1 | /*
|
---|
2 | * Copyright 2023 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | *
|
---|
9 | */
|
---|
10 |
|
---|
11 | /*
|
---|
12 | * SM2 low level APIs are deprecated for public use, but still ok for
|
---|
13 | * internal use.
|
---|
14 | */
|
---|
15 | #include "internal/deprecated.h"
|
---|
16 |
|
---|
17 | #include <string.h>
|
---|
18 | #include <openssl/err.h>
|
---|
19 | #include "crypto/bn.h"
|
---|
20 | #include "ec_local.h"
|
---|
21 | #include "internal/common.h"
|
---|
22 | #include "internal/constant_time.h"
|
---|
23 |
|
---|
24 | #define P256_LIMBS (256 / BN_BITS2)
|
---|
25 |
|
---|
26 | #if !defined(OPENSSL_NO_SM2_PRECOMP)
|
---|
27 | extern const BN_ULONG ecp_sm2p256_precomputed[8 * 32 * 256];
|
---|
28 | #endif
|
---|
29 |
|
---|
30 | typedef struct {
|
---|
31 | BN_ULONG X[P256_LIMBS];
|
---|
32 | BN_ULONG Y[P256_LIMBS];
|
---|
33 | BN_ULONG Z[P256_LIMBS];
|
---|
34 | } P256_POINT;
|
---|
35 |
|
---|
36 | typedef struct {
|
---|
37 | BN_ULONG X[P256_LIMBS];
|
---|
38 | BN_ULONG Y[P256_LIMBS];
|
---|
39 | } P256_POINT_AFFINE;
|
---|
40 |
|
---|
41 | #if !defined(OPENSSL_NO_SM2_PRECOMP)
|
---|
42 | /* Coordinates of G, for which we have precomputed tables */
|
---|
43 | ALIGN32 static const BN_ULONG def_xG[P256_LIMBS] = {
|
---|
44 | 0x715a4589334c74c7, 0x8fe30bbff2660be1,
|
---|
45 | 0x5f9904466a39c994, 0x32c4ae2c1f198119
|
---|
46 | };
|
---|
47 |
|
---|
48 | ALIGN32 static const BN_ULONG def_yG[P256_LIMBS] = {
|
---|
49 | 0x02df32e52139f0a0, 0xd0a9877cc62a4740,
|
---|
50 | 0x59bdcee36b692153, 0xbc3736a2f4f6779c,
|
---|
51 | };
|
---|
52 | #endif
|
---|
53 |
|
---|
54 | /* p and order for SM2 according to GB/T 32918.5-2017 */
|
---|
55 | ALIGN32 static const BN_ULONG def_p[P256_LIMBS] = {
|
---|
56 | 0xffffffffffffffff, 0xffffffff00000000,
|
---|
57 | 0xffffffffffffffff, 0xfffffffeffffffff
|
---|
58 | };
|
---|
59 | ALIGN32 static const BN_ULONG def_ord[P256_LIMBS] = {
|
---|
60 | 0x53bbf40939d54123, 0x7203df6b21c6052b,
|
---|
61 | 0xffffffffffffffff, 0xfffffffeffffffff
|
---|
62 | };
|
---|
63 |
|
---|
64 | ALIGN32 static const BN_ULONG ONE[P256_LIMBS] = {1, 0, 0, 0};
|
---|
65 |
|
---|
66 | /* Functions implemented in assembly */
|
---|
67 | /*
|
---|
68 | * Most of below mentioned functions *preserve* the property of inputs
|
---|
69 | * being fully reduced, i.e. being in [0, modulus) range. Simply put if
|
---|
70 | * inputs are fully reduced, then output is too.
|
---|
71 | */
|
---|
72 | /* Right shift: a >> 1 */
|
---|
73 | void bn_rshift1(BN_ULONG *a);
|
---|
74 | /* Sub: r = a - b */
|
---|
75 | void bn_sub(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
|
---|
76 | /* Modular div by 2: r = a / 2 mod p */
|
---|
77 | void ecp_sm2p256_div_by_2(BN_ULONG *r, const BN_ULONG *a);
|
---|
78 | /* Modular div by 2: r = a / 2 mod n, where n = ord(p) */
|
---|
79 | void ecp_sm2p256_div_by_2_mod_ord(BN_ULONG *r, const BN_ULONG *a);
|
---|
80 | /* Modular add: r = a + b mod p */
|
---|
81 | void ecp_sm2p256_add(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
|
---|
82 | /* Modular sub: r = a - b mod p */
|
---|
83 | void ecp_sm2p256_sub(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
|
---|
84 | /* Modular sub: r = a - b mod n, where n = ord(p) */
|
---|
85 | void ecp_sm2p256_sub_mod_ord(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
|
---|
86 | /* Modular mul by 3: out = 3 * a mod p */
|
---|
87 | void ecp_sm2p256_mul_by_3(BN_ULONG *r, const BN_ULONG *a);
|
---|
88 | /* Modular mul: r = a * b mod p */
|
---|
89 | void ecp_sm2p256_mul(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b);
|
---|
90 | /* Modular sqr: r = a ^ 2 mod p */
|
---|
91 | void ecp_sm2p256_sqr(BN_ULONG *r, const BN_ULONG *a);
|
---|
92 |
|
---|
93 | static ossl_inline BN_ULONG is_zeros(const BN_ULONG *a)
|
---|
94 | {
|
---|
95 | BN_ULONG res;
|
---|
96 |
|
---|
97 | res = a[0] | a[1] | a[2] | a[3];
|
---|
98 |
|
---|
99 | return constant_time_is_zero_64(res);
|
---|
100 | }
|
---|
101 |
|
---|
102 | static ossl_inline int is_equal(const BN_ULONG *a, const BN_ULONG *b)
|
---|
103 | {
|
---|
104 | BN_ULONG res;
|
---|
105 |
|
---|
106 | res = a[0] ^ b[0];
|
---|
107 | res |= a[1] ^ b[1];
|
---|
108 | res |= a[2] ^ b[2];
|
---|
109 | res |= a[3] ^ b[3];
|
---|
110 |
|
---|
111 | return constant_time_is_zero_64(res);
|
---|
112 | }
|
---|
113 |
|
---|
114 | static ossl_inline int is_greater(const BN_ULONG *a, const BN_ULONG *b)
|
---|
115 | {
|
---|
116 | int i;
|
---|
117 |
|
---|
118 | for (i = P256_LIMBS - 1; i >= 0; --i) {
|
---|
119 | if (a[i] > b[i])
|
---|
120 | return 1;
|
---|
121 | if (a[i] < b[i])
|
---|
122 | return -1;
|
---|
123 | }
|
---|
124 |
|
---|
125 | return 0;
|
---|
126 | }
|
---|
127 |
|
---|
128 | #define is_one(a) is_equal(a, ONE)
|
---|
129 | #define is_even(a) !(a[0] & 1)
|
---|
130 | #define is_point_equal(a, b) \
|
---|
131 | is_equal(a->X, b->X) && \
|
---|
132 | is_equal(a->Y, b->Y) && \
|
---|
133 | is_equal(a->Z, b->Z)
|
---|
134 |
|
---|
135 | /* Bignum and field elements conversion */
|
---|
136 | #define ecp_sm2p256_bignum_field_elem(out, in) \
|
---|
137 | bn_copy_words(out, in, P256_LIMBS)
|
---|
138 |
|
---|
139 | /* Binary algorithm for inversion in Fp */
|
---|
140 | #define BN_MOD_INV(out, in, mod_div, mod_sub, mod) \
|
---|
141 | do { \
|
---|
142 | ALIGN32 BN_ULONG u[4]; \
|
---|
143 | ALIGN32 BN_ULONG v[4]; \
|
---|
144 | ALIGN32 BN_ULONG x1[4] = {1, 0, 0, 0}; \
|
---|
145 | ALIGN32 BN_ULONG x2[4] = {0}; \
|
---|
146 | \
|
---|
147 | if (is_zeros(in)) \
|
---|
148 | return; \
|
---|
149 | memcpy(u, in, 32); \
|
---|
150 | memcpy(v, mod, 32); \
|
---|
151 | while (!is_one(u) && !is_one(v)) { \
|
---|
152 | while (is_even(u)) { \
|
---|
153 | bn_rshift1(u); \
|
---|
154 | mod_div(x1, x1); \
|
---|
155 | } \
|
---|
156 | while (is_even(v)) { \
|
---|
157 | bn_rshift1(v); \
|
---|
158 | mod_div(x2, x2); \
|
---|
159 | } \
|
---|
160 | if (is_greater(u, v) == 1) { \
|
---|
161 | bn_sub(u, u, v); \
|
---|
162 | mod_sub(x1, x1, x2); \
|
---|
163 | } else { \
|
---|
164 | bn_sub(v, v, u); \
|
---|
165 | mod_sub(x2, x2, x1); \
|
---|
166 | } \
|
---|
167 | } \
|
---|
168 | if (is_one(u)) \
|
---|
169 | memcpy(out, x1, 32); \
|
---|
170 | else \
|
---|
171 | memcpy(out, x2, 32); \
|
---|
172 | } while (0)
|
---|
173 |
|
---|
174 | /* Modular inverse |out| = |in|^(-1) mod |p|. */
|
---|
175 | static ossl_inline void ecp_sm2p256_mod_inverse(BN_ULONG* out,
|
---|
176 | const BN_ULONG* in) {
|
---|
177 | BN_MOD_INV(out, in, ecp_sm2p256_div_by_2, ecp_sm2p256_sub, def_p);
|
---|
178 | }
|
---|
179 |
|
---|
180 | /* Modular inverse mod order |out| = |in|^(-1) % |ord|. */
|
---|
181 | static ossl_inline void ecp_sm2p256_mod_ord_inverse(BN_ULONG* out,
|
---|
182 | const BN_ULONG* in) {
|
---|
183 | BN_MOD_INV(out, in, ecp_sm2p256_div_by_2_mod_ord, ecp_sm2p256_sub_mod_ord,
|
---|
184 | def_ord);
|
---|
185 | }
|
---|
186 |
|
---|
187 | /* Point double: R <- P + P */
|
---|
188 | static void ecp_sm2p256_point_double(P256_POINT *R, const P256_POINT *P)
|
---|
189 | {
|
---|
190 | unsigned int i;
|
---|
191 | ALIGN32 BN_ULONG tmp0[P256_LIMBS];
|
---|
192 | ALIGN32 BN_ULONG tmp1[P256_LIMBS];
|
---|
193 | ALIGN32 BN_ULONG tmp2[P256_LIMBS];
|
---|
194 |
|
---|
195 | /* zero-check P->Z */
|
---|
196 | if (is_zeros(P->Z)) {
|
---|
197 | for (i = 0; i < P256_LIMBS; ++i)
|
---|
198 | R->Z[i] = 0;
|
---|
199 |
|
---|
200 | return;
|
---|
201 | }
|
---|
202 |
|
---|
203 | ecp_sm2p256_sqr(tmp0, P->Z);
|
---|
204 | ecp_sm2p256_sub(tmp1, P->X, tmp0);
|
---|
205 | ecp_sm2p256_add(tmp0, P->X, tmp0);
|
---|
206 | ecp_sm2p256_mul(tmp1, tmp1, tmp0);
|
---|
207 | ecp_sm2p256_mul_by_3(tmp1, tmp1);
|
---|
208 | ecp_sm2p256_add(R->Y, P->Y, P->Y);
|
---|
209 | ecp_sm2p256_mul(R->Z, R->Y, P->Z);
|
---|
210 | ecp_sm2p256_sqr(R->Y, R->Y);
|
---|
211 | ecp_sm2p256_mul(tmp2, R->Y, P->X);
|
---|
212 | ecp_sm2p256_sqr(R->Y, R->Y);
|
---|
213 | ecp_sm2p256_div_by_2(R->Y, R->Y);
|
---|
214 | ecp_sm2p256_sqr(R->X, tmp1);
|
---|
215 | ecp_sm2p256_add(tmp0, tmp2, tmp2);
|
---|
216 | ecp_sm2p256_sub(R->X, R->X, tmp0);
|
---|
217 | ecp_sm2p256_sub(tmp0, tmp2, R->X);
|
---|
218 | ecp_sm2p256_mul(tmp0, tmp0, tmp1);
|
---|
219 | ecp_sm2p256_sub(tmp1, tmp0, R->Y);
|
---|
220 | memcpy(R->Y, tmp1, 32);
|
---|
221 | }
|
---|
222 |
|
---|
223 | /* Point add affine: R <- P + Q */
|
---|
224 | static void ecp_sm2p256_point_add_affine(P256_POINT *R, const P256_POINT *P,
|
---|
225 | const P256_POINT_AFFINE *Q)
|
---|
226 | {
|
---|
227 | unsigned int i;
|
---|
228 | ALIGN32 BN_ULONG tmp0[P256_LIMBS] = {0};
|
---|
229 | ALIGN32 BN_ULONG tmp1[P256_LIMBS] = {0};
|
---|
230 | ALIGN32 BN_ULONG tmp2[P256_LIMBS] = {0};
|
---|
231 | ALIGN32 BN_ULONG tmp3[P256_LIMBS] = {0};
|
---|
232 |
|
---|
233 | /* zero-check P->Z */
|
---|
234 | if (is_zeros(P->Z)) {
|
---|
235 | for (i = 0; i < P256_LIMBS; ++i) {
|
---|
236 | R->X[i] = Q->X[i];
|
---|
237 | R->Y[i] = Q->Y[i];
|
---|
238 | R->Z[i] = 0;
|
---|
239 | }
|
---|
240 | R->Z[0] = 1;
|
---|
241 |
|
---|
242 | return;
|
---|
243 | }
|
---|
244 |
|
---|
245 | ecp_sm2p256_sqr(tmp0, P->Z);
|
---|
246 | ecp_sm2p256_mul(tmp1, tmp0, P->Z);
|
---|
247 | ecp_sm2p256_mul(tmp0, tmp0, Q->X);
|
---|
248 | ecp_sm2p256_mul(tmp1, tmp1, Q->Y);
|
---|
249 | ecp_sm2p256_sub(tmp0, tmp0, P->X);
|
---|
250 | ecp_sm2p256_sub(tmp1, tmp1, P->Y);
|
---|
251 |
|
---|
252 | /* zero-check tmp0, tmp1 */
|
---|
253 | if (is_zeros(tmp0)) {
|
---|
254 | if (is_zeros(tmp1)) {
|
---|
255 | P256_POINT K;
|
---|
256 |
|
---|
257 | for (i = 0; i < P256_LIMBS; ++i) {
|
---|
258 | K.X[i] = Q->X[i];
|
---|
259 | K.Y[i] = Q->Y[i];
|
---|
260 | K.Z[i] = 0;
|
---|
261 | }
|
---|
262 | K.Z[0] = 1;
|
---|
263 | ecp_sm2p256_point_double(R, &K);
|
---|
264 | } else {
|
---|
265 | for (i = 0; i < P256_LIMBS; ++i)
|
---|
266 | R->Z[i] = 0;
|
---|
267 | }
|
---|
268 |
|
---|
269 | return;
|
---|
270 | }
|
---|
271 |
|
---|
272 | ecp_sm2p256_mul(R->Z, P->Z, tmp0);
|
---|
273 | ecp_sm2p256_sqr(tmp2, tmp0);
|
---|
274 | ecp_sm2p256_mul(tmp3, tmp2, tmp0);
|
---|
275 | ecp_sm2p256_mul(tmp2, tmp2, P->X);
|
---|
276 | ecp_sm2p256_add(tmp0, tmp2, tmp2);
|
---|
277 | ecp_sm2p256_sqr(R->X, tmp1);
|
---|
278 | ecp_sm2p256_sub(R->X, R->X, tmp0);
|
---|
279 | ecp_sm2p256_sub(R->X, R->X, tmp3);
|
---|
280 | ecp_sm2p256_sub(tmp2, tmp2, R->X);
|
---|
281 | ecp_sm2p256_mul(tmp2, tmp2, tmp1);
|
---|
282 | ecp_sm2p256_mul(tmp3, tmp3, P->Y);
|
---|
283 | ecp_sm2p256_sub(R->Y, tmp2, tmp3);
|
---|
284 | }
|
---|
285 |
|
---|
286 | /* Point add: R <- P + Q */
|
---|
287 | static void ecp_sm2p256_point_add(P256_POINT *R, const P256_POINT *P,
|
---|
288 | const P256_POINT *Q)
|
---|
289 | {
|
---|
290 | unsigned int i;
|
---|
291 | ALIGN32 BN_ULONG tmp0[P256_LIMBS] = {0};
|
---|
292 | ALIGN32 BN_ULONG tmp1[P256_LIMBS] = {0};
|
---|
293 | ALIGN32 BN_ULONG tmp2[P256_LIMBS] = {0};
