1 | /*
|
---|
2 | * Copyright 2001-2021 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | /*
|
---|
11 | * This file uses the low level AES functions (which are deprecated for
|
---|
12 | * non-internal use) in order to implement the EVP AES ciphers.
|
---|
13 | */
|
---|
14 | #include "internal/deprecated.h"
|
---|
15 |
|
---|
16 | #include <string.h>
|
---|
17 | #include <assert.h>
|
---|
18 | #include <openssl/opensslconf.h>
|
---|
19 | #include <openssl/crypto.h>
|
---|
20 | #include <openssl/evp.h>
|
---|
21 | #include <openssl/err.h>
|
---|
22 | #include <openssl/aes.h>
|
---|
23 | #include <openssl/rand.h>
|
---|
24 | #include <openssl/cmac.h>
|
---|
25 | #include "crypto/evp.h"
|
---|
26 | #include "internal/cryptlib.h"
|
---|
27 | #include "crypto/modes.h"
|
---|
28 | #include "crypto/siv.h"
|
---|
29 | #include "crypto/aes_platform.h"
|
---|
30 | #include "evp_local.h"
|
---|
31 |
|
---|
32 | typedef struct {
|
---|
33 | union {
|
---|
34 | OSSL_UNION_ALIGN;
|
---|
35 | AES_KEY ks;
|
---|
36 | } ks;
|
---|
37 | block128_f block;
|
---|
38 | union {
|
---|
39 | cbc128_f cbc;
|
---|
40 | ctr128_f ctr;
|
---|
41 | } stream;
|
---|
42 | } EVP_AES_KEY;
|
---|
43 |
|
---|
44 | typedef struct {
|
---|
45 | union {
|
---|
46 | OSSL_UNION_ALIGN;
|
---|
47 | AES_KEY ks;
|
---|
48 | } ks; /* AES key schedule to use */
|
---|
49 | int key_set; /* Set if key initialised */
|
---|
50 | int iv_set; /* Set if an iv is set */
|
---|
51 | GCM128_CONTEXT gcm;
|
---|
52 | unsigned char *iv; /* Temporary IV store */
|
---|
53 | int ivlen; /* IV length */
|
---|
54 | int taglen;
|
---|
55 | int iv_gen; /* It is OK to generate IVs */
|
---|
56 | int iv_gen_rand; /* No IV was specified, so generate a rand IV */
|
---|
57 | int tls_aad_len; /* TLS AAD length */
|
---|
58 | uint64_t tls_enc_records; /* Number of TLS records encrypted */
|
---|
59 | ctr128_f ctr;
|
---|
60 | } EVP_AES_GCM_CTX;
|
---|
61 |
|
---|
62 | typedef struct {
|
---|
63 | union {
|
---|
64 | OSSL_UNION_ALIGN;
|
---|
65 | AES_KEY ks;
|
---|
66 | } ks1, ks2; /* AES key schedules to use */
|
---|
67 | XTS128_CONTEXT xts;
|
---|
68 | void (*stream) (const unsigned char *in,
|
---|
69 | unsigned char *out, size_t length,
|
---|
70 | const AES_KEY *key1, const AES_KEY *key2,
|
---|
71 | const unsigned char iv[16]);
|
---|
72 | } EVP_AES_XTS_CTX;
|
---|
73 |
|
---|
74 | #ifdef FIPS_MODULE
|
---|
75 | static const int allow_insecure_decrypt = 0;
|
---|
76 | #else
|
---|
77 | static const int allow_insecure_decrypt = 1;
|
---|
78 | #endif
|
---|
79 |
|
---|
80 | typedef struct {
|
---|
81 | union {
|
---|
82 | OSSL_UNION_ALIGN;
|
---|
83 | AES_KEY ks;
|
---|
84 | } ks; /* AES key schedule to use */
|
---|
85 | int key_set; /* Set if key initialised */
|
---|
86 | int iv_set; /* Set if an iv is set */
|
---|
87 | int tag_set; /* Set if tag is valid */
|
---|
88 | int len_set; /* Set if message length set */
|
---|
89 | int L, M; /* L and M parameters from RFC3610 */
|
---|
90 | int tls_aad_len; /* TLS AAD length */
|
---|
91 | CCM128_CONTEXT ccm;
|
---|
92 | ccm128_f str;
|
---|
93 | } EVP_AES_CCM_CTX;
|
---|
94 |
|
---|
95 | #ifndef OPENSSL_NO_OCB
|
---|
96 | typedef struct {
|
---|
97 | union {
|
---|
98 | OSSL_UNION_ALIGN;
|
---|
99 | AES_KEY ks;
|
---|
100 | } ksenc; /* AES key schedule to use for encryption */
|
---|
101 | union {
|
---|
102 | OSSL_UNION_ALIGN;
|
---|
103 | AES_KEY ks;
|
---|
104 | } ksdec; /* AES key schedule to use for decryption */
|
---|
105 | int key_set; /* Set if key initialised */
|
---|
106 | int iv_set; /* Set if an iv is set */
|
---|
107 | OCB128_CONTEXT ocb;
|
---|
108 | unsigned char *iv; /* Temporary IV store */
|
---|
109 | unsigned char tag[16];
|
---|
110 | unsigned char data_buf[16]; /* Store partial data blocks */
|
---|
111 | unsigned char aad_buf[16]; /* Store partial AAD blocks */
|
---|
112 | int data_buf_len;
|
---|
113 | int aad_buf_len;
|
---|
114 | int ivlen; /* IV length */
|
---|
115 | int taglen;
|
---|
116 | } EVP_AES_OCB_CTX;
|
---|
117 | #endif
|
---|
118 |
|
---|
119 | #define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4))
|
---|
120 |
|
---|
121 | /* increment counter (64-bit int) by 1 */
|
---|
122 | static void ctr64_inc(unsigned char *counter)
|
---|
123 | {
|
---|
124 | int n = 8;
|
---|
125 | unsigned char c;
|
---|
126 |
|
---|
127 | do {
|
---|
128 | --n;
|
---|
129 | c = counter[n];
|
---|
130 | ++c;
|
---|
131 | counter[n] = c;
|
---|
132 | if (c)
|
---|
133 | return;
|
---|
134 | } while (n);
|
---|
135 | }
|
---|
136 |
|
---|
137 | #if defined(AESNI_CAPABLE)
|
---|
138 | # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
|
---|
139 | # define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \
|
---|
140 | gctx->gcm.ghash==gcm_ghash_avx)
|
---|
141 | # undef AES_GCM_ASM2 /* minor size optimization */
|
---|
142 | # endif
|
---|
143 |
|
---|
144 | static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
145 | const unsigned char *iv, int enc)
|
---|
146 | {
|
---|
147 | int ret, mode;
|
---|
148 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
149 |
|
---|
150 | mode = EVP_CIPHER_CTX_get_mode(ctx);
|
---|
151 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
|
---|
152 | && !enc) {
|
---|
153 | ret = aesni_set_decrypt_key(key,
|
---|
154 | EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
155 | &dat->ks.ks);
|
---|
156 | dat->block = (block128_f) aesni_decrypt;
|
---|
157 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
158 | (cbc128_f) aesni_cbc_encrypt : NULL;
|
---|
159 | } else {
|
---|
160 | ret = aesni_set_encrypt_key(key,
|
---|
161 | EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
162 | &dat->ks.ks);
|
---|
163 | dat->block = (block128_f) aesni_encrypt;
|
---|
164 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
165 | dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt;
|
---|
166 | else if (mode == EVP_CIPH_CTR_MODE)
|
---|
167 | dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
|
---|
168 | else
|
---|
169 | dat->stream.cbc = NULL;
|
---|
170 | }
|
---|
171 |
|
---|
172 | if (ret < 0) {
|
---|
173 | ERR_raise(ERR_LIB_EVP, EVP_R_AES_KEY_SETUP_FAILED);
|
---|
174 | return 0;
|
---|
175 | }
|
---|
176 |
|
---|
177 | return 1;
|
---|
178 | }
|
---|
179 |
|
---|
180 | static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
181 | const unsigned char *in, size_t len)
|
---|
182 | {
|
---|
183 | aesni_cbc_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
|
---|
184 | ctx->iv, EVP_CIPHER_CTX_is_encrypting(ctx));
|
---|
185 |
|
---|
186 | return 1;
|
---|
187 | }
|
---|
188 |
|
---|
189 | static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
190 | const unsigned char *in, size_t len)
|
---|
191 | {
|
---|
192 | size_t bl = EVP_CIPHER_CTX_get_block_size(ctx);
|
---|
193 |
|
---|
194 | if (len < bl)
|
---|
195 | return 1;
|
---|
196 |
|
---|
197 | aesni_ecb_encrypt(in, out, len, &EVP_C_DATA(EVP_AES_KEY,ctx)->ks.ks,
|
---|
198 | EVP_CIPHER_CTX_is_encrypting(ctx));
|
---|
199 |
|
---|
200 | return 1;
|
---|
201 | }
|
---|
202 |
|
---|
203 | # define aesni_ofb_cipher aes_ofb_cipher
|
---|
204 | static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
205 | const unsigned char *in, size_t len);
|
---|
206 |
|
---|
207 | # define aesni_cfb_cipher aes_cfb_cipher
|
---|
208 | static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
209 | const unsigned char *in, size_t len);
|
---|
210 |
|
---|
211 | # define aesni_cfb8_cipher aes_cfb8_cipher
|
---|
212 | static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
213 | const unsigned char *in, size_t len);
|
---|
214 |
|
---|
215 | # define aesni_cfb1_cipher aes_cfb1_cipher
|
---|
216 | static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
217 | const unsigned char *in, size_t len);
|
---|
218 |
|
---|
219 | # define aesni_ctr_cipher aes_ctr_cipher
|
---|
220 | static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
221 | const unsigned char *in, size_t len);
|
---|
222 |
|
---|
223 | static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
224 | const unsigned char *iv, int enc)
|
---|
225 | {
|
---|
226 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
|
---|
227 | if (!iv && !key)
|
---|
228 | return 1;
|
---|
229 | if (key) {
|
---|
230 | aesni_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
231 | &gctx->ks.ks);
|
---|
232 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt);
|
---|
233 | gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
|
---|
234 | /*
|
---|
235 | * If we have an iv can set it directly, otherwise use saved IV.
|
---|
236 | */
|
---|
237 | if (iv == NULL && gctx->iv_set)
|
---|
238 | iv = gctx->iv;
|
---|
239 | if (iv) {
|
---|
240 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
241 | gctx->iv_set = 1;
|
---|
242 | }
|
---|
243 | gctx->key_set = 1;
|
---|
244 | } else {
|
---|
245 | /* If key set use IV, otherwise copy */
|
---|
246 | if (gctx->key_set)
|
---|
247 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
248 | else
|
---|
249 | memcpy(gctx->iv, iv, gctx->ivlen);
|
---|
250 | gctx->iv_set = 1;
|
---|
251 | gctx->iv_gen = 0;
|
---|
252 | }
|
---|
253 | return 1;
|
---|
254 | }
|
---|
255 |
|
---|
256 | # define aesni_gcm_cipher aes_gcm_cipher
|
---|
257 | static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
258 | const unsigned char *in, size_t len);
|
---|
259 |
|
---|
260 | static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
261 | const unsigned char *iv, int enc)
|
---|
262 | {
|
---|
263 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
|
---|
264 |
|
---|
265 | if (!iv && !key)
|
---|
266 | return 1;
|
---|
267 |
|
---|
268 | if (key) {
|
---|
269 | /* The key is two half length keys in reality */
|
---|
270 | const int bytes = EVP_CIPHER_CTX_get_key_length(ctx) / 2;
|
---|
271 | const int bits = bytes * 8;
|
---|
272 |
|
---|
273 | /*
|
---|
274 | * Verify that the two keys are different.
|
---|
275 | *
|
---|
276 | * This addresses Rogaway's vulnerability.
|
---|
277 | * See comment in aes_xts_init_key() below.
|
---|
278 | */
|
---|
279 | if ((!allow_insecure_decrypt || enc)
|
---|
280 | && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
|
---|
281 | ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DUPLICATED_KEYS);
|
---|
282 | return 0;
|
---|
283 | }
|
---|
284 |
|
---|
285 | /* key_len is two AES keys */
|
---|
286 | if (enc) {
|
---|
287 | aesni_set_encrypt_key(key, bits, &xctx->ks1.ks);
|
---|
288 | xctx->xts.block1 = (block128_f) aesni_encrypt;
|
---|
289 | xctx->stream = aesni_xts_encrypt;
|
---|
290 | } else {
|
---|
291 | aesni_set_decrypt_key(key, bits, &xctx->ks1.ks);
|
---|
292 | xctx->xts.block1 = (block128_f) aesni_decrypt;
|
---|
293 | xctx->stream = aesni_xts_decrypt;
|
---|
294 | }
|
---|
295 |
|
---|
296 | aesni_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks);
|
---|
297 | xctx->xts.block2 = (block128_f) aesni_encrypt;
|
---|
298 |
|
---|
299 | xctx->xts.key1 = &xctx->ks1;
|
---|
300 | }
|
---|
301 |
|
---|
302 | if (iv) {
|
---|
303 | xctx->xts.key2 = &xctx->ks2;
|
---|
304 | memcpy(ctx->iv, iv, 16);
|
---|
305 | }
|
---|
306 |
|
---|
307 | return 1;
|
---|
308 | }
|
---|
309 |
|
---|
310 | # define aesni_xts_cipher aes_xts_cipher
|
---|
311 | static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
312 | const unsigned char *in, size_t len);
|
---|
313 |
|
---|
314 | static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
315 | const unsigned char *iv, int enc)
|
---|
316 | {
|
---|
317 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
|
---|
318 | if (!iv && !key)
|
---|
319 | return 1;
|
---|
320 | if (key) {
|
---|
321 | aesni_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
322 | &cctx->ks.ks);
|
---|
323 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
|
---|
324 | &cctx->ks, (block128_f) aesni_encrypt);
|
---|
325 | cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks :
|
---|
326 | (ccm128_f) aesni_ccm64_decrypt_blocks;
|
---|
327 | cctx->key_set = 1;
|
---|
328 | }
|
---|
329 | if (iv) {
|
---|
330 | memcpy(ctx->iv, iv, 15 - cctx->L);
|
---|
331 | cctx->iv_set = 1;
|
---|
332 | }
|
---|
333 | return 1;
|
---|
334 | }
|
---|
335 |
|
---|
336 | # define aesni_ccm_cipher aes_ccm_cipher
|
---|
337 | static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
338 | const unsigned char *in, size_t len);
|
---|
339 |
|
---|
340 | # ifndef OPENSSL_NO_OCB
|
---|
341 | static int aesni_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
342 | const unsigned char *iv, int enc)
|
---|
343 | {
|
---|
344 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
|
---|
345 | if (!iv && !key)
|
---|
346 | return 1;
|
---|
347 | if (key) {
|
---|
348 | do {
|
---|
349 | /*
|
---|
350 | * We set both the encrypt and decrypt key here because decrypt
|
---|
351 | * needs both. We could possibly optimise to remove setting the
|
---|
352 | * decrypt for an encryption operation.
|
---|
353 | */
|
---|
354 | aesni_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
355 | &octx->ksenc.ks);
|
---|
356 | aesni_set_decrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
357 | &octx->ksdec.ks);
|
---|
358 | if (!CRYPTO_ocb128_init(&octx->ocb,
|
---|
359 | &octx->ksenc.ks, &octx->ksdec.ks,
|
---|
360 | (block128_f) aesni_encrypt,
|
---|
361 | (block128_f) aesni_decrypt,
|
---|
362 | enc ? aesni_ocb_encrypt
|
---|
363 | : aesni_ocb_decrypt))
|
---|
364 | return 0;
|
---|
365 | }
|
---|
366 | while (0);
|
---|
367 |
|
---|
368 | /*
|
---|
369 | * If we have an iv we can set it directly, otherwise use saved IV.
|
---|
370 | */
|
---|
371 | if (iv == NULL && octx->iv_set)
|
---|
372 | iv = octx->iv;
|
---|
373 | if (iv) {
|
---|
374 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
|
---|
375 | != 1)
|
---|
376 | return 0;
|
---|
377 | octx->iv_set = 1;
|
---|
378 | }
|
---|
379 | octx->key_set = 1;
|
---|
380 | } else {
|
---|
381 | /* If key set use IV, otherwise copy */
|
---|
382 | if (octx->key_set)
|
---|
383 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
|
---|
384 | else
|
---|
385 | memcpy(octx->iv, iv, octx->ivlen);
|
---|
386 | octx->iv_set = 1;
|
---|
387 | }
|
---|
388 | return 1;
|
---|
389 | }
|
---|
390 |
|
---|
391 | # define aesni_ocb_cipher aes_ocb_cipher
|
---|
392 | static int aesni_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
393 | const unsigned char *in, size_t len);
|
---|
394 | # endif /* OPENSSL_NO_OCB */
|
---|
395 |
|
---|
396 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
|
---|
397 | static const EVP_CIPHER aesni_##keylen##_##mode = { \
|
---|
398 | nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
|
---|
399 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
400 | EVP_ORIG_GLOBAL, \
|
---|
401 | aesni_init_key, \
|
---|
402 | aesni_##mode##_cipher, \
|
---|
403 | NULL, \
|
---|
404 | sizeof(EVP_AES_KEY), \
|
---|
405 | NULL,NULL,NULL,NULL }; \
|
---|
406 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
407 | nid##_##keylen##_##nmode,blocksize, \
|
---|
408 | keylen/8,ivlen, \
|
---|
409 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
410 | EVP_ORIG_GLOBAL, \
|
---|
411 | aes_init_key, \
|
---|
412 | aes_##mode##_cipher, \
|
---|
413 | NULL, \
|
---|
414 | sizeof(EVP_AES_KEY), \
|
---|
415 | NULL,NULL,NULL,NULL }; \
|
---|
416 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
417 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
|
---|
418 |
|
---|
419 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
|
---|
420 | static const EVP_CIPHER aesni_##keylen##_##mode = { \
|
---|
421 | nid##_##keylen##_##mode,blocksize, \
|
---|
422 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \
|
---|
423 | ivlen, \
|
---|
424 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
425 | EVP_ORIG_GLOBAL, \
|
---|
426 | aesni_##mode##_init_key, \
|
---|
427 | aesni_##mode##_cipher, \
|
---|
428 | aes_##mode##_cleanup, \
|
---|
429 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
430 | NULL,NULL,aes_##mode##_ctrl,NULL }; \
|
---|
431 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
432 | nid##_##keylen##_##mode,blocksize, \
|
---|
433 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \
|
---|
434 | ivlen, \
|
---|
435 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
436 | EVP_ORIG_GLOBAL, \
|
---|
437 | aes_##mode##_init_key, \
|
---|
438 | aes_##mode##_cipher, \
|
---|
439 | aes_##mode##_cleanup, \
|
---|
440 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
441 | NULL,NULL,aes_##mode##_ctrl,NULL }; \
|
---|
442 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
443 | { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
|
---|
444 |
|
---|
445 | #elif defined(SPARC_AES_CAPABLE)
|
---|
446 |
|
---|
447 | static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
448 | const unsigned char *iv, int enc)
|
---|
449 | {
|
---|
450 | int ret, mode, bits;
|
---|
451 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
452 |
|
---|
453 | mode = EVP_CIPHER_CTX_get_mode(ctx);
|
---|
454 | bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
455 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
|
---|
456 | && !enc) {
|
---|
457 | ret = 0;
|
---|
458 | aes_t4_set_decrypt_key(key, bits, &dat->ks.ks);
|
---|
459 | dat->block = (block128_f) aes_t4_decrypt;
|
---|
460 | switch (bits) {
|
---|
461 | case 128:
|
---|
462 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
463 | (cbc128_f) aes128_t4_cbc_decrypt : NULL;
|
---|
464 | break;
|
---|
465 | case 192:
|
---|
466 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
467 | (cbc128_f) aes192_t4_cbc_decrypt : NULL;
|
---|
468 | break;
|
---|
469 | case 256:
|
---|
470 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
471 | (cbc128_f) aes256_t4_cbc_decrypt : NULL;
|
---|
472 | break;
|
---|
473 | default:
|
---|
474 | ret = -1;
|
---|
475 | }
|
---|
476 | } else {
|
---|
477 | ret = 0;
|
---|
478 | aes_t4_set_encrypt_key(key, bits, &dat->ks.ks);
|
---|
479 | dat->block = (block128_f) aes_t4_encrypt;
|
---|
480 | switch (bits) {
|
---|
481 | case 128:
|
---|
482 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
483 | dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt;
|
---|
484 | else if (mode == EVP_CIPH_CTR_MODE)
|
---|
485 | dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
|
---|
486 | else
|
---|
487 | dat->stream.cbc = NULL;
|
---|
488 | break;
|
---|
489 | case 192:
|
---|
490 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
491 | dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt;
|
---|
492 | else if (mode == EVP_CIPH_CTR_MODE)
|
---|
493 | dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
|
---|
494 | else
|
---|
495 | dat->stream.cbc = NULL;
|
---|
496 | break;
|
---|
497 | case 256:
|
---|
498 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
499 | dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt;
|
---|
500 | else if (mode == EVP_CIPH_CTR_MODE)
|
---|
501 | dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
|
---|
502 | else
|
---|
503 | dat->stream.cbc = NULL;
|
---|
504 | break;
|
---|
505 | default:
|
---|
506 | ret = -1;
|
---|
507 | }
|
---|
508 | }
|
---|
509 |
|
---|
510 | if (ret < 0) {
|
---|
511 | ERR_raise(ERR_LIB_EVP, EVP_R_AES_KEY_SETUP_FAILED);
|
---|
512 | return 0;
|
---|
513 | }
|
---|
514 |
|
---|
515 | return 1;
|
---|
516 | }
|
---|
517 |
|
---|
518 | # define aes_t4_cbc_cipher aes_cbc_cipher
|
---|
519 | static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
520 | const unsigned char *in, size_t len);
|
---|
521 |
|
---|
522 | # define aes_t4_ecb_cipher aes_ecb_cipher
|
---|
523 | static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
524 | const unsigned char *in, size_t len);
|
---|
525 |
|
---|
526 | # define aes_t4_ofb_cipher aes_ofb_cipher
|
---|
527 | static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
528 | const unsigned char *in, size_t len);
|
---|
529 |
|
---|
530 | # define aes_t4_cfb_cipher aes_cfb_cipher
|
---|
531 | static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
532 | const unsigned char *in, size_t len);
|
---|
533 |
|
---|
534 | # define aes_t4_cfb8_cipher aes_cfb8_cipher
|
---|
535 | static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
536 | const unsigned char *in, size_t len);
|
---|
537 |
|
---|
538 | # define aes_t4_cfb1_cipher aes_cfb1_cipher
|
---|
539 | static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
540 | const unsigned char *in, size_t len);
|
---|
541 |
|
---|
542 | # define aes_t4_ctr_cipher aes_ctr_cipher
|
---|
543 | static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
544 | const unsigned char *in, size_t len);
|
---|
545 |
|
---|
546 | static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
547 | const unsigned char *iv, int enc)
|
---|
548 | {
|
---|
549 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
|
---|
550 | if (!iv && !key)
|
---|
551 | return 1;
|
---|
552 | if (key) {
|
---|
553 | int bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
554 | aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks);
|
---|
555 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
|
---|
556 | (block128_f) aes_t4_encrypt);
|
---|
557 | switch (bits) {
|
---|
558 | case 128:
|
---|
559 | gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
|
---|
560 | break;
|
---|
561 | case 192:
|
---|
562 | gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
|
---|
563 | break;
|
---|
564 | case 256:
|
---|
565 | gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
|
---|
566 | break;
|
---|
567 | default:
|
---|
568 | return 0;
|
---|
569 | }
|
---|
570 | /*
|
---|
571 | * If we have an iv can set it directly, otherwise use saved IV.
|
---|
572 | */
|
---|
573 | if (iv == NULL && gctx->iv_set)
|
---|
574 | iv = gctx->iv;
|
---|
575 | if (iv) {
|
---|
576 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
577 | gctx->iv_set = 1;
|
---|
578 | }
|
---|
579 | gctx->key_set = 1;
|
---|
580 | } else {
|
---|
581 | /* If key set use IV, otherwise copy */
|
---|
582 | if (gctx->key_set)
|
---|
583 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
584 | else
|
---|
585 | memcpy(gctx->iv, iv, gctx->ivlen);
|
---|
586 | gctx->iv_set = 1;
|
---|
587 | gctx->iv_gen = 0;
|
---|
588 | }
|
---|
589 | return 1;
|
---|
590 | }
|
---|
591 |
|
---|
592 | # define aes_t4_gcm_cipher aes_gcm_cipher
|
---|
593 | static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
594 | const unsigned char *in, size_t len);
|
---|
595 |
|
---|
596 | static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
597 | const unsigned char *iv, int enc)
|
---|
598 | {
|
---|
599 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
|
---|
600 |
|
---|
601 | if (!iv && !key)
|
---|
602 | return 1;
|
---|
603 |
|
---|
604 | if (key) {
|
---|
605 | /* The key is two half length keys in reality */
|
---|
606 | const int bytes = EVP_CIPHER_CTX_get_key_length(ctx) / 2;
|
---|
607 | const int bits = bytes * 8;
|
---|
608 |
|
---|
609 | /*
|
---|
610 | * Verify that the two keys are different.
|
---|
611 | *
|
---|
612 | * This addresses Rogaway's vulnerability.
|
---|
613 | * See comment in aes_xts_init_key() below.
|
---|
614 | */
|
---|
615 | if ((!allow_insecure_decrypt || enc)
|
---|
616 | && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
|
---|
617 | ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DUPLICATED_KEYS);
|
---|
618 | return 0;
|
---|
619 | }
|
---|
620 |
|
---|
621 | xctx->stream = NULL;
|
---|
622 | /* key_len is two AES keys */
|
---|
623 | if (enc) {
|
---|
624 | aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks);
|
---|
625 | xctx->xts.block1 = (block128_f) aes_t4_encrypt;
|
---|
626 | switch (bits) {
|
---|
627 | case 128:
|
---|
628 | xctx->stream = aes128_t4_xts_encrypt;
|
---|
629 | break;
|
---|
630 | case 256:
|
---|
631 | xctx->stream = aes256_t4_xts_encrypt;
|
---|
632 | break;
|
---|
633 | default:
|
---|
634 | return 0;
|
---|
635 | }
|
---|
636 | } else {
|
---|
637 | aes_t4_set_decrypt_key(key, bits, &xctx->ks1.ks);
|
---|
638 | xctx->xts.block1 = (block128_f) aes_t4_decrypt;
|
---|
639 | switch (bits) {
|
---|
640 | case 128:
|
---|
641 | xctx->stream = aes128_t4_xts_decrypt;
|
---|
642 | break;
|
---|
643 | case 256:
|
---|
644 | xctx->stream = aes256_t4_xts_decrypt;
|
---|
645 | break;
|
---|
646 | default:
|
---|
647 | return 0;
|
---|
648 | }
|
---|
649 | }
|
---|
650 |
|
---|
651 | aes_t4_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks);
|
---|
652 | xctx->xts.block2 = (block128_f) aes_t4_encrypt;
|
---|
653 |
|
---|
654 | xctx->xts.key1 = &xctx->ks1;
|
---|
655 | }
|
---|
656 |
|
---|
657 | if (iv) {
|
---|
658 | xctx->xts.key2 = &xctx->ks2;
|
---|
659 | memcpy(ctx->iv, iv, 16);
|
---|
660 | }
|
---|
661 |
|
---|
662 | return 1;
|
---|
663 | }
|
---|
664 |
|
---|
665 | # define aes_t4_xts_cipher aes_xts_cipher
|
---|
666 | static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
667 | const unsigned char *in, size_t len);
|
---|
668 |
|
---|
669 | static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
670 | const unsigned char *iv, int enc)
|
---|
671 | {
|
---|
672 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
|
---|
673 | if (!iv && !key)
|
---|
674 | return 1;
|
---|
675 | if (key) {
|
---|
676 | int bits = EVP_CIPHER_CTX_get_key_length(ctx) * 8;
|
---|
677 | aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks);
|
---|
678 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
|
---|
679 | &cctx->ks, (block128_f) aes_t4_encrypt);
|
---|
680 | cctx->str = NULL;
|
---|
681 | cctx->key_set = 1;
|
---|
682 | }
|
---|
683 | if (iv) {
|
---|
684 | memcpy(ctx->iv, iv, 15 - cctx->L);
|
---|
685 | cctx->iv_set = 1;
|
---|
686 | }
|
---|
687 | return 1;
|
---|
688 | }
|
---|
689 |
|
---|
690 | # define aes_t4_ccm_cipher aes_ccm_cipher
|
---|
691 | static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
692 | const unsigned char *in, size_t len);
|
---|
693 |
|
---|
694 | # ifndef OPENSSL_NO_OCB
|
---|
695 | static int aes_t4_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
696 | const unsigned char *iv, int enc)
|
---|
697 | {
|
---|
698 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
|
---|
699 | if (!iv && !key)
|
---|
700 | return 1;
|
---|
701 | if (key) {
|
---|
702 | do {
|
---|
703 | /*
|
---|
704 | * We set both the encrypt and decrypt key here because decrypt
|
---|
705 | * needs both. We could possibly optimise to remove setting the
|
---|
706 | * decrypt for an encryption operation.
|
---|
707 | */
|
---|
708 | aes_t4_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
709 | &octx->ksenc.ks);
|
---|
710 | aes_t4_set_decrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
711 | &octx->ksdec.ks);
|
---|
712 | if (!CRYPTO_ocb128_init(&octx->ocb,
|
---|
713 | &octx->ksenc.ks, &octx->ksdec.ks,
|
---|
714 | (block128_f) aes_t4_encrypt,
|
---|
715 | (block128_f) aes_t4_decrypt,
|
---|
716 | NULL))
|
---|
717 | return 0;
|
---|
718 | }
|
---|
719 | while (0);
|
---|
720 |
|
---|
721 | /*
|
---|
722 | * If we have an iv we can set it directly, otherwise use saved IV.
|
---|
723 | */
|
---|
724 | if (iv == NULL && octx->iv_set)
|
---|
725 | iv = octx->iv;
|
---|
726 | if (iv) {
|
---|
727 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
|
---|
728 | != 1)
|
---|
729 | return 0;
|
---|
730 | octx->iv_set = 1;
|
---|
731 | }
|
---|
732 | octx->key_set = 1;
|
---|
733 | } else {
|
---|
734 | /* If key set use IV, otherwise copy */
|
---|
735 | if (octx->key_set)
|
---|
736 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
|
---|
737 | else
|
---|
738 | memcpy(octx->iv, iv, octx->ivlen);
|
---|
739 | octx->iv_set = 1;
|
---|
740 | }
|
---|
741 | return 1;
|
---|
742 | }
|
---|
743 |
|
---|
744 | # define aes_t4_ocb_cipher aes_ocb_cipher
|
---|
745 | static int aes_t4_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
746 | const unsigned char *in, size_t len);
|
---|
747 | # endif /* OPENSSL_NO_OCB */
|
---|
748 |
|
---|
749 | # ifndef OPENSSL_NO_SIV
|
---|
750 | # define aes_t4_siv_init_key aes_siv_init_key
|
---|
751 | # define aes_t4_siv_cipher aes_siv_cipher
|
---|
752 | # endif /* OPENSSL_NO_SIV */
|
---|
753 |
|
---|
754 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
|
---|
755 | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
|
---|
756 | nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
|
---|
757 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
758 | EVP_ORIG_GLOBAL, \
|
---|
759 | aes_t4_init_key, \
|
---|
760 | aes_t4_##mode##_cipher, \
|
---|
761 | NULL, \
|
---|
762 | sizeof(EVP_AES_KEY), \
|
---|
763 | NULL,NULL,NULL,NULL }; \
|
---|
764 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
765 | nid##_##keylen##_##nmode,blocksize, \
|
---|
766 | keylen/8,ivlen, \
|
---|
767 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
768 | EVP_ORIG_GLOBAL, \
|
---|
769 | aes_init_key, \
|
---|
770 | aes_##mode##_cipher, \
|
---|
771 | NULL, \
|
---|
772 | sizeof(EVP_AES_KEY), \
|
---|
773 | NULL,NULL,NULL,NULL }; \
|
---|
774 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
775 | { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
|
---|
776 |
|
---|
777 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
|
---|
778 | static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
|
---|
779 | nid##_##keylen##_##mode,blocksize, \
|
---|
780 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \
|
---|
781 | ivlen, \
|
---|
782 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
783 | EVP_ORIG_GLOBAL, \
|
---|
784 | aes_t4_##mode##_init_key, \
|
---|
785 | aes_t4_##mode##_cipher, \
|
---|
786 | aes_##mode##_cleanup, \
|
---|
787 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
788 | NULL,NULL,aes_##mode##_ctrl,NULL }; \
|
---|
789 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
790 | nid##_##keylen##_##mode,blocksize, \
|
---|
791 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \
|
---|
792 | ivlen, \
|
---|
793 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
794 | EVP_ORIG_GLOBAL, \
|
---|
795 | aes_##mode##_init_key, \
|
---|
796 | aes_##mode##_cipher, \
|
---|
797 | aes_##mode##_cleanup, \
|
---|
798 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
799 | NULL,NULL,aes_##mode##_ctrl,NULL }; \
|
---|
800 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
801 | { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
|
---|
802 |
|
---|
803 | #elif defined(S390X_aes_128_CAPABLE)
|
---|
804 | /* IBM S390X support */
|
---|
805 | typedef struct {
|
---|
806 | union {
|
---|
807 | OSSL_UNION_ALIGN;
|
---|
808 | /*-
|
---|
809 | * KM-AES parameter block - begin
|
---|
810 | * (see z/Architecture Principles of Operation >= SA22-7832-06)
|
---|
811 | */
|
---|
812 | struct {
|
---|
813 | unsigned char k[32];
|
---|
814 | } param;
|
---|
815 | /* KM-AES parameter block - end */
|
---|
816 | } km;
|
---|
817 | unsigned int fc;
|
---|
818 | } S390X_AES_ECB_CTX;
|
---|
819 |
|
---|
820 | typedef struct {
|
---|
821 | union {
|
---|
822 | OSSL_UNION_ALIGN;
|
---|
823 | /*-
|
---|
824 | * KMO-AES parameter block - begin
|
---|
825 | * (see z/Architecture Principles of Operation >= SA22-7832-08)
|
---|
826 | */
|
---|
827 | struct {
|
---|
828 | unsigned char cv[16];
|
---|
829 | unsigned char k[32];
|
---|
830 | } param;
|
---|
831 | /* KMO-AES parameter block - end */
|
---|
832 | } kmo;
|
---|
833 | unsigned int fc;
|
---|
834 |
|
---|
835 | int res;
|
---|
836 | } S390X_AES_OFB_CTX;
|
---|
837 |
|
---|
838 | typedef struct {
|
---|
839 | union {
|
---|
840 | OSSL_UNION_ALIGN;
|
---|
841 | /*-
|
---|
842 | * KMF-AES parameter block - begin
|
---|
843 | * (see z/Architecture Principles of Operation >= SA22-7832-08)
|
---|
844 | */
|
---|
845 | struct {
|
---|
846 | unsigned char cv[16];
|
---|
847 | unsigned char k[32];
|
---|
848 | } param;
|
---|
849 | /* KMF-AES parameter block - end */
|
---|
850 | } kmf;
|
---|
851 | unsigned int fc;
|
---|
852 |
|
---|
853 | int res;
|
---|
854 | } S390X_AES_CFB_CTX;
|
---|
855 |
|
---|
856 | typedef struct {
|
---|
857 | union {
|
---|
858 | OSSL_UNION_ALIGN;
|
---|
859 | /*-
|
---|
860 | * KMA-GCM-AES parameter block - begin
|
---|
861 | * (see z/Architecture Principles of Operation >= SA22-7832-11)
|
---|
862 | */
|
---|
863 | struct {
|
---|
864 | unsigned char reserved[12];
|
---|
865 | union {
|
---|
866 | unsigned int w;
|
---|
867 | unsigned char b[4];
|
---|
868 | } cv;
|
---|
869 | union {
|
---|
870 | unsigned long long g[2];
|
---|
871 | unsigned char b[16];
|
---|
872 | } t;
|
---|
873 | unsigned char h[16];
|
---|
874 | unsigned long long taadl;
|
---|
875 | unsigned long long tpcl;
|
---|
876 | union {
|
---|
877 | unsigned long long g[2];
|
---|
878 | unsigned int w[4];
|
---|
879 | } j0;
|
---|
880 | unsigned char k[32];
|
---|
881 | } param;
|
---|
882 | /* KMA-GCM-AES parameter block - end */
|
---|
883 | } kma;
|
---|
884 | unsigned int fc;
|
---|
885 | int key_set;
|
---|
886 |
|
---|
887 | unsigned char *iv;
|
---|
888 | int ivlen;
|
---|
889 | int iv_set;
|
---|
890 | int iv_gen;
|
---|
891 |
|
---|
892 | int taglen;
|
---|
893 |
|
---|
894 | unsigned char ares[16];
|
---|
895 | unsigned char mres[16];
|
---|
896 | unsigned char kres[16];
|
---|
897 | int areslen;
|
---|
898 | int mreslen;
|
---|
899 | int kreslen;
|
---|
900 |
|
---|
901 | int tls_aad_len;
|
---|
902 | uint64_t tls_enc_records; /* Number of TLS records encrypted */
|
---|
903 | } S390X_AES_GCM_CTX;
|
---|
904 |
|
---|
905 | typedef struct {
|
---|
906 | union {
|
---|
907 | OSSL_UNION_ALIGN;
|
---|
908 | /*-
|
---|
909 | * Padding is chosen so that ccm.kmac_param.k overlaps with key.k and
|
---|
910 | * ccm.fc with key.k.rounds. Remember that on s390x, an AES_KEY's
|
---|
911 | * rounds field is used to store the function code and that the key
|
---|
912 | * schedule is not stored (if aes hardware support is detected).
|
---|
913 | */
|
---|
914 | struct {
|
---|
915 | unsigned char pad[16];
|
---|
916 | AES_KEY k;
|
---|
917 | } key;
|
---|
918 |
|
---|
919 | struct {
|
---|
920 | /*-
|
---|
921 | * KMAC-AES parameter block - begin
|
---|
922 | * (see z/Architecture Principles of Operation >= SA22-7832-08)
|
---|
923 | */
|
---|
924 | struct {
|
---|
925 | union {
|
---|
926 | unsigned long long g[2];
|
---|
927 | unsigned char b[16];
|
---|
928 | } icv;
|
---|
929 | unsigned char k[32];
|
---|
930 | } kmac_param;
|
---|
931 | /* KMAC-AES parameter block - end */
|
---|
932 |
|
---|
933 | union {
|
---|
934 | unsigned long long g[2];
|
---|
935 | unsigned char b[16];
|
---|
936 | } nonce;
|
---|
937 | union {
|
---|
938 | unsigned long long g[2];
|
---|
939 | unsigned char b[16];
|
---|
940 | } buf;
|
---|
941 |
|
---|
942 | unsigned long long blocks;
|
---|
943 | int l;
|
---|
944 | int m;
|
---|
945 | int tls_aad_len;
|
---|
946 | int iv_set;
|
---|
947 | int tag_set;
|
---|
948 | int len_set;
|
---|
949 | int key_set;
|
---|
950 |
|
---|
951 | unsigned char pad[140];
|
---|
952 | unsigned int fc;
|
---|
953 | } ccm;
|
---|
954 | } aes;
|
---|
955 | } S390X_AES_CCM_CTX;
|
---|
956 |
|
---|
957 | # define s390x_aes_init_key aes_init_key
|
---|
958 | static int s390x_aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
959 | const unsigned char *iv, int enc);
|
---|
960 |
|
---|
961 | # define S390X_AES_CBC_CTX EVP_AES_KEY
|
---|
962 |
|
---|
963 | # define s390x_aes_cbc_init_key aes_init_key
|
---|
964 |
|
---|
965 | # define s390x_aes_cbc_cipher aes_cbc_cipher
|
---|
966 | static int s390x_aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
967 | const unsigned char *in, size_t len);
|
---|
968 |
|
---|
969 | static int s390x_aes_ecb_init_key(EVP_CIPHER_CTX *ctx,
|
---|
970 | const unsigned char *key,
|
---|
971 | const unsigned char *iv, int enc)
|
---|
972 | {
|
---|
973 | S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
|
---|
974 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
975 |
|
---|
976 | cctx->fc = S390X_AES_FC(keylen);
|
---|
977 | if (!enc)
|
---|
978 | cctx->fc |= S390X_DECRYPT;
|
---|
979 |
|
---|
980 | memcpy(cctx->km.param.k, key, keylen);
|
---|
981 | return 1;
|
---|
982 | }
|
---|
983 |
|
---|
984 | static int s390x_aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
985 | const unsigned char *in, size_t len)
|
---|
986 | {
|
---|
987 | S390X_AES_ECB_CTX *cctx = EVP_C_DATA(S390X_AES_ECB_CTX, ctx);
|
---|
988 |
|
---|
989 | s390x_km(in, len, out, cctx->fc, &cctx->km.param);
|
---|
990 | return 1;
|
---|
991 | }
|
---|
992 |
|
---|
993 | static int s390x_aes_ofb_init_key(EVP_CIPHER_CTX *ctx,
|
---|
994 | const unsigned char *key,
|
---|
995 | const unsigned char *ivec, int enc)
|
---|
996 | {
|
---|
997 | S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
|
---|
998 | const unsigned char *iv = ctx->oiv;
|
---|
999 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
1000 | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
|
---|
1001 |
|
---|
1002 | memcpy(cctx->kmo.param.cv, iv, ivlen);
|
---|
1003 | memcpy(cctx->kmo.param.k, key, keylen);
|
---|
1004 | cctx->fc = S390X_AES_FC(keylen);
|
---|
1005 | cctx->res = 0;
|
---|
1006 | return 1;
|
---|
1007 | }
|
---|
1008 |
|
---|
1009 | static int s390x_aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1010 | const unsigned char *in, size_t len)
|
---|
1011 | {
|
---|
1012 | S390X_AES_OFB_CTX *cctx = EVP_C_DATA(S390X_AES_OFB_CTX, ctx);
|
---|
1013 | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
|
---|
1014 | unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx);
|
---|
1015 | int n = cctx->res;
|
---|
1016 | int rem;
|
---|
1017 |
|
---|
1018 | memcpy(cctx->kmo.param.cv, iv, ivlen);
|
---|
1019 | while (n && len) {
|
---|
1020 | *out = *in ^ cctx->kmo.param.cv[n];
|
---|
1021 | n = (n + 1) & 0xf;
|
---|
1022 | --len;
|
---|
1023 | ++in;
|
---|
1024 | ++out;
|
---|
1025 | }
|
---|
1026 |
|
---|
1027 | rem = len & 0xf;
|
---|
1028 |
|
---|
1029 | len &= ~(size_t)0xf;
|
---|
1030 | if (len) {
|
---|
1031 | s390x_kmo(in, len, out, cctx->fc, &cctx->kmo.param);
|
---|
1032 |
|
---|
1033 | out += len;
|
---|
1034 | in += len;
|
---|
1035 | }
|
---|
1036 |
|
---|
1037 | if (rem) {
|
---|
1038 | s390x_km(cctx->kmo.param.cv, 16, cctx->kmo.param.cv, cctx->fc,
|
---|
1039 | cctx->kmo.param.k);
|
---|
1040 |
|
---|
1041 | while (rem--) {
|
---|
1042 | out[n] = in[n] ^ cctx->kmo.param.cv[n];
|
---|
1043 | ++n;
|
---|
1044 | }
|
---|
1045 | }
|
---|
1046 |
|
---|
1047 | memcpy(iv, cctx->kmo.param.cv, ivlen);
|
---|
1048 | cctx->res = n;
|
---|
1049 | return 1;
|
---|
1050 | }
|
---|
1051 |
|
---|
1052 | static int s390x_aes_cfb_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1053 | const unsigned char *key,
|
---|
1054 | const unsigned char *ivec, int enc)
|
---|
1055 | {
|
---|
1056 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
|
---|
1057 | const unsigned char *iv = ctx->oiv;
|
---|
1058 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
1059 | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
|
---|
1060 |
|
---|
1061 | cctx->fc = S390X_AES_FC(keylen);
|
---|
1062 | cctx->fc |= 16 << 24; /* 16 bytes cipher feedback */
|
---|
1063 | if (!enc)
|
---|
1064 | cctx->fc |= S390X_DECRYPT;
|
---|
1065 |
|
---|
1066 | cctx->res = 0;
|
---|
1067 | memcpy(cctx->kmf.param.cv, iv, ivlen);
|
---|
1068 | memcpy(cctx->kmf.param.k, key, keylen);
|
---|
1069 | return 1;
|
---|
1070 | }
|
---|
1071 |
|
---|
1072 | static int s390x_aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1073 | const unsigned char *in, size_t len)
|
---|
1074 | {
|
---|
1075 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
|
---|
1076 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
1077 | const int enc = EVP_CIPHER_CTX_is_encrypting(ctx);
|
---|
1078 | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
|
---|
1079 | unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx);
|
---|
1080 | int n = cctx->res;
|
---|
1081 | int rem;
|
---|
1082 | unsigned char tmp;
|
---|
1083 |
|
---|
1084 | memcpy(cctx->kmf.param.cv, iv, ivlen);
|
---|
1085 | while (n && len) {
|
---|
1086 | tmp = *in;
|
---|
1087 | *out = cctx->kmf.param.cv[n] ^ tmp;
|
---|
1088 | cctx->kmf.param.cv[n] = enc ? *out : tmp;
|
---|
1089 | n = (n + 1) & 0xf;
|
---|
1090 | --len;
|
---|
1091 | ++in;
|
---|
1092 | ++out;
|
---|
1093 | }
|
---|
1094 |
|
---|
1095 | rem = len & 0xf;
|
---|
1096 |
|
---|
1097 | len &= ~(size_t)0xf;
|
---|
1098 | if (len) {
|
---|
1099 | s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
|
---|
1100 |
|
---|
1101 | out += len;
|
---|
1102 | in += len;
|
---|
1103 | }
|
---|
1104 |
|
---|
1105 | if (rem) {
|
---|
1106 | s390x_km(cctx->kmf.param.cv, 16, cctx->kmf.param.cv,
|
---|
1107 | S390X_AES_FC(keylen), cctx->kmf.param.k);
|
---|
1108 |
|
---|
1109 | while (rem--) {
|
---|
1110 | tmp = in[n];
|
---|
1111 | out[n] = cctx->kmf.param.cv[n] ^ tmp;
|
---|
1112 | cctx->kmf.param.cv[n] = enc ? out[n] : tmp;
|
---|
1113 | ++n;
|
---|
1114 | }
|
---|
1115 | }
|
---|
1116 |
|
---|
1117 | memcpy(iv, cctx->kmf.param.cv, ivlen);
|
---|
1118 | cctx->res = n;
|
---|
1119 | return 1;
|
---|
1120 | }
|
---|
1121 |
|
---|
1122 | static int s390x_aes_cfb8_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1123 | const unsigned char *key,
|
---|
1124 | const unsigned char *ivec, int enc)
|
---|
1125 | {
|
---|
1126 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
|
---|
1127 | const unsigned char *iv = ctx->oiv;
|
---|
1128 | const int keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
1129 | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
|
---|
1130 |
|
---|
1131 | cctx->fc = S390X_AES_FC(keylen);
|
---|
1132 | cctx->fc |= 1 << 24; /* 1 byte cipher feedback */
|
---|
1133 | if (!enc)
|
---|
1134 | cctx->fc |= S390X_DECRYPT;
|
---|
1135 |
|
---|
1136 | memcpy(cctx->kmf.param.cv, iv, ivlen);
|
---|
1137 | memcpy(cctx->kmf.param.k, key, keylen);
|
---|
1138 | return 1;
|
---|
1139 | }
|
---|
1140 |
|
---|
1141 | static int s390x_aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1142 | const unsigned char *in, size_t len)
|
---|
1143 | {
|
---|
1144 | S390X_AES_CFB_CTX *cctx = EVP_C_DATA(S390X_AES_CFB_CTX, ctx);
|
---|
1145 | const int ivlen = EVP_CIPHER_CTX_get_iv_length(ctx);
|
---|
1146 | unsigned char *iv = EVP_CIPHER_CTX_iv_noconst(ctx);
|
---|
1147 |
|
---|
1148 | memcpy(cctx->kmf.param.cv, iv, ivlen);
|
---|
1149 | s390x_kmf(in, len, out, cctx->fc, &cctx->kmf.param);
|
---|
1150 | memcpy(iv, cctx->kmf.param.cv, ivlen);
|
---|
1151 | return 1;
|
---|
1152 | }
|
---|
1153 |
|
---|
1154 | # define s390x_aes_cfb1_init_key aes_init_key
|
---|
1155 |
|
---|
1156 | # define s390x_aes_cfb1_cipher aes_cfb1_cipher
|
---|
1157 | static int s390x_aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1158 | const unsigned char *in, size_t len);
|
---|
1159 |
|
---|
1160 | # define S390X_AES_CTR_CTX EVP_AES_KEY
|
---|
1161 |
|
---|
1162 | # define s390x_aes_ctr_init_key aes_init_key
|
---|
1163 |
|
---|
1164 | # define s390x_aes_ctr_cipher aes_ctr_cipher
|
---|
1165 | static int s390x_aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1166 | const unsigned char *in, size_t len);
|
---|
1167 |
|
---|
1168 | /* iv + padding length for iv lengths != 12 */
|
---|
1169 | # define S390X_gcm_ivpadlen(i) ((((i) + 15) >> 4 << 4) + 16)
|
---|
1170 |
|
---|
1171 | /*-
|
---|
1172 | * Process additional authenticated data. Returns 0 on success. Code is
|
---|
1173 | * big-endian.
|
---|
1174 | */
|
---|
1175 | static int s390x_aes_gcm_aad(S390X_AES_GCM_CTX *ctx, const unsigned char *aad,
|
---|
1176 | size_t len)
|
---|
1177 | {
|
---|
1178 | unsigned long long alen;
|
---|
1179 | int n, rem;
|
---|
1180 |
|
---|
1181 | if (ctx->kma.param.tpcl)
|
---|
1182 | return -2;
|
---|
1183 |
|
---|
1184 | alen = ctx->kma.param.taadl + len;
|
---|
1185 | if (alen > (U64(1) << 61) || (sizeof(len) == 8 && alen < len))
|
---|
1186 | return -1;
|
---|
1187 | ctx->kma.param.taadl = alen;
|
---|
1188 |
|
---|
1189 | n = ctx->areslen;
|
---|
1190 | if (n) {
|
---|
1191 | while (n && len) {
|
---|
1192 | ctx->ares[n] = *aad;
|
---|
1193 | n = (n + 1) & 0xf;
|
---|
1194 | ++aad;
|
---|
1195 | --len;
|
---|
1196 | }
|
---|
1197 | /* ctx->ares contains a complete block if offset has wrapped around */
|
---|
1198 | if (!n) {
|
---|
1199 | s390x_kma(ctx->ares, 16, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
|
---|
1200 | ctx->fc |= S390X_KMA_HS;
|
---|
1201 | }
|
---|
1202 | ctx->areslen = n;
|
---|
1203 | }
|
---|
1204 |
|
---|
1205 | rem = len & 0xf;
|
---|
1206 |
|
---|
1207 | len &= ~(size_t)0xf;
|
---|
1208 | if (len) {
|
---|
1209 | s390x_kma(aad, len, NULL, 0, NULL, ctx->fc, &ctx->kma.param);
|
---|
1210 | aad += len;
|
---|
1211 | ctx->fc |= S390X_KMA_HS;
|
---|
1212 | }
|
---|
1213 |
|
---|
1214 | if (rem) {
|
---|
1215 | ctx->areslen = rem;
|
---|
1216 |
|
---|
1217 | do {
|
---|
1218 | --rem;
|
---|
1219 | ctx->ares[rem] = aad[rem];
|
---|
1220 | } while (rem);
|
---|
1221 | }
|
---|
1222 | return 0;
|
---|
1223 | }
|
---|
1224 |
|
---|
1225 | /*-
|
---|
1226 | * En/de-crypt plain/cipher-text and authenticate ciphertext. Returns 0 for
|
---|
1227 | * success. Code is big-endian.
|
---|
1228 | */
|
---|
1229 | static int s390x_aes_gcm(S390X_AES_GCM_CTX *ctx, const unsigned char *in,
|
---|
1230 | unsigned char *out, size_t len)
|
---|
1231 | {
|
---|
1232 | const unsigned char *inptr;
|
---|
1233 | unsigned long long mlen;
|
---|
1234 | union {
|
---|
1235 | unsigned int w[4];
|
---|
1236 | unsigned char b[16];
|
---|
1237 | } buf;
|
---|
1238 | size_t inlen;
|
---|
1239 | int n, rem, i;
|
---|
1240 |
|
---|
1241 | mlen = ctx->kma.param.tpcl + len;
|
---|
1242 | if (mlen > ((U64(1) << 36) - 32) || (sizeof(len) == 8 && mlen < len))
|
---|
1243 | return -1;
|
---|
1244 | ctx->kma.param.tpcl = mlen;
|
---|
1245 |
|
---|
1246 | n = ctx->mreslen;
|
---|
1247 | if (n) {
|
---|
1248 | inptr = in;
|
---|
1249 | inlen = len;
|
---|
1250 | while (n && inlen) {
|
---|
1251 | ctx->mres[n] = *inptr;
|
---|
1252 | n = (n + 1) & 0xf;
|
---|
1253 | ++inptr;
|
---|
1254 | --inlen;
|
---|
1255 | }
|
---|
1256 | /* ctx->mres contains a complete block if offset has wrapped around */
|
---|
1257 | if (!n) {
|
---|
1258 | s390x_kma(ctx->ares, ctx->areslen, ctx->mres, 16, buf.b,
|
---|
1259 | ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
|
---|
1260 | ctx->fc |= S390X_KMA_HS;
|
---|
1261 | ctx->areslen = 0;
|
---|
1262 |
|
---|
1263 | /* previous call already encrypted/decrypted its remainder,
|
---|
1264 | * see comment below */
|
---|
1265 | n = ctx->mreslen;
|
---|
1266 | while (n) {
|
---|
1267 | *out = buf.b[n];
|
---|
1268 | n = (n + 1) & 0xf;
|
---|
1269 | ++out;
|
---|
1270 | ++in;
|
---|
1271 | --len;
|
---|
1272 | }
|
---|
1273 | ctx->mreslen = 0;
|
---|
1274 | }
|
---|
1275 | }
|
---|
1276 |
|
---|
1277 | rem = len & 0xf;
|
---|
1278 |
|
---|
1279 | len &= ~(size_t)0xf;
|
---|
1280 | if (len) {
|
---|
1281 | s390x_kma(ctx->ares, ctx->areslen, in, len, out,
|
---|
1282 | ctx->fc | S390X_KMA_LAAD, &ctx->kma.param);
|
---|
1283 | in += len;
|
---|
1284 | out += len;
|
---|
1285 | ctx->fc |= S390X_KMA_HS;
|
---|
1286 | ctx->areslen = 0;
|
---|
1287 | }
|
---|
1288 |
|
---|
1289 | /*-
|
---|
1290 | * If there is a remainder, it has to be saved such that it can be
|
---|
1291 | * processed by kma later. However, we also have to do the for-now
|
---|
1292 | * unauthenticated encryption/decryption part here and now...
|
---|
1293 | */
|
---|
1294 | if (rem) {
|
---|
1295 | if (!ctx->mreslen) {
|
---|
1296 | buf.w[0] = ctx->kma.param.j0.w[0];
|
---|
1297 | buf.w[1] = ctx->kma.param.j0.w[1];
|
---|
1298 | buf.w[2] = ctx->kma.param.j0.w[2];
|
---|
1299 | buf.w[3] = ctx->kma.param.cv.w + 1;
|
---|
1300 | s390x_km(buf.b, 16, ctx->kres, ctx->fc & 0x1f, &ctx->kma.param.k);
|
---|
1301 | }
|
---|
1302 |
|
---|
1303 | n = ctx->mreslen;
|
---|
1304 | for (i = 0; i < rem; i++) {
|
---|
1305 | ctx->mres[n + i] = in[i];
|
---|
1306 | out[i] = in[i] ^ ctx->kres[n + i];
|
---|
1307 | }
|
---|
1308 |
|
---|
1309 | ctx->mreslen += rem;
|
---|
1310 | }
|
---|
1311 | return 0;
|
---|
1312 | }
|
---|
1313 |
|
---|
1314 | /*-
|
---|
1315 | * Initialize context structure. Code is big-endian.
|
---|
1316 | */
|
---|
1317 | static void s390x_aes_gcm_setiv(S390X_AES_GCM_CTX *ctx,
|
---|
1318 | const unsigned char *iv)
|
---|
1319 | {
|
---|
1320 | ctx->kma.param.t.g[0] = 0;
|
---|
1321 | ctx->kma.param.t.g[1] = 0;
|
---|
1322 | ctx->kma.param.tpcl = 0;
|
---|
1323 | ctx->kma.param.taadl = 0;
|
---|
1324 | ctx->mreslen = 0;
|
---|
1325 | ctx->areslen = 0;
|
---|
1326 | ctx->kreslen = 0;
|
---|
1327 |
|
---|
1328 | if (ctx->ivlen == 12) {
|
---|
1329 | memcpy(&ctx->kma.param.j0, iv, ctx->ivlen);
|
---|
1330 | ctx->kma.param.j0.w[3] = 1;
|
---|
1331 | ctx->kma.param.cv.w = 1;
|
---|
1332 | } else {
|
---|
1333 | /* ctx->iv has the right size and is already padded. */
|
---|
1334 | memcpy(ctx->iv, iv, ctx->ivlen);
|
---|
1335 | s390x_kma(ctx->iv, S390X_gcm_ivpadlen(ctx->ivlen), NULL, 0, NULL,
|
---|
1336 | ctx->fc, &ctx->kma.param);
|
---|
1337 | ctx->fc |= S390X_KMA_HS;
|
---|
1338 |
|
---|
1339 | ctx->kma.param.j0.g[0] = ctx->kma.param.t.g[0];
|
---|
1340 | ctx->kma.param.j0.g[1] = ctx->kma.param.t.g[1];
|
---|
1341 | ctx->kma.param.cv.w = ctx->kma.param.j0.w[3];
|
---|
1342 | ctx->kma.param.t.g[0] = 0;
|
---|
1343 | ctx->kma.param.t.g[1] = 0;
|
---|
1344 | }
|
---|
1345 | }
|
---|
1346 |
|
---|
1347 | /*-
|
---|
1348 | * Performs various operations on the context structure depending on control
|
---|
1349 | * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
|
---|
1350 | * Code is big-endian.
|
---|
1351 | */
|
---|
1352 | static int s390x_aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
1353 | {
|
---|
1354 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
|
---|
1355 | S390X_AES_GCM_CTX *gctx_out;
|
---|
1356 | EVP_CIPHER_CTX *out;
|
---|
1357 | unsigned char *buf;
|
---|
1358 | int ivlen, enc, len;
|
---|
1359 |
|
---|
1360 | switch (type) {
|
---|
1361 | case EVP_CTRL_INIT:
|
---|
1362 | ivlen = EVP_CIPHER_get_iv_length(c->cipher);
|
---|
1363 | gctx->key_set = 0;
|
---|
1364 | gctx->iv_set = 0;
|
---|
1365 | gctx->ivlen = ivlen;
|
---|
1366 | gctx->iv = c->iv;
|
---|
1367 | gctx->taglen = -1;
|
---|
1368 | gctx->iv_gen = 0;
|
---|
1369 | gctx->tls_aad_len = -1;
|
---|
1370 | return 1;
|
---|
1371 |
|
---|
1372 | case EVP_CTRL_GET_IVLEN:
|
---|
1373 | *(int *)ptr = gctx->ivlen;
|
---|
1374 | return 1;
|
---|
1375 |
|
---|
1376 | case EVP_CTRL_AEAD_SET_IVLEN:
|
---|
1377 | if (arg <= 0)
|
---|
1378 | return 0;
|
---|
1379 |
|
---|
1380 | if (arg != 12) {
|
---|
1381 | len = S390X_gcm_ivpadlen(arg);
|
---|
1382 |
|
---|
1383 | /* Allocate memory for iv if needed. */
|
---|
1384 | if (gctx->ivlen == 12 || len > S390X_gcm_ivpadlen(gctx->ivlen)) {
|
---|
1385 | if (gctx->iv != c->iv)
|
---|
1386 | OPENSSL_free(gctx->iv);
|
---|
1387 |
|
---|
1388 | if ((gctx->iv = OPENSSL_malloc(len)) == NULL) {
|
---|
1389 | ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
|
---|
1390 | return 0;
|
---|
1391 | }
|
---|
1392 | }
|
---|
1393 | /* Add padding. */
|
---|
1394 | memset(gctx->iv + arg, 0, len - arg - 8);
|
---|
1395 | *((unsigned long long *)(gctx->iv + len - 8)) = arg << 3;
|
---|
1396 | }
|
---|
1397 | gctx->ivlen = arg;
|
---|
1398 | return 1;
|
---|
1399 |
|
---|
1400 | case EVP_CTRL_AEAD_SET_TAG:
|
---|
1401 | buf = EVP_CIPHER_CTX_buf_noconst(c);
|
---|
1402 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
1403 | if (arg <= 0 || arg > 16 || enc)
|
---|
1404 | return 0;
|
---|
1405 |
|
---|
1406 | memcpy(buf, ptr, arg);
|
---|
1407 | gctx->taglen = arg;
|
---|
1408 | return 1;
|
---|
1409 |
|
---|
1410 | case EVP_CTRL_AEAD_GET_TAG:
|
---|
1411 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
1412 | if (arg <= 0 || arg > 16 || !enc || gctx->taglen < 0)
|
---|
1413 | return 0;
|
---|
1414 |
|
---|
1415 | memcpy(ptr, gctx->kma.param.t.b, arg);
|
---|
1416 | return 1;
|
---|
1417 |
|
---|
1418 | case EVP_CTRL_GCM_SET_IV_FIXED:
|
---|
1419 | /* Special case: -1 length restores whole iv */
|
---|
1420 | if (arg == -1) {
|
---|
1421 | memcpy(gctx->iv, ptr, gctx->ivlen);
|
---|
1422 | gctx->iv_gen = 1;
|
---|
1423 | return 1;
|
---|
1424 | }
|
---|
1425 | /*
|
---|
1426 | * Fixed field must be at least 4 bytes and invocation field at least
|
---|
1427 | * 8.
|
---|
1428 | */
|
---|
1429 | if ((arg < 4) || (gctx->ivlen - arg) < 8)
|
---|
1430 | return 0;
|
---|
1431 |
|
---|
1432 | if (arg)
|
---|
1433 | memcpy(gctx->iv, ptr, arg);
|
---|
1434 |
|
---|
1435 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
1436 | if (enc && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
|
---|
1437 | return 0;
|
---|
1438 |
|
---|
1439 | gctx->iv_gen = 1;
|
---|
1440 | return 1;
|
---|
1441 |
|
---|
1442 | case EVP_CTRL_GCM_IV_GEN:
|
---|
1443 | if (gctx->iv_gen == 0 || gctx->key_set == 0)
|
---|
1444 | return 0;
|
---|
1445 |
|
---|
1446 | s390x_aes_gcm_setiv(gctx, gctx->iv);
|
---|
1447 |
|
---|
1448 | if (arg <= 0 || arg > gctx->ivlen)
|
---|
1449 | arg = gctx->ivlen;
|
---|
1450 |
|
---|
1451 | memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
|
---|
1452 | /*
|
---|
1453 | * Invocation field will be at least 8 bytes in size and so no need
|
---|
1454 | * to check wrap around or increment more than last 8 bytes.
|
---|
1455 | */
|
---|
1456 | ctr64_inc(gctx->iv + gctx->ivlen - 8);
|
---|
1457 | gctx->iv_set = 1;
|
---|
1458 | return 1;
|
---|
1459 |
|
---|
1460 | case EVP_CTRL_GCM_SET_IV_INV:
|
---|
1461 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
1462 | if (gctx->iv_gen == 0 || gctx->key_set == 0 || enc)
|
---|
1463 | return 0;
|
---|
1464 |
|
---|
1465 | memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
|
---|
1466 | s390x_aes_gcm_setiv(gctx, gctx->iv);
|
---|
1467 | gctx->iv_set = 1;
|
---|
1468 | return 1;
|
---|
1469 |
|
---|
1470 | case EVP_CTRL_AEAD_TLS1_AAD:
|
---|
1471 | /* Save the aad for later use. */
|
---|
1472 | if (arg != EVP_AEAD_TLS1_AAD_LEN)
|
---|
1473 | return 0;
|
---|
1474 |
|
---|
1475 | buf = EVP_CIPHER_CTX_buf_noconst(c);
|
---|
1476 | memcpy(buf, ptr, arg);
|
---|
1477 | gctx->tls_aad_len = arg;
|
---|
1478 | gctx->tls_enc_records = 0;
|
---|
1479 |
|
---|
1480 | len = buf[arg - 2] << 8 | buf[arg - 1];
|
---|
1481 | /* Correct length for explicit iv. */
|
---|
1482 | if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
|
---|
1483 | return 0;
|
---|
1484 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
1485 |
|
---|
1486 | /* If decrypting correct for tag too. */
|
---|
1487 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
1488 | if (!enc) {
|
---|
1489 | if (len < EVP_GCM_TLS_TAG_LEN)
|
---|
1490 | return 0;
|
---|
1491 | len -= EVP_GCM_TLS_TAG_LEN;
|
---|
1492 | }
|
---|
1493 | buf[arg - 2] = len >> 8;
|
---|
1494 | buf[arg - 1] = len & 0xff;
|
---|
1495 | /* Extra padding: tag appended to record. */
|
---|
1496 | return EVP_GCM_TLS_TAG_LEN;
|
---|
1497 |
|
---|
1498 | case EVP_CTRL_COPY:
|
---|
1499 | out = ptr;
|
---|
1500 | gctx_out = EVP_C_DATA(S390X_AES_GCM_CTX, out);
|
---|
1501 |
|
---|
1502 | if (gctx->iv == c->iv) {
|
---|
1503 | gctx_out->iv = out->iv;
|
---|
1504 | } else {
|
---|
1505 | len = S390X_gcm_ivpadlen(gctx->ivlen);
|
---|
1506 |
|
---|
1507 | if ((gctx_out->iv = OPENSSL_malloc(len)) == NULL) {
|
---|
1508 | ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
|
---|
1509 | return 0;
|
---|
1510 | }
|
---|
1511 |
|
---|
1512 | memcpy(gctx_out->iv, gctx->iv, len);
|
---|
1513 | }
|
---|
1514 | return 1;
|
---|
1515 |
|
---|
1516 | default:
|
---|
1517 | return -1;
|
---|
1518 | }
|
---|
1519 | }
|
---|
1520 |
|
---|
1521 | /*-
|
---|
1522 | * Set key and/or iv. Returns 1 on success. Otherwise 0 is returned.
|
---|
1523 | */
|
---|
1524 | static int s390x_aes_gcm_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1525 | const unsigned char *key,
|
---|
1526 | const unsigned char *iv, int enc)
|
---|
1527 | {
|
---|
1528 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
|
---|
1529 | int keylen;
|
---|
1530 |
|
---|
1531 | if (iv == NULL && key == NULL)
|
---|
1532 | return 1;
|
---|
1533 |
|
---|
1534 | if (key != NULL) {
|
---|
1535 | keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
1536 | memcpy(&gctx->kma.param.k, key, keylen);
|
---|
1537 |
|
---|
1538 | gctx->fc = S390X_AES_FC(keylen);
|
---|
1539 | if (!enc)
|
---|
1540 | gctx->fc |= S390X_DECRYPT;
|
---|
1541 |
|
---|
1542 | if (iv == NULL && gctx->iv_set)
|
---|
1543 | iv = gctx->iv;
|
---|
1544 |
|
---|
1545 | if (iv != NULL) {
|
---|
1546 | s390x_aes_gcm_setiv(gctx, iv);
|
---|
1547 | gctx->iv_set = 1;
|
---|
1548 | }
|
---|
1549 | gctx->key_set = 1;
|
---|
1550 | } else {
|
---|
1551 | if (gctx->key_set)
|
---|
1552 | s390x_aes_gcm_setiv(gctx, iv);
|
---|
1553 | else
|
---|
1554 | memcpy(gctx->iv, iv, gctx->ivlen);
|
---|
1555 |
|
---|
1556 | gctx->iv_set = 1;
|
---|
1557 | gctx->iv_gen = 0;
|
---|
1558 | }
|
---|
1559 | return 1;
|
---|
1560 | }
|
---|
1561 |
|
---|
1562 | /*-
|
---|
1563 | * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
|
---|
1564 | * if successful. Otherwise -1 is returned. Code is big-endian.
|
---|
1565 | */
|
---|
1566 | static int s390x_aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1567 | const unsigned char *in, size_t len)
|
---|
1568 | {
|
---|
1569 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
|
---|
1570 | const unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
|
---|
1571 | const int enc = EVP_CIPHER_CTX_is_encrypting(ctx);
|
---|
1572 | int rv = -1;
|
---|
1573 |
|
---|
1574 | if (out != in || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
|
---|
1575 | return -1;
|
---|
1576 |
|
---|
1577 | /*
|
---|
1578 | * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness
|
---|
1579 | * Requirements from SP 800-38D". The requirements is for one party to the
|
---|
1580 | * communication to fail after 2^64 - 1 keys. We do this on the encrypting
|
---|
1581 | * side only.
|
---|
1582 | */
|
---|
1583 | if (ctx->encrypt && ++gctx->tls_enc_records == 0) {
|
---|
1584 | ERR_raise(ERR_LIB_EVP, EVP_R_TOO_MANY_RECORDS);
|
---|
1585 | goto err;
|
---|
1586 | }
|
---|
1587 |
|
---|
1588 | if (EVP_CIPHER_CTX_ctrl(ctx, enc ? EVP_CTRL_GCM_IV_GEN
|
---|
1589 | : EVP_CTRL_GCM_SET_IV_INV,
|
---|
1590 | EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
|
---|
1591 | goto err;
|
---|
1592 |
|
---|
1593 | in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
1594 | out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
1595 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
|
---|
1596 |
|
---|
1597 | gctx->kma.param.taadl = gctx->tls_aad_len << 3;
|
---|
1598 | gctx->kma.param.tpcl = len << 3;
|
---|
1599 | s390x_kma(buf, gctx->tls_aad_len, in, len, out,
|
---|
1600 | gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
|
---|
1601 |
|
---|
1602 | if (enc) {
|
---|
1603 | memcpy(out + len, gctx->kma.param.t.b, EVP_GCM_TLS_TAG_LEN);
|
---|
1604 | rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
|
---|
1605 | } else {
|
---|
1606 | if (CRYPTO_memcmp(gctx->kma.param.t.b, in + len,
|
---|
1607 | EVP_GCM_TLS_TAG_LEN)) {
|
---|
1608 | OPENSSL_cleanse(out, len);
|
---|
1609 | goto err;
|
---|
1610 | }
|
---|
1611 | rv = len;
|
---|
1612 | }
|
---|
1613 | err:
|
---|
1614 | gctx->iv_set = 0;
|
---|
1615 | gctx->tls_aad_len = -1;
|
---|
1616 | return rv;
|
---|
1617 | }
|
---|
1618 |
|
---|
1619 | /*-
|
---|
1620 | * Called from EVP layer to initialize context, process additional
|
---|
1621 | * authenticated data, en/de-crypt plain/cipher-text and authenticate
|
---|
1622 | * ciphertext or process a TLS packet, depending on context. Returns bytes
|
---|
1623 | * written on success. Otherwise -1 is returned. Code is big-endian.
|
---|
1624 | */
|
---|
1625 | static int s390x_aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1626 | const unsigned char *in, size_t len)
|
---|
1627 | {
|
---|
1628 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, ctx);
|
---|
1629 | unsigned char *buf, tmp[16];
|
---|
1630 | int enc;
|
---|
1631 |
|
---|
1632 | if (!gctx->key_set)
|
---|
1633 | return -1;
|
---|
1634 |
|
---|
1635 | if (gctx->tls_aad_len >= 0)
|
---|
1636 | return s390x_aes_gcm_tls_cipher(ctx, out, in, len);
|
---|
1637 |
|
---|
1638 | if (!gctx->iv_set)
|
---|
1639 | return -1;
|
---|
1640 |
|
---|
1641 | if (in != NULL) {
|
---|
1642 | if (out == NULL) {
|
---|
1643 | if (s390x_aes_gcm_aad(gctx, in, len))
|
---|
1644 | return -1;
|
---|
1645 | } else {
|
---|
1646 | if (s390x_aes_gcm(gctx, in, out, len))
|
---|
1647 | return -1;
|
---|
1648 | }
|
---|
1649 | return len;
|
---|
1650 | } else {
|
---|
1651 | gctx->kma.param.taadl <<= 3;
|
---|
1652 | gctx->kma.param.tpcl <<= 3;
|
---|
1653 | s390x_kma(gctx->ares, gctx->areslen, gctx->mres, gctx->mreslen, tmp,
|
---|
1654 | gctx->fc | S390X_KMA_LAAD | S390X_KMA_LPC, &gctx->kma.param);
|
---|
1655 | /* recall that we already did en-/decrypt gctx->mres
|
---|
1656 | * and returned it to caller... */
|
---|
1657 | OPENSSL_cleanse(tmp, gctx->mreslen);
|
---|
1658 | gctx->iv_set = 0;
|
---|
1659 |
|
---|
1660 | enc = EVP_CIPHER_CTX_is_encrypting(ctx);
|
---|
1661 | if (enc) {
|
---|
1662 | gctx->taglen = 16;
|
---|
1663 | } else {
|
---|
1664 | if (gctx->taglen < 0)
|
---|
1665 | return -1;
|
---|
1666 |
|
---|
1667 | buf = EVP_CIPHER_CTX_buf_noconst(ctx);
|
---|
1668 | if (CRYPTO_memcmp(buf, gctx->kma.param.t.b, gctx->taglen))
|
---|
1669 | return -1;
|
---|
1670 | }
|
---|
1671 | return 0;
|
---|
1672 | }
|
---|
1673 | }
|
---|
1674 |
|
---|
1675 | static int s390x_aes_gcm_cleanup(EVP_CIPHER_CTX *c)
|
---|
1676 | {
|
---|
1677 | S390X_AES_GCM_CTX *gctx = EVP_C_DATA(S390X_AES_GCM_CTX, c);
|
---|
1678 |
|
---|
1679 | if (gctx == NULL)
|
---|
1680 | return 0;
|
---|
1681 |
|
---|
1682 | if (gctx->iv != c->iv)
|
---|
1683 | OPENSSL_free(gctx->iv);
|
---|
1684 |
|
---|
1685 | OPENSSL_cleanse(gctx, sizeof(*gctx));
|
---|
1686 | return 1;
|
---|
1687 | }
|
---|
1688 |
|
---|
1689 | # define S390X_AES_XTS_CTX EVP_AES_XTS_CTX
|
---|
1690 |
|
---|
1691 | # define s390x_aes_xts_init_key aes_xts_init_key
|
---|
1692 | static int s390x_aes_xts_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1693 | const unsigned char *key,
|
---|
1694 | const unsigned char *iv, int enc);
|
---|
1695 | # define s390x_aes_xts_cipher aes_xts_cipher
|
---|
1696 | static int s390x_aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1697 | const unsigned char *in, size_t len);
|
---|
1698 | # define s390x_aes_xts_ctrl aes_xts_ctrl
|
---|
1699 | static int s390x_aes_xts_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
|
---|
1700 | # define s390x_aes_xts_cleanup aes_xts_cleanup
|
---|
1701 |
|
---|
1702 | /*-
|
---|
1703 | * Set nonce and length fields. Code is big-endian.
|
---|
1704 | */
|
---|
1705 | static inline void s390x_aes_ccm_setiv(S390X_AES_CCM_CTX *ctx,
|
---|
1706 | const unsigned char *nonce,
|
---|
1707 | size_t mlen)
|
---|
1708 | {
|
---|
1709 | ctx->aes.ccm.nonce.b[0] &= ~S390X_CCM_AAD_FLAG;
|
---|
1710 | ctx->aes.ccm.nonce.g[1] = mlen;
|
---|
1711 | memcpy(ctx->aes.ccm.nonce.b + 1, nonce, 15 - ctx->aes.ccm.l);
|
---|
1712 | }
|
---|
1713 |
|
---|
1714 | /*-
|
---|
1715 | * Process additional authenticated data. Code is big-endian.
|
---|
1716 | */
|
---|
1717 | static void s390x_aes_ccm_aad(S390X_AES_CCM_CTX *ctx, const unsigned char *aad,
|
---|
1718 | size_t alen)
|
---|
1719 | {
|
---|
1720 | unsigned char *ptr;
|
---|
1721 | int i, rem;
|
---|
1722 |
|
---|
1723 | if (!alen)
|
---|
1724 | return;
|
---|
1725 |
|
---|
1726 | ctx->aes.ccm.nonce.b[0] |= S390X_CCM_AAD_FLAG;
|
---|
1727 |
|
---|
1728 | /* Suppress 'type-punned pointer dereference' warning. */
|
---|
1729 | ptr = ctx->aes.ccm.buf.b;
|
---|
1730 |
|
---|
1731 | if (alen < ((1 << 16) - (1 << 8))) {
|
---|
1732 | *(uint16_t *)ptr = alen;
|
---|
1733 | i = 2;
|
---|
1734 | } else if (sizeof(alen) == 8
|
---|
1735 | && alen >= (size_t)1 << (32 % (sizeof(alen) * 8))) {
|
---|
1736 | *(uint16_t *)ptr = 0xffff;
|
---|
1737 | *(uint64_t *)(ptr + 2) = alen;
|
---|
1738 | i = 10;
|
---|
1739 | } else {
|
---|
1740 | *(uint16_t *)ptr = 0xfffe;
|
---|
1741 | *(uint32_t *)(ptr + 2) = alen;
|
---|
1742 | i = 6;
|
---|
1743 | }
|
---|
1744 |
|
---|
1745 | while (i < 16 && alen) {
|
---|
1746 | ctx->aes.ccm.buf.b[i] = *aad;
|
---|
1747 | ++aad;
|
---|
1748 | --alen;
|
---|
1749 | ++i;
|
---|
1750 | }
|
---|
1751 | while (i < 16) {
|
---|
1752 | ctx->aes.ccm.buf.b[i] = 0;
|
---|
1753 | ++i;
|
---|
1754 | }
|
---|
1755 |
|
---|
1756 | ctx->aes.ccm.kmac_param.icv.g[0] = 0;
|
---|
1757 | ctx->aes.ccm.kmac_param.icv.g[1] = 0;
|
---|
1758 | s390x_kmac(ctx->aes.ccm.nonce.b, 32, ctx->aes.ccm.fc,
|
---|
1759 | &ctx->aes.ccm.kmac_param);
|
---|
1760 | ctx->aes.ccm.blocks += 2;
|
---|
1761 |
|
---|
1762 | rem = alen & 0xf;
|
---|
1763 | alen &= ~(size_t)0xf;
|
---|
1764 | if (alen) {
|
---|
1765 | s390x_kmac(aad, alen, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
|
---|
1766 | ctx->aes.ccm.blocks += alen >> 4;
|
---|
1767 | aad += alen;
|
---|
1768 | }
|
---|
1769 | if (rem) {
|
---|
1770 | for (i = 0; i < rem; i++)
|
---|
1771 | ctx->aes.ccm.kmac_param.icv.b[i] ^= aad[i];
|
---|
1772 |
|
---|
1773 | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
|
---|
1774 | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
|
---|
1775 | ctx->aes.ccm.kmac_param.k);
|
---|
1776 | ctx->aes.ccm.blocks++;
|
---|
1777 | }
|
---|
1778 | }
|
---|
1779 |
|
---|
1780 | /*-
|
---|
1781 | * En/de-crypt plain/cipher-text. Compute tag from plaintext. Returns 0 for
|
---|
1782 | * success.
|
---|
1783 | */
|
---|
1784 | static int s390x_aes_ccm(S390X_AES_CCM_CTX *ctx, const unsigned char *in,
|
---|
1785 | unsigned char *out, size_t len, int enc)
|
---|
1786 | {
|
---|
1787 | size_t n, rem;
|
---|
1788 | unsigned int i, l, num;
|
---|
1789 | unsigned char flags;
|
---|
1790 |
|
---|
1791 | flags = ctx->aes.ccm.nonce.b[0];
|
---|
1792 | if (!(flags & S390X_CCM_AAD_FLAG)) {
|
---|
1793 | s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.kmac_param.icv.b,
|
---|
1794 | ctx->aes.ccm.fc, ctx->aes.ccm.kmac_param.k);
|
---|
1795 | ctx->aes.ccm.blocks++;
|
---|
1796 | }
|
---|
1797 | l = flags & 0x7;
|
---|
1798 | ctx->aes.ccm.nonce.b[0] = l;
|
---|
1799 |
|
---|
1800 | /*-
|
---|
1801 | * Reconstruct length from encoded length field
|
---|
1802 | * and initialize it with counter value.
|
---|
1803 | */
|
---|
1804 | n = 0;
|
---|
1805 | for (i = 15 - l; i < 15; i++) {
|
---|
1806 | n |= ctx->aes.ccm.nonce.b[i];
|
---|
1807 | ctx->aes.ccm.nonce.b[i] = 0;
|
---|
1808 | n <<= 8;
|
---|
1809 | }
|
---|
1810 | n |= ctx->aes.ccm.nonce.b[15];
|
---|
1811 | ctx->aes.ccm.nonce.b[15] = 1;
|
---|
1812 |
|
---|
1813 | if (n != len)
|
---|
1814 | return -1; /* length mismatch */
|
---|
1815 |
|
---|
1816 | if (enc) {
|
---|
1817 | /* Two operations per block plus one for tag encryption */
|
---|
1818 | ctx->aes.ccm.blocks += (((len + 15) >> 4) << 1) + 1;
|
---|
1819 | if (ctx->aes.ccm.blocks > (1ULL << 61))
|
---|
1820 | return -2; /* too much data */
|
---|
1821 | }
|
---|
1822 |
|
---|
1823 | num = 0;
|
---|
1824 | rem = len & 0xf;
|
---|
1825 | len &= ~(size_t)0xf;
|
---|
1826 |
|
---|
1827 | if (enc) {
|
---|
1828 | /* mac-then-encrypt */
|
---|
1829 | if (len)
|
---|
1830 | s390x_kmac(in, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
|
---|
1831 | if (rem) {
|
---|
1832 | for (i = 0; i < rem; i++)
|
---|
1833 | ctx->aes.ccm.kmac_param.icv.b[i] ^= in[len + i];
|
---|
1834 |
|
---|
1835 | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
|
---|
1836 | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
|
---|
1837 | ctx->aes.ccm.kmac_param.k);
|
---|
1838 | }
|
---|
1839 |
|
---|
1840 | CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
|
---|
1841 | ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
|
---|
1842 | &num, (ctr128_f)AES_ctr32_encrypt);
|
---|
1843 | } else {
|
---|
1844 | /* decrypt-then-mac */
|
---|
1845 | CRYPTO_ctr128_encrypt_ctr32(in, out, len + rem, &ctx->aes.key.k,
|
---|
1846 | ctx->aes.ccm.nonce.b, ctx->aes.ccm.buf.b,
|
---|
1847 | &num, (ctr128_f)AES_ctr32_encrypt);
|
---|
1848 |
|
---|
1849 | if (len)
|
---|
1850 | s390x_kmac(out, len, ctx->aes.ccm.fc, &ctx->aes.ccm.kmac_param);
|
---|
1851 | if (rem) {
|
---|
1852 | for (i = 0; i < rem; i++)
|
---|
1853 | ctx->aes.ccm.kmac_param.icv.b[i] ^= out[len + i];
|
---|
1854 |
|
---|
1855 | s390x_km(ctx->aes.ccm.kmac_param.icv.b, 16,
|
---|
1856 | ctx->aes.ccm.kmac_param.icv.b, ctx->aes.ccm.fc,
|
---|
1857 | ctx->aes.ccm.kmac_param.k);
|
---|
1858 | }
|
---|
1859 | }
|
---|
1860 | /* encrypt tag */
|
---|
1861 | for (i = 15 - l; i < 16; i++)
|
---|
1862 | ctx->aes.ccm.nonce.b[i] = 0;
|
---|
1863 |
|
---|
1864 | s390x_km(ctx->aes.ccm.nonce.b, 16, ctx->aes.ccm.buf.b, ctx->aes.ccm.fc,
|
---|
1865 | ctx->aes.ccm.kmac_param.k);
|
---|
1866 | ctx->aes.ccm.kmac_param.icv.g[0] ^= ctx->aes.ccm.buf.g[0];
|
---|
1867 | ctx->aes.ccm.kmac_param.icv.g[1] ^= ctx->aes.ccm.buf.g[1];
|
---|
1868 |
|
---|
1869 | ctx->aes.ccm.nonce.b[0] = flags; /* restore flags field */
|
---|
1870 | return 0;
|
---|
1871 | }
|
---|
1872 |
|
---|
1873 | /*-
|
---|
1874 | * En/de-crypt and authenticate TLS packet. Returns the number of bytes written
|
---|
1875 | * if successful. Otherwise -1 is returned.
|
---|
1876 | */
|
---|
1877 | static int s390x_aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1878 | const unsigned char *in, size_t len)
|
---|
1879 | {
|
---|
1880 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
|
---|
1881 | unsigned char *ivec = ctx->iv;
|
---|
1882 | unsigned char *buf = EVP_CIPHER_CTX_buf_noconst(ctx);
|
---|
1883 | const int enc = EVP_CIPHER_CTX_is_encrypting(ctx);
|
---|
1884 |
|
---|
1885 | if (out != in
|
---|
1886 | || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->aes.ccm.m))
|
---|
1887 | return -1;
|
---|
1888 |
|
---|
1889 | if (enc) {
|
---|
1890 | /* Set explicit iv (sequence number). */
|
---|
1891 | memcpy(out, buf, EVP_CCM_TLS_EXPLICIT_IV_LEN);
|
---|
1892 | }
|
---|
1893 |
|
---|
1894 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
|
---|
1895 | /*-
|
---|
1896 | * Get explicit iv (sequence number). We already have fixed iv
|
---|
1897 | * (server/client_write_iv) here.
|
---|
1898 | */
|
---|
1899 | memcpy(ivec + EVP_CCM_TLS_FIXED_IV_LEN, in, EVP_CCM_TLS_EXPLICIT_IV_LEN);
|
---|
1900 | s390x_aes_ccm_setiv(cctx, ivec, len);
|
---|
1901 |
|
---|
1902 | /* Process aad (sequence number|type|version|length) */
|
---|
1903 | s390x_aes_ccm_aad(cctx, buf, cctx->aes.ccm.tls_aad_len);
|
---|
1904 |
|
---|
1905 | in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
1906 | out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
1907 |
|
---|
1908 | if (enc) {
|
---|
1909 | if (s390x_aes_ccm(cctx, in, out, len, enc))
|
---|
1910 | return -1;
|
---|
1911 |
|
---|
1912 | memcpy(out + len, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
|
---|
1913 | return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->aes.ccm.m;
|
---|
1914 | } else {
|
---|
1915 | if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
|
---|
1916 | if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, in + len,
|
---|
1917 | cctx->aes.ccm.m))
|
---|
1918 | return len;
|
---|
1919 | }
|
---|
1920 |
|
---|
1921 | OPENSSL_cleanse(out, len);
|
---|
1922 | return -1;
|
---|
1923 | }
|
---|
1924 | }
|
---|
1925 |
|
---|
1926 | /*-
|
---|
1927 | * Set key and flag field and/or iv. Returns 1 if successful. Otherwise 0 is
|
---|
1928 | * returned.
|
---|
1929 | */
|
---|
1930 | static int s390x_aes_ccm_init_key(EVP_CIPHER_CTX *ctx,
|
---|
1931 | const unsigned char *key,
|
---|
1932 | const unsigned char *iv, int enc)
|
---|
1933 | {
|
---|
1934 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
|
---|
1935 | int keylen;
|
---|
1936 |
|
---|
1937 | if (iv == NULL && key == NULL)
|
---|
1938 | return 1;
|
---|
1939 |
|
---|
1940 | if (key != NULL) {
|
---|
1941 | keylen = EVP_CIPHER_CTX_get_key_length(ctx);
|
---|
1942 | cctx->aes.ccm.fc = S390X_AES_FC(keylen);
|
---|
1943 | memcpy(cctx->aes.ccm.kmac_param.k, key, keylen);
|
---|
1944 |
|
---|
1945 | /* Store encoded m and l. */
|
---|
1946 | cctx->aes.ccm.nonce.b[0] = ((cctx->aes.ccm.l - 1) & 0x7)
|
---|
1947 | | (((cctx->aes.ccm.m - 2) >> 1) & 0x7) << 3;
|
---|
1948 | memset(cctx->aes.ccm.nonce.b + 1, 0,
|
---|
1949 | sizeof(cctx->aes.ccm.nonce.b));
|
---|
1950 | cctx->aes.ccm.blocks = 0;
|
---|
1951 |
|
---|
1952 | cctx->aes.ccm.key_set = 1;
|
---|
1953 | }
|
---|
1954 |
|
---|
1955 | if (iv != NULL) {
|
---|
1956 | memcpy(ctx->iv, iv, 15 - cctx->aes.ccm.l);
|
---|
1957 |
|
---|
1958 | cctx->aes.ccm.iv_set = 1;
|
---|
1959 | }
|
---|
1960 |
|
---|
1961 | return 1;
|
---|
1962 | }
|
---|
1963 |
|
---|
1964 | /*-
|
---|
1965 | * Called from EVP layer to initialize context, process additional
|
---|
1966 | * authenticated data, en/de-crypt plain/cipher-text and authenticate
|
---|
1967 | * plaintext or process a TLS packet, depending on context. Returns bytes
|
---|
1968 | * written on success. Otherwise -1 is returned.
|
---|
1969 | */
|
---|
1970 | static int s390x_aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
1971 | const unsigned char *in, size_t len)
|
---|
1972 | {
|
---|
1973 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, ctx);
|
---|
1974 | const int enc = EVP_CIPHER_CTX_is_encrypting(ctx);
|
---|
1975 | int rv;
|
---|
1976 | unsigned char *buf;
|
---|
1977 |
|
---|
1978 | if (!cctx->aes.ccm.key_set)
|
---|
1979 | return -1;
|
---|
1980 |
|
---|
1981 | if (cctx->aes.ccm.tls_aad_len >= 0)
|
---|
1982 | return s390x_aes_ccm_tls_cipher(ctx, out, in, len);
|
---|
1983 |
|
---|
1984 | /*-
|
---|
1985 | * Final(): Does not return any data. Recall that ccm is mac-then-encrypt
|
---|
1986 | * so integrity must be checked already at Update() i.e., before
|
---|
1987 | * potentially corrupted data is output.
|
---|
1988 | */
|
---|
1989 | if (in == NULL && out != NULL)
|
---|
1990 | return 0;
|
---|
1991 |
|
---|
1992 | if (!cctx->aes.ccm.iv_set)
|
---|
1993 | return -1;
|
---|
1994 |
|
---|
1995 | if (out == NULL) {
|
---|
1996 | /* Update(): Pass message length. */
|
---|
1997 | if (in == NULL) {
|
---|
1998 | s390x_aes_ccm_setiv(cctx, ctx->iv, len);
|
---|
1999 |
|
---|
2000 | cctx->aes.ccm.len_set = 1;
|
---|
2001 | return len;
|
---|
2002 | }
|
---|
2003 |
|
---|
2004 | /* Update(): Process aad. */
|
---|
2005 | if (!cctx->aes.ccm.len_set && len)
|
---|
2006 | return -1;
|
---|
2007 |
|
---|
2008 | s390x_aes_ccm_aad(cctx, in, len);
|
---|
2009 | return len;
|
---|
2010 | }
|
---|
2011 |
|
---|
2012 | /* The tag must be set before actually decrypting data */
|
---|
2013 | if (!enc && !cctx->aes.ccm.tag_set)
|
---|
2014 | return -1;
|
---|
2015 |
|
---|
2016 | /* Update(): Process message. */
|
---|
2017 |
|
---|
2018 | if (!cctx->aes.ccm.len_set) {
|
---|
2019 | /*-
|
---|
2020 | * In case message length was not previously set explicitly via
|
---|
2021 | * Update(), set it now.
|
---|
2022 | */
|
---|
2023 | s390x_aes_ccm_setiv(cctx, ctx->iv, len);
|
---|
2024 |
|
---|
2025 | cctx->aes.ccm.len_set = 1;
|
---|
2026 | }
|
---|
2027 |
|
---|
2028 | if (enc) {
|
---|
2029 | if (s390x_aes_ccm(cctx, in, out, len, enc))
|
---|
2030 | return -1;
|
---|
2031 |
|
---|
2032 | cctx->aes.ccm.tag_set = 1;
|
---|
2033 | return len;
|
---|
2034 | } else {
|
---|
2035 | rv = -1;
|
---|
2036 |
|
---|
2037 | if (!s390x_aes_ccm(cctx, in, out, len, enc)) {
|
---|
2038 | buf = EVP_CIPHER_CTX_buf_noconst(ctx);
|
---|
2039 | if (!CRYPTO_memcmp(cctx->aes.ccm.kmac_param.icv.b, buf,
|
---|
2040 | cctx->aes.ccm.m))
|
---|
2041 | rv = len;
|
---|
2042 | }
|
---|
2043 |
|
---|
2044 | if (rv == -1)
|
---|
2045 | OPENSSL_cleanse(out, len);
|
---|
2046 |
|
---|
2047 | cctx->aes.ccm.iv_set = 0;
|
---|
2048 | cctx->aes.ccm.tag_set = 0;
|
---|
2049 | cctx->aes.ccm.len_set = 0;
|
---|
2050 | return rv;
|
---|
2051 | }
|
---|
2052 | }
|
---|
2053 |
|
---|
2054 | /*-
|
---|
2055 | * Performs various operations on the context structure depending on control
|
---|
2056 | * type. Returns 1 for success, 0 for failure and -1 for unknown control type.
|
---|
2057 | * Code is big-endian.
|
---|
2058 | */
|
---|
2059 | static int s390x_aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
2060 | {
|
---|
2061 | S390X_AES_CCM_CTX *cctx = EVP_C_DATA(S390X_AES_CCM_CTX, c);
|
---|
2062 | unsigned char *buf;
|
---|
2063 | int enc, len;
|
---|
2064 |
|
---|
2065 | switch (type) {
|
---|
2066 | case EVP_CTRL_INIT:
|
---|
2067 | cctx->aes.ccm.key_set = 0;
|
---|
2068 | cctx->aes.ccm.iv_set = 0;
|
---|
2069 | cctx->aes.ccm.l = 8;
|
---|
2070 | cctx->aes.ccm.m = 12;
|
---|
2071 | cctx->aes.ccm.tag_set = 0;
|
---|
2072 | cctx->aes.ccm.len_set = 0;
|
---|
2073 | cctx->aes.ccm.tls_aad_len = -1;
|
---|
2074 | return 1;
|
---|
2075 |
|
---|
2076 | case EVP_CTRL_GET_IVLEN:
|
---|
2077 | *(int *)ptr = 15 - cctx->aes.ccm.l;
|
---|
2078 | return 1;
|
---|
2079 |
|
---|
2080 | case EVP_CTRL_AEAD_TLS1_AAD:
|
---|
2081 | if (arg != EVP_AEAD_TLS1_AAD_LEN)
|
---|
2082 | return 0;
|
---|
2083 |
|
---|
2084 | /* Save the aad for later use. */
|
---|
2085 | buf = EVP_CIPHER_CTX_buf_noconst(c);
|
---|
2086 | memcpy(buf, ptr, arg);
|
---|
2087 | cctx->aes.ccm.tls_aad_len = arg;
|
---|
2088 |
|
---|
2089 | len = buf[arg - 2] << 8 | buf[arg - 1];
|
---|
2090 | if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
|
---|
2091 | return 0;
|
---|
2092 |
|
---|
2093 | /* Correct length for explicit iv. */
|
---|
2094 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
2095 |
|
---|
2096 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
2097 | if (!enc) {
|
---|
2098 | if (len < cctx->aes.ccm.m)
|
---|
2099 | return 0;
|
---|
2100 |
|
---|
2101 | /* Correct length for tag. */
|
---|
2102 | len -= cctx->aes.ccm.m;
|
---|
2103 | }
|
---|
2104 |
|
---|
2105 | buf[arg - 2] = len >> 8;
|
---|
2106 | buf[arg - 1] = len & 0xff;
|
---|
2107 |
|
---|
2108 | /* Extra padding: tag appended to record. */
|
---|
2109 | return cctx->aes.ccm.m;
|
---|
2110 |
|
---|
2111 | case EVP_CTRL_CCM_SET_IV_FIXED:
|
---|
2112 | if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
|
---|
2113 | return 0;
|
---|
2114 |
|
---|
2115 | /* Copy to first part of the iv. */
|
---|
2116 | memcpy(c->iv, ptr, arg);
|
---|
2117 | return 1;
|
---|
2118 |
|
---|
2119 | case EVP_CTRL_AEAD_SET_IVLEN:
|
---|
2120 | arg = 15 - arg;
|
---|
2121 | /* fall-through */
|
---|
2122 |
|
---|
2123 | case EVP_CTRL_CCM_SET_L:
|
---|
2124 | if (arg < 2 || arg > 8)
|
---|
2125 | return 0;
|
---|
2126 |
|
---|
2127 | cctx->aes.ccm.l = arg;
|
---|
2128 | return 1;
|
---|
2129 |
|
---|
2130 | case EVP_CTRL_AEAD_SET_TAG:
|
---|
2131 | if ((arg & 1) || arg < 4 || arg > 16)
|
---|
2132 | return 0;
|
---|
2133 |
|
---|
2134 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
2135 | if (enc && ptr)
|
---|
2136 | return 0;
|
---|
2137 |
|
---|
2138 | if (ptr) {
|
---|
2139 | cctx->aes.ccm.tag_set = 1;
|
---|
2140 | buf = EVP_CIPHER_CTX_buf_noconst(c);
|
---|
2141 | memcpy(buf, ptr, arg);
|
---|
2142 | }
|
---|
2143 |
|
---|
2144 | cctx->aes.ccm.m = arg;
|
---|
2145 | return 1;
|
---|
2146 |
|
---|
2147 | case EVP_CTRL_AEAD_GET_TAG:
|
---|
2148 | enc = EVP_CIPHER_CTX_is_encrypting(c);
|
---|
2149 | if (!enc || !cctx->aes.ccm.tag_set)
|
---|
2150 | return 0;
|
---|
2151 |
|
---|
2152 | if(arg < cctx->aes.ccm.m)
|
---|
2153 | return 0;
|
---|
2154 |
|
---|
2155 | memcpy(ptr, cctx->aes.ccm.kmac_param.icv.b, cctx->aes.ccm.m);
|
---|
2156 | cctx->aes.ccm.tag_set = 0;
|
---|
2157 | cctx->aes.ccm.iv_set = 0;
|
---|
2158 | cctx->aes.ccm.len_set = 0;
|
---|
2159 | return 1;
|
---|
2160 |
|
---|
2161 | case EVP_CTRL_COPY:
|
---|
2162 | return 1;
|
---|
2163 |
|
---|
2164 | default:
|
---|
2165 | return -1;
|
---|
2166 | }
|
---|
2167 | }
|
---|
2168 |
|
---|
2169 | # define s390x_aes_ccm_cleanup aes_ccm_cleanup
|
---|
2170 |
|
---|
2171 | # ifndef OPENSSL_NO_OCB
|
---|
2172 | # define S390X_AES_OCB_CTX EVP_AES_OCB_CTX
|
---|
2173 |
|
---|
2174 | # define s390x_aes_ocb_init_key aes_ocb_init_key
|
---|
2175 | static int s390x_aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
2176 | const unsigned char *iv, int enc);
|
---|
2177 | # define s390x_aes_ocb_cipher aes_ocb_cipher
|
---|
2178 | static int s390x_aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2179 | const unsigned char *in, size_t len);
|
---|
2180 | # define s390x_aes_ocb_cleanup aes_ocb_cleanup
|
---|
2181 | static int s390x_aes_ocb_cleanup(EVP_CIPHER_CTX *);
|
---|
2182 | # define s390x_aes_ocb_ctrl aes_ocb_ctrl
|
---|
2183 | static int s390x_aes_ocb_ctrl(EVP_CIPHER_CTX *, int type, int arg, void *ptr);
|
---|
2184 | # endif
|
---|
2185 |
|
---|
2186 | # ifndef OPENSSL_NO_SIV
|
---|
2187 | # define S390X_AES_SIV_CTX EVP_AES_SIV_CTX
|
---|
2188 |
|
---|
2189 | # define s390x_aes_siv_init_key aes_siv_init_key
|
---|
2190 | # define s390x_aes_siv_cipher aes_siv_cipher
|
---|
2191 | # define s390x_aes_siv_cleanup aes_siv_cleanup
|
---|
2192 | # define s390x_aes_siv_ctrl aes_siv_ctrl
|
---|
2193 | # endif
|
---|
2194 |
|
---|
2195 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode, \
|
---|
2196 | MODE,flags) \
|
---|
2197 | static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
|
---|
2198 | nid##_##keylen##_##nmode,blocksize, \
|
---|
2199 | keylen / 8, \
|
---|
2200 | ivlen, \
|
---|
2201 | flags | EVP_CIPH_##MODE##_MODE, \
|
---|
2202 | EVP_ORIG_GLOBAL, \
|
---|
2203 | s390x_aes_##mode##_init_key, \
|
---|
2204 | s390x_aes_##mode##_cipher, \
|
---|
2205 | NULL, \
|
---|
2206 | sizeof(S390X_AES_##MODE##_CTX), \
|
---|
2207 | NULL, \
|
---|
2208 | NULL, \
|
---|
2209 | NULL, \
|
---|
2210 | NULL \
|
---|
2211 | }; \
|
---|
2212 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
2213 | nid##_##keylen##_##nmode, \
|
---|
2214 | blocksize, \
|
---|
2215 | keylen / 8, \
|
---|
2216 | ivlen, \
|
---|
2217 | flags | EVP_CIPH_##MODE##_MODE, \
|
---|
2218 | EVP_ORIG_GLOBAL, \
|
---|
2219 | aes_init_key, \
|
---|
2220 | aes_##mode##_cipher, \
|
---|
2221 | NULL, \
|
---|
2222 | sizeof(EVP_AES_KEY), \
|
---|
2223 | NULL, \
|
---|
2224 | NULL, \
|
---|
2225 | NULL, \
|
---|
2226 | NULL \
|
---|
2227 | }; \
|
---|
2228 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
2229 | { \
|
---|
2230 | return S390X_aes_##keylen##_##mode##_CAPABLE ? \
|
---|
2231 | &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
|
---|
2232 | }
|
---|
2233 |
|
---|
2234 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags)\
|
---|
2235 | static const EVP_CIPHER s390x_aes_##keylen##_##mode = { \
|
---|
2236 | nid##_##keylen##_##mode, \
|
---|
2237 | blocksize, \
|
---|
2238 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \
|
---|
2239 | ivlen, \
|
---|
2240 | flags | EVP_CIPH_##MODE##_MODE, \
|
---|
2241 | EVP_ORIG_GLOBAL, \
|
---|
2242 | s390x_aes_##mode##_init_key, \
|
---|
2243 | s390x_aes_##mode##_cipher, \
|
---|
2244 | s390x_aes_##mode##_cleanup, \
|
---|
2245 | sizeof(S390X_AES_##MODE##_CTX), \
|
---|
2246 | NULL, \
|
---|
2247 | NULL, \
|
---|
2248 | s390x_aes_##mode##_ctrl, \
|
---|
2249 | NULL \
|
---|
2250 | }; \
|
---|
2251 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
2252 | nid##_##keylen##_##mode,blocksize, \
|
---|
2253 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE ? 2 : 1) * keylen / 8, \
|
---|
2254 | ivlen, \
|
---|
2255 | flags | EVP_CIPH_##MODE##_MODE, \
|
---|
2256 | EVP_ORIG_GLOBAL, \
|
---|
2257 | aes_##mode##_init_key, \
|
---|
2258 | aes_##mode##_cipher, \
|
---|
2259 | aes_##mode##_cleanup, \
|
---|
2260 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
2261 | NULL, \
|
---|
2262 | NULL, \
|
---|
2263 | aes_##mode##_ctrl, \
|
---|
2264 | NULL \
|
---|
2265 | }; \
|
---|
2266 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
2267 | { \
|
---|
2268 | return S390X_aes_##keylen##_##mode##_CAPABLE ? \
|
---|
2269 | &s390x_aes_##keylen##_##mode : &aes_##keylen##_##mode; \
|
---|
2270 | }
|
---|
2271 |
|
---|
2272 | #else
|
---|
2273 |
|
---|
2274 | # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
|
---|
2275 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
2276 | nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
|
---|
2277 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
2278 | EVP_ORIG_GLOBAL, \
|
---|
2279 | aes_init_key, \
|
---|
2280 | aes_##mode##_cipher, \
|
---|
2281 | NULL, \
|
---|
2282 | sizeof(EVP_AES_KEY), \
|
---|
2283 | NULL,NULL,NULL,NULL }; \
|
---|
2284 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
2285 | { return &aes_##keylen##_##mode; }
|
---|
2286 |
|
---|
2287 | # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
|
---|
2288 | static const EVP_CIPHER aes_##keylen##_##mode = { \
|
---|
2289 | nid##_##keylen##_##mode,blocksize, \
|
---|
2290 | (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE||EVP_CIPH_##MODE##_MODE==EVP_CIPH_SIV_MODE?2:1)*keylen/8, \
|
---|
2291 | ivlen, \
|
---|
2292 | flags|EVP_CIPH_##MODE##_MODE, \
|
---|
2293 | EVP_ORIG_GLOBAL, \
|
---|
2294 | aes_##mode##_init_key, \
|
---|
2295 | aes_##mode##_cipher, \
|
---|
2296 | aes_##mode##_cleanup, \
|
---|
2297 | sizeof(EVP_AES_##MODE##_CTX), \
|
---|
2298 | NULL,NULL,aes_##mode##_ctrl,NULL }; \
|
---|
2299 | const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
|
---|
2300 | { return &aes_##keylen##_##mode; }
|
---|
2301 |
|
---|
2302 | #endif
|
---|
2303 |
|
---|
2304 | #define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \
|
---|
2305 | BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
|
---|
2306 | BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
|
---|
2307 | BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
|
---|
2308 | BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
|
---|
2309 | BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \
|
---|
2310 | BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \
|
---|
2311 | BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)
|
---|
2312 |
|
---|
2313 | static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
2314 | const unsigned char *iv, int enc)
|
---|
2315 | {
|
---|
2316 | int ret, mode;
|
---|
2317 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2318 |
|
---|
2319 | mode = EVP_CIPHER_CTX_get_mode(ctx);
|
---|
2320 | if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
|
---|
2321 | && !enc) {
|
---|
2322 | #ifdef HWAES_CAPABLE
|
---|
2323 | if (HWAES_CAPABLE) {
|
---|
2324 | ret = HWAES_set_decrypt_key(key,
|
---|
2325 | EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
2326 | &dat->ks.ks);
|
---|
2327 | dat->block = (block128_f) HWAES_decrypt;
|
---|
2328 | dat->stream.cbc = NULL;
|
---|
2329 | # ifdef HWAES_cbc_encrypt
|
---|
2330 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
2331 | dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
|
---|
2332 | # endif
|
---|
2333 | } else
|
---|
2334 | #endif
|
---|
2335 | #ifdef BSAES_CAPABLE
|
---|
2336 | if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
|
---|
2337 | ret = AES_set_decrypt_key(key,
|
---|
2338 | EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
2339 | &dat->ks.ks);
|
---|
2340 | dat->block = (block128_f) AES_decrypt;
|
---|
2341 | dat->stream.cbc = (cbc128_f) ossl_bsaes_cbc_encrypt;
|
---|
2342 | } else
|
---|
2343 | #endif
|
---|
2344 | #ifdef VPAES_CAPABLE
|
---|
2345 | if (VPAES_CAPABLE) {
|
---|
2346 | ret = vpaes_set_decrypt_key(key,
|
---|
2347 | EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
2348 | &dat->ks.ks);
|
---|
2349 | dat->block = (block128_f) vpaes_decrypt;
|
---|
2350 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
2351 | (cbc128_f) vpaes_cbc_encrypt : NULL;
|
---|
2352 | } else
|
---|
2353 | #endif
|
---|
2354 | {
|
---|
2355 | ret = AES_set_decrypt_key(key,
|
---|
2356 | EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
2357 | &dat->ks.ks);
|
---|
2358 | dat->block = (block128_f) AES_decrypt;
|
---|
2359 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
2360 | (cbc128_f) AES_cbc_encrypt : NULL;
|
---|
2361 | }
|
---|
2362 | } else
|
---|
2363 | #ifdef HWAES_CAPABLE
|
---|
2364 | if (HWAES_CAPABLE) {
|
---|
2365 | ret = HWAES_set_encrypt_key(key,
|
---|
2366 | EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
2367 | &dat->ks.ks);
|
---|
2368 | dat->block = (block128_f) HWAES_encrypt;
|
---|
2369 | dat->stream.cbc = NULL;
|
---|
2370 | # ifdef HWAES_cbc_encrypt
|
---|
2371 | if (mode == EVP_CIPH_CBC_MODE)
|
---|
2372 | dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
|
---|
2373 | else
|
---|
2374 | # endif
|
---|
2375 | # ifdef HWAES_ctr32_encrypt_blocks
|
---|
2376 | if (mode == EVP_CIPH_CTR_MODE)
|
---|
2377 | dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
|
---|
2378 | else
|
---|
2379 | # endif
|
---|
2380 | (void)0; /* terminate potentially open 'else' */
|
---|
2381 | } else
|
---|
2382 | #endif
|
---|
2383 | #ifdef BSAES_CAPABLE
|
---|
2384 | if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
|
---|
2385 | ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
2386 | &dat->ks.ks);
|
---|
2387 | dat->block = (block128_f) AES_encrypt;
|
---|
2388 | dat->stream.ctr = (ctr128_f) ossl_bsaes_ctr32_encrypt_blocks;
|
---|
2389 | } else
|
---|
2390 | #endif
|
---|
2391 | #ifdef VPAES_CAPABLE
|
---|
2392 | if (VPAES_CAPABLE) {
|
---|
2393 | ret = vpaes_set_encrypt_key(key,
|
---|
2394 | EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
2395 | &dat->ks.ks);
|
---|
2396 | dat->block = (block128_f) vpaes_encrypt;
|
---|
2397 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
2398 | (cbc128_f) vpaes_cbc_encrypt : NULL;
|
---|
2399 | } else
|
---|
2400 | #endif
|
---|
2401 | {
|
---|
2402 | ret = AES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
2403 | &dat->ks.ks);
|
---|
2404 | dat->block = (block128_f) AES_encrypt;
|
---|
2405 | dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
|
---|
2406 | (cbc128_f) AES_cbc_encrypt : NULL;
|
---|
2407 | #ifdef AES_CTR_ASM
|
---|
2408 | if (mode == EVP_CIPH_CTR_MODE)
|
---|
2409 | dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt;
|
---|
2410 | #endif
|
---|
2411 | }
|
---|
2412 |
|
---|
2413 | if (ret < 0) {
|
---|
2414 | ERR_raise(ERR_LIB_EVP, EVP_R_AES_KEY_SETUP_FAILED);
|
---|
2415 | return 0;
|
---|
2416 | }
|
---|
2417 |
|
---|
2418 | return 1;
|
---|
2419 | }
|
---|
2420 |
|
---|
2421 | static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2422 | const unsigned char *in, size_t len)
|
---|
2423 | {
|
---|
2424 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2425 |
|
---|
2426 | if (dat->stream.cbc)
|
---|
2427 | (*dat->stream.cbc) (in, out, len, &dat->ks, ctx->iv,
|
---|
2428 | EVP_CIPHER_CTX_is_encrypting(ctx));
|
---|
2429 | else if (EVP_CIPHER_CTX_is_encrypting(ctx))
|
---|
2430 | CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv,
|
---|
2431 | dat->block);
|
---|
2432 | else
|
---|
2433 | CRYPTO_cbc128_decrypt(in, out, len, &dat->ks,
|
---|
2434 | ctx->iv, dat->block);
|
---|
2435 |
|
---|
2436 | return 1;
|
---|
2437 | }
|
---|
2438 |
|
---|
2439 | static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2440 | const unsigned char *in, size_t len)
|
---|
2441 | {
|
---|
2442 | size_t bl = EVP_CIPHER_CTX_get_block_size(ctx);
|
---|
2443 | size_t i;
|
---|
2444 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2445 |
|
---|
2446 | if (len < bl)
|
---|
2447 | return 1;
|
---|
2448 |
|
---|
2449 | for (i = 0, len -= bl; i <= len; i += bl)
|
---|
2450 | (*dat->block) (in + i, out + i, &dat->ks);
|
---|
2451 |
|
---|
2452 | return 1;
|
---|
2453 | }
|
---|
2454 |
|
---|
2455 | static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2456 | const unsigned char *in, size_t len)
|
---|
2457 | {
|
---|
2458 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2459 |
|
---|
2460 | int num = EVP_CIPHER_CTX_get_num(ctx);
|
---|
2461 | CRYPTO_ofb128_encrypt(in, out, len, &dat->ks,
|
---|
2462 | ctx->iv, &num, dat->block);
|
---|
2463 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2464 | return 1;
|
---|
2465 | }
|
---|
2466 |
|
---|
2467 | static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2468 | const unsigned char *in, size_t len)
|
---|
2469 | {
|
---|
2470 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2471 |
|
---|
2472 | int num = EVP_CIPHER_CTX_get_num(ctx);
|
---|
2473 | CRYPTO_cfb128_encrypt(in, out, len, &dat->ks,
|
---|
2474 | ctx->iv, &num,
|
---|
2475 | EVP_CIPHER_CTX_is_encrypting(ctx), dat->block);
|
---|
2476 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2477 | return 1;
|
---|
2478 | }
|
---|
2479 |
|
---|
2480 | static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2481 | const unsigned char *in, size_t len)
|
---|
2482 | {
|
---|
2483 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2484 |
|
---|
2485 | int num = EVP_CIPHER_CTX_get_num(ctx);
|
---|
2486 | CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks,
|
---|
2487 | ctx->iv, &num,
|
---|
2488 | EVP_CIPHER_CTX_is_encrypting(ctx), dat->block);
|
---|
2489 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2490 | return 1;
|
---|
2491 | }
|
---|
2492 |
|
---|
2493 | static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2494 | const unsigned char *in, size_t len)
|
---|
2495 | {
|
---|
2496 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2497 |
|
---|
2498 | if (EVP_CIPHER_CTX_test_flags(ctx, EVP_CIPH_FLAG_LENGTH_BITS)) {
|
---|
2499 | int num = EVP_CIPHER_CTX_get_num(ctx);
|
---|
2500 | CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks,
|
---|
2501 | ctx->iv, &num,
|
---|
2502 | EVP_CIPHER_CTX_is_encrypting(ctx), dat->block);
|
---|
2503 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2504 | return 1;
|
---|
2505 | }
|
---|
2506 |
|
---|
2507 | while (len >= MAXBITCHUNK) {
|
---|
2508 | int num = EVP_CIPHER_CTX_get_num(ctx);
|
---|
2509 | CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks,
|
---|
2510 | ctx->iv, &num,
|
---|
2511 | EVP_CIPHER_CTX_is_encrypting(ctx), dat->block);
|
---|
2512 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2513 | len -= MAXBITCHUNK;
|
---|
2514 | out += MAXBITCHUNK;
|
---|
2515 | in += MAXBITCHUNK;
|
---|
2516 | }
|
---|
2517 | if (len) {
|
---|
2518 | int num = EVP_CIPHER_CTX_get_num(ctx);
|
---|
2519 | CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks,
|
---|
2520 | ctx->iv, &num,
|
---|
2521 | EVP_CIPHER_CTX_is_encrypting(ctx), dat->block);
|
---|
2522 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2523 | }
|
---|
2524 |
|
---|
2525 | return 1;
|
---|
2526 | }
|
---|
2527 |
|
---|
2528 | static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2529 | const unsigned char *in, size_t len)
|
---|
2530 | {
|
---|
2531 | int n = EVP_CIPHER_CTX_get_num(ctx);
|
---|
2532 | unsigned int num;
|
---|
2533 | EVP_AES_KEY *dat = EVP_C_DATA(EVP_AES_KEY,ctx);
|
---|
2534 |
|
---|
2535 | if (n < 0)
|
---|
2536 | return 0;
|
---|
2537 | num = (unsigned int)n;
|
---|
2538 |
|
---|
2539 | if (dat->stream.ctr)
|
---|
2540 | CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,
|
---|
2541 | ctx->iv,
|
---|
2542 | EVP_CIPHER_CTX_buf_noconst(ctx),
|
---|
2543 | &num, dat->stream.ctr);
|
---|
2544 | else
|
---|
2545 | CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
|
---|
2546 | ctx->iv,
|
---|
2547 | EVP_CIPHER_CTX_buf_noconst(ctx), &num,
|
---|
2548 | dat->block);
|
---|
2549 | EVP_CIPHER_CTX_set_num(ctx, num);
|
---|
2550 | return 1;
|
---|
2551 | }
|
---|
2552 |
|
---|
2553 | BLOCK_CIPHER_generic_pack(NID_aes, 128, 0)
|
---|
2554 | BLOCK_CIPHER_generic_pack(NID_aes, 192, 0)
|
---|
2555 | BLOCK_CIPHER_generic_pack(NID_aes, 256, 0)
|
---|
2556 |
|
---|
2557 | static int aes_gcm_cleanup(EVP_CIPHER_CTX *c)
|
---|
2558 | {
|
---|
2559 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
|
---|
2560 | if (gctx == NULL)
|
---|
2561 | return 0;
|
---|
2562 | OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
|
---|
2563 | if (gctx->iv != c->iv)
|
---|
2564 | OPENSSL_free(gctx->iv);
|
---|
2565 | return 1;
|
---|
2566 | }
|
---|
2567 |
|
---|
2568 | static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
2569 | {
|
---|
2570 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,c);
|
---|
2571 | switch (type) {
|
---|
2572 | case EVP_CTRL_INIT:
|
---|
2573 | gctx->key_set = 0;
|
---|
2574 | gctx->iv_set = 0;
|
---|
2575 | gctx->ivlen = EVP_CIPHER_get_iv_length(c->cipher);
|
---|
2576 | gctx->iv = c->iv;
|
---|
2577 | gctx->taglen = -1;
|
---|
2578 | gctx->iv_gen = 0;
|
---|
2579 | gctx->tls_aad_len = -1;
|
---|
2580 | return 1;
|
---|
2581 |
|
---|
2582 | case EVP_CTRL_GET_IVLEN:
|
---|
2583 | *(int *)ptr = gctx->ivlen;
|
---|
2584 | return 1;
|
---|
2585 |
|
---|
2586 | case EVP_CTRL_AEAD_SET_IVLEN:
|
---|
2587 | if (arg <= 0)
|
---|
2588 | return 0;
|
---|
2589 | /* Allocate memory for IV if needed */
|
---|
2590 | if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) {
|
---|
2591 | if (gctx->iv != c->iv)
|
---|
2592 | OPENSSL_free(gctx->iv);
|
---|
2593 | if ((gctx->iv = OPENSSL_malloc(arg)) == NULL) {
|
---|
2594 | ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
|
---|
2595 | return 0;
|
---|
2596 | }
|
---|
2597 | }
|
---|
2598 | gctx->ivlen = arg;
|
---|
2599 | return 1;
|
---|
2600 |
|
---|
2601 | case EVP_CTRL_AEAD_SET_TAG:
|
---|
2602 | if (arg <= 0 || arg > 16 || c->encrypt)
|
---|
2603 | return 0;
|
---|
2604 | memcpy(c->buf, ptr, arg);
|
---|
2605 | gctx->taglen = arg;
|
---|
2606 | return 1;
|
---|
2607 |
|
---|
2608 | case EVP_CTRL_AEAD_GET_TAG:
|
---|
2609 | if (arg <= 0 || arg > 16 || !c->encrypt
|
---|
2610 | || gctx->taglen < 0)
|
---|
2611 | return 0;
|
---|
2612 | memcpy(ptr, c->buf, arg);
|
---|
2613 | return 1;
|
---|
2614 |
|
---|
2615 | case EVP_CTRL_GCM_SET_IV_FIXED:
|
---|
2616 | /* Special case: -1 length restores whole IV */
|
---|
2617 | if (arg == -1) {
|
---|
2618 | memcpy(gctx->iv, ptr, gctx->ivlen);
|
---|
2619 | gctx->iv_gen = 1;
|
---|
2620 | return 1;
|
---|
2621 | }
|
---|
2622 | /*
|
---|
2623 | * Fixed field must be at least 4 bytes and invocation field at least
|
---|
2624 | * 8.
|
---|
2625 | */
|
---|
2626 | if ((arg < 4) || (gctx->ivlen - arg) < 8)
|
---|
2627 | return 0;
|
---|
2628 | if (arg)
|
---|
2629 | memcpy(gctx->iv, ptr, arg);
|
---|
2630 | if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
|
---|
2631 | return 0;
|
---|
2632 | gctx->iv_gen = 1;
|
---|
2633 | return 1;
|
---|
2634 |
|
---|
2635 | case EVP_CTRL_GCM_IV_GEN:
|
---|
2636 | if (gctx->iv_gen == 0 || gctx->key_set == 0)
|
---|
2637 | return 0;
|
---|
2638 | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
|
---|
2639 | if (arg <= 0 || arg > gctx->ivlen)
|
---|
2640 | arg = gctx->ivlen;
|
---|
2641 | memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
|
---|
2642 | /*
|
---|
2643 | * Invocation field will be at least 8 bytes in size and so no need
|
---|
2644 | * to check wrap around or increment more than last 8 bytes.
|
---|
2645 | */
|
---|
2646 | ctr64_inc(gctx->iv + gctx->ivlen - 8);
|
---|
2647 | gctx->iv_set = 1;
|
---|
2648 | return 1;
|
---|
2649 |
|
---|
2650 | case EVP_CTRL_GCM_SET_IV_INV:
|
---|
2651 | if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
|
---|
2652 | return 0;
|
---|
2653 | memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
|
---|
2654 | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
|
---|
2655 | gctx->iv_set = 1;
|
---|
2656 | return 1;
|
---|
2657 |
|
---|
2658 | case EVP_CTRL_AEAD_TLS1_AAD:
|
---|
2659 | /* Save the AAD for later use */
|
---|
2660 | if (arg != EVP_AEAD_TLS1_AAD_LEN)
|
---|
2661 | return 0;
|
---|
2662 | memcpy(c->buf, ptr, arg);
|
---|
2663 | gctx->tls_aad_len = arg;
|
---|
2664 | gctx->tls_enc_records = 0;
|
---|
2665 | {
|
---|
2666 | unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1];
|
---|
2667 | /* Correct length for explicit IV */
|
---|
2668 | if (len < EVP_GCM_TLS_EXPLICIT_IV_LEN)
|
---|
2669 | return 0;
|
---|
2670 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
2671 | /* If decrypting correct for tag too */
|
---|
2672 | if (!c->encrypt) {
|
---|
2673 | if (len < EVP_GCM_TLS_TAG_LEN)
|
---|
2674 | return 0;
|
---|
2675 | len -= EVP_GCM_TLS_TAG_LEN;
|
---|
2676 | }
|
---|
2677 | c->buf[arg - 2] = len >> 8;
|
---|
2678 | c->buf[arg - 1] = len & 0xff;
|
---|
2679 | }
|
---|
2680 | /* Extra padding: tag appended to record */
|
---|
2681 | return EVP_GCM_TLS_TAG_LEN;
|
---|
2682 |
|
---|
2683 | case EVP_CTRL_COPY:
|
---|
2684 | {
|
---|
2685 | EVP_CIPHER_CTX *out = ptr;
|
---|
2686 | EVP_AES_GCM_CTX *gctx_out = EVP_C_DATA(EVP_AES_GCM_CTX,out);
|
---|
2687 | if (gctx->gcm.key) {
|
---|
2688 | if (gctx->gcm.key != &gctx->ks)
|
---|
2689 | return 0;
|
---|
2690 | gctx_out->gcm.key = &gctx_out->ks;
|
---|
2691 | }
|
---|
2692 | if (gctx->iv == c->iv)
|
---|
2693 | gctx_out->iv = out->iv;
|
---|
2694 | else {
|
---|
2695 | if ((gctx_out->iv = OPENSSL_malloc(gctx->ivlen)) == NULL) {
|
---|
2696 | ERR_raise(ERR_LIB_EVP, ERR_R_MALLOC_FAILURE);
|
---|
2697 | return 0;
|
---|
2698 | }
|
---|
2699 | memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
|
---|
2700 | }
|
---|
2701 | return 1;
|
---|
2702 | }
|
---|
2703 |
|
---|
2704 | default:
|
---|
2705 | return -1;
|
---|
2706 |
|
---|
2707 | }
|
---|
2708 | }
|
---|
2709 |
|
---|
2710 | static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
2711 | const unsigned char *iv, int enc)
|
---|
2712 | {
|
---|
2713 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
|
---|
2714 | if (!iv && !key)
|
---|
2715 | return 1;
|
---|
2716 | if (key) {
|
---|
2717 | do {
|
---|
2718 | #ifdef HWAES_CAPABLE
|
---|
2719 | if (HWAES_CAPABLE) {
|
---|
2720 | HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
|
---|
2721 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
|
---|
2722 | (block128_f) HWAES_encrypt);
|
---|
2723 | # ifdef HWAES_ctr32_encrypt_blocks
|
---|
2724 | gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
|
---|
2725 | # else
|
---|
2726 | gctx->ctr = NULL;
|
---|
2727 | # endif
|
---|
2728 | break;
|
---|
2729 | } else
|
---|
2730 | #endif
|
---|
2731 | #ifdef BSAES_CAPABLE
|
---|
2732 | if (BSAES_CAPABLE) {
|
---|
2733 | AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
|
---|
2734 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
|
---|
2735 | (block128_f) AES_encrypt);
|
---|
2736 | gctx->ctr = (ctr128_f) ossl_bsaes_ctr32_encrypt_blocks;
|
---|
2737 | break;
|
---|
2738 | } else
|
---|
2739 | #endif
|
---|
2740 | #ifdef VPAES_CAPABLE
|
---|
2741 | if (VPAES_CAPABLE) {
|
---|
2742 | vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
|
---|
2743 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
|
---|
2744 | (block128_f) vpaes_encrypt);
|
---|
2745 | gctx->ctr = NULL;
|
---|
2746 | break;
|
---|
2747 | } else
|
---|
2748 | #endif
|
---|
2749 | (void)0; /* terminate potentially open 'else' */
|
---|
2750 |
|
---|
2751 | AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
|
---|
2752 | CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
|
---|
2753 | (block128_f) AES_encrypt);
|
---|
2754 | #ifdef AES_CTR_ASM
|
---|
2755 | gctx->ctr = (ctr128_f) AES_ctr32_encrypt;
|
---|
2756 | #else
|
---|
2757 | gctx->ctr = NULL;
|
---|
2758 | #endif
|
---|
2759 | } while (0);
|
---|
2760 |
|
---|
2761 | /*
|
---|
2762 | * If we have an iv can set it directly, otherwise use saved IV.
|
---|
2763 | */
|
---|
2764 | if (iv == NULL && gctx->iv_set)
|
---|
2765 | iv = gctx->iv;
|
---|
2766 | if (iv) {
|
---|
2767 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
2768 | gctx->iv_set = 1;
|
---|
2769 | }
|
---|
2770 | gctx->key_set = 1;
|
---|
2771 | } else {
|
---|
2772 | /* If key set use IV, otherwise copy */
|
---|
2773 | if (gctx->key_set)
|
---|
2774 | CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
|
---|
2775 | else
|
---|
2776 | memcpy(gctx->iv, iv, gctx->ivlen);
|
---|
2777 | gctx->iv_set = 1;
|
---|
2778 | gctx->iv_gen = 0;
|
---|
2779 | }
|
---|
2780 | return 1;
|
---|
2781 | }
|
---|
2782 |
|
---|
2783 | /*
|
---|
2784 | * Handle TLS GCM packet format. This consists of the last portion of the IV
|
---|
2785 | * followed by the payload and finally the tag. On encrypt generate IV,
|
---|
2786 | * encrypt payload and write the tag. On verify retrieve IV, decrypt payload
|
---|
2787 | * and verify tag.
|
---|
2788 | */
|
---|
2789 |
|
---|
2790 | static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2791 | const unsigned char *in, size_t len)
|
---|
2792 | {
|
---|
2793 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
|
---|
2794 | int rv = -1;
|
---|
2795 | /* Encrypt/decrypt must be performed in place */
|
---|
2796 | if (out != in
|
---|
2797 | || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
|
---|
2798 | return -1;
|
---|
2799 |
|
---|
2800 | /*
|
---|
2801 | * Check for too many keys as per FIPS 140-2 IG A.5 "Key/IV Pair Uniqueness
|
---|
2802 | * Requirements from SP 800-38D". The requirements is for one party to the
|
---|
2803 | * communication to fail after 2^64 - 1 keys. We do this on the encrypting
|
---|
2804 | * side only.
|
---|
2805 | */
|
---|
2806 | if (ctx->encrypt && ++gctx->tls_enc_records == 0) {
|
---|
2807 | ERR_raise(ERR_LIB_EVP, EVP_R_TOO_MANY_RECORDS);
|
---|
2808 | goto err;
|
---|
2809 | }
|
---|
2810 |
|
---|
2811 | /*
|
---|
2812 | * Set IV from start of buffer or generate IV and write to start of
|
---|
2813 | * buffer.
|
---|
2814 | */
|
---|
2815 | if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ? EVP_CTRL_GCM_IV_GEN
|
---|
2816 | : EVP_CTRL_GCM_SET_IV_INV,
|
---|
2817 | EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
|
---|
2818 | goto err;
|
---|
2819 | /* Use saved AAD */
|
---|
2820 | if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
|
---|
2821 | goto err;
|
---|
2822 | /* Fix buffer and length to point to payload */
|
---|
2823 | in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
2824 | out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
|
---|
2825 | len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
|
---|
2826 | if (ctx->encrypt) {
|
---|
2827 | /* Encrypt payload */
|
---|
2828 | if (gctx->ctr) {
|
---|
2829 | size_t bulk = 0;
|
---|
2830 | #if defined(AES_GCM_ASM)
|
---|
2831 | if (len >= 32 && AES_GCM_ASM(gctx)) {
|
---|
2832 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
|
---|
2833 | return -1;
|
---|
2834 |
|
---|
2835 | bulk = AES_gcm_encrypt(in, out, len,
|
---|
2836 | gctx->gcm.key,
|
---|
2837 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
2838 | gctx->gcm.len.u[1] += bulk;
|
---|
2839 | }
|
---|
2840 | #endif
|
---|
2841 | if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
|
---|
2842 | in + bulk,
|
---|
2843 | out + bulk,
|
---|
2844 | len - bulk, gctx->ctr))
|
---|
2845 | goto err;
|
---|
2846 | } else {
|
---|
2847 | size_t bulk = 0;
|
---|
2848 | #if defined(AES_GCM_ASM2)
|
---|
2849 | if (len >= 32 && AES_GCM_ASM2(gctx)) {
|
---|
2850 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
|
---|
2851 | return -1;
|
---|
2852 |
|
---|
2853 | bulk = AES_gcm_encrypt(in, out, len,
|
---|
2854 | gctx->gcm.key,
|
---|
2855 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
2856 | gctx->gcm.len.u[1] += bulk;
|
---|
2857 | }
|
---|
2858 | #endif
|
---|
2859 | if (CRYPTO_gcm128_encrypt(&gctx->gcm,
|
---|
2860 | in + bulk, out + bulk, len - bulk))
|
---|
2861 | goto err;
|
---|
2862 | }
|
---|
2863 | out += len;
|
---|
2864 | /* Finally write tag */
|
---|
2865 | CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
|
---|
2866 | rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
|
---|
2867 | } else {
|
---|
2868 | /* Decrypt */
|
---|
2869 | if (gctx->ctr) {
|
---|
2870 | size_t bulk = 0;
|
---|
2871 | #if defined(AES_GCM_ASM)
|
---|
2872 | if (len >= 16 && AES_GCM_ASM(gctx)) {
|
---|
2873 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
|
---|
2874 | return -1;
|
---|
2875 |
|
---|
2876 | bulk = AES_gcm_decrypt(in, out, len,
|
---|
2877 | gctx->gcm.key,
|
---|
2878 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
2879 | gctx->gcm.len.u[1] += bulk;
|
---|
2880 | }
|
---|
2881 | #endif
|
---|
2882 | if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
|
---|
2883 | in + bulk,
|
---|
2884 | out + bulk,
|
---|
2885 | len - bulk, gctx->ctr))
|
---|
2886 | goto err;
|
---|
2887 | } else {
|
---|
2888 | size_t bulk = 0;
|
---|
2889 | #if defined(AES_GCM_ASM2)
|
---|
2890 | if (len >= 16 && AES_GCM_ASM2(gctx)) {
|
---|
2891 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
|
---|
2892 | return -1;
|
---|
2893 |
|
---|
2894 | bulk = AES_gcm_decrypt(in, out, len,
|
---|
2895 | gctx->gcm.key,
|
---|
2896 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
2897 | gctx->gcm.len.u[1] += bulk;
|
---|
2898 | }
|
---|
2899 | #endif
|
---|
2900 | if (CRYPTO_gcm128_decrypt(&gctx->gcm,
|
---|
2901 | in + bulk, out + bulk, len - bulk))
|
---|
2902 | goto err;
|
---|
2903 | }
|
---|
2904 | /* Retrieve tag */
|
---|
2905 | CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN);
|
---|
2906 | /* If tag mismatch wipe buffer */
|
---|
2907 | if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) {
|
---|
2908 | OPENSSL_cleanse(out, len);
|
---|
2909 | goto err;
|
---|
2910 | }
|
---|
2911 | rv = len;
|
---|
2912 | }
|
---|
2913 |
|
---|
2914 | err:
|
---|
2915 | gctx->iv_set = 0;
|
---|
2916 | gctx->tls_aad_len = -1;
|
---|
2917 | return rv;
|
---|
2918 | }
|
---|
2919 |
|
---|
2920 | #ifdef FIPS_MODULE
|
---|
2921 | /*
|
---|
2922 | * See SP800-38D (GCM) Section 8 "Uniqueness requirement on IVS and keys"
|
---|
2923 | *
|
---|
2924 | * See also 8.2.2 RBG-based construction.
|
---|
2925 | * Random construction consists of a free field (which can be NULL) and a
|
---|
2926 | * random field which will use a DRBG that can return at least 96 bits of
|
---|
2927 | * entropy strength. (The DRBG must be seeded by the FIPS module).
|
---|
2928 | */
|
---|
2929 | static int aes_gcm_iv_generate(EVP_AES_GCM_CTX *gctx, int offset)
|
---|
2930 | {
|
---|
2931 | int sz = gctx->ivlen - offset;
|
---|
2932 |
|
---|
2933 | /* Must be at least 96 bits */
|
---|
2934 | if (sz <= 0 || gctx->ivlen < 12)
|
---|
2935 | return 0;
|
---|
2936 |
|
---|
2937 | /* Use DRBG to generate random iv */
|
---|
2938 | if (RAND_bytes(gctx->iv + offset, sz) <= 0)
|
---|
2939 | return 0;
|
---|
2940 | return 1;
|
---|
2941 | }
|
---|
2942 | #endif /* FIPS_MODULE */
|
---|
2943 |
|
---|
2944 | static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
2945 | const unsigned char *in, size_t len)
|
---|
2946 | {
|
---|
2947 | EVP_AES_GCM_CTX *gctx = EVP_C_DATA(EVP_AES_GCM_CTX,ctx);
|
---|
2948 |
|
---|
2949 | /* If not set up, return error */
|
---|
2950 | if (!gctx->key_set)
|
---|
2951 | return -1;
|
---|
2952 |
|
---|
2953 | if (gctx->tls_aad_len >= 0)
|
---|
2954 | return aes_gcm_tls_cipher(ctx, out, in, len);
|
---|
2955 |
|
---|
2956 | #ifdef FIPS_MODULE
|
---|
2957 | /*
|
---|
2958 | * FIPS requires generation of AES-GCM IV's inside the FIPS module.
|
---|
2959 | * The IV can still be set externally (the security policy will state that
|
---|
2960 | * this is not FIPS compliant). There are some applications
|
---|
2961 | * where setting the IV externally is the only option available.
|
---|
2962 | */
|
---|
2963 | if (!gctx->iv_set) {
|
---|
2964 | if (!ctx->encrypt || !aes_gcm_iv_generate(gctx, 0))
|
---|
2965 | return -1;
|
---|
2966 | CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
|
---|
2967 | gctx->iv_set = 1;
|
---|
2968 | gctx->iv_gen_rand = 1;
|
---|
2969 | }
|
---|
2970 | #else
|
---|
2971 | if (!gctx->iv_set)
|
---|
2972 | return -1;
|
---|
2973 | #endif /* FIPS_MODULE */
|
---|
2974 |
|
---|
2975 | if (in) {
|
---|
2976 | if (out == NULL) {
|
---|
2977 | if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
|
---|
2978 | return -1;
|
---|
2979 | } else if (ctx->encrypt) {
|
---|
2980 | if (gctx->ctr) {
|
---|
2981 | size_t bulk = 0;
|
---|
2982 | #if defined(AES_GCM_ASM)
|
---|
2983 | if (len >= 32 && AES_GCM_ASM(gctx)) {
|
---|
2984 | size_t res = (16 - gctx->gcm.mres) % 16;
|
---|
2985 |
|
---|
2986 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
|
---|
2987 | return -1;
|
---|
2988 |
|
---|
2989 | bulk = AES_gcm_encrypt(in + res,
|
---|
2990 | out + res, len - res,
|
---|
2991 | gctx->gcm.key, gctx->gcm.Yi.c,
|
---|
2992 | gctx->gcm.Xi.u);
|
---|
2993 | gctx->gcm.len.u[1] += bulk;
|
---|
2994 | bulk += res;
|
---|
2995 | }
|
---|
2996 | #endif
|
---|
2997 | if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
|
---|
2998 | in + bulk,
|
---|
2999 | out + bulk,
|
---|
3000 | len - bulk, gctx->ctr))
|
---|
3001 | return -1;
|
---|
3002 | } else {
|
---|
3003 | size_t bulk = 0;
|
---|
3004 | #if defined(AES_GCM_ASM2)
|
---|
3005 | if (len >= 32 && AES_GCM_ASM2(gctx)) {
|
---|
3006 | size_t res = (16 - gctx->gcm.mres) % 16;
|
---|
3007 |
|
---|
3008 | if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
|
---|
3009 | return -1;
|
---|
3010 |
|
---|
3011 | bulk = AES_gcm_encrypt(in + res,
|
---|
3012 | out + res, len - res,
|
---|
3013 | gctx->gcm.key, gctx->gcm.Yi.c,
|
---|
3014 | gctx->gcm.Xi.u);
|
---|
3015 | gctx->gcm.len.u[1] += bulk;
|
---|
3016 | bulk += res;
|
---|
3017 | }
|
---|
3018 | #endif
|
---|
3019 | if (CRYPTO_gcm128_encrypt(&gctx->gcm,
|
---|
3020 | in + bulk, out + bulk, len - bulk))
|
---|
3021 | return -1;
|
---|
3022 | }
|
---|
3023 | } else {
|
---|
3024 | if (gctx->ctr) {
|
---|
3025 | size_t bulk = 0;
|
---|
3026 | #if defined(AES_GCM_ASM)
|
---|
3027 | if (len >= 16 && AES_GCM_ASM(gctx)) {
|
---|
3028 | size_t res = (16 - gctx->gcm.mres) % 16;
|
---|
3029 |
|
---|
3030 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
|
---|
3031 | return -1;
|
---|
3032 |
|
---|
3033 | bulk = AES_gcm_decrypt(in + res,
|
---|
3034 | out + res, len - res,
|
---|
3035 | gctx->gcm.key,
|
---|
3036 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
3037 | gctx->gcm.len.u[1] += bulk;
|
---|
3038 | bulk += res;
|
---|
3039 | }
|
---|
3040 | #endif
|
---|
3041 | if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
|
---|
3042 | in + bulk,
|
---|
3043 | out + bulk,
|
---|
3044 | len - bulk, gctx->ctr))
|
---|
3045 | return -1;
|
---|
3046 | } else {
|
---|
3047 | size_t bulk = 0;
|
---|
3048 | #if defined(AES_GCM_ASM2)
|
---|
3049 | if (len >= 16 && AES_GCM_ASM2(gctx)) {
|
---|
3050 | size_t res = (16 - gctx->gcm.mres) % 16;
|
---|
3051 |
|
---|
3052 | if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
|
---|
3053 | return -1;
|
---|
3054 |
|
---|
3055 | bulk = AES_gcm_decrypt(in + res,
|
---|
3056 | out + res, len - res,
|
---|
3057 | gctx->gcm.key,
|
---|
3058 | gctx->gcm.Yi.c, gctx->gcm.Xi.u);
|
---|
3059 | gctx->gcm.len.u[1] += bulk;
|
---|
3060 | bulk += res;
|
---|
3061 | }
|
---|
3062 | #endif
|
---|
3063 | if (CRYPTO_gcm128_decrypt(&gctx->gcm,
|
---|
3064 | in + bulk, out + bulk, len - bulk))
|
---|
3065 | return -1;
|
---|
3066 | }
|
---|
3067 | }
|
---|
3068 | return len;
|
---|
3069 | } else {
|
---|
3070 | if (!ctx->encrypt) {
|
---|
3071 | if (gctx->taglen < 0)
|
---|
3072 | return -1;
|
---|
3073 | if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0)
|
---|
3074 | return -1;
|
---|
3075 | gctx->iv_set = 0;
|
---|
3076 | return 0;
|
---|
3077 | }
|
---|
3078 | CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
|
---|
3079 | gctx->taglen = 16;
|
---|
3080 | /* Don't reuse the IV */
|
---|
3081 | gctx->iv_set = 0;
|
---|
3082 | return 0;
|
---|
3083 | }
|
---|
3084 |
|
---|
3085 | }
|
---|
3086 |
|
---|
3087 | #define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \
|
---|
3088 | | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
|
---|
3089 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
|
---|
3090 | | EVP_CIPH_CUSTOM_COPY | EVP_CIPH_CUSTOM_IV_LENGTH)
|
---|
3091 |
|
---|
3092 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,
|
---|
3093 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3094 | BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,
|
---|
3095 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3096 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,
|
---|
3097 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3098 |
|
---|
3099 | static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
3100 | {
|
---|
3101 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX, c);
|
---|
3102 |
|
---|
3103 | if (type == EVP_CTRL_COPY) {
|
---|
3104 | EVP_CIPHER_CTX *out = ptr;
|
---|
3105 | EVP_AES_XTS_CTX *xctx_out = EVP_C_DATA(EVP_AES_XTS_CTX,out);
|
---|
3106 |
|
---|
3107 | if (xctx->xts.key1) {
|
---|
3108 | if (xctx->xts.key1 != &xctx->ks1)
|
---|
3109 | return 0;
|
---|
3110 | xctx_out->xts.key1 = &xctx_out->ks1;
|
---|
3111 | }
|
---|
3112 | if (xctx->xts.key2) {
|
---|
3113 | if (xctx->xts.key2 != &xctx->ks2)
|
---|
3114 | return 0;
|
---|
3115 | xctx_out->xts.key2 = &xctx_out->ks2;
|
---|
3116 | }
|
---|
3117 | return 1;
|
---|
3118 | } else if (type != EVP_CTRL_INIT)
|
---|
3119 | return -1;
|
---|
3120 | /* key1 and key2 are used as an indicator both key and IV are set */
|
---|
3121 | xctx->xts.key1 = NULL;
|
---|
3122 | xctx->xts.key2 = NULL;
|
---|
3123 | return 1;
|
---|
3124 | }
|
---|
3125 |
|
---|
3126 | static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
3127 | const unsigned char *iv, int enc)
|
---|
3128 | {
|
---|
3129 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
|
---|
3130 |
|
---|
3131 | if (!iv && !key)
|
---|
3132 | return 1;
|
---|
3133 |
|
---|
3134 | if (key) {
|
---|
3135 | do {
|
---|
3136 | /* The key is two half length keys in reality */
|
---|
3137 | const int bytes = EVP_CIPHER_CTX_get_key_length(ctx) / 2;
|
---|
3138 | const int bits = bytes * 8;
|
---|
3139 |
|
---|
3140 | /*
|
---|
3141 | * Verify that the two keys are different.
|
---|
3142 | *
|
---|
3143 | * This addresses the vulnerability described in Rogaway's
|
---|
3144 | * September 2004 paper:
|
---|
3145 | *
|
---|
3146 | * "Efficient Instantiations of Tweakable Blockciphers and
|
---|
3147 | * Refinements to Modes OCB and PMAC".
|
---|
3148 | * (http://web.cs.ucdavis.edu/~rogaway/papers/offsets.pdf)
|
---|
3149 | *
|
---|
3150 | * FIPS 140-2 IG A.9 XTS-AES Key Generation Requirements states
|
---|
3151 | * that:
|
---|
3152 | * "The check for Key_1 != Key_2 shall be done at any place
|
---|
3153 | * BEFORE using the keys in the XTS-AES algorithm to process
|
---|
3154 | * data with them."
|
---|
3155 | */
|
---|
3156 | if ((!allow_insecure_decrypt || enc)
|
---|
3157 | && CRYPTO_memcmp(key, key + bytes, bytes) == 0) {
|
---|
3158 | ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DUPLICATED_KEYS);
|
---|
3159 | return 0;
|
---|
3160 | }
|
---|
3161 |
|
---|
3162 | #ifdef AES_XTS_ASM
|
---|
3163 | xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
|
---|
3164 | #else
|
---|
3165 | xctx->stream = NULL;
|
---|
3166 | #endif
|
---|
3167 | /* key_len is two AES keys */
|
---|
3168 | #ifdef HWAES_CAPABLE
|
---|
3169 | if (HWAES_CAPABLE) {
|
---|
3170 | if (enc) {
|
---|
3171 | HWAES_set_encrypt_key(key, bits, &xctx->ks1.ks);
|
---|
3172 | xctx->xts.block1 = (block128_f) HWAES_encrypt;
|
---|
3173 | # ifdef HWAES_xts_encrypt
|
---|
3174 | xctx->stream = HWAES_xts_encrypt;
|
---|
3175 | # endif
|
---|
3176 | } else {
|
---|
3177 | HWAES_set_decrypt_key(key, bits, &xctx->ks1.ks);
|
---|
3178 | xctx->xts.block1 = (block128_f) HWAES_decrypt;
|
---|
3179 | # ifdef HWAES_xts_decrypt
|
---|
3180 | xctx->stream = HWAES_xts_decrypt;
|
---|
3181 | #endif
|
---|
3182 | }
|
---|
3183 |
|
---|
3184 | HWAES_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks);
|
---|
3185 | xctx->xts.block2 = (block128_f) HWAES_encrypt;
|
---|
3186 |
|
---|
3187 | xctx->xts.key1 = &xctx->ks1;
|
---|
3188 | break;
|
---|
3189 | } else
|
---|
3190 | #endif
|
---|
3191 | #ifdef BSAES_CAPABLE
|
---|
3192 | if (BSAES_CAPABLE)
|
---|
3193 | xctx->stream = enc ? ossl_bsaes_xts_encrypt : ossl_bsaes_xts_decrypt;
|
---|
3194 | else
|
---|
3195 | #endif
|
---|
3196 | #ifdef VPAES_CAPABLE
|
---|
3197 | if (VPAES_CAPABLE) {
|
---|
3198 | if (enc) {
|
---|
3199 | vpaes_set_encrypt_key(key, bits, &xctx->ks1.ks);
|
---|
3200 | xctx->xts.block1 = (block128_f) vpaes_encrypt;
|
---|
3201 | } else {
|
---|
3202 | vpaes_set_decrypt_key(key, bits, &xctx->ks1.ks);
|
---|
3203 | xctx->xts.block1 = (block128_f) vpaes_decrypt;
|
---|
3204 | }
|
---|
3205 |
|
---|
3206 | vpaes_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks);
|
---|
3207 | xctx->xts.block2 = (block128_f) vpaes_encrypt;
|
---|
3208 |
|
---|
3209 | xctx->xts.key1 = &xctx->ks1;
|
---|
3210 | break;
|
---|
3211 | } else
|
---|
3212 | #endif
|
---|
3213 | (void)0; /* terminate potentially open 'else' */
|
---|
3214 |
|
---|
3215 | if (enc) {
|
---|
3216 | AES_set_encrypt_key(key, bits, &xctx->ks1.ks);
|
---|
3217 | xctx->xts.block1 = (block128_f) AES_encrypt;
|
---|
3218 | } else {
|
---|
3219 | AES_set_decrypt_key(key, bits, &xctx->ks1.ks);
|
---|
3220 | xctx->xts.block1 = (block128_f) AES_decrypt;
|
---|
3221 | }
|
---|
3222 |
|
---|
3223 | AES_set_encrypt_key(key + bytes, bits, &xctx->ks2.ks);
|
---|
3224 | xctx->xts.block2 = (block128_f) AES_encrypt;
|
---|
3225 |
|
---|
3226 | xctx->xts.key1 = &xctx->ks1;
|
---|
3227 | } while (0);
|
---|
3228 | }
|
---|
3229 |
|
---|
3230 | if (iv) {
|
---|
3231 | xctx->xts.key2 = &xctx->ks2;
|
---|
3232 | memcpy(ctx->iv, iv, 16);
|
---|
3233 | }
|
---|
3234 |
|
---|
3235 | return 1;
|
---|
3236 | }
|
---|
3237 |
|
---|
3238 | static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3239 | const unsigned char *in, size_t len)
|
---|
3240 | {
|
---|
3241 | EVP_AES_XTS_CTX *xctx = EVP_C_DATA(EVP_AES_XTS_CTX,ctx);
|
---|
3242 |
|
---|
3243 | if (xctx->xts.key1 == NULL
|
---|
3244 | || xctx->xts.key2 == NULL
|
---|
3245 | || out == NULL
|
---|
3246 | || in == NULL
|
---|
3247 | || len < AES_BLOCK_SIZE)
|
---|
3248 | return 0;
|
---|
3249 |
|
---|
3250 | /*
|
---|
3251 | * Impose a limit of 2^20 blocks per data unit as specified by
|
---|
3252 | * IEEE Std 1619-2018. The earlier and obsolete IEEE Std 1619-2007
|
---|
3253 | * indicated that this was a SHOULD NOT rather than a MUST NOT.
|
---|
3254 | * NIST SP 800-38E mandates the same limit.
|
---|
3255 | */
|
---|
3256 | if (len > XTS_MAX_BLOCKS_PER_DATA_UNIT * AES_BLOCK_SIZE) {
|
---|
3257 | ERR_raise(ERR_LIB_EVP, EVP_R_XTS_DATA_UNIT_IS_TOO_LARGE);
|
---|
3258 | return 0;
|
---|
3259 | }
|
---|
3260 |
|
---|
3261 | if (xctx->stream)
|
---|
3262 | (*xctx->stream) (in, out, len,
|
---|
3263 | xctx->xts.key1, xctx->xts.key2,
|
---|
3264 | ctx->iv);
|
---|
3265 | else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len,
|
---|
3266 | EVP_CIPHER_CTX_is_encrypting(ctx)))
|
---|
3267 | return 0;
|
---|
3268 | return 1;
|
---|
3269 | }
|
---|
3270 |
|
---|
3271 | #define aes_xts_cleanup NULL
|
---|
3272 |
|
---|
3273 | #define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \
|
---|
3274 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
|
---|
3275 | | EVP_CIPH_CUSTOM_COPY)
|
---|
3276 |
|
---|
3277 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS, XTS_FLAGS)
|
---|
3278 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS, XTS_FLAGS)
|
---|
3279 |
|
---|
3280 | static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
3281 | {
|
---|
3282 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,c);
|
---|
3283 | switch (type) {
|
---|
3284 | case EVP_CTRL_INIT:
|
---|
3285 | cctx->key_set = 0;
|
---|
3286 | cctx->iv_set = 0;
|
---|
3287 | cctx->L = 8;
|
---|
3288 | cctx->M = 12;
|
---|
3289 | cctx->tag_set = 0;
|
---|
3290 | cctx->len_set = 0;
|
---|
3291 | cctx->tls_aad_len = -1;
|
---|
3292 | return 1;
|
---|
3293 |
|
---|
3294 | case EVP_CTRL_GET_IVLEN:
|
---|
3295 | *(int *)ptr = 15 - cctx->L;
|
---|
3296 | return 1;
|
---|
3297 |
|
---|
3298 | case EVP_CTRL_AEAD_TLS1_AAD:
|
---|
3299 | /* Save the AAD for later use */
|
---|
3300 | if (arg != EVP_AEAD_TLS1_AAD_LEN)
|
---|
3301 | return 0;
|
---|
3302 | memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
|
---|
3303 | cctx->tls_aad_len = arg;
|
---|
3304 | {
|
---|
3305 | uint16_t len =
|
---|
3306 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] << 8
|
---|
3307 | | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1];
|
---|
3308 | /* Correct length for explicit IV */
|
---|
3309 | if (len < EVP_CCM_TLS_EXPLICIT_IV_LEN)
|
---|
3310 | return 0;
|
---|
3311 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
3312 | /* If decrypting correct for tag too */
|
---|
3313 | if (!EVP_CIPHER_CTX_is_encrypting(c)) {
|
---|
3314 | if (len < cctx->M)
|
---|
3315 | return 0;
|
---|
3316 | len -= cctx->M;
|
---|
3317 | }
|
---|
3318 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 2] = len >> 8;
|
---|
3319 | EVP_CIPHER_CTX_buf_noconst(c)[arg - 1] = len & 0xff;
|
---|
3320 | }
|
---|
3321 | /* Extra padding: tag appended to record */
|
---|
3322 | return cctx->M;
|
---|
3323 |
|
---|
3324 | case EVP_CTRL_CCM_SET_IV_FIXED:
|
---|
3325 | /* Sanity check length */
|
---|
3326 | if (arg != EVP_CCM_TLS_FIXED_IV_LEN)
|
---|
3327 | return 0;
|
---|
3328 | /* Just copy to first part of IV */
|
---|
3329 | memcpy(c->iv, ptr, arg);
|
---|
3330 | return 1;
|
---|
3331 |
|
---|
3332 | case EVP_CTRL_AEAD_SET_IVLEN:
|
---|
3333 | arg = 15 - arg;
|
---|
3334 | /* fall thru */
|
---|
3335 | case EVP_CTRL_CCM_SET_L:
|
---|
3336 | if (arg < 2 || arg > 8)
|
---|
3337 | return 0;
|
---|
3338 | cctx->L = arg;
|
---|
3339 | return 1;
|
---|
3340 |
|
---|
3341 | case EVP_CTRL_AEAD_SET_TAG:
|
---|
3342 | if ((arg & 1) || arg < 4 || arg > 16)
|
---|
3343 | return 0;
|
---|
3344 | if (EVP_CIPHER_CTX_is_encrypting(c) && ptr)
|
---|
3345 | return 0;
|
---|
3346 | if (ptr) {
|
---|
3347 | cctx->tag_set = 1;
|
---|
3348 | memcpy(EVP_CIPHER_CTX_buf_noconst(c), ptr, arg);
|
---|
3349 | }
|
---|
3350 | cctx->M = arg;
|
---|
3351 | return 1;
|
---|
3352 |
|
---|
3353 | case EVP_CTRL_AEAD_GET_TAG:
|
---|
3354 | if (!EVP_CIPHER_CTX_is_encrypting(c) || !cctx->tag_set)
|
---|
3355 | return 0;
|
---|
3356 | if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
|
---|
3357 | return 0;
|
---|
3358 | cctx->tag_set = 0;
|
---|
3359 | cctx->iv_set = 0;
|
---|
3360 | cctx->len_set = 0;
|
---|
3361 | return 1;
|
---|
3362 |
|
---|
3363 | case EVP_CTRL_COPY:
|
---|
3364 | {
|
---|
3365 | EVP_CIPHER_CTX *out = ptr;
|
---|
3366 | EVP_AES_CCM_CTX *cctx_out = EVP_C_DATA(EVP_AES_CCM_CTX,out);
|
---|
3367 | if (cctx->ccm.key) {
|
---|
3368 | if (cctx->ccm.key != &cctx->ks)
|
---|
3369 | return 0;
|
---|
3370 | cctx_out->ccm.key = &cctx_out->ks;
|
---|
3371 | }
|
---|
3372 | return 1;
|
---|
3373 | }
|
---|
3374 |
|
---|
3375 | default:
|
---|
3376 | return -1;
|
---|
3377 |
|
---|
3378 | }
|
---|
3379 | }
|
---|
3380 |
|
---|
3381 | static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
3382 | const unsigned char *iv, int enc)
|
---|
3383 | {
|
---|
3384 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
|
---|
3385 | if (!iv && !key)
|
---|
3386 | return 1;
|
---|
3387 | if (key)
|
---|
3388 | do {
|
---|
3389 | #ifdef HWAES_CAPABLE
|
---|
3390 | if (HWAES_CAPABLE) {
|
---|
3391 | HWAES_set_encrypt_key(key,
|
---|
3392 | EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
3393 | &cctx->ks.ks);
|
---|
3394 |
|
---|
3395 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
|
---|
3396 | &cctx->ks, (block128_f) HWAES_encrypt);
|
---|
3397 | cctx->str = NULL;
|
---|
3398 | cctx->key_set = 1;
|
---|
3399 | break;
|
---|
3400 | } else
|
---|
3401 | #endif
|
---|
3402 | #ifdef VPAES_CAPABLE
|
---|
3403 | if (VPAES_CAPABLE) {
|
---|
3404 | vpaes_set_encrypt_key(key,
|
---|
3405 | EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
3406 | &cctx->ks.ks);
|
---|
3407 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
|
---|
3408 | &cctx->ks, (block128_f) vpaes_encrypt);
|
---|
3409 | cctx->str = NULL;
|
---|
3410 | cctx->key_set = 1;
|
---|
3411 | break;
|
---|
3412 | }
|
---|
3413 | #endif
|
---|
3414 | AES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
3415 | &cctx->ks.ks);
|
---|
3416 | CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
|
---|
3417 | &cctx->ks, (block128_f) AES_encrypt);
|
---|
3418 | cctx->str = NULL;
|
---|
3419 | cctx->key_set = 1;
|
---|
3420 | } while (0);
|
---|
3421 | if (iv) {
|
---|
3422 | memcpy(ctx->iv, iv, 15 - cctx->L);
|
---|
3423 | cctx->iv_set = 1;
|
---|
3424 | }
|
---|
3425 | return 1;
|
---|
3426 | }
|
---|
3427 |
|
---|
3428 | static int aes_ccm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3429 | const unsigned char *in, size_t len)
|
---|
3430 | {
|
---|
3431 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
|
---|
3432 | CCM128_CONTEXT *ccm = &cctx->ccm;
|
---|
3433 | /* Encrypt/decrypt must be performed in place */
|
---|
3434 | if (out != in || len < (EVP_CCM_TLS_EXPLICIT_IV_LEN + (size_t)cctx->M))
|
---|
3435 | return -1;
|
---|
3436 | /* If encrypting set explicit IV from sequence number (start of AAD) */
|
---|
3437 | if (EVP_CIPHER_CTX_is_encrypting(ctx))
|
---|
3438 | memcpy(out, EVP_CIPHER_CTX_buf_noconst(ctx),
|
---|
3439 | EVP_CCM_TLS_EXPLICIT_IV_LEN);
|
---|
3440 | /* Get rest of IV from explicit IV */
|
---|
3441 | memcpy(ctx->iv + EVP_CCM_TLS_FIXED_IV_LEN, in,
|
---|
3442 | EVP_CCM_TLS_EXPLICIT_IV_LEN);
|
---|
3443 | /* Correct length value */
|
---|
3444 | len -= EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
|
---|
3445 | if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L,
|
---|
3446 | len))
|
---|
3447 | return -1;
|
---|
3448 | /* Use saved AAD */
|
---|
3449 | CRYPTO_ccm128_aad(ccm, EVP_CIPHER_CTX_buf_noconst(ctx),
|
---|
3450 | cctx->tls_aad_len);
|
---|
3451 | /* Fix buffer to point to payload */
|
---|
3452 | in += EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
3453 | out += EVP_CCM_TLS_EXPLICIT_IV_LEN;
|
---|
3454 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
|
---|
3455 | if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
|
---|
3456 | cctx->str) :
|
---|
3457 | CRYPTO_ccm128_encrypt(ccm, in, out, len))
|
---|
3458 | return -1;
|
---|
3459 | if (!CRYPTO_ccm128_tag(ccm, out + len, cctx->M))
|
---|
3460 | return -1;
|
---|
3461 | return len + EVP_CCM_TLS_EXPLICIT_IV_LEN + cctx->M;
|
---|
3462 | } else {
|
---|
3463 | if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
|
---|
3464 | cctx->str) :
|
---|
3465 | !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
|
---|
3466 | unsigned char tag[16];
|
---|
3467 | if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
|
---|
3468 | if (!CRYPTO_memcmp(tag, in + len, cctx->M))
|
---|
3469 | return len;
|
---|
3470 | }
|
---|
3471 | }
|
---|
3472 | OPENSSL_cleanse(out, len);
|
---|
3473 | return -1;
|
---|
3474 | }
|
---|
3475 | }
|
---|
3476 |
|
---|
3477 | static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3478 | const unsigned char *in, size_t len)
|
---|
3479 | {
|
---|
3480 | EVP_AES_CCM_CTX *cctx = EVP_C_DATA(EVP_AES_CCM_CTX,ctx);
|
---|
3481 | CCM128_CONTEXT *ccm = &cctx->ccm;
|
---|
3482 | /* If not set up, return error */
|
---|
3483 | if (!cctx->key_set)
|
---|
3484 | return -1;
|
---|
3485 |
|
---|
3486 | if (cctx->tls_aad_len >= 0)
|
---|
3487 | return aes_ccm_tls_cipher(ctx, out, in, len);
|
---|
3488 |
|
---|
3489 | /* EVP_*Final() doesn't return any data */
|
---|
3490 | if (in == NULL && out != NULL)
|
---|
3491 | return 0;
|
---|
3492 |
|
---|
3493 | if (!cctx->iv_set)
|
---|
3494 | return -1;
|
---|
3495 |
|
---|
3496 | if (!out) {
|
---|
3497 | if (!in) {
|
---|
3498 | if (CRYPTO_ccm128_setiv(ccm, ctx->iv,
|
---|
3499 | 15 - cctx->L, len))
|
---|
3500 | return -1;
|
---|
3501 | cctx->len_set = 1;
|
---|
3502 | return len;
|
---|
3503 | }
|
---|
3504 | /* If have AAD need message length */
|
---|
3505 | if (!cctx->len_set && len)
|
---|
3506 | return -1;
|
---|
3507 | CRYPTO_ccm128_aad(ccm, in, len);
|
---|
3508 | return len;
|
---|
3509 | }
|
---|
3510 |
|
---|
3511 | /* The tag must be set before actually decrypting data */
|
---|
3512 | if (!EVP_CIPHER_CTX_is_encrypting(ctx) && !cctx->tag_set)
|
---|
3513 | return -1;
|
---|
3514 |
|
---|
3515 | /* If not set length yet do it */
|
---|
3516 | if (!cctx->len_set) {
|
---|
3517 | if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len))
|
---|
3518 | return -1;
|
---|
3519 | cctx->len_set = 1;
|
---|
3520 | }
|
---|
3521 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
|
---|
3522 | if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
|
---|
3523 | cctx->str) :
|
---|
3524 | CRYPTO_ccm128_encrypt(ccm, in, out, len))
|
---|
3525 | return -1;
|
---|
3526 | cctx->tag_set = 1;
|
---|
3527 | return len;
|
---|
3528 | } else {
|
---|
3529 | int rv = -1;
|
---|
3530 | if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
|
---|
3531 | cctx->str) :
|
---|
3532 | !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
|
---|
3533 | unsigned char tag[16];
|
---|
3534 | if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
|
---|
3535 | if (!CRYPTO_memcmp(tag, EVP_CIPHER_CTX_buf_noconst(ctx),
|
---|
3536 | cctx->M))
|
---|
3537 | rv = len;
|
---|
3538 | }
|
---|
3539 | }
|
---|
3540 | if (rv == -1)
|
---|
3541 | OPENSSL_cleanse(out, len);
|
---|
3542 | cctx->iv_set = 0;
|
---|
3543 | cctx->tag_set = 0;
|
---|
3544 | cctx->len_set = 0;
|
---|
3545 | return rv;
|
---|
3546 | }
|
---|
3547 | }
|
---|
3548 |
|
---|
3549 | #define aes_ccm_cleanup NULL
|
---|
3550 |
|
---|
3551 | BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,
|
---|
3552 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3553 | BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,
|
---|
3554 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3555 | BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,
|
---|
3556 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
3557 |
|
---|
3558 | typedef struct {
|
---|
3559 | union {
|
---|
3560 | OSSL_UNION_ALIGN;
|
---|
3561 | AES_KEY ks;
|
---|
3562 | } ks;
|
---|
3563 | /* Indicates if IV has been set */
|
---|
3564 | unsigned char *iv;
|
---|
3565 | } EVP_AES_WRAP_CTX;
|
---|
3566 |
|
---|
3567 | static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
3568 | const unsigned char *iv, int enc)
|
---|
3569 | {
|
---|
3570 | int len;
|
---|
3571 | EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
|
---|
3572 |
|
---|
3573 | if (iv == NULL && key == NULL)
|
---|
3574 | return 1;
|
---|
3575 | if (key != NULL) {
|
---|
3576 | if (EVP_CIPHER_CTX_is_encrypting(ctx))
|
---|
3577 | AES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
3578 | &wctx->ks.ks);
|
---|
3579 | else
|
---|
3580 | AES_set_decrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
3581 | &wctx->ks.ks);
|
---|
3582 | if (iv == NULL)
|
---|
3583 | wctx->iv = NULL;
|
---|
3584 | }
|
---|
3585 | if (iv != NULL) {
|
---|
3586 | if ((len = EVP_CIPHER_CTX_get_iv_length(ctx)) < 0)
|
---|
3587 | return 0;
|
---|
3588 | memcpy(ctx->iv, iv, len);
|
---|
3589 | wctx->iv = ctx->iv;
|
---|
3590 | }
|
---|
3591 | return 1;
|
---|
3592 | }
|
---|
3593 |
|
---|
3594 | static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3595 | const unsigned char *in, size_t inlen)
|
---|
3596 | {
|
---|
3597 | EVP_AES_WRAP_CTX *wctx = EVP_C_DATA(EVP_AES_WRAP_CTX,ctx);
|
---|
3598 | size_t rv;
|
---|
3599 | /* AES wrap with padding has IV length of 4, without padding 8 */
|
---|
3600 | int pad = EVP_CIPHER_CTX_get_iv_length(ctx) == 4;
|
---|
3601 | /* No final operation so always return zero length */
|
---|
3602 | if (!in)
|
---|
3603 | return 0;
|
---|
3604 | /* Input length must always be non-zero */
|
---|
3605 | if (!inlen)
|
---|
3606 | return -1;
|
---|
3607 | /* If decrypting need at least 16 bytes and multiple of 8 */
|
---|
3608 | if (!EVP_CIPHER_CTX_is_encrypting(ctx) && (inlen < 16 || inlen & 0x7))
|
---|
3609 | return -1;
|
---|
3610 | /* If not padding input must be multiple of 8 */
|
---|
3611 | if (!pad && inlen & 0x7)
|
---|
3612 | return -1;
|
---|
3613 | if (ossl_is_partially_overlapping(out, in, inlen)) {
|
---|
3614 | ERR_raise(ERR_LIB_EVP, EVP_R_PARTIALLY_OVERLAPPING);
|
---|
3615 | return 0;
|
---|
3616 | }
|
---|
3617 | if (!out) {
|
---|
3618 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
|
---|
3619 | /* If padding round up to multiple of 8 */
|
---|
3620 | if (pad)
|
---|
3621 | inlen = (inlen + 7) / 8 * 8;
|
---|
3622 | /* 8 byte prefix */
|
---|
3623 | return inlen + 8;
|
---|
3624 | } else {
|
---|
3625 | /*
|
---|
3626 | * If not padding output will be exactly 8 bytes smaller than
|
---|
3627 | * input. If padding it will be at least 8 bytes smaller but we
|
---|
3628 | * don't know how much.
|
---|
3629 | */
|
---|
3630 | return inlen - 8;
|
---|
3631 | }
|
---|
3632 | }
|
---|
3633 | if (pad) {
|
---|
3634 | if (EVP_CIPHER_CTX_is_encrypting(ctx))
|
---|
3635 | rv = CRYPTO_128_wrap_pad(&wctx->ks.ks, wctx->iv,
|
---|
3636 | out, in, inlen,
|
---|
3637 | (block128_f) AES_encrypt);
|
---|
3638 | else
|
---|
3639 | rv = CRYPTO_128_unwrap_pad(&wctx->ks.ks, wctx->iv,
|
---|
3640 | out, in, inlen,
|
---|
3641 | (block128_f) AES_decrypt);
|
---|
3642 | } else {
|
---|
3643 | if (EVP_CIPHER_CTX_is_encrypting(ctx))
|
---|
3644 | rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv,
|
---|
3645 | out, in, inlen, (block128_f) AES_encrypt);
|
---|
3646 | else
|
---|
3647 | rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv,
|
---|
3648 | out, in, inlen, (block128_f) AES_decrypt);
|
---|
3649 | }
|
---|
3650 | return rv ? (int)rv : -1;
|
---|
3651 | }
|
---|
3652 |
|
---|
3653 | #define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \
|
---|
3654 | | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
|
---|
3655 | | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1)
|
---|
3656 |
|
---|
3657 | static const EVP_CIPHER aes_128_wrap = {
|
---|
3658 | NID_id_aes128_wrap,
|
---|
3659 | 8, 16, 8, WRAP_FLAGS, EVP_ORIG_GLOBAL,
|
---|
3660 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3661 | NULL,
|
---|
3662 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3663 | NULL, NULL, NULL, NULL
|
---|
3664 | };
|
---|
3665 |
|
---|
3666 | const EVP_CIPHER *EVP_aes_128_wrap(void)
|
---|
3667 | {
|
---|
3668 | return &aes_128_wrap;
|
---|
3669 | }
|
---|
3670 |
|
---|
3671 | static const EVP_CIPHER aes_192_wrap = {
|
---|
3672 | NID_id_aes192_wrap,
|
---|
3673 | 8, 24, 8, WRAP_FLAGS, EVP_ORIG_GLOBAL,
|
---|
3674 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3675 | NULL,
|
---|
3676 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3677 | NULL, NULL, NULL, NULL
|
---|
3678 | };
|
---|
3679 |
|
---|
3680 | const EVP_CIPHER *EVP_aes_192_wrap(void)
|
---|
3681 | {
|
---|
3682 | return &aes_192_wrap;
|
---|
3683 | }
|
---|
3684 |
|
---|
3685 | static const EVP_CIPHER aes_256_wrap = {
|
---|
3686 | NID_id_aes256_wrap,
|
---|
3687 | 8, 32, 8, WRAP_FLAGS, EVP_ORIG_GLOBAL,
|
---|
3688 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3689 | NULL,
|
---|
3690 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3691 | NULL, NULL, NULL, NULL
|
---|
3692 | };
|
---|
3693 |
|
---|
3694 | const EVP_CIPHER *EVP_aes_256_wrap(void)
|
---|
3695 | {
|
---|
3696 | return &aes_256_wrap;
|
---|
3697 | }
|
---|
3698 |
|
---|
3699 | static const EVP_CIPHER aes_128_wrap_pad = {
|
---|
3700 | NID_id_aes128_wrap_pad,
|
---|
3701 | 8, 16, 4, WRAP_FLAGS, EVP_ORIG_GLOBAL,
|
---|
3702 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3703 | NULL,
|
---|
3704 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3705 | NULL, NULL, NULL, NULL
|
---|
3706 | };
|
---|
3707 |
|
---|
3708 | const EVP_CIPHER *EVP_aes_128_wrap_pad(void)
|
---|
3709 | {
|
---|
3710 | return &aes_128_wrap_pad;
|
---|
3711 | }
|
---|
3712 |
|
---|
3713 | static const EVP_CIPHER aes_192_wrap_pad = {
|
---|
3714 | NID_id_aes192_wrap_pad,
|
---|
3715 | 8, 24, 4, WRAP_FLAGS, EVP_ORIG_GLOBAL,
|
---|
3716 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3717 | NULL,
|
---|
3718 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3719 | NULL, NULL, NULL, NULL
|
---|
3720 | };
|
---|
3721 |
|
---|
3722 | const EVP_CIPHER *EVP_aes_192_wrap_pad(void)
|
---|
3723 | {
|
---|
3724 | return &aes_192_wrap_pad;
|
---|
3725 | }
|
---|
3726 |
|
---|
3727 | static const EVP_CIPHER aes_256_wrap_pad = {
|
---|
3728 | NID_id_aes256_wrap_pad,
|
---|
3729 | 8, 32, 4, WRAP_FLAGS, EVP_ORIG_GLOBAL,
|
---|
3730 | aes_wrap_init_key, aes_wrap_cipher,
|
---|
3731 | NULL,
|
---|
3732 | sizeof(EVP_AES_WRAP_CTX),
|
---|
3733 | NULL, NULL, NULL, NULL
|
---|
3734 | };
|
---|
3735 |
|
---|
3736 | const EVP_CIPHER *EVP_aes_256_wrap_pad(void)
|
---|
3737 | {
|
---|
3738 | return &aes_256_wrap_pad;
|
---|
3739 | }
|
---|
3740 |
|
---|
3741 | #ifndef OPENSSL_NO_OCB
|
---|
3742 | static int aes_ocb_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
|
---|
3743 | {
|
---|
3744 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
|
---|
3745 | EVP_CIPHER_CTX *newc;
|
---|
3746 | EVP_AES_OCB_CTX *new_octx;
|
---|
3747 |
|
---|
3748 | switch (type) {
|
---|
3749 | case EVP_CTRL_INIT:
|
---|
3750 | octx->key_set = 0;
|
---|
3751 | octx->iv_set = 0;
|
---|
3752 | octx->ivlen = EVP_CIPHER_get_iv_length(c->cipher);
|
---|
3753 | octx->iv = c->iv;
|
---|
3754 | octx->taglen = 16;
|
---|
3755 | octx->data_buf_len = 0;
|
---|
3756 | octx->aad_buf_len = 0;
|
---|
3757 | return 1;
|
---|
3758 |
|
---|
3759 | case EVP_CTRL_GET_IVLEN:
|
---|
3760 | *(int *)ptr = octx->ivlen;
|
---|
3761 | return 1;
|
---|
3762 |
|
---|
3763 | case EVP_CTRL_AEAD_SET_IVLEN:
|
---|
3764 | /* IV len must be 1 to 15 */
|
---|
3765 | if (arg <= 0 || arg > 15)
|
---|
3766 | return 0;
|
---|
3767 |
|
---|
3768 | octx->ivlen = arg;
|
---|
3769 | return 1;
|
---|
3770 |
|
---|
3771 | case EVP_CTRL_AEAD_SET_TAG:
|
---|
3772 | if (ptr == NULL) {
|
---|
3773 | /* Tag len must be 0 to 16 */
|
---|
3774 | if (arg < 0 || arg > 16)
|
---|
3775 | return 0;
|
---|
3776 |
|
---|
3777 | octx->taglen = arg;
|
---|
3778 | return 1;
|
---|
3779 | }
|
---|
3780 | if (arg != octx->taglen || EVP_CIPHER_CTX_is_encrypting(c))
|
---|
3781 | return 0;
|
---|
3782 | memcpy(octx->tag, ptr, arg);
|
---|
3783 | return 1;
|
---|
3784 |
|
---|
3785 | case EVP_CTRL_AEAD_GET_TAG:
|
---|
3786 | if (arg != octx->taglen || !EVP_CIPHER_CTX_is_encrypting(c))
|
---|
3787 | return 0;
|
---|
3788 |
|
---|
3789 | memcpy(ptr, octx->tag, arg);
|
---|
3790 | return 1;
|
---|
3791 |
|
---|
3792 | case EVP_CTRL_COPY:
|
---|
3793 | newc = (EVP_CIPHER_CTX *)ptr;
|
---|
3794 | new_octx = EVP_C_DATA(EVP_AES_OCB_CTX,newc);
|
---|
3795 | return CRYPTO_ocb128_copy_ctx(&new_octx->ocb, &octx->ocb,
|
---|
3796 | &new_octx->ksenc.ks,
|
---|
3797 | &new_octx->ksdec.ks);
|
---|
3798 |
|
---|
3799 | default:
|
---|
3800 | return -1;
|
---|
3801 |
|
---|
3802 | }
|
---|
3803 | }
|
---|
3804 |
|
---|
3805 | static int aes_ocb_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
|
---|
3806 | const unsigned char *iv, int enc)
|
---|
3807 | {
|
---|
3808 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
|
---|
3809 | if (!iv && !key)
|
---|
3810 | return 1;
|
---|
3811 | if (key) {
|
---|
3812 | do {
|
---|
3813 | /*
|
---|
3814 | * We set both the encrypt and decrypt key here because decrypt
|
---|
3815 | * needs both. We could possibly optimise to remove setting the
|
---|
3816 | * decrypt for an encryption operation.
|
---|
3817 | */
|
---|
3818 | # ifdef HWAES_CAPABLE
|
---|
3819 | if (HWAES_CAPABLE) {
|
---|
3820 | HWAES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
3821 | &octx->ksenc.ks);
|
---|
3822 | HWAES_set_decrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
3823 | &octx->ksdec.ks);
|
---|
3824 | if (!CRYPTO_ocb128_init(&octx->ocb,
|
---|
3825 | &octx->ksenc.ks, &octx->ksdec.ks,
|
---|
3826 | (block128_f) HWAES_encrypt,
|
---|
3827 | (block128_f) HWAES_decrypt,
|
---|
3828 | enc ? HWAES_ocb_encrypt
|
---|
3829 | : HWAES_ocb_decrypt))
|
---|
3830 | return 0;
|
---|
3831 | break;
|
---|
3832 | }
|
---|
3833 | # endif
|
---|
3834 | # ifdef VPAES_CAPABLE
|
---|
3835 | if (VPAES_CAPABLE) {
|
---|
3836 | vpaes_set_encrypt_key(key,
|
---|
3837 | EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
3838 | &octx->ksenc.ks);
|
---|
3839 | vpaes_set_decrypt_key(key,
|
---|
3840 | EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
3841 | &octx->ksdec.ks);
|
---|
3842 | if (!CRYPTO_ocb128_init(&octx->ocb,
|
---|
3843 | &octx->ksenc.ks, &octx->ksdec.ks,
|
---|
3844 | (block128_f) vpaes_encrypt,
|
---|
3845 | (block128_f) vpaes_decrypt,
|
---|
3846 | NULL))
|
---|
3847 | return 0;
|
---|
3848 | break;
|
---|
3849 | }
|
---|
3850 | # endif
|
---|
3851 | AES_set_encrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
3852 | &octx->ksenc.ks);
|
---|
3853 | AES_set_decrypt_key(key, EVP_CIPHER_CTX_get_key_length(ctx) * 8,
|
---|
3854 | &octx->ksdec.ks);
|
---|
3855 | if (!CRYPTO_ocb128_init(&octx->ocb,
|
---|
3856 | &octx->ksenc.ks, &octx->ksdec.ks,
|
---|
3857 | (block128_f) AES_encrypt,
|
---|
3858 | (block128_f) AES_decrypt,
|
---|
3859 | NULL))
|
---|
3860 | return 0;
|
---|
3861 | }
|
---|
3862 | while (0);
|
---|
3863 |
|
---|
3864 | /*
|
---|
3865 | * If we have an iv we can set it directly, otherwise use saved IV.
|
---|
3866 | */
|
---|
3867 | if (iv == NULL && octx->iv_set)
|
---|
3868 | iv = octx->iv;
|
---|
3869 | if (iv) {
|
---|
3870 | if (CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen)
|
---|
3871 | != 1)
|
---|
3872 | return 0;
|
---|
3873 | octx->iv_set = 1;
|
---|
3874 | }
|
---|
3875 | octx->key_set = 1;
|
---|
3876 | } else {
|
---|
3877 | /* If key set use IV, otherwise copy */
|
---|
3878 | if (octx->key_set)
|
---|
3879 | CRYPTO_ocb128_setiv(&octx->ocb, iv, octx->ivlen, octx->taglen);
|
---|
3880 | else
|
---|
3881 | memcpy(octx->iv, iv, octx->ivlen);
|
---|
3882 | octx->iv_set = 1;
|
---|
3883 | }
|
---|
3884 | return 1;
|
---|
3885 | }
|
---|
3886 |
|
---|
3887 | static int aes_ocb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
|
---|
3888 | const unsigned char *in, size_t len)
|
---|
3889 | {
|
---|
3890 | unsigned char *buf;
|
---|
3891 | int *buf_len;
|
---|
3892 | int written_len = 0;
|
---|
3893 | size_t trailing_len;
|
---|
3894 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,ctx);
|
---|
3895 |
|
---|
3896 | /* If IV or Key not set then return error */
|
---|
3897 | if (!octx->iv_set)
|
---|
3898 | return -1;
|
---|
3899 |
|
---|
3900 | if (!octx->key_set)
|
---|
3901 | return -1;
|
---|
3902 |
|
---|
3903 | if (in != NULL) {
|
---|
3904 | /*
|
---|
3905 | * Need to ensure we are only passing full blocks to low level OCB
|
---|
3906 | * routines. We do it here rather than in EVP_EncryptUpdate/
|
---|
3907 | * EVP_DecryptUpdate because we need to pass full blocks of AAD too
|
---|
3908 | * and those routines don't support that
|
---|
3909 | */
|
---|
3910 |
|
---|
3911 | /* Are we dealing with AAD or normal data here? */
|
---|
3912 | if (out == NULL) {
|
---|
3913 | buf = octx->aad_buf;
|
---|
3914 | buf_len = &(octx->aad_buf_len);
|
---|
3915 | } else {
|
---|
3916 | buf = octx->data_buf;
|
---|
3917 | buf_len = &(octx->data_buf_len);
|
---|
3918 |
|
---|
3919 | if (ossl_is_partially_overlapping(out + *buf_len, in, len)) {
|
---|
3920 | ERR_raise(ERR_LIB_EVP, EVP_R_PARTIALLY_OVERLAPPING);
|
---|
3921 | return 0;
|
---|
3922 | }
|
---|
3923 | }
|
---|
3924 |
|
---|
3925 | /*
|
---|
3926 | * If we've got a partially filled buffer from a previous call then
|
---|
3927 | * use that data first
|
---|
3928 | */
|
---|
3929 | if (*buf_len > 0) {
|
---|
3930 | unsigned int remaining;
|
---|
3931 |
|
---|
3932 | remaining = AES_BLOCK_SIZE - (*buf_len);
|
---|
3933 | if (remaining > len) {
|
---|
3934 | memcpy(buf + (*buf_len), in, len);
|
---|
3935 | *(buf_len) += len;
|
---|
3936 | return 0;
|
---|
3937 | }
|
---|
3938 | memcpy(buf + (*buf_len), in, remaining);
|
---|
3939 |
|
---|
3940 | /*
|
---|
3941 | * If we get here we've filled the buffer, so process it
|
---|
3942 | */
|
---|
3943 | len -= remaining;
|
---|
3944 | in += remaining;
|
---|
3945 | if (out == NULL) {
|
---|
3946 | if (!CRYPTO_ocb128_aad(&octx->ocb, buf, AES_BLOCK_SIZE))
|
---|
3947 | return -1;
|
---|
3948 | } else if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
|
---|
3949 | if (!CRYPTO_ocb128_encrypt(&octx->ocb, buf, out,
|
---|
3950 | AES_BLOCK_SIZE))
|
---|
3951 | return -1;
|
---|
3952 | } else {
|
---|
3953 | if (!CRYPTO_ocb128_decrypt(&octx->ocb, buf, out,
|
---|
3954 | AES_BLOCK_SIZE))
|
---|
3955 | return -1;
|
---|
3956 | }
|
---|
3957 | written_len = AES_BLOCK_SIZE;
|
---|
3958 | *buf_len = 0;
|
---|
3959 | if (out != NULL)
|
---|
3960 | out += AES_BLOCK_SIZE;
|
---|
3961 | }
|
---|
3962 |
|
---|
3963 | /* Do we have a partial block to handle at the end? */
|
---|
3964 | trailing_len = len % AES_BLOCK_SIZE;
|
---|
3965 |
|
---|
3966 | /*
|
---|
3967 | * If we've got some full blocks to handle, then process these first
|
---|
3968 | */
|
---|
3969 | if (len != trailing_len) {
|
---|
3970 | if (out == NULL) {
|
---|
3971 | if (!CRYPTO_ocb128_aad(&octx->ocb, in, len - trailing_len))
|
---|
3972 | return -1;
|
---|
3973 | } else if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
|
---|
3974 | if (!CRYPTO_ocb128_encrypt
|
---|
3975 | (&octx->ocb, in, out, len - trailing_len))
|
---|
3976 | return -1;
|
---|
3977 | } else {
|
---|
3978 | if (!CRYPTO_ocb128_decrypt
|
---|
3979 | (&octx->ocb, in, out, len - trailing_len))
|
---|
3980 | return -1;
|
---|
3981 | }
|
---|
3982 | written_len += len - trailing_len;
|
---|
3983 | in += len - trailing_len;
|
---|
3984 | }
|
---|
3985 |
|
---|
3986 | /* Handle any trailing partial block */
|
---|
3987 | if (trailing_len > 0) {
|
---|
3988 | memcpy(buf, in, trailing_len);
|
---|
3989 | *buf_len = trailing_len;
|
---|
3990 | }
|
---|
3991 |
|
---|
3992 | return written_len;
|
---|
3993 | } else {
|
---|
3994 | /*
|
---|
3995 | * First of all empty the buffer of any partial block that we might
|
---|
3996 | * have been provided - both for data and AAD
|
---|
3997 | */
|
---|
3998 | if (octx->data_buf_len > 0) {
|
---|
3999 | if (EVP_CIPHER_CTX_is_encrypting(ctx)) {
|
---|
4000 | if (!CRYPTO_ocb128_encrypt(&octx->ocb, octx->data_buf, out,
|
---|
4001 | octx->data_buf_len))
|
---|
4002 | return -1;
|
---|
4003 | } else {
|
---|
4004 | if (!CRYPTO_ocb128_decrypt(&octx->ocb, octx->data_buf, out,
|
---|
4005 | octx->data_buf_len))
|
---|
4006 | return -1;
|
---|
4007 | }
|
---|
4008 | written_len = octx->data_buf_len;
|
---|
4009 | octx->data_buf_len = 0;
|
---|
4010 | }
|
---|
4011 | if (octx->aad_buf_len > 0) {
|
---|
4012 | if (!CRYPTO_ocb128_aad
|
---|
4013 | (&octx->ocb, octx->aad_buf, octx->aad_buf_len))
|
---|
4014 | return -1;
|
---|
4015 | octx->aad_buf_len = 0;
|
---|
4016 | }
|
---|
4017 | /* If decrypting then verify */
|
---|
4018 | if (!EVP_CIPHER_CTX_is_encrypting(ctx)) {
|
---|
4019 | if (octx->taglen < 0)
|
---|
4020 | return -1;
|
---|
4021 | if (CRYPTO_ocb128_finish(&octx->ocb,
|
---|
4022 | octx->tag, octx->taglen) != 0)
|
---|
4023 | return -1;
|
---|
4024 | octx->iv_set = 0;
|
---|
4025 | return written_len;
|
---|
4026 | }
|
---|
4027 | /* If encrypting then just get the tag */
|
---|
4028 | if (CRYPTO_ocb128_tag(&octx->ocb, octx->tag, 16) != 1)
|
---|
4029 | return -1;
|
---|
4030 | /* Don't reuse the IV */
|
---|
4031 | octx->iv_set = 0;
|
---|
4032 | return written_len;
|
---|
4033 | }
|
---|
4034 | }
|
---|
4035 |
|
---|
4036 | static int aes_ocb_cleanup(EVP_CIPHER_CTX *c)
|
---|
4037 | {
|
---|
4038 | EVP_AES_OCB_CTX *octx = EVP_C_DATA(EVP_AES_OCB_CTX,c);
|
---|
4039 | CRYPTO_ocb128_cleanup(&octx->ocb);
|
---|
4040 | return 1;
|
---|
4041 | }
|
---|
4042 |
|
---|
4043 | BLOCK_CIPHER_custom(NID_aes, 128, 16, 12, ocb, OCB,
|
---|
4044 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
4045 | BLOCK_CIPHER_custom(NID_aes, 192, 16, 12, ocb, OCB,
|
---|
4046 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
4047 | BLOCK_CIPHER_custom(NID_aes, 256, 16, 12, ocb, OCB,
|
---|
4048 | EVP_CIPH_FLAG_AEAD_CIPHER | CUSTOM_FLAGS)
|
---|
4049 | #endif /* OPENSSL_NO_OCB */
|
---|