VirtualBox

source: vbox/trunk/src/libs/openssl-3.0.7/crypto/sha/asm/sha512-armv8.pl@ 99507

最後變更 在這個檔案從99507是 94082,由 vboxsync 提交於 3 年 前

libs/openssl-3.0.1: started applying and adjusting our OpenSSL changes to 3.0.1. bugref:10128

檔案大小: 23.6 KB
 
1#! /usr/bin/env perl
2# Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the Apache License 2.0 (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9# ====================================================================
10# Written by Andy Polyakov <[email protected]> for the OpenSSL
11# project. The module is, however, dual licensed under OpenSSL and
12# CRYPTOGAMS licenses depending on where you obtain it. For further
13# details see http://www.openssl.org/~appro/cryptogams/.
14#
15# Permission to use under GPLv2 terms is granted.
16# ====================================================================
17#
18# SHA256/512 for ARMv8.
19#
20# Performance in cycles per processed byte and improvement coefficient
21# over code generated with "default" compiler:
22#
23# SHA256-hw SHA256(*) SHA512
24# Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**))
25# Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***))
26# Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***))
27# Denver 2.01 10.5 (+26%) 6.70 (+8%)
28# X-Gene 20.0 (+100%) 12.8 (+300%(***))
29# Mongoose 2.36 13.0 (+50%) 8.36 (+33%)
30# Kryo 1.92 17.4 (+30%) 11.2 (+8%)
31# ThunderX2 2.54 13.2 (+40%) 8.40 (+18%)
32#
33# (*) Software SHA256 results are of lesser relevance, presented
34# mostly for informational purposes.
35# (**) The result is a trade-off: it's possible to improve it by
36# 10% (or by 1 cycle per round), but at the cost of 20% loss
37# on Cortex-A53 (or by 4 cycles per round).
38# (***) Super-impressive coefficients over gcc-generated code are
39# indication of some compiler "pathology", most notably code
40# generated with -mgeneral-regs-only is significantly faster
41# and the gap is only 40-90%.
42#
43# October 2016.
44#
45# Originally it was reckoned that it makes no sense to implement NEON
46# version of SHA256 for 64-bit processors. This is because performance
47# improvement on most wide-spread Cortex-A5x processors was observed
48# to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
49# observed that 32-bit NEON SHA256 performs significantly better than
50# 64-bit scalar version on *some* of the more recent processors. As
51# result 64-bit NEON version of SHA256 was added to provide best
52# all-round performance. For example it executes ~30% faster on X-Gene
53# and Mongoose. [For reference, NEON version of SHA512 is bound to
54# deliver much less improvement, likely *negative* on Cortex-A5x.
55# Which is why NEON support is limited to SHA256.]
56
57# $output is the last argument if it looks like a file (it has an extension)
58# $flavour is the first argument if it doesn't look like a file
59$output = $#ARGV >= 0 && $ARGV[$#ARGV] =~ m|\.\w+$| ? pop : undef;
60$flavour = $#ARGV >= 0 && $ARGV[0] !~ m|\.| ? shift : undef;
61
62if ($flavour && $flavour ne "void") {
63 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
64 ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
65 ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
66 die "can't locate arm-xlate.pl";
67
68 open OUT,"| \"$^X\" $xlate $flavour \"$output\""
69 or die "can't call $xlate: $!";
70 *STDOUT=*OUT;
71} else {
72 $output and open STDOUT,">$output";
73}
74
75if ($output =~ /512/) {
76 $BITS=512;
77 $SZ=8;
78 @Sigma0=(28,34,39);
79 @Sigma1=(14,18,41);
80 @sigma0=(1, 8, 7);
81 @sigma1=(19,61, 6);
82 $rounds=80;
83 $reg_t="x";
84} else {
85 $BITS=256;
86 $SZ=4;
87 @Sigma0=( 2,13,22);
88 @Sigma1=( 6,11,25);
89 @sigma0=( 7,18, 3);
90 @sigma1=(17,19,10);
91 $rounds=64;
92 $reg_t="w";
93}
94
95$func="sha${BITS}_block_data_order";
96
97($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
98
99@X=map("$reg_t$_",(3..15,0..2));
100@V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
101($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
102
103sub BODY_00_xx {
104my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
105my $j=($i+1)&15;
106my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
107 $T0=@X[$i+3] if ($i<11);
108
109$code.=<<___ if ($i<16);
110#ifndef __AARCH64EB__
111 rev @X[$i],@X[$i] // $i
112#endif
113___
114$code.=<<___ if ($i<13 && ($i&1));
115 ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ
116___
117$code.=<<___ if ($i==13);
118 ldp @X[14],@X[15],[$inp]
119___
120$code.=<<___ if ($i>=14);
121 ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
122___
123$code.=<<___ if ($i>0 && $i<16);
124 add $a,$a,$t1 // h+=Sigma0(a)
125___
126$code.=<<___ if ($i>=11);
127 str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
128___
129# While ARMv8 specifies merged rotate-n-logical operation such as
130# 'eor x,y,z,ror#n', it was found to negatively affect performance
131# on Apple A7. The reason seems to be that it requires even 'y' to
132# be available earlier. This means that such merged instruction is
133# not necessarily best choice on critical path... On the other hand
134# Cortex-A5x handles merged instructions much better than disjoint
135# rotate and logical... See (**) footnote above.
