_IPV6:
|
---|
980 | addr_chars = v6addr_chars;
|
---|
981 | break;
|
---|
982 | }
|
---|
983 |
|
---|
984 | length = length_from_afi(afi);
|
---|
985 |
|
---|
986 | /*
|
---|
987 | * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate
|
---|
988 | * the other input values.
|
---|
989 | */
|
---|
990 | if (safi != NULL) {
|
---|
991 | if (val->value == NULL) {
|
---|
992 | ERR_raise(ERR_LIB_X509V3, X509V3_R_MISSING_VALUE);
|
---|
993 | goto err;
|
---|
994 | }
|
---|
995 | *safi = strtoul(val->value, &t, 0);
|
---|
996 | t += strspn(t, " \t");
|
---|
997 | if (*safi > 0xFF || *t++ != ':') {
|
---|
998 | ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_SAFI);
|
---|
999 | X509V3_conf_add_error_name_value(val);
|
---|
1000 | goto err;
|
---|
1001 | }
|
---|
1002 | t += strspn(t, " \t");
|
---|
1003 | s = OPENSSL_strdup(t);
|
---|
1004 | } else {
|
---|
1005 | s = OPENSSL_strdup(val->value);
|
---|
1006 | }
|
---|
1007 | if (s == NULL)
|
---|
1008 | goto err;
|
---|
1009 |
|
---|
1010 | /*
|
---|
1011 | * Check for inheritance. Not worth additional complexity to
|
---|
1012 | * optimize this (seldom-used) case.
|
---|
1013 | */
|
---|
1014 | if (strcmp(s, "inherit") == 0) {
|
---|
1015 | if (!X509v3_addr_add_inherit(addr, afi, safi)) {
|
---|
1016 | ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_INHERITANCE);
|
---|
1017 | X509V3_conf_add_error_name_value(val);
|
---|
1018 | goto err;
|
---|
1019 | }
|
---|
1020 | OPENSSL_free(s);
|
---|
1021 | s = NULL;
|
---|
1022 | continue;
|
---|
1023 | }
|
---|
1024 |
|
---|
1025 | i1 = strspn(s, addr_chars);
|
---|
1026 | i2 = i1 + strspn(s + i1, " \t");
|
---|
1027 | delim = s[i2++];
|
---|
1028 | s[i1] = '\0';
|
---|
1029 |
|
---|
1030 | if (ossl_a2i_ipadd(min, s) != length) {
|
---|
1031 | ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
|
---|
1032 | X509V3_conf_add_error_name_value(val);
|
---|
1033 | goto err;
|
---|
1034 | }
|
---|
1035 |
|
---|
1036 | switch (delim) {
|
---|
1037 | case '/':
|
---|
1038 | prefixlen = (int)strtoul(s + i2, &t, 10);
|
---|
1039 | if (t == s + i2
|
---|
1040 | || *t != '\0'
|
---|
1041 | || prefixlen > (length * 8)
|
---|
1042 | || prefixlen < 0) {
|
---|
1043 | ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
|
---|
1044 | X509V3_conf_add_error_name_value(val);
|
---|
1045 | goto err;
|
---|
1046 | }
|
---|
1047 | if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) {
|
---|
1048 | ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);
|
---|
1049 | goto err;
|
---|
1050 | }
|
---|
1051 | break;
|
---|
1052 | case '-':
|
---|
1053 | i1 = i2 + strspn(s + i2, " \t");
|
---|
1054 | i2 = i1 + strspn(s + i1, addr_chars);
|
---|
1055 | if (i1 == i2 || s[i2] != '\0') {
|
---|
1056 | ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
|
---|
1057 | X509V3_conf_add_error_name_value(val);
|
---|
1058 | goto err;
|
---|
1059 | }
|
---|
1060 | if (ossl_a2i_ipadd(max, s + i1) != length) {
|
---|
1061 | ERR_raise(ERR_LIB_X509V3, X509V3_R_INVALID_IPADDRESS);
|
---|
1062 | X509V3_conf_add_error_name_value(val);
|
---|
1063 | goto err;
|
---|
1064 | }
|
---|
1065 | if (memcmp(min, max, length_from_afi(afi)) > 0) {
|
---|
1066 | ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
|
---|
1067 | X509V3_conf_add_error_name_value(val);
|
---|
1068 | goto err;
|
---|
1069 | }
|
---|
1070 | if (!X509v3_addr_add_range(addr, afi, safi, min, max)) {
|
---|
1071 | ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);
|
---|
1072 | goto err;
|
---|
1073 | }
|
---|
1074 | break;
|
---|
1075 | case '\0':
|
---|
1076 | if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) {
|
---|
1077 | ERR_raise(ERR_LIB_X509V3, ERR_R_X509V3_LIB);
|
---|
1078 | goto err;
|
---|
1079 | }
|
---|
1080 | break;
|
---|
1081 | default:
|
---|
1082 | ERR_raise(ERR_LIB_X509V3, X509V3_R_EXTENSION_VALUE_ERROR);
|
---|
1083 | X509V3_conf_add_error_name_value(val);
|
---|
1084 | goto err;
|
---|
1085 | }
|
---|
1086 |
|
---|
1087 | OPENSSL_free(s);
|
---|
1088 | s = NULL;
|
---|
1089 | }
|
---|
1090 |
|
---|
1091 | /*
|
---|
1092 | * Canonize the result, then we're done.
|
---|
1093 | */
|
---|
1094 | if (!X509v3_addr_canonize(addr))
|
---|
1095 | goto err;
|
---|
1096 | return addr;
|
---|
1097 |
|
---|
1098 | err:
|
---|
1099 | OPENSSL_free(s);
|
---|
1100 | sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free);
|
---|
1101 | return NULL;
|
---|
1102 | }
|
---|
1103 |
|
---|
1104 | /*
|
---|
1105 | * OpenSSL dispatch
|
---|
1106 | */
|
---|
1107 | const X509V3_EXT_METHOD ossl_v3_addr = {
|
---|
1108 | NID_sbgp_ipAddrBlock, /* nid */
|
---|
1109 | 0, /* flags */
|
---|
1110 | ASN1_ITEM_ref(IPAddrBlocks), /* template */
|
---|
1111 | 0, 0, 0, 0, /* old functions, ignored */
|
---|
1112 | 0, /* i2s */
|
---|
1113 | 0, /* s2i */
|
---|
1114 | 0, /* i2v */
|
---|
1115 | v2i_IPAddrBlocks, /* v2i */
|
---|
1116 | i2r_IPAddrBlocks, /* i2r */
|
---|
1117 | 0, /* r2i */
|
---|
1118 | NULL /* extension-specific data */
|
---|
1119 | };
|
---|
1120 |
|
---|
1121 | /*
|
---|
1122 | * Figure out whether extension sues inheritance.
|
---|
1123 | */
|
---|
1124 | int X509v3_addr_inherits(IPAddrBlocks *addr)
|
---|
1125 | {
|
---|
1126 | int i;
|
---|
1127 |
|
---|
1128 | if (addr == NULL)
|
---|
1129 | return 0;
|
---|
1130 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) {
|
---|
1131 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i);
|
---|
1132 |
|
---|
1133 | if (f->ipAddressChoice->type == IPAddressChoice_inherit)
|
---|
1134 | return 1;
|
---|
1135 | }
|
---|
1136 | return 0;
|
---|
1137 | }
|
---|
1138 |
|
---|
1139 | /*
|
---|
1140 | * Figure out whether parent contains child.
|
---|
1141 | */
|
---|
1142 | static int addr_contains(IPAddressOrRanges *parent,
|
---|
1143 | IPAddressOrRanges *child, int length)
|
---|
1144 | {
|
---|
1145 | unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN];
|
---|
1146 | unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN];
|
---|
1147 | int p, c;
|
---|
1148 |
|
---|
1149 | if (child == NULL || parent == child)
|
---|
1150 | return 1;
|
---|
1151 | if (parent == NULL)
|
---|
1152 | return 0;
|
---|
1153 |
|
---|
1154 | p = 0;
|
---|
1155 | for (c = 0; c < sk_IPAddressOrRange_num(child); c++) {
|
---|
1156 | if (!extract_min_max(sk_IPAddressOrRange_value(child, c),
|
---|
1157 | c_min, c_max, length))
|
---|
1158 | return 0;
|
---|
1159 | for (;; p++) {
|
---|
1160 | if (p >= sk_IPAddressOrRange_num(parent))
|
---|
1161 | return 0;
|
---|
1162 | if (!extract_min_max(sk_IPAddressOrRange_value(parent, p),
|
---|
1163 | p_min, p_max, length))
|
---|
1164 | return 0;
|
---|
1165 | if (memcmp(p_max, c_max, length) < 0)
|
---|
1166 | continue;
|
---|
1167 | if (memcmp(p_min, c_min, length) > 0)
|
---|
1168 | return 0;
|
---|
1169 | break;
|
---|
1170 | }
|
---|
1171 | }
|
---|
1172 |
|
---|
1173 | return 1;
|
---|
1174 | }
|
---|
1175 |
|
---|
1176 | /*
|
---|
1177 | * Test whether a is a subset of b.
|
---|
1178 | */
|
---|
1179 | int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b)
|
---|
1180 | {
|
---|
1181 | int i;
|
---|
1182 |
|
---|
1183 | if (a == NULL || a == b)
|
---|
1184 | return 1;
|
---|
1185 | if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b))
|
---|
1186 | return 0;
|
---|
1187 | (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp);
|
---|
1188 | sk_IPAddressFamily_sort(b);
|
---|
1189 | /* Could sort a here too and get O(|a|) running time instead of O(|a| ln |b|) */
|
---|
1190 | for (i = 0; i < sk_IPAddressFamily_num(a); i++) {
|
---|
1191 | IPAddressFamily *fa = sk_IPAddressFamily_value(a, i);
|
---|
1192 | int j = sk_IPAddressFamily_find(b, fa);
|
---|
1193 | IPAddressFamily *fb = sk_IPAddressFamily_value(b, j);
|
---|
1194 |
|
---|
1195 | if (fb == NULL)
|
---|
1196 | return 0;
|
---|
1197 | if (!IPAddressFamily_check_len(fa) || !IPAddressFamily_check_len(fb))
|
---|
1198 | return 0;
|
---|
1199 | if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges,
|
---|
1200 | fa->ipAddressChoice->u.addressesOrRanges,
|
---|
1201 | length_from_afi(X509v3_addr_get_afi(fb))))
|
---|
1202 | return 0;
|
---|
1203 | }
|
---|
1204 | return 1;
|
---|
1205 | }
|
---|
1206 |
|
---|
1207 | /*
|
---|
1208 | * Validation error handling via callback.
|
---|
1209 | */
|
---|
1210 | # define validation_err(_err_) \
|
---|
1211 | do { \
|
---|
1212 | if (ctx != NULL) { \
|
---|
1213 | ctx->error = _err_; \
|
---|
1214 | ctx->error_depth = i; \
|
---|
1215 | ctx->current_cert = x; \
|
---|
1216 | rv = ctx->verify_cb(0, ctx); \
|
---|
1217 | } else { \
|
---|
1218 | rv = 0; \
|
---|
1219 | } \
|
---|
1220 | if (rv == 0) \
|
---|
1221 | goto done; \
|
---|
1222 | } while (0)
|
---|
1223 |
|
---|
1224 | /*
|
---|
1225 | * Core code for RFC 3779 2.3 path validation.
|
---|
1226 | *
|
---|
1227 | * Returns 1 for success, 0 on error.
|
---|
1228 | *
|
---|
1229 | * When returning 0, ctx->error MUST be set to an appropriate value other than
|
---|
1230 | * X509_V_OK.
|
---|
1231 | */
|
---|
1232 | static int addr_validate_path_internal(X509_STORE_CTX *ctx,
|
---|
1233 | STACK_OF(X509) *chain,
|
---|
1234 | IPAddrBlocks *ext)
|
---|
1235 | {
|
---|
1236 | IPAddrBlocks *child = NULL;
|
---|
1237 | int i, j, ret = 0, rv;
|
---|
1238 | X509 *x;
|
---|
1239 |
|
---|
1240 | if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0)
|
---|
1241 | || !ossl_assert(ctx != NULL || ext != NULL)
|
---|
1242 | || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) {
|
---|
1243 | if (ctx != NULL)
|
---|
1244 | ctx->error = X509_V_ERR_UNSPECIFIED;
|
---|
1245 | return 0;
|
---|
1246 | }
|
---|
1247 |
|
---|
1248 | /*
|
---|
1249 | * Figure out where to start. If we don't have an extension to
|
---|
1250 | * check, we're done. Otherwise, check canonical form and
|
---|
1251 | * set up for walking up the chain.
|
---|
1252 | */
|
---|
1253 | if (ext != NULL) {
|
---|
1254 | i = -1;
|
---|
1255 | x = NULL;
|
---|
1256 | } else {
|
---|
1257 | i = 0;
|
---|
1258 | x = sk_X509_value(chain, i);
|
---|
1259 | if ((ext = x->rfc3779_addr) == NULL)
|
---|
1260 | return 1; /* Return success */
|
---|
1261 | }
|
---|
1262 | if (!X509v3_addr_is_canonical(ext))
|
---|
1263 | validation_err(X509_V_ERR_INVALID_EXTENSION);
|
---|
1264 | (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp);
|
---|
1265 | if ((child = sk_IPAddressFamily_dup(ext)) == NULL) {
|
---|
1266 | ERR_raise(ERR_LIB_X509V3, ERR_R_CRYPTO_LIB);
|
---|
1267 | if (ctx != NULL)
|
---|
1268 | ctx->error = X509_V_ERR_OUT_OF_MEM;
|
---|
1269 | goto done;
|
---|
1270 | }
|
---|
1271 | sk_IPAddressFamily_sort(child);
|
---|
1272 |
|
---|
1273 | /*
|
---|
1274 | * Now walk up the chain. No cert may list resources that its
|
---|
1275 | * parent doesn't list.
|
---|
1276 | */
|
---|
1277 | for (i++; i < sk_X509_num(chain); i++) {
|
---|
1278 | x = sk_X509_value(chain, i);
|
---|
1279 | if (!X509v3_addr_is_canonical(x->rfc3779_addr))
|
---|
1280 | validation_err(X509_V_ERR_INVALID_EXTENSION);
|
---|
1281 | if (x->rfc3779_addr == NULL) {
|
---|
1282 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
|
---|
1283 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
|
---|
1284 |
|
---|
1285 | if (!IPAddressFamily_check_len(fc))
|
---|
1286 | goto done;
|
---|
1287 |
|
---|
1288 | if (fc->ipAddressChoice->type != IPAddressChoice_inherit) {
|
---|
1289 | validation_err(X509_V_ERR_UNNESTED_RESOURCE);
|
---|
1290 | break;
|
---|
1291 | }
|
---|
1292 | }
|
---|
1293 | continue;
|
---|
1294 | }
|
---|
1295 | (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr,
|
---|
1296 | IPAddressFamily_cmp);
|
---|
1297 | sk_IPAddressFamily_sort(x->rfc3779_addr);
|
---|
1298 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) {
|
---|
1299 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j);
|
---|
1300 | int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc);
|
---|
1301 | IPAddressFamily *fp =
|
---|
1302 | sk_IPAddressFamily_value(x->rfc3779_addr, k);
|
---|
1303 |
|
---|
1304 | if (fp == NULL) {
|
---|
1305 | if (fc->ipAddressChoice->type ==
|
---|
1306 | IPAddressChoice_addressesOrRanges) {
|
---|
1307 | validation_err(X509_V_ERR_UNNESTED_RESOURCE);
|
---|
1308 | break;
|
---|
1309 | }
|
---|
1310 | continue;
|
---|
1311 | }
|
---|
1312 |
|
---|
1313 | if (!IPAddressFamily_check_len(fc) || !IPAddressFamily_check_len(fp))
|
---|
1314 | goto done;
|
---|
1315 |
|
---|
1316 | if (fp->ipAddressChoice->type ==
|
---|
1317 | IPAddressChoice_addressesOrRanges) {
|
---|
1318 | if (fc->ipAddressChoice->type == IPAddressChoice_inherit
|
---|
1319 | || addr_contains(fp->ipAddressChoice->u.addressesOrRanges,
|
---|
1320 | fc->ipAddressChoice->u.addressesOrRanges,
|
---|
1321 | length_from_afi(X509v3_addr_get_afi(fc))))
|
---|
1322 | (void)sk_IPAddressFamily_set(child, j, fp);
|
---|
1323 | else
|
---|
1324 | validation_err(X509_V_ERR_UNNESTED_RESOURCE);
|
---|
1325 | }
|
---|
1326 | }
|
---|
1327 | }
|
---|
1328 |
|
---|
1329 | /*
|
---|
1330 | * Trust anchor can't inherit.
|
---|
1331 | */
|
---|
1332 | if (x->rfc3779_addr != NULL) {
|
---|
1333 | for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) {
|
---|
1334 | IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j);
|
---|
1335 |
|
---|
1336 | if (!IPAddressFamily_check_len(fp))
|
---|
1337 | goto done;
|
---|
1338 |
|
---|
1339 | if (fp->ipAddressChoice->type == IPAddressChoice_inherit
|
---|
1340 | && sk_IPAddressFamily_find(child, fp) >= 0)
|
---|
1341 | validation_err(X509_V_ERR_UNNESTED_RESOURCE);
|
---|
1342 | }
|
---|
1343 | }
|
---|
1344 | ret = 1;
|
---|
1345 | done:
|
---|
1346 | sk_IPAddressFamily_free(child);
|
---|
1347 | return ret;
|
---|
1348 | }
|
---|
1349 |
|
---|
1350 | # undef validation_err
|
---|
1351 |
|
---|
1352 | /*
|
---|
1353 | * RFC 3779 2.3 path validation -- called from X509_verify_cert().
|
---|
1354 | */
|
---|
1355 | int X509v3_addr_validate_path(X509_STORE_CTX *ctx)
|
---|
1356 | {
|
---|
1357 | if (ctx->chain == NULL
|
---|
1358 | || sk_X509_num(ctx->chain) == 0
|
---|
1359 | || ctx->verify_cb == NULL) {
|
---|
1360 | ctx->error = X509_V_ERR_UNSPECIFIED;
|
---|
1361 | return 0;
|
---|
1362 | }
|
---|
1363 | return addr_validate_path_internal(ctx, ctx->chain, NULL);
|
---|
1364 | }
|
---|
1365 |
|
---|
1366 | /*
|
---|
1367 | * RFC 3779 2.3 path validation of an extension.
|
---|
1368 | * Test whether chain covers extension.
|
---|
1369 | */
|
---|
1370 | int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain,
|
---|
1371 | IPAddrBlocks *ext, int allow_inheritance)
|
---|
1372 | {
|
---|
1373 | if (ext == NULL)
|
---|
1374 | return 1;
|
---|
1375 | if (chain == NULL || sk_X509_num(chain) == 0)
|
---|
1376 | return 0;
|
---|
1377 | if (!allow_inheritance && X509v3_addr_inherits(ext))
|
---|
1378 | return 0;
|
---|
1379 | return addr_validate_path_internal(NULL, chain, ext);
|
---|
1380 | }
|
---|
1381 |
|
---|
1382 | #endif /* OPENSSL_NO_RFC3779 */
|
---|