|
---|
294 |
|
---|
295 | /* zero-check P | Q ->Z */
|
---|
296 | if (is_zeros(P->Z)) {
|
---|
297 | for (i = 0; i < P256_LIMBS; ++i) {
|
---|
298 | R->X[i] = Q->X[i];
|
---|
299 | R->Y[i] = Q->Y[i];
|
---|
300 | R->Z[i] = Q->Z[i];
|
---|
301 | }
|
---|
302 |
|
---|
303 | return;
|
---|
304 | } else if (is_zeros(Q->Z)) {
|
---|
305 | for (i = 0; i < P256_LIMBS; ++i) {
|
---|
306 | R->X[i] = P->X[i];
|
---|
307 | R->Y[i] = P->Y[i];
|
---|
308 | R->Z[i] = P->Z[i];
|
---|
309 | }
|
---|
310 |
|
---|
311 | return;
|
---|
312 | } else if (is_point_equal(P, Q)) {
|
---|
313 | ecp_sm2p256_point_double(R, Q);
|
---|
314 |
|
---|
315 | return;
|
---|
316 | }
|
---|
317 |
|
---|
318 | ecp_sm2p256_sqr(tmp0, P->Z);
|
---|
319 | ecp_sm2p256_mul(tmp1, tmp0, P->Z);
|
---|
320 | ecp_sm2p256_mul(tmp0, tmp0, Q->X);
|
---|
321 | ecp_sm2p256_mul(tmp1, tmp1, Q->Y);
|
---|
322 | ecp_sm2p256_mul(R->Y, P->Y, Q->Z);
|
---|
323 | ecp_sm2p256_mul(R->Z, Q->Z, P->Z);
|
---|
324 | ecp_sm2p256_sqr(tmp2, Q->Z);
|
---|
325 | ecp_sm2p256_mul(R->Y, tmp2, R->Y);
|
---|
326 | ecp_sm2p256_mul(R->X, tmp2, P->X);
|
---|
327 | ecp_sm2p256_sub(tmp0, tmp0, R->X);
|
---|
328 | ecp_sm2p256_mul(R->Z, tmp0, R->Z);
|
---|
329 | ecp_sm2p256_sub(tmp1, tmp1, R->Y);
|
---|
330 | ecp_sm2p256_sqr(tmp2, tmp0);
|
---|
331 | ecp_sm2p256_mul(tmp0, tmp0, tmp2);
|
---|
332 | ecp_sm2p256_mul(tmp2, tmp2, R->X);
|
---|
333 | ecp_sm2p256_sqr(R->X, tmp1);
|
---|
334 | ecp_sm2p256_sub(R->X, R->X, tmp2);
|
---|
335 | ecp_sm2p256_sub(R->X, R->X, tmp2);
|
---|
336 | ecp_sm2p256_sub(R->X, R->X, tmp0);
|
---|
337 | ecp_sm2p256_sub(tmp2, tmp2, R->X);
|
---|
338 | ecp_sm2p256_mul(tmp2, tmp1, tmp2);
|
---|
339 | ecp_sm2p256_mul(tmp0, tmp0, R->Y);
|
---|
340 | ecp_sm2p256_sub(R->Y, tmp2, tmp0);
|
---|
341 | }
|
---|
342 |
|
---|
343 | #if !defined(OPENSSL_NO_SM2_PRECOMP)
|
---|
344 | /* Base point mul by scalar: k - scalar, G - base point */
|
---|
345 | static void ecp_sm2p256_point_G_mul_by_scalar(P256_POINT *R, const BN_ULONG *k)
|
---|
346 | {
|
---|
347 | unsigned int i, index, mask = 0xff;
|
---|
348 | P256_POINT_AFFINE Q;
|
---|
349 |
|
---|
350 | memset(R, 0, sizeof(P256_POINT));
|
---|
351 |
|
---|
352 | if (is_zeros(k))
|
---|
353 | return;
|
---|
354 |
|
---|
355 | index = k[0] & mask;
|
---|
356 | if (index) {
|
---|
357 | index = index * 8;
|
---|
358 | memcpy(R->X, ecp_sm2p256_precomputed + index, 32);
|
---|
359 | memcpy(R->Y, ecp_sm2p256_precomputed + index + P256_LIMBS, 32);
|
---|
360 | R->Z[0] = 1;
|
---|
361 | }
|
---|
362 |
|
---|
363 | for (i = 1; i < 32; ++i) {
|
---|
364 | index = (k[i / 8] >> (8 * (i % 8))) & mask;
|
---|
365 |
|
---|
366 | if (index) {
|
---|
367 | index = index + i * 256;
|
---|
368 | index = index * 8;
|
---|
369 | memcpy(Q.X, ecp_sm2p256_precomputed + index, 32);
|
---|
370 | memcpy(Q.Y, ecp_sm2p256_precomputed + index + P256_LIMBS, 32);
|
---|
371 | ecp_sm2p256_point_add_affine(R, R, &Q);
|
---|
372 | }
|
---|
373 | }
|
---|
374 | }
|
---|
375 | #endif
|
---|
376 |
|
---|
377 | /*
|
---|
378 | * Affine point mul by scalar: k - scalar, P - affine point
|
---|
379 | */
|
---|
380 | static void ecp_sm2p256_point_P_mul_by_scalar(P256_POINT *R, const BN_ULONG *k,
|
---|
381 | P256_POINT_AFFINE P)
|
---|
382 | {
|
---|
383 | int i, init = 0;
|
---|
384 | unsigned int index, mask = 0x0f;
|
---|
385 | ALIGN64 P256_POINT precomputed[16];
|
---|
386 |
|
---|
387 | memset(R, 0, sizeof(P256_POINT));
|
---|
388 |
|
---|
389 | if (is_zeros(k))
|
---|
390 | return;
|
---|
391 |
|
---|
392 | /* The first value of the precomputed table is P. */
|
---|
393 | memcpy(precomputed[1].X, P.X, 32);
|
---|
394 | memcpy(precomputed[1].Y, P.Y, 32);
|
---|
395 | precomputed[1].Z[0] = 1;
|
---|
396 | precomputed[1].Z[1] = 0;
|
---|
397 | precomputed[1].Z[2] = 0;
|
---|
398 | precomputed[1].Z[3] = 0;
|
---|
399 |
|
---|
400 | /* The second value of the precomputed table is 2P. */
|
---|
401 | ecp_sm2p256_point_double(&precomputed[2], &precomputed[1]);
|
---|
402 |
|
---|
403 | /* The subsequent elements are 3P, 4P, and so on. */
|
---|
404 | for (i = 3; i < 16; ++i)
|
---|
405 | ecp_sm2p256_point_add_affine(&precomputed[i], &precomputed[i - 1], &P);
|
---|
406 |
|
---|
407 | for (i = 64 - 1; i >= 0; --i) {
|
---|
408 | index = (k[i / 16] >> (4 * (i % 16))) & mask;
|
---|
409 |
|
---|
410 | if (init == 0) {
|
---|
411 | if (index) {
|
---|
412 | memcpy(R, &precomputed[index], sizeof(P256_POINT));
|
---|
413 | init = 1;
|
---|
414 | }
|
---|
415 | } else {
|
---|
416 | ecp_sm2p256_point_double(R, R);
|
---|
417 | ecp_sm2p256_point_double(R, R);
|
---|
418 | ecp_sm2p256_point_double(R, R);
|
---|
419 | ecp_sm2p256_point_double(R, R);
|
---|
420 | if (index)
|
---|
421 | ecp_sm2p256_point_add(R, R, &precomputed[index]);
|
---|
422 | }
|
---|
423 | }
|
---|
424 | }
|
---|
425 |
|
---|
426 | /* Get affine point */
|
---|
427 | static void ecp_sm2p256_point_get_affine(P256_POINT_AFFINE *R,
|
---|
428 | const P256_POINT *P)
|
---|
429 | {
|
---|
430 | ALIGN32 BN_ULONG z_inv3[P256_LIMBS] = {0};
|
---|
431 | ALIGN32 BN_ULONG z_inv2[P256_LIMBS] = {0};
|
---|
432 |
|
---|
433 | if (is_one(P->Z)) {
|
---|
434 | memcpy(R->X, P->X, 32);
|
---|
435 | memcpy(R->Y, P->Y, 32);
|
---|
436 | return;
|
---|
437 | }
|
---|
438 |
|
---|
439 | ecp_sm2p256_mod_inverse(z_inv3, P->Z);
|
---|
440 | ecp_sm2p256_sqr(z_inv2, z_inv3);
|
---|
441 | ecp_sm2p256_mul(R->X, P->X, z_inv2);
|
---|
442 | ecp_sm2p256_mul(z_inv3, z_inv3, z_inv2);
|
---|
443 | ecp_sm2p256_mul(R->Y, P->Y, z_inv3);
|
---|
444 | }
|
---|
445 |
|
---|
446 | #if !defined(OPENSSL_NO_SM2_PRECOMP)
|
---|
447 | static int ecp_sm2p256_is_affine_G(const EC_POINT *generator)
|
---|
448 | {
|
---|
449 | return (bn_get_top(generator->X) == P256_LIMBS)
|
---|
450 | && (bn_get_top(generator->Y) == P256_LIMBS)
|
---|
451 | && is_equal(bn_get_words(generator->X), def_xG)
|
---|
452 | && is_equal(bn_get_words(generator->Y), def_yG)
|
---|
453 | && (generator->Z_is_one == 1);
|
---|
454 | }
|
---|
455 | #endif
|
---|
456 |
|
---|
457 | /*
|
---|
458 | * Convert Jacobian coordinate point into affine coordinate (x,y)
|
---|
459 | */
|
---|
460 | static int ecp_sm2p256_get_affine(const EC_GROUP *group,
|
---|
461 | const EC_POINT *point,
|
---|
462 | BIGNUM *x, BIGNUM *y, BN_CTX *ctx)
|
---|
463 | {
|
---|
464 | ALIGN32 BN_ULONG z_inv2[P256_LIMBS] = {0};
|
---|
465 | ALIGN32 BN_ULONG z_inv3[P256_LIMBS] = {0};
|
---|
466 | ALIGN32 BN_ULONG x_aff[P256_LIMBS] = {0};
|
---|
467 | ALIGN32 BN_ULONG y_aff[P256_LIMBS] = {0};
|
---|
468 | ALIGN32 BN_ULONG point_x[P256_LIMBS] = {0};
|
---|
469 | ALIGN32 BN_ULONG point_y[P256_LIMBS] = {0};
|
---|
470 | ALIGN32 BN_ULONG point_z[P256_LIMBS] = {0};
|
---|
471 |
|
---|
472 | if (EC_POINT_is_at_infinity(group, point)) {
|
---|
473 | ECerr(ERR_LIB_EC, EC_R_POINT_AT_INFINITY);
|
---|
474 | return 0;
|
---|
475 | }
|
---|
476 |
|
---|
477 | if (ecp_sm2p256_bignum_field_elem(point_x, point->X) <= 0
|
---|
478 | || ecp_sm2p256_bignum_field_elem(point_y, point->Y) <= 0
|
---|
479 | || ecp_sm2p256_bignum_field_elem(point_z, point->Z) <= 0) {
|
---|
480 | ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
|
---|
481 | return 0;
|
---|
482 | }
|
---|
483 |
|
---|
484 | ecp_sm2p256_mod_inverse(z_inv3, point_z);
|
---|
485 | ecp_sm2p256_sqr(z_inv2, z_inv3);
|
---|
486 |
|
---|
487 | if (x != NULL) {
|
---|
488 | ecp_sm2p256_mul(x_aff, point_x, z_inv2);
|
---|
489 | if (!bn_set_words(x, x_aff, P256_LIMBS))
|
---|
490 | return 0;
|
---|
491 | }
|
---|
492 |
|
---|
493 | if (y != NULL) {
|
---|
494 | ecp_sm2p256_mul(z_inv3, z_inv3, z_inv2);
|
---|
495 | ecp_sm2p256_mul(y_aff, point_y, z_inv3);
|
---|
496 | if (!bn_set_words(y, y_aff, P256_LIMBS))
|
---|
497 | return 0;
|
---|
498 | }
|
---|
499 |
|
---|
500 | return 1;
|
---|
501 | }
|
---|
502 |
|
---|
503 | /* r = sum(scalar[i]*point[i]) */
|
---|
504 | static int ecp_sm2p256_windowed_mul(const EC_GROUP *group,
|
---|
505 | P256_POINT *r,
|
---|
506 | const BIGNUM **scalar,
|
---|
507 | const EC_POINT **point,
|
---|
508 | size_t num, BN_CTX *ctx)
|
---|
509 | {
|
---|
510 | unsigned int i;
|
---|
511 | int ret = 0;
|
---|
512 | const BIGNUM **scalars = NULL;
|
---|
513 | ALIGN32 BN_ULONG k[P256_LIMBS] = {0};
|
---|
514 | P256_POINT kP;
|
---|
515 | ALIGN32 union {
|
---|
516 | P256_POINT p;
|
---|
517 | P256_POINT_AFFINE a;
|
---|
518 | } t, p;
|
---|
519 |
|
---|
520 | if (num > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT)
|
---|
521 | || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) {
|
---|
522 | ECerr(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
|
---|
523 | goto err;
|
---|
524 | }
|
---|
525 |
|
---|
526 | memset(r, 0, sizeof(P256_POINT));
|
---|
527 |
|
---|
528 | for (i = 0; i < num; i++) {
|
---|
529 | if (EC_POINT_is_at_infinity(group, point[i]))
|
---|
530 | continue;
|
---|
531 |
|
---|
532 | if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) {
|
---|
533 | BIGNUM *tmp;
|
---|
534 |
|
---|
535 | if ((tmp = BN_CTX_get(ctx)) == NULL)
|
---|
536 | goto err;
|
---|
537 | if (!BN_nnmod(tmp, scalar[i], group->order, ctx)) {
|
---|
538 | ECerr(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
539 | goto err;
|
---|
540 | }
|
---|
541 | scalars[i] = tmp;
|
---|
542 | } else {
|
---|
543 | scalars[i] = scalar[i];
|
---|
544 | }
|
---|
545 |
|
---|
546 | if (ecp_sm2p256_bignum_field_elem(k, scalars[i]) <= 0
|
---|
547 | || ecp_sm2p256_bignum_field_elem(p.p.X, point[i]->X) <= 0
|
---|
548 | || ecp_sm2p256_bignum_field_elem(p.p.Y, point[i]->Y) <= 0
|
---|
549 | || ecp_sm2p256_bignum_field_elem(p.p.Z, point[i]->Z) <= 0) {
|
---|
550 | ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
|
---|
551 | goto err;
|
---|
552 | }
|
---|
553 |
|
---|
554 | ecp_sm2p256_point_get_affine(&t.a, &p.p);
|
---|
555 | ecp_sm2p256_point_P_mul_by_scalar(&kP, k, t.a);
|
---|
556 | ecp_sm2p256_point_add(r, r, &kP);
|
---|
557 | }
|
---|
558 |
|
---|
559 | ret = 1;
|
---|
560 | err:
|
---|
561 | OPENSSL_free(scalars);
|
---|
562 | return ret;
|
---|
563 | }
|
---|
564 |
|
---|
565 | /* r = scalar*G + sum(scalars[i]*points[i]) */
|
---|
566 | static int ecp_sm2p256_points_mul(const EC_GROUP *group,
|
---|
567 | EC_POINT *r,
|
---|
568 | const BIGNUM *scalar,
|
---|
569 | size_t num,
|
---|
570 | const EC_POINT *points[],
|
---|
571 | const BIGNUM *scalars[], BN_CTX *ctx)
|
---|
572 | {
|
---|
573 | int ret = 0, p_is_infinity = 0;
|
---|
574 | const EC_POINT *generator = NULL;
|
---|
575 | ALIGN32 BN_ULONG k[P256_LIMBS] = {0};
|
---|
576 | ALIGN32 union {
|
---|
577 | P256_POINT p;
|
---|
578 | P256_POINT_AFFINE a;
|
---|
579 | } t, p;
|
---|
580 |
|
---|
581 | if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) {
|
---|
582 | ECerr(ERR_LIB_EC, ERR_R_MALLOC_FAILURE);
|
---|
583 | goto err;
|
---|
584 | }
|
---|
585 |
|
---|
586 | BN_CTX_start(ctx);
|
---|
587 |
|
---|
588 | if (scalar) {
|
---|
589 | generator = EC_GROUP_get0_generator(group);
|
---|
590 | if (generator == NULL) {
|
---|
591 | ECerr(ERR_LIB_EC, EC_R_UNDEFINED_GENERATOR);
|
---|
592 | goto err;
|
---|
593 | }
|
---|
594 |
|
---|
595 | if (!ecp_sm2p256_bignum_field_elem(k, scalar)) {
|
---|
596 | ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
|
---|
597 | goto err;
|
---|
598 | }
|
---|
599 | #if !defined(OPENSSL_NO_SM2_PRECOMP)
|
---|
600 | if (ecp_sm2p256_is_affine_G(generator)) {
|
---|
601 | ecp_sm2p256_point_G_mul_by_scalar(&p.p, k);
|
---|
602 | } else
|
---|
603 | #endif
|
---|
604 | {
|
---|
605 | /* if no precomputed table */
|
---|
606 | const EC_POINT *new_generator[1];
|
---|
607 | const BIGNUM *g_scalars[1];
|
---|
608 |
|
---|
609 | new_generator[0] = generator;
|
---|
610 | g_scalars[0] = scalar;
|
---|
611 |
|
---|
612 | if (!ecp_sm2p256_windowed_mul(group, &p.p, g_scalars, new_generator,
|
---|
613 | (new_generator[0] != NULL
|
---|
614 | && g_scalars[0] != NULL), ctx))
|
---|
615 | goto err;
|
---|
616 | }
|
---|
617 | } else {
|
---|
618 | p_is_infinity = 1;
|
---|
619 | }
|
---|
620 | if (num) {
|
---|
621 | P256_POINT *out = &t.p;
|
---|
622 |
|
---|
623 | if (p_is_infinity)
|
---|
624 | out = &p.p;
|
---|
625 |
|
---|
626 | if (!ecp_sm2p256_windowed_mul(group, out, scalars, points, num, ctx))
|
---|
627 | goto err;
|
---|
628 |
|
---|
629 | if (!p_is_infinity)
|
---|
630 | ecp_sm2p256_point_add(&p.p, &p.p, out);
|
---|
631 | }
|
---|
632 |
|
---|
633 | /* Not constant-time, but we're only operating on the public output. */
|
---|
634 | if (!bn_set_words(r->X, p.p.X, P256_LIMBS)
|
---|
635 | || !bn_set_words(r->Y, p.p.Y, P256_LIMBS)
|
---|
636 | || !bn_set_words(r->Z, p.p.Z, P256_LIMBS))
|
---|
637 | goto err;
|
---|
638 | r->Z_is_one = is_equal(bn_get_words(r->Z), ONE) & 1;
|
---|
639 |
|
---|
640 | ret = 1;
|
---|
641 | err:
|
---|
642 | BN_CTX_end(ctx);
|
---|
643 | return ret;
|
---|
644 | }
|
---|
645 |
|
---|
646 | static int ecp_sm2p256_field_mul(const EC_GROUP *group, BIGNUM *r,
|
---|
647 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx)
|
---|
648 | {
|
---|
649 | ALIGN32 BN_ULONG a_fe[P256_LIMBS] = {0};
|
---|
650 | ALIGN32 BN_ULONG b_fe[P256_LIMBS] = {0};
|
---|
651 | ALIGN32 BN_ULONG r_fe[P256_LIMBS] = {0};
|
---|
652 |
|
---|
653 | if (a == NULL || b == NULL || r == NULL)
|
---|
654 | return 0;
|
---|
655 |
|
---|
656 | if (!ecp_sm2p256_bignum_field_elem(a_fe, a)
|
---|
657 | || !ecp_sm2p256_bignum_field_elem(b_fe, b)) {
|
---|
658 | ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
|
---|
659 | return 0;
|
---|
660 | }
|
---|
661 |
|
---|
662 | ecp_sm2p256_mul(r_fe, a_fe, b_fe);
|
---|
663 |
|
---|
664 | if (!bn_set_words(r, r_fe, P256_LIMBS))
|
---|
665 | return 0;
|
---|
666 |
|
---|
667 | return 1;
|
---|
668 | }
|
---|
669 |
|
---|
670 | static int ecp_sm2p256_field_sqr(const EC_GROUP *group, BIGNUM *r,
|
---|
671 | const BIGNUM *a, BN_CTX *ctx)
|
---|
672 | {
|
---|
673 | ALIGN32 BN_ULONG a_fe[P256_LIMBS] = {0};
|
---|
674 | ALIGN32 BN_ULONG r_fe[P256_LIMBS] = {0};
|
---|
675 |
|
---|
676 | if (a == NULL || r == NULL)
|
---|
677 | return 0;
|
---|
678 |
|
---|
679 | if (!ecp_sm2p256_bignum_field_elem(a_fe, a)) {
|
---|
680 | ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
|
---|
681 | return 0;
|
---|
682 | }
|
---|
683 |
|
---|
684 | ecp_sm2p256_sqr(r_fe, a_fe);
|
---|
685 |
|
---|
686 | if (!bn_set_words(r, r_fe, P256_LIMBS))
|
---|
687 | return 0;
|
---|
688 |
|
---|
689 | return 1;
|
---|
690 | }
|
---|
691 |
|
---|
692 | static int ecp_sm2p256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r,
|
---|
693 | const BIGNUM *x, BN_CTX *ctx)
|
---|
694 | {
|
---|
695 | int ret = 0;
|
---|
696 | ALIGN32 BN_ULONG t[P256_LIMBS] = {0};
|
---|
697 | ALIGN32 BN_ULONG out[P256_LIMBS] = {0};
|
---|
698 |
|
---|
699 | if (bn_wexpand(r, P256_LIMBS) == NULL) {
|
---|
700 | ECerr(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
701 | goto err;
|
---|
702 | }
|
---|
703 |
|
---|
704 | if ((BN_num_bits(x) > 256) || BN_is_negative(x)) {
|
---|
705 | BIGNUM *tmp;
|
---|
706 |
|
---|
707 | if ((tmp = BN_CTX_get(ctx)) == NULL
|
---|
708 | || !BN_nnmod(tmp, x, group->order, ctx)) {
|
---|
709 | ECerr(ERR_LIB_EC, ERR_R_BN_LIB);
|
---|
710 | goto err;
|
---|
711 | }
|
---|
712 | x = tmp;
|
---|
713 | }
|
---|
714 |
|
---|
715 | if (!ecp_sm2p256_bignum_field_elem(t, x)) {
|
---|
716 | ECerr(ERR_LIB_EC, EC_R_COORDINATES_OUT_OF_RANGE);
|
---|
717 | goto err;
|
---|
718 | }
|
---|
719 |
|
---|
720 | ecp_sm2p256_mod_ord_inverse(out, t);
|
---|
721 |
|
---|
722 | if (!bn_set_words(r, out, P256_LIMBS))
|
---|
723 | goto err;
|
---|
724 |
|
---|
725 | ret = 1;
|
---|
726 | err:
|
---|
727 | return ret;
|
---|
728 | }
|
---|
729 |
|
---|
730 | const EC_METHOD *EC_GFp_sm2p256_method(void)
|
---|
731 | {
|
---|
732 | static const EC_METHOD ret = {
|
---|
733 | EC_FLAGS_DEFAULT_OCT,
|
---|
734 | NID_X9_62_prime_field,
|
---|
735 | ossl_ec_GFp_simple_group_init,
|
---|
736 | ossl_ec_GFp_simple_group_finish,
|
---|
737 | ossl_ec_GFp_simple_group_clear_finish,
|
---|
738 | ossl_ec_GFp_simple_group_copy,
|
---|
739 | ossl_ec_GFp_simple_group_set_curve,
|
---|
740 | ossl_ec_GFp_simple_group_get_curve,
|
---|
741 | ossl_ec_GFp_simple_group_get_degree,
|
---|
742 | ossl_ec_group_simple_order_bits,
|
---|
743 | ossl_ec_GFp_simple_group_check_discriminant,
|
---|
744 | ossl_ec_GFp_simple_point_init,
|
---|
745 | ossl_ec_GFp_simple_point_finish,
|
---|
746 | ossl_ec_GFp_simple_point_clear_finish,
|
---|
747 | ossl_ec_GFp_simple_point_copy,
|
---|
748 | ossl_ec_GFp_simple_point_set_to_infinity,
|
---|
749 | ossl_ec_GFp_simple_point_set_affine_coordinates,
|
---|
750 | ecp_sm2p256_get_affine,
|
---|
751 | 0, 0, 0,
|
---|
752 | ossl_ec_GFp_simple_add,
|
---|
753 | ossl_ec_GFp_simple_dbl,
|
---|
754 | ossl_ec_GFp_simple_invert,
|
---|
755 | ossl_ec_GFp_simple_is_at_infinity,
|
---|
756 | ossl_ec_GFp_simple_is_on_curve,
|
---|
757 | ossl_ec_GFp_simple_cmp,
|
---|
758 | ossl_ec_GFp_simple_make_affine,
|
---|
759 | ossl_ec_GFp_simple_points_make_affine,
|
---|
760 | ecp_sm2p256_points_mul, /* mul */
|
---|
761 | 0 /* precompute_mult */,
|
---|
762 | 0 /* have_precompute_mult */,
|
---|
763 | ecp_sm2p256_field_mul,
|
---|
764 | ecp_sm2p256_field_sqr,
|
---|
765 | 0 /* field_div */,
|
---|
766 | 0 /* field_inv */,
|
---|
767 | 0 /* field_encode */,
|
---|
768 | 0 /* field_decode */,
|
---|
769 | 0 /* field_set_to_one */,
|
---|
770 | ossl_ec_key_simple_priv2oct,
|
---|
771 | ossl_ec_key_simple_oct2priv,
|
---|
772 | 0, /* set private */
|
---|
773 | ossl_ec_key_simple_generate_key,
|
---|
774 | ossl_ec_key_simple_check_key,
|
---|
775 | ossl_ec_key_simple_generate_public_key,
|
---|
776 | 0, /* keycopy */
|
---|
777 | 0, /* keyfinish */
|
---|
778 | ossl_ecdh_simple_compute_key,
|
---|
779 | ossl_ecdsa_simple_sign_setup,
|
---|
780 | ossl_ecdsa_simple_sign_sig,
|
---|
781 | ossl_ecdsa_simple_verify_sig,
|
---|
782 | ecp_sm2p256_inv_mod_ord,
|
---|
783 | 0, /* blind_coordinates */
|
---|
784 | 0, /* ladder_pre */
|
---|
785 | 0, /* ladder_step */
|
---|
786 | 0 /* ladder_post */
|
---|
787 | };
|
---|
788 |
|
---|
789 | return &ret;
|
---|
790 | }
|
---|