136$code.=<<___ if ($i<15);
137 ror $t0,$e,#$Sigma1[0]
138 add $h,$h,$t2 // h+=K[i]
139 eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
140 and $t1,$f,$e
141 bic $t2,$g,$e
142 add $h,$h,@X[$i&15] // h+=X[i]
143 orr $t1,$t1,$t2 // Ch(e,f,g)
144 eor $t2,$a,$b // a^b, b^c in next round
145 eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e)
146 ror $T0,$a,#$Sigma0[0]
147 add $h,$h,$t1 // h+=Ch(e,f,g)
148 eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
149 add $h,$h,$t0 // h+=Sigma1(e)
150 and $t3,$t3,$t2 // (b^c)&=(a^b)
151 add $d,$d,$h // d+=h
152 eor $t3,$t3,$b // Maj(a,b,c)
153 eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a)
154 add $h,$h,$t3 // h+=Maj(a,b,c)
155 ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
156 //add $h,$h,$t1 // h+=Sigma0(a)
157___
158$code.=<<___ if ($i>=15);
159 ror $t0,$e,#$Sigma1[0]
160 add $h,$h,$t2 // h+=K[i]
161 ror $T1,@X[($j+1)&15],#$sigma0[0]
162 and $t1,$f,$e
163 ror $T2,@X[($j+14)&15],#$sigma1[0]
164 bic $t2,$g,$e
165 ror $T0,$a,#$Sigma0[0]
166 add $h,$h,@X[$i&15] // h+=X[i]
167 eor $t0,$t0,$e,ror#$Sigma1[1]
168 eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
169 orr $t1,$t1,$t2 // Ch(e,f,g)
170 eor $t2,$a,$b // a^b, b^c in next round
171 eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e)
172 eor $T0,$T0,$a,ror#$Sigma0[1]
173 add $h,$h,$t1 // h+=Ch(e,f,g)
174 and $t3,$t3,$t2 // (b^c)&=(a^b)
175 eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
176 eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1])
177 add $h,$h,$t0 // h+=Sigma1(e)
178 eor $t3,$t3,$b // Maj(a,b,c)
179 eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a)
180 eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14])
181 add @X[$j],@X[$j],@X[($j+9)&15]
182 add $d,$d,$h // d+=h
183 add $h,$h,$t3 // h+=Maj(a,b,c)
184 ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
185 add @X[$j],@X[$j],$T1
186 add $h,$h,$t1 // h+=Sigma0(a)
187 add @X[$j],@X[$j],$T2
188___
189 ($t2,$t3)=($t3,$t2);
190}
191
192$code.=<<___;
193#ifndef __KERNEL__
194# include "arm_arch.h"
195.extern OPENSSL_armcap_P
196.hidden OPENSSL_armcap_P
197#endif
198
199.text
200
201.globl $func
202.type $func,%function
203.align 6
204$func:
205#ifndef __KERNEL__
206 adrp x16,OPENSSL_armcap_P
207 ldr w16,[x16,#:lo12:OPENSSL_armcap_P]
208___
209$code.=<<___ if ($SZ==4);
210 tst w16,#ARMV8_SHA256
211 b.ne .Lv8_entry
212 tst w16,#ARMV7_NEON
213 b.ne .Lneon_entry
214___
215$code.=<<___ if ($SZ==8);
216 tst w16,#ARMV8_SHA512
217 b.ne .Lv8_entry
218___
219$code.=<<___;
220#endif
221 .inst 0xd503233f // paciasp
222 stp x29,x30,[sp,#-128]!
223 add x29,sp,#0
224
225 stp x19,x20,[sp,#16]
226 stp x21,x22,[sp,#32]
227 stp x23,x24,[sp,#48]
228 stp x25,x26,[sp,#64]
229 stp x27,x28,[sp,#80]
230 sub sp,sp,#4*$SZ
231
232 ldp $A,$B,[$ctx] // load context
233 ldp $C,$D,[$ctx,#2*$SZ]
234 ldp $E,$F,[$ctx,#4*$SZ]
235 add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input
236 ldp $G,$H,[$ctx,#6*$SZ]
237 adr $Ktbl,.LK$BITS
238 stp $ctx,$num,[x29,#96]
239
240.Loop:
241 ldp @X[0],@X[1],[$inp],#2*$SZ
242 ldr $t2,[$Ktbl],#$SZ // *K++
243 eor $t3,$B,$C // magic seed
244 str $inp,[x29,#112]
245___
246for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
247$code.=".Loop_16_xx:\n";
248for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
249$code.=<<___;
250 cbnz $t2,.Loop_16_xx
251
252 ldp $ctx,$num,[x29,#96]
253 ldr $inp,[x29,#112]
254 sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind
255
256 ldp @X[0],@X[1],[$ctx]
257 ldp @X[2],@X[3],[$ctx,#2*$SZ]
258 add $inp,$inp,#14*$SZ // advance input pointer
259 ldp @X[4],@X[5],[$ctx,#4*$SZ]
260 add $A,$A,@X[0]
261 ldp @X[6],@X[7],[$ctx,#6*$SZ]
262 add $B,$B,@X[1]
263 add $C,$C,@X[2]
264 add $D,$D,@X[3]
265 stp $A,$B,[$ctx]
266 add $E,$E,@X[4]
267 add $F,$F,@X[5]
268 stp $C,$D,[$ctx,#2*$SZ]
269 add $G,$G,@X[6]
270 add $H,$H,@X[7]
271 cmp $inp,$num
272 stp $E,$F,[$ctx,#4*$SZ]
273 stp $G,$H,[$ctx,#6*$SZ]
274 b.ne .Loop
275
276 ldp x19,x20,[x29,#16]
277 add sp,sp,#4*$SZ
278 ldp x21,x22,[x29,#32]
279 ldp x23,x24,[x29,#48]
280 ldp x25,x26,[x29,#64]
281 ldp x27,x28,[x29,#80]
282 ldp x29,x30,[sp],#128
283 .inst 0xd50323bf // autiasp
284 ret
285.size $func,.-$func
286
287.align 6
288.type .LK$BITS,%object
289.LK$BITS:
290___
291$code.=<<___ if ($SZ==8);
292 .quad 0x428a2f98d728ae22,0x7137449123ef65cd
293 .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
294 .quad 0x3956c25bf348b538,0x59f111f1b605d019
295 .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
296 .quad 0xd807aa98a3030242,0x12835b0145706fbe
297 .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
298 .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
299 .quad 0x9bdc06a725c71235,0xc19bf174cf692694
300 .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
301 .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
302 .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
303 .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
304 .quad 0x983e5152ee66dfab,0xa831c66d2db43210
305 .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
306 .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
307 .quad 0x06ca6351e003826f,0x142929670a0e6e70
308 .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
309 .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
310 .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
311 .quad 0x81c2c92e47edaee6,0x92722c851482353b
312 .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
313 .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
314 .quad 0xd192e819d6ef5218,0xd69906245565a910
315 .quad 0xf40e35855771202a,0x106aa07032bbd1b8
316 .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
317 .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
318 .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
319 .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
320 .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
321 .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
322 .quad 0x90befffa23631e28,0xa4506cebde82bde9
323 .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
324 .quad 0xca273eceea26619c,0xd186b8c721c0c207
325 .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
326 .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
327 .quad 0x113f9804bef90dae,0x1b710b35131c471b
328 .quad 0x28db77f523047d84,0x32caab7b40c72493
329 .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
330 .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
331 .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
332 .quad 0 // terminator
333___
334$code.=<<___ if ($SZ==4);
335 .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
336 .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
337 .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
338 .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
339 .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
340 .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
341 .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
342 .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
343 .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
344 .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
345 .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
346 .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
347 .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
348 .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
349 .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
350 .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
351 .long 0 //terminator
352___
353$code.=<<___;
354.size .LK$BITS,.-.LK$BITS
355.asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
356.align 2
357___
358
359if ($SZ==4) {
360my $Ktbl="x3";
361
362my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
363my @MSG=map("v$_.16b",(4..7));
364my ($W0,$W1)=("v16.4s","v17.4s");
365my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
366
367$code.=<<___;
368#ifndef __KERNEL__
369.type sha256_block_armv8,%function
370.align 6
371sha256_block_armv8:
372.Lv8_entry:
373 stp x29,x30,[sp,#-16]!
374 add x29,sp,#0
375
376 ld1.32 {$ABCD,$EFGH},[$ctx]
377 adr $Ktbl,.LK256
378
379.Loop_hw:
380 ld1 {@MSG[0]-@MSG[3]},[$inp],#64
381 sub $num,$num,#1
382 ld1.32 {$W0},[$Ktbl],#16
383 rev32 @MSG[0],@MSG[0]
384 rev32 @MSG[1],@MSG[1]
385 rev32 @MSG[2],@MSG[2]
386 rev32 @MSG[3],@MSG[3]
387 orr $ABCD_SAVE,$ABCD,$ABCD // offload
388 orr $EFGH_SAVE,$EFGH,$EFGH
389___
390for($i=0;$i<12;$i++) {
391$code.=<<___;
392 ld1.32 {$W1},[$Ktbl],#16
393 add.i32 $W0,$W0,@MSG[0]
394 sha256su0 @MSG[0],@MSG[1]
395 orr $abcd,$ABCD,$ABCD
396 sha256h $ABCD,$EFGH,$W0
397 sha256h2 $EFGH,$abcd,$W0
398 sha256su1 @MSG[0],@MSG[2],@MSG[3]
399___
400 ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
401}
402$code.=<<___;
403 ld1.32 {$W1},[$Ktbl],#16
404 add.i32 $W0,$W0,@MSG[0]
405 orr $abcd,$ABCD,$ABCD
406 sha256h $ABCD,$EFGH,$W0
407 sha256h2 $EFGH,$abcd,$W0
408
409 ld1.32 {$W0},[$Ktbl],#16
410 add.i32 $W1,$W1,@MSG[1]
411 orr $abcd,$ABCD,$ABCD
412 sha256h $ABCD,$EFGH,$W1
413 sha256h2 $EFGH,$abcd,$W1
414
415 ld1.32 {$W1},[$Ktbl]
416 add.i32 $W0,$W0,@MSG[2]
417 sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind
418 orr $abcd,$ABCD,$ABCD
419 sha256h $ABCD,$EFGH,$W0
420 sha256h2 $EFGH,$abcd,$W0
421
422 add.i32 $W1,$W1,@MSG[3]
423 orr $abcd,$ABCD,$ABCD
424 sha256h $ABCD,$EFGH,$W1
425 sha256h2 $EFGH,$abcd,$W1
426
427 add.i32 $ABCD,$ABCD,$ABCD_SAVE
428 add.i32 $EFGH,$EFGH,$EFGH_SAVE
429
430 cbnz $num,.Loop_hw
431
432 st1.32 {$ABCD,$EFGH},[$ctx]
433
434 ldr x29,[sp],#16
435 ret
436.size sha256_block_armv8,.-sha256_block_armv8
437#endif
438___
439}
440
441if ($SZ==4) { ######################################### NEON stuff #
442# You'll surely note a lot of similarities with sha256-armv4 module,
443# and of course it's not a coincidence. sha256-armv4 was used as
444# initial template, but was adapted for ARMv8 instruction set and
445# extensively re-tuned for all-round performance.
446
447my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
448my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
449my $Ktbl="x16";
450my $Xfer="x17";
451my @X = map("q$_",(0..3));
452my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
453my $j=0;
454
455sub AUTOLOAD() # thunk [simplified] x86-style perlasm
456{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
457 my $arg = pop;
458 $arg = "#$arg" if ($arg*1 eq $arg);
459 $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
460}
461
462sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
463sub Dlo { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
464sub Dhi { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
465
466sub Xupdate()
467{ use integer;
468 my $body = shift;
469 my @insns = (&$body,&$body,&$body,&$body);
470 my ($a,$b,$c,$d,$e,$f,$g,$h);
471
472 &ext_8 ($T0,@X[0],@X[1],4); # X[1..4]
473 eval(shift(@insns));
474 eval(shift(@insns));
475 eval(shift(@insns));
476 &ext_8 ($T3,@X[2],@X[3],4); # X[9..12]
477 eval(shift(@insns));
478 eval(shift(@insns));
479 &mov (&Dscalar($T7),&Dhi(@X[3])); # X[14..15]
480 eval(shift(@insns));
481 eval(shift(@insns));
482 &ushr_32 ($T2,$T0,$sigma0[0]);
483 eval(shift(@insns));
484 &ushr_32 ($T1,$T0,$sigma0[2]);
485 eval(shift(@insns));
486 &add_32 (@X[0],@X[0],$T3); # X[0..3] += X[9..12]
487 eval(shift(@insns));
488 &sli_32 ($T2,$T0,32-$sigma0[0]);
489 eval(shift(@insns));
490 eval(shift(@insns));
491 &ushr_32 ($T3,$T0,$sigma0[1]);
492 eval(shift(@insns));
493 eval(shift(@insns));
494 &eor_8 ($T1,$T1,$T2);
495 eval(shift(@insns));
496 eval(shift(@insns));
497 &sli_32 ($T3,$T0,32-$sigma0[1]);
498 eval(shift(@insns));
499 eval(shift(@insns));
500 &ushr_32 ($T4,$T7,$sigma1[0]);
501 eval(shift(@insns));
502 eval(shift(@insns));
503 &eor_8 ($T1,$T1,$T3); # sigma0(X[1..4])
504 eval(shift(@insns));
505 eval(shift(@insns));
506 &sli_32 ($T4,$T7,32-$sigma1[0]);
507 eval(shift(@insns));
508 eval(shift(@insns));
509 &ushr_32 ($T5,$T7,$sigma1[2]);
510 eval(shift(@insns));
511 eval(shift(@insns));
512 &ushr_32 ($T3,$T7,$sigma1[1]);
513 eval(shift(@insns));
514 eval(shift(@insns));
515 &add_32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
516 eval(shift(@insns));
517 eval(shift(@insns));
518 &sli_u32 ($T3,$T7,32-$sigma1[1]);
519 eval(shift(@insns));
520 eval(shift(@insns));
521 &eor_8 ($T5,$T5,$T4);
522 eval(shift(@insns));
523 eval(shift(@insns));
524 eval(shift(@insns));
525 &eor_8 ($T5,$T5,$T3); # sigma1(X[14..15])
526 eval(shift(@insns));
527 eval(shift(@insns));
528 eval(shift(@insns));
529 &add_32 (@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15])
530 eval(shift(@insns));
531 eval(shift(@insns));
532 eval(shift(@insns));
533 &ushr_32 ($T6,@X[0],$sigma1[0]);
534 eval(shift(@insns));
535 &ushr_32 ($T7,@X[0],$sigma1[2]);
536 eval(shift(@insns));
537 eval(shift(@insns));
538 &sli_32 ($T6,@X[0],32-$sigma1[0]);
539 eval(shift(@insns));
540 &ushr_32 ($T5,@X[0],$sigma1[1]);
541 eval(shift(@insns));
542 eval(shift(@insns));
543 &eor_8 ($T7,$T7,$T6);
544 eval(shift(@insns));
545 eval(shift(@insns));
546 &sli_32 ($T5,@X[0],32-$sigma1[1]);
547 eval(shift(@insns));
548 eval(shift(@insns));
549 &ld1_32 ("{$T0}","[$Ktbl], #16");
550 eval(shift(@insns));
551 &eor_8 ($T7,$T7,$T5); # sigma1(X[16..17])
552 eval(shift(@insns));
553 eval(shift(@insns));
554 &eor_8 ($T5,$T5,$T5);
555 eval(shift(@insns));
556 eval(shift(@insns));
557 &mov (&Dhi($T5), &Dlo($T7));
558 eval(shift(@insns));
559 eval(shift(@insns));
560 eval(shift(@insns));
561 &add_32 (@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17])
562 eval(shift(@insns));
563 eval(shift(@insns));
564 eval(shift(@insns));
565 &add_32 ($T0,$T0,@X[0]);
566 while($#insns>=1) { eval(shift(@insns)); }
567 &st1_32 ("{$T0}","[$Xfer], #16");
568 eval(shift(@insns));
569
570 push(@X,shift(@X)); # "rotate" X[]
571}
572
573sub Xpreload()
574{ use integer;
575 my $body = shift;
576 my @insns = (&$body,&$body,&$body,&$body);
577 my ($a,$b,$c,$d,$e,$f,$g,$h);
578
579 eval(shift(@insns));
580 eval(shift(@insns));
581 &ld1_8 ("{@X[0]}","[$inp],#16");
582 eval(shift(@insns));
583 eval(shift(@insns));
584 &ld1_32 ("{$T0}","[$Ktbl],#16");
585 eval(shift(@insns));
586 eval(shift(@insns));
587 eval(shift(@insns));
588 eval(shift(@insns));
589 &rev32 (@X[0],@X[0]);
590 eval(shift(@insns));
591 eval(shift(@insns));
592 eval(shift(@insns));
593 eval(shift(@insns));
594 &add_32 ($T0,$T0,@X[0]);
595 foreach (@insns) { eval; } # remaining instructions
596 &st1_32 ("{$T0}","[$Xfer], #16");
597
598 push(@X,shift(@X)); # "rotate" X[]
599}
600
601sub body_00_15 () {
602 (
603 '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
604 '&add ($h,$h,$t1)', # h+=X[i]+K[i]
605 '&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past
606 '&and ($t1,$f,$e)',
607 '&bic ($t4,$g,$e)',
608 '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
609 '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
610 '&orr ($t1,$t1,$t4)', # Ch(e,f,g)
611 '&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
612 '&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
613 '&add ($h,$h,$t1)', # h+=Ch(e,f,g)
614 '&ror ($t0,$t0,"#$Sigma1[0]")',
615 '&eor ($t2,$a,$b)', # a^b, b^c in next round
616 '&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
617 '&add ($h,$h,$t0)', # h+=Sigma1(e)
618 '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
619 '&ldr ($t1,"[$Ktbl]") if ($j==15);'.
620 '&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
621 '&ror ($t4,$t4,"#$Sigma0[0]")',
622 '&add ($d,$d,$h)', # d+=h
623 '&eor ($t3,$t3,$b)', # Maj(a,b,c)
624 '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
625 )
626}
627
628$code.=<<___;
629#ifdef __KERNEL__
630.globl sha256_block_neon
631#endif
632.type sha256_block_neon,%function
633.align 4
634sha256_block_neon:
635.Lneon_entry:
636 stp x29, x30, [sp, #-16]!
637 mov x29, sp
638 sub sp,sp,#16*4
639
640 adr $Ktbl,.LK256
641 add $num,$inp,$num,lsl#6 // len to point at the end of inp
642
643 ld1.8 {@X[0]},[$inp], #16
644 ld1.8 {@X[1]},[$inp], #16
645 ld1.8 {@X[2]},[$inp], #16
646 ld1.8 {@X[3]},[$inp], #16
647 ld1.32 {$T0},[$Ktbl], #16
648 ld1.32 {$T1},[$Ktbl], #16
649 ld1.32 {$T2},[$Ktbl], #16
650 ld1.32 {$T3},[$Ktbl], #16
651 rev32 @X[0],@X[0] // yes, even on
652 rev32 @X[1],@X[1] // big-endian
653 rev32 @X[2],@X[2]
654 rev32 @X[3],@X[3]
655 mov $Xfer,sp
656 add.32 $T0,$T0,@X[0]
657 add.32 $T1,$T1,@X[1]
658 add.32 $T2,$T2,@X[2]
659 st1.32 {$T0-$T1},[$Xfer], #32
660 add.32 $T3,$T3,@X[3]
661 st1.32 {$T2-$T3},[$Xfer]
662 sub $Xfer,$Xfer,#32
663
664 ldp $A,$B,[$ctx]
665 ldp $C,$D,[$ctx,#8]
666 ldp $E,$F,[$ctx,#16]
667 ldp $G,$H,[$ctx,#24]
668 ldr $t1,[sp,#0]
669 mov $t2,wzr
670 eor $t3,$B,$C
671 mov $t4,wzr
672 b .L_00_48
673
674.align 4
675.L_00_48:
676___
677 &Xupdate(\&body_00_15);
678 &Xupdate(\&body_00_15);
679 &Xupdate(\&body_00_15);
680 &Xupdate(\&body_00_15);
681$code.=<<___;
682 cmp $t1,#0 // check for K256 terminator
683 ldr $t1,[sp,#0]
684 sub $Xfer,$Xfer,#64
685 bne .L_00_48
686
687 sub $Ktbl,$Ktbl,#256 // rewind $Ktbl
688 cmp $inp,$num
689 mov $Xfer, #64
690 csel $Xfer, $Xfer, xzr, eq
691 sub $inp,$inp,$Xfer // avoid SEGV
692 mov $Xfer,sp
693___
694 &Xpreload(\&body_00_15);
695 &Xpreload(\&body_00_15);
696 &Xpreload(\&body_00_15);
697 &Xpreload(\&body_00_15);
698$code.=<<___;
699 add $A,$A,$t4 // h+=Sigma0(a) from the past
700 ldp $t0,$t1,[$ctx,#0]
701 add $A,$A,$t2 // h+=Maj(a,b,c) from the past
702 ldp $t2,$t3,[$ctx,#8]
703 add $A,$A,$t0 // accumulate
704 add $B,$B,$t1
705 ldp $t0,$t1,[$ctx,#16]
706 add $C,$C,$t2
707 add $D,$D,$t3
708 ldp $t2,$t3,[$ctx,#24]
709 add $E,$E,$t0
710 add $F,$F,$t1
711 ldr $t1,[sp,#0]
712 stp $A,$B,[$ctx,#0]
713 add $G,$G,$t2
714 mov $t2,wzr
715 stp $C,$D,[$ctx,#8]
716 add $H,$H,$t3
717 stp $E,$F,[$ctx,#16]
718 eor $t3,$B,$C
719 stp $G,$H,[$ctx,#24]
720 mov $t4,wzr
721 mov $Xfer,sp
722 b.ne .L_00_48
723
724 ldr x29,[x29]
725 add sp,sp,#16*4+16
726 ret
727.size sha256_block_neon,.-sha256_block_neon
728___
729}
730
731if ($SZ==8) {
732my $Ktbl="x3";
733
734my @H = map("v$_.16b",(0..4));
735my ($fg,$de,$m9_10)=map("v$_.16b",(5..7));
736my @MSG=map("v$_.16b",(16..23));
737my ($W0,$W1)=("v24.2d","v25.2d");
738my ($AB,$CD,$EF,$GH)=map("v$_.16b",(26..29));
739
740$code.=<<___;
741#ifndef __KERNEL__
742.type sha512_block_armv8,%function
743.align 6
744sha512_block_armv8:
745.Lv8_entry:
746 stp x29,x30,[sp,#-16]!
747 add x29,sp,#0
748
749 ld1 {@MSG[0]-@MSG[3]},[$inp],#64 // load input
750 ld1 {@MSG[4]-@MSG[7]},[$inp],#64
751
752 ld1.64 {@H[0]-@H[3]},[$ctx] // load context
753 adr $Ktbl,.LK512
754
755 rev64 @MSG[0],@MSG[0]
756 rev64 @MSG[1],@MSG[1]
757 rev64 @MSG[2],@MSG[2]
758 rev64 @MSG[3],@MSG[3]
759 rev64 @MSG[4],@MSG[4]
760 rev64 @MSG[5],@MSG[5]
761 rev64 @MSG[6],@MSG[6]
762 rev64 @MSG[7],@MSG[7]
763 b .Loop_hw
764
765.align 4
766.Loop_hw:
767 ld1.64 {$W0},[$Ktbl],#16
768 subs $num,$num,#1
769 sub x4,$inp,#128
770 orr $AB,@H[0],@H[0] // offload
771 orr $CD,@H[1],@H[1]
772 orr $EF,@H[2],@H[2]
773 orr $GH,@H[3],@H[3]
774 csel $inp,$inp,x4,ne // conditional rewind
775___
776for($i=0;$i<32;$i++) {
777$code.=<<___;
778 add.i64 $W0,$W0,@MSG[0]
779 ld1.64 {$W1},[$Ktbl],#16
780 ext $W0,$W0,$W0,#8
781 ext $fg,@H[2],@H[3],#8
782 ext $de,@H[1],@H[2],#8
783 add.i64 @H[3],@H[3],$W0 // "T1 + H + K512[i]"
784 sha512su0 @MSG[0],@MSG[1]
785 ext $m9_10,@MSG[4],@MSG[5],#8
786 sha512h @H[3],$fg,$de
787 sha512su1 @MSG[0],@MSG[7],$m9_10
788 add.i64 @H[4],@H[1],@H[3] // "D + T1"
789 sha512h2 @H[3],$H[1],@H[0]
790___
791 ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
792 @H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
793}
794for(;$i<40;$i++) {
795$code.=<<___ if ($i<39);
796 ld1.64 {$W1},[$Ktbl],#16
797___
798$code.=<<___ if ($i==39);
799 sub $Ktbl,$Ktbl,#$rounds*$SZ // rewind
800___
801$code.=<<___;
802 add.i64 $W0,$W0,@MSG[0]
803 ld1 {@MSG[0]},[$inp],#16 // load next input
804 ext $W0,$W0,$W0,#8
805 ext $fg,@H[2],@H[3],#8
806 ext $de,@H[1],@H[2],#8
807 add.i64 @H[3],@H[3],$W0 // "T1 + H + K512[i]"
808 sha512h @H[3],$fg,$de
809 rev64 @MSG[0],@MSG[0]
810 add.i64 @H[4],@H[1],@H[3] // "D + T1"
811 sha512h2 @H[3],$H[1],@H[0]
812___
813 ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
814 @H = (@H[3],@H[0],@H[4],@H[2],@H[1]);
815}
816$code.=<<___;
817 add.i64 @H[0],@H[0],$AB // accumulate
818 add.i64 @H[1],@H[1],$CD
819 add.i64 @H[2],@H[2],$EF
820 add.i64 @H[3],@H[3],$GH
821
822 cbnz $num,.Loop_hw
823
824 st1.64 {@H[0]-@H[3]},[$ctx] // store context
825
826 ldr x29,[sp],#16
827 ret
828.size sha512_block_armv8,.-sha512_block_armv8
829#endif
830___
831}
832
833{ my %opcode = (
834 "sha256h" => 0x5e004000, "sha256h2" => 0x5e005000,
835 "sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 );
836
837 sub unsha256 {
838 my ($mnemonic,$arg)=@_;
839
840 $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
841 &&
842 sprintf ".inst\t0x%08x\t//%s %s",
843 $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
844 $mnemonic,$arg;
845 }
846}
847
848{ my %opcode = (
849 "sha512h" => 0xce608000, "sha512h2" => 0xce608400,
850 "sha512su0" => 0xcec08000, "sha512su1" => 0xce608800 );
851
852 sub unsha512 {
853 my ($mnemonic,$arg)=@_;
854
855 $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
856 &&
857 sprintf ".inst\t0x%08x\t//%s %s",
858 $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
859 $mnemonic,$arg;
860 }
861}
862
863open SELF,$0;
864while(<SELF>) {
865 next if (/^#!/);
866 last if (!s/^#/\/\// and !/^$/);
867 print;
868}
869close SELF;
870
871foreach(split("\n",$code)) {
872
873 s/\`([^\`]*)\`/eval($1)/ge;
874
875 s/\b(sha512\w+)\s+([qv].*)/unsha512($1,$2)/ge or
876 s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
877
878 s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers
879
880 s/\.[ui]?8(\s)/$1/;
881 s/\.\w?64\b// and s/\.16b/\.2d/g or
882 s/\.\w?32\b// and s/\.16b/\.4s/g;
883 m/\bext\b/ and s/\.2d/\.16b/g or
884 m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g;
885
886 print $_,"\n";
887}
888
889close STDOUT or die "error closing STDOUT: $!";
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette