VirtualBox

source: vbox/trunk/src/libs/openssl-1.1.1l/crypto/modes/asm/ghash-x86_64.pl@ 91772

最後變更 在這個檔案從91772是 91772,由 vboxsync 提交於 3 年 前

openssl-1.1.1l: Applied and adjusted our OpenSSL changes to 1.1.1l. bugref:10126

檔案大小: 43.3 KB
 
1#! /usr/bin/env perl
2# Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
3#
4# Licensed under the OpenSSL license (the "License"). You may not use
5# this file except in compliance with the License. You can obtain a copy
6# in the file LICENSE in the source distribution or at
7# https://www.openssl.org/source/license.html
8
9#
10# ====================================================================
11# Written by Andy Polyakov <[email protected]> for the OpenSSL
12# project. The module is, however, dual licensed under OpenSSL and
13# CRYPTOGAMS licenses depending on where you obtain it. For further
14# details see http://www.openssl.org/~appro/cryptogams/.
15# ====================================================================
16#
17# March, June 2010
18#
19# The module implements "4-bit" GCM GHASH function and underlying
20# single multiplication operation in GF(2^128). "4-bit" means that
21# it uses 256 bytes per-key table [+128 bytes shared table]. GHASH
22# function features so called "528B" variant utilizing additional
23# 256+16 bytes of per-key storage [+512 bytes shared table].
24# Performance results are for this streamed GHASH subroutine and are
25# expressed in cycles per processed byte, less is better:
26#
27# gcc 3.4.x(*) assembler
28#
29# P4 28.6 14.0 +100%
30# Opteron 19.3 7.7 +150%
31# Core2 17.8 8.1(**) +120%
32# Atom 31.6 16.8 +88%
33# VIA Nano 21.8 10.1 +115%
34#
35# (*) comparison is not completely fair, because C results are
36# for vanilla "256B" implementation, while assembler results
37# are for "528B";-)
38# (**) it's mystery [to me] why Core2 result is not same as for
39# Opteron;
40
41# May 2010
42#
43# Add PCLMULQDQ version performing at 2.02 cycles per processed byte.
44# See ghash-x86.pl for background information and details about coding
45# techniques.
46#
47# Special thanks to David Woodhouse for providing access to a
48# Westmere-based system on behalf of Intel Open Source Technology Centre.
49
50# December 2012
51#
52# Overhaul: aggregate Karatsuba post-processing, improve ILP in
53# reduction_alg9, increase reduction aggregate factor to 4x. As for
54# the latter. ghash-x86.pl discusses that it makes lesser sense to
55# increase aggregate factor. Then why increase here? Critical path
56# consists of 3 independent pclmulqdq instructions, Karatsuba post-
57# processing and reduction. "On top" of this we lay down aggregated
58# multiplication operations, triplets of independent pclmulqdq's. As
59# issue rate for pclmulqdq is limited, it makes lesser sense to
60# aggregate more multiplications than it takes to perform remaining
61# non-multiplication operations. 2x is near-optimal coefficient for
62# contemporary Intel CPUs (therefore modest improvement coefficient),
63# but not for Bulldozer. Latter is because logical SIMD operations
64# are twice as slow in comparison to Intel, so that critical path is
65# longer. A CPU with higher pclmulqdq issue rate would also benefit
66# from higher aggregate factor...
67#
68# Westmere 1.78(+13%)
69# Sandy Bridge 1.80(+8%)
70# Ivy Bridge 1.80(+7%)
71# Haswell 0.55(+93%) (if system doesn't support AVX)
72# Broadwell 0.45(+110%)(if system doesn't support AVX)
73# Skylake 0.44(+110%)(if system doesn't support AVX)
74# Bulldozer 1.49(+27%)
75# Silvermont 2.88(+13%)
76# Knights L 2.12(-) (if system doesn't support AVX)
77# Goldmont 1.08(+24%)
78
79# March 2013
80#
81# ... 8x aggregate factor AVX code path is using reduction algorithm
82# suggested by Shay Gueron[1]. Even though contemporary AVX-capable
83# CPUs such as Sandy and Ivy Bridge can execute it, the code performs
84# sub-optimally in comparison to above mentioned version. But thanks
85# to Ilya Albrekht and Max Locktyukhin of Intel Corp. we knew that
86# it performs in 0.41 cycles per byte on Haswell processor, in
87# 0.29 on Broadwell, and in 0.36 on Skylake.
88#
89# Knights Landing achieves 1.09 cpb.
90#
91# [1] http://rt.openssl.org/Ticket/Display.html?id=2900&user=guest&pass=guest
92
93$flavour = shift;
94$output = shift;
95if ($flavour =~ /\./) { $output = $flavour; undef $flavour; }
96
97$win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/);
98
99$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
100( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or
101( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or
102die "can't locate x86_64-xlate.pl";
103
104if (`$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
105 =~ /GNU assembler version ([2-9]\.[0-9]+)/) {
106 $avx = ($1>=2.20) + ($1>=2.22);
107}
108
109if (!$avx && $win64 && ($flavour =~ /nasm/ || $ENV{ASM} =~ /nasm/) &&
110 `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/) {
111 $avx = ($1>=2.09) + ($1>=2.10);
112}
113
114if (!$avx && $win64 && ($flavour =~ /masm/ || $ENV{ASM} =~ /ml64/) &&
115 `ml64 2>&1` =~ /Version ([0-9]+)\./) {
116 $avx = ($1>=10) + ($1>=11);
117}
118
119if (!$avx && `$ENV{CC} -v 2>&1` =~ /((?:clang|LLVM) version|.*based on LLVM) ([0-9]+\.[0-9]+)/) {
120 $avx = ($2>=3.0) + ($2>3.0);
121}
122
123open OUT,"| \"$^X\" \"$xlate\" $flavour \"$output\"";
124*STDOUT=*OUT;
125
126$do4xaggr=1;
127
128# common register layout
129$nlo="%rax";
130$nhi="%rbx";
131$Zlo="%r8";
132$Zhi="%r9";
133$tmp="%r10";
134$rem_4bit = "%r11";
135
136$Xi="%rdi";
137$Htbl="%rsi";
138
139# per-function register layout
140$cnt="%rcx";
141$rem="%rdx";
142
143sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/ or
144 $r =~ s/%[er]([sd]i)/%\1l/ or
145 $r =~ s/%[er](bp)/%\1l/ or
146 $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; }
147
148sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm
149{ my $opcode = $AUTOLOAD; $opcode =~ s/.*:://;
150 my $arg = pop;
151 $arg = "\$$arg" if ($arg*1 eq $arg);
152 $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n";
153}
154
155
156{ my $N;
157 sub loop() {
158 my $inp = shift;
159
160 $N++;
161$code.=<<___;
162 xor $nlo,$nlo
163 xor $nhi,$nhi
164 mov `&LB("$Zlo")`,`&LB("$nlo")`
165 mov `&LB("$Zlo")`,`&LB("$nhi")`
166 shl \$4,`&LB("$nlo")`
167 mov \$14,$cnt
168 mov 8($Htbl,$nlo),$Zlo
169 mov ($Htbl,$nlo),$Zhi
170 and \$0xf0,`&LB("$nhi")`
171 mov $Zlo,$rem
172 jmp .Loop$N
173
174.align 16
175.Loop$N:
176 shr \$4,$Zlo
177 and \$0xf,$rem
178 mov $Zhi,$tmp
179 mov ($inp,$cnt),`&LB("$nlo")`
180 shr \$4,$Zhi
181 xor 8($Htbl,$nhi),$Zlo
182 shl \$60,$tmp
183 xor ($Htbl,$nhi),$Zhi
184 mov `&LB("$nlo")`,`&LB("$nhi")`
185 xor ($rem_4bit,$rem,8),$Zhi
186 mov $Zlo,$rem
187 shl \$4,`&LB("$nlo")`
188 xor $tmp,$Zlo
189 dec $cnt
190 js .Lbreak$N
191
192 shr \$4,$Zlo
193 and \$0xf,$rem
194 mov $Zhi,$tmp
195 shr \$4,$Zhi
196 xor 8($Htbl,$nlo),$Zlo
197 shl \$60,$tmp
198 xor ($Htbl,$nlo),$Zhi
199 and \$0xf0,`&LB("$nhi")`
200 xor ($rem_4bit,$rem,8),$Zhi
201 mov $Zlo,$rem
202 xor $tmp,$Zlo
203 jmp .Loop$N
204
205.align 16
206.Lbreak$N:
207 shr \$4,$Zlo
208 and \$0xf,$rem
209 mov $Zhi,$tmp
210 shr \$4,$Zhi
211 xor 8($Htbl,$nlo),$Zlo
212 shl \$60,$tmp
213 xor ($Htbl,$nlo),$Zhi
214 and \$0xf0,`&LB("$nhi")`
215 xor ($rem_4bit,$rem,8),$Zhi
216 mov $Zlo,$rem
217 xor $tmp,$Zlo
218
219 shr \$4,$Zlo
220 and \$0xf,$rem
221 mov $Zhi,$tmp
222 shr \$4,$Zhi
223 xor 8($Htbl,$nhi),$Zlo
224 shl \$60,$tmp
225 xor ($Htbl,$nhi),$Zhi
226 xor $tmp,$Zlo
227 xor ($rem_4bit,$rem,8),$Zhi
228
229 bswap $Zlo
230 bswap $Zhi
231___
232}}
233
234$code=<<___;
235.text
236.extern OPENSSL_ia32cap_P
237
238.globl gcm_gmult_4bit
239.type gcm_gmult_4bit,\@function,2
240.align 16
241gcm_gmult_4bit:
242.cfi_startproc
243 push %rbx
244.cfi_push %rbx
245 push %rbp # %rbp and others are pushed exclusively in
246.cfi_push %rbp
247 push %r12 # order to reuse Win64 exception handler...
248.cfi_push %r12
249 push %r13
250.cfi_push %r13
251 push %r14
252.cfi_push %r14
253 push %r15
254.cfi_push %r15
255 sub \$280,%rsp
256.cfi_adjust_cfa_offset 280
257.Lgmult_prologue:
258
259 movzb 15($Xi),$Zlo
260 lea .Lrem_4bit(%rip),$rem_4bit
261___
262 &loop ($Xi);
263$code.=<<___;
264 mov $Zlo,8($Xi)
265 mov $Zhi,($Xi)
266
267 lea 280+48(%rsp),%rsi
268.cfi_def_cfa %rsi,8
269 mov -8(%rsi),%rbx
270.cfi_restore %rbx
271 lea (%rsi),%rsp
272.cfi_def_cfa_register %rsp
273.Lgmult_epilogue:
274 ret
275.cfi_endproc
276.size gcm_gmult_4bit,.-gcm_gmult_4bit
277___
278
279
280# per-function register layout
281$inp="%rdx";
282$len="%rcx";
283$rem_8bit=$rem_4bit;
284
285$code.=<<___;
286.globl gcm_ghash_4bit
287.type gcm_ghash_4bit,\@function,4
288.align 16
289gcm_ghash_4bit:
290.cfi_startproc
291 push %rbx
292.cfi_push %rbx
293 push %rbp
294.cfi_push %rbp
295 push %r12
296.cfi_push %r12
297 push %r13
298.cfi_push %r13
299 push %r14
300.cfi_push %r14
301 push %r15
302.cfi_push %r15
303 sub \$280,%rsp
304.cfi_adjust_cfa_offset 280
305.Lghash_prologue:
306 mov $inp,%r14 # reassign couple of args
307 mov $len,%r15
308___
309{ my $inp="%r14";
310 my $dat="%edx";
311 my $len="%r15";
312 my @nhi=("%ebx","%ecx");
313 my @rem=("%r12","%r13");
314 my $Hshr4="%rbp";
315
316 &sub ($Htbl,-128); # size optimization
317 &lea ($Hshr4,"16+128(%rsp)");
318 { my @lo =($nlo,$nhi);
319 my @hi =($Zlo,$Zhi);
320
321 &xor ($dat,$dat);
322 for ($i=0,$j=-2;$i<18;$i++,$j++) {
323 &mov ("$j(%rsp)",&LB($dat)) if ($i>1);
324 &or ($lo[0],$tmp) if ($i>1);
325 &mov (&LB($dat),&LB($lo[1])) if ($i>0 && $i<17);
326 &shr ($lo[1],4) if ($i>0 && $i<17);
327 &mov ($tmp,$hi[1]) if ($i>0 && $i<17);
328 &shr ($hi[1],4) if ($i>0 && $i<17);
329 &mov ("8*$j($Hshr4)",$hi[0]) if ($i>1);
330 &mov ($hi[0],"16*$i+0-128($Htbl)") if ($i<16);
331 &shl (&LB($dat),4) if ($i>0 && $i<17);
332 &mov ("8*$j-128($Hshr4)",$lo[0]) if ($i>1);
333 &mov ($lo[0],"16*$i+8-128($Htbl)") if ($i<16);
334 &shl ($tmp,60) if ($i>0 && $i<17);
335
336 push (@lo,shift(@lo));
337 push (@hi,shift(@hi));
338 }
339 }
340 &add ($Htbl,-128);
341 &mov ($Zlo,"8($Xi)");
342 &mov ($Zhi,"0($Xi)");
343 &add ($len,$inp); # pointer to the end of data
344 &lea ($rem_8bit,".Lrem_8bit(%rip)");
345 &jmp (".Louter_loop");
346
347$code.=".align 16\n.Louter_loop:\n";
348 &xor ($Zhi,"($inp)");
349 &mov ("%rdx","8($inp)");
350 &lea ($inp,"16($inp)");
351 &xor ("%rdx",$Zlo);
352 &mov ("($Xi)",$Zhi);
353 &mov ("8($Xi)","%rdx");
354 &shr ("%rdx",32);
355
356 &xor ($nlo,$nlo);
357 &rol ($dat,8);
358 &mov (&LB($nlo),&LB($dat));
359 &movz ($nhi[0],&LB($dat));
360 &shl (&LB($nlo),4);
361 &shr ($nhi[0],4);
362
363 for ($j=11,$i=0;$i<15;$i++) {
364 &rol ($dat,8);
365 &xor ($Zlo,"8($Htbl,$nlo)") if ($i>0);
366 &xor ($Zhi,"($Htbl,$nlo)") if ($i>0);
367 &mov ($Zlo,"8($Htbl,$nlo)") if ($i==0);
368 &mov ($Zhi,"($Htbl,$nlo)") if ($i==0);
369
370 &mov (&LB($nlo),&LB($dat));
371 &xor ($Zlo,$tmp) if ($i>0);
372 &movzw ($rem[1],"($rem_8bit,$rem[1],2)") if ($i>0);
373
374 &movz ($nhi[1],&LB($dat));
375 &shl (&LB($nlo),4);
376 &movzb ($rem[0],"(%rsp,$nhi[0])");
377
378 &shr ($nhi[1],4) if ($i<14);
379 &and ($nhi[1],0xf0) if ($i==14);
380 &shl ($rem[1],48) if ($i>0);
381 &xor ($rem[0],$Zlo);
382
383 &mov ($tmp,$Zhi);
384 &xor ($Zhi,$rem[1]) if ($i>0);
385 &shr ($Zlo,8);
386
387 &movz ($rem[0],&LB($rem[0]));
388 &mov ($dat,"$j($Xi)") if (--$j%4==0);
389 &shr ($Zhi,8);
390
391 &xor ($Zlo,"-128($Hshr4,$nhi[0],8)");
392 &shl ($tmp,56);
393 &xor ($Zhi,"($Hshr4,$nhi[0],8)");
394
395 unshift (@nhi,pop(@nhi)); # "rotate" registers
396 unshift (@rem,pop(@rem));
397 }
398 &movzw ($rem[1],"($rem_8bit,$rem[1],2)");
399 &xor ($Zlo,"8($Htbl,$nlo)");
400 &xor ($Zhi,"($Htbl,$nlo)");
401
402 &shl ($rem[1],48);
403 &xor ($Zlo,$tmp);
404
405 &xor ($Zhi,$rem[1]);
406 &movz ($rem[0],&LB($Zlo));
407 &shr ($Zlo,4);
408
409 &mov ($tmp,$Zhi);
410 &shl (&LB($rem[0]),4);
411 &shr ($Zhi,4);
412
413 &xor ($Zlo,"8($Htbl,$nhi[0])");
414 &movzw ($rem[0],"($rem_8bit,$rem[0],2)");
415 &shl ($tmp,60);
416
417 &xor ($Zhi,"($Htbl,$nhi[0])");
418 &xor ($Zlo,$tmp);
419 &shl ($rem[0],48);
420
421 &bswap ($Zlo);
422 &xor ($Zhi,$rem[0]);
423
424 &bswap ($Zhi);
425 &cmp ($inp,$len);
426 &jb (".Louter_loop");
427}
428$code.=<<___;
429 mov $Zlo,8($Xi)
430 mov $Zhi,($Xi)
431
432 lea 280+48(%rsp),%rsi
433.cfi_def_cfa %rsi,8
434 mov -48(%rsi),%r15
435.cfi_restore %r15
436 mov -40(%rsi),%r14
437.cfi_restore %r14
438 mov -32(%rsi),%r13
439.cfi_restore %r13
440 mov -24(%rsi),%r12
441.cfi_restore %r12
442 mov -16(%rsi),%rbp
443.cfi_restore %rbp
444 mov -8(%rsi),%rbx
445.cfi_restore %rbx
446 lea 0(%rsi),%rsp
447.cfi_def_cfa_register %rsp
448.Lghash_epilogue:
449 ret
450.cfi_endproc
451.size gcm_ghash_4bit,.-gcm_ghash_4bit
452___
453
454
455######################################################################
456# PCLMULQDQ version.
457
458@_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order
459 ("%rdi","%rsi","%rdx","%rcx"); # Unix order
460
461($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2";
462($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5");
463
464sub clmul64x64_T2 { # minimal register pressure
465my ($Xhi,$Xi,$Hkey,$HK)=@_;
466
467if (!defined($HK)) { $HK = $T2;
468$code.=<<___;
469 movdqa $Xi,$Xhi #
470 pshufd \$0b01001110,$Xi,$T1
471 pshufd \$0b01001110,$Hkey,$T2
472 pxor $Xi,$T1 #
473 pxor $Hkey,$T2
474___
475} else {
476$code.=<<___;
477 movdqa $Xi,$Xhi #
478 pshufd \$0b01001110,$Xi,$T1
479 pxor $Xi,$T1 #
480___
481}
482$code.=<<___;
483 pclmulqdq \$0x00,$Hkey,$Xi #######
484 pclmulqdq \$0x11,$Hkey,$Xhi #######
485 pclmulqdq \$0x00,$HK,$T1 #######
486 pxor $Xi,$T1 #
487 pxor $Xhi,$T1 #
488
489 movdqa $T1,$T2 #
490 psrldq \$8,$T1
491 pslldq \$8,$T2 #
492 pxor $T1,$Xhi
493 pxor $T2,$Xi #
494___
495}
496
497sub reduction_alg9 { # 17/11 times faster than Intel version
498my ($Xhi,$Xi) = @_;
499
500$code.=<<___;
501 # 1st phase
502 movdqa $Xi,$T2 #
503 movdqa $Xi,$T1
504 psllq \$5,$Xi
505 pxor $Xi,$T1 #
506 psllq \$1,$Xi
507 pxor $T1,$Xi #
508 psllq \$57,$Xi #
509 movdqa $Xi,$T1 #
510 pslldq \$8,$Xi
511 psrldq \$8,$T1 #
512 pxor $T2,$Xi
513 pxor $T1,$Xhi #
514
515 # 2nd phase
516 movdqa $Xi,$T2
517 psrlq \$1,$Xi
518 pxor $T2,$Xhi #
519 pxor $Xi,$T2
520 psrlq \$5,$Xi
521 pxor $T2,$Xi #
522 psrlq \$1,$Xi #
523 pxor $Xhi,$Xi #
524___
525}
526
527
528{ my ($Htbl,$Xip)=@_4args;
529 my $HK="%xmm6";
530
531$code.=<<___;
532.globl gcm_init_clmul
533.type gcm_init_clmul,\@abi-omnipotent
534.align 16
535gcm_init_clmul:
536.cfi_startproc
537.L_init_clmul:
538___
539$code.=<<___ if ($win64);
540.LSEH_begin_gcm_init_clmul:
541 # I can't trust assembler to use specific encoding:-(
542 .byte 0x48,0x83,0xec,0x18 #sub $0x18,%rsp
543 .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp)
544___
545$code.=<<___;
546 movdqu ($Xip),$Hkey
547 pshufd \$0b01001110,$Hkey,$Hkey # dword swap
548
549 # <<1 twist
550 pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword
551 movdqa $Hkey,$T1
552 psllq \$1,$Hkey
553 pxor $T3,$T3 #
554 psrlq \$63,$T1
555 pcmpgtd $T2,$T3 # broadcast carry bit
556 pslldq \$8,$T1
557 por $T1,$Hkey # H<<=1
558
559 # magic reduction
560 pand .L0x1c2_polynomial(%rip),$T3
561 pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial
562
563 # calculate H^2
564 pshufd \$0b01001110,$Hkey,$HK
565 movdqa $Hkey,$Xi
566 pxor $Hkey,$HK
567___
568 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK);
569 &reduction_alg9 ($Xhi,$Xi);
570$code.=<<___;
571 pshufd \$0b01001110,$Hkey,$T1
572 pshufd \$0b01001110,$Xi,$T2
573 pxor $Hkey,$T1 # Karatsuba pre-processing
574 movdqu $Hkey,0x00($Htbl) # save H
575 pxor $Xi,$T2 # Karatsuba pre-processing
576 movdqu $Xi,0x10($Htbl) # save H^2
577 palignr \$8,$T1,$T2 # low part is H.lo^H.hi...
578 movdqu $T2,0x20($Htbl) # save Karatsuba "salt"
579___
580if ($do4xaggr) {
581 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H^3
582 &reduction_alg9 ($Xhi,$Xi);
583$code.=<<___;
584 movdqa $Xi,$T3
585___
586 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H^4
587 &reduction_alg9 ($Xhi,$Xi);
588$code.=<<___;
589 pshufd \$0b01001110,$T3,$T1
590 pshufd \$0b01001110,$Xi,$T2
591 pxor $T3,$T1 # Karatsuba pre-processing
592 movdqu $T3,0x30($Htbl) # save H^3
593 pxor $Xi,$T2 # Karatsuba pre-processing
594 movdqu $Xi,0x40($Htbl) # save H^4
595 palignr \$8,$T1,$T2 # low part is H^3.lo^H^3.hi...
596 movdqu $T2,0x50($Htbl) # save Karatsuba "salt"
597___
598}
599$code.=<<___ if ($win64);
600 movaps (%rsp),%xmm6
601 lea 0x18(%rsp),%rsp
602.LSEH_end_gcm_init_clmul:
603___
604$code.=<<___;
605 ret
606.cfi_endproc
607.size gcm_init_clmul,.-gcm_init_clmul
608___
609}
610
611{ my ($Xip,$Htbl)=@_4args;
612
613$code.=<<___;
614.globl gcm_gmult_clmul
615.type gcm_gmult_clmul,\@abi-omnipotent
616.align 16
617gcm_gmult_clmul:
618.cfi_startproc
619.L_gmult_clmul:
620 movdqu ($Xip),$Xi
621 movdqa .Lbswap_mask(%rip),$T3
622 movdqu ($Htbl),$Hkey
623 movdqu 0x20($Htbl),$T2
624 pshufb $T3,$Xi
625___
626 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$T2);
627$code.=<<___ if (0 || (&reduction_alg9($Xhi,$Xi)&&0));
628 # experimental alternative. special thing about is that there
629 # no dependency between the two multiplications...
630 mov \$`0xE1<<1`,%eax
631 mov \$0xA040608020C0E000,%r10 # ((7..0)·0xE0)&0xff
632 mov \$0x07,%r11d
633 movq %rax,$T1
634 movq %r10,$T2
635 movq %r11,$T3 # borrow $T3
636 pand $Xi,$T3
637 pshufb $T3,$T2 # ($Xi&7)·0xE0
638 movq %rax,$T3
639 pclmulqdq \$0x00,$Xi,$T1 # ·(0xE1<<1)
640 pxor $Xi,$T2
641 pslldq \$15,$T2
642 paddd $T2,$T2 # <<(64+56+1)
643 pxor $T2,$Xi
644 pclmulqdq \$0x01,$T3,$Xi
645 movdqa .Lbswap_mask(%rip),$T3 # reload $T3
646 psrldq \$1,$T1
647 pxor $T1,$Xhi
648 pslldq \$7,$Xi
649 pxor $Xhi,$Xi
650___
651$code.=<<___;
652 pshufb $T3,$Xi
653 movdqu $Xi,($Xip)
654 ret
655.cfi_endproc
656.size gcm_gmult_clmul,.-gcm_gmult_clmul
657___
658}
659
660
661{ my ($Xip,$Htbl,$inp,$len)=@_4args;
662 my ($Xln,$Xmn,$Xhn,$Hkey2,$HK) = map("%xmm$_",(3..7));
663 my ($T1,$T2,$T3)=map("%xmm$_",(8..10));
664
665$code.=<<___;
666.globl gcm_ghash_clmul
667.type gcm_ghash_clmul,\@abi-omnipotent
668.align 32
669gcm_ghash_clmul:
670.cfi_startproc
671.L_ghash_clmul:
672___
673$code.=<<___ if ($win64);
674 lea -0x88(%rsp),%rax
675.LSEH_begin_gcm_ghash_clmul:
676 # I can't trust assembler to use specific encoding:-(
677 .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax),%rsp
678 .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6,-0x20(%rax)
679 .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7,-0x10(%rax)
680 .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8,0(%rax)
681 .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9,0x10(%rax)
682 .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10,0x20(%rax)
683 .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11,0x30(%rax)
684 .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12,0x40(%rax)
685 .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13,0x50(%rax)
686 .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14,0x60(%rax)
687 .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15,0x70(%rax)
688___
689$code.=<<___;
690 movdqa .Lbswap_mask(%rip),$T3
691
692 movdqu ($Xip),$Xi
693 movdqu ($Htbl),$Hkey
694 movdqu 0x20($Htbl),$HK
695 pshufb $T3,$Xi
696
697 sub \$0x10,$len
698 jz .Lodd_tail
699
700 movdqu 0x10($Htbl),$Hkey2
701___
702if ($do4xaggr) {
703my ($Xl,$Xm,$Xh,$Hkey3,$Hkey4)=map("%xmm$_",(11..15));
704
705$code.=<<___;
706 mov OPENSSL_ia32cap_P+4(%rip),%eax
707 cmp \$0x30,$len
708 jb .Lskip4x
709
710 and \$`1<<26|1<<22`,%eax # isolate MOVBE+XSAVE
711 cmp \$`1<<22`,%eax # check for MOVBE without XSAVE
712 je .Lskip4x
713
714 sub \$0x30,$len
715 mov \$0xA040608020C0E000,%rax # ((7..0)·0xE0)&0xff
716 movdqu 0x30($Htbl),$Hkey3
717 movdqu 0x40($Htbl),$Hkey4
718
719 #######
720 # Xi+4 =[(H*Ii+3) + (H^2*Ii+2) + (H^3*Ii+1) + H^4*(Ii+Xi)] mod P
721 #
722 movdqu 0x30($inp),$Xln
723 movdqu 0x20($inp),$Xl
724 pshufb $T3,$Xln
725 pshufb $T3,$Xl
726 movdqa $Xln,$Xhn
727 pshufd \$0b01001110,$Xln,$Xmn
728 pxor $Xln,$Xmn
729 pclmulqdq \$0x00,$Hkey,$Xln
730 pclmulqdq \$0x11,$Hkey,$Xhn
731 pclmulqdq \$0x00,$HK,$Xmn
732
733 movdqa $Xl,$Xh
734 pshufd \$0b01001110,$Xl,$Xm
735 pxor $Xl,$Xm
736 pclmulqdq \$0x00,$Hkey2,$Xl
737 pclmulqdq \$0x11,$Hkey2,$Xh
738 pclmulqdq \$0x10,$HK,$Xm
739 xorps $Xl,$Xln
740 xorps $Xh,$Xhn
741 movups 0x50($Htbl),$HK
742 xorps $Xm,$Xmn
743
744 movdqu 0x10($inp),$Xl
745 movdqu 0($inp),$T1
746 pshufb $T3,$Xl
747 pshufb $T3,$T1
748 movdqa $Xl,$Xh
749 pshufd \$0b01001110,$Xl,$Xm
750 pxor $T1,$Xi
751 pxor $Xl,$Xm
752 pclmulqdq \$0x00,$Hkey3,$Xl
753 movdqa $Xi,$Xhi
754 pshufd \$0b01001110,$Xi,$T1
755 pxor $Xi,$T1
756 pclmulqdq \$0x11,$Hkey3,$Xh
757 pclmulqdq \$0x00,$HK,$Xm
758 xorps $Xl,$Xln
759 xorps $Xh,$Xhn
760
761 lea 0x40($inp),$inp
762 sub \$0x40,$len
763 jc .Ltail4x
764
765 jmp .Lmod4_loop
766.align 32
767.Lmod4_loop:
768 pclmulqdq \$0x00,$Hkey4,$Xi
769 xorps $Xm,$Xmn
770 movdqu 0x30($inp),$Xl
771 pshufb $T3,$Xl
772 pclmulqdq \$0x11,$Hkey4,$Xhi
773 xorps $Xln,$Xi
774 movdqu 0x20($inp),$Xln
775 movdqa $Xl,$Xh
776 pclmulqdq \$0x10,$HK,$T1
777 pshufd \$0b01001110,$Xl,$Xm
778 xorps $Xhn,$Xhi
779 pxor $Xl,$Xm
780 pshufb $T3,$Xln
781 movups 0x20($Htbl),$HK
782 xorps $Xmn,$T1
783 pclmulqdq \$0x00,$Hkey,$Xl
784 pshufd \$0b01001110,$Xln,$Xmn
785
786 pxor $Xi,$T1 # aggregated Karatsuba post-processing
787 movdqa $Xln,$Xhn
788 pxor $Xhi,$T1 #
789 pxor $Xln,$Xmn
790 movdqa $T1,$T2 #
791 pclmulqdq \$0x11,$Hkey,$Xh
792 pslldq \$8,$T1
793 psrldq \$8,$T2 #
794 pxor $T1,$Xi
795 movdqa .L7_mask(%rip),$T1
796 pxor $T2,$Xhi #
797 movq %rax,$T2
798
799 pand $Xi,$T1 # 1st phase
800 pshufb $T1,$T2 #
801 pxor $Xi,$T2 #
802 pclmulqdq \$0x00,$HK,$Xm
803 psllq \$57,$T2 #
804 movdqa $T2,$T1 #
805 pslldq \$8,$T2
806 pclmulqdq \$0x00,$Hkey2,$Xln
807 psrldq \$8,$T1 #
808 pxor $T2,$Xi
809 pxor $T1,$Xhi #
810 movdqu 0($inp),$T1
811
812 movdqa $Xi,$T2 # 2nd phase
813 psrlq \$1,$Xi
814 pclmulqdq \$0x11,$Hkey2,$Xhn
815 xorps $Xl,$Xln
816 movdqu 0x10($inp),$Xl
817 pshufb $T3,$Xl
818 pclmulqdq \$0x10,$HK,$Xmn
819 xorps $Xh,$Xhn
820 movups 0x50($Htbl),$HK
821 pshufb $T3,$T1
822 pxor $T2,$Xhi #
823 pxor $Xi,$T2
824 psrlq \$5,$Xi
825
826 movdqa $Xl,$Xh
827 pxor $Xm,$Xmn
828 pshufd \$0b01001110,$Xl,$Xm
829 pxor $T2,$Xi #
830 pxor $T1,$Xhi
831 pxor $Xl,$Xm
832 pclmulqdq \$0x00,$Hkey3,$Xl
833 psrlq \$1,$Xi #
834 pxor $Xhi,$Xi #
835 movdqa $Xi,$Xhi
836 pclmulqdq \$0x11,$Hkey3,$Xh
837 xorps $Xl,$Xln
838 pshufd \$0b01001110,$Xi,$T1
839 pxor $Xi,$T1
840
841 pclmulqdq \$0x00,$HK,$Xm
842 xorps $Xh,$Xhn
843
844 lea 0x40($inp),$inp
845 sub \$0x40,$len
846 jnc .Lmod4_loop
847
848.Ltail4x:
849 pclmulqdq \$0x00,$Hkey4,$Xi
850 pclmulqdq \$0x11,$Hkey4,$Xhi
851 pclmulqdq \$0x10,$HK,$T1
852 xorps $Xm,$Xmn
853 xorps $Xln,$Xi
854 xorps $Xhn,$Xhi
855 pxor $Xi,$Xhi # aggregated Karatsuba post-processing
856 pxor $Xmn,$T1
857
858 pxor $Xhi,$T1 #
859 pxor $Xi,$Xhi
860
861 movdqa $T1,$T2 #
862 psrldq \$8,$T1
863 pslldq \$8,$T2 #
864 pxor $T1,$Xhi
865 pxor $T2,$Xi #
866___
867 &reduction_alg9($Xhi,$Xi);
868$code.=<<___;
869 add \$0x40,$len
870 jz .Ldone
871 movdqu 0x20($Htbl),$HK
872 sub \$0x10,$len
873 jz .Lodd_tail
874.Lskip4x:
875___
876}
877$code.=<<___;
878 #######
879 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
880 # [(H*Ii+1) + (H*Xi+1)] mod P =
881 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P
882 #
883 movdqu ($inp),$T1 # Ii
884 movdqu 16($inp),$Xln # Ii+1
885 pshufb $T3,$T1
886 pshufb $T3,$Xln
887 pxor $T1,$Xi # Ii+Xi
888
889 movdqa $Xln,$Xhn
890 pshufd \$0b01001110,$Xln,$Xmn
891 pxor $Xln,$Xmn
892 pclmulqdq \$0x00,$Hkey,$Xln
893 pclmulqdq \$0x11,$Hkey,$Xhn
894 pclmulqdq \$0x00,$HK,$Xmn
895
896 lea 32($inp),$inp # i+=2
897 nop
898 sub \$0x20,$len
899 jbe .Leven_tail
900 nop
901 jmp .Lmod_loop
902
903.align 32
904.Lmod_loop:
905 movdqa $Xi,$Xhi
906 movdqa $Xmn,$T1
907 pshufd \$0b01001110,$Xi,$Xmn #
908 pxor $Xi,$Xmn #
909
910 pclmulqdq \$0x00,$Hkey2,$Xi
911 pclmulqdq \$0x11,$Hkey2,$Xhi
912 pclmulqdq \$0x10,$HK,$Xmn
913
914 pxor $Xln,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
915 pxor $Xhn,$Xhi
916 movdqu ($inp),$T2 # Ii
917 pxor $Xi,$T1 # aggregated Karatsuba post-processing
918 pshufb $T3,$T2
919 movdqu 16($inp),$Xln # Ii+1
920
921 pxor $Xhi,$T1
922 pxor $T2,$Xhi # "Ii+Xi", consume early
923 pxor $T1,$Xmn
924 pshufb $T3,$Xln
925 movdqa $Xmn,$T1 #
926 psrldq \$8,$T1
927 pslldq \$8,$Xmn #
928 pxor $T1,$Xhi
929 pxor $Xmn,$Xi #
930
931 movdqa $Xln,$Xhn #
932
933 movdqa $Xi,$T2 # 1st phase
934 movdqa $Xi,$T1
935 psllq \$5,$Xi
936 pxor $Xi,$T1 #
937 pclmulqdq \$0x00,$Hkey,$Xln #######
938 psllq \$1,$Xi
939 pxor $T1,$Xi #
940 psllq \$57,$Xi #
941 movdqa $Xi,$T1 #
942 pslldq \$8,$Xi
943 psrldq \$8,$T1 #
944 pxor $T2,$Xi
945 pshufd \$0b01001110,$Xhn,$Xmn
946 pxor $T1,$Xhi #
947 pxor $Xhn,$Xmn #
948
949 movdqa $Xi,$T2 # 2nd phase
950 psrlq \$1,$Xi
951 pclmulqdq \$0x11,$Hkey,$Xhn #######
952 pxor $T2,$Xhi #
953 pxor $Xi,$T2
954 psrlq \$5,$Xi
955 pxor $T2,$Xi #
956 lea 32($inp),$inp
957 psrlq \$1,$Xi #
958 pclmulqdq \$0x00,$HK,$Xmn #######
959 pxor $Xhi,$Xi #
960
961 sub \$0x20,$len
962 ja .Lmod_loop
963
964.Leven_tail:
965 movdqa $Xi,$Xhi
966 movdqa $Xmn,$T1
967 pshufd \$0b01001110,$Xi,$Xmn #
968 pxor $Xi,$Xmn #
969
970 pclmulqdq \$0x00,$Hkey2,$Xi
971 pclmulqdq \$0x11,$Hkey2,$Xhi
972 pclmulqdq \$0x10,$HK,$Xmn
973
974 pxor $Xln,$Xi # (H*Ii+1) + H^2*(Ii+Xi)
975 pxor $Xhn,$Xhi
976 pxor $Xi,$T1
977 pxor $Xhi,$T1
978 pxor $T1,$Xmn
979 movdqa $Xmn,$T1 #
980 psrldq \$8,$T1
981 pslldq \$8,$Xmn #
982 pxor $T1,$Xhi
983 pxor $Xmn,$Xi #
984___
985 &reduction_alg9 ($Xhi,$Xi);
986$code.=<<___;
987 test $len,$len
988 jnz .Ldone
989
990.Lodd_tail:
991 movdqu ($inp),$T1 # Ii
992 pshufb $T3,$T1
993 pxor $T1,$Xi # Ii+Xi
994___
995 &clmul64x64_T2 ($Xhi,$Xi,$Hkey,$HK); # H*(Ii+Xi)
996 &reduction_alg9 ($Xhi,$Xi);
997$code.=<<___;
998.Ldone:
999 pshufb $T3,$Xi
1000 movdqu $Xi,($Xip)
1001___
1002$code.=<<___ if ($win64);
1003 movaps (%rsp),%xmm6
1004 movaps 0x10(%rsp),%xmm7
1005 movaps 0x20(%rsp),%xmm8
1006 movaps 0x30(%rsp),%xmm9
1007 movaps 0x40(%rsp),%xmm10
1008 movaps 0x50(%rsp),%xmm11
1009 movaps 0x60(%rsp),%xmm12
1010 movaps 0x70(%rsp),%xmm13
1011 movaps 0x80(%rsp),%xmm14
1012 movaps 0x90(%rsp),%xmm15
1013 lea 0xa8(%rsp),%rsp
1014.LSEH_end_gcm_ghash_clmul:
1015___
1016$code.=<<___;
1017 ret
1018.cfi_endproc
1019.size gcm_ghash_clmul,.-gcm_ghash_clmul
1020___
1021}
1022
1023
1024$code.=<<___;
1025.globl gcm_init_avx
1026.type gcm_init_avx,\@abi-omnipotent
1027.align 32
1028gcm_init_avx:
1029.cfi_startproc
1030___
1031if ($avx) {
1032my ($Htbl,$Xip)=@_4args;
1033my $HK="%xmm6";
1034
1035$code.=<<___ if ($win64);
1036.LSEH_begin_gcm_init_avx:
1037 # I can't trust assembler to use specific encoding:-(
1038 .byte 0x48,0x83,0xec,0x18 #sub $0x18,%rsp
1039 .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp)
1040___
1041$code.=<<___;
1042 vzeroupper
1043
1044 vmovdqu ($Xip),$Hkey
1045 vpshufd \$0b01001110,$Hkey,$Hkey # dword swap
1046
1047 # <<1 twist
1048 vpshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword
1049 vpsrlq \$63,$Hkey,$T1
1050 vpsllq \$1,$Hkey,$Hkey
1051 vpxor $T3,$T3,$T3 #
1052 vpcmpgtd $T2,$T3,$T3 # broadcast carry bit
1053 vpslldq \$8,$T1,$T1
1054 vpor $T1,$Hkey,$Hkey # H<<=1
1055
1056 # magic reduction
1057 vpand .L0x1c2_polynomial(%rip),$T3,$T3
1058 vpxor $T3,$Hkey,$Hkey # if(carry) H^=0x1c2_polynomial
1059
1060 vpunpckhqdq $Hkey,$Hkey,$HK
1061 vmovdqa $Hkey,$Xi
1062 vpxor $Hkey,$HK,$HK
1063 mov \$4,%r10 # up to H^8
1064 jmp .Linit_start_avx
1065___
1066
1067sub clmul64x64_avx {
1068my ($Xhi,$Xi,$Hkey,$HK)=@_;
1069
1070if (!defined($HK)) { $HK = $T2;
1071$code.=<<___;
1072 vpunpckhqdq $Xi,$Xi,$T1
1073 vpunpckhqdq $Hkey,$Hkey,$T2
1074 vpxor $Xi,$T1,$T1 #
1075 vpxor $Hkey,$T2,$T2
1076___
1077} else {
1078$code.=<<___;
1079 vpunpckhqdq $Xi,$Xi,$T1
1080 vpxor $Xi,$T1,$T1 #
1081___
1082}
1083$code.=<<___;
1084 vpclmulqdq \$0x11,$Hkey,$Xi,$Xhi #######
1085 vpclmulqdq \$0x00,$Hkey,$Xi,$Xi #######
1086 vpclmulqdq \$0x00,$HK,$T1,$T1 #######
1087 vpxor $Xi,$Xhi,$T2 #
1088 vpxor $T2,$T1,$T1 #
1089
1090 vpslldq \$8,$T1,$T2 #
1091 vpsrldq \$8,$T1,$T1
1092 vpxor $T2,$Xi,$Xi #
1093 vpxor $T1,$Xhi,$Xhi
1094___
1095}
1096
1097sub reduction_avx {
1098my ($Xhi,$Xi) = @_;
1099
1100$code.=<<___;
1101 vpsllq \$57,$Xi,$T1 # 1st phase
1102 vpsllq \$62,$Xi,$T2
1103 vpxor $T1,$T2,$T2 #
1104 vpsllq \$63,$Xi,$T1
1105 vpxor $T1,$T2,$T2 #
1106 vpslldq \$8,$T2,$T1 #
1107 vpsrldq \$8,$T2,$T2
1108 vpxor $T1,$Xi,$Xi #
1109 vpxor $T2,$Xhi,$Xhi
1110
1111 vpsrlq \$1,$Xi,$T2 # 2nd phase
1112 vpxor $Xi,$Xhi,$Xhi
1113 vpxor $T2,$Xi,$Xi #
1114 vpsrlq \$5,$T2,$T2
1115 vpxor $T2,$Xi,$Xi #
1116 vpsrlq \$1,$Xi,$Xi #
1117 vpxor $Xhi,$Xi,$Xi #
1118___
1119}
1120
1121$code.=<<___;
1122.align 32
1123.Linit_loop_avx:
1124 vpalignr \$8,$T1,$T2,$T3 # low part is H.lo^H.hi...
1125 vmovdqu $T3,-0x10($Htbl) # save Karatsuba "salt"
1126___
1127 &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK); # calculate H^3,5,7
1128 &reduction_avx ($Xhi,$Xi);
1129$code.=<<___;
1130.Linit_start_avx:
1131 vmovdqa $Xi,$T3
1132___
1133 &clmul64x64_avx ($Xhi,$Xi,$Hkey,$HK); # calculate H^2,4,6,8
1134 &reduction_avx ($Xhi,$Xi);
1135$code.=<<___;
1136 vpshufd \$0b01001110,$T3,$T1
1137 vpshufd \$0b01001110,$Xi,$T2
1138 vpxor $T3,$T1,$T1 # Karatsuba pre-processing
1139 vmovdqu $T3,0x00($Htbl) # save H^1,3,5,7
1140 vpxor $Xi,$T2,$T2 # Karatsuba pre-processing
1141 vmovdqu $Xi,0x10($Htbl) # save H^2,4,6,8
1142 lea 0x30($Htbl),$Htbl
1143 sub \$1,%r10
1144 jnz .Linit_loop_avx
1145
1146 vpalignr \$8,$T2,$T1,$T3 # last "salt" is flipped
1147 vmovdqu $T3,-0x10($Htbl)
1148
1149 vzeroupper
1150___
1151$code.=<<___ if ($win64);
1152 movaps (%rsp),%xmm6
1153 lea 0x18(%rsp),%rsp
1154.LSEH_end_gcm_init_avx:
1155___
1156$code.=<<___;
1157 ret
1158.cfi_endproc
1159.size gcm_init_avx,.-gcm_init_avx
1160___
1161} else {
1162$code.=<<___;
1163 jmp .L_init_clmul
1164.cfi_endproc
1165.size gcm_init_avx,.-gcm_init_avx
1166___
1167}
1168
1169$code.=<<___;
1170.globl gcm_gmult_avx
1171.type gcm_gmult_avx,\@abi-omnipotent
1172.align 32
1173gcm_gmult_avx:
1174.cfi_startproc
1175 jmp .L_gmult_clmul
1176.cfi_endproc
1177.size gcm_gmult_avx,.-gcm_gmult_avx
1178___
1179
1180
1181$code.=<<___;
1182.globl gcm_ghash_avx
1183.type gcm_ghash_avx,\@abi-omnipotent
1184.align 32
1185gcm_ghash_avx:
1186.cfi_startproc
1187___
1188if ($avx) {
1189my ($Xip,$Htbl,$inp,$len)=@_4args;
1190my ($Xlo,$Xhi,$Xmi,
1191 $Zlo,$Zhi,$Zmi,
1192 $Hkey,$HK,$T1,$T2,
1193 $Xi,$Xo,$Tred,$bswap,$Ii,$Ij) = map("%xmm$_",(0..15));
1194
1195$code.=<<___ if ($win64);
1196 lea -0x88(%rsp),%rax
1197.LSEH_begin_gcm_ghash_avx:
1198 # I can't trust assembler to use specific encoding:-(
1199 .byte 0x48,0x8d,0x60,0xe0 #lea -0x20(%rax),%rsp
1200 .byte 0x0f,0x29,0x70,0xe0 #movaps %xmm6,-0x20(%rax)
1201 .byte 0x0f,0x29,0x78,0xf0 #movaps %xmm7,-0x10(%rax)
1202 .byte 0x44,0x0f,0x29,0x00 #movaps %xmm8,0(%rax)
1203 .byte 0x44,0x0f,0x29,0x48,0x10 #movaps %xmm9,0x10(%rax)
1204 .byte 0x44,0x0f,0x29,0x50,0x20 #movaps %xmm10,0x20(%rax)
1205 .byte 0x44,0x0f,0x29,0x58,0x30 #movaps %xmm11,0x30(%rax)
1206 .byte 0x44,0x0f,0x29,0x60,0x40 #movaps %xmm12,0x40(%rax)
1207 .byte 0x44,0x0f,0x29,0x68,0x50 #movaps %xmm13,0x50(%rax)
1208 .byte 0x44,0x0f,0x29,0x70,0x60 #movaps %xmm14,0x60(%rax)
1209 .byte 0x44,0x0f,0x29,0x78,0x70 #movaps %xmm15,0x70(%rax)
1210___
1211$code.=<<___;
1212 vzeroupper
1213
1214 vmovdqu ($Xip),$Xi # load $Xi
1215 lea .L0x1c2_polynomial(%rip),%r10
1216 lea 0x40($Htbl),$Htbl # size optimization
1217 vmovdqu .Lbswap_mask(%rip),$bswap
1218 vpshufb $bswap,$Xi,$Xi
1219 cmp \$0x80,$len
1220 jb .Lshort_avx
1221 sub \$0x80,$len
1222
1223 vmovdqu 0x70($inp),$Ii # I[7]
1224 vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1
1225 vpshufb $bswap,$Ii,$Ii
1226 vmovdqu 0x20-0x40($Htbl),$HK
1227
1228 vpunpckhqdq $Ii,$Ii,$T2
1229 vmovdqu 0x60($inp),$Ij # I[6]
1230 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1231 vpxor $Ii,$T2,$T2
1232 vpshufb $bswap,$Ij,$Ij
1233 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1234 vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2
1235 vpunpckhqdq $Ij,$Ij,$T1
1236 vmovdqu 0x50($inp),$Ii # I[5]
1237 vpclmulqdq \$0x00,$HK,$T2,$Xmi
1238 vpxor $Ij,$T1,$T1
1239
1240 vpshufb $bswap,$Ii,$Ii
1241 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1242 vpunpckhqdq $Ii,$Ii,$T2
1243 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1244 vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3
1245 vpxor $Ii,$T2,$T2
1246 vmovdqu 0x40($inp),$Ij # I[4]
1247 vpclmulqdq \$0x10,$HK,$T1,$Zmi
1248 vmovdqu 0x50-0x40($Htbl),$HK
1249
1250 vpshufb $bswap,$Ij,$Ij
1251 vpxor $Xlo,$Zlo,$Zlo
1252 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1253 vpxor $Xhi,$Zhi,$Zhi
1254 vpunpckhqdq $Ij,$Ij,$T1
1255 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1256 vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4
1257 vpxor $Xmi,$Zmi,$Zmi
1258 vpclmulqdq \$0x00,$HK,$T2,$Xmi
1259 vpxor $Ij,$T1,$T1
1260
1261 vmovdqu 0x30($inp),$Ii # I[3]
1262 vpxor $Zlo,$Xlo,$Xlo
1263 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1264 vpxor $Zhi,$Xhi,$Xhi
1265 vpshufb $bswap,$Ii,$Ii
1266 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1267 vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5
1268 vpxor $Zmi,$Xmi,$Xmi
1269 vpunpckhqdq $Ii,$Ii,$T2
1270 vpclmulqdq \$0x10,$HK,$T1,$Zmi
1271 vmovdqu 0x80-0x40($Htbl),$HK
1272 vpxor $Ii,$T2,$T2
1273
1274 vmovdqu 0x20($inp),$Ij # I[2]
1275 vpxor $Xlo,$Zlo,$Zlo
1276 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1277 vpxor $Xhi,$Zhi,$Zhi
1278 vpshufb $bswap,$Ij,$Ij
1279 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1280 vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6
1281 vpxor $Xmi,$Zmi,$Zmi
1282 vpunpckhqdq $Ij,$Ij,$T1
1283 vpclmulqdq \$0x00,$HK,$T2,$Xmi
1284 vpxor $Ij,$T1,$T1
1285
1286 vmovdqu 0x10($inp),$Ii # I[1]
1287 vpxor $Zlo,$Xlo,$Xlo
1288 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1289 vpxor $Zhi,$Xhi,$Xhi
1290 vpshufb $bswap,$Ii,$Ii
1291 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1292 vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7
1293 vpxor $Zmi,$Xmi,$Xmi
1294 vpunpckhqdq $Ii,$Ii,$T2
1295 vpclmulqdq \$0x10,$HK,$T1,$Zmi
1296 vmovdqu 0xb0-0x40($Htbl),$HK
1297 vpxor $Ii,$T2,$T2
1298
1299 vmovdqu ($inp),$Ij # I[0]
1300 vpxor $Xlo,$Zlo,$Zlo
1301 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1302 vpxor $Xhi,$Zhi,$Zhi
1303 vpshufb $bswap,$Ij,$Ij
1304 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1305 vmovdqu 0xa0-0x40($Htbl),$Hkey # $Hkey^8
1306 vpxor $Xmi,$Zmi,$Zmi
1307 vpclmulqdq \$0x10,$HK,$T2,$Xmi
1308
1309 lea 0x80($inp),$inp
1310 cmp \$0x80,$len
1311 jb .Ltail_avx
1312
1313 vpxor $Xi,$Ij,$Ij # accumulate $Xi
1314 sub \$0x80,$len
1315 jmp .Loop8x_avx
1316
1317.align 32
1318.Loop8x_avx:
1319 vpunpckhqdq $Ij,$Ij,$T1
1320 vmovdqu 0x70($inp),$Ii # I[7]
1321 vpxor $Xlo,$Zlo,$Zlo
1322 vpxor $Ij,$T1,$T1
1323 vpclmulqdq \$0x00,$Hkey,$Ij,$Xi
1324 vpshufb $bswap,$Ii,$Ii
1325 vpxor $Xhi,$Zhi,$Zhi
1326 vpclmulqdq \$0x11,$Hkey,$Ij,$Xo
1327 vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1
1328 vpunpckhqdq $Ii,$Ii,$T2
1329 vpxor $Xmi,$Zmi,$Zmi
1330 vpclmulqdq \$0x00,$HK,$T1,$Tred
1331 vmovdqu 0x20-0x40($Htbl),$HK
1332 vpxor $Ii,$T2,$T2
1333
1334 vmovdqu 0x60($inp),$Ij # I[6]
1335 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1336 vpxor $Zlo,$Xi,$Xi # collect result
1337 vpshufb $bswap,$Ij,$Ij
1338 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1339 vxorps $Zhi,$Xo,$Xo
1340 vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2
1341 vpunpckhqdq $Ij,$Ij,$T1
1342 vpclmulqdq \$0x00,$HK, $T2,$Xmi
1343 vpxor $Zmi,$Tred,$Tred
1344 vxorps $Ij,$T1,$T1
1345
1346 vmovdqu 0x50($inp),$Ii # I[5]
1347 vpxor $Xi,$Tred,$Tred # aggregated Karatsuba post-processing
1348 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1349 vpxor $Xo,$Tred,$Tred
1350 vpslldq \$8,$Tred,$T2
1351 vpxor $Xlo,$Zlo,$Zlo
1352 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1353 vpsrldq \$8,$Tred,$Tred
1354 vpxor $T2, $Xi, $Xi
1355 vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3
1356 vpshufb $bswap,$Ii,$Ii
1357 vxorps $Tred,$Xo, $Xo
1358 vpxor $Xhi,$Zhi,$Zhi
1359 vpunpckhqdq $Ii,$Ii,$T2
1360 vpclmulqdq \$0x10,$HK, $T1,$Zmi
1361 vmovdqu 0x50-0x40($Htbl),$HK
1362 vpxor $Ii,$T2,$T2
1363 vpxor $Xmi,$Zmi,$Zmi
1364
1365 vmovdqu 0x40($inp),$Ij # I[4]
1366 vpalignr \$8,$Xi,$Xi,$Tred # 1st phase
1367 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1368 vpshufb $bswap,$Ij,$Ij
1369 vpxor $Zlo,$Xlo,$Xlo
1370 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1371 vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4
1372 vpunpckhqdq $Ij,$Ij,$T1
1373 vpxor $Zhi,$Xhi,$Xhi
1374 vpclmulqdq \$0x00,$HK, $T2,$Xmi
1375 vxorps $Ij,$T1,$T1
1376 vpxor $Zmi,$Xmi,$Xmi
1377
1378 vmovdqu 0x30($inp),$Ii # I[3]
1379 vpclmulqdq \$0x10,(%r10),$Xi,$Xi
1380 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1381 vpshufb $bswap,$Ii,$Ii
1382 vpxor $Xlo,$Zlo,$Zlo
1383 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1384 vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5
1385 vpunpckhqdq $Ii,$Ii,$T2
1386 vpxor $Xhi,$Zhi,$Zhi
1387 vpclmulqdq \$0x10,$HK, $T1,$Zmi
1388 vmovdqu 0x80-0x40($Htbl),$HK
1389 vpxor $Ii,$T2,$T2
1390 vpxor $Xmi,$Zmi,$Zmi
1391
1392 vmovdqu 0x20($inp),$Ij # I[2]
1393 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1394 vpshufb $bswap,$Ij,$Ij
1395 vpxor $Zlo,$Xlo,$Xlo
1396 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1397 vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6
1398 vpunpckhqdq $Ij,$Ij,$T1
1399 vpxor $Zhi,$Xhi,$Xhi
1400 vpclmulqdq \$0x00,$HK, $T2,$Xmi
1401 vpxor $Ij,$T1,$T1
1402 vpxor $Zmi,$Xmi,$Xmi
1403 vxorps $Tred,$Xi,$Xi
1404
1405 vmovdqu 0x10($inp),$Ii # I[1]
1406 vpalignr \$8,$Xi,$Xi,$Tred # 2nd phase
1407 vpclmulqdq \$0x00,$Hkey,$Ij,$Zlo
1408 vpshufb $bswap,$Ii,$Ii
1409 vpxor $Xlo,$Zlo,$Zlo
1410 vpclmulqdq \$0x11,$Hkey,$Ij,$Zhi
1411 vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7
1412 vpclmulqdq \$0x10,(%r10),$Xi,$Xi
1413 vxorps $Xo,$Tred,$Tred
1414 vpunpckhqdq $Ii,$Ii,$T2
1415 vpxor $Xhi,$Zhi,$Zhi
1416 vpclmulqdq \$0x10,$HK, $T1,$Zmi
1417 vmovdqu 0xb0-0x40($Htbl),$HK
1418 vpxor $Ii,$T2,$T2
1419 vpxor $Xmi,$Zmi,$Zmi
1420
1421 vmovdqu ($inp),$Ij # I[0]
1422 vpclmulqdq \$0x00,$Hkey,$Ii,$Xlo
1423 vpshufb $bswap,$Ij,$Ij
1424 vpclmulqdq \$0x11,$Hkey,$Ii,$Xhi
1425 vmovdqu 0xa0-0x40($Htbl),$Hkey # $Hkey^8
1426 vpxor $Tred,$Ij,$Ij
1427 vpclmulqdq \$0x10,$HK, $T2,$Xmi
1428 vpxor $Xi,$Ij,$Ij # accumulate $Xi
1429
1430 lea 0x80($inp),$inp
1431 sub \$0x80,$len
1432 jnc .Loop8x_avx
1433
1434 add \$0x80,$len
1435 jmp .Ltail_no_xor_avx
1436
1437.align 32
1438.Lshort_avx:
1439 vmovdqu -0x10($inp,$len),$Ii # very last word
1440 lea ($inp,$len),$inp
1441 vmovdqu 0x00-0x40($Htbl),$Hkey # $Hkey^1
1442 vmovdqu 0x20-0x40($Htbl),$HK
1443 vpshufb $bswap,$Ii,$Ij
1444
1445 vmovdqa $Xlo,$Zlo # subtle way to zero $Zlo,
1446 vmovdqa $Xhi,$Zhi # $Zhi and
1447 vmovdqa $Xmi,$Zmi # $Zmi
1448 sub \$0x10,$len
1449 jz .Ltail_avx
1450
1451 vpunpckhqdq $Ij,$Ij,$T1
1452 vpxor $Xlo,$Zlo,$Zlo
1453 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1454 vpxor $Ij,$T1,$T1
1455 vmovdqu -0x20($inp),$Ii
1456 vpxor $Xhi,$Zhi,$Zhi
1457 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1458 vmovdqu 0x10-0x40($Htbl),$Hkey # $Hkey^2
1459 vpshufb $bswap,$Ii,$Ij
1460 vpxor $Xmi,$Zmi,$Zmi
1461 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1462 vpsrldq \$8,$HK,$HK
1463 sub \$0x10,$len
1464 jz .Ltail_avx
1465
1466 vpunpckhqdq $Ij,$Ij,$T1
1467 vpxor $Xlo,$Zlo,$Zlo
1468 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1469 vpxor $Ij,$T1,$T1
1470 vmovdqu -0x30($inp),$Ii
1471 vpxor $Xhi,$Zhi,$Zhi
1472 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1473 vmovdqu 0x30-0x40($Htbl),$Hkey # $Hkey^3
1474 vpshufb $bswap,$Ii,$Ij
1475 vpxor $Xmi,$Zmi,$Zmi
1476 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1477 vmovdqu 0x50-0x40($Htbl),$HK
1478 sub \$0x10,$len
1479 jz .Ltail_avx
1480
1481 vpunpckhqdq $Ij,$Ij,$T1
1482 vpxor $Xlo,$Zlo,$Zlo
1483 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1484 vpxor $Ij,$T1,$T1
1485 vmovdqu -0x40($inp),$Ii
1486 vpxor $Xhi,$Zhi,$Zhi
1487 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1488 vmovdqu 0x40-0x40($Htbl),$Hkey # $Hkey^4
1489 vpshufb $bswap,$Ii,$Ij
1490 vpxor $Xmi,$Zmi,$Zmi
1491 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1492 vpsrldq \$8,$HK,$HK
1493 sub \$0x10,$len
1494 jz .Ltail_avx
1495
1496 vpunpckhqdq $Ij,$Ij,$T1
1497 vpxor $Xlo,$Zlo,$Zlo
1498 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1499 vpxor $Ij,$T1,$T1
1500 vmovdqu -0x50($inp),$Ii
1501 vpxor $Xhi,$Zhi,$Zhi
1502 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1503 vmovdqu 0x60-0x40($Htbl),$Hkey # $Hkey^5
1504 vpshufb $bswap,$Ii,$Ij
1505 vpxor $Xmi,$Zmi,$Zmi
1506 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1507 vmovdqu 0x80-0x40($Htbl),$HK
1508 sub \$0x10,$len
1509 jz .Ltail_avx
1510
1511 vpunpckhqdq $Ij,$Ij,$T1
1512 vpxor $Xlo,$Zlo,$Zlo
1513 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1514 vpxor $Ij,$T1,$T1
1515 vmovdqu -0x60($inp),$Ii
1516 vpxor $Xhi,$Zhi,$Zhi
1517 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1518 vmovdqu 0x70-0x40($Htbl),$Hkey # $Hkey^6
1519 vpshufb $bswap,$Ii,$Ij
1520 vpxor $Xmi,$Zmi,$Zmi
1521 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1522 vpsrldq \$8,$HK,$HK
1523 sub \$0x10,$len
1524 jz .Ltail_avx
1525
1526 vpunpckhqdq $Ij,$Ij,$T1
1527 vpxor $Xlo,$Zlo,$Zlo
1528 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1529 vpxor $Ij,$T1,$T1
1530 vmovdqu -0x70($inp),$Ii
1531 vpxor $Xhi,$Zhi,$Zhi
1532 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1533 vmovdqu 0x90-0x40($Htbl),$Hkey # $Hkey^7
1534 vpshufb $bswap,$Ii,$Ij
1535 vpxor $Xmi,$Zmi,$Zmi
1536 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1537 vmovq 0xb8-0x40($Htbl),$HK
1538 sub \$0x10,$len
1539 jmp .Ltail_avx
1540
1541.align 32
1542.Ltail_avx:
1543 vpxor $Xi,$Ij,$Ij # accumulate $Xi
1544.Ltail_no_xor_avx:
1545 vpunpckhqdq $Ij,$Ij,$T1
1546 vpxor $Xlo,$Zlo,$Zlo
1547 vpclmulqdq \$0x00,$Hkey,$Ij,$Xlo
1548 vpxor $Ij,$T1,$T1
1549 vpxor $Xhi,$Zhi,$Zhi
1550 vpclmulqdq \$0x11,$Hkey,$Ij,$Xhi
1551 vpxor $Xmi,$Zmi,$Zmi
1552 vpclmulqdq \$0x00,$HK,$T1,$Xmi
1553
1554 vmovdqu (%r10),$Tred
1555
1556 vpxor $Xlo,$Zlo,$Xi
1557 vpxor $Xhi,$Zhi,$Xo
1558 vpxor $Xmi,$Zmi,$Zmi
1559
1560 vpxor $Xi, $Zmi,$Zmi # aggregated Karatsuba post-processing
1561 vpxor $Xo, $Zmi,$Zmi
1562 vpslldq \$8, $Zmi,$T2
1563 vpsrldq \$8, $Zmi,$Zmi
1564 vpxor $T2, $Xi, $Xi
1565 vpxor $Zmi,$Xo, $Xo
1566
1567 vpclmulqdq \$0x10,$Tred,$Xi,$T2 # 1st phase
1568 vpalignr \$8,$Xi,$Xi,$Xi
1569 vpxor $T2,$Xi,$Xi
1570
1571 vpclmulqdq \$0x10,$Tred,$Xi,$T2 # 2nd phase
1572 vpalignr \$8,$Xi,$Xi,$Xi
1573 vpxor $Xo,$Xi,$Xi
1574 vpxor $T2,$Xi,$Xi
1575
1576 cmp \$0,$len
1577 jne .Lshort_avx
1578
1579 vpshufb $bswap,$Xi,$Xi
1580 vmovdqu $Xi,($Xip)
1581 vzeroupper
1582___
1583$code.=<<___ if ($win64);
1584 movaps (%rsp),%xmm6
1585 movaps 0x10(%rsp),%xmm7
1586 movaps 0x20(%rsp),%xmm8
1587 movaps 0x30(%rsp),%xmm9
1588 movaps 0x40(%rsp),%xmm10
1589 movaps 0x50(%rsp),%xmm11
1590 movaps 0x60(%rsp),%xmm12
1591 movaps 0x70(%rsp),%xmm13
1592 movaps 0x80(%rsp),%xmm14
1593 movaps 0x90(%rsp),%xmm15
1594 lea 0xa8(%rsp),%rsp
1595.LSEH_end_gcm_ghash_avx:
1596___
1597$code.=<<___;
1598 ret
1599.cfi_endproc
1600.size gcm_ghash_avx,.-gcm_ghash_avx
1601___
1602} else {
1603$code.=<<___;
1604 jmp .L_ghash_clmul
1605.cfi_endproc
1606.size gcm_ghash_avx,.-gcm_ghash_avx
1607___
1608}
1609
1610
1611$code.=<<___;
1612.align 64
1613.Lbswap_mask:
1614 .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0
1615.L0x1c2_polynomial:
1616 .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2
1617.L7_mask:
1618 .long 7,0,7,0
1619.L7_mask_poly:
1620 .long 7,0,`0xE1<<1`,0
1621.align 64
1622.type .Lrem_4bit,\@object
1623.Lrem_4bit:
1624 .long 0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`
1625 .long 0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`
1626 .long 0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`
1627 .long 0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`
1628.type .Lrem_8bit,\@object
1629.Lrem_8bit:
1630 .value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E
1631 .value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E
1632 .value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E
1633 .value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E
1634 .value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E
1635 .value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E
1636 .value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E
1637 .value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E
1638 .value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE
1639 .value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE
1640 .value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE
1641 .value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE
1642 .value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E
1643 .value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E
1644 .value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE
1645 .value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE
1646 .value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E
1647 .value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E
1648 .value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E
1649 .value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E
1650 .value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E
1651 .value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E
1652 .value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E
1653 .value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E
1654 .value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE
1655 .value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE
1656 .value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE
1657 .value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE
1658 .value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E
1659 .value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E
1660 .value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE
1661 .value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE
1662
1663.asciz "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>"
1664.align 64
1665___
1666
1667
1668# EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame,
1669# CONTEXT *context,DISPATCHER_CONTEXT *disp)
1670if ($win64) {
1671$rec="%rcx";
1672$frame="%rdx";
1673$context="%r8";
1674$disp="%r9";
1675
1676$code.=<<___;
1677.extern __imp_RtlVirtualUnwind
1678.type se_handler,\@abi-omnipotent
1679.align 16
1680se_handler:
1681 push %rsi
1682 push %rdi
1683 push %rbx
1684 push %rbp
1685 push %r12
1686 push %r13
1687 push %r14
1688 push %r15
1689 pushfq
1690 sub \$64,%rsp
1691
1692 mov 120($context),%rax # pull context->Rax
1693 mov 248($context),%rbx # pull context->Rip
1694
1695 mov 8($disp),%rsi # disp->ImageBase
1696 mov 56($disp),%r11 # disp->HandlerData
1697
1698 mov 0(%r11),%r10d # HandlerData[0]
1699 lea (%rsi,%r10),%r10 # prologue label
1700 cmp %r10,%rbx # context->Rip<prologue label
1701 jb .Lin_prologue
1702
1703 mov 152($context),%rax # pull context->Rsp
1704
1705 mov 4(%r11),%r10d # HandlerData[1]
1706 lea (%rsi,%r10),%r10 # epilogue label
1707 cmp %r10,%rbx # context->Rip>=epilogue label
1708 jae .Lin_prologue
1709
1710 lea 48+280(%rax),%rax # adjust "rsp"
1711
1712 mov -8(%rax),%rbx
1713 mov -16(%rax),%rbp
1714 mov -24(%rax),%r12
1715 mov -32(%rax),%r13
1716 mov -40(%rax),%r14
1717 mov -48(%rax),%r15
1718 mov %rbx,144($context) # restore context->Rbx
1719 mov %rbp,160($context) # restore context->Rbp
1720 mov %r12,216($context) # restore context->R12
1721 mov %r13,224($context) # restore context->R13
1722 mov %r14,232($context) # restore context->R14
1723 mov %r15,240($context) # restore context->R15
1724
1725.Lin_prologue:
1726 mov 8(%rax),%rdi
1727 mov 16(%rax),%rsi
1728 mov %rax,152($context) # restore context->Rsp
1729 mov %rsi,168($context) # restore context->Rsi
1730 mov %rdi,176($context) # restore context->Rdi
1731
1732 mov 40($disp),%rdi # disp->ContextRecord
1733 mov $context,%rsi # context
1734 mov \$`1232/8`,%ecx # sizeof(CONTEXT)
1735 .long 0xa548f3fc # cld; rep movsq
1736
1737 mov $disp,%rsi
1738 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER
1739 mov 8(%rsi),%rdx # arg2, disp->ImageBase
1740 mov 0(%rsi),%r8 # arg3, disp->ControlPc
1741 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry
1742 mov 40(%rsi),%r10 # disp->ContextRecord
1743 lea 56(%rsi),%r11 # &disp->HandlerData
1744 lea 24(%rsi),%r12 # &disp->EstablisherFrame
1745 mov %r10,32(%rsp) # arg5
1746 mov %r11,40(%rsp) # arg6
1747 mov %r12,48(%rsp) # arg7
1748 mov %rcx,56(%rsp) # arg8, (NULL)
1749 call *__imp_RtlVirtualUnwind(%rip)
1750
1751 mov \$1,%eax # ExceptionContinueSearch
1752 add \$64,%rsp
1753 popfq
1754 pop %r15
1755 pop %r14
1756 pop %r13
1757 pop %r12
1758 pop %rbp
1759 pop %rbx
1760 pop %rdi
1761 pop %rsi
1762 ret
1763.size se_handler,.-se_handler
1764
1765.section .pdata
1766.align 4
1767 .rva .LSEH_begin_gcm_gmult_4bit
1768 .rva .LSEH_end_gcm_gmult_4bit
1769 .rva .LSEH_info_gcm_gmult_4bit
1770
1771 .rva .LSEH_begin_gcm_ghash_4bit
1772 .rva .LSEH_end_gcm_ghash_4bit
1773 .rva .LSEH_info_gcm_ghash_4bit
1774
1775 .rva .LSEH_begin_gcm_init_clmul
1776 .rva .LSEH_end_gcm_init_clmul
1777 .rva .LSEH_info_gcm_init_clmul
1778
1779 .rva .LSEH_begin_gcm_ghash_clmul
1780 .rva .LSEH_end_gcm_ghash_clmul
1781 .rva .LSEH_info_gcm_ghash_clmul
1782___
1783$code.=<<___ if ($avx);
1784 .rva .LSEH_begin_gcm_init_avx
1785 .rva .LSEH_end_gcm_init_avx
1786 .rva .LSEH_info_gcm_init_clmul
1787
1788 .rva .LSEH_begin_gcm_ghash_avx
1789 .rva .LSEH_end_gcm_ghash_avx
1790 .rva .LSEH_info_gcm_ghash_clmul
1791___
1792$code.=<<___;
1793.section .xdata
1794.align 8
1795.LSEH_info_gcm_gmult_4bit:
1796 .byte 9,0,0,0
1797 .rva se_handler
1798 .rva .Lgmult_prologue,.Lgmult_epilogue # HandlerData
1799.LSEH_info_gcm_ghash_4bit:
1800 .byte 9,0,0,0
1801 .rva se_handler
1802 .rva .Lghash_prologue,.Lghash_epilogue # HandlerData
1803.LSEH_info_gcm_init_clmul:
1804 .byte 0x01,0x08,0x03,0x00
1805 .byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6
1806 .byte 0x04,0x22,0x00,0x00 #sub rsp,0x18
1807.LSEH_info_gcm_ghash_clmul:
1808 .byte 0x01,0x33,0x16,0x00
1809 .byte 0x33,0xf8,0x09,0x00 #movaps 0x90(rsp),xmm15
1810 .byte 0x2e,0xe8,0x08,0x00 #movaps 0x80(rsp),xmm14
1811 .byte 0x29,0xd8,0x07,0x00 #movaps 0x70(rsp),xmm13
1812 .byte 0x24,0xc8,0x06,0x00 #movaps 0x60(rsp),xmm12
1813 .byte 0x1f,0xb8,0x05,0x00 #movaps 0x50(rsp),xmm11
1814 .byte 0x1a,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10
1815 .byte 0x15,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9
1816 .byte 0x10,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8
1817 .byte 0x0c,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7
1818 .byte 0x08,0x68,0x00,0x00 #movaps 0x00(rsp),xmm6
1819 .byte 0x04,0x01,0x15,0x00 #sub rsp,0xa8
1820___
1821}
1822
1823
1824$code =~ s/\`([^\`]*)\`/eval($1)/gem;
1825
1826print $code;
1827
1828close STDOUT or die "error closing STDOUT: $!";
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette