VirtualBox

source: vbox/trunk/src/libs/openssl-3.3.2/crypto/bn/bn_gf2m.c@ 108403

最後變更 在這個檔案從108403是 108206,由 vboxsync 提交於 6 週 前

openssl-3.3.2: Exported all files to OSE and removed .scm-settings ​bugref:10757

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Author Date Id Revision
檔案大小: 29.1 KB
 
1/*
2 * Copyright 2002-2021 The OpenSSL Project Authors. All Rights Reserved.
3 * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
4 *
5 * Licensed under the Apache License 2.0 (the "License"). You may not use
6 * this file except in compliance with the License. You can obtain a copy
7 * in the file LICENSE in the source distribution or at
8 * https://www.openssl.org/source/license.html
9 */
10
11#include <assert.h>
12#include <limits.h>
13#include <stdio.h>
14#include "internal/cryptlib.h"
15#include "bn_local.h"
16
17#ifndef OPENSSL_NO_EC2M
18
19/*
20 * Maximum number of iterations before BN_GF2m_mod_solve_quad_arr should
21 * fail.
22 */
23# define MAX_ITERATIONS 50
24
25# define SQR_nibble(w) ((((w) & 8) << 3) \
26 | (((w) & 4) << 2) \
27 | (((w) & 2) << 1) \
28 | ((w) & 1))
29
30
31/* Platform-specific macros to accelerate squaring. */
32# if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
33# define SQR1(w) \
34 SQR_nibble((w) >> 60) << 56 | SQR_nibble((w) >> 56) << 48 | \
35 SQR_nibble((w) >> 52) << 40 | SQR_nibble((w) >> 48) << 32 | \
36 SQR_nibble((w) >> 44) << 24 | SQR_nibble((w) >> 40) << 16 | \
37 SQR_nibble((w) >> 36) << 8 | SQR_nibble((w) >> 32)
38# define SQR0(w) \
39 SQR_nibble((w) >> 28) << 56 | SQR_nibble((w) >> 24) << 48 | \
40 SQR_nibble((w) >> 20) << 40 | SQR_nibble((w) >> 16) << 32 | \
41 SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \
42 SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) )
43# endif
44# ifdef THIRTY_TWO_BIT
45# define SQR1(w) \
46 SQR_nibble((w) >> 28) << 24 | SQR_nibble((w) >> 24) << 16 | \
47 SQR_nibble((w) >> 20) << 8 | SQR_nibble((w) >> 16)
48# define SQR0(w) \
49 SQR_nibble((w) >> 12) << 24 | SQR_nibble((w) >> 8) << 16 | \
50 SQR_nibble((w) >> 4) << 8 | SQR_nibble((w) )
51# endif
52
53# if !defined(OPENSSL_BN_ASM_GF2m)
54/*
55 * Product of two polynomials a, b each with degree < BN_BITS2 - 1, result is
56 * a polynomial r with degree < 2 * BN_BITS - 1 The caller MUST ensure that
57 * the variables have the right amount of space allocated.
58 */
59# ifdef THIRTY_TWO_BIT
60static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
61 const BN_ULONG b)
62{
63 register BN_ULONG h, l, s;
64 BN_ULONG tab[8], top2b = a >> 30;
65 register BN_ULONG a1, a2, a4;
66
67 a1 = a & (0x3FFFFFFF);
68 a2 = a1 << 1;
69 a4 = a2 << 1;
70
71 tab[0] = 0;
72 tab[1] = a1;
73 tab[2] = a2;
74 tab[3] = a1 ^ a2;
75 tab[4] = a4;
76 tab[5] = a1 ^ a4;
77 tab[6] = a2 ^ a4;
78 tab[7] = a1 ^ a2 ^ a4;
79
80 s = tab[b & 0x7];
81 l = s;
82 s = tab[b >> 3 & 0x7];
83 l ^= s << 3;
84 h = s >> 29;
85 s = tab[b >> 6 & 0x7];
86 l ^= s << 6;
87 h ^= s >> 26;
88 s = tab[b >> 9 & 0x7];
89 l ^= s << 9;
90 h ^= s >> 23;
91 s = tab[b >> 12 & 0x7];
92 l ^= s << 12;
93 h ^= s >> 20;
94 s = tab[b >> 15 & 0x7];
95 l ^= s << 15;
96 h ^= s >> 17;
97 s = tab[b >> 18 & 0x7];
98 l ^= s << 18;
99 h ^= s >> 14;
100 s = tab[b >> 21 & 0x7];
101 l ^= s << 21;
102 h ^= s >> 11;
103 s = tab[b >> 24 & 0x7];
104 l ^= s << 24;
105 h ^= s >> 8;
106 s = tab[b >> 27 & 0x7];
107 l ^= s << 27;
