1 | /*
|
---|
2 | * Copyright 1995-2021 The OpenSSL Project Authors. All Rights Reserved.
|
---|
3 | *
|
---|
4 | * Licensed under the Apache License 2.0 (the "License"). You may not use
|
---|
5 | * this file except in compliance with the License. You can obtain a copy
|
---|
6 | * in the file LICENSE in the source distribution or at
|
---|
7 | * https://www.openssl.org/source/license.html
|
---|
8 | */
|
---|
9 |
|
---|
10 | #include "internal/cryptlib.h"
|
---|
11 | #include "internal/constant_time.h"
|
---|
12 | #include "bn_local.h"
|
---|
13 |
|
---|
14 | #include <stdlib.h>
|
---|
15 | #ifdef _WIN32
|
---|
16 | # include <malloc.h>
|
---|
17 | # ifndef alloca
|
---|
18 | # define alloca _alloca
|
---|
19 | # endif
|
---|
20 | #elif defined(__GNUC__)
|
---|
21 | # ifndef alloca
|
---|
22 | # define alloca(s) __builtin_alloca((s))
|
---|
23 | # endif
|
---|
24 | #elif defined(__sun)
|
---|
25 | # include <alloca.h>
|
---|
26 | #endif
|
---|
27 |
|
---|
28 | #include "rsaz_exp.h"
|
---|
29 |
|
---|
30 | #undef SPARC_T4_MONT
|
---|
31 | #if defined(OPENSSL_BN_ASM_MONT) && (defined(__sparc__) || defined(__sparc))
|
---|
32 | # include "crypto/sparc_arch.h"
|
---|
33 | # define SPARC_T4_MONT
|
---|
34 | #endif
|
---|
35 |
|
---|
36 | /* maximum precomputation table size for *variable* sliding windows */
|
---|
37 | #define TABLE_SIZE 32
|
---|
38 |
|
---|
39 | /* this one works - simple but works */
|
---|
40 | int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx)
|
---|
41 | {
|
---|
42 | int i, bits, ret = 0;
|
---|
43 | BIGNUM *v, *rr;
|
---|
44 |
|
---|
45 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
|
---|
46 | || BN_get_flags(a, BN_FLG_CONSTTIME) != 0) {
|
---|
47 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
|
---|
48 | ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
---|
49 | return 0;
|
---|
50 | }
|
---|
51 |
|
---|
52 | BN_CTX_start(ctx);
|
---|
53 | rr = ((r == a) || (r == p)) ? BN_CTX_get(ctx) : r;
|
---|
54 | v = BN_CTX_get(ctx);
|
---|
55 | if (rr == NULL || v == NULL)
|
---|
56 | goto err;
|
---|
57 |
|
---|
58 | if (BN_copy(v, a) == NULL)
|
---|
59 | goto err;
|
---|
60 | bits = BN_num_bits(p);
|
---|
61 |
|
---|
62 | if (BN_is_odd(p)) {
|
---|
63 | if (BN_copy(rr, a) == NULL)
|
---|
64 | goto err;
|
---|
65 | } else {
|
---|
66 | if (!BN_one(rr))
|
---|
67 | goto err;
|
---|
68 | }
|
---|
69 |
|
---|
70 | for (i = 1; i < bits; i++) {
|
---|
71 | if (!BN_sqr(v, v, ctx))
|
---|
72 | goto err;
|
---|
73 | if (BN_is_bit_set(p, i)) {
|
---|
74 | if (!BN_mul(rr, rr, v, ctx))
|
---|
75 | goto err;
|
---|
76 | }
|
---|
77 | }
|
---|
78 | if (r != rr && BN_copy(r, rr) == NULL)
|
---|
79 | goto err;
|
---|
80 |
|
---|
81 | ret = 1;
|
---|
82 | err:
|
---|
83 | BN_CTX_end(ctx);
|
---|
84 | bn_check_top(r);
|
---|
85 | return ret;
|
---|
86 | }
|
---|
87 |
|
---|
88 | int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
|
---|
89 | BN_CTX *ctx)
|
---|
90 | {
|
---|
91 | int ret;
|
---|
92 |
|
---|
93 | bn_check_top(a);
|
---|
94 | bn_check_top(p);
|
---|
95 | bn_check_top(m);
|
---|
96 |
|
---|
97 | /*-
|
---|
98 | * For even modulus m = 2^k*m_odd, it might make sense to compute
|
---|
99 | * a^p mod m_odd and a^p mod 2^k separately (with Montgomery
|
---|
100 | * exponentiation for the odd part), using appropriate exponent
|
---|
101 | * reductions, and combine the results using the CRT.
|
---|
102 | *
|
---|
103 | * For now, we use Montgomery only if the modulus is odd; otherwise,
|
---|
104 | * exponentiation using the reciprocal-based quick remaindering
|
---|
105 | * algorithm is used.
|
---|
106 | *
|
---|
107 | * (Timing obtained with expspeed.c [computations a^p mod m
|
---|
108 | * where a, p, m are of the same length: 256, 512, 1024, 2048,
|
---|
109 | * 4096, 8192 bits], compared to the running time of the
|
---|
110 | * standard algorithm:
|
---|
111 | *
|
---|
112 | * BN_mod_exp_mont 33 .. 40 % [AMD K6-2, Linux, debug configuration]
|
---|
113 | * 55 .. 77 % [UltraSparc processor, but
|
---|
114 | * debug-solaris-sparcv8-gcc conf.]
|
---|
115 | *
|
---|
116 | * BN_mod_exp_recp 50 .. 70 % [AMD K6-2, Linux, debug configuration]
|
---|
117 | * 62 .. 118 % [UltraSparc, debug-solaris-sparcv8-gcc]
|
---|
118 | *
|
---|
119 | * On the Sparc, BN_mod_exp_recp was faster than BN_mod_exp_mont
|
---|
120 | * at 2048 and more bits, but at 512 and 1024 bits, it was
|
---|
121 | * slower even than the standard algorithm!
|
---|
122 | *
|
---|
123 | * "Real" timings [linux-elf, solaris-sparcv9-gcc configurations]
|
---|
124 | * should be obtained when the new Montgomery reduction code
|
---|
125 | * has been integrated into OpenSSL.)
|
---|
126 | */
|
---|
127 |
|
---|
128 | #define MONT_MUL_MOD
|
---|
129 | #define MONT_EXP_WORD
|
---|
130 | #define RECP_MUL_MOD
|
---|
131 |
|
---|
132 | #ifdef MONT_MUL_MOD
|
---|
133 | if (BN_is_odd(m)) {
|
---|
134 | # ifdef MONT_EXP_WORD
|
---|
135 | if (a->top == 1 && !a->neg
|
---|
136 | && (BN_get_flags(p, BN_FLG_CONSTTIME) == 0)
|
---|
137 | && (BN_get_flags(a, BN_FLG_CONSTTIME) == 0)
|
---|
138 | && (BN_get_flags(m, BN_FLG_CONSTTIME) == 0)) {
|
---|
139 | BN_ULONG A = a->d[0];
|
---|
140 | ret = BN_mod_exp_mont_word(r, A, p, m, ctx, NULL);
|
---|
141 | } else
|
---|
142 | # endif
|
---|
143 | ret = BN_mod_exp_mont(r, a, p, m, ctx, NULL);
|
---|
144 | } else
|
---|
145 | #endif
|
---|
146 | #ifdef RECP_MUL_MOD
|
---|
147 | {
|
---|
148 | ret = BN_mod_exp_recp(r, a, p, m, ctx);
|
---|
149 | }
|
---|
150 | #else
|
---|
151 | {
|
---|
152 | ret = BN_mod_exp_simple(r, a, p, m, ctx);
|
---|
153 | }
|
---|
154 | #endif
|
---|
155 |
|
---|
156 | bn_check_top(r);
|
---|
157 | return ret;
|
---|
158 | }
|
---|
159 |
|
---|
160 | int BN_mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
---|
161 | const BIGNUM *m, BN_CTX *ctx)
|
---|
162 | {
|
---|
163 | int i, j, bits, ret = 0, wstart, wend, window, wvalue;
|
---|
164 | int start = 1;
|
---|
165 | BIGNUM *aa;
|
---|
166 | /* Table of variables obtained from 'ctx' */
|
---|
167 | BIGNUM *val[TABLE_SIZE];
|
---|
168 | BN_RECP_CTX recp;
|
---|
169 |
|
---|
170 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
|
---|
171 | || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
|
---|
172 | || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
|
---|
173 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
|
---|
174 | ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
---|
175 | return 0;
|
---|
176 | }
|
---|
177 |
|
---|
178 | bits = BN_num_bits(p);
|
---|
179 | if (bits == 0) {
|
---|
180 | /* x**0 mod 1, or x**0 mod -1 is still zero. */
|
---|
181 | if (BN_abs_is_word(m, 1)) {
|
---|
182 | ret = 1;
|
---|
183 | BN_zero(r);
|
---|
184 | } else {
|
---|
185 | ret = BN_one(r);
|
---|
186 | }
|
---|
187 | return ret;
|
---|
188 | }
|
---|
189 |
|
---|
190 | BN_CTX_start(ctx);
|
---|
191 | aa = BN_CTX_get(ctx);
|
---|
192 | val[0] = BN_CTX_get(ctx);
|
---|
193 | if (val[0] == NULL)
|
---|
194 | goto err;
|
---|
195 |
|
---|
196 | BN_RECP_CTX_init(&recp);
|
---|
197 | if (m->neg) {
|
---|
198 | /* ignore sign of 'm' */
|
---|
199 | if (!BN_copy(aa, m))
|
---|
200 | goto err;
|
---|
201 | aa->neg = 0;
|
---|
202 | if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0)
|
---|
203 | goto err;
|
---|
204 | } else {
|
---|
205 | if (BN_RECP_CTX_set(&recp, m, ctx) <= 0)
|
---|
206 | goto err;
|
---|
207 | }
|
---|
208 |
|
---|
209 | if (!BN_nnmod(val[0], a, m, ctx))
|
---|
210 | goto err; /* 1 */
|
---|
211 | if (BN_is_zero(val[0])) {
|
---|
212 | BN_zero(r);
|
---|
213 | ret = 1;
|
---|
214 | goto err;
|
---|
215 | }
|
---|
216 |
|
---|
217 | window = BN_window_bits_for_exponent_size(bits);
|
---|
218 | if (window > 1) {
|
---|
219 | if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx))
|
---|
220 | goto err; /* 2 */
|
---|
221 | j = 1 << (window - 1);
|
---|
222 | for (i = 1; i < j; i++) {
|
---|
223 | if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
|
---|
224 | !BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx))
|
---|
225 | goto err;
|
---|
226 | }
|
---|
227 | }
|
---|
228 |
|
---|
229 | start = 1; /* This is used to avoid multiplication etc
|
---|
230 | * when there is only the value '1' in the
|
---|
231 | * buffer. */
|
---|
232 | wvalue = 0; /* The 'value' of the window */
|
---|
233 | wstart = bits - 1; /* The top bit of the window */
|
---|
234 | wend = 0; /* The bottom bit of the window */
|
---|
235 |
|
---|
236 | if (!BN_one(r))
|
---|
237 | goto err;
|
---|
238 |
|
---|
239 | for (;;) {
|
---|
240 | if (BN_is_bit_set(p, wstart) == 0) {
|
---|
241 | if (!start)
|
---|
242 | if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
|
---|
243 | goto err;
|
---|
244 | if (wstart == 0)
|
---|
245 | break;
|
---|
246 | wstart--;
|
---|
247 | continue;
|
---|
248 | }
|
---|
249 | /*
|
---|
250 | * We now have wstart on a 'set' bit, we now need to work out how bit
|
---|
251 | * a window to do. To do this we need to scan forward until the last
|
---|
252 | * set bit before the end of the window
|
---|
253 | */
|
---|
254 | wvalue = 1;
|
---|
255 | wend = 0;
|
---|
256 | for (i = 1; i < window; i++) {
|
---|
257 | if (wstart - i < 0)
|
---|
258 | break;
|
---|
259 | if (BN_is_bit_set(p, wstart - i)) {
|
---|
260 | wvalue <<= (i - wend);
|
---|
261 | wvalue |= 1;
|
---|
262 | wend = i;
|
---|
263 | }
|
---|
264 | }
|
---|
265 |
|
---|
266 | /* wend is the size of the current window */
|
---|
267 | j = wend + 1;
|
---|
268 | /* add the 'bytes above' */
|
---|
269 | if (!start)
|
---|
270 | for (i = 0; i < j; i++) {
|
---|
271 | if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx))
|
---|
272 | goto err;
|
---|
273 | }
|
---|
274 |
|
---|
275 | /* wvalue will be an odd number < 2^window */
|
---|
276 | if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx))
|
---|
277 | goto err;
|
---|
278 |
|
---|
279 | /* move the 'window' down further */
|
---|
280 | wstart -= wend + 1;
|
---|
281 | wvalue = 0;
|
---|
282 | start = 0;
|
---|
283 | if (wstart < 0)
|
---|
284 | break;
|
---|
285 | }
|
---|
286 | ret = 1;
|
---|
287 | err:
|
---|
288 | BN_CTX_end(ctx);
|
---|
289 | BN_RECP_CTX_free(&recp);
|
---|
290 | bn_check_top(r);
|
---|
291 | return ret;
|
---|
292 | }
|
---|
293 |
|
---|
294 | int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
|
---|
295 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
|
---|
296 | {
|
---|
297 | int i, j, bits, ret = 0, wstart, wend, window, wvalue;
|
---|
298 | int start = 1;
|
---|
299 | BIGNUM *d, *r;
|
---|
300 | const BIGNUM *aa;
|
---|
301 | /* Table of variables obtained from 'ctx' */
|
---|
302 | BIGNUM *val[TABLE_SIZE];
|
---|
303 | BN_MONT_CTX *mont = NULL;
|
---|
304 |
|
---|
305 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
|
---|
306 | || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
|
---|
307 | || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
|
---|
308 | return BN_mod_exp_mont_consttime(rr, a, p, m, ctx, in_mont);
|
---|
309 | }
|
---|
310 |
|
---|
311 | bn_check_top(a);
|
---|
312 | bn_check_top(p);
|
---|
313 | bn_check_top(m);
|
---|
314 |
|
---|
315 | if (!BN_is_odd(m)) {
|
---|
316 | ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS);
|
---|
317 | return 0;
|
---|
318 | }
|
---|
319 | bits = BN_num_bits(p);
|
---|
320 | if (bits == 0) {
|
---|
321 | /* x**0 mod 1, or x**0 mod -1 is still zero. */
|
---|
322 | if (BN_abs_is_word(m, 1)) {
|
---|
323 | ret = 1;
|
---|
324 | BN_zero(rr);
|
---|
325 | } else {
|
---|
326 | ret = BN_one(rr);
|
---|
327 | }
|
---|
328 | return ret;
|
---|
329 | }
|
---|
330 |
|
---|
331 | BN_CTX_start(ctx);
|
---|
332 | d = BN_CTX_get(ctx);
|
---|
333 | r = BN_CTX_get(ctx);
|
---|
334 | val[0] = BN_CTX_get(ctx);
|
---|
335 | if (val[0] == NULL)
|
---|
336 | goto err;
|
---|
337 |
|
---|
338 | /*
|
---|
339 | * If this is not done, things will break in the montgomery part
|
---|
340 | */
|
---|
341 |
|
---|
342 | if (in_mont != NULL)
|
---|
343 | mont = in_mont;
|
---|
344 | else {
|
---|
345 | if ((mont = BN_MONT_CTX_new()) == NULL)
|
---|
346 | goto err;
|
---|
347 | if (!BN_MONT_CTX_set(mont, m, ctx))
|
---|
348 | goto err;
|
---|
349 | }
|
---|
350 |
|
---|
351 | if (a->neg || BN_ucmp(a, m) >= 0) {
|
---|
352 | if (!BN_nnmod(val[0], a, m, ctx))
|
---|
353 | goto err;
|
---|
354 | aa = val[0];
|
---|
355 | } else
|
---|
356 | aa = a;
|
---|
357 | if (!bn_to_mont_fixed_top(val[0], aa, mont, ctx))
|
---|
358 | goto err; /* 1 */
|
---|
359 |
|
---|
360 | window = BN_window_bits_for_exponent_size(bits);
|
---|
361 | if (window > 1) {
|
---|
362 | if (!bn_mul_mont_fixed_top(d, val[0], val[0], mont, ctx))
|
---|
363 | goto err; /* 2 */
|
---|
364 | j = 1 << (window - 1);
|
---|
365 | for (i = 1; i < j; i++) {
|
---|
366 | if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
|
---|
367 | !bn_mul_mont_fixed_top(val[i], val[i - 1], d, mont, ctx))
|
---|
368 | goto err;
|
---|
369 | }
|
---|
370 | }
|
---|
371 |
|
---|
372 | start = 1; /* This is used to avoid multiplication etc
|
---|
373 | * when there is only the value '1' in the
|
---|
374 | * buffer. */
|
---|
375 | wvalue = 0; /* The 'value' of the window */
|
---|
376 | wstart = bits - 1; /* The top bit of the window */
|
---|
377 | wend = 0; /* The bottom bit of the window */
|
---|
378 |
|
---|
379 | #if 1 /* by Shay Gueron's suggestion */
|
---|
380 | j = m->top; /* borrow j */
|
---|
381 | if (m->d[j - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
|
---|
382 | if (bn_wexpand(r, j) == NULL)
|
---|
383 | goto err;
|
---|
384 | /* 2^(top*BN_BITS2) - m */
|
---|
385 | r->d[0] = (0 - m->d[0]) & BN_MASK2;
|
---|
386 | for (i = 1; i < j; i++)
|
---|
387 | r->d[i] = (~m->d[i]) & BN_MASK2;
|
---|
388 | r->top = j;
|
---|
389 | r->flags |= BN_FLG_FIXED_TOP;
|
---|
390 | } else
|
---|
391 | #endif
|
---|
392 | if (!bn_to_mont_fixed_top(r, BN_value_one(), mont, ctx))
|
---|
393 | goto err;
|
---|
394 | for (;;) {
|
---|
395 | if (BN_is_bit_set(p, wstart) == 0) {
|
---|
396 | if (!start) {
|
---|
397 | if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
|
---|
398 | goto err;
|
---|
399 | }
|
---|
400 | if (wstart == 0)
|
---|
401 | break;
|
---|
402 | wstart--;
|
---|
403 | continue;
|
---|
404 | }
|
---|
405 | /*
|
---|
406 | * We now have wstart on a 'set' bit, we now need to work out how bit
|
---|
407 | * a window to do. To do this we need to scan forward until the last
|
---|
408 | * set bit before the end of the window
|
---|
409 | */
|
---|
410 | wvalue = 1;
|
---|
411 | wend = 0;
|
---|
412 | for (i = 1; i < window; i++) {
|
---|
413 | if (wstart - i < 0)
|
---|
414 | break;
|
---|
415 | if (BN_is_bit_set(p, wstart - i)) {
|
---|
416 | wvalue <<= (i - wend);
|
---|
417 | wvalue |= 1;
|
---|
418 | wend = i;
|
---|
419 | }
|
---|
420 | }
|
---|
421 |
|
---|
422 | /* wend is the size of the current window */
|
---|
423 | j = wend + 1;
|
---|
424 | /* add the 'bytes above' */
|
---|
425 | if (!start)
|
---|
426 | for (i = 0; i < j; i++) {
|
---|
427 | if (!bn_mul_mont_fixed_top(r, r, r, mont, ctx))
|
---|
428 | goto err;
|
---|
429 | }
|
---|
430 |
|
---|
431 | /* wvalue will be an odd number < 2^window */
|
---|
432 | if (!bn_mul_mont_fixed_top(r, r, val[wvalue >> 1], mont, ctx))
|
---|
433 | goto err;
|
---|
434 |
|
---|
435 | /* move the 'window' down further */
|
---|
436 | wstart -= wend + 1;
|
---|
437 | wvalue = 0;
|
---|
438 | start = 0;
|
---|
439 | if (wstart < 0)
|
---|
440 | break;
|
---|
441 | }
|
---|
442 | /*
|
---|
443 | * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
|
---|
444 | * removes padding [if any] and makes return value suitable for public
|
---|
445 | * API consumer.
|
---|
446 | */
|
---|
447 | #if defined(SPARC_T4_MONT)
|
---|
448 | if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
|
---|
449 | j = mont->N.top; /* borrow j */
|
---|
450 | val[0]->d[0] = 1; /* borrow val[0] */
|
---|
451 | for (i = 1; i < j; i++)
|
---|
452 | val[0]->d[i] = 0;
|
---|
453 | val[0]->top = j;
|
---|
454 | if (!BN_mod_mul_montgomery(rr, r, val[0], mont, ctx))
|
---|
455 | goto err;
|
---|
456 | } else
|
---|
457 | #endif
|
---|
458 | if (!BN_from_montgomery(rr, r, mont, ctx))
|
---|
459 | goto err;
|
---|
460 | ret = 1;
|
---|
461 | err:
|
---|
462 | if (in_mont == NULL)
|
---|
463 | BN_MONT_CTX_free(mont);
|
---|
464 | BN_CTX_end(ctx);
|
---|
465 | bn_check_top(rr);
|
---|
466 | return ret;
|
---|
467 | }
|
---|
468 |
|
---|
469 | static BN_ULONG bn_get_bits(const BIGNUM *a, int bitpos)
|
---|
470 | {
|
---|
471 | BN_ULONG ret = 0;
|
---|
472 | int wordpos;
|
---|
473 |
|
---|
474 | wordpos = bitpos / BN_BITS2;
|
---|
475 | bitpos %= BN_BITS2;
|
---|
476 | if (wordpos >= 0 && wordpos < a->top) {
|
---|
477 | ret = a->d[wordpos] & BN_MASK2;
|
---|
478 | if (bitpos) {
|
---|
479 | ret >>= bitpos;
|
---|
480 | if (++wordpos < a->top)
|
---|
481 | ret |= a->d[wordpos] << (BN_BITS2 - bitpos);
|
---|
482 | }
|
---|
483 | }
|
---|
484 |
|
---|
485 | return ret & BN_MASK2;
|
---|
486 | }
|
---|
487 |
|
---|
488 | /*
|
---|
489 | * BN_mod_exp_mont_consttime() stores the precomputed powers in a specific
|
---|
490 | * layout so that accessing any of these table values shows the same access
|
---|
491 | * pattern as far as cache lines are concerned. The following functions are
|
---|
492 | * used to transfer a BIGNUM from/to that table.
|
---|
493 | */
|
---|
494 |
|
---|
495 | static int MOD_EXP_CTIME_COPY_TO_PREBUF(const BIGNUM *b, int top,
|
---|
496 | unsigned char *buf, int idx,
|
---|
497 | int window)
|
---|
498 | {
|
---|
499 | int i, j;
|
---|
500 | int width = 1 << window;
|
---|
501 | BN_ULONG *table = (BN_ULONG *)buf;
|
---|
502 |
|
---|
503 | if (top > b->top)
|
---|
504 | top = b->top; /* this works because 'buf' is explicitly
|
---|
505 | * zeroed */
|
---|
506 | for (i = 0, j = idx; i < top; i++, j += width) {
|
---|
507 | table[j] = b->d[i];
|
---|
508 | }
|
---|
509 |
|
---|
510 | return 1;
|
---|
511 | }
|
---|
512 |
|
---|
513 | static int MOD_EXP_CTIME_COPY_FROM_PREBUF(BIGNUM *b, int top,
|
---|
514 | unsigned char *buf, int idx,
|
---|
515 | int window)
|
---|
516 | {
|
---|
517 | int i, j;
|
---|
518 | int width = 1 << window;
|
---|
519 | /*
|
---|
520 | * We declare table 'volatile' in order to discourage compiler
|
---|
521 | * from reordering loads from the table. Concern is that if
|
---|
522 | * reordered in specific manner loads might give away the
|
---|
523 | * information we are trying to conceal. Some would argue that
|
---|
524 | * compiler can reorder them anyway, but it can as well be
|
---|
525 | * argued that doing so would be violation of standard...
|
---|
526 | */
|
---|
527 | volatile BN_ULONG *table = (volatile BN_ULONG *)buf;
|
---|
528 |
|
---|
529 | if (bn_wexpand(b, top) == NULL)
|
---|
530 | return 0;
|
---|
531 |
|
---|
532 | if (window <= 3) {
|
---|
533 | for (i = 0; i < top; i++, table += width) {
|
---|
534 | BN_ULONG acc = 0;
|
---|
535 |
|
---|
536 | for (j = 0; j < width; j++) {
|
---|
537 | acc |= table[j] &
|
---|
538 | ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
|
---|
539 | }
|
---|
540 |
|
---|
541 | b->d[i] = acc;
|
---|
542 | }
|
---|
543 | } else {
|
---|
544 | int xstride = 1 << (window - 2);
|
---|
545 | BN_ULONG y0, y1, y2, y3;
|
---|
546 |
|
---|
547 | i = idx >> (window - 2); /* equivalent of idx / xstride */
|
---|
548 | idx &= xstride - 1; /* equivalent of idx % xstride */
|
---|
549 |
|
---|
550 | y0 = (BN_ULONG)0 - (constant_time_eq_int(i,0)&1);
|
---|
551 | y1 = (BN_ULONG)0 - (constant_time_eq_int(i,1)&1);
|
---|
552 | y2 = (BN_ULONG)0 - (constant_time_eq_int(i,2)&1);
|
---|
553 | y3 = (BN_ULONG)0 - (constant_time_eq_int(i,3)&1);
|
---|
554 |
|
---|
555 | for (i = 0; i < top; i++, table += width) {
|
---|
556 | BN_ULONG acc = 0;
|
---|
557 |
|
---|
558 | for (j = 0; j < xstride; j++) {
|
---|
559 | acc |= ( (table[j + 0 * xstride] & y0) |
|
---|
560 | (table[j + 1 * xstride] & y1) |
|
---|
561 | (table[j + 2 * xstride] & y2) |
|
---|
562 | (table[j + 3 * xstride] & y3) )
|
---|
563 | & ((BN_ULONG)0 - (constant_time_eq_int(j,idx)&1));
|
---|
564 | }
|
---|
565 |
|
---|
566 | b->d[i] = acc;
|
---|
567 | }
|
---|
568 | }
|
---|
569 |
|
---|
570 | b->top = top;
|
---|
571 | b->flags |= BN_FLG_FIXED_TOP;
|
---|
572 | return 1;
|
---|
573 | }
|
---|
574 |
|
---|
575 | /*
|
---|
576 | * Given a pointer value, compute the next address that is a cache line
|
---|
577 | * multiple.
|
---|
578 | */
|
---|
579 | #define MOD_EXP_CTIME_ALIGN(x_) \
|
---|
580 | ((unsigned char*)(x_) + (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - (((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
|
---|
581 |
|
---|
582 | /*
|
---|
583 | * This variant of BN_mod_exp_mont() uses fixed windows and the special
|
---|
584 | * precomputation memory layout to limit data-dependency to a minimum to
|
---|
585 | * protect secret exponents (cf. the hyper-threading timing attacks pointed
|
---|
586 | * out by Colin Percival,
|
---|
587 | * http://www.daemonology.net/hyperthreading-considered-harmful/)
|
---|
588 | */
|
---|
589 | int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
|
---|
590 | const BIGNUM *m, BN_CTX *ctx,
|
---|
591 | BN_MONT_CTX *in_mont)
|
---|
592 | {
|
---|
593 | int i, bits, ret = 0, window, wvalue, wmask, window0;
|
---|
594 | int top;
|
---|
595 | BN_MONT_CTX *mont = NULL;
|
---|
596 |
|
---|
597 | int numPowers;
|
---|
598 | unsigned char *powerbufFree = NULL;
|
---|
599 | int powerbufLen = 0;
|
---|
600 | unsigned char *powerbuf = NULL;
|
---|
601 | BIGNUM tmp, am;
|
---|
602 | #if defined(SPARC_T4_MONT)
|
---|
603 | unsigned int t4 = 0;
|
---|
604 | #endif
|
---|
605 |
|
---|
606 | bn_check_top(a);
|
---|
607 | bn_check_top(p);
|
---|
608 | bn_check_top(m);
|
---|
609 |
|
---|
610 | if (!BN_is_odd(m)) {
|
---|
611 | ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS);
|
---|
612 | return 0;
|
---|
613 | }
|
---|
614 |
|
---|
615 | top = m->top;
|
---|
616 |
|
---|
617 | /*
|
---|
618 | * Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
|
---|
619 | * whether the top bits are zero.
|
---|
620 | */
|
---|
621 | bits = p->top * BN_BITS2;
|
---|
622 | if (bits == 0) {
|
---|
623 | /* x**0 mod 1, or x**0 mod -1 is still zero. */
|
---|
624 | if (BN_abs_is_word(m, 1)) {
|
---|
625 | ret = 1;
|
---|
626 | BN_zero(rr);
|
---|
627 | } else {
|
---|
628 | ret = BN_one(rr);
|
---|
629 | }
|
---|
630 | return ret;
|
---|
631 | }
|
---|
632 |
|
---|
633 | BN_CTX_start(ctx);
|
---|
634 |
|
---|
635 | /*
|
---|
636 | * Allocate a montgomery context if it was not supplied by the caller. If
|
---|
637 | * this is not done, things will break in the montgomery part.
|
---|
638 | */
|
---|
639 | if (in_mont != NULL)
|
---|
640 | mont = in_mont;
|
---|
641 | else {
|
---|
642 | if ((mont = BN_MONT_CTX_new()) == NULL)
|
---|
643 | goto err;
|
---|
644 | if (!BN_MONT_CTX_set(mont, m, ctx))
|
---|
645 | goto err;
|
---|
646 | }
|
---|
647 |
|
---|
648 | if (a->neg || BN_ucmp(a, m) >= 0) {
|
---|
649 | BIGNUM *reduced = BN_CTX_get(ctx);
|
---|
650 | if (reduced == NULL
|
---|
651 | || !BN_nnmod(reduced, a, m, ctx)) {
|
---|
652 | goto err;
|
---|
653 | }
|
---|
654 | a = reduced;
|
---|
655 | }
|
---|
656 |
|
---|
657 | #ifdef RSAZ_ENABLED
|
---|
658 | /*
|
---|
659 | * If the size of the operands allow it, perform the optimized
|
---|
660 | * RSAZ exponentiation. For further information see
|
---|
661 | * crypto/bn/rsaz_exp.c and accompanying assembly modules.
|
---|
662 | */
|
---|
663 | if ((16 == a->top) && (16 == p->top) && (BN_num_bits(m) == 1024)
|
---|
664 | && rsaz_avx2_eligible()) {
|
---|
665 | if (NULL == bn_wexpand(rr, 16))
|
---|
666 | goto err;
|
---|
667 | RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d,
|
---|
668 | mont->n0[0]);
|
---|
669 | rr->top = 16;
|
---|
670 | rr->neg = 0;
|
---|
671 | bn_correct_top(rr);
|
---|
672 | ret = 1;
|
---|
673 | goto err;
|
---|
674 | } else if ((8 == a->top) && (8 == p->top) && (BN_num_bits(m) == 512)) {
|
---|
675 | if (NULL == bn_wexpand(rr, 8))
|
---|
676 | goto err;
|
---|
677 | RSAZ_512_mod_exp(rr->d, a->d, p->d, m->d, mont->n0[0], mont->RR.d);
|
---|
678 | rr->top = 8;
|
---|
679 | rr->neg = 0;
|
---|
680 | bn_correct_top(rr);
|
---|
681 | ret = 1;
|
---|
682 | goto err;
|
---|
683 | }
|
---|
684 | #endif
|
---|
685 |
|
---|
686 | /* Get the window size to use with size of p. */
|
---|
687 | window = BN_window_bits_for_ctime_exponent_size(bits);
|
---|
688 | #if defined(SPARC_T4_MONT)
|
---|
689 | if (window >= 5 && (top & 15) == 0 && top <= 64 &&
|
---|
690 | (OPENSSL_sparcv9cap_P[1] & (CFR_MONTMUL | CFR_MONTSQR)) ==
|
---|
691 | (CFR_MONTMUL | CFR_MONTSQR) && (t4 = OPENSSL_sparcv9cap_P[0]))
|
---|
692 | window = 5;
|
---|
693 | else
|
---|
694 | #endif
|
---|
695 | #if defined(OPENSSL_BN_ASM_MONT5)
|
---|
696 | if (window >= 5) {
|
---|
697 | window = 5; /* ~5% improvement for RSA2048 sign, and even
|
---|
698 | * for RSA4096 */
|
---|
699 | /* reserve space for mont->N.d[] copy */
|
---|
700 | powerbufLen += top * sizeof(mont->N.d[0]);
|
---|
701 | }
|
---|
702 | #endif
|
---|
703 | (void)0;
|
---|
704 |
|
---|
705 | /*
|
---|
706 | * Allocate a buffer large enough to hold all of the pre-computed powers
|
---|
707 | * of am, am itself and tmp.
|
---|
708 | */
|
---|
709 | numPowers = 1 << window;
|
---|
710 | powerbufLen += sizeof(m->d[0]) * (top * numPowers +
|
---|
711 | ((2 * top) >
|
---|
712 | numPowers ? (2 * top) : numPowers));
|
---|
713 | #ifdef alloca
|
---|
714 | if (powerbufLen < 3072)
|
---|
715 | powerbufFree =
|
---|
716 | alloca(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
|
---|
717 | else
|
---|
718 | #endif
|
---|
719 | if ((powerbufFree =
|
---|
720 | OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH))
|
---|
721 | == NULL)
|
---|
722 | goto err;
|
---|
723 |
|
---|
724 | powerbuf = MOD_EXP_CTIME_ALIGN(powerbufFree);
|
---|
725 | memset(powerbuf, 0, powerbufLen);
|
---|
726 |
|
---|
727 | #ifdef alloca
|
---|
728 | if (powerbufLen < 3072)
|
---|
729 | powerbufFree = NULL;
|
---|
730 | #endif
|
---|
731 |
|
---|
732 | /* lay down tmp and am right after powers table */
|
---|
733 | tmp.d = (BN_ULONG *)(powerbuf + sizeof(m->d[0]) * top * numPowers);
|
---|
734 | am.d = tmp.d + top;
|
---|
735 | tmp.top = am.top = 0;
|
---|
736 | tmp.dmax = am.dmax = top;
|
---|
737 | tmp.neg = am.neg = 0;
|
---|
738 | tmp.flags = am.flags = BN_FLG_STATIC_DATA;
|
---|
739 |
|
---|
740 | /* prepare a^0 in Montgomery domain */
|
---|
741 | #if 1 /* by Shay Gueron's suggestion */
|
---|
742 | if (m->d[top - 1] & (((BN_ULONG)1) << (BN_BITS2 - 1))) {
|
---|
743 | /* 2^(top*BN_BITS2) - m */
|
---|
744 | tmp.d[0] = (0 - m->d[0]) & BN_MASK2;
|
---|
745 | for (i = 1; i < top; i++)
|
---|
746 | tmp.d[i] = (~m->d[i]) & BN_MASK2;
|
---|
747 | tmp.top = top;
|
---|
748 | } else
|
---|
749 | #endif
|
---|
750 | if (!bn_to_mont_fixed_top(&tmp, BN_value_one(), mont, ctx))
|
---|
751 | goto err;
|
---|
752 |
|
---|
753 | /* prepare a^1 in Montgomery domain */
|
---|
754 | if (!bn_to_mont_fixed_top(&am, a, mont, ctx))
|
---|
755 | goto err;
|
---|
756 |
|
---|
757 | #if defined(SPARC_T4_MONT)
|
---|
758 | if (t4) {
|
---|
759 | typedef int (*bn_pwr5_mont_f) (BN_ULONG *tp, const BN_ULONG *np,
|
---|
760 | const BN_ULONG *n0, const void *table,
|
---|
761 | int power, int bits);
|
---|
762 | int bn_pwr5_mont_t4_8(BN_ULONG *tp, const BN_ULONG *np,
|
---|
763 | const BN_ULONG *n0, const void *table,
|
---|
764 | int power, int bits);
|
---|
765 | int bn_pwr5_mont_t4_16(BN_ULONG *tp, const BN_ULONG *np,
|
---|
766 | const BN_ULONG *n0, const void *table,
|
---|
767 | int power, int bits);
|
---|
768 | int bn_pwr5_mont_t4_24(BN_ULONG *tp, const BN_ULONG *np,
|
---|
769 | const BN_ULONG *n0, const void *table,
|
---|
770 | int power, int bits);
|
---|
771 | int bn_pwr5_mont_t4_32(BN_ULONG *tp, const BN_ULONG *np,
|
---|
772 | const BN_ULONG *n0, const void *table,
|
---|
773 | int power, int bits);
|
---|
774 | static const bn_pwr5_mont_f pwr5_funcs[4] = {
|
---|
775 | bn_pwr5_mont_t4_8, bn_pwr5_mont_t4_16,
|
---|
776 | bn_pwr5_mont_t4_24, bn_pwr5_mont_t4_32
|
---|
777 | };
|
---|
778 | bn_pwr5_mont_f pwr5_worker = pwr5_funcs[top / 16 - 1];
|
---|
779 |
|
---|
780 | typedef int (*bn_mul_mont_f) (BN_ULONG *rp, const BN_ULONG *ap,
|
---|
781 | const void *bp, const BN_ULONG *np,
|
---|
782 | const BN_ULONG *n0);
|
---|
783 | int bn_mul_mont_t4_8(BN_ULONG *rp, const BN_ULONG *ap, const void *bp,
|
---|
784 | const BN_ULONG *np, const BN_ULONG *n0);
|
---|
785 | int bn_mul_mont_t4_16(BN_ULONG *rp, const BN_ULONG *ap,
|
---|
786 | const void *bp, const BN_ULONG *np,
|
---|
787 | const BN_ULONG *n0);
|
---|
788 | int bn_mul_mont_t4_24(BN_ULONG *rp, const BN_ULONG *ap,
|
---|
789 | const void *bp, const BN_ULONG *np,
|
---|
790 | const BN_ULONG *n0);
|
---|
791 | int bn_mul_mont_t4_32(BN_ULONG *rp, const BN_ULONG *ap,
|
---|
792 | const void *bp, const BN_ULONG *np,
|
---|
793 | const BN_ULONG *n0);
|
---|
794 | static const bn_mul_mont_f mul_funcs[4] = {
|
---|
795 | bn_mul_mont_t4_8, bn_mul_mont_t4_16,
|
---|
796 | bn_mul_mont_t4_24, bn_mul_mont_t4_32
|
---|
797 | };
|
---|
798 | bn_mul_mont_f mul_worker = mul_funcs[top / 16 - 1];
|
---|
799 |
|
---|
800 | void bn_mul_mont_vis3(BN_ULONG *rp, const BN_ULONG *ap,
|
---|
801 | const void *bp, const BN_ULONG *np,
|
---|
802 | const BN_ULONG *n0, int num);
|
---|
803 | void bn_mul_mont_t4(BN_ULONG *rp, const BN_ULONG *ap,
|
---|
804 | const void *bp, const BN_ULONG *np,
|
---|
805 | const BN_ULONG *n0, int num);
|
---|
806 | void bn_mul_mont_gather5_t4(BN_ULONG *rp, const BN_ULONG *ap,
|
---|
807 | const void *table, const BN_ULONG *np,
|
---|
808 | const BN_ULONG *n0, int num, int power);
|
---|
809 | void bn_flip_n_scatter5_t4(const BN_ULONG *inp, size_t num,
|
---|
810 | void *table, size_t power);
|
---|
811 | void bn_gather5_t4(BN_ULONG *out, size_t num,
|
---|
812 | void *table, size_t power);
|
---|
813 | void bn_flip_t4(BN_ULONG *dst, BN_ULONG *src, size_t num);
|
---|
814 |
|
---|
815 | BN_ULONG *np = mont->N.d, *n0 = mont->n0;
|
---|
816 | int stride = 5 * (6 - (top / 16 - 1)); /* multiple of 5, but less
|
---|
817 | * than 32 */
|
---|
818 |
|
---|
819 | /*
|
---|
820 | * BN_to_montgomery can contaminate words above .top [in
|
---|
821 | * BN_DEBUG build...
|
---|
822 | */
|
---|
823 | for (i = am.top; i < top; i++)
|
---|
824 | am.d[i] = 0;
|
---|
825 | for (i = tmp.top; i < top; i++)
|
---|
826 | tmp.d[i] = 0;
|
---|
827 |
|
---|
828 | bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 0);
|
---|
829 | bn_flip_n_scatter5_t4(am.d, top, powerbuf, 1);
|
---|
830 | if (!(*mul_worker) (tmp.d, am.d, am.d, np, n0) &&
|
---|
831 | !(*mul_worker) (tmp.d, am.d, am.d, np, n0))
|
---|
832 | bn_mul_mont_vis3(tmp.d, am.d, am.d, np, n0, top);
|
---|
833 | bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, 2);
|
---|
834 |
|
---|
835 | for (i = 3; i < 32; i++) {
|
---|
836 | /* Calculate a^i = a^(i-1) * a */
|
---|
837 | if (!(*mul_worker) (tmp.d, tmp.d, am.d, np, n0) &&
|
---|
838 | !(*mul_worker) (tmp.d, tmp.d, am.d, np, n0))
|
---|
839 | bn_mul_mont_vis3(tmp.d, tmp.d, am.d, np, n0, top);
|
---|
840 | bn_flip_n_scatter5_t4(tmp.d, top, powerbuf, i);
|
---|
841 | }
|
---|
842 |
|
---|
843 | /* switch to 64-bit domain */
|
---|
844 | np = alloca(top * sizeof(BN_ULONG));
|
---|
845 | top /= 2;
|
---|
846 | bn_flip_t4(np, mont->N.d, top);
|
---|
847 |
|
---|
848 | /*
|
---|
849 | * The exponent may not have a whole number of fixed-size windows.
|
---|
850 | * To simplify the main loop, the initial window has between 1 and
|
---|
851 | * full-window-size bits such that what remains is always a whole
|
---|
852 | * number of windows
|
---|
853 | */
|
---|
854 | window0 = (bits - 1) % 5 + 1;
|
---|
855 | wmask = (1 << window0) - 1;
|
---|
856 | bits -= window0;
|
---|
857 | wvalue = bn_get_bits(p, bits) & wmask;
|
---|
858 | bn_gather5_t4(tmp.d, top, powerbuf, wvalue);
|
---|
859 |
|
---|
860 | /*
|
---|
861 | * Scan the exponent one window at a time starting from the most
|
---|
862 | * significant bits.
|
---|
863 | */
|
---|
864 | while (bits > 0) {
|
---|
865 | if (bits < stride)
|
---|
866 | stride = bits;
|
---|
867 | bits -= stride;
|
---|
868 | wvalue = bn_get_bits(p, bits);
|
---|
869 |
|
---|
870 | if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
|
---|
871 | continue;
|
---|
872 | /* retry once and fall back */
|
---|
873 | if ((*pwr5_worker) (tmp.d, np, n0, powerbuf, wvalue, stride))
|
---|
874 | continue;
|
---|
875 |
|
---|
876 | bits += stride - 5;
|
---|
877 | wvalue >>= stride - 5;
|
---|
878 | wvalue &= 31;
|
---|
879 | bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
|
---|
880 | bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
|
---|
881 | bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
|
---|
882 | bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
|
---|
883 | bn_mul_mont_t4(tmp.d, tmp.d, tmp.d, np, n0, top);
|
---|
884 | bn_mul_mont_gather5_t4(tmp.d, tmp.d, powerbuf, np, n0, top,
|
---|
885 | wvalue);
|
---|
886 | }
|
---|
887 |
|
---|
888 | bn_flip_t4(tmp.d, tmp.d, top);
|
---|
889 | top *= 2;
|
---|
890 | /* back to 32-bit domain */
|
---|
891 | tmp.top = top;
|
---|
892 | bn_correct_top(&tmp);
|
---|
893 | OPENSSL_cleanse(np, top * sizeof(BN_ULONG));
|
---|
894 | } else
|
---|
895 | #endif
|
---|
896 | #if defined(OPENSSL_BN_ASM_MONT5)
|
---|
897 | if (window == 5 && top > 1) {
|
---|
898 | /*
|
---|
899 | * This optimization uses ideas from http://eprint.iacr.org/2011/239,
|
---|
900 | * specifically optimization of cache-timing attack countermeasures
|
---|
901 | * and pre-computation optimization.
|
---|
902 | */
|
---|
903 |
|
---|
904 | /*
|
---|
905 | * Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
|
---|
906 | * 512-bit RSA is hardly relevant, we omit it to spare size...
|
---|
907 | */
|
---|
908 | void bn_mul_mont_gather5(BN_ULONG *rp, const BN_ULONG *ap,
|
---|
909 | const void *table, const BN_ULONG *np,
|
---|
910 | const BN_ULONG *n0, int num, int power);
|
---|
911 | void bn_scatter5(const BN_ULONG *inp, size_t num,
|
---|
912 | void *table, size_t power);
|
---|
913 | void bn_gather5(BN_ULONG *out, size_t num, void *table, size_t power);
|
---|
914 | void bn_power5(BN_ULONG *rp, const BN_ULONG *ap,
|
---|
915 | const void *table, const BN_ULONG *np,
|
---|
916 | const BN_ULONG *n0, int num, int power);
|
---|
917 | int bn_get_bits5(const BN_ULONG *ap, int off);
|
---|
918 | int bn_from_montgomery(BN_ULONG *rp, const BN_ULONG *ap,
|
---|
919 | const BN_ULONG *not_used, const BN_ULONG *np,
|
---|
920 | const BN_ULONG *n0, int num);
|
---|
921 |
|
---|
922 | BN_ULONG *n0 = mont->n0, *np;
|
---|
923 |
|
---|
924 | /*
|
---|
925 | * BN_to_montgomery can contaminate words above .top [in
|
---|
926 | * BN_DEBUG build...
|
---|
927 | */
|
---|
928 | for (i = am.top; i < top; i++)
|
---|
929 | am.d[i] = 0;
|
---|
930 | for (i = tmp.top; i < top; i++)
|
---|
931 | tmp.d[i] = 0;
|
---|
932 |
|
---|
933 | /*
|
---|
934 | * copy mont->N.d[] to improve cache locality
|
---|
935 | */
|
---|
936 | for (np = am.d + top, i = 0; i < top; i++)
|
---|
937 | np[i] = mont->N.d[i];
|
---|
938 |
|
---|
939 | bn_scatter5(tmp.d, top, powerbuf, 0);
|
---|
940 | bn_scatter5(am.d, am.top, powerbuf, 1);
|
---|
941 | bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
|
---|
942 | bn_scatter5(tmp.d, top, powerbuf, 2);
|
---|
943 |
|
---|
944 | # if 0
|
---|
945 | for (i = 3; i < 32; i++) {
|
---|
946 | /* Calculate a^i = a^(i-1) * a */
|
---|
947 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
|
---|
948 | bn_scatter5(tmp.d, top, powerbuf, i);
|
---|
949 | }
|
---|
950 | # else
|
---|
951 | /* same as above, but uses squaring for 1/2 of operations */
|
---|
952 | for (i = 4; i < 32; i *= 2) {
|
---|
953 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
---|
954 | bn_scatter5(tmp.d, top, powerbuf, i);
|
---|
955 | }
|
---|
956 | for (i = 3; i < 8; i += 2) {
|
---|
957 | int j;
|
---|
958 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
|
---|
959 | bn_scatter5(tmp.d, top, powerbuf, i);
|
---|
960 | for (j = 2 * i; j < 32; j *= 2) {
|
---|
961 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
---|
962 | bn_scatter5(tmp.d, top, powerbuf, j);
|
---|
963 | }
|
---|
964 | }
|
---|
965 | for (; i < 16; i += 2) {
|
---|
966 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
|
---|
967 | bn_scatter5(tmp.d, top, powerbuf, i);
|
---|
968 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
---|
969 | bn_scatter5(tmp.d, top, powerbuf, 2 * i);
|
---|
970 | }
|
---|
971 | for (; i < 32; i += 2) {
|
---|
972 | bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
|
---|
973 | bn_scatter5(tmp.d, top, powerbuf, i);
|
---|
974 | }
|
---|
975 | # endif
|
---|
976 | /*
|
---|
977 | * The exponent may not have a whole number of fixed-size windows.
|
---|
978 | * To simplify the main loop, the initial window has between 1 and
|
---|
979 | * full-window-size bits such that what remains is always a whole
|
---|
980 | * number of windows
|
---|
981 | */
|
---|
982 | window0 = (bits - 1) % 5 + 1;
|
---|
983 | wmask = (1 << window0) - 1;
|
---|
984 | bits -= window0;
|
---|
985 | wvalue = bn_get_bits(p, bits) & wmask;
|
---|
986 | bn_gather5(tmp.d, top, powerbuf, wvalue);
|
---|
987 |
|
---|
988 | /*
|
---|
989 | * Scan the exponent one window at a time starting from the most
|
---|
990 | * significant bits.
|
---|
991 | */
|
---|
992 | if (top & 7) {
|
---|
993 | while (bits > 0) {
|
---|
994 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
---|
995 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
---|
996 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
---|
997 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
---|
998 | bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
---|
999 | bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top,
|
---|
1000 | bn_get_bits5(p->d, bits -= 5));
|
---|
1001 | }
|
---|
1002 | } else {
|
---|
1003 | while (bits > 0) {
|
---|
1004 | bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top,
|
---|
1005 | bn_get_bits5(p->d, bits -= 5));
|
---|
1006 | }
|
---|
1007 | }
|
---|
1008 |
|
---|
1009 | ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top);
|
---|
1010 | tmp.top = top;
|
---|
1011 | bn_correct_top(&tmp);
|
---|
1012 | if (ret) {
|
---|
1013 | if (!BN_copy(rr, &tmp))
|
---|
1014 | ret = 0;
|
---|
1015 | goto err; /* non-zero ret means it's not error */
|
---|
1016 | }
|
---|
1017 | } else
|
---|
1018 | #endif
|
---|
1019 | {
|
---|
1020 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 0, window))
|
---|
1021 | goto err;
|
---|
1022 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&am, top, powerbuf, 1, window))
|
---|
1023 | goto err;
|
---|
1024 |
|
---|
1025 | /*
|
---|
1026 | * If the window size is greater than 1, then calculate
|
---|
1027 | * val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1) (even
|
---|
1028 | * powers could instead be computed as (a^(i/2))^2 to use the slight
|
---|
1029 | * performance advantage of sqr over mul).
|
---|
1030 | */
|
---|
1031 | if (window > 1) {
|
---|
1032 | if (!bn_mul_mont_fixed_top(&tmp, &am, &am, mont, ctx))
|
---|
1033 | goto err;
|
---|
1034 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, 2,
|
---|
1035 | window))
|
---|
1036 | goto err;
|
---|
1037 | for (i = 3; i < numPowers; i++) {
|
---|
1038 | /* Calculate a^i = a^(i-1) * a */
|
---|
1039 | if (!bn_mul_mont_fixed_top(&tmp, &am, &tmp, mont, ctx))
|
---|
1040 | goto err;
|
---|
1041 | if (!MOD_EXP_CTIME_COPY_TO_PREBUF(&tmp, top, powerbuf, i,
|
---|
1042 | window))
|
---|
1043 | goto err;
|
---|
1044 | }
|
---|
1045 | }
|
---|
1046 |
|
---|
1047 | /*
|
---|
1048 | * The exponent may not have a whole number of fixed-size windows.
|
---|
1049 | * To simplify the main loop, the initial window has between 1 and
|
---|
1050 | * full-window-size bits such that what remains is always a whole
|
---|
1051 | * number of windows
|
---|
1052 | */
|
---|
1053 | window0 = (bits - 1) % window + 1;
|
---|
1054 | wmask = (1 << window0) - 1;
|
---|
1055 | bits -= window0;
|
---|
1056 | wvalue = bn_get_bits(p, bits) & wmask;
|
---|
1057 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&tmp, top, powerbuf, wvalue,
|
---|
1058 | window))
|
---|
1059 | goto err;
|
---|
1060 |
|
---|
1061 | wmask = (1 << window) - 1;
|
---|
1062 | /*
|
---|
1063 | * Scan the exponent one window at a time starting from the most
|
---|
1064 | * significant bits.
|
---|
1065 | */
|
---|
1066 | while (bits > 0) {
|
---|
1067 |
|
---|
1068 | /* Square the result window-size times */
|
---|
1069 | for (i = 0; i < window; i++)
|
---|
1070 | if (!bn_mul_mont_fixed_top(&tmp, &tmp, &tmp, mont, ctx))
|
---|
1071 | goto err;
|
---|
1072 |
|
---|
1073 | /*
|
---|
1074 | * Get a window's worth of bits from the exponent
|
---|
1075 | * This avoids calling BN_is_bit_set for each bit, which
|
---|
1076 | * is not only slower but also makes each bit vulnerable to
|
---|
1077 | * EM (and likely other) side-channel attacks like One&Done
|
---|
1078 | * (for details see "One&Done: A Single-Decryption EM-Based
|
---|
1079 | * Attack on OpenSSL's Constant-Time Blinded RSA" by M. Alam,
|
---|
1080 | * H. Khan, M. Dey, N. Sinha, R. Callan, A. Zajic, and
|
---|
1081 | * M. Prvulovic, in USENIX Security'18)
|
---|
1082 | */
|
---|
1083 | bits -= window;
|
---|
1084 | wvalue = bn_get_bits(p, bits) & wmask;
|
---|
1085 | /*
|
---|
1086 | * Fetch the appropriate pre-computed value from the pre-buf
|
---|
1087 | */
|
---|
1088 | if (!MOD_EXP_CTIME_COPY_FROM_PREBUF(&am, top, powerbuf, wvalue,
|
---|
1089 | window))
|
---|
1090 | goto err;
|
---|
1091 |
|
---|
1092 | /* Multiply the result into the intermediate result */
|
---|
1093 | if (!bn_mul_mont_fixed_top(&tmp, &tmp, &am, mont, ctx))
|
---|
1094 | goto err;
|
---|
1095 | }
|
---|
1096 | }
|
---|
1097 |
|
---|
1098 | /*
|
---|
1099 | * Done with zero-padded intermediate BIGNUMs. Final BN_from_montgomery
|
---|
1100 | * removes padding [if any] and makes return value suitable for public
|
---|
1101 | * API consumer.
|
---|
1102 | */
|
---|
1103 | #if defined(SPARC_T4_MONT)
|
---|
1104 | if (OPENSSL_sparcv9cap_P[0] & (SPARCV9_VIS3 | SPARCV9_PREFER_FPU)) {
|
---|
1105 | am.d[0] = 1; /* borrow am */
|
---|
1106 | for (i = 1; i < top; i++)
|
---|
1107 | am.d[i] = 0;
|
---|
1108 | if (!BN_mod_mul_montgomery(rr, &tmp, &am, mont, ctx))
|
---|
1109 | goto err;
|
---|
1110 | } else
|
---|
1111 | #endif
|
---|
1112 | if (!BN_from_montgomery(rr, &tmp, mont, ctx))
|
---|
1113 | goto err;
|
---|
1114 | ret = 1;
|
---|
1115 | err:
|
---|
1116 | if (in_mont == NULL)
|
---|
1117 | BN_MONT_CTX_free(mont);
|
---|
1118 | if (powerbuf != NULL) {
|
---|
1119 | OPENSSL_cleanse(powerbuf, powerbufLen);
|
---|
1120 | OPENSSL_free(powerbufFree);
|
---|
1121 | }
|
---|
1122 | BN_CTX_end(ctx);
|
---|
1123 | return ret;
|
---|
1124 | }
|
---|
1125 |
|
---|
1126 | int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
|
---|
1127 | const BIGNUM *m, BN_CTX *ctx, BN_MONT_CTX *in_mont)
|
---|
1128 | {
|
---|
1129 | BN_MONT_CTX *mont = NULL;
|
---|
1130 | int b, bits, ret = 0;
|
---|
1131 | int r_is_one;
|
---|
1132 | BN_ULONG w, next_w;
|
---|
1133 | BIGNUM *r, *t;
|
---|
1134 | BIGNUM *swap_tmp;
|
---|
1135 | #define BN_MOD_MUL_WORD(r, w, m) \
|
---|
1136 | (BN_mul_word(r, (w)) && \
|
---|
1137 | (/* BN_ucmp(r, (m)) < 0 ? 1 :*/ \
|
---|
1138 | (BN_mod(t, r, m, ctx) && (swap_tmp = r, r = t, t = swap_tmp, 1))))
|
---|
1139 | /*
|
---|
1140 | * BN_MOD_MUL_WORD is only used with 'w' large, so the BN_ucmp test is
|
---|
1141 | * probably more overhead than always using BN_mod (which uses BN_copy if
|
---|
1142 | * a similar test returns true).
|
---|
1143 | */
|
---|
1144 | /*
|
---|
1145 | * We can use BN_mod and do not need BN_nnmod because our accumulator is
|
---|
1146 | * never negative (the result of BN_mod does not depend on the sign of
|
---|
1147 | * the modulus).
|
---|
1148 | */
|
---|
1149 | #define BN_TO_MONTGOMERY_WORD(r, w, mont) \
|
---|
1150 | (BN_set_word(r, (w)) && BN_to_montgomery(r, r, (mont), ctx))
|
---|
1151 |
|
---|
1152 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
|
---|
1153 | || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
|
---|
1154 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
|
---|
1155 | ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
---|
1156 | return 0;
|
---|
1157 | }
|
---|
1158 |
|
---|
1159 | bn_check_top(p);
|
---|
1160 | bn_check_top(m);
|
---|
1161 |
|
---|
1162 | if (!BN_is_odd(m)) {
|
---|
1163 | ERR_raise(ERR_LIB_BN, BN_R_CALLED_WITH_EVEN_MODULUS);
|
---|
1164 | return 0;
|
---|
1165 | }
|
---|
1166 | if (m->top == 1)
|
---|
1167 | a %= m->d[0]; /* make sure that 'a' is reduced */
|
---|
1168 |
|
---|
1169 | bits = BN_num_bits(p);
|
---|
1170 | if (bits == 0) {
|
---|
1171 | /* x**0 mod 1, or x**0 mod -1 is still zero. */
|
---|
1172 | if (BN_abs_is_word(m, 1)) {
|
---|
1173 | ret = 1;
|
---|
1174 | BN_zero(rr);
|
---|
1175 | } else {
|
---|
1176 | ret = BN_one(rr);
|
---|
1177 | }
|
---|
1178 | return ret;
|
---|
1179 | }
|
---|
1180 | if (a == 0) {
|
---|
1181 | BN_zero(rr);
|
---|
1182 | ret = 1;
|
---|
1183 | return ret;
|
---|
1184 | }
|
---|
1185 |
|
---|
1186 | BN_CTX_start(ctx);
|
---|
1187 | r = BN_CTX_get(ctx);
|
---|
1188 | t = BN_CTX_get(ctx);
|
---|
1189 | if (t == NULL)
|
---|
1190 | goto err;
|
---|
1191 |
|
---|
1192 | if (in_mont != NULL)
|
---|
1193 | mont = in_mont;
|
---|
1194 | else {
|
---|
1195 | if ((mont = BN_MONT_CTX_new()) == NULL)
|
---|
1196 | goto err;
|
---|
1197 | if (!BN_MONT_CTX_set(mont, m, ctx))
|
---|
1198 | goto err;
|
---|
1199 | }
|
---|
1200 |
|
---|
1201 | r_is_one = 1; /* except for Montgomery factor */
|
---|
1202 |
|
---|
1203 | /* bits-1 >= 0 */
|
---|
1204 |
|
---|
1205 | /* The result is accumulated in the product r*w. */
|
---|
1206 | w = a; /* bit 'bits-1' of 'p' is always set */
|
---|
1207 | for (b = bits - 2; b >= 0; b--) {
|
---|
1208 | /* First, square r*w. */
|
---|
1209 | next_w = w * w;
|
---|
1210 | if ((next_w / w) != w) { /* overflow */
|
---|
1211 | if (r_is_one) {
|
---|
1212 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
|
---|
1213 | goto err;
|
---|
1214 | r_is_one = 0;
|
---|
1215 | } else {
|
---|
1216 | if (!BN_MOD_MUL_WORD(r, w, m))
|
---|
1217 | goto err;
|
---|
1218 | }
|
---|
1219 | next_w = 1;
|
---|
1220 | }
|
---|
1221 | w = next_w;
|
---|
1222 | if (!r_is_one) {
|
---|
1223 | if (!BN_mod_mul_montgomery(r, r, r, mont, ctx))
|
---|
1224 | goto err;
|
---|
1225 | }
|
---|
1226 |
|
---|
1227 | /* Second, multiply r*w by 'a' if exponent bit is set. */
|
---|
1228 | if (BN_is_bit_set(p, b)) {
|
---|
1229 | next_w = w * a;
|
---|
1230 | if ((next_w / a) != w) { /* overflow */
|
---|
1231 | if (r_is_one) {
|
---|
1232 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
|
---|
1233 | goto err;
|
---|
1234 | r_is_one = 0;
|
---|
1235 | } else {
|
---|
1236 | if (!BN_MOD_MUL_WORD(r, w, m))
|
---|
1237 | goto err;
|
---|
1238 | }
|
---|
1239 | next_w = a;
|
---|
1240 | }
|
---|
1241 | w = next_w;
|
---|
1242 | }
|
---|
1243 | }
|
---|
1244 |
|
---|
1245 | /* Finally, set r:=r*w. */
|
---|
1246 | if (w != 1) {
|
---|
1247 | if (r_is_one) {
|
---|
1248 | if (!BN_TO_MONTGOMERY_WORD(r, w, mont))
|
---|
1249 | goto err;
|
---|
1250 | r_is_one = 0;
|
---|
1251 | } else {
|
---|
1252 | if (!BN_MOD_MUL_WORD(r, w, m))
|
---|
1253 | goto err;
|
---|
1254 | }
|
---|
1255 | }
|
---|
1256 |
|
---|
1257 | if (r_is_one) { /* can happen only if a == 1 */
|
---|
1258 | if (!BN_one(rr))
|
---|
1259 | goto err;
|
---|
1260 | } else {
|
---|
1261 | if (!BN_from_montgomery(rr, r, mont, ctx))
|
---|
1262 | goto err;
|
---|
1263 | }
|
---|
1264 | ret = 1;
|
---|
1265 | err:
|
---|
1266 | if (in_mont == NULL)
|
---|
1267 | BN_MONT_CTX_free(mont);
|
---|
1268 | BN_CTX_end(ctx);
|
---|
1269 | bn_check_top(rr);
|
---|
1270 | return ret;
|
---|
1271 | }
|
---|
1272 |
|
---|
1273 | /* The old fallback, simple version :-) */
|
---|
1274 | int BN_mod_exp_simple(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
---|
1275 | const BIGNUM *m, BN_CTX *ctx)
|
---|
1276 | {
|
---|
1277 | int i, j, bits, ret = 0, wstart, wend, window, wvalue;
|
---|
1278 | int start = 1;
|
---|
1279 | BIGNUM *d;
|
---|
1280 | /* Table of variables obtained from 'ctx' */
|
---|
1281 | BIGNUM *val[TABLE_SIZE];
|
---|
1282 |
|
---|
1283 | if (BN_get_flags(p, BN_FLG_CONSTTIME) != 0
|
---|
1284 | || BN_get_flags(a, BN_FLG_CONSTTIME) != 0
|
---|
1285 | || BN_get_flags(m, BN_FLG_CONSTTIME) != 0) {
|
---|
1286 | /* BN_FLG_CONSTTIME only supported by BN_mod_exp_mont() */
|
---|
1287 | ERR_raise(ERR_LIB_BN, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
---|
1288 | return 0;
|
---|
1289 | }
|
---|
1290 |
|
---|
1291 | bits = BN_num_bits(p);
|
---|
1292 | if (bits == 0) {
|
---|
1293 | /* x**0 mod 1, or x**0 mod -1 is still zero. */
|
---|
1294 | if (BN_abs_is_word(m, 1)) {
|
---|
1295 | ret = 1;
|
---|
1296 | BN_zero(r);
|
---|
1297 | } else {
|
---|
1298 | ret = BN_one(r);
|
---|
1299 | }
|
---|
1300 | return ret;
|
---|
1301 | }
|
---|
1302 |
|
---|
1303 | BN_CTX_start(ctx);
|
---|
1304 | d = BN_CTX_get(ctx);
|
---|
1305 | val[0] = BN_CTX_get(ctx);
|
---|
1306 | if (val[0] == NULL)
|
---|
1307 | goto err;
|
---|
1308 |
|
---|
1309 | if (!BN_nnmod(val[0], a, m, ctx))
|
---|
1310 | goto err; /* 1 */
|
---|
1311 | if (BN_is_zero(val[0])) {
|
---|
1312 | BN_zero(r);
|
---|
1313 | ret = 1;
|
---|
1314 | goto err;
|
---|
1315 | }
|
---|
1316 |
|
---|
1317 | window = BN_window_bits_for_exponent_size(bits);
|
---|
1318 | if (window > 1) {
|
---|
1319 | if (!BN_mod_mul(d, val[0], val[0], m, ctx))
|
---|
1320 | goto err; /* 2 */
|
---|
1321 | j = 1 << (window - 1);
|
---|
1322 | for (i = 1; i < j; i++) {
|
---|
1323 | if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
|
---|
1324 | !BN_mod_mul(val[i], val[i - 1], d, m, ctx))
|
---|
1325 | goto err;
|
---|
1326 | }
|
---|
1327 | }
|
---|
1328 |
|
---|
1329 | start = 1; /* This is used to avoid multiplication etc
|
---|
1330 | * when there is only the value '1' in the
|
---|
1331 | * buffer. */
|
---|
1332 | wvalue = 0; /* The 'value' of the window */
|
---|
1333 | wstart = bits - 1; /* The top bit of the window */
|
---|
1334 | wend = 0; /* The bottom bit of the window */
|
---|
1335 |
|
---|
1336 | if (!BN_one(r))
|
---|
1337 | goto err;
|
---|
1338 |
|
---|
1339 | for (;;) {
|
---|
1340 | if (BN_is_bit_set(p, wstart) == 0) {
|
---|
1341 | if (!start)
|
---|
1342 | if (!BN_mod_mul(r, r, r, m, ctx))
|
---|
1343 | goto err;
|
---|
1344 | if (wstart == 0)
|
---|
1345 | break;
|
---|
1346 | wstart--;
|
---|
1347 | continue;
|
---|
1348 | }
|
---|
1349 | /*
|
---|
1350 | * We now have wstart on a 'set' bit, we now need to work out how bit
|
---|
1351 | * a window to do. To do this we need to scan forward until the last
|
---|
1352 | * set bit before the end of the window
|
---|
1353 | */
|
---|
1354 | wvalue = 1;
|
---|
1355 | wend = 0;
|
---|
1356 | for (i = 1; i < window; i++) {
|
---|
1357 | if (wstart - i < 0)
|
---|
1358 | break;
|
---|
1359 | if (BN_is_bit_set(p, wstart - i)) {
|
---|
1360 | wvalue <<= (i - wend);
|
---|
1361 | wvalue |= 1;
|
---|
1362 | wend = i;
|
---|
1363 | }
|
---|
1364 | }
|
---|
1365 |
|
---|
1366 | /* wend is the size of the current window */
|
---|
1367 | j = wend + 1;
|
---|
1368 | /* add the 'bytes above' */
|
---|
1369 | if (!start)
|
---|
1370 | for (i = 0; i < j; i++) {
|
---|
1371 | if (!BN_mod_mul(r, r, r, m, ctx))
|
---|
1372 | goto err;
|
---|
1373 | }
|
---|
1374 |
|
---|
1375 | /* wvalue will be an odd number < 2^window */
|
---|
1376 | if (!BN_mod_mul(r, r, val[wvalue >> 1], m, ctx))
|
---|
1377 | goto err;
|
---|
1378 |
|
---|
1379 | /* move the 'window' down further */
|
---|
1380 | wstart -= wend + 1;
|
---|
1381 | wvalue = 0;
|
---|
1382 | start = 0;
|
---|
1383 | if (wstart < 0)
|
---|
1384 | break;
|
---|
1385 | }
|
---|
1386 | ret = 1;
|
---|
1387 | err:
|
---|
1388 | BN_CTX_end(ctx);
|
---|
1389 | bn_check_top(r);
|
---|
1390 | return ret;
|
---|
1391 | }
|
---|
1392 |
|
---|
1393 | /*
|
---|
1394 | * This is a variant of modular exponentiation optimization that does
|
---|
1395 | * parallel 2-primes exponentiation using 256-bit (AVX512VL) AVX512_IFMA ISA
|
---|
1396 | * in 52-bit binary redundant representation.
|
---|
1397 | * If such instructions are not available, or input data size is not supported,
|
---|
1398 | * it falls back to two BN_mod_exp_mont_consttime() calls.
|
---|
1399 | */
|
---|
1400 | int BN_mod_exp_mont_consttime_x2(BIGNUM *rr1, const BIGNUM *a1, const BIGNUM *p1,
|
---|
1401 | const BIGNUM *m1, BN_MONT_CTX *in_mont1,
|
---|
1402 | BIGNUM *rr2, const BIGNUM *a2, const BIGNUM *p2,
|
---|
1403 | const BIGNUM *m2, BN_MONT_CTX *in_mont2,
|
---|
1404 | BN_CTX *ctx)
|
---|
1405 | {
|
---|
1406 | int ret = 0;
|
---|
1407 |
|
---|
1408 | #ifdef RSAZ_ENABLED
|
---|
1409 | BN_MONT_CTX *mont1 = NULL;
|
---|
1410 | BN_MONT_CTX *mont2 = NULL;
|
---|
1411 |
|
---|
1412 | if (ossl_rsaz_avx512ifma_eligible() &&
|
---|
1413 | ((a1->top == 16) && (p1->top == 16) && (BN_num_bits(m1) == 1024) &&
|
---|
1414 | (a2->top == 16) && (p2->top == 16) && (BN_num_bits(m2) == 1024))) {
|
---|
1415 |
|
---|
1416 | if (bn_wexpand(rr1, 16) == NULL)
|
---|
1417 | goto err;
|
---|
1418 | if (bn_wexpand(rr2, 16) == NULL)
|
---|
1419 | goto err;
|
---|
1420 |
|
---|
1421 | /* Ensure that montgomery contexts are initialized */
|
---|
1422 | if (in_mont1 != NULL) {
|
---|
1423 | mont1 = in_mont1;
|
---|
1424 | } else {
|
---|
1425 | if ((mont1 = BN_MONT_CTX_new()) == NULL)
|
---|
1426 | goto err;
|
---|
1427 | if (!BN_MONT_CTX_set(mont1, m1, ctx))
|
---|
1428 | goto err;
|
---|
1429 | }
|
---|
1430 | if (in_mont2 != NULL) {
|
---|
1431 | mont2 = in_mont2;
|
---|
1432 | } else {
|
---|
1433 | if ((mont2 = BN_MONT_CTX_new()) == NULL)
|
---|
1434 | goto err;
|
---|
1435 | if (!BN_MONT_CTX_set(mont2, m2, ctx))
|
---|
1436 | goto err;
|
---|
1437 | }
|
---|
1438 |
|
---|
1439 | ret = ossl_rsaz_mod_exp_avx512_x2(rr1->d, a1->d, p1->d, m1->d,
|
---|
1440 | mont1->RR.d, mont1->n0[0],
|
---|
1441 | rr2->d, a2->d, p2->d, m2->d,
|
---|
1442 | mont2->RR.d, mont2->n0[0],
|
---|
1443 | 1024 /* factor bit size */);
|
---|
1444 |
|
---|
1445 | rr1->top = 16;
|
---|
1446 | rr1->neg = 0;
|
---|
1447 | bn_correct_top(rr1);
|
---|
1448 | bn_check_top(rr1);
|
---|
1449 |
|
---|
1450 | rr2->top = 16;
|
---|
1451 | rr2->neg = 0;
|
---|
1452 | bn_correct_top(rr2);
|
---|
1453 | bn_check_top(rr2);
|
---|
1454 |
|
---|
1455 | goto err;
|
---|
1456 | }
|
---|
1457 | #endif
|
---|
1458 |
|
---|
1459 | /* rr1 = a1^p1 mod m1 */
|
---|
1460 | ret = BN_mod_exp_mont_consttime(rr1, a1, p1, m1, ctx, in_mont1);
|
---|
1461 | /* rr2 = a2^p2 mod m2 */
|
---|
1462 | ret &= BN_mod_exp_mont_consttime(rr2, a2, p2, m2, ctx, in_mont2);
|
---|
1463 |
|
---|
1464 | #ifdef RSAZ_ENABLED
|
---|
1465 | err:
|
---|
1466 | if (in_mont2 == NULL)
|
---|
1467 | BN_MONT_CTX_free(mont2);
|
---|
1468 | if (in_mont1 == NULL)
|
---|
1469 | BN_MONT_CTX_free(mont1);
|
---|
1470 | #endif
|
---|
1471 |
|
---|
1472 | return ret;
|
---|
1473 | }
|
---|