1 | /*
|
---|
2 | * Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /* We need to use the OPENSSL_fork_*() deprecated APIs */
|
---|
11 | #define OPENSSL_SUPPRESS_DEPRECATED
|
---|
12 |
|
---|
13 | #include <openssl/crypto.h>
|
---|
14 | #include <crypto/cryptlib.h>
|
---|
15 | #include "internal/cryptlib.h"
|
---|
16 | #include "internal/rcu.h"
|
---|
17 | #include "rcu_internal.h"
|
---|
18 |
|
---|
19 | #if defined(__sun)
|
---|
20 | # include <atomic.h>
|
---|
21 | #endif
|
---|
22 |
|
---|
23 | #if defined(__apple_build_version__) && __apple_build_version__ < 6000000
|
---|
24 | /*
|
---|
25 | * OS/X 10.7 and 10.8 had a weird version of clang which has __ATOMIC_ACQUIRE and
|
---|
26 | * __ATOMIC_ACQ_REL but which expects only one parameter for __atomic_is_lock_free()
|
---|
27 | * rather than two which has signature __atomic_is_lock_free(sizeof(_Atomic(T))).
|
---|
28 | * All of this makes impossible to use __atomic_is_lock_free here.
|
---|
29 | *
|
---|
30 | * See: https://github.com/llvm/llvm-project/commit/a4c2602b714e6c6edb98164550a5ae829b2de760
|
---|
31 | */
|
---|
32 | # define BROKEN_CLANG_ATOMICS
|
---|
33 | #endif
|
---|
34 |
|
---|
35 | #if defined(OPENSSL_THREADS) && !defined(CRYPTO_TDEBUG) && !defined(OPENSSL_SYS_WINDOWS)
|
---|
36 |
|
---|
37 | # if defined(OPENSSL_SYS_UNIX)
|
---|
38 | # include <sys/types.h>
|
---|
39 | # include <unistd.h>
|
---|
40 | # endif
|
---|
41 |
|
---|
42 | # include <assert.h>
|
---|
43 |
|
---|
44 | # ifdef PTHREAD_RWLOCK_INITIALIZER
|
---|
45 | # define USE_RWLOCK
|
---|
46 | # endif
|
---|
47 |
|
---|
48 | /*
|
---|
49 | * For all GNU/clang atomic builtins, we also need fallbacks, to cover all
|
---|
50 | * other compilers.
|
---|
51 |
|
---|
52 | * Unfortunately, we can't do that with some "generic type", because there's no
|
---|
53 | * guarantee that the chosen generic type is large enough to cover all cases.
|
---|
54 | * Therefore, we implement fallbacks for each applicable type, with composed
|
---|
55 | * names that include the type they handle.
|
---|
56 | *
|
---|
57 | * (an anecdote: we previously tried to use |void *| as the generic type, with
|
---|
58 | * the thought that the pointer itself is the largest type. However, this is
|
---|
59 | * not true on 32-bit pointer platforms, as a |uint64_t| is twice as large)
|
---|
60 | *
|
---|
61 | * All applicable ATOMIC_ macros take the intended type as first parameter, so
|
---|
62 | * they can map to the correct fallback function. In the GNU/clang case, that
|
---|
63 | * parameter is simply ignored.
|
---|
64 | */
|
---|
65 |
|
---|
66 | /*
|
---|
67 | * Internal types used with the ATOMIC_ macros, to make it possible to compose
|
---|
68 | * fallback function names.
|
---|
69 | */
|
---|
70 | typedef void *pvoid;
|
---|
71 | typedef struct rcu_cb_item *prcu_cb_item;
|
---|
72 |
|
---|
73 | # if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS) \
|
---|
74 | && !defined(USE_ATOMIC_FALLBACKS)
|
---|
75 | # if defined(__APPLE__) && defined(__clang__) && defined(__aarch64__)
|
---|
76 | /*
|
---|
77 | * For pointers, Apple M1 virtualized cpu seems to have some problem using the
|
---|
78 | * ldapr instruction (see https://github.com/openssl/openssl/pull/23974)
|
---|
79 | * When using the native apple clang compiler, this instruction is emitted for
|
---|
80 | * atomic loads, which is bad. So, if
|
---|
81 | * 1) We are building on a target that defines __APPLE__ AND
|
---|
82 | * 2) We are building on a target using clang (__clang__) AND
|
---|
83 | * 3) We are building for an M1 processor (__aarch64__)
|
---|
84 | * Then we shold not use __atomic_load_n and instead implement our own
|
---|
85 | * function to issue the ldar instruction instead, which procuces the proper
|
---|
86 | * sequencing guarantees
|
---|
87 | */
|
---|
88 | static inline void *apple_atomic_load_n_pvoid(void **p,
|
---|
89 | ossl_unused int memorder)
|
---|
90 | {
|
---|
91 | void *ret;
|
---|
92 |
|
---|
93 | __asm volatile("ldar %0, [%1]" : "=r" (ret): "r" (p):);
|
---|
94 |
|
---|
95 | return ret;
|
---|
96 | }
|
---|
97 |
|
---|
98 | /* For uint64_t, we should be fine, though */
|
---|
99 | # define apple_atomic_load_n_uint64_t(p, o) __atomic_load_n(p, o)
|
---|
100 |
|
---|
101 | # define ATOMIC_LOAD_N(t, p, o) apple_atomic_load_n_##t(p, o)
|
---|
102 | # else
|
---|
103 | # define ATOMIC_LOAD_N(t, p, o) __atomic_load_n(p, o)
|
---|
104 | # endif
|
---|
105 | # define ATOMIC_STORE_N(t, p, v, o) __atomic_store_n(p, v, o)
|
---|
106 | # define ATOMIC_STORE(t, p, v, o) __atomic_store(p, v, o)
|
---|
107 | # define ATOMIC_EXCHANGE_N(t, p, v, o) __atomic_exchange_n(p, v, o)
|
---|
108 | # define ATOMIC_ADD_FETCH(p, v, o) __atomic_add_fetch(p, v, o)
|
---|
109 | # define ATOMIC_FETCH_ADD(p, v, o) __atomic_fetch_add(p, v, o)
|
---|
110 | # define ATOMIC_SUB_FETCH(p, v, o) __atomic_sub_fetch(p, v, o)
|
---|
111 | # define ATOMIC_AND_FETCH(p, m, o) __atomic_and_fetch(p, m, o)
|
---|
112 | # define ATOMIC_OR_FETCH(p, m, o) __atomic_or_fetch(p, m, o)
|
---|
113 | # else
|
---|
114 | static pthread_mutex_t atomic_sim_lock = PTHREAD_MUTEX_INITIALIZER;
|
---|
115 |
|
---|
116 | # define IMPL_fallback_atomic_load_n(t) \
|
---|
117 | static ossl_inline t fallback_atomic_load_n_##t(t *p) \
|
---|
118 | { \
|
---|
119 | t ret; \
|
---|
120 | \
|
---|
121 | pthread_mutex_lock(&atomic_sim_lock); \
|
---|
122 | ret = *p; \
|
---|
123 | pthread_mutex_unlock(&atomic_sim_lock); \
|
---|
124 | return ret; \
|
---|
125 | }
|
---|
126 | IMPL_fallback_atomic_load_n(uint64_t)
|
---|
127 | IMPL_fallback_atomic_load_n(pvoid)
|
---|
128 |
|
---|
129 | # define ATOMIC_LOAD_N(t, p, o) fallback_atomic_load_n_##t(p)
|
---|
130 |
|
---|
131 | # define IMPL_fallback_atomic_store_n(t) \
|
---|
132 | static ossl_inline t fallback_atomic_store_n_##t(t *p, t v) \
|
---|
133 | { \
|
---|
134 | t ret; \
|
---|
135 | \
|
---|
136 | pthread_mutex_lock(&atomic_sim_lock); \
|
---|
137 | ret = *p; \
|
---|
138 | *p = v; \
|
---|
139 | pthread_mutex_unlock(&atomic_sim_lock); \
|
---|
140 | return ret; \
|
---|
141 | }
|
---|
142 | IMPL_fallback_atomic_store_n(uint64_t)
|
---|
143 |
|
---|
144 | # define ATOMIC_STORE_N(t, p, v, o) fallback_atomic_store_n_##t(p, v)
|
---|
145 |
|
---|
146 | # define IMPL_fallback_atomic_store(t) \
|
---|
147 | static ossl_inline void fallback_atomic_store_##t(t *p, t *v) \
|
---|
148 | { \
|
---|
149 | pthread_mutex_lock(&atomic_sim_lock); \
|
---|
150 | *p = *v; \
|
---|
151 | pthread_mutex_unlock(&atomic_sim_lock); \
|
---|
152 | }
|
---|
153 | IMPL_fallback_atomic_store(uint64_t)
|
---|
154 | IMPL_fallback_atomic_store(pvoid)
|
---|
155 |
|
---|
156 | # define ATOMIC_STORE(t, p, v, o) fallback_atomic_store_##t(p, v)
|
---|
157 |
|
---|
158 | # define IMPL_fallback_atomic_exchange_n(t) \
|
---|
159 | static ossl_inline t fallback_atomic_exchange_n_##t(t *p, t v) \
|
---|
160 | { \
|
---|
161 | t ret; \
|
---|
162 | \
|
---|
163 | pthread_mutex_lock(&atomic_sim_lock); \
|
---|
164 | ret = *p; \
|
---|
165 | *p = v; \
|
---|
166 | pthread_mutex_unlock(&atomic_sim_lock); \
|
---|
167 | return ret; \
|
---|
168 | }
|
---|
169 | IMPL_fallback_atomic_exchange_n(uint64_t)
|
---|
170 | IMPL_fallback_atomic_exchange_n(prcu_cb_item)
|
---|
171 |
|
---|
172 | # define ATOMIC_EXCHANGE_N(t, p, v, o) fallback_atomic_exchange_n_##t(p, v)
|
---|
173 |
|
---|
174 | /*
|
---|
175 | * The fallbacks that follow don't need any per type implementation, as
|
---|
176 | * they are designed for uint64_t only. If there comes a time when multiple
|
---|
177 | * types need to be covered, it's relatively easy to refactor them the same
|
---|
178 | * way as the fallbacks above.
|
---|
179 | */
|
---|
180 |
|
---|
181 | static ossl_inline uint64_t fallback_atomic_add_fetch(uint64_t *p, uint64_t v)
|
---|
182 | {
|
---|
183 | uint64_t ret;
|
---|
184 |
|
---|
185 | pthread_mutex_lock(&atomic_sim_lock);
|
---|
186 | *p += v;
|
---|
187 | ret = *p;
|
---|
188 | pthread_mutex_unlock(&atomic_sim_lock);
|
---|
189 | return ret;
|
---|
190 | }
|
---|
191 |
|
---|
192 | # define ATOMIC_ADD_FETCH(p, v, o) fallback_atomic_add_fetch(p, v)
|
---|
193 |
|
---|
194 | static ossl_inline uint64_t fallback_atomic_fetch_add(uint64_t *p, uint64_t v)
|
---|
195 | {
|
---|
196 | uint64_t ret;
|
---|
197 |
|
---|
198 | pthread_mutex_lock(&atomic_sim_lock);
|
---|
199 | ret = *p;
|
---|
200 | *p += v;
|
---|
201 | pthread_mutex_unlock(&atomic_sim_lock);
|
---|
202 | return ret;
|
---|
203 | }
|
---|
204 |
|
---|
205 | # define ATOMIC_FETCH_ADD(p, v, o) fallback_atomic_fetch_add(p, v)
|
---|
206 |
|
---|
207 | static ossl_inline uint64_t fallback_atomic_sub_fetch(uint64_t *p, uint64_t v)
|
---|
208 | {
|
---|
209 | uint64_t ret;
|
---|
210 |
|
---|
211 | pthread_mutex_lock(&atomic_sim_lock);
|
---|
212 | *p -= v;
|
---|
213 | ret = *p;
|
---|
214 | pthread_mutex_unlock(&atomic_sim_lock);
|
---|
215 | return ret;
|
---|
216 | }
|
---|
217 |
|
---|
218 | # define ATOMIC_SUB_FETCH(p, v, o) fallback_atomic_sub_fetch(p, v)
|
---|
219 |
|
---|
220 | static ossl_inline uint64_t fallback_atomic_and_fetch(uint64_t *p, uint64_t m)
|
---|
221 | {
|
---|
222 | uint64_t ret;
|
---|
223 |
|
---|
224 | pthread_mutex_lock(&atomic_sim_lock);
|
---|
225 | *p &= m;
|
---|
226 | ret = *p;
|
---|
227 | pthread_mutex_unlock(&atomic_sim_lock);
|
---|
228 | return ret;
|
---|
229 | }
|
---|
230 |
|
---|
231 | # define ATOMIC_AND_FETCH(p, v, o) fallback_atomic_and_fetch(p, v)
|
---|
232 |
|
---|
233 | static ossl_inline uint64_t fallback_atomic_or_fetch(uint64_t *p, uint64_t m)
|
---|
234 | {
|
---|
235 | uint64_t ret;
|
---|
236 |
|
---|
237 | pthread_mutex_lock(&atomic_sim_lock);
|
---|
238 | *p |= m;
|
---|
239 | ret = *p;
|
---|
240 | pthread_mutex_unlock(&atomic_sim_lock);
|
---|
241 | return ret;
|
---|
242 | }
|
---|
243 |
|
---|
244 | # define ATOMIC_OR_FETCH(p, v, o) fallback_atomic_or_fetch(p, v)
|
---|
245 | # endif
|
---|
246 |
|
---|
247 | /*
|
---|
248 | * users is broken up into 2 parts
|
---|
249 | * bits 0-15 current readers
|
---|
250 | * bit 32-63 - ID
|
---|
251 | */
|
---|
252 | # define READER_SHIFT 0
|
---|
253 | # define ID_SHIFT 32
|
---|
254 | # define READER_SIZE 16
|
---|
255 | # define ID_SIZE 32
|
---|
256 |
|
---|
257 | # define READER_MASK (((uint64_t)1 << READER_SIZE) - 1)
|
---|
258 | # define ID_MASK (((uint64_t)1 << ID_SIZE) - 1)
|
---|
259 | # define READER_COUNT(x) (((uint64_t)(x) >> READER_SHIFT) & READER_MASK)
|
---|
260 | # define ID_VAL(x) (((uint64_t)(x) >> ID_SHIFT) & ID_MASK)
|
---|
261 | # define VAL_READER ((uint64_t)1 << READER_SHIFT)
|
---|
262 | # define VAL_ID(x) ((uint64_t)x << ID_SHIFT)
|
---|
263 |
|
---|
264 | /*
|
---|
265 | * This is the core of an rcu lock. It tracks the readers and writers for the
|
---|
266 | * current quiescence point for a given lock. Users is the 64 bit value that
|
---|
267 | * stores the READERS/ID as defined above
|
---|
268 | *
|
---|
269 | */
|
---|
270 | struct rcu_qp {
|
---|
271 | uint64_t users;
|
---|
272 | };
|
---|
273 |
|
---|
274 | struct thread_qp {
|
---|
275 | struct rcu_qp *qp;
|
---|
276 | unsigned int depth;
|
---|
277 | CRYPTO_RCU_LOCK *lock;
|
---|
278 | };
|
---|
279 |
|
---|
280 | # define MAX_QPS 10
|
---|
281 | /*
|
---|
282 | * This is the per thread tracking data
|
---|
283 | * that is assigned to each thread participating
|
---|
284 | * in an rcu qp
|
---|
285 | *
|
---|
286 | * qp points to the qp that it last acquired
|
---|
287 | *
|
---|
288 | */
|
---|
289 | struct rcu_thr_data {
|
---|
290 | struct thread_qp thread_qps[MAX_QPS];
|
---|
291 | };
|
---|
292 |
|
---|
293 | /*
|
---|
294 | * This is the internal version of a CRYPTO_RCU_LOCK
|
---|
295 | * it is cast from CRYPTO_RCU_LOCK
|
---|
296 | */
|
---|
297 | struct rcu_lock_st {
|
---|
298 | /* Callbacks to call for next ossl_synchronize_rcu */
|
---|
299 | struct rcu_cb_item *cb_items;
|
---|
300 |
|
---|
301 | /* The context we are being created against */
|
---|
302 | OSSL_LIB_CTX *ctx;
|
---|
303 |
|
---|
304 | /* rcu generation counter for in-order retirement */
|
---|
305 | uint32_t id_ctr;
|
---|
306 |
|
---|
307 | /* Array of quiescent points for synchronization */
|
---|
308 | struct rcu_qp *qp_group;
|
---|
309 |
|
---|
310 | /* Number of elements in qp_group array */
|
---|
311 | size_t group_count;
|
---|
312 |
|
---|
313 | /* Index of the current qp in the qp_group array */
|
---|
314 | uint64_t reader_idx;
|
---|
315 |
|
---|
316 | /* value of the next id_ctr value to be retired */
|
---|
317 | uint32_t next_to_retire;
|
---|
318 |
|
---|
319 | /* index of the next free rcu_qp in the qp_group */
|
---|
320 | uint64_t current_alloc_idx;
|
---|
321 |
|
---|
322 | /* number of qp's in qp_group array currently being retired */
|
---|
323 | uint32_t writers_alloced;
|
---|
324 |
|
---|
325 | /* lock protecting write side operations */
|
---|
326 | pthread_mutex_t write_lock;
|
---|
327 |
|
---|
328 | /* lock protecting updates to writers_alloced/current_alloc_idx */
|
---|
329 | pthread_mutex_t alloc_lock;
|
---|
330 |
|
---|
331 | /* signal to wake threads waiting on alloc_lock */
|
---|
332 | pthread_cond_t alloc_signal;
|
---|
333 |
|
---|
334 | /* lock to enforce in-order retirement */
|
---|
335 | pthread_mutex_t prior_lock;
|
---|
336 |
|
---|
337 | /* signal to wake threads waiting on prior_lock */
|
---|
338 | pthread_cond_t prior_signal;
|
---|
339 | };
|
---|
340 |
|
---|
341 | /* Read side acquisition of the current qp */
|
---|
342 | static struct rcu_qp *get_hold_current_qp(struct rcu_lock_st *lock)
|
---|
343 | {
|
---|
344 | uint64_t qp_idx;
|
---|
345 |
|
---|
346 | /* get the current qp index */
|
---|
347 | for (;;) {
|
---|
348 | /*
|
---|
349 | * Notes on use of __ATOMIC_ACQUIRE
|
---|
350 | * We need to ensure the following:
|
---|
351 | * 1) That subsequent operations aren't optimized by hoisting them above
|
---|
352 | * this operation. Specifically, we don't want the below re-load of
|
---|
353 | * qp_idx to get optimized away
|
---|
354 | * 2) We want to ensure that any updating of reader_idx on the write side
|
---|
355 | * of the lock is flushed from a local cpu cache so that we see any
|
---|
356 | * updates prior to the load. This is a non-issue on cache coherent
|
---|
357 | * systems like x86, but is relevant on other arches
|
---|
358 | * Note: This applies to the reload below as well
|
---|
359 | */
|
---|
360 | qp_idx = ATOMIC_LOAD_N(uint64_t, &lock->reader_idx, __ATOMIC_ACQUIRE);
|
---|
361 |
|
---|
362 | /*
|
---|
363 | * Notes of use of __ATOMIC_RELEASE
|
---|
364 | * This counter is only read by the write side of the lock, and so we
|
---|
365 | * specify __ATOMIC_RELEASE here to ensure that the write side of the
|
---|
366 | * lock see this during the spin loop read of users, as it waits for the
|
---|
367 | * reader count to approach zero
|
---|
368 | */
|
---|
369 | ATOMIC_ADD_FETCH(&lock->qp_group[qp_idx].users, VAL_READER,
|
---|
370 | __ATOMIC_RELEASE);
|
---|
371 |
|
---|
372 | /* if the idx hasn't changed, we're good, else try again */
|
---|
373 | if (qp_idx == ATOMIC_LOAD_N(uint64_t, &lock->reader_idx, __ATOMIC_ACQUIRE))
|
---|
374 | break;
|
---|
375 |
|
---|
376 | /*
|
---|
377 | * Notes on use of __ATOMIC_RELEASE
|
---|
378 | * As with the add above, we want to ensure that this decrement is
|
---|
379 | * seen by the write side of the lock as soon as it happens to prevent
|
---|
380 | * undue spinning waiting for write side completion
|
---|
381 | */
|
---|
382 | ATOMIC_SUB_FETCH(&lock->qp_group[qp_idx].users, VAL_READER,
|
---|
383 | __ATOMIC_RELEASE);
|
---|
384 | }
|
---|
385 |
|
---|
386 | return &lock->qp_group[qp_idx];
|
---|
387 | }
|
---|
388 |
|
---|
389 | static void ossl_rcu_free_local_data(void *arg)
|
---|
390 | {
|
---|
391 | OSSL_LIB_CTX *ctx = arg;
|
---|
392 | CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(ctx);
|
---|
393 | struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
|
---|
394 |
|
---|
395 | OPENSSL_free(data);
|
---|
396 | CRYPTO_THREAD_set_local(lkey, NULL);
|
---|
397 | }
|
---|
398 |
|
---|
399 | void ossl_rcu_read_lock(CRYPTO_RCU_LOCK *lock)
|
---|
400 | {
|
---|
401 | struct rcu_thr_data *data;
|
---|
402 | int i, available_qp = -1;
|
---|
403 | CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
|
---|
404 |
|
---|
405 | /*
|
---|
406 | * we're going to access current_qp here so ask the
|
---|
407 | * processor to fetch it
|
---|
408 | */
|
---|
409 | data = CRYPTO_THREAD_get_local(lkey);
|
---|
410 |
|
---|
411 | if (data == NULL) {
|
---|
412 | data = OPENSSL_zalloc(sizeof(*data));
|
---|
413 | OPENSSL_assert(data != NULL);
|
---|
414 | CRYPTO_THREAD_set_local(lkey, data);
|
---|
415 | ossl_init_thread_start(NULL, lock->ctx, ossl_rcu_free_local_data);
|
---|
416 | }
|
---|
417 |
|
---|
418 | for (i = 0; i < MAX_QPS; i++) {
|
---|
419 | if (data->thread_qps[i].qp == NULL && available_qp == -1)
|
---|
420 | available_qp = i;
|
---|
421 | /* If we have a hold on this lock already, we're good */
|
---|
422 | if (data->thread_qps[i].lock == lock) {
|
---|
423 | data->thread_qps[i].depth++;
|
---|
424 | return;
|
---|
425 | }
|
---|
426 | }
|
---|
427 |
|
---|
428 | /*
|
---|
429 | * if we get here, then we don't have a hold on this lock yet
|
---|
430 | */
|
---|
431 | assert(available_qp != -1);
|
---|
432 |
|
---|
433 | data->thread_qps[available_qp].qp = get_hold_current_qp(lock);
|
---|
434 | data->thread_qps[available_qp].depth = 1;
|
---|
435 | data->thread_qps[available_qp].lock = lock;
|
---|
436 | }
|
---|
437 |
|
---|
438 | void ossl_rcu_read_unlock(CRYPTO_RCU_LOCK *lock)
|
---|
439 | {
|
---|
440 | int i;
|
---|
441 | CRYPTO_THREAD_LOCAL *lkey = ossl_lib_ctx_get_rcukey(lock->ctx);
|
---|
442 | struct rcu_thr_data *data = CRYPTO_THREAD_get_local(lkey);
|
---|
443 | uint64_t ret;
|
---|
444 |
|
---|
445 | assert(data != NULL);
|
---|
446 |
|
---|
447 | for (i = 0; i < MAX_QPS; i++) {
|
---|
448 | if (data->thread_qps[i].lock == lock) {
|
---|
449 | /*
|
---|
450 | * As with read side acquisition, we use __ATOMIC_RELEASE here
|
---|
451 | * to ensure that the decrement is published immediately
|
---|
452 | * to any write side waiters
|
---|
453 | */
|
---|
454 | data->thread_qps[i].depth--;
|
---|
455 | if (data->thread_qps[i].depth == 0) {
|
---|
456 | ret = ATOMIC_SUB_FETCH(&data->thread_qps[i].qp->users, VAL_READER,
|
---|
457 | __ATOMIC_RELEASE);
|
---|
458 | OPENSSL_assert(ret != UINT64_MAX);
|
---|
459 | data->thread_qps[i].qp = NULL;
|
---|
460 | data->thread_qps[i].lock = NULL;
|
---|
461 | }
|
---|
462 | return;
|
---|
463 | }
|
---|
464 | }
|
---|
465 | /*
|
---|
466 | * If we get here, we're trying to unlock a lock that we never acquired -
|
---|
467 | * that's fatal.
|
---|
468 | */
|
---|
469 | assert(0);
|
---|
470 | }
|
---|
471 |
|
---|
472 | /*
|
---|
473 | * Write side allocation routine to get the current qp
|
---|
474 | * and replace it with a new one
|
---|
475 | */
|
---|
476 | static struct rcu_qp *update_qp(CRYPTO_RCU_LOCK *lock)
|
---|
477 | {
|
---|
478 | uint64_t new_id;
|
---|
479 | uint64_t current_idx;
|
---|
480 |
|
---|
481 | pthread_mutex_lock(&lock->alloc_lock);
|
---|
482 |
|
---|
483 | /*
|
---|
484 | * we need at least one qp to be available with one
|
---|
485 | * left over, so that readers can start working on
|
---|
486 | * one that isn't yet being waited on
|
---|
487 | */
|
---|
488 | while (lock->group_count - lock->writers_alloced < 2)
|
---|
489 | /* we have to wait for one to be free */
|
---|
490 | pthread_cond_wait(&lock->alloc_signal, &lock->alloc_lock);
|
---|
491 |
|
---|
492 | current_idx = lock->current_alloc_idx;
|
---|
493 |
|
---|
494 | /* Allocate the qp */
|
---|
495 | lock->writers_alloced++;
|
---|
496 |
|
---|
497 | /* increment the allocation index */
|
---|
498 | lock->current_alloc_idx =
|
---|
499 | (lock->current_alloc_idx + 1) % lock->group_count;
|
---|
500 |
|
---|
501 | /* get and insert a new id */
|
---|
502 | new_id = lock->id_ctr;
|
---|
503 | lock->id_ctr++;
|
---|
504 |
|
---|
505 | new_id = VAL_ID(new_id);
|
---|
506 | /*
|
---|
507 | * Even though we are under a write side lock here
|
---|
508 | * We need to use atomic instructions to ensure that the results
|
---|
509 | * of this update are published to the read side prior to updating the
|
---|
510 | * reader idx below
|
---|
511 | */
|
---|
512 | ATOMIC_AND_FETCH(&lock->qp_group[current_idx].users, ID_MASK,
|
---|
513 | __ATOMIC_RELEASE);
|
---|
514 | ATOMIC_OR_FETCH(&lock->qp_group[current_idx].users, new_id,
|
---|
515 | __ATOMIC_RELEASE);
|
---|
516 |
|
---|
517 | /*
|
---|
518 | * Update the reader index to be the prior qp.
|
---|
519 | * Note the use of __ATOMIC_RELEASE here is based on the corresponding use
|
---|
520 | * of __ATOMIC_ACQUIRE in get_hold_current_qp, as we want any publication
|
---|
521 | * of this value to be seen on the read side immediately after it happens
|
---|
522 | */
|
---|
523 | ATOMIC_STORE_N(uint64_t, &lock->reader_idx, lock->current_alloc_idx,
|
---|
524 | __ATOMIC_RELEASE);
|
---|
525 |
|
---|
526 | /* wake up any waiters */
|
---|
527 | pthread_cond_signal(&lock->alloc_signal);
|
---|
528 | pthread_mutex_unlock(&lock->alloc_lock);
|
---|
529 | return &lock->qp_group[current_idx];
|
---|
530 | }
|
---|
531 |
|
---|
532 | static void retire_qp(CRYPTO_RCU_LOCK *lock, struct rcu_qp *qp)
|
---|
533 | {
|
---|
534 | pthread_mutex_lock(&lock->alloc_lock);
|
---|
535 | lock->writers_alloced--;
|
---|
536 | pthread_cond_signal(&lock->alloc_signal);
|
---|
537 | pthread_mutex_unlock(&lock->alloc_lock);
|
---|
538 | }
|
---|
539 |
|
---|
540 | static struct rcu_qp *allocate_new_qp_group(CRYPTO_RCU_LOCK *lock,
|
---|
541 | int count)
|
---|
542 | {
|
---|
543 | struct rcu_qp *new =
|
---|
544 | OPENSSL_zalloc(sizeof(*new) * count);
|
---|
545 |
|
---|
546 | lock->group_count = count;
|
---|
547 | return new;
|
---|
548 | }
|
---|
549 |
|
---|
550 | void ossl_rcu_write_lock(CRYPTO_RCU_LOCK *lock)
|
---|
551 | {
|
---|
552 | pthread_mutex_lock(&lock->write_lock);
|
---|
553 | }
|
---|
554 |
|
---|
555 | void ossl_rcu_write_unlock(CRYPTO_RCU_LOCK *lock)
|
---|
556 | {
|
---|
557 | pthread_mutex_unlock(&lock->write_lock);
|
---|
558 | }
|
---|
559 |
|
---|
560 | void ossl_synchronize_rcu(CRYPTO_RCU_LOCK *lock)
|
---|
561 | {
|
---|
562 | struct rcu_qp *qp;
|
---|
563 | uint64_t count;
|
---|
564 | struct rcu_cb_item *cb_items, *tmpcb;
|
---|
565 |
|
---|
566 | /*
|
---|
567 | * __ATOMIC_ACQ_REL is used here to ensure that we get any prior published
|
---|
568 | * writes before we read, and publish our write immediately
|
---|
569 | */
|
---|
570 | cb_items = ATOMIC_EXCHANGE_N(prcu_cb_item, &lock->cb_items, NULL,
|
---|
571 | __ATOMIC_ACQ_REL);
|
---|
572 |
|
---|
573 | qp = update_qp(lock);
|
---|
574 |
|
---|
575 | /*
|
---|
576 | * wait for the reader count to reach zero
|
---|
577 | * Note the use of __ATOMIC_ACQUIRE here to ensure that any
|
---|
578 | * prior __ATOMIC_RELEASE write operation in get_hold_current_qp
|
---|
579 | * is visible prior to our read
|
---|
580 | */
|
---|
581 | do {
|
---|
582 | count = ATOMIC_LOAD_N(uint64_t, &qp->users, __ATOMIC_ACQUIRE);
|
---|
583 | } while (READER_COUNT(count) != 0);
|
---|
584 |
|
---|
585 | /* retire in order */
|
---|
586 | pthread_mutex_lock(&lock->prior_lock);
|
---|
587 | while (lock->next_to_retire != ID_VAL(count))
|
---|
588 | pthread_cond_wait(&lock->prior_signal, &lock->prior_lock);
|
---|
589 | lock->next_to_retire++;
|
---|
590 | pthread_cond_broadcast(&lock->prior_signal);
|
---|
591 | pthread_mutex_unlock(&lock->prior_lock);
|
---|
592 |
|
---|
593 | retire_qp(lock, qp);
|
---|
594 |
|
---|
595 | /* handle any callbacks that we have */
|
---|
596 | while (cb_items != NULL) {
|
---|
597 | tmpcb = cb_items;
|
---|
598 | cb_items = cb_items->next;
|
---|
599 | tmpcb->fn(tmpcb->data);
|
---|
600 | OPENSSL_free(tmpcb);
|
---|
601 | }
|
---|
602 | }
|
---|
603 |
|
---|
604 | int ossl_rcu_call(CRYPTO_RCU_LOCK *lock, rcu_cb_fn cb, void *data)
|
---|
605 | {
|
---|
606 | struct rcu_cb_item *new =
|
---|
607 | OPENSSL_zalloc(sizeof(*new));
|
---|
608 |
|
---|
609 | if (new == NULL)
|
---|
610 | return 0;
|
---|
611 |
|
---|
612 | new->data = data;
|
---|
613 | new->fn = cb;
|
---|
614 | /*
|
---|
615 | * Use __ATOMIC_ACQ_REL here to indicate that any prior writes to this
|
---|
616 | * list are visible to us prior to reading, and publish the new value
|
---|
617 | * immediately
|
---|
618 | */
|
---|
619 | new->next = ATOMIC_EXCHANGE_N(prcu_cb_item, &lock->cb_items, new,
|
---|
620 | __ATOMIC_ACQ_REL);
|
---|
621 |
|
---|
622 | return 1;
|
---|
623 | }
|
---|
624 |
|
---|
625 | void *ossl_rcu_uptr_deref(void **p)
|
---|
626 | {
|
---|
627 | return ATOMIC_LOAD_N(pvoid, p, __ATOMIC_ACQUIRE);
|
---|
628 | }
|
---|
629 |
|
---|
630 | void ossl_rcu_assign_uptr(void **p, void **v)
|
---|
631 | {
|
---|
632 | ATOMIC_STORE(pvoid, p, v, __ATOMIC_RELEASE);
|
---|
633 | }
|
---|
634 |
|
---|
635 | CRYPTO_RCU_LOCK *ossl_rcu_lock_new(int num_writers, OSSL_LIB_CTX *ctx)
|
---|
636 | {
|
---|
637 | struct rcu_lock_st *new;
|
---|
638 |
|
---|
639 | if (num_writers < 1)
|
---|
640 | num_writers = 1;
|
---|
641 |
|
---|
642 | ctx = ossl_lib_ctx_get_concrete(ctx);
|
---|
643 | if (ctx == NULL)
|
---|
644 | return 0;
|
---|
645 |
|
---|
646 | new = OPENSSL_zalloc(sizeof(*new));
|
---|
647 | if (new == NULL)
|
---|
648 | return NULL;
|
---|
649 |
|
---|
650 | new->ctx = ctx;
|
---|
651 | pthread_mutex_init(&new->write_lock, NULL);
|
---|
652 | pthread_mutex_init(&new->prior_lock, NULL);
|
---|
653 | pthread_mutex_init(&new->alloc_lock, NULL);
|
---|
654 | pthread_cond_init(&new->prior_signal, NULL);
|
---|
655 | pthread_cond_init(&new->alloc_signal, NULL);
|
---|
656 | new->qp_group = allocate_new_qp_group(new, num_writers + 1);
|
---|
657 | if (new->qp_group == NULL) {
|
---|
658 | OPENSSL_free(new);
|
---|
659 | new = NULL;
|
---|
660 | }
|
---|
661 | return new;
|
---|
662 | }
|
---|
663 |
|
---|
664 | void ossl_rcu_lock_free(CRYPTO_RCU_LOCK *lock)
|
---|
665 | {
|
---|
666 | struct rcu_lock_st *rlock = (struct rcu_lock_st *)lock;
|
---|
667 |
|
---|
668 | if (lock == NULL)
|
---|
669 | return;
|
---|
670 |
|
---|
671 | /* make sure we're synchronized */
|
---|
672 | ossl_synchronize_rcu(rlock);
|
---|
673 |
|
---|
674 | OPENSSL_free(rlock->qp_group);
|
---|
675 | /* There should only be a single qp left now */
|
---|
676 | OPENSSL_free(rlock);
|
---|
677 | }
|
---|
678 |
|
---|
679 | CRYPTO_RWLOCK *CRYPTO_THREAD_lock_new(void)
|
---|
680 | {
|
---|
681 | # ifdef USE_RWLOCK
|
---|
682 | CRYPTO_RWLOCK *lock;
|
---|
683 |
|
---|
684 | if ((lock = OPENSSL_zalloc(sizeof(pthread_rwlock_t))) == NULL)
|
---|
685 | /* Don't set error, to avoid recursion blowup. */
|
---|
686 | return NULL;
|
---|
687 |
|
---|
688 | if (pthread_rwlock_init(lock, NULL) != 0) {
|
---|
689 | OPENSSL_free(lock);
|
---|
690 | return NULL;
|
---|
691 | }
|
---|
692 | # else
|
---|
693 | pthread_mutexattr_t attr;
|
---|
694 | CRYPTO_RWLOCK *lock;
|
---|
695 |
|
---|
696 | if ((lock = OPENSSL_zalloc(sizeof(pthread_mutex_t))) == NULL)
|
---|
697 | /* Don't set error, to avoid recursion blowup. */
|
---|
698 | return NULL;
|
---|
699 |
|
---|
700 | /*
|
---|
701 | * We don't use recursive mutexes, but try to catch errors if we do.
|
---|
702 | */
|
---|
703 | pthread_mutexattr_init(&attr);
|
---|
704 | # if !defined (__TANDEM) && !defined (_SPT_MODEL_)
|
---|
705 | # if !defined(NDEBUG) && !defined(OPENSSL_NO_MUTEX_ERRORCHECK)
|
---|
706 | pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ERRORCHECK);
|
---|
707 | # endif
|
---|
708 | # else
|
---|
709 | /* The SPT Thread Library does not define MUTEX attributes. */
|
---|
710 | # endif
|
---|
711 |
|
---|
712 | if (pthread_mutex_init(lock, &attr) != 0) {
|
---|
713 | pthread_mutexattr_destroy(&attr);
|
---|
714 | OPENSSL_free(lock);
|
---|
715 | return NULL;
|
---|
716 | }
|
---|
717 |
|
---|
718 | pthread_mutexattr_destroy(&attr);
|
---|
719 | # endif
|
---|
720 |
|
---|
721 | return lock;
|
---|
722 | }
|
---|
723 |
|
---|
724 | __owur int CRYPTO_THREAD_read_lock(CRYPTO_RWLOCK *lock)
|
---|
725 | {
|
---|
726 | # ifdef USE_RWLOCK
|
---|
727 | if (pthread_rwlock_rdlock(lock) != 0)
|
---|
728 | return 0;
|
---|
729 | # else
|
---|
730 | if (pthread_mutex_lock(lock) != 0) {
|
---|
731 | assert(errno != EDEADLK && errno != EBUSY);
|
---|
732 | return 0;
|
---|
733 | }
|
---|
734 | # endif
|
---|
735 |
|
---|
736 | return 1;
|
---|
737 | }
|
---|
738 |
|
---|
739 | __owur int CRYPTO_THREAD_write_lock(CRYPTO_RWLOCK *lock)
|
---|
740 | {
|
---|
741 | # ifdef USE_RWLOCK
|
---|
742 | if (pthread_rwlock_wrlock(lock) != 0)
|
---|
743 | return 0;
|
---|
744 | # else
|
---|
745 | if (pthread_mutex_lock(lock) != 0) {
|
---|
746 | assert(errno != EDEADLK && errno != EBUSY);
|
---|
747 | return 0;
|
---|
748 | }
|
---|
749 | # endif
|
---|
750 |
|
---|
751 | return 1;
|
---|
752 | }
|
---|
753 |
|
---|
754 | int CRYPTO_THREAD_unlock(CRYPTO_RWLOCK *lock)
|
---|
755 | {
|
---|
756 | # ifdef USE_RWLOCK
|
---|
757 | if (pthread_rwlock_unlock(lock) != 0)
|
---|
758 | return 0;
|
---|
759 | # else
|
---|
760 | if (pthread_mutex_unlock(lock) != 0) {
|
---|
761 | assert(errno != EPERM);
|
---|
762 | return 0;
|
---|
763 | }
|
---|
764 | # endif
|
---|
765 |
|
---|
766 | return 1;
|
---|
767 | }
|
---|
768 |
|
---|
769 | void CRYPTO_THREAD_lock_free(CRYPTO_RWLOCK *lock)
|
---|
770 | {
|
---|
771 | if (lock == NULL)
|
---|
772 | return;
|
---|
773 |
|
---|
774 | # ifdef USE_RWLOCK
|
---|
775 | pthread_rwlock_destroy(lock);
|
---|
776 | # else
|
---|
777 | pthread_mutex_destroy(lock);
|
---|
778 | # endif
|
---|
779 | OPENSSL_free(lock);
|
---|
780 |
|
---|
781 | return;
|
---|
782 | }
|
---|
783 |
|
---|
784 | int CRYPTO_THREAD_run_once(CRYPTO_ONCE *once, void (*init)(void))
|
---|
785 | {
|
---|
786 | if (pthread_once(once, init) != 0)
|
---|
787 | return 0;
|
---|
788 |
|
---|
789 | return 1;
|
---|
790 | }
|
---|
791 |
|
---|
792 | int CRYPTO_THREAD_init_local(CRYPTO_THREAD_LOCAL *key, void (*cleanup)(void *))
|
---|
793 | {
|
---|
794 | if (pthread_key_create(key, cleanup) != 0)
|
---|
795 | return 0;
|
---|
796 |
|
---|
797 | return 1;
|
---|
798 | }
|
---|
799 |
|
---|
800 | void *CRYPTO_THREAD_get_local(CRYPTO_THREAD_LOCAL *key)
|
---|
801 | {
|
---|
802 | return pthread_getspecific(*key);
|
---|
803 | }
|
---|
804 |
|
---|
805 | int CRYPTO_THREAD_set_local(CRYPTO_THREAD_LOCAL *key, void *val)
|
---|
806 | {
|
---|
807 | if (pthread_setspecific(*key, val) != 0)
|
---|
808 | return 0;
|
---|
809 |
|
---|
810 | return 1;
|
---|
811 | }
|
---|
812 |
|
---|
813 | int CRYPTO_THREAD_cleanup_local(CRYPTO_THREAD_LOCAL *key)
|
---|
814 | {
|
---|
815 | if (pthread_key_delete(*key) != 0)
|
---|
816 | return 0;
|
---|
817 |
|
---|
818 | return 1;
|
---|
819 | }
|
---|
820 |
|
---|
821 | CRYPTO_THREAD_ID CRYPTO_THREAD_get_current_id(void)
|
---|
822 | {
|
---|
823 | return pthread_self();
|
---|
824 | }
|
---|
825 |
|
---|
826 | int CRYPTO_THREAD_compare_id(CRYPTO_THREAD_ID a, CRYPTO_THREAD_ID b)
|
---|
827 | {
|
---|
828 | return pthread_equal(a, b);
|
---|
829 | }
|
---|
830 |
|
---|
831 | int CRYPTO_atomic_add(int *val, int amount, int *ret, CRYPTO_RWLOCK *lock)
|
---|
832 | {
|
---|
833 | # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
|
---|
834 | if (__atomic_is_lock_free(sizeof(*val), val)) {
|
---|
835 | *ret = __atomic_add_fetch(val, amount, __ATOMIC_ACQ_REL);
|
---|
836 | return 1;
|
---|
837 | }
|
---|
838 | # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
---|
839 | /* This will work for all future Solaris versions. */
|
---|
840 | if (ret != NULL) {
|
---|
841 | *ret = atomic_add_int_nv((volatile unsigned int *)val, amount);
|
---|
842 | return 1;
|
---|
843 | }
|
---|
844 | # endif
|
---|
845 | if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
|
---|
846 | return 0;
|
---|
847 |
|
---|
848 | *val += amount;
|
---|
849 | *ret = *val;
|
---|
850 |
|
---|
851 | if (!CRYPTO_THREAD_unlock(lock))
|
---|
852 | return 0;
|
---|
853 |
|
---|
854 | return 1;
|
---|
855 | }
|
---|
856 |
|
---|
857 | int CRYPTO_atomic_or(uint64_t *val, uint64_t op, uint64_t *ret,
|
---|
858 | CRYPTO_RWLOCK *lock)
|
---|
859 | {
|
---|
860 | # if defined(__GNUC__) && defined(__ATOMIC_ACQ_REL) && !defined(BROKEN_CLANG_ATOMICS)
|
---|
861 | if (__atomic_is_lock_free(sizeof(*val), val)) {
|
---|
862 | *ret = __atomic_or_fetch(val, op, __ATOMIC_ACQ_REL);
|
---|
863 | return 1;
|
---|
864 | }
|
---|
865 | # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
---|
866 | /* This will work for all future Solaris versions. */
|
---|
867 | if (ret != NULL) {
|
---|
868 | *ret = atomic_or_64_nv(val, op);
|
---|
869 | return 1;
|
---|
870 | }
|
---|
871 | # endif
|
---|
872 | if (lock == NULL || !CRYPTO_THREAD_write_lock(lock))
|
---|
873 | return 0;
|
---|
874 | *val |= op;
|
---|
875 | *ret = *val;
|
---|
876 |
|
---|
877 | if (!CRYPTO_THREAD_unlock(lock))
|
---|
878 | return 0;
|
---|
879 |
|
---|
880 | return 1;
|
---|
881 | }
|
---|
882 |
|
---|
883 | int CRYPTO_atomic_load(uint64_t *val, uint64_t *ret, CRYPTO_RWLOCK *lock)
|
---|
884 | {
|
---|
885 | # if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
|
---|
886 | if (__atomic_is_lock_free(sizeof(*val), val)) {
|
---|
887 | __atomic_load(val, ret, __ATOMIC_ACQUIRE);
|
---|
888 | return 1;
|
---|
889 | }
|
---|
890 | # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
---|
891 | /* This will work for all future Solaris versions. */
|
---|
892 | if (ret != NULL) {
|
---|
893 | *ret = atomic_or_64_nv(val, 0);
|
---|
894 | return 1;
|
---|
895 | }
|
---|
896 | # endif
|
---|
897 | if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
|
---|
898 | return 0;
|
---|
899 | *ret = *val;
|
---|
900 | if (!CRYPTO_THREAD_unlock(lock))
|
---|
901 | return 0;
|
---|
902 |
|
---|
903 | return 1;
|
---|
904 | }
|
---|
905 |
|
---|
906 | int CRYPTO_atomic_load_int(int *val, int *ret, CRYPTO_RWLOCK *lock)
|
---|
907 | {
|
---|
908 | # if defined(__GNUC__) && defined(__ATOMIC_ACQUIRE) && !defined(BROKEN_CLANG_ATOMICS)
|
---|
909 | if (__atomic_is_lock_free(sizeof(*val), val)) {
|
---|
910 | __atomic_load(val, ret, __ATOMIC_ACQUIRE);
|
---|
911 | return 1;
|
---|
912 | }
|
---|
913 | # elif defined(__sun) && (defined(__SunOS_5_10) || defined(__SunOS_5_11))
|
---|
914 | /* This will work for all future Solaris versions. */
|
---|
915 | if (ret != NULL) {
|
---|
916 | *ret = (int *)atomic_or_uint_nv((unsigned int *)val, 0);
|
---|
917 | return 1;
|
---|
918 | }
|
---|
919 | # endif
|
---|
920 | if (lock == NULL || !CRYPTO_THREAD_read_lock(lock))
|
---|
921 | return 0;
|
---|
922 | *ret = *val;
|
---|
923 | if (!CRYPTO_THREAD_unlock(lock))
|
---|
924 | return 0;
|
---|
925 |
|
---|
926 | return 1;
|
---|
927 | }
|
---|
928 |
|
---|
929 | # ifndef FIPS_MODULE
|
---|
930 | int openssl_init_fork_handlers(void)
|
---|
931 | {
|
---|
932 | return 1;
|
---|
933 | }
|
---|
934 | # endif /* FIPS_MODULE */
|
---|
935 |
|
---|
936 | int openssl_get_fork_id(void)
|
---|
937 | {
|
---|
938 | return getpid();
|
---|
939 | }
|
---|
940 | #endif
|
---|