108 h ^= s >> 5;
109 s = tab[b >> 30];
110 l ^= s << 30;
111 h ^= s >> 2;
112
113 /* compensate for the top two bits of a */
114
115 if (top2b & 01) {
116 l ^= b << 30;
117 h ^= b >> 2;
118 }
119 if (top2b & 02) {
120 l ^= b << 31;
121 h ^= b >> 1;
122 }
123
124 *r1 = h;
125 *r0 = l;
126}
127# endif
128# if defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)
129static void bn_GF2m_mul_1x1(BN_ULONG *r1, BN_ULONG *r0, const BN_ULONG a,
130 const BN_ULONG b)
131{
132 register BN_ULONG h, l, s;
133 BN_ULONG tab[16], top3b = a >> 61;
134 register BN_ULONG a1, a2, a4, a8;
135
136 a1 = a & (0x1FFFFFFFFFFFFFFFULL);
137 a2 = a1 << 1;
138 a4 = a2 << 1;
139 a8 = a4 << 1;
140
141 tab[0] = 0;
142 tab[1] = a1;
143 tab[2] = a2;
144 tab[3] = a1 ^ a2;
145 tab[4] = a4;
146 tab[5] = a1 ^ a4;
147 tab[6] = a2 ^ a4;
148 tab[7] = a1 ^ a2 ^ a4;
149 tab[8] = a8;
150 tab[9] = a1 ^ a8;
151 tab[10] = a2 ^ a8;
152 tab[11] = a1 ^ a2 ^ a8;
153 tab[12] = a4 ^ a8;
154 tab[13] = a1 ^ a4 ^ a8;
155 tab[14] = a2 ^ a4 ^ a8;
156 tab[15] = a1 ^ a2 ^ a4 ^ a8;
157
158 s = tab[b & 0xF];
159 l = s;
160 s = tab[b >> 4 & 0xF];
161 l ^= s << 4;
162 h = s >> 60;
163 s = tab[b >> 8 & 0xF];
164 l ^= s << 8;
165 h ^= s >> 56;
166 s = tab[b >> 12 & 0xF];
167 l ^= s << 12;
168 h ^= s >> 52;
169 s = tab[b >> 16 & 0xF];
170 l ^= s << 16;
171 h ^= s >> 48;
172 s = tab[b >> 20 & 0xF];
173 l ^= s << 20;
174 h ^= s >> 44;
175 s = tab[b >> 24 & 0xF];
176 l ^= s << 24;
177 h ^= s >> 40;
178 s = tab[b >> 28 & 0xF];
179 l ^= s << 28;
180 h ^= s >> 36;
181 s = tab[b >> 32 & 0xF];
182 l ^= s << 32;
183 h ^= s >> 32;
184 s = tab[b >> 36 & 0xF];
185 l ^= s << 36;
186 h ^= s >> 28;
187 s = tab[b >> 40 & 0xF];
188 l ^= s << 40;
189 h ^= s >> 24;
190 s = tab[b >> 44 & 0xF];
191 l ^= s << 44;
192 h ^= s >> 20;
193 s = tab[b >> 48 & 0xF];
194 l ^= s << 48;
195 h ^= s >> 16;
196 s = tab[b >> 52 & 0xF];
197 l ^= s << 52;
198 h ^= s >> 12;
199 s = tab[b >> 56 & 0xF];
200 l ^= s << 56;
201 h ^= s >> 8;
202 s = tab[b >> 60];
203 l ^= s << 60;
204 h ^= s >> 4;
205
206 /* compensate for the top three bits of a */
207
208 if (top3b & 01) {
209 l ^= b << 61;
210 h ^= b >> 3;
211 }
212 if (top3b & 02) {
213 l ^= b << 62;
214 h ^= b >> 2;
215 }
216 if (top3b & 04) {
217 l ^= b << 63;
218 h ^= b >> 1;
219 }
220
221 *r1 = h;
222 *r0 = l;
223}
224# endif
225
226/*
227 * Product of two polynomials a, b each with degree < 2 * BN_BITS2 - 1,
228 * result is a polynomial r with degree < 4 * BN_BITS2 - 1 The caller MUST
229 * ensure that the variables have the right amount of space allocated.
230 */
231static void bn_GF2m_mul_2x2(BN_ULONG *r, const BN_ULONG a1, const BN_ULONG a0,
232 const BN_ULONG b1, const BN_ULONG b0)
233{
234 BN_ULONG m1, m0;
235 /* r[3] = h1, r[2] = h0; r[1] = l1; r[0] = l0 */
236 bn_GF2m_mul_1x1(r + 3, r + 2, a1, b1);
237 bn_GF2m_mul_1x1(r + 1, r, a0, b0);
238 bn_GF2m_mul_1x1(&m1, &m0, a0 ^ a1, b0 ^ b1);
239 /* Correction on m1 ^= l1 ^ h1; m0 ^= l0 ^ h0; */
240 r[2] ^= m1 ^ r[1] ^ r[3]; /* h0 ^= m1 ^ l1 ^ h1; */
241 r[1] = r[3] ^ r[2] ^ r[0] ^ m1 ^ m0; /* l1 ^= l0 ^ h0 ^ m0; */
242}
243# else
244void bn_GF2m_mul_2x2(BN_ULONG *r, BN_ULONG a1, BN_ULONG a0, BN_ULONG b1,
245 BN_ULONG b0);
246# endif
247
248/*
249 * Add polynomials a and b and store result in r; r could be a or b, a and b
250 * could be equal; r is the bitwise XOR of a and b.
251 */
252int BN_GF2m_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b)
253{
254 int i;
255 const BIGNUM *at, *bt;
256
257 bn_check_top(a);
258 bn_check_top(b);
259
260 if (a->top < b->top) {
261 at = b;
262 bt = a;
263 } else {
264 at = a;
265 bt = b;
266 }
267
268 if (bn_wexpand(r, at->top) == NULL)
269 return 0;
270
271 for (i = 0; i < bt->top; i++) {
272 r->d[i] = at->d[i] ^ bt->d[i];
273 }
274 for (; i < at->top; i++) {
275 r->d[i] = at->d[i];
276 }
277
278 r->top = at->top;
279 bn_correct_top(r);
280
281 return 1;
282}
283
284/*-
285 * Some functions allow for representation of the irreducible polynomials
286 * as an int[], say p. The irreducible f(t) is then of the form:
287 * t^p[0] + t^p[1] + ... + t^p[k]
288 * where m = p[0] > p[1] > ... > p[k] = 0.
289 */
290
291/* Performs modular reduction of a and store result in r. r could be a. */
292int BN_GF2m_mod_arr(BIGNUM *r, const BIGNUM *a, const int p[])
293{
294 int j, k;
295 int n, dN, d0, d1;
296 BN_ULONG zz, *z;
297
298 bn_check_top(a);
299
300 if (p[0] == 0) {
301 /* reduction mod 1 => return 0 */
302 BN_zero(r);
303 return 1;
304 }
305
306 /*
307 * Since the algorithm does reduction in the r value, if a != r, copy the
308 * contents of a into r so we can do reduction in r.
309 */
310 if (a != r) {
311 if (!bn_wexpand(r, a->top))
312 return 0;
313 for (j = 0; j < a->top; j++) {
314 r->d[j] = a->d[j];
315 }
316 r->top = a->top;
317 }
318 z = r->d;
319
320 /* start reduction */
321 dN = p[0] / BN_BITS2;
322 for (j = r->top - 1; j > dN;) {
323 zz = z[j];
324 if (z[j] == 0) {
325 j--;
326 continue;
327 }
328 z[j] = 0;
329
330 for (k = 1; p[k] != 0; k++) {
331 /* reducing component t^p[k] */
332 n = p[0] - p[k];
333 d0 = n % BN_BITS2;
334 d1 = BN_BITS2 - d0;
335 n /= BN_BITS2;
336 z[j - n] ^= (zz >> d0);
337 if (d0)
338 z[j - n - 1] ^= (zz << d1);
339 }
340
341 /* reducing component t^0 */
342 n = dN;
343 d0 = p[0] % BN_BITS2;
344 d1 = BN_BITS2 - d0;
345 z[j - n] ^= (zz >> d0);
346 if (d0)
347 z[j - n - 1] ^= (zz << d1);
348 }
349
350 /* final round of reduction */
351 while (j == dN) {
352
353 d0 = p[0] % BN_BITS2;
354 zz = z[dN] >> d0;
355 if (zz == 0)
356 break;
357 d1 = BN_BITS2 - d0;
358
359 /* clear up the top d1 bits */
360 if (d0)
361 z[dN] = (z[dN] << d1) >> d1;
362 else
363 z[dN] = 0;
364 z[0] ^= zz; /* reduction t^0 component */
365
366 for (k = 1; p[k] != 0; k++) {
367 BN_ULONG tmp_ulong;
368
369 /* reducing component t^p[k] */
370 n = p[k] / BN_BITS2;
371 d0 = p[k] % BN_BITS2;
372 d1 = BN_BITS2 - d0;
373 z[n] ^= (zz << d0);
374 if (d0 && (tmp_ulong = zz >> d1))
375 z[n + 1] ^= tmp_ulong;
376 }
377
378 }
379
380 bn_correct_top(r);
381 return 1;
382}
383
384/*
385 * Performs modular reduction of a by p and store result in r. r could be a.
386 * This function calls down to the BN_GF2m_mod_arr implementation; this wrapper
387 * function is only provided for convenience; for best performance, use the
388 * BN_GF2m_mod_arr function.
389 */
390int BN_GF2m_mod(BIGNUM *r, const BIGNUM *a, const BIGNUM *p)
391{
392 int ret = 0;
393 int arr[6];
394 bn_check_top(a);
395 bn_check_top(p);
396 ret = BN_GF2m_poly2arr(p, arr, OSSL_NELEM(arr));
397 if (!ret || ret > (int)OSSL_NELEM(arr)) {
398 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
399 return 0;
400 }
401 ret = BN_GF2m_mod_arr(r, a, arr);
402 bn_check_top(r);
403 return ret;
404}
405
406/*
407 * Compute the product of two polynomials a and b, reduce modulo p, and store
408 * the result in r. r could be a or b; a could be b.
409 */
410int BN_GF2m_mod_mul_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
411 const int p[], BN_CTX *ctx)
412{
413 int zlen, i, j, k, ret = 0;
414 BIGNUM *s;
415 BN_ULONG x1, x0, y1, y0, zz[4];
416
417 bn_check_top(a);
418 bn_check_top(b);
419
420 if (a == b) {
421 return BN_GF2m_mod_sqr_arr(r, a, p, ctx);
422 }
423
424 BN_CTX_start(ctx);
425 if ((s = BN_CTX_get(ctx)) == NULL)
426 goto err;
427
428 zlen = a->top + b->top + 4;
429 if (!bn_wexpand(s, zlen))
430 goto err;
431 s->top = zlen;
432
433 for (i = 0; i < zlen; i++)
434 s->d[i] = 0;
435
436 for (j = 0; j < b->top; j += 2) {
437 y0 = b->d[j];
438 y1 = ((j + 1) == b->top) ? 0 : b->d[j + 1];
439 for (i = 0; i < a->top; i += 2) {
440 x0 = a->d[i];
441 x1 = ((i + 1) == a->top) ? 0 : a->d[i + 1];
442 bn_GF2m_mul_2x2(zz, x1, x0, y1, y0);
443 for (k = 0; k < 4; k++)
444 s->d[i + j + k] ^= zz[k];
445 }
446 }
447
448 bn_correct_top(s);
449 if (BN_GF2m_mod_arr(r, s, p))
450 ret = 1;
451 bn_check_top(r);
452
453 err:
454 BN_CTX_end(ctx);
455 return ret;
456}
457
458/*
459 * Compute the product of two polynomials a and b, reduce modulo p, and store
460 * the result in r. r could be a or b; a could equal b. This function calls
461 * down to the BN_GF2m_mod_mul_arr implementation; this wrapper function is
462 * only provided for convenience; for best performance, use the
463 * BN_GF2m_mod_mul_arr function.
464 */
465int BN_GF2m_mod_mul(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
466 const BIGNUM *p, BN_CTX *ctx)
467{
468 int ret = 0;
469 const int max = BN_num_bits(p) + 1;
470 int *arr;
471
472 bn_check_top(a);
473 bn_check_top(b);
474 bn_check_top(p);
475
476 arr = OPENSSL_malloc(sizeof(*arr) * max);
477 if (arr == NULL)
478 return 0;
479 ret = BN_GF2m_poly2arr(p, arr, max);
480 if (!ret || ret > max) {
481 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
482 goto err;
483 }
484 ret = BN_GF2m_mod_mul_arr(r, a, b, arr, ctx);
485 bn_check_top(r);
486 err:
487 OPENSSL_free(arr);
488 return ret;
489}
490
491/* Square a, reduce the result mod p, and store it in a. r could be a. */
492int BN_GF2m_mod_sqr_arr(BIGNUM *r, const BIGNUM *a, const int p[],
493 BN_CTX *ctx)
494{
495 int i, ret = 0;
496 BIGNUM *s;
497
498 bn_check_top(a);
499 BN_CTX_start(ctx);
500 if ((s = BN_CTX_get(ctx)) == NULL)
501 goto err;
502 if (!bn_wexpand(s, 2 * a->top))
503 goto err;
504
505 for (i = a->top - 1; i >= 0; i--) {
506 s->d[2 * i + 1] = SQR1(a->d[i]);
507 s->d[2 * i] = SQR0(a->d[i]);
508 }
509
510 s->top = 2 * a->top;
511 bn_correct_top(s);
512 if (!BN_GF2m_mod_arr(r, s, p))
513 goto err;
514 bn_check_top(r);
515 ret = 1;
516 err:
517 BN_CTX_end(ctx);
518 return ret;
519}
520
521/*
522 * Square a, reduce the result mod p, and store it in a. r could be a. This
523 * function calls down to the BN_GF2m_mod_sqr_arr implementation; this
524 * wrapper function is only provided for convenience; for best performance,
525 * use the BN_GF2m_mod_sqr_arr function.
526 */
527int BN_GF2m_mod_sqr(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
528{
529 int ret = 0;
530 const int max = BN_num_bits(p) + 1;
531 int *arr;
532
533 bn_check_top(a);
534 bn_check_top(p);
535
536 arr = OPENSSL_malloc(sizeof(*arr) * max);
537 if (arr == NULL)
538 return 0;
539 ret = BN_GF2m_poly2arr(p, arr, max);
540 if (!ret || ret > max) {
541 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
542 goto err;
543 }
544 ret = BN_GF2m_mod_sqr_arr(r, a, arr, ctx);
545 bn_check_top(r);
546 err:
547 OPENSSL_free(arr);
548 return ret;
549}
550
551/*
552 * Invert a, reduce modulo p, and store the result in r. r could be a. Uses
553 * Modified Almost Inverse Algorithm (Algorithm 10) from Hankerson, D.,
554 * Hernandez, J.L., and Menezes, A. "Software Implementation of Elliptic
555 * Curve Cryptography Over Binary Fields".
556 */
557static int BN_GF2m_mod_inv_vartime(BIGNUM *r, const BIGNUM *a,
558 const BIGNUM *p, BN_CTX *ctx)
559{
560 BIGNUM *b, *c = NULL, *u = NULL, *v = NULL, *tmp;
561 int ret = 0;
562
563 bn_check_top(a);
564 bn_check_top(p);
565
566 BN_CTX_start(ctx);
567
568 b = BN_CTX_get(ctx);
569 c = BN_CTX_get(ctx);
570 u = BN_CTX_get(ctx);
571 v = BN_CTX_get(ctx);
572 if (v == NULL)
573 goto err;
574
575 if (!BN_GF2m_mod(u, a, p))
576 goto err;
577 if (BN_is_zero(u))
578 goto err;
579
580 if (!BN_copy(v, p))
581 goto err;
582# if 0
583 if (!BN_one(b))
584 goto err;
585
586 while (1) {
587 while (!BN_is_odd(u)) {
588 if (BN_is_zero(u))
589 goto err;
590 if (!BN_rshift1(u, u))
591 goto err;
592 if (BN_is_odd(b)) {
593 if (!BN_GF2m_add(b, b, p))
594 goto err;
595 }
596 if (!BN_rshift1(b, b))
597 goto err;
598 }
599
600 if (BN_abs_is_word(u, 1))
601 break;
602
603 if (BN_num_bits(u) < BN_num_bits(v)) {
604 tmp = u;
605 u = v;
606 v = tmp;
607 tmp = b;
608 b = c;
609 c = tmp;
610 }
611
612 if (!BN_GF2m_add(u, u, v))
613 goto err;
614 if (!BN_GF2m_add(b, b, c))
615 goto err;
616 }
617# else
618 {
619 int i;
620 int ubits = BN_num_bits(u);
621 int vbits = BN_num_bits(v); /* v is copy of p */
622 int top = p->top;
623 BN_ULONG *udp, *bdp, *vdp, *cdp;
624
625 if (!bn_wexpand(u, top))
626 goto err;
627 udp = u->d;
628 for (i = u->top; i < top; i++)
629 udp[i] = 0;
630 u->top = top;
631 if (!bn_wexpand(b, top))
632 goto err;
633 bdp = b->d;
634 bdp[0] = 1;
635 for (i = 1; i < top; i++)
636 bdp[i] = 0;
637 b->top = top;
638 if (!bn_wexpand(c, top))
639 goto err;
640 cdp = c->d;
641 for (i = 0; i < top; i++)
642 cdp[i] = 0;
643 c->top = top;
644 vdp = v->d; /* It pays off to "cache" *->d pointers,
645 * because it allows optimizer to be more
646 * aggressive. But we don't have to "cache"
647 * p->d, because *p is declared 'const'... */
648 while (1) {
649 while (ubits && !(udp[0] & 1)) {
650 BN_ULONG u0, u1, b0, b1, mask;
651
652 u0 = udp[0];
653 b0 = bdp[0];
654 mask = (BN_ULONG)0 - (b0 & 1);
655 b0 ^= p->d[0] & mask;
656 for (i = 0; i < top - 1; i++) {
657 u1 = udp[i + 1];
658 udp[i] = ((u0 >> 1) | (u1 << (BN_BITS2 - 1))) & BN_MASK2;
659 u0 = u1;
660 b1 = bdp[i + 1] ^ (p->d[i + 1] & mask);
661 bdp[i] = ((b0 >> 1) | (b1 << (BN_BITS2 - 1))) & BN_MASK2;
662 b0 = b1;
663 }
664 udp[i] = u0 >> 1;
665 bdp[i] = b0 >> 1;
666 ubits--;
667 }
668
669 if (ubits <= BN_BITS2) {
670 if (udp[0] == 0) /* poly was reducible */
671 goto err;
672 if (udp[0] == 1)
673 break;
674 }
675
676 if (ubits < vbits) {
677 i = ubits;
678 ubits = vbits;
679 vbits = i;
680 tmp = u;
681 u = v;
682 v = tmp;
683 tmp = b;
684 b = c;
685 c = tmp;
686 udp = vdp;
687 vdp = v->d;
688 bdp = cdp;
689 cdp = c->d;
690 }
691 for (i = 0; i < top; i++) {
692 udp[i] ^= vdp[i];
693 bdp[i] ^= cdp[i];
694 }
695 if (ubits == vbits) {
696 BN_ULONG ul;
697 int utop = (ubits - 1) / BN_BITS2;
698
699 while ((ul = udp[utop]) == 0 && utop)
700 utop--;
701 ubits = utop * BN_BITS2 + BN_num_bits_word(ul);
702 }
703 }
704 bn_correct_top(b);
705 }
706# endif
707
708 if (!BN_copy(r, b))
709 goto err;
710 bn_check_top(r);
711 ret = 1;
712
713 err:
714# ifdef BN_DEBUG
715 /* BN_CTX_end would complain about the expanded form */
716 bn_correct_top(c);
717 bn_correct_top(u);
718 bn_correct_top(v);
719# endif
720 BN_CTX_end(ctx);
721 return ret;
722}
723
724/*-
725 * Wrapper for BN_GF2m_mod_inv_vartime that blinds the input before calling.
726 * This is not constant time.
727 * But it does eliminate first order deduction on the input.
728 */
729int BN_GF2m_mod_inv(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
730{
731 BIGNUM *b = NULL;
732 int ret = 0;
733 int numbits;
734
735 BN_CTX_start(ctx);
736 if ((b = BN_CTX_get(ctx)) == NULL)
737 goto err;
738
739 /* Fail on a non-sensical input p value */
740 numbits = BN_num_bits(p);
741 if (numbits <= 1)
742 goto err;
743
744 /* generate blinding value */
745 do {
746 if (!BN_priv_rand_ex(b, numbits - 1,
747 BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY, 0, ctx))
748 goto err;
749 } while (BN_is_zero(b));
750
751 /* r := a * b */
752 if (!BN_GF2m_mod_mul(r, a, b, p, ctx))
753 goto err;
754
755 /* r := 1/(a * b) */
756 if (!BN_GF2m_mod_inv_vartime(r, r, p, ctx))
757 goto err;
758
759 /* r := b/(a * b) = 1/a */
760 if (!BN_GF2m_mod_mul(r, r, b, p, ctx))
761 goto err;
762
763 ret = 1;
764
765 err:
766 BN_CTX_end(ctx);
767 return ret;
768}
769
770/*
771 * Invert xx, reduce modulo p, and store the result in r. r could be xx.
772 * This function calls down to the BN_GF2m_mod_inv implementation; this
773 * wrapper function is only provided for convenience; for best performance,
774 * use the BN_GF2m_mod_inv function.
775 */
776int BN_GF2m_mod_inv_arr(BIGNUM *r, const BIGNUM *xx, const int p[],
777 BN_CTX *ctx)
778{
779 BIGNUM *field;
780 int ret = 0;
781
782 bn_check_top(xx);
783 BN_CTX_start(ctx);
784 if ((field = BN_CTX_get(ctx)) == NULL)
785 goto err;
786 if (!BN_GF2m_arr2poly(p, field))
787 goto err;
788
789 ret = BN_GF2m_mod_inv(r, xx, field, ctx);
790 bn_check_top(r);
791
792 err:
793 BN_CTX_end(ctx);
794 return ret;
795}
796
797/*
798 * Divide y by x, reduce modulo p, and store the result in r. r could be x
799 * or y, x could equal y.
800 */
801int BN_GF2m_mod_div(BIGNUM *r, const BIGNUM *y, const BIGNUM *x,
802 const BIGNUM *p, BN_CTX *ctx)
803{
804 BIGNUM *xinv = NULL;
805 int ret = 0;
806
807 bn_check_top(y);
808 bn_check_top(x);
809 bn_check_top(p);
810
811 BN_CTX_start(ctx);
812 xinv = BN_CTX_get(ctx);
813 if (xinv == NULL)
814 goto err;
815
816 if (!BN_GF2m_mod_inv(xinv, x, p, ctx))
817 goto err;
818 if (!BN_GF2m_mod_mul(r, y, xinv, p, ctx))
819 goto err;
820 bn_check_top(r);
821 ret = 1;
822
823 err:
824 BN_CTX_end(ctx);
825 return ret;
826}
827
828/*
829 * Divide yy by xx, reduce modulo p, and store the result in r. r could be xx
830 * * or yy, xx could equal yy. This function calls down to the
831 * BN_GF2m_mod_div implementation; this wrapper function is only provided for
832 * convenience; for best performance, use the BN_GF2m_mod_div function.
833 */
834int BN_GF2m_mod_div_arr(BIGNUM *r, const BIGNUM *yy, const BIGNUM *xx,
835 const int p[], BN_CTX *ctx)
836{
837 BIGNUM *field;
838 int ret = 0;
839
840 bn_check_top(yy);
841 bn_check_top(xx);
842
843 BN_CTX_start(ctx);
844 if ((field = BN_CTX_get(ctx)) == NULL)
845 goto err;
846 if (!BN_GF2m_arr2poly(p, field))
847 goto err;
848
849 ret = BN_GF2m_mod_div(r, yy, xx, field, ctx);
850 bn_check_top(r);
851
852 err:
853 BN_CTX_end(ctx);
854 return ret;
855}
856
857/*
858 * Compute the bth power of a, reduce modulo p, and store the result in r. r
859 * could be a. Uses simple square-and-multiply algorithm A.5.1 from IEEE
860 * P1363.
861 */
862int BN_GF2m_mod_exp_arr(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
863 const int p[], BN_CTX *ctx)
864{
865 int ret = 0, i, n;
866 BIGNUM *u;
867
868 bn_check_top(a);
869 bn_check_top(b);
870
871 if (BN_is_zero(b))
872 return BN_one(r);
873
874 if (BN_abs_is_word(b, 1))
875 return (BN_copy(r, a) != NULL);
876
877 BN_CTX_start(ctx);
878 if ((u = BN_CTX_get(ctx)) == NULL)
879 goto err;
880
881 if (!BN_GF2m_mod_arr(u, a, p))
882 goto err;
883
884 n = BN_num_bits(b) - 1;
885 for (i = n - 1; i >= 0; i--) {
886 if (!BN_GF2m_mod_sqr_arr(u, u, p, ctx))
887 goto err;
888 if (BN_is_bit_set(b, i)) {
889 if (!BN_GF2m_mod_mul_arr(u, u, a, p, ctx))
890 goto err;
891 }
892 }
893 if (!BN_copy(r, u))
894 goto err;
895 bn_check_top(r);
896 ret = 1;
897 err:
898 BN_CTX_end(ctx);
899 return ret;
900}
901
902/*
903 * Compute the bth power of a, reduce modulo p, and store the result in r. r
904 * could be a. This function calls down to the BN_GF2m_mod_exp_arr
905 * implementation; this wrapper function is only provided for convenience;
906 * for best performance, use the BN_GF2m_mod_exp_arr function.
907 */
908int BN_GF2m_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
909 const BIGNUM *p, BN_CTX *ctx)
910{
911 int ret = 0;
912 const int max = BN_num_bits(p) + 1;
913 int *arr;
914
915 bn_check_top(a);
916 bn_check_top(b);
917 bn_check_top(p);
918
919 arr = OPENSSL_malloc(sizeof(*arr) * max);
920 if (arr == NULL)
921 return 0;
922 ret = BN_GF2m_poly2arr(p, arr, max);
923 if (!ret || ret > max) {
924 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
925 goto err;
926 }
927 ret = BN_GF2m_mod_exp_arr(r, a, b, arr, ctx);
928 bn_check_top(r);
929 err:
930 OPENSSL_free(arr);
931 return ret;
932}
933
934/*
935 * Compute the square root of a, reduce modulo p, and store the result in r.
936 * r could be a. Uses exponentiation as in algorithm A.4.1 from IEEE P1363.
937 */
938int BN_GF2m_mod_sqrt_arr(BIGNUM *r, const BIGNUM *a, const int p[],
939 BN_CTX *ctx)
940{
941 int ret = 0;
942 BIGNUM *u;
943
944 bn_check_top(a);
945
946 if (p[0] == 0) {
947 /* reduction mod 1 => return 0 */
948 BN_zero(r);
949 return 1;
950 }
951
952 BN_CTX_start(ctx);
953 if ((u = BN_CTX_get(ctx)) == NULL)
954 goto err;
955
956 if (!BN_set_bit(u, p[0] - 1))
957 goto err;
958 ret = BN_GF2m_mod_exp_arr(r, a, u, p, ctx);
959 bn_check_top(r);
960
961 err:
962 BN_CTX_end(ctx);
963 return ret;
964}
965
966/*
967 * Compute the square root of a, reduce modulo p, and store the result in r.
968 * r could be a. This function calls down to the BN_GF2m_mod_sqrt_arr
969 * implementation; this wrapper function is only provided for convenience;
970 * for best performance, use the BN_GF2m_mod_sqrt_arr function.
971 */
972int BN_GF2m_mod_sqrt(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
973{
974 int ret = 0;
975 const int max = BN_num_bits(p) + 1;
976 int *arr;
977
978 bn_check_top(a);
979 bn_check_top(p);
980
981 arr = OPENSSL_malloc(sizeof(*arr) * max);
982 if (arr == NULL)
983 return 0;
984 ret = BN_GF2m_poly2arr(p, arr, max);
985 if (!ret || ret > max) {
986 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
987 goto err;
988 }
989 ret = BN_GF2m_mod_sqrt_arr(r, a, arr, ctx);
990 bn_check_top(r);
991 err:
992 OPENSSL_free(arr);
993 return ret;
994}
995
996/*
997 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
998 * 0. Uses algorithms A.4.7 and A.4.6 from IEEE P1363.
999 */
1000int BN_GF2m_mod_solve_quad_arr(BIGNUM *r, const BIGNUM *a_, const int p[],
1001 BN_CTX *ctx)
1002{
1003 int ret = 0, count = 0, j;
1004 BIGNUM *a, *z, *rho, *w, *w2, *tmp;
1005
1006 bn_check_top(a_);
1007
1008 if (p[0] == 0) {
1009 /* reduction mod 1 => return 0 */
1010 BN_zero(r);
1011 return 1;
1012 }
1013
1014 BN_CTX_start(ctx);
1015 a = BN_CTX_get(ctx);
1016 z = BN_CTX_get(ctx);
1017 w = BN_CTX_get(ctx);
1018 if (w == NULL)
1019 goto err;
1020
1021 if (!BN_GF2m_mod_arr(a, a_, p))
1022 goto err;
1023
1024 if (BN_is_zero(a)) {
1025 BN_zero(r);
1026 ret = 1;
1027 goto err;
1028 }
1029
1030 if (p[0] & 0x1) { /* m is odd */
1031 /* compute half-trace of a */
1032 if (!BN_copy(z, a))
1033 goto err;
1034 for (j = 1; j <= (p[0] - 1) / 2; j++) {
1035 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1036 goto err;
1037 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1038 goto err;
1039 if (!BN_GF2m_add(z, z, a))
1040 goto err;
1041 }
1042
1043 } else { /* m is even */
1044
1045 rho = BN_CTX_get(ctx);
1046 w2 = BN_CTX_get(ctx);
1047 tmp = BN_CTX_get(ctx);
1048 if (tmp == NULL)
1049 goto err;
1050 do {
1051 if (!BN_priv_rand_ex(rho, p[0], BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ANY,
1052 0, ctx))
1053 goto err;
1054 if (!BN_GF2m_mod_arr(rho, rho, p))
1055 goto err;
1056 BN_zero(z);
1057 if (!BN_copy(w, rho))
1058 goto err;
1059 for (j = 1; j <= p[0] - 1; j++) {
1060 if (!BN_GF2m_mod_sqr_arr(z, z, p, ctx))
1061 goto err;
1062 if (!BN_GF2m_mod_sqr_arr(w2, w, p, ctx))
1063 goto err;
1064 if (!BN_GF2m_mod_mul_arr(tmp, w2, a, p, ctx))
1065 goto err;
1066 if (!BN_GF2m_add(z, z, tmp))
1067 goto err;
1068 if (!BN_GF2m_add(w, w2, rho))
1069 goto err;
1070 }
1071 count++;
1072 } while (BN_is_zero(w) && (count < MAX_ITERATIONS));
1073 if (BN_is_zero(w)) {
1074 ERR_raise(ERR_LIB_BN, BN_R_TOO_MANY_ITERATIONS);
1075 goto err;
1076 }
1077 }
1078
1079 if (!BN_GF2m_mod_sqr_arr(w, z, p, ctx))
1080 goto err;
1081 if (!BN_GF2m_add(w, z, w))
1082 goto err;
1083 if (BN_GF2m_cmp(w, a)) {
1084 ERR_raise(ERR_LIB_BN, BN_R_NO_SOLUTION);
1085 goto err;
1086 }
1087
1088 if (!BN_copy(r, z))
1089 goto err;
1090 bn_check_top(r);
1091
1092 ret = 1;
1093
1094 err:
1095 BN_CTX_end(ctx);
1096 return ret;
1097}
1098
1099/*
1100 * Find r such that r^2 + r = a mod p. r could be a. If no r exists returns
1101 * 0. This function calls down to the BN_GF2m_mod_solve_quad_arr
1102 * implementation; this wrapper function is only provided for convenience;
1103 * for best performance, use the BN_GF2m_mod_solve_quad_arr function.
1104 */
1105int BN_GF2m_mod_solve_quad(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
1106 BN_CTX *ctx)
1107{
1108 int ret = 0;
1109 const int max = BN_num_bits(p) + 1;
1110 int *arr;
1111
1112 bn_check_top(a);
1113 bn_check_top(p);
1114
1115 arr = OPENSSL_malloc(sizeof(*arr) * max);
1116 if (arr == NULL)
1117 goto err;
1118 ret = BN_GF2m_poly2arr(p, arr, max);
1119 if (!ret || ret > max) {
1120 ERR_raise(ERR_LIB_BN, BN_R_INVALID_LENGTH);
1121 goto err;
1122 }
1123 ret = BN_GF2m_mod_solve_quad_arr(r, a, arr, ctx);
1124 bn_check_top(r);
1125 err:
1126 OPENSSL_free(arr);
1127 return ret;
1128}
1129
1130/*
1131 * Convert the bit-string representation of a polynomial ( \sum_{i=0}^n a_i *
1132 * x^i) into an array of integers corresponding to the bits with non-zero
1133 * coefficient. Array is terminated with -1. Up to max elements of the array
1134 * will be filled. Return value is total number of array elements that would
1135 * be filled if array was large enough.
1136 */
1137int BN_GF2m_poly2arr(const BIGNUM *a, int p[], int max)
1138{
1139 int i, j, k = 0;
1140 BN_ULONG mask;
1141
1142 if (BN_is_zero(a))
1143 return 0;
1144
1145 for (i = a->top - 1; i >= 0; i--) {
1146 if (!a->d[i])
1147 /* skip word if a->d[i] == 0 */
1148 continue;
1149 mask = BN_TBIT;
1150 for (j = BN_BITS2 - 1; j >= 0; j--) {
1151 if (a->d[i] & mask) {
1152 if (k < max)
1153 p[k] = BN_BITS2 * i + j;
1154 k++;
1155 }
1156 mask >>= 1;
1157 }
1158 }
1159
1160 if (k < max) {
1161 p[k] = -1;
1162 k++;
1163 }
1164
1165 return k;
1166}
1167
1168/*
1169 * Convert the coefficient array representation of a polynomial to a
1170 * bit-string. The array must be terminated by -1.
1171 */
1172int BN_GF2m_arr2poly(const int p[], BIGNUM *a)
1173{
1174 int i;
1175
1176 bn_check_top(a);
1177 BN_zero(a);
1178 for (i = 0; p[i] != -1; i++) {
1179 if (BN_set_bit(a, p[i]) == 0)
1180 return 0;
1181 }
1182 bn_check_top(a);
1183
1184 return 1;
1185}
1186
1187#endif
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette