VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 105579

最後變更 在這個檔案從105579是 105579,由 vboxsync 提交於 8 月 前

VMM/IEM: Fixed another bug in the large page TLB invalidation code which caused it to only evict half of the pages. More TLB tracing event work. bugref:10727

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Author Date Id Revision
檔案大小: 353.0 KB
 
1/* $Id: IEMInternal.h 105579 2024-08-02 21:10:41Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.alldomusa.eu.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#ifndef RT_IN_ASSEMBLER
35# include <VBox/vmm/cpum.h>
36# include <VBox/vmm/iem.h>
37# include <VBox/vmm/pgm.h>
38# include <VBox/vmm/stam.h>
39# include <VBox/param.h>
40
41# include <iprt/setjmp-without-sigmask.h>
42# include <iprt/list.h>
43#endif /* !RT_IN_ASSEMBLER */
44
45
46RT_C_DECLS_BEGIN
47
48
49/** @defgroup grp_iem_int Internals
50 * @ingroup grp_iem
51 * @internal
52 * @{
53 */
54
55/* Make doxygen happy w/o overcomplicating the #if checks. */
56#ifdef DOXYGEN_RUNNING
57# define IEM_WITH_THROW_CATCH
58# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
59#endif
60
61/** For expanding symbol in slickedit and other products tagging and
62 * crossreferencing IEM symbols. */
63#ifndef IEM_STATIC
64# define IEM_STATIC static
65#endif
66
67/** @def IEM_WITH_SETJMP
68 * Enables alternative status code handling using setjmps.
69 *
70 * This adds a bit of expense via the setjmp() call since it saves all the
71 * non-volatile registers. However, it eliminates return code checks and allows
72 * for more optimal return value passing (return regs instead of stack buffer).
73 */
74#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
75# define IEM_WITH_SETJMP
76#endif
77
78/** @def IEM_WITH_THROW_CATCH
79 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
80 * mode code when IEM_WITH_SETJMP is in effect.
81 *
82 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
83 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
84 * result value improving by more than 1%. (Best out of three.)
85 *
86 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
87 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
88 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
89 * Linux, but it should be quite a bit faster for normal code.
90 */
91#if defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER)) /* ASM-NOINC-START */
92# define IEM_WITH_THROW_CATCH
93#endif /*ASM-NOINC-END*/
94
95/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING
96 * Enables the delayed PC updating optimization (see @bugref{10373}).
97 */
98#if defined(DOXYGEN_RUNNING) || 1
99# define IEMNATIVE_WITH_DELAYED_PC_UPDATING
100#endif
101
102/** Enables the SIMD register allocator @bugref{10614}. */
103#if defined(DOXYGEN_RUNNING) || 1
104# define IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
105#endif
106/** Enables access to even callee saved registers. */
107//# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
108
109#if defined(DOXYGEN_RUNNING) || 1
110/** @def IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
111 * Delay the writeback or dirty registers as long as possible. */
112# define IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
113#endif
114
115/** @def IEM_WITH_TLB_STATISTICS
116 * Enables all TLB statistics. */
117#if defined(VBOX_WITH_STATISTICS) || defined(DOXYGEN_RUNNING)
118# define IEM_WITH_TLB_STATISTICS
119#endif
120
121/** @def IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
122 * Enable this to use native emitters for certain SIMD FP operations. */
123#if 1 || defined(DOXYGEN_RUNNING)
124# define IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
125#endif
126
127/** @def VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
128 * Enables a quicker alternative to throw/longjmp for IEM_DO_LONGJMP when
129 * executing native translation blocks.
130 *
131 * This exploits the fact that we save all non-volatile registers in the TB
132 * prologue and thus just need to do the same as the TB epilogue to get the
133 * effect of a longjmp/throw. Since MSC marks XMM6 thru XMM15 as
134 * non-volatile (and does something even more crazy for ARM), this probably
135 * won't work reliably on Windows. */
136#ifdef RT_ARCH_ARM64
137# ifndef RT_OS_WINDOWS
138# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
139# endif
140#endif
141/* ASM-NOINC-START */
142#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
143# if !defined(IN_RING3) \
144 || !defined(VBOX_WITH_IEM_RECOMPILER) \
145 || !defined(VBOX_WITH_IEM_NATIVE_RECOMPILER)
146# undef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
147# elif defined(RT_OS_WINDOWS)
148# pragma message("VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP is not safe to use on windows")
149# endif
150#endif
151
152
153/** @def IEM_DO_LONGJMP
154 *
155 * Wrapper around longjmp / throw.
156 *
157 * @param a_pVCpu The CPU handle.
158 * @param a_rc The status code jump back with / throw.
159 */
160#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
161# ifdef IEM_WITH_THROW_CATCH
162# ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
163# define IEM_DO_LONGJMP(a_pVCpu, a_rc) do { \
164 if ((a_pVCpu)->iem.s.pvTbFramePointerR3) \
165 iemNativeTbLongJmp((a_pVCpu)->iem.s.pvTbFramePointerR3, (a_rc)); \
166 throw int(a_rc); \
167 } while (0)
168# else
169# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
170# endif
171# else
172# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
173# endif
174#endif
175
176/** For use with IEM function that may do a longjmp (when enabled).
177 *
178 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
179 * attribute. So, we indicate that function that may be part of a longjmp may
180 * throw "exceptions" and that the compiler should definitely not generate and
181 * std::terminate calling unwind code.
182 *
183 * Here is one example of this ending in std::terminate:
184 * @code{.txt}
18500 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
18601 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
18702 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
18803 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
18904 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
19005 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
19106 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
19207 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
19308 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
19409 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1950a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1960b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1970c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1980d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1990e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
2000f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
20110 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
202 @endcode
203 *
204 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
205 */
206#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
207# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
208#else
209# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
210#endif
211/* ASM-NOINC-END */
212
213#define IEM_IMPLEMENTS_TASKSWITCH
214
215/** @def IEM_WITH_3DNOW
216 * Includes the 3DNow decoding. */
217#if !defined(IEM_WITH_3DNOW) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
218# ifndef IEM_WITHOUT_3DNOW
219# define IEM_WITH_3DNOW
220# endif
221#endif
222
223/** @def IEM_WITH_THREE_0F_38
224 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
225#if !defined(IEM_WITH_THREE_0F_38) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
226# ifndef IEM_WITHOUT_THREE_0F_38
227# define IEM_WITH_THREE_0F_38
228# endif
229#endif
230
231/** @def IEM_WITH_THREE_0F_3A
232 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
233#if !defined(IEM_WITH_THREE_0F_3A) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
234# ifndef IEM_WITHOUT_THREE_0F_3A
235# define IEM_WITH_THREE_0F_3A
236# endif
237#endif
238
239/** @def IEM_WITH_VEX
240 * Includes the VEX decoding. */
241#if !defined(IEM_WITH_VEX) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
242# ifndef IEM_WITHOUT_VEX
243# define IEM_WITH_VEX
244# endif
245#endif
246
247/** @def IEM_CFG_TARGET_CPU
248 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
249 *
250 * By default we allow this to be configured by the user via the
251 * CPUM/GuestCpuName config string, but this comes at a slight cost during
252 * decoding. So, for applications of this code where there is no need to
253 * be dynamic wrt target CPU, just modify this define.
254 */
255#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
256# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
257#endif
258
259//#define IEM_WITH_CODE_TLB // - work in progress
260//#define IEM_WITH_DATA_TLB // - work in progress
261
262
263/** @def IEM_USE_UNALIGNED_DATA_ACCESS
264 * Use unaligned accesses instead of elaborate byte assembly. */
265#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING) /*ASM-NOINC*/
266# define IEM_USE_UNALIGNED_DATA_ACCESS
267#endif /*ASM-NOINC*/
268
269//#define IEM_LOG_MEMORY_WRITES
270
271
272
273#ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
274
275# if !defined(IEM_WITHOUT_INSTRUCTION_STATS) && !defined(DOXYGEN_RUNNING)
276/** Instruction statistics. */
277typedef struct IEMINSTRSTATS
278{
279# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
280# include "IEMInstructionStatisticsTmpl.h"
281# undef IEM_DO_INSTR_STAT
282} IEMINSTRSTATS;
283#else
284struct IEMINSTRSTATS;
285typedef struct IEMINSTRSTATS IEMINSTRSTATS;
286#endif
287/** Pointer to IEM instruction statistics. */
288typedef IEMINSTRSTATS *PIEMINSTRSTATS;
289
290
291/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
292 * @{ */
293#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
294#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
295#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
296#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
297#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
298/** Selects the right variant from a_aArray.
299 * pVCpu is implicit in the caller context. */
300#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
301 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
302/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
303 * be used because the host CPU does not support the operation. */
304#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
305 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
306/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
307 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
308 * into the two.
309 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
310#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
311# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
312 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
313#else
314# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
315 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
316#endif
317/** @} */
318
319/**
320 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
321 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
322 *
323 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
324 * indicator.
325 *
326 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
327 */
328#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
329# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
330 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
331#else
332# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
333#endif
334
335
336/**
337 * Branch types.
338 */
339typedef enum IEMBRANCH
340{
341 IEMBRANCH_JUMP = 1,
342 IEMBRANCH_CALL,
343 IEMBRANCH_TRAP,
344 IEMBRANCH_SOFTWARE_INT,
345 IEMBRANCH_HARDWARE_INT
346} IEMBRANCH;
347AssertCompileSize(IEMBRANCH, 4);
348
349
350/**
351 * INT instruction types.
352 */
353typedef enum IEMINT
354{
355 /** INT n instruction (opcode 0xcd imm). */
356 IEMINT_INTN = 0,
357 /** Single byte INT3 instruction (opcode 0xcc). */
358 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
359 /** Single byte INTO instruction (opcode 0xce). */
360 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
361 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
362 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
363} IEMINT;
364AssertCompileSize(IEMINT, 4);
365
366
367/**
368 * A FPU result.
369 */
370typedef struct IEMFPURESULT
371{
372 /** The output value. */
373 RTFLOAT80U r80Result;
374 /** The output status. */
375 uint16_t FSW;
376} IEMFPURESULT;
377AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
378/** Pointer to a FPU result. */
379typedef IEMFPURESULT *PIEMFPURESULT;
380/** Pointer to a const FPU result. */
381typedef IEMFPURESULT const *PCIEMFPURESULT;
382
383
384/**
385 * A FPU result consisting of two output values and FSW.
386 */
387typedef struct IEMFPURESULTTWO
388{
389 /** The first output value. */
390 RTFLOAT80U r80Result1;
391 /** The output status. */
392 uint16_t FSW;
393 /** The second output value. */
394 RTFLOAT80U r80Result2;
395} IEMFPURESULTTWO;
396AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
397AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
398/** Pointer to a FPU result consisting of two output values and FSW. */
399typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
400/** Pointer to a const FPU result consisting of two output values and FSW. */
401typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
402
403
404/**
405 * IEM TLB entry.
406 *
407 * Lookup assembly:
408 * @code{.asm}
409 ; Calculate tag.
410 mov rax, [VA]
411 shl rax, 16
412 shr rax, 16 + X86_PAGE_SHIFT
413 or rax, [uTlbRevision]
414
415 ; Do indexing.
416 movzx ecx, al
417 lea rcx, [pTlbEntries + rcx]
418
419 ; Check tag.
420 cmp [rcx + IEMTLBENTRY.uTag], rax
421 jne .TlbMiss
422
423 ; Check access.
424 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
425 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
426 cmp rax, [uTlbPhysRev]
427 jne .TlbMiss
428
429 ; Calc address and we're done.
430 mov eax, X86_PAGE_OFFSET_MASK
431 and eax, [VA]
432 or rax, [rcx + IEMTLBENTRY.pMappingR3]
433 %ifdef VBOX_WITH_STATISTICS
434 inc qword [cTlbHits]
435 %endif
436 jmp .Done
437
438 .TlbMiss:
439 mov r8d, ACCESS_FLAGS
440 mov rdx, [VA]
441 mov rcx, [pVCpu]
442 call iemTlbTypeMiss
443 .Done:
444
445 @endcode
446 *
447 */
448typedef struct IEMTLBENTRY
449{
450 /** The TLB entry tag.
451 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
452 * is ASSUMING a virtual address width of 48 bits.
453 *
454 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
455 *
456 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
457 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
458 * revision wraps around though, the tags needs to be zeroed.
459 *
460 * @note Try use SHRD instruction? After seeing
461 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
462 *
463 * @todo This will need to be reorganized for 57-bit wide virtual address and
464 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
465 * have to move the TLB entry versioning entirely to the
466 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
467 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
468 * consumed by PCID and ASID (12 + 6 = 18).
469 */
470 uint64_t uTag;
471 /** Access flags and physical TLB revision.
472 *
473 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
474 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
475 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
476 * - Bit 3 - pgm phys/virt - not directly writable.
477 * - Bit 4 - pgm phys page - not directly readable.
478 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
479 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
480 * - Bit 7 - tlb entry - pMappingR3 member not valid.
481 * - Bits 63 thru 8 are used for the physical TLB revision number.
482 *
483 * We're using complemented bit meanings here because it makes it easy to check
484 * whether special action is required. For instance a user mode write access
485 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
486 * non-zero result would mean special handling needed because either it wasn't
487 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
488 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
489 * need to check any PTE flag.
490 */
491 uint64_t fFlagsAndPhysRev;
492 /** The guest physical page address. */
493 uint64_t GCPhys;
494 /** Pointer to the ring-3 mapping. */
495 R3PTRTYPE(uint8_t *) pbMappingR3;
496#if HC_ARCH_BITS == 32
497 uint32_t u32Padding1;
498#endif
499} IEMTLBENTRY;
500AssertCompileSize(IEMTLBENTRY, 32);
501/** Pointer to an IEM TLB entry. */
502typedef IEMTLBENTRY *PIEMTLBENTRY;
503/** Pointer to a const IEM TLB entry. */
504typedef IEMTLBENTRY const *PCIEMTLBENTRY;
505
506/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
507 * @{ */
508#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
509#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
510#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
511#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
512#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
513#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
514#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
515#define IEMTLBE_F_PT_LARGE_PAGE RT_BIT_64(7) /**< Page tables: Large 2 or 4 MiB page (for flushing). */
516#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(8) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
517#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(9) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
518#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(10) /**< Phys page: Code page. */
519#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffff800) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
520/** @} */
521AssertCompile(PGMIEMGCPHYS2PTR_F_NO_WRITE == IEMTLBE_F_PG_NO_WRITE);
522AssertCompile(PGMIEMGCPHYS2PTR_F_NO_READ == IEMTLBE_F_PG_NO_READ);
523AssertCompile(PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 == IEMTLBE_F_NO_MAPPINGR3);
524AssertCompile(PGMIEMGCPHYS2PTR_F_UNASSIGNED == IEMTLBE_F_PG_UNASSIGNED);
525AssertCompile(PGMIEMGCPHYS2PTR_F_CODE_PAGE == IEMTLBE_F_PG_CODE_PAGE);
526AssertCompile(PGM_WALKINFO_BIG_PAGE == IEMTLBE_F_PT_LARGE_PAGE);
527/** The bits set by PGMPhysIemGCPhys2PtrNoLock. */
528#define IEMTLBE_GCPHYS2PTR_MASK ( PGMIEMGCPHYS2PTR_F_NO_WRITE \
529 | PGMIEMGCPHYS2PTR_F_NO_READ \
530 | PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 \
531 | PGMIEMGCPHYS2PTR_F_UNASSIGNED \
532 | PGMIEMGCPHYS2PTR_F_CODE_PAGE \
533 | IEMTLBE_F_PHYS_REV )
534
535
536/** The TLB size (power of two).
537 * We initially chose 256 because that way we can obtain the result directly
538 * from a 8-bit register without an additional AND instruction.
539 * See also @bugref{10687}. */
540#if defined(RT_ARCH_AMD64)
541# define IEMTLB_ENTRY_COUNT 256
542# define IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO 8
543#else
544# define IEMTLB_ENTRY_COUNT 8192
545# define IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO 13
546#endif
547AssertCompile(RT_BIT_32(IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO) == IEMTLB_ENTRY_COUNT);
548
549/** TLB slot format spec (assumes uint32_t or unsigned value). */
550#if IEMTLB_ENTRY_COUNT <= 0x100 / 2
551# define IEMTLB_SLOT_FMT "%02x"
552#elif IEMTLB_ENTRY_COUNT <= 0x1000 / 2
553# define IEMTLB_SLOT_FMT "%03x"
554#elif IEMTLB_ENTRY_COUNT <= 0x10000 / 2
555# define IEMTLB_SLOT_FMT "%04x"
556#else
557# define IEMTLB_SLOT_FMT "%05x"
558#endif
559
560
561/**
562 * An IEM TLB.
563 *
564 * We've got two of these, one for data and one for instructions.
565 */
566typedef struct IEMTLB
567{
568 /** The non-global TLB revision.
569 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
570 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
571 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
572 * (The revision zero indicates an invalid TLB entry.)
573 *
574 * The initial value is choosen to cause an early wraparound. */
575 uint64_t uTlbRevision;
576 /** The TLB physical address revision - shadow of PGM variable.
577 *
578 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
579 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
580 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
581 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
582 *
583 * The initial value is choosen to cause an early wraparound.
584 *
585 * @note This is placed between the two TLB revisions because we
586 * load it in pair with one or the other on arm64. */
587 uint64_t volatile uTlbPhysRev;
588 /** The global TLB revision.
589 * Same as uTlbRevision, but only increased for global flushes. */
590 uint64_t uTlbRevisionGlobal;
591
592 /** Large page tag range.
593 *
594 * This is used to avoid scanning a large page's worth of TLB entries for each
595 * INVLPG instruction, and only to do so iff we've loaded any and when the
596 * address is in this range. This is kept up to date when we loading new TLB
597 * entries.
598 */
599 struct LARGEPAGERANGE
600 {
601 /** The lowest large page address tag, UINT64_MAX if none. */
602 uint64_t uFirstTag;
603 /** The highest large page address tag (with offset mask part set), 0 if none. */
604 uint64_t uLastTag;
605 }
606 /** Large page range for non-global pages. */
607 NonGlobalLargePageRange,
608 /** Large page range for global pages. */
609 GlobalLargePageRange;
610 /** Number of non-global entries for large pages loaded since last TLB flush. */
611 uint32_t cTlbNonGlobalLargePageCurLoads;
612 /** Number of global entries for large pages loaded since last TLB flush. */
613 uint32_t cTlbGlobalLargePageCurLoads;
614
615 /* Statistics: */
616
617 /** TLB hits in IEMAll.cpp code (IEM_WITH_TLB_STATISTICS only; both).
618 * @note For the data TLB this is only used in iemMemMap and and for direct (i.e.
619 * not via safe read/write path) calls to iemMemMapJmp. */
620 uint64_t cTlbCoreHits;
621 /** Safe read/write TLB hits in iemMemMapJmp (IEM_WITH_TLB_STATISTICS
622 * only; data tlb only). */
623 uint64_t cTlbSafeHits;
624 /** TLB hits in IEMAllMemRWTmplInline.cpp.h (data + IEM_WITH_TLB_STATISTICS only). */
625 uint64_t cTlbInlineCodeHits;
626
627 /** TLB misses in IEMAll.cpp code (both).
628 * @note For the data TLB this is only used in iemMemMap and for direct (i.e.
629 * not via safe read/write path) calls to iemMemMapJmp. So,
630 * for the data TLB this more like 'other misses', while for the code
631 * TLB is all misses. */
632 uint64_t cTlbCoreMisses;
633 /** Subset of cTlbCoreMisses that results in PTE.G=1 loads (odd entries). */
634 uint64_t cTlbCoreGlobalLoads;
635 /** Safe read/write TLB misses in iemMemMapJmp (so data only). */
636 uint64_t cTlbSafeMisses;
637 /** Subset of cTlbSafeMisses that results in PTE.G=1 loads (odd entries). */
638 uint64_t cTlbSafeGlobalLoads;
639 /** Safe read path taken (data only). */
640 uint64_t cTlbSafeReadPath;
641 /** Safe write path taken (data only). */
642 uint64_t cTlbSafeWritePath;
643
644 /** @name Details for native code TLB misses.
645 * @note These counts are included in the above counters (cTlbSafeReadPath,
646 * cTlbSafeWritePath, cTlbInlineCodeHits).
647 * @{ */
648 /** TLB misses in native code due to tag mismatch. */
649 STAMCOUNTER cTlbNativeMissTag;
650 /** TLB misses in native code due to flags or physical revision mismatch. */
651 STAMCOUNTER cTlbNativeMissFlagsAndPhysRev;
652 /** TLB misses in native code due to misaligned access. */
653 STAMCOUNTER cTlbNativeMissAlignment;
654 /** TLB misses in native code due to cross page access. */
655 uint32_t cTlbNativeMissCrossPage;
656 /** TLB misses in native code due to non-canonical address. */
657 uint32_t cTlbNativeMissNonCanonical;
658 /** @} */
659
660 /** Slow read path (code only). */
661 uint32_t cTlbSlowCodeReadPath;
662
663 /** Regular TLB flush count. */
664 uint32_t cTlsFlushes;
665 /** Global TLB flush count. */
666 uint32_t cTlsGlobalFlushes;
667 /** Revision rollovers. */
668 uint32_t cTlbRevisionRollovers;
669 /** Physical revision flushes. */
670 uint32_t cTlbPhysRevFlushes;
671 /** Physical revision rollovers. */
672 uint32_t cTlbPhysRevRollovers;
673
674 /*uint32_t au32Padding[2];*/
675
676 /** The TLB entries.
677 * Even entries are for PTE.G=0 and uses uTlbRevision.
678 * Odd entries are for PTE.G=1 and uses uTlbRevisionGlobal. */
679 IEMTLBENTRY aEntries[IEMTLB_ENTRY_COUNT * 2];
680} IEMTLB;
681AssertCompileSizeAlignment(IEMTLB, 64);
682/** The width (in bits) of the address portion of the TLB tag. */
683#define IEMTLB_TAG_ADDR_WIDTH 36
684/** IEMTLB::uTlbRevision increment. */
685#define IEMTLB_REVISION_INCR RT_BIT_64(IEMTLB_TAG_ADDR_WIDTH)
686/** IEMTLB::uTlbRevision mask. */
687#define IEMTLB_REVISION_MASK (~(RT_BIT_64(IEMTLB_TAG_ADDR_WIDTH) - 1))
688
689/** IEMTLB::uTlbPhysRev increment.
690 * @sa IEMTLBE_F_PHYS_REV */
691#define IEMTLB_PHYS_REV_INCR RT_BIT_64(11)
692AssertCompile(IEMTLBE_F_PHYS_REV == ~(IEMTLB_PHYS_REV_INCR - 1U));
693
694/**
695 * Calculates the TLB tag for a virtual address but without TLB revision.
696 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
697 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
698 * the clearing of the top 16 bits won't work (if 32-bit
699 * we'll end up with mostly zeros).
700 */
701#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
702/**
703 * Converts a TLB tag value into a even TLB index.
704 * @returns Index into IEMTLB::aEntries.
705 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
706 */
707#if IEMTLB_ENTRY_COUNT == 256
708# define IEMTLB_TAG_TO_EVEN_INDEX(a_uTag) ( (uint8_t)(a_uTag) * 2U )
709#else
710# define IEMTLB_TAG_TO_EVEN_INDEX(a_uTag) ( ((a_uTag) & (IEMTLB_ENTRY_COUNT - 1U)) * 2U )
711AssertCompile(RT_IS_POWER_OF_TWO(IEMTLB_ENTRY_COUNT));
712#endif
713/**
714 * Converts a TLB tag value into an even TLB index.
715 * @returns Pointer into IEMTLB::aEntries corresponding to .
716 * @param a_pTlb The TLB.
717 * @param a_uTag Value returned by IEMTLB_CALC_TAG or
718 * IEMTLB_CALC_TAG_NO_REV.
719 */
720#define IEMTLB_TAG_TO_EVEN_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_EVEN_INDEX(a_uTag)] )
721
722/** Converts a GC address to an even TLB index. */
723#define IEMTLB_ADDR_TO_EVEN_INDEX(a_GCPtr) IEMTLB_TAG_TO_EVEN_INDEX(IEMTLB_CALC_TAG_NO_REV(a_GCPtr))
724
725
726/** @def IEM_WITH_TLB_TRACE
727 * Enables the TLB tracing.
728 * Adjust buffer size in IEMR3Init. */
729#if defined(DOXYGEN_RUNNING) || 0
730# define IEM_WITH_TLB_TRACE
731#endif
732
733#ifdef IEM_WITH_TLB_TRACE
734
735/** TLB trace entry types. */
736typedef enum : uint8_t
737{
738 kIemTlbTraceType_Invalid,
739 kIemTlbTraceType_InvlPg,
740 kIemTlbTraceType_EvictSlot,
741 kIemTlbTraceType_LargeEvictSlot,
742 kIemTlbTraceType_LargeScan,
743 kIemTlbTraceType_Flush,
744 kIemTlbTraceType_FlushGlobal,
745 kIemTlbTraceType_Load,
746 kIemTlbTraceType_LoadGlobal,
747 kIemTlbTraceType_Load_Cr0,
748 kIemTlbTraceType_Load_Cr3,
749 kIemTlbTraceType_Load_Cr4,
750 kIemTlbTraceType_Load_Efer,
751 kIemTlbTraceType_Irq,
752 kIemTlbTraceType_Xcpt,
753 kIemTlbTraceType_IRet,
754 kIemTlbTraceType_Tb_Compile,
755 kIemTlbTraceType_Tb_Exec_Threaded,
756 kIemTlbTraceType_Tb_Exec_Native,
757 kIemTlbTraceType_User0,
758 kIemTlbTraceType_User1,
759 kIemTlbTraceType_User2,
760 kIemTlbTraceType_User3,
761} IEMTLBTRACETYPE;
762
763/** TLB trace entry. */
764typedef struct IEMTLBTRACEENTRY
765{
766 /** The flattened RIP for the event. */
767 uint64_t rip;
768 /** The event type. */
769 IEMTLBTRACETYPE enmType;
770 /** Byte parameter - typically used as 'bool fDataTlb'. */
771 uint8_t bParam;
772 /** 16-bit parameter value. */
773 uint16_t u16Param;
774 /** 32-bit parameter value. */
775 uint32_t u32Param;
776 /** 64-bit parameter value. */
777 uint64_t u64Param;
778 /** 64-bit parameter value. */
779 uint64_t u64Param2;
780} IEMTLBTRACEENTRY;
781AssertCompileSize(IEMTLBTRACEENTRY, 32);
782/** Pointer to a TLB trace entry. */
783typedef IEMTLBTRACEENTRY *PIEMTLBTRACEENTRY;
784/** Pointer to a const TLB trace entry. */
785typedef IEMTLBTRACEENTRY const *PCIEMTLBTRACEENTRY;
786#endif /* !IEM_WITH_TLB_TRACE */
787
788#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3)
789# define IEMTLBTRACE_INVLPG(a_pVCpu, a_GCPtr) \
790 iemTlbTrace(a_pVCpu, kIemTlbTraceType_InvlPg, a_GCPtr)
791# define IEMTLBTRACE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) \
792 iemTlbTrace(a_pVCpu, kIemTlbTraceType_EvictSlot, a_GCPtrTag, a_GCPhys, a_fDataTlb, a_idxSlot)
793# define IEMTLBTRACE_LARGE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) \
794 iemTlbTrace(a_pVCpu, kIemTlbTraceType_LargeEvictSlot, a_GCPtrTag, a_GCPhys, a_fDataTlb, a_idxSlot)
795# define IEMTLBTRACE_LARGE_SCAN(a_pVCpu, a_fGlobal, a_fNonGlobal, a_fDataTlb) \
796 iemTlbTrace(a_pVCpu, kIemTlbTraceType_LargeScan, 0, 0, a_fDataTlb, (uint8_t)a_fGlobal | ((uint8_t)a_fNonGlobal << 1))
797# define IEMTLBTRACE_FLUSH(a_pVCpu, a_uRev, a_fDataTlb) \
798 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Flush, a_uRev, 0, a_fDataTlb)
799# define IEMTLBTRACE_FLUSH_GLOBAL(a_pVCpu, a_uRev, a_uGRev, a_fDataTlb) \
800 iemTlbTrace(a_pVCpu, kIemTlbTraceType_FlushGlobal, a_uRev, a_uGRev, a_fDataTlb)
801# define IEMTLBTRACE_LOAD(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) \
802 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load, a_GCPtr, a_GCPhys, a_fDataTlb, a_fTlb)
803# define IEMTLBTRACE_LOAD_GLOBAL(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) \
804 iemTlbTrace(a_pVCpu, kIemTlbTraceType_LoadGlobal, a_GCPtr, a_GCPhys, a_fDataTlb, a_fTlb)
805#else
806# define IEMTLBTRACE_INVLPG(a_pVCpu, a_GCPtr) do { } while (0)
807# define IEMTLBTRACE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) do { } while (0)
808# define IEMTLBTRACE_LARGE_EVICT_SLOT(a_pVCpu, a_GCPtrTag, a_GCPhys, a_idxSlot, a_fDataTlb) do { } while (0)
809# define IEMTLBTRACE_LARGE_SCAN(a_pVCpu, a_fGlobal, a_fNonGlobal, a_fDataTlb) do { } while (0)
810# define IEMTLBTRACE_FLUSH(a_pVCpu, a_uRev, a_fDataTlb) do { } while (0)
811# define IEMTLBTRACE_FLUSH_GLOBAL(a_pVCpu, a_uRev, a_uGRev, a_fDataTlb) do { } while (0)
812# define IEMTLBTRACE_LOAD(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) do { } while (0)
813# define IEMTLBTRACE_LOAD_GLOBAL(a_pVCpu, a_GCPtr, a_GCPhys, a_fTlb, a_fDataTlb) do { } while (0)
814#endif
815
816#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
817# define IEMTLBTRACE_LOAD_CR0(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Cr0, a_uNew, a_uOld)
818# define IEMTLBTRACE_LOAD_CR3(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Cr3, a_uNew, a_uOld)
819# define IEMTLBTRACE_LOAD_CR4(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Cr4, a_uNew, a_uOld)
820# define IEMTLBTRACE_LOAD_EFER(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Efer, a_uNew, a_uOld)
821#else
822# define IEMTLBTRACE_LOAD_CR0(a_pVCpu, a_uNew, a_uOld) do { } while (0)
823# define IEMTLBTRACE_LOAD_CR3(a_pVCpu, a_uNew, a_uOld) do { } while (0)
824# define IEMTLBTRACE_LOAD_CR4(a_pVCpu, a_uNew, a_uOld) do { } while (0)
825# define IEMTLBTRACE_LOAD_EFER(a_pVCpu, a_uNew, a_uOld) do { } while (0)
826#endif
827
828#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
829# define IEMTLBTRACE_IRQ(a_pVCpu, a_uVector, a_fFlags, a_fEFlags) \
830 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Irq, a_fEFlags, 0, a_uVector, a_fFlags)
831# define IEMTLBTRACE_XCPT(a_pVCpu, a_uVector, a_uErr, a_uCr2, a_fFlags) \
832 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Xcpt, a_uErr, a_uCr2, a_uVector, a_fFlags)
833# define IEMTLBTRACE_IRET(a_pVCpu, a_uRetCs, a_uRetRip, a_fEFlags) \
834 iemTlbTrace(a_pVCpu, kIemTlbTraceType_IRet, a_uRetRip, a_fEFlags, 0, a_uRetCs)
835#else
836# define IEMTLBTRACE_IRQ(a_pVCpu, a_uVector, a_fFlags, a_fEFlags) do { } while (0)
837# define IEMTLBTRACE_XCPT(a_pVCpu, a_uVector, a_uErr, a_uCr2, a_fFlags) do { } while (0)
838# define IEMTLBTRACE_IRET(a_pVCpu, a_uRetCs, a_uRetRip, a_fEFlags) do { } while (0)
839#endif
840
841#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
842# define IEMTLBTRACE_TB_COMPILE(a_pVCpu, a_GCPhysPc) \
843 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Tb_Compile, a_GCPhysPc)
844# define IEMTLBTRACE_TB_EXEC_THRD(a_pVCpu, a_pTb) \
845 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Tb_Exec_Threaded, (a_pTb)->GCPhysPc, (uintptr_t)a_pTb, 0, (a_pTb)->cUsed)
846# define IEMTLBTRACE_TB_EXEC_N8VE(a_pVCpu, a_pTb) \
847 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Tb_Exec_Native, (a_pTb)->GCPhysPc, (uintptr_t)a_pTb, 0, (a_pTb)->cUsed)
848#else
849# define IEMTLBTRACE_TB_COMPILE(a_pVCpu, a_GCPhysPc) do { } while (0)
850# define IEMTLBTRACE_TB_EXEC_THRD(a_pVCpu, a_pTb) do { } while (0)
851# define IEMTLBTRACE_TB_EXEC_N8VE(a_pVCpu, a_pTb) do { } while (0)
852#endif
853
854#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
855# define IEMTLBTRACE_USER0(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
856 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User0, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
857# define IEMTLBTRACE_USER1(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
858 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User1, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
859# define IEMTLBTRACE_USER2(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
860 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User2, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
861# define IEMTLBTRACE_USER3(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) \
862 iemTlbTrace(a_pVCpu, kIemTlbTraceType_User3, a_u64Param1, a_u64Param2, a_bParam, a_u32Param)
863#else
864# define IEMTLBTRACE_USER1(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
865# define IEMTLBTRACE_USER2(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
866# define IEMTLBTRACE_USER3(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
867# define IEMTLBTRACE_USER4(a_pVCpu, a_u64Param1, a_u64Param2, a_u32Param, a_bParam) do { } while (0)
868#endif
869
870
871/** @name IEM_MC_F_XXX - MC block flags/clues.
872 * @todo Merge with IEM_CIMPL_F_XXX
873 * @{ */
874#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
875#define IEM_MC_F_MIN_186 RT_BIT_32(1)
876#define IEM_MC_F_MIN_286 RT_BIT_32(2)
877#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
878#define IEM_MC_F_MIN_386 RT_BIT_32(3)
879#define IEM_MC_F_MIN_486 RT_BIT_32(4)
880#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
881#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
882#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
883#define IEM_MC_F_64BIT RT_BIT_32(6)
884#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
885/** This is set by IEMAllN8vePython.py to indicate a variation without the
886 * flags-clearing-and-checking, when there is also a variation with that.
887 * @note Do not use this manully, it's only for python and for testing in
888 * the native recompiler! */
889#define IEM_MC_F_WITHOUT_FLAGS RT_BIT_32(8)
890/** @} */
891
892/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
893 *
894 * These clues are mainly for the recompiler, so that it can emit correct code.
895 *
896 * They are processed by the python script and which also automatically
897 * calculates flags for MC blocks based on the statements, extending the use of
898 * these flags to describe MC block behavior to the recompiler core. The python
899 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
900 * error checking purposes. The script emits the necessary fEndTb = true and
901 * similar statements as this reduces compile time a tiny bit.
902 *
903 * @{ */
904/** Flag set if direct branch, clear if absolute or indirect. */
905#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
906/** Flag set if indirect branch, clear if direct or relative.
907 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
908 * as well as for return instructions (RET, IRET, RETF). */
909#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
910/** Flag set if relative branch, clear if absolute or indirect. */
911#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
912/** Flag set if conditional branch, clear if unconditional. */
913#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
914/** Flag set if it's a far branch (changes CS). */
915#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
916/** Convenience: Testing any kind of branch. */
917#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
918
919/** Execution flags may change (IEMCPU::fExec). */
920#define IEM_CIMPL_F_MODE RT_BIT_32(5)
921/** May change significant portions of RFLAGS. */
922#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
923/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
924#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
925/** May trigger interrupt shadowing. */
926#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
927/** May enable interrupts, so recheck IRQ immediately afterwards executing
928 * the instruction. */
929#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
930/** May disable interrupts, so recheck IRQ immediately before executing the
931 * instruction. */
932#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
933/** Convenience: Check for IRQ both before and after an instruction. */
934#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
935/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
936#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
937/** May modify FPU state.
938 * @todo Not sure if this is useful yet. */
939#define IEM_CIMPL_F_FPU RT_BIT_32(12)
940/** REP prefixed instruction which may yield before updating PC.
941 * @todo Not sure if this is useful, REP functions now return non-zero
942 * status if they don't update the PC. */
943#define IEM_CIMPL_F_REP RT_BIT_32(13)
944/** I/O instruction.
945 * @todo Not sure if this is useful yet. */
946#define IEM_CIMPL_F_IO RT_BIT_32(14)
947/** Force end of TB after the instruction. */
948#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
949/** Flag set if a branch may also modify the stack (push/pop return address). */
950#define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
951/** Flag set if a branch may also modify the stack (push/pop return address)
952 * and switch it (load/restore SS:RSP). */
953#define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
954/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
955#define IEM_CIMPL_F_XCPT \
956 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
957 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
958
959/** The block calls a C-implementation instruction function with two implicit arguments.
960 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
961 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
962 * @note The python scripts will add this if missing. */
963#define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
964/** The block calls an ASM-implementation instruction function.
965 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
966 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
967 * @note The python scripts will add this if missing. */
968#define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
969/** The block calls an ASM-implementation instruction function with an implicit
970 * X86FXSTATE pointer argument.
971 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
972 * IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE.
973 * @note The python scripts will add this if missing. */
974#define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
975/** The block calls an ASM-implementation instruction function with an implicit
976 * X86XSAVEAREA pointer argument.
977 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
978 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
979 * @note No different from IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE, so same value.
980 * @note The python scripts will add this if missing. */
981#define IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE
982/** @} */
983
984
985/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
986 *
987 * These flags are set when entering IEM and adjusted as code is executed, such
988 * that they will always contain the current values as instructions are
989 * finished.
990 *
991 * In recompiled execution mode, (most of) these flags are included in the
992 * translation block selection key and stored in IEMTB::fFlags alongside the
993 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
994 * in IEMCPU::fExec.
995 *
996 * @{ */
997/** Mode: The block target mode mask. */
998#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
999/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
1000#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
1001/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
1002 * conditional in EIP/IP updating), and flat wide open CS, SS, DS, and ES in
1003 * 32-bit mode (for simplifying most memory accesses). */
1004#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
1005/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
1006#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
1007/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
1008#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
1009
1010/** X86 Mode: 16-bit on 386 or later. */
1011#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
1012/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
1013#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
1014/** X86 Mode: 16-bit protected mode on 386 or later. */
1015#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
1016/** X86 Mode: 16-bit protected mode on 386 or later. */
1017#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
1018/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
1019#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
1020
1021/** X86 Mode: 32-bit on 386 or later. */
1022#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
1023/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
1024#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
1025/** X86 Mode: 32-bit protected mode. */
1026#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
1027/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
1028#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
1029
1030/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
1031#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
1032
1033/** X86 Mode: Checks if @a a_fExec represent a FLAT mode. */
1034#define IEM_F_MODE_X86_IS_FLAT(a_fExec) ( ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT \
1035 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT \
1036 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT)
1037
1038/** Bypass access handlers when set. */
1039#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
1040/** Have pending hardware instruction breakpoints. */
1041#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
1042/** Have pending hardware data breakpoints. */
1043#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
1044
1045/** X86: Have pending hardware I/O breakpoints. */
1046#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
1047/** X86: Disregard the lock prefix (implied or not) when set. */
1048#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
1049
1050/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
1051#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
1052
1053/** Caller configurable options. */
1054#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
1055
1056/** X86: The current protection level (CPL) shift factor. */
1057#define IEM_F_X86_CPL_SHIFT 8
1058/** X86: The current protection level (CPL) mask. */
1059#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
1060/** X86: The current protection level (CPL) shifted mask. */
1061#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
1062
1063/** X86: Alignment checks enabled (CR0.AM=1 & EFLAGS.AC=1). */
1064#define IEM_F_X86_AC UINT32_C(0x00080000)
1065
1066/** X86 execution context.
1067 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
1068 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
1069 * mode. */
1070#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
1071/** X86 context: Plain regular execution context. */
1072#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
1073/** X86 context: VT-x enabled. */
1074#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
1075/** X86 context: AMD-V enabled. */
1076#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
1077/** X86 context: In AMD-V or VT-x guest mode. */
1078#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
1079/** X86 context: System management mode (SMM). */
1080#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
1081
1082/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
1083 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
1084 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
1085 * alread). */
1086
1087/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
1088 * iemRegFinishClearingRF() most for most situations
1089 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
1090 * the IEM_F_PENDING_BRK_XXX bits alread). */
1091
1092/** @} */
1093
1094
1095/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
1096 *
1097 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
1098 * translation block flags. The combined flag mask (subject to
1099 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
1100 *
1101 * @{ */
1102/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
1103#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
1104
1105/** Type: The block type mask. */
1106#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
1107/** Type: Purly threaded recompiler (via tables). */
1108#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
1109/** Type: Native recompilation. */
1110#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
1111
1112/** Set when we're starting the block in an "interrupt shadow".
1113 * We don't need to distingish between the two types of this mask, thus the one.
1114 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
1115#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
1116/** Set when we're currently inhibiting NMIs
1117 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
1118#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
1119
1120/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
1121 * we're close the limit before starting a TB, as determined by
1122 * iemGetTbFlagsForCurrentPc(). */
1123#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
1124
1125/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
1126 *
1127 * @note We skip all of IEM_F_X86_CTX_MASK, with the exception of SMM (which we
1128 * don't implement), because we don't currently generate any context
1129 * specific code - that's all handled in CIMPL functions.
1130 *
1131 * For the threaded recompiler we don't generate any CPL specific code
1132 * either, but the native recompiler does for memory access (saves getting
1133 * the CPL from fExec and turning it into IEMTLBE_F_PT_NO_USER).
1134 * Since most OSes will not share code between rings, this shouldn't
1135 * have any real effect on TB/memory/recompiling load.
1136 */
1137#define IEMTB_F_KEY_MASK ((UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEMTB_F_TYPE_MASK)) | IEM_F_X86_CTX_SMM)
1138/** @} */
1139
1140AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1141AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1142AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
1143AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
1144AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1145AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1146AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
1147AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
1148AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1149AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1150AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
1151AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
1152AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1153AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1154AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
1155AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
1156AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
1157AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1158AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
1159
1160AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1161AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1162AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
1163AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1164AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1165AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
1166AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1167AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1168AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
1169AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1170AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1171AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
1172
1173AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
1174AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
1175AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1176
1177/** Native instruction type for use with the native code generator.
1178 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
1179#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1180typedef uint8_t IEMNATIVEINSTR;
1181#else
1182typedef uint32_t IEMNATIVEINSTR;
1183#endif
1184/** Pointer to a native instruction unit. */
1185typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
1186/** Pointer to a const native instruction unit. */
1187typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
1188
1189/**
1190 * A call for the threaded call table.
1191 */
1192typedef struct IEMTHRDEDCALLENTRY
1193{
1194 /** The function to call (IEMTHREADEDFUNCS). */
1195 uint16_t enmFunction;
1196
1197 /** Instruction number in the TB (for statistics). */
1198 uint8_t idxInstr;
1199 /** The opcode length. */
1200 uint8_t cbOpcode;
1201 /** Offset into IEMTB::pabOpcodes. */
1202 uint16_t offOpcode;
1203
1204 /** TB lookup table index (7 bits) and large size (1 bits).
1205 *
1206 * The default size is 1 entry, but for indirect calls and returns we set the
1207 * top bit and allocate 4 (IEM_TB_LOOKUP_TAB_LARGE_SIZE) entries. The large
1208 * tables uses RIP for selecting the entry to use, as it is assumed a hash table
1209 * lookup isn't that slow compared to sequentially trying out 4 TBs.
1210 *
1211 * By default lookup table entry 0 for a TB is reserved as a fallback for
1212 * calltable entries w/o explicit entreis, so this member will be non-zero if
1213 * there is a lookup entry associated with this call.
1214 *
1215 * @sa IEM_TB_LOOKUP_TAB_GET_SIZE, IEM_TB_LOOKUP_TAB_GET_IDX
1216 */
1217 uint8_t uTbLookup;
1218
1219 /** Unused atm. */
1220 uint8_t uUnused0;
1221
1222 /** Generic parameters. */
1223 uint64_t auParams[3];
1224} IEMTHRDEDCALLENTRY;
1225AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
1226/** Pointer to a threaded call entry. */
1227typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
1228/** Pointer to a const threaded call entry. */
1229typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
1230
1231/** The number of TB lookup table entries for a large allocation
1232 * (IEMTHRDEDCALLENTRY::uTbLookup bit 7 set). */
1233#define IEM_TB_LOOKUP_TAB_LARGE_SIZE 4
1234/** Get the lookup table size from IEMTHRDEDCALLENTRY::uTbLookup. */
1235#define IEM_TB_LOOKUP_TAB_GET_SIZE(a_uTbLookup) (!((a_uTbLookup) & 0x80) ? 1 : IEM_TB_LOOKUP_TAB_LARGE_SIZE)
1236/** Get the first lookup table index from IEMTHRDEDCALLENTRY::uTbLookup. */
1237#define IEM_TB_LOOKUP_TAB_GET_IDX(a_uTbLookup) ((a_uTbLookup) & 0x7f)
1238/** Get the lookup table index from IEMTHRDEDCALLENTRY::uTbLookup and RIP. */
1239#define IEM_TB_LOOKUP_TAB_GET_IDX_WITH_RIP(a_uTbLookup, a_Rip) \
1240 (!((a_uTbLookup) & 0x80) ? (a_uTbLookup) & 0x7f : ((a_uTbLookup) & 0x7f) + ((a_Rip) & (IEM_TB_LOOKUP_TAB_LARGE_SIZE - 1)) )
1241
1242/** Make a IEMTHRDEDCALLENTRY::uTbLookup value. */
1243#define IEM_TB_LOOKUP_TAB_MAKE(a_idxTable, a_fLarge) ((a_idxTable) | ((a_fLarge) ? 0x80 : 0))
1244
1245/**
1246 * Native IEM TB 'function' typedef.
1247 *
1248 * This will throw/longjmp on occation.
1249 *
1250 * @note AMD64 doesn't have that many non-volatile registers and does sport
1251 * 32-bit address displacments, so we don't need pCtx.
1252 *
1253 * On ARM64 pCtx allows us to directly address the whole register
1254 * context without requiring a separate indexing register holding the
1255 * offset. This saves an instruction loading the offset for each guest
1256 * CPU context access, at the cost of a non-volatile register.
1257 * Fortunately, ARM64 has quite a lot more registers.
1258 */
1259typedef
1260#ifdef RT_ARCH_AMD64
1261int FNIEMTBNATIVE(PVMCPUCC pVCpu)
1262#else
1263int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
1264#endif
1265#if RT_CPLUSPLUS_PREREQ(201700)
1266 IEM_NOEXCEPT_MAY_LONGJMP
1267#endif
1268 ;
1269/** Pointer to a native IEM TB entry point function.
1270 * This will throw/longjmp on occation. */
1271typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
1272
1273
1274/**
1275 * Translation block debug info entry type.
1276 */
1277typedef enum IEMTBDBGENTRYTYPE
1278{
1279 kIemTbDbgEntryType_Invalid = 0,
1280 /** The entry is for marking a native code position.
1281 * Entries following this all apply to this position. */
1282 kIemTbDbgEntryType_NativeOffset,
1283 /** The entry is for a new guest instruction. */
1284 kIemTbDbgEntryType_GuestInstruction,
1285 /** Marks the start of a threaded call. */
1286 kIemTbDbgEntryType_ThreadedCall,
1287 /** Marks the location of a label. */
1288 kIemTbDbgEntryType_Label,
1289 /** Info about a host register shadowing a guest register. */
1290 kIemTbDbgEntryType_GuestRegShadowing,
1291#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1292 /** Info about a host SIMD register shadowing a guest SIMD register. */
1293 kIemTbDbgEntryType_GuestSimdRegShadowing,
1294#endif
1295#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1296 /** Info about a delayed RIP update. */
1297 kIemTbDbgEntryType_DelayedPcUpdate,
1298#endif
1299#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1300 /** Info about a shadowed guest register becoming dirty. */
1301 kIemTbDbgEntryType_GuestRegDirty,
1302 /** Info about register writeback/flush oepration. */
1303 kIemTbDbgEntryType_GuestRegWriteback,
1304#endif
1305 kIemTbDbgEntryType_End
1306} IEMTBDBGENTRYTYPE;
1307
1308/**
1309 * Translation block debug info entry.
1310 */
1311typedef union IEMTBDBGENTRY
1312{
1313 /** Plain 32-bit view. */
1314 uint32_t u;
1315
1316 /** Generic view for getting at the type field. */
1317 struct
1318 {
1319 /** IEMTBDBGENTRYTYPE */
1320 uint32_t uType : 4;
1321 uint32_t uTypeSpecific : 28;
1322 } Gen;
1323
1324 struct
1325 {
1326 /** kIemTbDbgEntryType_ThreadedCall1. */
1327 uint32_t uType : 4;
1328 /** Native code offset. */
1329 uint32_t offNative : 28;
1330 } NativeOffset;
1331
1332 struct
1333 {
1334 /** kIemTbDbgEntryType_GuestInstruction. */
1335 uint32_t uType : 4;
1336 uint32_t uUnused : 4;
1337 /** The IEM_F_XXX flags. */
1338 uint32_t fExec : 24;
1339 } GuestInstruction;
1340
1341 struct
1342 {
1343 /* kIemTbDbgEntryType_ThreadedCall. */
1344 uint32_t uType : 4;
1345 /** Set if the call was recompiled to native code, clear if just calling
1346 * threaded function. */
1347 uint32_t fRecompiled : 1;
1348 uint32_t uUnused : 11;
1349 /** The threaded call number (IEMTHREADEDFUNCS). */
1350 uint32_t enmCall : 16;
1351 } ThreadedCall;
1352
1353 struct
1354 {
1355 /* kIemTbDbgEntryType_Label. */
1356 uint32_t uType : 4;
1357 uint32_t uUnused : 4;
1358 /** The label type (IEMNATIVELABELTYPE). */
1359 uint32_t enmLabel : 8;
1360 /** The label data. */
1361 uint32_t uData : 16;
1362 } Label;
1363
1364 struct
1365 {
1366 /* kIemTbDbgEntryType_GuestRegShadowing. */
1367 uint32_t uType : 4;
1368 uint32_t uUnused : 4;
1369 /** The guest register being shadowed (IEMNATIVEGSTREG). */
1370 uint32_t idxGstReg : 8;
1371 /** The host new register number, UINT8_MAX if dropped. */
1372 uint32_t idxHstReg : 8;
1373 /** The previous host register number, UINT8_MAX if new. */
1374 uint32_t idxHstRegPrev : 8;
1375 } GuestRegShadowing;
1376
1377#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1378 struct
1379 {
1380 /* kIemTbDbgEntryType_GuestSimdRegShadowing. */
1381 uint32_t uType : 4;
1382 uint32_t uUnused : 4;
1383 /** The guest register being shadowed (IEMNATIVEGSTSIMDREG). */
1384 uint32_t idxGstSimdReg : 8;
1385 /** The host new register number, UINT8_MAX if dropped. */
1386 uint32_t idxHstSimdReg : 8;
1387 /** The previous host register number, UINT8_MAX if new. */
1388 uint32_t idxHstSimdRegPrev : 8;
1389 } GuestSimdRegShadowing;
1390#endif
1391
1392#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1393 struct
1394 {
1395 /* kIemTbDbgEntryType_DelayedPcUpdate. */
1396 uint32_t uType : 4;
1397 /* The instruction offset added to the program counter. */
1398 uint32_t offPc : 14;
1399 /** Number of instructions skipped. */
1400 uint32_t cInstrSkipped : 14;
1401 } DelayedPcUpdate;
1402#endif
1403
1404#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1405 struct
1406 {
1407 /* kIemTbDbgEntryType_GuestRegDirty. */
1408 uint32_t uType : 4;
1409 uint32_t uUnused : 11;
1410 /** Flag whether this is about a SIMD (true) or general (false) register. */
1411 uint32_t fSimdReg : 1;
1412 /** The guest register index being marked as dirty. */
1413 uint32_t idxGstReg : 8;
1414 /** The host register number this register is shadowed in .*/
1415 uint32_t idxHstReg : 8;
1416 } GuestRegDirty;
1417
1418 struct
1419 {
1420 /* kIemTbDbgEntryType_GuestRegWriteback. */
1421 uint32_t uType : 4;
1422 /** Flag whether this is about a SIMD (true) or general (false) register flush. */
1423 uint32_t fSimdReg : 1;
1424 /** The mask shift. */
1425 uint32_t cShift : 2;
1426 /** The guest register mask being written back. */
1427 uint32_t fGstReg : 25;
1428 } GuestRegWriteback;
1429#endif
1430
1431} IEMTBDBGENTRY;
1432AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
1433/** Pointer to a debug info entry. */
1434typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
1435/** Pointer to a const debug info entry. */
1436typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
1437
1438/**
1439 * Translation block debug info.
1440 */
1441typedef struct IEMTBDBG
1442{
1443 /** Number of entries in aEntries. */
1444 uint32_t cEntries;
1445 /** The offset of the last kIemTbDbgEntryType_NativeOffset record. */
1446 uint32_t offNativeLast;
1447 /** Debug info entries. */
1448 RT_FLEXIBLE_ARRAY_EXTENSION
1449 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1450} IEMTBDBG;
1451/** Pointer to TB debug info. */
1452typedef IEMTBDBG *PIEMTBDBG;
1453/** Pointer to const TB debug info. */
1454typedef IEMTBDBG const *PCIEMTBDBG;
1455
1456
1457/**
1458 * Translation block.
1459 *
1460 * The current plan is to just keep TBs and associated lookup hash table private
1461 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1462 * avoids using expensive atomic primitives for updating lists and stuff.
1463 */
1464#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1465typedef struct IEMTB
1466{
1467 /** Next block with the same hash table entry. */
1468 struct IEMTB *pNext;
1469 /** Usage counter. */
1470 uint32_t cUsed;
1471 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1472 uint32_t msLastUsed;
1473
1474 /** @name What uniquely identifies the block.
1475 * @{ */
1476 RTGCPHYS GCPhysPc;
1477 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1478 uint32_t fFlags;
1479 union
1480 {
1481 struct
1482 {
1483 /**< Relevant CS X86DESCATTR_XXX bits. */
1484 uint16_t fAttr;
1485 } x86;
1486 };
1487 /** @} */
1488
1489 /** Number of opcode ranges. */
1490 uint8_t cRanges;
1491 /** Statistics: Number of instructions in the block. */
1492 uint8_t cInstructions;
1493
1494 /** Type specific info. */
1495 union
1496 {
1497 struct
1498 {
1499 /** The call sequence table. */
1500 PIEMTHRDEDCALLENTRY paCalls;
1501 /** Number of calls in paCalls. */
1502 uint16_t cCalls;
1503 /** Number of calls allocated. */
1504 uint16_t cAllocated;
1505 } Thrd;
1506 struct
1507 {
1508 /** The native instructions (PFNIEMTBNATIVE). */
1509 PIEMNATIVEINSTR paInstructions;
1510 /** Number of instructions pointed to by paInstructions. */
1511 uint32_t cInstructions;
1512 } Native;
1513 /** Generic view for zeroing when freeing. */
1514 struct
1515 {
1516 uintptr_t uPtr;
1517 uint32_t uData;
1518 } Gen;
1519 };
1520
1521 /** The allocation chunk this TB belongs to. */
1522 uint8_t idxAllocChunk;
1523 /** The number of entries in the lookup table.
1524 * Because we're out of space, the TB lookup table is located before the
1525 * opcodes pointed to by pabOpcodes. */
1526 uint8_t cTbLookupEntries;
1527
1528 /** Number of bytes of opcodes stored in pabOpcodes.
1529 * @todo this field isn't really needed, aRanges keeps the actual info. */
1530 uint16_t cbOpcodes;
1531 /** Pointer to the opcode bytes this block was recompiled from.
1532 * This also points to the TB lookup table, which starts cTbLookupEntries
1533 * entries before the opcodes (we don't have room atm for another point). */
1534 uint8_t *pabOpcodes;
1535
1536 /** Debug info if enabled.
1537 * This is only generated by the native recompiler. */
1538 PIEMTBDBG pDbgInfo;
1539
1540 /* --- 64 byte cache line end --- */
1541
1542 /** Opcode ranges.
1543 *
1544 * The opcode checkers and maybe TLB loading functions will use this to figure
1545 * out what to do. The parameter will specify an entry and the opcode offset to
1546 * start at and the minimum number of bytes to verify (instruction length).
1547 *
1548 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1549 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1550 * code TLB (must have a valid entry for that address) and scan the ranges to
1551 * locate the corresponding opcodes. Probably.
1552 */
1553 struct IEMTBOPCODERANGE
1554 {
1555 /** Offset within pabOpcodes. */
1556 uint16_t offOpcodes;
1557 /** Number of bytes. */
1558 uint16_t cbOpcodes;
1559 /** The page offset. */
1560 RT_GCC_EXTENSION
1561 uint16_t offPhysPage : 12;
1562 /** Unused bits. */
1563 RT_GCC_EXTENSION
1564 uint16_t u2Unused : 2;
1565 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1566 RT_GCC_EXTENSION
1567 uint16_t idxPhysPage : 2;
1568 } aRanges[8];
1569
1570 /** Physical pages that this TB covers.
1571 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1572 RTGCPHYS aGCPhysPages[2];
1573} IEMTB;
1574#pragma pack()
1575AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1576AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1577AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1578AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1579AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1580AssertCompileMemberOffset(IEMTB, aRanges, 64);
1581AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1582#if 1
1583AssertCompileSize(IEMTB, 128);
1584# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1585#else
1586AssertCompileSize(IEMTB, 168);
1587# undef IEMTB_SIZE_IS_POWER_OF_TWO
1588#endif
1589
1590/** Pointer to a translation block. */
1591typedef IEMTB *PIEMTB;
1592/** Pointer to a const translation block. */
1593typedef IEMTB const *PCIEMTB;
1594
1595/** Gets address of the given TB lookup table entry. */
1596#define IEMTB_GET_TB_LOOKUP_TAB_ENTRY(a_pTb, a_idx) \
1597 ((PIEMTB *)&(a_pTb)->pabOpcodes[-(int)((a_pTb)->cTbLookupEntries - (a_idx)) * sizeof(PIEMTB)])
1598
1599/**
1600 * Gets the physical address for a TB opcode range.
1601 */
1602DECL_FORCE_INLINE(RTGCPHYS) iemTbGetRangePhysPageAddr(PCIEMTB pTb, uint8_t idxRange)
1603{
1604 Assert(idxRange < RT_MIN(pTb->cRanges, RT_ELEMENTS(pTb->aRanges)));
1605 uint8_t const idxPage = pTb->aRanges[idxRange].idxPhysPage;
1606 Assert(idxPage <= RT_ELEMENTS(pTb->aGCPhysPages));
1607 if (idxPage == 0)
1608 return pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1609 Assert(!(pTb->aGCPhysPages[idxPage - 1] & GUEST_PAGE_OFFSET_MASK));
1610 return pTb->aGCPhysPages[idxPage - 1];
1611}
1612
1613
1614/**
1615 * A chunk of memory in the TB allocator.
1616 */
1617typedef struct IEMTBCHUNK
1618{
1619 /** Pointer to the translation blocks in this chunk. */
1620 PIEMTB paTbs;
1621#ifdef IN_RING0
1622 /** Allocation handle. */
1623 RTR0MEMOBJ hMemObj;
1624#endif
1625} IEMTBCHUNK;
1626
1627/**
1628 * A per-CPU translation block allocator.
1629 *
1630 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1631 * the length of the collision list, and of course also for cache line alignment
1632 * reasons, the TBs must be allocated with at least 64-byte alignment.
1633 * Memory is there therefore allocated using one of the page aligned allocators.
1634 *
1635 *
1636 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1637 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1638 * that enables us to quickly calculate the allocation bitmap position when
1639 * freeing the translation block.
1640 */
1641typedef struct IEMTBALLOCATOR
1642{
1643 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1644 uint32_t uMagic;
1645
1646#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1647 /** Mask corresponding to cTbsPerChunk - 1. */
1648 uint32_t fChunkMask;
1649 /** Shift count corresponding to cTbsPerChunk. */
1650 uint8_t cChunkShift;
1651#else
1652 uint32_t uUnused;
1653 uint8_t bUnused;
1654#endif
1655 /** Number of chunks we're allowed to allocate. */
1656 uint8_t cMaxChunks;
1657 /** Number of chunks currently populated. */
1658 uint16_t cAllocatedChunks;
1659 /** Number of translation blocks per chunk. */
1660 uint32_t cTbsPerChunk;
1661 /** Chunk size. */
1662 uint32_t cbPerChunk;
1663
1664 /** The maximum number of TBs. */
1665 uint32_t cMaxTbs;
1666 /** Total number of TBs in the populated chunks.
1667 * (cAllocatedChunks * cTbsPerChunk) */
1668 uint32_t cTotalTbs;
1669 /** The current number of TBs in use.
1670 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1671 uint32_t cInUseTbs;
1672 /** Statistics: Number of the cInUseTbs that are native ones. */
1673 uint32_t cNativeTbs;
1674 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1675 uint32_t cThreadedTbs;
1676
1677 /** Where to start pruning TBs from when we're out.
1678 * See iemTbAllocatorAllocSlow for details. */
1679 uint32_t iPruneFrom;
1680 /** Where to start pruning native TBs from when we're out of executable memory.
1681 * See iemTbAllocatorFreeupNativeSpace for details. */
1682 uint32_t iPruneNativeFrom;
1683 uint64_t u64Padding;
1684
1685 /** Statistics: Number of TB allocation calls. */
1686 STAMCOUNTER StatAllocs;
1687 /** Statistics: Number of TB free calls. */
1688 STAMCOUNTER StatFrees;
1689 /** Statistics: Time spend pruning. */
1690 STAMPROFILE StatPrune;
1691 /** Statistics: Time spend pruning native TBs. */
1692 STAMPROFILE StatPruneNative;
1693
1694 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1695 PIEMTB pDelayedFreeHead;
1696 /* Head of the list of free TBs. */
1697 PIEMTB pTbsFreeHead;
1698
1699 /** Allocation chunks. */
1700 IEMTBCHUNK aChunks[256];
1701} IEMTBALLOCATOR;
1702/** Pointer to a TB allocator. */
1703typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1704
1705/** Magic value for the TB allocator (Emmet Harley Cohen). */
1706#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1707
1708
1709/**
1710 * A per-CPU translation block cache (hash table).
1711 *
1712 * The hash table is allocated once during IEM initialization and size double
1713 * the max TB count, rounded up to the nearest power of two (so we can use and
1714 * AND mask rather than a rest division when hashing).
1715 */
1716typedef struct IEMTBCACHE
1717{
1718 /** Magic value (IEMTBCACHE_MAGIC). */
1719 uint32_t uMagic;
1720 /** Size of the hash table. This is a power of two. */
1721 uint32_t cHash;
1722 /** The mask corresponding to cHash. */
1723 uint32_t uHashMask;
1724 uint32_t uPadding;
1725
1726 /** @name Statistics
1727 * @{ */
1728 /** Number of collisions ever. */
1729 STAMCOUNTER cCollisions;
1730
1731 /** Statistics: Number of TB lookup misses. */
1732 STAMCOUNTER cLookupMisses;
1733 /** Statistics: Number of TB lookup hits via hash table (debug only). */
1734 STAMCOUNTER cLookupHits;
1735 /** Statistics: Number of TB lookup hits via TB associated lookup table (debug only). */
1736 STAMCOUNTER cLookupHitsViaTbLookupTable;
1737 STAMCOUNTER auPadding2[2];
1738 /** Statistics: Collision list length pruning. */
1739 STAMPROFILE StatPrune;
1740 /** @} */
1741
1742 /** The hash table itself.
1743 * @note The lower 6 bits of the pointer is used for keeping the collision
1744 * list length, so we can take action when it grows too long.
1745 * This works because TBs are allocated using a 64 byte (or
1746 * higher) alignment from page aligned chunks of memory, so the lower
1747 * 6 bits of the address will always be zero.
1748 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1749 */
1750 RT_FLEXIBLE_ARRAY_EXTENSION
1751 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1752} IEMTBCACHE;
1753/** Pointer to a per-CPU translation block cahce. */
1754typedef IEMTBCACHE *PIEMTBCACHE;
1755
1756/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1757#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1758
1759/** The collision count mask for IEMTBCACHE::apHash entries. */
1760#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1761/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1762#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1763/** Combine a TB pointer and a collision list length into a value for an
1764 * IEMTBCACHE::apHash entry. */
1765#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1766/** Combine a TB pointer and a collision list length into a value for an
1767 * IEMTBCACHE::apHash entry. */
1768#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1769/** Combine a TB pointer and a collision list length into a value for an
1770 * IEMTBCACHE::apHash entry. */
1771#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1772
1773/**
1774 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1775 */
1776#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1777 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1778
1779/**
1780 * Calculates the hash table slot for a TB from physical PC address and TB
1781 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1782 */
1783#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1784 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1785
1786
1787/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1788 *
1789 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1790 *
1791 * @{ */
1792/** Value if no branching happened recently. */
1793#define IEMBRANCHED_F_NO UINT8_C(0x00)
1794/** Flag set if direct branch, clear if absolute or indirect. */
1795#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1796/** Flag set if indirect branch, clear if direct or relative. */
1797#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1798/** Flag set if relative branch, clear if absolute or indirect. */
1799#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1800/** Flag set if conditional branch, clear if unconditional. */
1801#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1802/** Flag set if it's a far branch. */
1803#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1804/** Flag set if the stack pointer is modified. */
1805#define IEMBRANCHED_F_STACK UINT8_C(0x20)
1806/** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1807#define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1808/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1809#define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1810/** @} */
1811
1812
1813/**
1814 * The per-CPU IEM state.
1815 */
1816typedef struct IEMCPU
1817{
1818 /** Info status code that needs to be propagated to the IEM caller.
1819 * This cannot be passed internally, as it would complicate all success
1820 * checks within the interpreter making the code larger and almost impossible
1821 * to get right. Instead, we'll store status codes to pass on here. Each
1822 * source of these codes will perform appropriate sanity checks. */
1823 int32_t rcPassUp; /* 0x00 */
1824 /** Execution flag, IEM_F_XXX. */
1825 uint32_t fExec; /* 0x04 */
1826
1827 /** @name Decoder state.
1828 * @{ */
1829#ifdef IEM_WITH_CODE_TLB
1830 /** The offset of the next instruction byte. */
1831 uint32_t offInstrNextByte; /* 0x08 */
1832 /** The number of bytes available at pbInstrBuf for the current instruction.
1833 * This takes the max opcode length into account so that doesn't need to be
1834 * checked separately. */
1835 uint32_t cbInstrBuf; /* 0x0c */
1836 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1837 * This can be NULL if the page isn't mappable for some reason, in which
1838 * case we'll do fallback stuff.
1839 *
1840 * If we're executing an instruction from a user specified buffer,
1841 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1842 * aligned pointer but pointer to the user data.
1843 *
1844 * For instructions crossing pages, this will start on the first page and be
1845 * advanced to the next page by the time we've decoded the instruction. This
1846 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1847 */
1848 uint8_t const *pbInstrBuf; /* 0x10 */
1849# if ARCH_BITS == 32
1850 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1851# endif
1852 /** The program counter corresponding to pbInstrBuf.
1853 * This is set to a non-canonical address when we need to invalidate it. */
1854 uint64_t uInstrBufPc; /* 0x18 */
1855 /** The guest physical address corresponding to pbInstrBuf. */
1856 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1857 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1858 * This takes the CS segment limit into account.
1859 * @note Set to zero when the code TLB is flushed to trigger TLB reload. */
1860 uint16_t cbInstrBufTotal; /* 0x28 */
1861 /** Offset into pbInstrBuf of the first byte of the current instruction.
1862 * Can be negative to efficiently handle cross page instructions. */
1863 int16_t offCurInstrStart; /* 0x2a */
1864
1865# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1866 /** The prefix mask (IEM_OP_PRF_XXX). */
1867 uint32_t fPrefixes; /* 0x2c */
1868 /** The extra REX ModR/M register field bit (REX.R << 3). */
1869 uint8_t uRexReg; /* 0x30 */
1870 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1871 * (REX.B << 3). */
1872 uint8_t uRexB; /* 0x31 */
1873 /** The extra REX SIB index field bit (REX.X << 3). */
1874 uint8_t uRexIndex; /* 0x32 */
1875
1876 /** The effective segment register (X86_SREG_XXX). */
1877 uint8_t iEffSeg; /* 0x33 */
1878
1879 /** The offset of the ModR/M byte relative to the start of the instruction. */
1880 uint8_t offModRm; /* 0x34 */
1881
1882# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1883 /** The current offset into abOpcode. */
1884 uint8_t offOpcode; /* 0x35 */
1885# else
1886 uint8_t bUnused; /* 0x35 */
1887# endif
1888# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1889 uint8_t abOpaqueDecoderPart1[0x36 - 0x2c];
1890# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1891
1892#else /* !IEM_WITH_CODE_TLB */
1893# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1894 /** The size of what has currently been fetched into abOpcode. */
1895 uint8_t cbOpcode; /* 0x08 */
1896 /** The current offset into abOpcode. */
1897 uint8_t offOpcode; /* 0x09 */
1898 /** The offset of the ModR/M byte relative to the start of the instruction. */
1899 uint8_t offModRm; /* 0x0a */
1900
1901 /** The effective segment register (X86_SREG_XXX). */
1902 uint8_t iEffSeg; /* 0x0b */
1903
1904 /** The prefix mask (IEM_OP_PRF_XXX). */
1905 uint32_t fPrefixes; /* 0x0c */
1906 /** The extra REX ModR/M register field bit (REX.R << 3). */
1907 uint8_t uRexReg; /* 0x10 */
1908 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1909 * (REX.B << 3). */
1910 uint8_t uRexB; /* 0x11 */
1911 /** The extra REX SIB index field bit (REX.X << 3). */
1912 uint8_t uRexIndex; /* 0x12 */
1913
1914# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1915 uint8_t abOpaqueDecoderPart1[0x13 - 0x08];
1916# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1917#endif /* !IEM_WITH_CODE_TLB */
1918
1919#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1920 /** The effective operand mode. */
1921 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1922 /** The default addressing mode. */
1923 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1924 /** The effective addressing mode. */
1925 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1926 /** The default operand mode. */
1927 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1928
1929 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1930 uint8_t idxPrefix; /* 0x3a, 0x17 */
1931 /** 3rd VEX/EVEX/XOP register.
1932 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1933 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1934 /** The VEX/EVEX/XOP length field. */
1935 uint8_t uVexLength; /* 0x3c, 0x19 */
1936 /** Additional EVEX stuff. */
1937 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1938
1939# ifndef IEM_WITH_CODE_TLB
1940 /** Explicit alignment padding. */
1941 uint8_t abAlignment2a[1]; /* 0x1b */
1942# endif
1943 /** The FPU opcode (FOP). */
1944 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1945# ifndef IEM_WITH_CODE_TLB
1946 /** Explicit alignment padding. */
1947 uint8_t abAlignment2b[2]; /* 0x1e */
1948# endif
1949
1950 /** The opcode bytes. */
1951 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1952 /** Explicit alignment padding. */
1953# ifdef IEM_WITH_CODE_TLB
1954 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1955# else
1956 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1957# endif
1958
1959#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1960# ifdef IEM_WITH_CODE_TLB
1961 uint8_t abOpaqueDecoderPart2[0x4f - 0x36];
1962# else
1963 uint8_t abOpaqueDecoderPart2[0x4f - 0x13];
1964# endif
1965#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1966 /** @} */
1967
1968
1969 /** The number of active guest memory mappings. */
1970 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1971
1972 /** Records for tracking guest memory mappings. */
1973 struct
1974 {
1975 /** The address of the mapped bytes. */
1976 R3R0PTRTYPE(void *) pv;
1977 /** The access flags (IEM_ACCESS_XXX).
1978 * IEM_ACCESS_INVALID if the entry is unused. */
1979 uint32_t fAccess;
1980#if HC_ARCH_BITS == 64
1981 uint32_t u32Alignment4; /**< Alignment padding. */
1982#endif
1983 } aMemMappings[3]; /* 0x50 LB 0x30 */
1984
1985 /** Locking records for the mapped memory. */
1986 union
1987 {
1988 PGMPAGEMAPLOCK Lock;
1989 uint64_t au64Padding[2];
1990 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1991
1992 /** Bounce buffer info.
1993 * This runs in parallel to aMemMappings. */
1994 struct
1995 {
1996 /** The physical address of the first byte. */
1997 RTGCPHYS GCPhysFirst;
1998 /** The physical address of the second page. */
1999 RTGCPHYS GCPhysSecond;
2000 /** The number of bytes in the first page. */
2001 uint16_t cbFirst;
2002 /** The number of bytes in the second page. */
2003 uint16_t cbSecond;
2004 /** Whether it's unassigned memory. */
2005 bool fUnassigned;
2006 /** Explicit alignment padding. */
2007 bool afAlignment5[3];
2008 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
2009
2010 /** The flags of the current exception / interrupt. */
2011 uint32_t fCurXcpt; /* 0xf8 */
2012 /** The current exception / interrupt. */
2013 uint8_t uCurXcpt; /* 0xfc */
2014 /** Exception / interrupt recursion depth. */
2015 int8_t cXcptRecursions; /* 0xfb */
2016
2017 /** The next unused mapping index.
2018 * @todo try find room for this up with cActiveMappings. */
2019 uint8_t iNextMapping; /* 0xfd */
2020 uint8_t abAlignment7[1];
2021
2022 /** Bounce buffer storage.
2023 * This runs in parallel to aMemMappings and aMemBbMappings. */
2024 struct
2025 {
2026 uint8_t ab[512];
2027 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
2028
2029
2030 /** Pointer set jump buffer - ring-3 context. */
2031 R3PTRTYPE(jmp_buf *) pJmpBufR3;
2032 /** Pointer set jump buffer - ring-0 context. */
2033 R0PTRTYPE(jmp_buf *) pJmpBufR0;
2034
2035 /** @todo Should move this near @a fCurXcpt later. */
2036 /** The CR2 for the current exception / interrupt. */
2037 uint64_t uCurXcptCr2;
2038 /** The error code for the current exception / interrupt. */
2039 uint32_t uCurXcptErr;
2040
2041 /** @name Statistics
2042 * @{ */
2043 /** The number of instructions we've executed. */
2044 uint32_t cInstructions;
2045 /** The number of potential exits. */
2046 uint32_t cPotentialExits;
2047 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
2048 * This may contain uncommitted writes. */
2049 uint32_t cbWritten;
2050 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
2051 uint32_t cRetInstrNotImplemented;
2052 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
2053 uint32_t cRetAspectNotImplemented;
2054 /** Counts informational statuses returned (other than VINF_SUCCESS). */
2055 uint32_t cRetInfStatuses;
2056 /** Counts other error statuses returned. */
2057 uint32_t cRetErrStatuses;
2058 /** Number of times rcPassUp has been used. */
2059 uint32_t cRetPassUpStatus;
2060 /** Number of times RZ left with instruction commit pending for ring-3. */
2061 uint32_t cPendingCommit;
2062 /** Number of misaligned (host sense) atomic instruction accesses. */
2063 uint32_t cMisalignedAtomics;
2064 /** Number of long jumps. */
2065 uint32_t cLongJumps;
2066 /** @} */
2067
2068 /** @name Target CPU information.
2069 * @{ */
2070#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
2071 /** The target CPU. */
2072 uint8_t uTargetCpu;
2073#else
2074 uint8_t bTargetCpuPadding;
2075#endif
2076 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
2077 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
2078 * native host support and the 2nd for when there is.
2079 *
2080 * The two values are typically indexed by a g_CpumHostFeatures bit.
2081 *
2082 * This is for instance used for the BSF & BSR instructions where AMD and
2083 * Intel CPUs produce different EFLAGS. */
2084 uint8_t aidxTargetCpuEflFlavour[2];
2085
2086 /** The CPU vendor. */
2087 CPUMCPUVENDOR enmCpuVendor;
2088 /** @} */
2089
2090 /** @name Host CPU information.
2091 * @{ */
2092 /** The CPU vendor. */
2093 CPUMCPUVENDOR enmHostCpuVendor;
2094 /** @} */
2095
2096 /** Counts RDMSR \#GP(0) LogRel(). */
2097 uint8_t cLogRelRdMsr;
2098 /** Counts WRMSR \#GP(0) LogRel(). */
2099 uint8_t cLogRelWrMsr;
2100 /** Alignment padding. */
2101 uint8_t abAlignment9[42];
2102
2103 /** @name Recompilation
2104 * @{ */
2105 /** Pointer to the current translation block.
2106 * This can either be one being executed or one being compiled. */
2107 R3PTRTYPE(PIEMTB) pCurTbR3;
2108#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
2109 /** Frame pointer for the last native TB to execute. */
2110 R3PTRTYPE(void *) pvTbFramePointerR3;
2111#else
2112 R3PTRTYPE(void *) pvUnusedR3;
2113#endif
2114#ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
2115 /** The saved host floating point control register (MXCSR on x86, FPCR on arm64)
2116 * needing restore when the TB finished, IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED indicates the TB
2117 * didn't modify it so we don't need to restore it. */
2118# ifdef RT_ARCH_AMD64
2119 uint32_t uRegFpCtrl;
2120 /** Temporary copy of MXCSR for stmxcsr/ldmxcsr (so we don't have to fiddle with stack pointers). */
2121 uint32_t uRegMxcsrTmp;
2122# elif defined(RT_ARCH_ARM64)
2123 uint64_t uRegFpCtrl;
2124# else
2125# error "Port me"
2126# endif
2127#else
2128 uint64_t u64Unused;
2129#endif
2130 /** Fixed TB used for threaded recompilation.
2131 * This is allocated once with maxed-out sizes and re-used afterwards. */
2132 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
2133 /** Pointer to the ring-3 TB cache for this EMT. */
2134 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
2135 /** Pointer to the ring-3 TB lookup entry.
2136 * This either points to pTbLookupEntryDummyR3 or an actually lookuptable
2137 * entry, thus it can always safely be used w/o NULL checking. */
2138 R3PTRTYPE(PIEMTB *) ppTbLookupEntryR3;
2139 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
2140 * The TBs are based on physical addresses, so this is needed to correleated
2141 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
2142 uint64_t uCurTbStartPc;
2143 /** Number of threaded TBs executed. */
2144 uint64_t cTbExecThreaded;
2145 /** Number of native TBs executed. */
2146 uint64_t cTbExecNative;
2147 /** Whether we need to check the opcode bytes for the current instruction.
2148 * This is set by a previous instruction if it modified memory or similar. */
2149 bool fTbCheckOpcodes;
2150 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
2151 uint8_t fTbBranched;
2152 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
2153 bool fTbCrossedPage;
2154 /** Whether to end the current TB. */
2155 bool fEndTb;
2156 /** Number of instructions before we need emit an IRQ check call again.
2157 * This helps making sure we don't execute too long w/o checking for
2158 * interrupts and immediately following instructions that may enable
2159 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
2160 * required to make sure we check following the next instruction as well, see
2161 * fTbCurInstrIsSti. */
2162 uint8_t cInstrTillIrqCheck;
2163 /** Indicates that the current instruction is an STI. This is set by the
2164 * iemCImpl_sti code and subsequently cleared by the recompiler. */
2165 bool fTbCurInstrIsSti;
2166 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
2167 uint16_t cbOpcodesAllocated;
2168 /** The current instruction number in a native TB.
2169 * This is set by code that may trigger an unexpected TB exit (throw/longjmp)
2170 * and will be picked up by the TB execution loop. Only used when
2171 * IEMNATIVE_WITH_INSTRUCTION_COUNTING is defined. */
2172 uint8_t idxTbCurInstr;
2173 /** Spaced reserved for recompiler data / alignment. */
2174 bool afRecompilerStuff1[3];
2175 /** The virtual sync time at the last timer poll call. */
2176 uint32_t msRecompilerPollNow;
2177 /** The IEMTB::cUsed value when to attempt native recompilation of a TB. */
2178 uint32_t uTbNativeRecompileAtUsedCount;
2179 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
2180 uint32_t fTbCurInstr;
2181 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
2182 uint32_t fTbPrevInstr;
2183 /** Strict: Tracking skipped EFLAGS calculations. Any bits set here are
2184 * currently not up to date in EFLAGS. */
2185 uint32_t fSkippingEFlags;
2186 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
2187 RTGCPHYS GCPhysInstrBufPrev;
2188 /** Pointer to the ring-3 TB allocator for this EMT. */
2189 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
2190 /** Pointer to the ring-3 executable memory allocator for this EMT. */
2191 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
2192 /** Pointer to the native recompiler state for ring-3. */
2193 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
2194 /** Dummy entry for ppTbLookupEntryR3. */
2195 R3PTRTYPE(PIEMTB) pTbLookupEntryDummyR3;
2196
2197 /** Dummy TLB entry used for accesses to pages with databreakpoints. */
2198 IEMTLBENTRY DataBreakpointTlbe;
2199
2200 /** Threaded TB statistics: Times TB execution was broken off before reaching the end. */
2201 STAMCOUNTER StatTbThreadedExecBreaks;
2202 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
2203 STAMCOUNTER StatCheckIrqBreaks;
2204 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
2205 STAMCOUNTER StatCheckModeBreaks;
2206 /** Threaded TB statistics: Times execution break on call with lookup entries. */
2207 STAMCOUNTER StatTbThreadedExecBreaksWithLookup;
2208 /** Threaded TB statistics: Times execution break on call without lookup entries. */
2209 STAMCOUNTER StatTbThreadedExecBreaksWithoutLookup;
2210 /** Statistics: Times a post jump target check missed and had to find new TB. */
2211 STAMCOUNTER StatCheckBranchMisses;
2212 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
2213 STAMCOUNTER StatCheckNeedCsLimChecking;
2214 /** Statistics: Times a loop was detected within a TB.. */
2215 STAMCOUNTER StatTbLoopInTbDetected;
2216 /** Exec memory allocator statistics: Number of times allocaintg executable memory failed. */
2217 STAMCOUNTER StatNativeExecMemInstrBufAllocFailed;
2218 /** Native TB statistics: Number of fully recompiled TBs. */
2219 STAMCOUNTER StatNativeFullyRecompiledTbs;
2220 /** TB statistics: Number of instructions per TB. */
2221 STAMPROFILE StatTbInstr;
2222 /** TB statistics: Number of TB lookup table entries per TB. */
2223 STAMPROFILE StatTbLookupEntries;
2224 /** Threaded TB statistics: Number of calls per TB. */
2225 STAMPROFILE StatTbThreadedCalls;
2226 /** Native TB statistics: Native code size per TB. */
2227 STAMPROFILE StatTbNativeCode;
2228 /** Native TB statistics: Profiling native recompilation. */
2229 STAMPROFILE StatNativeRecompilation;
2230 /** Native TB statistics: Number of calls per TB that were recompiled properly. */
2231 STAMPROFILE StatNativeCallsRecompiled;
2232 /** Native TB statistics: Number of threaded calls per TB that weren't recompiled. */
2233 STAMPROFILE StatNativeCallsThreaded;
2234 /** Native recompiled execution: TLB hits for data fetches. */
2235 STAMCOUNTER StatNativeTlbHitsForFetch;
2236 /** Native recompiled execution: TLB hits for data stores. */
2237 STAMCOUNTER StatNativeTlbHitsForStore;
2238 /** Native recompiled execution: TLB hits for stack accesses. */
2239 STAMCOUNTER StatNativeTlbHitsForStack;
2240 /** Native recompiled execution: TLB hits for mapped accesses. */
2241 STAMCOUNTER StatNativeTlbHitsForMapped;
2242 /** Native recompiled execution: Code TLB misses for new page. */
2243 STAMCOUNTER StatNativeCodeTlbMissesNewPage;
2244 /** Native recompiled execution: Code TLB hits for new page. */
2245 STAMCOUNTER StatNativeCodeTlbHitsForNewPage;
2246 /** Native recompiled execution: Code TLB misses for new page with offset. */
2247 STAMCOUNTER StatNativeCodeTlbMissesNewPageWithOffset;
2248 /** Native recompiled execution: Code TLB hits for new page with offset. */
2249 STAMCOUNTER StatNativeCodeTlbHitsForNewPageWithOffset;
2250
2251 /** Native recompiler: Number of calls to iemNativeRegAllocFindFree. */
2252 STAMCOUNTER StatNativeRegFindFree;
2253 /** Native recompiler: Number of times iemNativeRegAllocFindFree needed
2254 * to free a variable. */
2255 STAMCOUNTER StatNativeRegFindFreeVar;
2256 /** Native recompiler: Number of times iemNativeRegAllocFindFree did
2257 * not need to free any variables. */
2258 STAMCOUNTER StatNativeRegFindFreeNoVar;
2259 /** Native recompiler: Liveness info freed shadowed guest registers in
2260 * iemNativeRegAllocFindFree. */
2261 STAMCOUNTER StatNativeRegFindFreeLivenessUnshadowed;
2262 /** Native recompiler: Liveness info helped with the allocation in
2263 * iemNativeRegAllocFindFree. */
2264 STAMCOUNTER StatNativeRegFindFreeLivenessHelped;
2265
2266 /** Native recompiler: Number of times status flags calc has been skipped. */
2267 STAMCOUNTER StatNativeEflSkippedArithmetic;
2268 /** Native recompiler: Number of times status flags calc has been skipped. */
2269 STAMCOUNTER StatNativeEflSkippedLogical;
2270
2271 /** Native recompiler: Number of opportunities to skip EFLAGS.CF updating. */
2272 STAMCOUNTER StatNativeLivenessEflCfSkippable;
2273 /** Native recompiler: Number of opportunities to skip EFLAGS.PF updating. */
2274 STAMCOUNTER StatNativeLivenessEflPfSkippable;
2275 /** Native recompiler: Number of opportunities to skip EFLAGS.AF updating. */
2276 STAMCOUNTER StatNativeLivenessEflAfSkippable;
2277 /** Native recompiler: Number of opportunities to skip EFLAGS.ZF updating. */
2278 STAMCOUNTER StatNativeLivenessEflZfSkippable;
2279 /** Native recompiler: Number of opportunities to skip EFLAGS.SF updating. */
2280 STAMCOUNTER StatNativeLivenessEflSfSkippable;
2281 /** Native recompiler: Number of opportunities to skip EFLAGS.OF updating. */
2282 STAMCOUNTER StatNativeLivenessEflOfSkippable;
2283 /** Native recompiler: Number of required EFLAGS.CF updates. */
2284 STAMCOUNTER StatNativeLivenessEflCfRequired;
2285 /** Native recompiler: Number of required EFLAGS.PF updates. */
2286 STAMCOUNTER StatNativeLivenessEflPfRequired;
2287 /** Native recompiler: Number of required EFLAGS.AF updates. */
2288 STAMCOUNTER StatNativeLivenessEflAfRequired;
2289 /** Native recompiler: Number of required EFLAGS.ZF updates. */
2290 STAMCOUNTER StatNativeLivenessEflZfRequired;
2291 /** Native recompiler: Number of required EFLAGS.SF updates. */
2292 STAMCOUNTER StatNativeLivenessEflSfRequired;
2293 /** Native recompiler: Number of required EFLAGS.OF updates. */
2294 STAMCOUNTER StatNativeLivenessEflOfRequired;
2295 /** Native recompiler: Number of potentially delayable EFLAGS.CF updates. */
2296 STAMCOUNTER StatNativeLivenessEflCfDelayable;
2297 /** Native recompiler: Number of potentially delayable EFLAGS.PF updates. */
2298 STAMCOUNTER StatNativeLivenessEflPfDelayable;
2299 /** Native recompiler: Number of potentially delayable EFLAGS.AF updates. */
2300 STAMCOUNTER StatNativeLivenessEflAfDelayable;
2301 /** Native recompiler: Number of potentially delayable EFLAGS.ZF updates. */
2302 STAMCOUNTER StatNativeLivenessEflZfDelayable;
2303 /** Native recompiler: Number of potentially delayable EFLAGS.SF updates. */
2304 STAMCOUNTER StatNativeLivenessEflSfDelayable;
2305 /** Native recompiler: Number of potentially delayable EFLAGS.OF updates. */
2306 STAMCOUNTER StatNativeLivenessEflOfDelayable;
2307
2308 /** Native recompiler: Number of potential PC updates in total. */
2309 STAMCOUNTER StatNativePcUpdateTotal;
2310 /** Native recompiler: Number of PC updates which could be delayed. */
2311 STAMCOUNTER StatNativePcUpdateDelayed;
2312
2313//#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2314 /** Native recompiler: Number of calls to iemNativeSimdRegAllocFindFree. */
2315 STAMCOUNTER StatNativeSimdRegFindFree;
2316 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree needed
2317 * to free a variable. */
2318 STAMCOUNTER StatNativeSimdRegFindFreeVar;
2319 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree did
2320 * not need to free any variables. */
2321 STAMCOUNTER StatNativeSimdRegFindFreeNoVar;
2322 /** Native recompiler: Liveness info freed shadowed guest registers in
2323 * iemNativeSimdRegAllocFindFree. */
2324 STAMCOUNTER StatNativeSimdRegFindFreeLivenessUnshadowed;
2325 /** Native recompiler: Liveness info helped with the allocation in
2326 * iemNativeSimdRegAllocFindFree. */
2327 STAMCOUNTER StatNativeSimdRegFindFreeLivenessHelped;
2328
2329 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks. */
2330 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckPotential;
2331 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks. */
2332 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckPotential;
2333 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks. */
2334 STAMCOUNTER StatNativeMaybeSseXcptCheckPotential;
2335 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks. */
2336 STAMCOUNTER StatNativeMaybeAvxXcptCheckPotential;
2337
2338 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks omitted. */
2339 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckOmitted;
2340 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks omitted. */
2341 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckOmitted;
2342 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks omitted. */
2343 STAMCOUNTER StatNativeMaybeSseXcptCheckOmitted;
2344 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks omitted. */
2345 STAMCOUNTER StatNativeMaybeAvxXcptCheckOmitted;
2346//#endif
2347
2348 /** Native recompiler: The TB finished executing completely without jumping to a an exit label.
2349 * Not availabe in release builds. */
2350 STAMCOUNTER StatNativeTbFinished;
2351 /** Native recompiler: The TB finished executing jumping to the ReturnBreak label. */
2352 STAMCOUNTER StatNativeTbExitReturnBreak;
2353 /** Native recompiler: The TB finished executing jumping to the ReturnBreakFF label. */
2354 STAMCOUNTER StatNativeTbExitReturnBreakFF;
2355 /** Native recompiler: The TB finished executing jumping to the ReturnWithFlags label. */
2356 STAMCOUNTER StatNativeTbExitReturnWithFlags;
2357 /** Native recompiler: The TB finished executing with other non-zero status. */
2358 STAMCOUNTER StatNativeTbExitReturnOtherStatus;
2359 /** Native recompiler: The TB finished executing via throw / long jump. */
2360 STAMCOUNTER StatNativeTbExitLongJump;
2361 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2362 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2363 STAMCOUNTER StatNativeTbExitDirectLinking1NoIrq;
2364 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2365 * label, but directly jumped to the next TB, scenario \#1 with IRQ checks. */
2366 STAMCOUNTER StatNativeTbExitDirectLinking1Irq;
2367 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2368 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2369 STAMCOUNTER StatNativeTbExitDirectLinking2NoIrq;
2370 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2371 * label, but directly jumped to the next TB, scenario \#2 with IRQ checks. */
2372 STAMCOUNTER StatNativeTbExitDirectLinking2Irq;
2373
2374 /** Native recompiler: The TB finished executing jumping to the RaiseDe label. */
2375 STAMCOUNTER StatNativeTbExitRaiseDe;
2376 /** Native recompiler: The TB finished executing jumping to the RaiseUd label. */
2377 STAMCOUNTER StatNativeTbExitRaiseUd;
2378 /** Native recompiler: The TB finished executing jumping to the RaiseSseRelated label. */
2379 STAMCOUNTER StatNativeTbExitRaiseSseRelated;
2380 /** Native recompiler: The TB finished executing jumping to the RaiseAvxRelated label. */
2381 STAMCOUNTER StatNativeTbExitRaiseAvxRelated;
2382 /** Native recompiler: The TB finished executing jumping to the RaiseSseAvxFpRelated label. */
2383 STAMCOUNTER StatNativeTbExitRaiseSseAvxFpRelated;
2384 /** Native recompiler: The TB finished executing jumping to the RaiseNm label. */
2385 STAMCOUNTER StatNativeTbExitRaiseNm;
2386 /** Native recompiler: The TB finished executing jumping to the RaiseGp0 label. */
2387 STAMCOUNTER StatNativeTbExitRaiseGp0;
2388 /** Native recompiler: The TB finished executing jumping to the RaiseMf label. */
2389 STAMCOUNTER StatNativeTbExitRaiseMf;
2390 /** Native recompiler: The TB finished executing jumping to the RaiseXf label. */
2391 STAMCOUNTER StatNativeTbExitRaiseXf;
2392 /** Native recompiler: The TB finished executing jumping to the ObsoleteTb label. */
2393 STAMCOUNTER StatNativeTbExitObsoleteTb;
2394
2395 /** Native recompiler: Failure situations with direct linking scenario \#1.
2396 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2397 * @{ */
2398 STAMCOUNTER StatNativeTbExitDirectLinking1NoTb;
2399 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchGCPhysPc;
2400 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchFlags;
2401 STAMCOUNTER StatNativeTbExitDirectLinking1PendingIrq;
2402 /** @} */
2403
2404 /** Native recompiler: Failure situations with direct linking scenario \#2.
2405 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2406 * @{ */
2407 STAMCOUNTER StatNativeTbExitDirectLinking2NoTb;
2408 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchGCPhysPc;
2409 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchFlags;
2410 STAMCOUNTER StatNativeTbExitDirectLinking2PendingIrq;
2411 /** @} */
2412
2413 /** iemMemMap and iemMemMapJmp statistics.
2414 * @{ */
2415 STAMCOUNTER StatMemMapJmp;
2416 STAMCOUNTER StatMemMapNoJmp;
2417 STAMCOUNTER StatMemBounceBufferCrossPage;
2418 STAMCOUNTER StatMemBounceBufferMapPhys;
2419 /** @} */
2420
2421#ifdef IEM_WITH_TLB_TRACE
2422 uint64_t au64Padding[2];
2423#else
2424 uint64_t au64Padding[4];
2425#endif
2426 /** @} */
2427
2428#ifdef IEM_WITH_TLB_TRACE
2429 /** The end (next) trace entry. */
2430 uint32_t idxTlbTraceEntry;
2431 /** Number of trace entries allocated expressed as a power of two. */
2432 uint32_t cTlbTraceEntriesShift;
2433 /** The trace entries. */
2434 PIEMTLBTRACEENTRY paTlbTraceEntries;
2435#endif
2436
2437 /** Data TLB.
2438 * @remarks Must be 64-byte aligned. */
2439 IEMTLB DataTlb;
2440 /** Instruction TLB.
2441 * @remarks Must be 64-byte aligned. */
2442 IEMTLB CodeTlb;
2443
2444 /** Exception statistics. */
2445 STAMCOUNTER aStatXcpts[32];
2446 /** Interrupt statistics. */
2447 uint32_t aStatInts[256];
2448
2449#if defined(VBOX_WITH_STATISTICS) && !defined(DOXYGEN_RUNNING) && !defined(IEM_WITHOUT_INSTRUCTION_STATS)
2450 /** Instruction statistics for ring-0/raw-mode. */
2451 IEMINSTRSTATS StatsRZ;
2452 /** Instruction statistics for ring-3. */
2453 IEMINSTRSTATS StatsR3;
2454# ifdef VBOX_WITH_IEM_RECOMPILER
2455 /** Statistics per threaded function call.
2456 * Updated by both the threaded and native recompilers. */
2457 uint32_t acThreadedFuncStats[0x6000 /*24576*/];
2458# endif
2459#endif
2460} IEMCPU;
2461AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
2462AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
2463AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
2464AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
2465AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
2466AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
2467
2468/** Pointer to the per-CPU IEM state. */
2469typedef IEMCPU *PIEMCPU;
2470/** Pointer to the const per-CPU IEM state. */
2471typedef IEMCPU const *PCIEMCPU;
2472
2473/** @def IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED
2474 * Value indicating the TB didn't modified the floating point control register.
2475 * @note Neither FPCR nor MXCSR accept this as a valid value (MXCSR is not fully populated,
2476 * FPCR has the upper 32-bit reserved), so this is safe. */
2477#if defined(IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS) || defined(DOXYGEN_RUNNING)
2478# ifdef RT_ARCH_AMD64
2479# define IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED UINT32_MAX
2480# elif defined(RT_ARCH_ARM64)
2481# define IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED UINT64_MAX
2482# else
2483# error "Port me"
2484# endif
2485#endif
2486
2487/** @def IEM_GET_CTX
2488 * Gets the guest CPU context for the calling EMT.
2489 * @returns PCPUMCTX
2490 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2491 */
2492#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
2493
2494/** @def IEM_CTX_ASSERT
2495 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
2496 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2497 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
2498 */
2499#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
2500 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
2501 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
2502 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
2503
2504/** @def IEM_CTX_IMPORT_RET
2505 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2506 *
2507 * Will call the keep to import the bits as needed.
2508 *
2509 * Returns on import failure.
2510 *
2511 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2512 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2513 */
2514#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
2515 do { \
2516 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2517 { /* likely */ } \
2518 else \
2519 { \
2520 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2521 AssertRCReturn(rcCtxImport, rcCtxImport); \
2522 } \
2523 } while (0)
2524
2525/** @def IEM_CTX_IMPORT_NORET
2526 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2527 *
2528 * Will call the keep to import the bits as needed.
2529 *
2530 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2531 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2532 */
2533#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
2534 do { \
2535 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2536 { /* likely */ } \
2537 else \
2538 { \
2539 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2540 AssertLogRelRC(rcCtxImport); \
2541 } \
2542 } while (0)
2543
2544/** @def IEM_CTX_IMPORT_JMP
2545 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2546 *
2547 * Will call the keep to import the bits as needed.
2548 *
2549 * Jumps on import failure.
2550 *
2551 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2552 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2553 */
2554#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
2555 do { \
2556 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2557 { /* likely */ } \
2558 else \
2559 { \
2560 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2561 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
2562 } \
2563 } while (0)
2564
2565
2566
2567/** @def IEM_GET_TARGET_CPU
2568 * Gets the current IEMTARGETCPU value.
2569 * @returns IEMTARGETCPU value.
2570 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2571 */
2572#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
2573# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
2574#else
2575# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
2576#endif
2577
2578/** @def IEM_GET_INSTR_LEN
2579 * Gets the instruction length. */
2580#ifdef IEM_WITH_CODE_TLB
2581# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
2582#else
2583# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
2584#endif
2585
2586/** @def IEM_TRY_SETJMP
2587 * Wrapper around setjmp / try, hiding all the ugly differences.
2588 *
2589 * @note Use with extreme care as this is a fragile macro.
2590 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2591 * @param a_rcTarget The variable that should receive the status code in case
2592 * of a longjmp/throw.
2593 */
2594/** @def IEM_TRY_SETJMP_AGAIN
2595 * For when setjmp / try is used again in the same variable scope as a previous
2596 * IEM_TRY_SETJMP invocation.
2597 */
2598/** @def IEM_CATCH_LONGJMP_BEGIN
2599 * Start wrapper for catch / setjmp-else.
2600 *
2601 * This will set up a scope.
2602 *
2603 * @note Use with extreme care as this is a fragile macro.
2604 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2605 * @param a_rcTarget The variable that should receive the status code in case
2606 * of a longjmp/throw.
2607 */
2608/** @def IEM_CATCH_LONGJMP_END
2609 * End wrapper for catch / setjmp-else.
2610 *
2611 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
2612 * state.
2613 *
2614 * @note Use with extreme care as this is a fragile macro.
2615 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2616 */
2617#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
2618# ifdef IEM_WITH_THROW_CATCH
2619# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2620 a_rcTarget = VINF_SUCCESS; \
2621 try
2622# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2623 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
2624# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2625 catch (int rcThrown) \
2626 { \
2627 a_rcTarget = rcThrown
2628# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2629 } \
2630 ((void)0)
2631# else /* !IEM_WITH_THROW_CATCH */
2632# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2633 jmp_buf JmpBuf; \
2634 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2635 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2636 if ((rcStrict = setjmp(JmpBuf)) == 0)
2637# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2638 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2639 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2640 if ((rcStrict = setjmp(JmpBuf)) == 0)
2641# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2642 else \
2643 { \
2644 ((void)0)
2645# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2646 } \
2647 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
2648# endif /* !IEM_WITH_THROW_CATCH */
2649#endif /* IEM_WITH_SETJMP */
2650
2651
2652/**
2653 * Shared per-VM IEM data.
2654 */
2655typedef struct IEM
2656{
2657 /** The VMX APIC-access page handler type. */
2658 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
2659#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
2660 /** Set if the CPUID host call functionality is enabled. */
2661 bool fCpuIdHostCall;
2662#endif
2663} IEM;
2664
2665
2666
2667/** @name IEM_ACCESS_XXX - Access details.
2668 * @{ */
2669#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
2670#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
2671#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
2672#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
2673#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
2674#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
2675#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
2676#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
2677#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
2678#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
2679/** The writes are partial, so if initialize the bounce buffer with the
2680 * orignal RAM content. */
2681#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
2682/** Used in aMemMappings to indicate that the entry is bounce buffered. */
2683#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
2684/** Bounce buffer with ring-3 write pending, first page. */
2685#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
2686/** Bounce buffer with ring-3 write pending, second page. */
2687#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
2688/** Not locked, accessed via the TLB. */
2689#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
2690/** Atomic access.
2691 * This enables special alignment checks and the VINF_EM_EMULATE_SPLIT_LOCK
2692 * fallback for misaligned stuff. See @bugref{10547}. */
2693#define IEM_ACCESS_ATOMIC UINT32_C(0x00002000)
2694/** Valid bit mask. */
2695#define IEM_ACCESS_VALID_MASK UINT32_C(0x00003fff)
2696/** Shift count for the TLB flags (upper word). */
2697#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
2698
2699/** Atomic read+write data alias. */
2700#define IEM_ACCESS_DATA_ATOMIC (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA | IEM_ACCESS_ATOMIC)
2701/** Read+write data alias. */
2702#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2703/** Write data alias. */
2704#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2705/** Read data alias. */
2706#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
2707/** Instruction fetch alias. */
2708#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
2709/** Stack write alias. */
2710#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2711/** Stack read alias. */
2712#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
2713/** Stack read+write alias. */
2714#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2715/** Read system table alias. */
2716#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
2717/** Read+write system table alias. */
2718#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
2719/** @} */
2720
2721/** @name Prefix constants (IEMCPU::fPrefixes)
2722 * @{ */
2723#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
2724#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
2725#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
2726#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
2727#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
2728#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
2729#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
2730
2731#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
2732#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
2733#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
2734
2735#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
2736#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
2737#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
2738
2739#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
2740#define IEM_OP_PRF_REX_B RT_BIT_32(25) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
2741#define IEM_OP_PRF_REX_X RT_BIT_32(26) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
2742#define IEM_OP_PRF_REX_R RT_BIT_32(27) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
2743/** Mask with all the REX prefix flags.
2744 * This is generally for use when needing to undo the REX prefixes when they
2745 * are followed legacy prefixes and therefore does not immediately preceed
2746 * the first opcode byte.
2747 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
2748#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
2749
2750#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
2751#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
2752#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
2753/** @} */
2754
2755/** @name IEMOPFORM_XXX - Opcode forms
2756 * @note These are ORed together with IEMOPHINT_XXX.
2757 * @{ */
2758/** ModR/M: reg, r/m */
2759#define IEMOPFORM_RM 0
2760/** ModR/M: reg, r/m (register) */
2761#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2762/** ModR/M: reg, r/m (memory) */
2763#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2764/** ModR/M: reg, r/m, imm */
2765#define IEMOPFORM_RMI 1
2766/** ModR/M: reg, r/m (register), imm */
2767#define IEMOPFORM_RMI_REG (IEMOPFORM_RMI | IEMOPFORM_MOD3)
2768/** ModR/M: reg, r/m (memory), imm */
2769#define IEMOPFORM_RMI_MEM (IEMOPFORM_RMI | IEMOPFORM_NOT_MOD3)
2770/** ModR/M: reg, r/m, xmm0 */
2771#define IEMOPFORM_RM0 2
2772/** ModR/M: reg, r/m (register), xmm0 */
2773#define IEMOPFORM_RM0_REG (IEMOPFORM_RM0 | IEMOPFORM_MOD3)
2774/** ModR/M: reg, r/m (memory), xmm0 */
2775#define IEMOPFORM_RM0_MEM (IEMOPFORM_RM0 | IEMOPFORM_NOT_MOD3)
2776/** ModR/M: r/m, reg */
2777#define IEMOPFORM_MR 3
2778/** ModR/M: r/m (register), reg */
2779#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2780/** ModR/M: r/m (memory), reg */
2781#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2782/** ModR/M: r/m, reg, imm */
2783#define IEMOPFORM_MRI 4
2784/** ModR/M: r/m (register), reg, imm */
2785#define IEMOPFORM_MRI_REG (IEMOPFORM_MRI | IEMOPFORM_MOD3)
2786/** ModR/M: r/m (memory), reg, imm */
2787#define IEMOPFORM_MRI_MEM (IEMOPFORM_MRI | IEMOPFORM_NOT_MOD3)
2788/** ModR/M: r/m only */
2789#define IEMOPFORM_M 5
2790/** ModR/M: r/m only (register). */
2791#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2792/** ModR/M: r/m only (memory). */
2793#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2794/** ModR/M: r/m, imm */
2795#define IEMOPFORM_MI 6
2796/** ModR/M: r/m (register), imm */
2797#define IEMOPFORM_MI_REG (IEMOPFORM_MI | IEMOPFORM_MOD3)
2798/** ModR/M: r/m (memory), imm */
2799#define IEMOPFORM_MI_MEM (IEMOPFORM_MI | IEMOPFORM_NOT_MOD3)
2800/** ModR/M: r/m, 1 (shift and rotate instructions) */
2801#define IEMOPFORM_M1 7
2802/** ModR/M: r/m (register), 1. */
2803#define IEMOPFORM_M1_REG (IEMOPFORM_M1 | IEMOPFORM_MOD3)
2804/** ModR/M: r/m (memory), 1. */
2805#define IEMOPFORM_M1_MEM (IEMOPFORM_M1 | IEMOPFORM_NOT_MOD3)
2806/** ModR/M: r/m, CL (shift and rotate instructions)
2807 * @todo This should just've been a generic fixed register. But the python
2808 * code doesn't needs more convincing. */
2809#define IEMOPFORM_M_CL 8
2810/** ModR/M: r/m (register), CL. */
2811#define IEMOPFORM_M_CL_REG (IEMOPFORM_M_CL | IEMOPFORM_MOD3)
2812/** ModR/M: r/m (memory), CL. */
2813#define IEMOPFORM_M_CL_MEM (IEMOPFORM_M_CL | IEMOPFORM_NOT_MOD3)
2814/** ModR/M: reg only */
2815#define IEMOPFORM_R 9
2816
2817/** VEX+ModR/M: reg, r/m */
2818#define IEMOPFORM_VEX_RM 16
2819/** VEX+ModR/M: reg, r/m (register) */
2820#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2821/** VEX+ModR/M: reg, r/m (memory) */
2822#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2823/** VEX+ModR/M: r/m, reg */
2824#define IEMOPFORM_VEX_MR 17
2825/** VEX+ModR/M: r/m (register), reg */
2826#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2827/** VEX+ModR/M: r/m (memory), reg */
2828#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2829/** VEX+ModR/M: r/m, reg, imm8 */
2830#define IEMOPFORM_VEX_MRI 18
2831/** VEX+ModR/M: r/m (register), reg, imm8 */
2832#define IEMOPFORM_VEX_MRI_REG (IEMOPFORM_VEX_MRI | IEMOPFORM_MOD3)
2833/** VEX+ModR/M: r/m (memory), reg, imm8 */
2834#define IEMOPFORM_VEX_MRI_MEM (IEMOPFORM_VEX_MRI | IEMOPFORM_NOT_MOD3)
2835/** VEX+ModR/M: r/m only */
2836#define IEMOPFORM_VEX_M 19
2837/** VEX+ModR/M: r/m only (register). */
2838#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2839/** VEX+ModR/M: r/m only (memory). */
2840#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2841/** VEX+ModR/M: reg only */
2842#define IEMOPFORM_VEX_R 20
2843/** VEX+ModR/M: reg, vvvv, r/m */
2844#define IEMOPFORM_VEX_RVM 21
2845/** VEX+ModR/M: reg, vvvv, r/m (register). */
2846#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2847/** VEX+ModR/M: reg, vvvv, r/m (memory). */
2848#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2849/** VEX+ModR/M: reg, vvvv, r/m, imm */
2850#define IEMOPFORM_VEX_RVMI 22
2851/** VEX+ModR/M: reg, vvvv, r/m (register), imm. */
2852#define IEMOPFORM_VEX_RVMI_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2853/** VEX+ModR/M: reg, vvvv, r/m (memory), imm. */
2854#define IEMOPFORM_VEX_RVMI_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2855/** VEX+ModR/M: reg, vvvv, r/m, imm(reg) */
2856#define IEMOPFORM_VEX_RVMR 23
2857/** VEX+ModR/M: reg, vvvv, r/m (register), imm(reg). */
2858#define IEMOPFORM_VEX_RVMR_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2859/** VEX+ModR/M: reg, vvvv, r/m (memory), imm(reg). */
2860#define IEMOPFORM_VEX_RVMR_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2861/** VEX+ModR/M: reg, r/m, vvvv */
2862#define IEMOPFORM_VEX_RMV 24
2863/** VEX+ModR/M: reg, r/m, vvvv (register). */
2864#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2865/** VEX+ModR/M: reg, r/m, vvvv (memory). */
2866#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2867/** VEX+ModR/M: reg, r/m, imm8 */
2868#define IEMOPFORM_VEX_RMI 25
2869/** VEX+ModR/M: reg, r/m, imm8 (register). */
2870#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2871/** VEX+ModR/M: reg, r/m, imm8 (memory). */
2872#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2873/** VEX+ModR/M: r/m, vvvv, reg */
2874#define IEMOPFORM_VEX_MVR 26
2875/** VEX+ModR/M: r/m, vvvv, reg (register) */
2876#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2877/** VEX+ModR/M: r/m, vvvv, reg (memory) */
2878#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2879/** VEX+ModR/M+/n: vvvv, r/m */
2880#define IEMOPFORM_VEX_VM 27
2881/** VEX+ModR/M+/n: vvvv, r/m (register) */
2882#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
2883/** VEX+ModR/M+/n: vvvv, r/m (memory) */
2884#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
2885/** VEX+ModR/M+/n: vvvv, r/m, imm8 */
2886#define IEMOPFORM_VEX_VMI 28
2887/** VEX+ModR/M+/n: vvvv, r/m, imm8 (register) */
2888#define IEMOPFORM_VEX_VMI_REG (IEMOPFORM_VEX_VMI | IEMOPFORM_MOD3)
2889/** VEX+ModR/M+/n: vvvv, r/m, imm8 (memory) */
2890#define IEMOPFORM_VEX_VMI_MEM (IEMOPFORM_VEX_VMI | IEMOPFORM_NOT_MOD3)
2891
2892/** Fixed register instruction, no R/M. */
2893#define IEMOPFORM_FIXED 32
2894
2895/** The r/m is a register. */
2896#define IEMOPFORM_MOD3 RT_BIT_32(8)
2897/** The r/m is a memory access. */
2898#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
2899/** @} */
2900
2901/** @name IEMOPHINT_XXX - Additional Opcode Hints
2902 * @note These are ORed together with IEMOPFORM_XXX.
2903 * @{ */
2904/** Ignores the operand size prefix (66h). */
2905#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
2906/** Ignores REX.W (aka WIG). */
2907#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
2908/** Both the operand size prefixes (66h + REX.W) are ignored. */
2909#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
2910/** Allowed with the lock prefix. */
2911#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
2912/** The VEX.L value is ignored (aka LIG). */
2913#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
2914/** The VEX.L value must be zero (i.e. 128-bit width only). */
2915#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
2916/** The VEX.L value must be one (i.e. 256-bit width only). */
2917#define IEMOPHINT_VEX_L_ONE RT_BIT_32(14)
2918/** The VEX.V value must be zero. */
2919#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(15)
2920/** The REX.W/VEX.V value must be zero. */
2921#define IEMOPHINT_REX_W_ZERO RT_BIT_32(16)
2922#define IEMOPHINT_VEX_W_ZERO IEMOPHINT_REX_W_ZERO
2923/** The REX.W/VEX.V value must be one. */
2924#define IEMOPHINT_REX_W_ONE RT_BIT_32(17)
2925#define IEMOPHINT_VEX_W_ONE IEMOPHINT_REX_W_ONE
2926
2927/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
2928#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
2929/** @} */
2930
2931/**
2932 * Possible hardware task switch sources.
2933 */
2934typedef enum IEMTASKSWITCH
2935{
2936 /** Task switch caused by an interrupt/exception. */
2937 IEMTASKSWITCH_INT_XCPT = 1,
2938 /** Task switch caused by a far CALL. */
2939 IEMTASKSWITCH_CALL,
2940 /** Task switch caused by a far JMP. */
2941 IEMTASKSWITCH_JUMP,
2942 /** Task switch caused by an IRET. */
2943 IEMTASKSWITCH_IRET
2944} IEMTASKSWITCH;
2945AssertCompileSize(IEMTASKSWITCH, 4);
2946
2947/**
2948 * Possible CrX load (write) sources.
2949 */
2950typedef enum IEMACCESSCRX
2951{
2952 /** CrX access caused by 'mov crX' instruction. */
2953 IEMACCESSCRX_MOV_CRX,
2954 /** CrX (CR0) write caused by 'lmsw' instruction. */
2955 IEMACCESSCRX_LMSW,
2956 /** CrX (CR0) write caused by 'clts' instruction. */
2957 IEMACCESSCRX_CLTS,
2958 /** CrX (CR0) read caused by 'smsw' instruction. */
2959 IEMACCESSCRX_SMSW
2960} IEMACCESSCRX;
2961
2962#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2963/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
2964 *
2965 * These flags provide further context to SLAT page-walk failures that could not be
2966 * determined by PGM (e.g, PGM is not privy to memory access permissions).
2967 *
2968 * @{
2969 */
2970/** Translating a nested-guest linear address failed accessing a nested-guest
2971 * physical address. */
2972# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2973/** Translating a nested-guest linear address failed accessing a
2974 * paging-structure entry or updating accessed/dirty bits. */
2975# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2976/** @} */
2977
2978DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2979# ifndef IN_RING3
2980DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2981# endif
2982#endif
2983
2984/**
2985 * Indicates to the verifier that the given flag set is undefined.
2986 *
2987 * Can be invoked again to add more flags.
2988 *
2989 * This is a NOOP if the verifier isn't compiled in.
2990 *
2991 * @note We're temporarily keeping this until code is converted to new
2992 * disassembler style opcode handling.
2993 */
2994#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2995
2996
2997/** @def IEM_DECL_IMPL_TYPE
2998 * For typedef'ing an instruction implementation function.
2999 *
3000 * @param a_RetType The return type.
3001 * @param a_Name The name of the type.
3002 * @param a_ArgList The argument list enclosed in parentheses.
3003 */
3004
3005/** @def IEM_DECL_IMPL_DEF
3006 * For defining an instruction implementation function.
3007 *
3008 * @param a_RetType The return type.
3009 * @param a_Name The name of the type.
3010 * @param a_ArgList The argument list enclosed in parentheses.
3011 */
3012
3013#if defined(__GNUC__) && defined(RT_ARCH_X86)
3014# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3015 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
3016# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3017 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
3018# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3019 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
3020
3021#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
3022# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3023 a_RetType (__fastcall a_Name) a_ArgList
3024# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3025 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
3026# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3027 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
3028
3029#elif __cplusplus >= 201700 /* P0012R1 support */
3030# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3031 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
3032# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3033 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
3034# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3035 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
3036
3037#else
3038# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3039 a_RetType (VBOXCALL a_Name) a_ArgList
3040# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3041 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
3042# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3043 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
3044
3045#endif
3046
3047/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
3048RT_C_DECLS_BEGIN
3049extern uint8_t const g_afParity[256];
3050RT_C_DECLS_END
3051
3052
3053/** @name Arithmetic assignment operations on bytes (binary).
3054 * @{ */
3055typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU8, (uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t u8Src));
3056typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
3057FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
3058FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
3059FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
3060FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
3061FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
3062FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
3063FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
3064/** @} */
3065
3066/** @name Arithmetic assignment operations on words (binary).
3067 * @{ */
3068typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU16, (uint32_t fEFlagsIn, uint16_t *pu16Dst, uint16_t u16Src));
3069typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
3070FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
3071FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
3072FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
3073FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
3074FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
3075FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
3076FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
3077/** @} */
3078
3079
3080/** @name Arithmetic assignment operations on double words (binary).
3081 * @{ */
3082typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU32, (uint32_t fEFlagsIn, uint32_t *pu32Dst, uint32_t u32Src));
3083typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
3084FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
3085FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
3086FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
3087FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
3088FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
3089FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
3090FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
3091FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
3092FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
3093FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
3094/** @} */
3095
3096/** @name Arithmetic assignment operations on quad words (binary).
3097 * @{ */
3098typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU64, (uint32_t fEFlagsIn, uint64_t *pu64Dst, uint64_t u64Src));
3099typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
3100FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
3101FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
3102FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
3103FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
3104FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
3105FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
3106FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
3107FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
3108FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
3109FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
3110/** @} */
3111
3112typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU8, (uint32_t fEFlagsIn, uint8_t const *pu8Dst, uint8_t u8Src));
3113typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
3114typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU16,(uint32_t fEFlagsIn, uint16_t const *pu16Dst, uint16_t u16Src));
3115typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
3116typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU32,(uint32_t fEFlagsIn, uint32_t const *pu32Dst, uint32_t u32Src));
3117typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
3118typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU64,(uint32_t fEFlagsIn, uint64_t const *pu64Dst, uint64_t u64Src));
3119typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
3120
3121/** @name Compare operations (thrown in with the binary ops).
3122 * @{ */
3123FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
3124FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
3125FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
3126FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
3127/** @} */
3128
3129/** @name Test operations (thrown in with the binary ops).
3130 * @{ */
3131FNIEMAIMPLBINROU8 iemAImpl_test_u8;
3132FNIEMAIMPLBINROU16 iemAImpl_test_u16;
3133FNIEMAIMPLBINROU32 iemAImpl_test_u32;
3134FNIEMAIMPLBINROU64 iemAImpl_test_u64;
3135/** @} */
3136
3137/** @name Bit operations operations (thrown in with the binary ops).
3138 * @{ */
3139FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
3140FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
3141FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
3142FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
3143FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
3144FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
3145FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
3146FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
3147FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
3148FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
3149FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
3150FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
3151/** @} */
3152
3153/** @name Arithmetic three operand operations on double words (binary).
3154 * @{ */
3155typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
3156typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
3157FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
3158FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
3159FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
3160/** @} */
3161
3162/** @name Arithmetic three operand operations on quad words (binary).
3163 * @{ */
3164typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
3165typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
3166FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
3167FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
3168FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
3169/** @} */
3170
3171/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
3172 * @{ */
3173typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
3174typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
3175FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
3176FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
3177FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
3178FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
3179FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
3180FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
3181/** @} */
3182
3183/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
3184 * @{ */
3185typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
3186typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
3187FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
3188FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
3189FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
3190FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
3191FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
3192FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
3193/** @} */
3194
3195/** @name MULX 32-bit and 64-bit.
3196 * @{ */
3197typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
3198typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
3199FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
3200
3201typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
3202typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
3203FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
3204/** @} */
3205
3206
3207/** @name Exchange memory with register operations.
3208 * @{ */
3209IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
3210IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
3211IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
3212IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
3213IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
3214IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
3215IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
3216IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
3217/** @} */
3218
3219/** @name Exchange and add operations.
3220 * @{ */
3221IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
3222IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
3223IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
3224IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
3225IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
3226IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
3227IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
3228IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
3229/** @} */
3230
3231/** @name Compare and exchange.
3232 * @{ */
3233IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
3234IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
3235IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
3236IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
3237IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
3238IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
3239#if ARCH_BITS == 32
3240IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
3241IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
3242#else
3243IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
3244IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
3245#endif
3246IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
3247 uint32_t *pEFlags));
3248IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
3249 uint32_t *pEFlags));
3250IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
3251 uint32_t *pEFlags));
3252IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
3253 uint32_t *pEFlags));
3254#ifndef RT_ARCH_ARM64
3255IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
3256 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
3257#endif
3258/** @} */
3259
3260/** @name Memory ordering
3261 * @{ */
3262typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
3263typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
3264IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
3265IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
3266IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
3267#ifndef RT_ARCH_ARM64
3268IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
3269#endif
3270/** @} */
3271
3272/** @name Double precision shifts
3273 * @{ */
3274typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
3275typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
3276typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
3277typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
3278typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
3279typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
3280FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
3281FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
3282FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
3283FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
3284FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
3285FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
3286/** @} */
3287
3288
3289/** @name Bit search operations (thrown in with the binary ops).
3290 * @{ */
3291FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
3292FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
3293FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
3294FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
3295FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
3296FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
3297FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
3298FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
3299FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
3300FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
3301FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
3302FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
3303FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
3304FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
3305FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
3306/** @} */
3307
3308/** @name Signed multiplication operations (thrown in with the binary ops).
3309 * @{ */
3310FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
3311FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
3312FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
3313/** @} */
3314
3315/** @name Arithmetic assignment operations on bytes (unary).
3316 * @{ */
3317typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
3318typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
3319FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
3320FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
3321FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
3322FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
3323/** @} */
3324
3325/** @name Arithmetic assignment operations on words (unary).
3326 * @{ */
3327typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
3328typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
3329FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
3330FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
3331FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
3332FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
3333/** @} */
3334
3335/** @name Arithmetic assignment operations on double words (unary).
3336 * @{ */
3337typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
3338typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
3339FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
3340FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
3341FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
3342FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
3343/** @} */
3344
3345/** @name Arithmetic assignment operations on quad words (unary).
3346 * @{ */
3347typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
3348typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
3349FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
3350FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
3351FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
3352FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
3353/** @} */
3354
3355
3356/** @name Shift operations on bytes (Group 2).
3357 * @{ */
3358typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU8,(uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t cShift));
3359typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
3360FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
3361FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
3362FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
3363FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
3364FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
3365FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
3366FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
3367/** @} */
3368
3369/** @name Shift operations on words (Group 2).
3370 * @{ */
3371typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU16,(uint32_t fEFlagsIn, uint16_t *pu16Dst, uint8_t cShift));
3372typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
3373FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
3374FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
3375FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
3376FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
3377FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
3378FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
3379FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
3380/** @} */
3381
3382/** @name Shift operations on double words (Group 2).
3383 * @{ */
3384typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU32,(uint32_t fEFlagsIn, uint32_t *pu32Dst, uint8_t cShift));
3385typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
3386FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
3387FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
3388FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
3389FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
3390FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
3391FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
3392FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
3393/** @} */
3394
3395/** @name Shift operations on words (Group 2).
3396 * @{ */
3397typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU64,(uint32_t fEFlagsIn, uint64_t *pu64Dst, uint8_t cShift));
3398typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
3399FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
3400FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
3401FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
3402FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
3403FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
3404FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
3405FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
3406/** @} */
3407
3408/** @name Multiplication and division operations.
3409 * @{ */
3410typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
3411typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
3412FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
3413FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
3414FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
3415FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
3416
3417typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
3418typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
3419FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
3420FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
3421FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
3422FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
3423
3424typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
3425typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
3426FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
3427FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
3428FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
3429FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
3430
3431typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
3432typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
3433FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
3434FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
3435FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
3436FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
3437/** @} */
3438
3439/** @name Byte Swap.
3440 * @{ */
3441IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
3442IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
3443IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
3444/** @} */
3445
3446/** @name Misc.
3447 * @{ */
3448FNIEMAIMPLBINU16 iemAImpl_arpl;
3449/** @} */
3450
3451/** @name RDRAND and RDSEED
3452 * @{ */
3453typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
3454typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
3455typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
3456typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
3457typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
3458typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
3459
3460FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
3461FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
3462FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
3463FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
3464FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
3465FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
3466/** @} */
3467
3468/** @name ADOX and ADCX
3469 * @{ */
3470FNIEMAIMPLBINU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
3471FNIEMAIMPLBINU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
3472FNIEMAIMPLBINU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
3473FNIEMAIMPLBINU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
3474/** @} */
3475
3476/** @name FPU operations taking a 32-bit float argument
3477 * @{ */
3478typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3479 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3480typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
3481
3482typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3483 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3484typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
3485
3486FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
3487FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
3488FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
3489FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
3490FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
3491FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
3492FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
3493
3494IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
3495IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3496 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
3497/** @} */
3498
3499/** @name FPU operations taking a 64-bit float argument
3500 * @{ */
3501typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3502 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3503typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
3504
3505typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3506 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3507typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
3508
3509FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
3510FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
3511FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
3512FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
3513FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
3514FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
3515FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
3516
3517IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
3518IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3519 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
3520/** @} */
3521
3522/** @name FPU operations taking a 80-bit float argument
3523 * @{ */
3524typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3525 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3526typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
3527FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
3528FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
3529FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
3530FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
3531FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
3532FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
3533FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
3534FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
3535FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
3536
3537FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
3538FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
3539FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
3540
3541typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3542 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3543typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
3544FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
3545FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
3546
3547typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
3548 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3549typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
3550FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
3551FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
3552
3553typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3554typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
3555FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
3556FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
3557FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
3558FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
3559FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
3560FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
3561FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
3562
3563typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
3564typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
3565FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
3566FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
3567
3568typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
3569typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
3570FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
3571FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
3572FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
3573FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
3574FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
3575FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
3576FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
3577
3578typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
3579 PCRTFLOAT80U pr80Val));
3580typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
3581FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
3582FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
3583FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
3584
3585IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3586IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3587 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
3588
3589IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
3590IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3591 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
3592
3593/** @} */
3594
3595/** @name FPU operations taking a 16-bit signed integer argument
3596 * @{ */
3597typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3598 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3599typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
3600typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3601 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
3602typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
3603
3604FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
3605FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
3606FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
3607FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
3608FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
3609FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
3610
3611typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3612 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3613typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
3614FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
3615
3616IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
3617FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
3618FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
3619/** @} */
3620
3621/** @name FPU operations taking a 32-bit signed integer argument
3622 * @{ */
3623typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3624 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3625typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
3626typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3627 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
3628typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
3629
3630FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
3631FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
3632FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
3633FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
3634FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
3635FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
3636
3637typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3638 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3639typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
3640FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
3641
3642IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
3643FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
3644FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
3645/** @} */
3646
3647/** @name FPU operations taking a 64-bit signed integer argument
3648 * @{ */
3649typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3650 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
3651typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
3652
3653IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
3654FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
3655FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
3656/** @} */
3657
3658
3659/** Temporary type representing a 256-bit vector register. */
3660typedef struct { uint64_t au64[4]; } IEMVMM256;
3661/** Temporary type pointing to a 256-bit vector register. */
3662typedef IEMVMM256 *PIEMVMM256;
3663/** Temporary type pointing to a const 256-bit vector register. */
3664typedef IEMVMM256 *PCIEMVMM256;
3665
3666
3667/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
3668 * @{ */
3669typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
3670typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
3671typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
3672typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
3673typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U256,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc));
3674typedef FNIEMAIMPLMEDIAF2U256 *PFNIEMAIMPLMEDIAF2U256;
3675typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3U128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3676typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
3677typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3U256,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
3678typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
3679typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
3680typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
3681typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
3682typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
3683typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3684typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
3685typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3686typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
3687typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
3688typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
3689FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
3690FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
3691FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
3692FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
3693FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
3694FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
3695FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddd_u64;
3696FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddq_u64;
3697FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
3698FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
3699FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubd_u64;
3700FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubq_u64;
3701FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddwd_u64, iemAImpl_pmaddwd_u64_fallback;
3702FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
3703FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
3704FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
3705FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
3706FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
3707FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
3708FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
3709FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
3710FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
3711FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
3712FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
3713FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
3714FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
3715FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
3716FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
3717FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
3718FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
3719FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmuludq_u64;
3720FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
3721FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
3722FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
3723FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
3724FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
3725FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
3726FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
3727FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
3728
3729FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
3730FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
3731FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
3732FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
3733FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
3734FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
3735FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
3736FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
3737FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddd_u128;
3738FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddq_u128;
3739FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
3740FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
3741FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubd_u128;
3742FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubq_u128;
3743FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
3744FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhw_u128;
3745FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
3746FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3747FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminub_u128;
3748FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
3749FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
3750FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
3751FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
3752FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
3753FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxub_u128;
3754FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
3755FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
3756FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
3757FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsw_u128;
3758FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
3759FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
3760FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
3761FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
3762FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
3763FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
3764FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
3765FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
3766FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
3767FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
3768FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
3769FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
3770FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
3771FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
3772FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
3773FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuludq_u128;
3774FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3775FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
3776FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
3777FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
3778FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
3779FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
3780FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
3781FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
3782FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
3783FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
3784FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
3785FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
3786FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
3787
3788FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
3789FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
3790FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
3791FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
3792FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
3793FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
3794FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
3795FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
3796FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
3797FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
3798FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
3799FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
3800FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
3801FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
3802FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
3803FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
3804FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
3805FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
3806FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
3807FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
3808FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
3809FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
3810FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
3811FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
3812FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
3813FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
3814FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
3815FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
3816FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
3817FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
3818FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
3819FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
3820FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
3821FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
3822FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
3823FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3824FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3825FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3826FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3827FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3828FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3829FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3830FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3831FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3832FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3833FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3834FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3835FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3836FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3837FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3838FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3839FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3840FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3841FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3842FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3843FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3844FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3845FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3846FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3847FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3848FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3849FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3850FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3851FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3852FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3853FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllw_u128, iemAImpl_vpsllw_u128_fallback;
3854FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpslld_u128, iemAImpl_vpslld_u128_fallback;
3855FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllq_u128, iemAImpl_vpsllq_u128_fallback;
3856FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsraw_u128, iemAImpl_vpsraw_u128_fallback;
3857FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrad_u128, iemAImpl_vpsrad_u128_fallback;
3858FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlw_u128, iemAImpl_vpsrlw_u128_fallback;
3859FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrld_u128, iemAImpl_vpsrld_u128_fallback;
3860FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlq_u128, iemAImpl_vpsrlq_u128_fallback;
3861FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddwd_u128, iemAImpl_vpmaddwd_u128_fallback;
3862
3863FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3864FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3865FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3866FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3867
3868FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3869FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3870FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3871FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3872FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3873FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3874FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3875FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3876FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3877FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3878FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3879FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3880FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3881FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3882FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
3883FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
3884FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
3885FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
3886FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
3887FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
3888FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
3889FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
3890FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
3891FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
3892FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
3893FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
3894FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
3895FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
3896FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
3897FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
3898FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
3899FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
3900FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
3901FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
3902FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
3903FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
3904FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
3905FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
3906FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
3907FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
3908FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
3909FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
3910FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
3911FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
3912FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
3913FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
3914FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
3915FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
3916FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
3917FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
3918FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
3919FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
3920FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
3921FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
3922FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
3923FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
3924FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
3925FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
3926FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
3927FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
3928FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
3929FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
3930FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
3931FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
3932FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
3933FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllw_u256, iemAImpl_vpsllw_u256_fallback;
3934FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpslld_u256, iemAImpl_vpslld_u256_fallback;
3935FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllq_u256, iemAImpl_vpsllq_u256_fallback;
3936FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsraw_u256, iemAImpl_vpsraw_u256_fallback;
3937FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrad_u256, iemAImpl_vpsrad_u256_fallback;
3938FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlw_u256, iemAImpl_vpsrlw_u256_fallback;
3939FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrld_u256, iemAImpl_vpsrld_u256_fallback;
3940FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlq_u256, iemAImpl_vpsrlq_u256_fallback;
3941FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddwd_u256, iemAImpl_vpmaddwd_u256_fallback;
3942FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermps_u256, iemAImpl_vpermps_u256_fallback;
3943FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermd_u256, iemAImpl_vpermd_u256_fallback;
3944
3945FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
3946FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
3947FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
3948/** @} */
3949
3950/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
3951 * @{ */
3952FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
3953FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
3954FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
3955 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
3956 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
3957 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
3958 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
3959 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
3960 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
3961 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
3962
3963FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
3964 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
3965 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
3966 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
3967 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
3968 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
3969 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
3970 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
3971/** @} */
3972
3973/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
3974 * @{ */
3975FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
3976FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
3977FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
3978 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
3979 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
3980 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
3981FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
3982 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
3983 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
3984 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
3985/** @} */
3986
3987/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3988 * @{ */
3989typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3990typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3991typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3992typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3993IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3994FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3995#ifndef IEM_WITHOUT_ASSEMBLY
3996FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3997#endif
3998FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3999/** @} */
4000
4001/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
4002 * @{ */
4003typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
4004typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
4005typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
4006typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
4007typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
4008typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
4009FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
4010FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
4011FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
4012FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
4013FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
4014FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
4015FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
4016/** @} */
4017
4018/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
4019 * @{ */
4020IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovq_u64,(uint64_t *puMem, uint64_t const *puSrc, uint64_t const *puMsk));
4021IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovdqu_u128,(PRTUINT128U puMem, PCRTUINT128U puSrc, PCRTUINT128U puMsk));
4022IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
4023IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
4024#ifndef IEM_WITHOUT_ASSEMBLY
4025IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
4026#endif
4027IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
4028/** @} */
4029
4030/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
4031 * @{ */
4032typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
4033typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
4034typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
4035typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
4036typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
4037typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
4038
4039FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
4040FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
4041FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
4042FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
4043FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
4044FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
4045
4046FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
4047FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
4048FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
4049FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
4050FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
4051FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
4052
4053FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
4054FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
4055FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
4056FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
4057FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
4058FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
4059/** @} */
4060
4061
4062/** @name Media (SSE/MMX/AVX) operation: Sort this later
4063 * @{ */
4064IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4065IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4066IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4067IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4068IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4069
4070IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4071IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4072IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4073IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4074IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4075
4076IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4077IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4078IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
4079IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4080IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4081
4082IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4083IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4084IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4085IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4086IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4087
4088IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4089IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4090IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4091IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4092IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4093
4094IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4095IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4096IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4097IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4098IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4099
4100IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4101IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4102IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4103IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4104IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4105
4106IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4107IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4108IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4109IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4110IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4111
4112IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4113IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4114IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
4115IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4116IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4117
4118IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4119IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4120IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4121IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4122IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4123
4124IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4125IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4126IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4127IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4128IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4129
4130IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4131IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4132IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4133IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4134IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4135
4136IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4137IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4138IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4139IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4140IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4141
4142IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4143IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4144IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4145IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4146IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4147
4148IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
4149IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
4150
4151IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4152IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4153IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4154IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4155IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4156
4157IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4158IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4159IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4160IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4161IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4162
4163
4164typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4165typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
4166typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
4167typedef FNIEMAIMPLMEDIAOPTF2U256IMM8 *PFNIEMAIMPLMEDIAOPTF2U256IMM8;
4168typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4169typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
4170typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4171typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
4172
4173FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
4174FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
4175FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
4176FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
4177
4178FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
4179FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
4180FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendd_u128, iemAImpl_vpblendd_u128_fallback;
4181FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
4182FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
4183
4184FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
4185FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
4186FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendd_u256, iemAImpl_vpblendd_u256_fallback;
4187FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
4188FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
4189FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
4190FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
4191
4192FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
4193FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
4194FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
4195FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
4196FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
4197
4198FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
4199FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
4200FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
4201FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
4202FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
4203
4204FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
4205
4206FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
4207
4208FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
4209FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
4210FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
4211FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
4212FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
4213FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
4214IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
4215IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
4216
4217FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermq_u256, iemAImpl_vpermq_u256_fallback;
4218FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermpd_u256, iemAImpl_vpermpd_u256_fallback;
4219
4220typedef struct IEMPCMPISTRXSRC
4221{
4222 RTUINT128U uSrc1;
4223 RTUINT128U uSrc2;
4224} IEMPCMPISTRXSRC;
4225typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
4226typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
4227
4228typedef struct IEMPCMPESTRXSRC
4229{
4230 RTUINT128U uSrc1;
4231 RTUINT128U uSrc2;
4232 uint64_t u64Rax;
4233 uint64_t u64Rdx;
4234} IEMPCMPESTRXSRC;
4235typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
4236typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
4237
4238typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pEFlags, PCRTUINT128U pSrc1, PCRTUINT128U pSrc2, uint8_t bEvil));
4239typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
4240typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
4241typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
4242
4243typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
4244typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
4245typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
4246typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
4247
4248FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
4249FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
4250FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
4251FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
4252FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_vpcmpistri_u128, iemAImpl_vpcmpistri_u128_fallback;
4253FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_vpcmpestri_u128, iemAImpl_vpcmpestri_u128_fallback;
4254FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_vpcmpistrm_u128, iemAImpl_vpcmpistrm_u128_fallback;
4255FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_vpcmpestrm_u128, iemAImpl_vpcmpestrm_u128_fallback;
4256
4257
4258FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
4259FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
4260
4261FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
4262FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
4263FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
4264
4265FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllw_imm_u128, iemAImpl_vpsllw_imm_u128_fallback;
4266FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllw_imm_u256, iemAImpl_vpsllw_imm_u256_fallback;
4267FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpslld_imm_u128, iemAImpl_vpslld_imm_u128_fallback;
4268FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpslld_imm_u256, iemAImpl_vpslld_imm_u256_fallback;
4269FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllq_imm_u128, iemAImpl_vpsllq_imm_u128_fallback;
4270FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllq_imm_u256, iemAImpl_vpsllq_imm_u256_fallback;
4271IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4272IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4273IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4274IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4275
4276FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsraw_imm_u128, iemAImpl_vpsraw_imm_u128_fallback;
4277FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsraw_imm_u256, iemAImpl_vpsraw_imm_u256_fallback;
4278FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrad_imm_u128, iemAImpl_vpsrad_imm_u128_fallback;
4279FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrad_imm_u256, iemAImpl_vpsrad_imm_u256_fallback;
4280
4281FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlw_imm_u128, iemAImpl_vpsrlw_imm_u128_fallback;
4282FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlw_imm_u256, iemAImpl_vpsrlw_imm_u256_fallback;
4283FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrld_imm_u128, iemAImpl_vpsrld_imm_u128_fallback;
4284FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrld_imm_u256, iemAImpl_vpsrld_imm_u256_fallback;
4285FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlq_imm_u128, iemAImpl_vpsrlq_imm_u128_fallback;
4286FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlq_imm_u256, iemAImpl_vpsrlq_imm_u256_fallback;
4287IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4288IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4289IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4290IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4291
4292FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilps_u128, iemAImpl_vpermilps_u128_fallback;
4293FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilps_imm_u128, iemAImpl_vpermilps_imm_u128_fallback;
4294FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilps_u256, iemAImpl_vpermilps_u256_fallback;
4295FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilps_imm_u256, iemAImpl_vpermilps_imm_u256_fallback;
4296
4297FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilpd_u128, iemAImpl_vpermilpd_u128_fallback;
4298FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilpd_imm_u128, iemAImpl_vpermilpd_imm_u128_fallback;
4299FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilpd_u256, iemAImpl_vpermilpd_u256_fallback;
4300FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilpd_imm_u256, iemAImpl_vpermilpd_imm_u256_fallback;
4301
4302FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvd_u128, iemAImpl_vpsllvd_u128_fallback;
4303FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvd_u256, iemAImpl_vpsllvd_u256_fallback;
4304FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvq_u128, iemAImpl_vpsllvq_u128_fallback;
4305FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvq_u256, iemAImpl_vpsllvq_u256_fallback;
4306FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsravd_u128, iemAImpl_vpsravd_u128_fallback;
4307FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsravd_u256, iemAImpl_vpsravd_u256_fallback;
4308FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvd_u128, iemAImpl_vpsrlvd_u128_fallback;
4309FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvd_u256, iemAImpl_vpsrlvd_u256_fallback;
4310FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvq_u128, iemAImpl_vpsrlvq_u128_fallback;
4311FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvq_u256, iemAImpl_vpsrlvq_u256_fallback;
4312/** @} */
4313
4314/** @name Media Odds and Ends
4315 * @{ */
4316typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
4317typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
4318typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
4319typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
4320FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
4321FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
4322FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
4323FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
4324
4325typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
4326typedef FNIEMAIMPLF2EFL128 *PFNIEMAIMPLF2EFL128;
4327typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
4328typedef FNIEMAIMPLF2EFL256 *PFNIEMAIMPLF2EFL256;
4329FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
4330FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
4331FNIEMAIMPLF2EFL128 iemAImpl_vtestps_u128, iemAImpl_vtestps_u128_fallback;
4332FNIEMAIMPLF2EFL256 iemAImpl_vtestps_u256, iemAImpl_vtestps_u256_fallback;
4333FNIEMAIMPLF2EFL128 iemAImpl_vtestpd_u128, iemAImpl_vtestpd_u128_fallback;
4334FNIEMAIMPLF2EFL256 iemAImpl_vtestpd_u256, iemAImpl_vtestpd_u256_fallback;
4335
4336typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U64,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4337typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
4338typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U64,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4339typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
4340typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U32,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4341typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
4342typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U32,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4343typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
4344typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32R32,(uint32_t uMxCsrIn, int32_t *pi32Dst, PCRTFLOAT32U pr32Src));
4345typedef FNIEMAIMPLSSEF2I32R32 *PFNIEMAIMPLSSEF2I32R32;
4346typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64R32,(uint32_t uMxCsrIn, int64_t *pi64Dst, PCRTFLOAT32U pr32Src));
4347typedef FNIEMAIMPLSSEF2I64R32 *PFNIEMAIMPLSSEF2I64R32;
4348typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32R64,(uint32_t uMxCsrIn, int32_t *pi32Dst, PCRTFLOAT64U pr64Src));
4349typedef FNIEMAIMPLSSEF2I32R64 *PFNIEMAIMPLSSEF2I32R64;
4350typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64R64,(uint32_t uMxCsrIn, int64_t *pi64Dst, PCRTFLOAT64U pr64Src));
4351typedef FNIEMAIMPLSSEF2I64R64 *PFNIEMAIMPLSSEF2I64R64;
4352
4353FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
4354FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
4355
4356FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
4357FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
4358
4359FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
4360FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
4361
4362FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
4363FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
4364
4365FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvttss2si_i32_r32, iemAImpl_vcvttss2si_i32_r32_fallback;
4366FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvttss2si_i64_r32, iemAImpl_vcvttss2si_i64_r32_fallback;
4367FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvtss2si_i32_r32, iemAImpl_vcvtss2si_i32_r32_fallback;
4368FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvtss2si_i64_r32, iemAImpl_vcvtss2si_i64_r32_fallback;
4369
4370FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvttss2si_i32_r64, iemAImpl_vcvttss2si_i32_r64_fallback;
4371FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvttss2si_i64_r64, iemAImpl_vcvttss2si_i64_r64_fallback;
4372FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvtss2si_i32_r64, iemAImpl_vcvtss2si_i32_r64_fallback;
4373FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvtss2si_i64_r64, iemAImpl_vcvtss2si_i64_r64_fallback;
4374
4375FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvttsd2si_i32_r32, iemAImpl_vcvttsd2si_i32_r32_fallback;
4376FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvttsd2si_i64_r32, iemAImpl_vcvttsd2si_i64_r32_fallback;
4377FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvtsd2si_i32_r32, iemAImpl_vcvtsd2si_i32_r32_fallback;
4378FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvtsd2si_i64_r32, iemAImpl_vcvtsd2si_i64_r32_fallback;
4379
4380FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvttsd2si_i32_r64, iemAImpl_vcvttsd2si_i32_r64_fallback;
4381FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvttsd2si_i64_r64, iemAImpl_vcvttsd2si_i64_r64_fallback;
4382FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvtsd2si_i32_r64, iemAImpl_vcvtsd2si_i32_r64_fallback;
4383FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvtsd2si_i64_r64, iemAImpl_vcvtsd2si_i64_r64_fallback;
4384
4385typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I32,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
4386typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
4387typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I64,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
4388typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
4389
4390FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
4391FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
4392
4393typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLAVXF3XMMI32,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc, const int32_t *pi32Src));
4394typedef FNIEMAIMPLAVXF3XMMI32 *PFNIEMAIMPLAVXF3XMMI32;
4395typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLAVXF3XMMI64,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc, const int64_t *pi64Src));
4396typedef FNIEMAIMPLAVXF3XMMI64 *PFNIEMAIMPLAVXF3XMMI64;
4397
4398FNIEMAIMPLAVXF3XMMI32 iemAImpl_vcvtsi2ss_u128_i32, iemAImpl_vcvtsi2ss_u128_i32_fallback;
4399FNIEMAIMPLAVXF3XMMI64 iemAImpl_vcvtsi2ss_u128_i64, iemAImpl_vcvtsi2ss_u128_i64_fallback;
4400
4401
4402typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I32,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
4403typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
4404typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I64,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
4405typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
4406
4407FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
4408FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
4409
4410FNIEMAIMPLAVXF3XMMI32 iemAImpl_vcvtsi2sd_u128_i32, iemAImpl_vcvtsi2sd_u128_i32_fallback;
4411FNIEMAIMPLAVXF3XMMI64 iemAImpl_vcvtsi2sd_u128_i64, iemAImpl_vcvtsi2sd_u128_i64_fallback;
4412
4413IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u128_u64,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4414IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u128_u64_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4415IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u256_u128,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4416IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u256_u128_fallback,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4417
4418
4419IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u128_u64,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4420IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u128_u64_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4421IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u256_u128,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4422IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u256_u128_fallback,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4423
4424
4425typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR32R32,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT32U uSrc1, RTFLOAT32U uSrc2));
4426typedef FNIEMAIMPLF2EFLMXCSRR32R32 *PFNIEMAIMPLF2EFLMXCSRR32R32;
4427
4428typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR64R64,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT64U uSrc1, RTFLOAT64U uSrc2));
4429typedef FNIEMAIMPLF2EFLMXCSRR64R64 *PFNIEMAIMPLF2EFLMXCSRR64R64;
4430
4431FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_ucomiss_u128;
4432FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
4433
4434FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_ucomisd_u128;
4435FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
4436
4437FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_comiss_u128;
4438FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
4439
4440FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_comisd_u128;
4441FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
4442
4443
4444typedef struct IEMMEDIAF2XMMSRC
4445{
4446 X86XMMREG uSrc1;
4447 X86XMMREG uSrc2;
4448} IEMMEDIAF2XMMSRC;
4449typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
4450typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
4451
4452
4453typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3XMMIMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
4454typedef FNIEMAIMPLMEDIAF3XMMIMM8 *PFNIEMAIMPLMEDIAF3XMMIMM8;
4455
4456
4457typedef struct IEMMEDIAF2YMMSRC
4458{
4459 X86YMMREG uSrc1;
4460 X86YMMREG uSrc2;
4461} IEMMEDIAF2YMMSRC;
4462typedef IEMMEDIAF2YMMSRC *PIEMMEDIAF2YMMSRC;
4463typedef const IEMMEDIAF2YMMSRC *PCIEMMEDIAF2YMMSRC;
4464
4465
4466typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3YMMIMM8,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCIEMMEDIAF2YMMSRC puSrc, uint8_t bEvil));
4467typedef FNIEMAIMPLMEDIAF3YMMIMM8 *PFNIEMAIMPLMEDIAF3YMMIMM8;
4468
4469
4470FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmpps_u128;
4471FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmppd_u128;
4472FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmpss_u128;
4473FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmpsd_u128;
4474
4475FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmpps_u128, iemAImpl_vcmpps_u128_fallback;
4476FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmppd_u128, iemAImpl_vcmppd_u128_fallback;
4477FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmpss_u128, iemAImpl_vcmpss_u128_fallback;
4478FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmpsd_u128, iemAImpl_vcmpsd_u128_fallback;
4479
4480FNIEMAIMPLMEDIAF3YMMIMM8 iemAImpl_vcmpps_u256, iemAImpl_vcmpps_u256_fallback;
4481FNIEMAIMPLMEDIAF3YMMIMM8 iemAImpl_vcmppd_u256, iemAImpl_vcmppd_u256_fallback;
4482
4483FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_roundss_u128;
4484FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_roundsd_u128;
4485
4486FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
4487FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
4488
4489
4490typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U128IMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc, uint8_t bEvil));
4491typedef FNIEMAIMPLMEDIAF2U128IMM8 *PFNIEMAIMPLMEDIAF2U128IMM8;
4492
4493
4494typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U256IMM8,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc, uint8_t bEvil));
4495typedef FNIEMAIMPLMEDIAF2U256IMM8 *PFNIEMAIMPLMEDIAF2U256IMM8;
4496
4497
4498FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
4499FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
4500
4501FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_vroundps_u128, iemAImpl_vroundps_u128_fallback;
4502FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_vroundpd_u128, iemAImpl_vroundpd_u128_fallback;
4503
4504FNIEMAIMPLMEDIAF2U256IMM8 iemAImpl_vroundps_u256, iemAImpl_vroundps_u256_fallback;
4505FNIEMAIMPLMEDIAF2U256IMM8 iemAImpl_vroundpd_u256, iemAImpl_vroundpd_u256_fallback;
4506
4507FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vroundss_u128, iemAImpl_vroundss_u128_fallback;
4508FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vroundsd_u128, iemAImpl_vroundsd_u128_fallback;
4509
4510FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vdpps_u128, iemAImpl_vdpps_u128_fallback;
4511FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vdppd_u128, iemAImpl_vdppd_u128_fallback;
4512
4513FNIEMAIMPLMEDIAF3YMMIMM8 iemAImpl_vdpps_u256, iemAImpl_vdpps_u256_fallback;
4514
4515
4516typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U128,(uint32_t fMxCsrIn, uint64_t *pu64Dst, PCX86XMMREG pSrc));
4517typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
4518
4519FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
4520FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
4521
4522typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU128U64,(uint32_t fMxCsrIn, PX86XMMREG pDst, uint64_t u64Src));
4523typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
4524
4525FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
4526FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
4527
4528typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U64,(uint32_t fMxCsrIn, uint64_t *pu64Dst, uint64_t u64Src));
4529typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
4530
4531FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
4532FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
4533
4534/** @} */
4535
4536
4537/** @name Function tables.
4538 * @{
4539 */
4540
4541/**
4542 * Function table for a binary operator providing implementation based on
4543 * operand size.
4544 */
4545typedef struct IEMOPBINSIZES
4546{
4547 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
4548 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
4549 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
4550 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
4551} IEMOPBINSIZES;
4552/** Pointer to a binary operator function table. */
4553typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
4554
4555
4556/**
4557 * Function table for a unary operator providing implementation based on
4558 * operand size.
4559 */
4560typedef struct IEMOPUNARYSIZES
4561{
4562 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
4563 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
4564 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
4565 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
4566} IEMOPUNARYSIZES;
4567/** Pointer to a unary operator function table. */
4568typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
4569
4570
4571/**
4572 * Function table for a shift operator providing implementation based on
4573 * operand size.
4574 */
4575typedef struct IEMOPSHIFTSIZES
4576{
4577 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
4578 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
4579 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
4580 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
4581} IEMOPSHIFTSIZES;
4582/** Pointer to a shift operator function table. */
4583typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
4584
4585
4586/**
4587 * Function table for a multiplication or division operation.
4588 */
4589typedef struct IEMOPMULDIVSIZES
4590{
4591 PFNIEMAIMPLMULDIVU8 pfnU8;
4592 PFNIEMAIMPLMULDIVU16 pfnU16;
4593 PFNIEMAIMPLMULDIVU32 pfnU32;
4594 PFNIEMAIMPLMULDIVU64 pfnU64;
4595} IEMOPMULDIVSIZES;
4596/** Pointer to a multiplication or division operation function table. */
4597typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
4598
4599
4600/**
4601 * Function table for a double precision shift operator providing implementation
4602 * based on operand size.
4603 */
4604typedef struct IEMOPSHIFTDBLSIZES
4605{
4606 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
4607 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
4608 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
4609} IEMOPSHIFTDBLSIZES;
4610/** Pointer to a double precision shift function table. */
4611typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
4612
4613
4614/**
4615 * Function table for media instruction taking two full sized media source
4616 * registers and one full sized destination register (AVX).
4617 */
4618typedef struct IEMOPMEDIAF3
4619{
4620 PFNIEMAIMPLMEDIAF3U128 pfnU128;
4621 PFNIEMAIMPLMEDIAF3U256 pfnU256;
4622} IEMOPMEDIAF3;
4623/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4624typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
4625
4626/** @def IEMOPMEDIAF3_INIT_VARS_EX
4627 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4628 * given functions as initializers. For use in AVX functions where a pair of
4629 * functions are only used once and the function table need not be public. */
4630#ifndef TST_IEM_CHECK_MC
4631# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4632# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4633 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4634 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4635# else
4636# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4637 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4638# endif
4639#else
4640# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4641#endif
4642/** @def IEMOPMEDIAF3_INIT_VARS
4643 * Generate AVX function tables for the @a a_InstrNm instruction.
4644 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
4645#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
4646 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4647 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4648
4649
4650/**
4651 * Function table for media instruction taking one full sized media source
4652 * registers and one full sized destination register (AVX).
4653 */
4654typedef struct IEMOPMEDIAF2
4655{
4656 PFNIEMAIMPLMEDIAF2U128 pfnU128;
4657 PFNIEMAIMPLMEDIAF2U256 pfnU256;
4658} IEMOPMEDIAF2;
4659/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4660typedef IEMOPMEDIAF2 const *PCIEMOPMEDIAF2;
4661
4662/** @def IEMOPMEDIAF2_INIT_VARS_EX
4663 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4664 * given functions as initializers. For use in AVX functions where a pair of
4665 * functions are only used once and the function table need not be public. */
4666#ifndef TST_IEM_CHECK_MC
4667# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4668# define IEMOPMEDIAF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4669 static IEMOPMEDIAF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4670 static IEMOPMEDIAF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4671# else
4672# define IEMOPMEDIAF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4673 static IEMOPMEDIAF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4674# endif
4675#else
4676# define IEMOPMEDIAF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4677#endif
4678/** @def IEMOPMEDIAF2_INIT_VARS
4679 * Generate AVX function tables for the @a a_InstrNm instruction.
4680 * @sa IEMOPMEDIAF2_INIT_VARS_EX */
4681#define IEMOPMEDIAF2_INIT_VARS(a_InstrNm) \
4682 IEMOPMEDIAF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4683 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4684
4685
4686/**
4687 * Function table for media instruction taking two full sized media source
4688 * registers and one full sized destination register, but no additional state
4689 * (AVX).
4690 */
4691typedef struct IEMOPMEDIAOPTF3
4692{
4693 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
4694 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
4695} IEMOPMEDIAOPTF3;
4696/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4697typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
4698
4699/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
4700 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4701 * given functions as initializers. For use in AVX functions where a pair of
4702 * functions are only used once and the function table need not be public. */
4703#ifndef TST_IEM_CHECK_MC
4704# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4705# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4706 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4707 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4708# else
4709# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4710 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4711# endif
4712#else
4713# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4714#endif
4715/** @def IEMOPMEDIAOPTF3_INIT_VARS
4716 * Generate AVX function tables for the @a a_InstrNm instruction.
4717 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
4718#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
4719 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4720 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4721
4722/**
4723 * Function table for media instruction taking one full sized media source
4724 * registers and one full sized destination register, but no additional state
4725 * (AVX).
4726 */
4727typedef struct IEMOPMEDIAOPTF2
4728{
4729 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
4730 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
4731} IEMOPMEDIAOPTF2;
4732/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4733typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
4734
4735/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
4736 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4737 * given functions as initializers. For use in AVX functions where a pair of
4738 * functions are only used once and the function table need not be public. */
4739#ifndef TST_IEM_CHECK_MC
4740# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4741# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4742 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4743 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4744# else
4745# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4746 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4747# endif
4748#else
4749# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4750#endif
4751/** @def IEMOPMEDIAOPTF2_INIT_VARS
4752 * Generate AVX function tables for the @a a_InstrNm instruction.
4753 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
4754#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
4755 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4756 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4757
4758
4759/**
4760 * Function table for media instruction taking one full sized media source
4761 * register and one full sized destination register and an 8-bit immediate (AVX).
4762 */
4763typedef struct IEMOPMEDIAF2IMM8
4764{
4765 PFNIEMAIMPLMEDIAF2U128IMM8 pfnU128;
4766 PFNIEMAIMPLMEDIAF2U256IMM8 pfnU256;
4767} IEMOPMEDIAF2IMM8;
4768/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4769typedef IEMOPMEDIAF2IMM8 const *PCIEMOPMEDIAF2IMM8;
4770
4771/** @def IEMOPMEDIAF2IMM8_INIT_VARS_EX
4772 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4773 * given functions as initializers. For use in AVX functions where a pair of
4774 * functions are only used once and the function table need not be public. */
4775#ifndef TST_IEM_CHECK_MC
4776# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4777# define IEMOPMEDIAF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4778 static IEMOPMEDIAF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4779 static IEMOPMEDIAF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4780# else
4781# define IEMOPMEDIAF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4782 static IEMOPMEDIAF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4783# endif
4784#else
4785# define IEMOPMEDIAF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4786#endif
4787/** @def IEMOPMEDIAF2IMM8_INIT_VARS
4788 * Generate AVX function tables for the @a a_InstrNm instruction.
4789 * @sa IEMOPMEDIAF2IMM8_INIT_VARS_EX */
4790#define IEMOPMEDIAF2IMM8_INIT_VARS(a_InstrNm) \
4791 IEMOPMEDIAF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4792 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4793
4794
4795/**
4796 * Function table for media instruction taking one full sized media source
4797 * register and one full sized destination register and an 8-bit immediate, but no additional state
4798 * (AVX).
4799 */
4800typedef struct IEMOPMEDIAOPTF2IMM8
4801{
4802 PFNIEMAIMPLMEDIAOPTF2U128IMM8 pfnU128;
4803 PFNIEMAIMPLMEDIAOPTF2U256IMM8 pfnU256;
4804} IEMOPMEDIAOPTF2IMM8;
4805/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4806typedef IEMOPMEDIAOPTF2IMM8 const *PCIEMOPMEDIAOPTF2IMM8;
4807
4808/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX
4809 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4810 * given functions as initializers. For use in AVX functions where a pair of
4811 * functions are only used once and the function table need not be public. */
4812#ifndef TST_IEM_CHECK_MC
4813# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4814# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4815 static IEMOPMEDIAOPTF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4816 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4817# else
4818# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4819 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4820# endif
4821#else
4822# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4823#endif
4824/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS
4825 * Generate AVX function tables for the @a a_InstrNm instruction.
4826 * @sa IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX */
4827#define IEMOPMEDIAOPTF2IMM8_INIT_VARS(a_InstrNm) \
4828 IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256),\
4829 RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256_fallback))
4830
4831/**
4832 * Function table for media instruction taking two full sized media source
4833 * registers and one full sized destination register and an 8-bit immediate, but no additional state
4834 * (AVX).
4835 */
4836typedef struct IEMOPMEDIAOPTF3IMM8
4837{
4838 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
4839 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
4840} IEMOPMEDIAOPTF3IMM8;
4841/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4842typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
4843
4844/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
4845 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4846 * given functions as initializers. For use in AVX functions where a pair of
4847 * functions are only used once and the function table need not be public. */
4848#ifndef TST_IEM_CHECK_MC
4849# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4850# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4851 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4852 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4853# else
4854# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4855 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4856# endif
4857#else
4858# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4859#endif
4860/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
4861 * Generate AVX function tables for the @a a_InstrNm instruction.
4862 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
4863#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
4864 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4865 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4866/** @} */
4867
4868
4869/**
4870 * Function table for blend type instruction taking three full sized media source
4871 * registers and one full sized destination register, but no additional state
4872 * (AVX).
4873 */
4874typedef struct IEMOPBLENDOP
4875{
4876 PFNIEMAIMPLAVXBLENDU128 pfnU128;
4877 PFNIEMAIMPLAVXBLENDU256 pfnU256;
4878} IEMOPBLENDOP;
4879/** Pointer to a media operation function table for 4 full sized ops (AVX). */
4880typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
4881
4882/** @def IEMOPBLENDOP_INIT_VARS_EX
4883 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4884 * given functions as initializers. For use in AVX functions where a pair of
4885 * functions are only used once and the function table need not be public. */
4886#ifndef TST_IEM_CHECK_MC
4887# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4888# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4889 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4890 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4891# else
4892# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4893 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4894# endif
4895#else
4896# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4897#endif
4898/** @def IEMOPBLENDOP_INIT_VARS
4899 * Generate AVX function tables for the @a a_InstrNm instruction.
4900 * @sa IEMOPBLENDOP_INIT_VARS_EX */
4901#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
4902 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4903 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4904
4905
4906/** @name SSE/AVX single/double precision floating point operations.
4907 * @{ */
4908typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4909typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
4910typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R32,(uint32_t uMxCsrIn, PX86XMMREG Result, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4911typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
4912typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4913typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
4914
4915typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4916typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
4917typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R32,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4918typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
4919typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4920typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
4921
4922typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U256,(uint32_t uMxCsrIn, PX86YMMREG pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
4923typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
4924
4925FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
4926FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
4927FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
4928FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
4929FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
4930FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
4931FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
4932FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
4933FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
4934FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
4935FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
4936FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
4937FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
4938FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
4939FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
4940FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
4941FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
4942FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
4943FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
4944FNIEMAIMPLFPSSEF2U128 iemAImpl_rcpps_u128;
4945FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
4946FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
4947
4948FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
4949IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_cvtps2pd_u128,(uint32_t uMxCsrIn, PX86XMMREG pResult, uint64_t const *pu64Src));
4950
4951FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
4952FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
4953FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
4954FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
4955FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
4956FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
4957
4958FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
4959FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
4960FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
4961FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
4962FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
4963FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
4964FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
4965FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
4966FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
4967FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
4968FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
4969FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
4970FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
4971FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
4972FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
4973FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
4974FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
4975FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rcpss_u128_r32;
4976
4977FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
4978FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
4979FNIEMAIMPLMEDIAF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
4980FNIEMAIMPLMEDIAF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
4981FNIEMAIMPLMEDIAF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
4982FNIEMAIMPLMEDIAF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
4983FNIEMAIMPLMEDIAF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
4984FNIEMAIMPLMEDIAF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
4985FNIEMAIMPLMEDIAF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
4986FNIEMAIMPLMEDIAF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
4987FNIEMAIMPLMEDIAF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
4988FNIEMAIMPLMEDIAF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
4989FNIEMAIMPLMEDIAF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
4990FNIEMAIMPLMEDIAF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
4991FNIEMAIMPLMEDIAF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
4992FNIEMAIMPLMEDIAF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
4993FNIEMAIMPLMEDIAF2U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
4994FNIEMAIMPLMEDIAF2U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
4995FNIEMAIMPLMEDIAF2U128 iemAImpl_vrsqrtps_u128, iemAImpl_vrsqrtps_u128_fallback;
4996FNIEMAIMPLMEDIAF2U128 iemAImpl_vrcpps_u128, iemAImpl_vrcpps_u128_fallback;
4997FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
4998FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
4999FNIEMAIMPLMEDIAF2U128 iemAImpl_vcvtdq2ps_u128, iemAImpl_vcvtdq2ps_u128_fallback;
5000FNIEMAIMPLMEDIAF2U128 iemAImpl_vcvtps2dq_u128, iemAImpl_vcvtps2dq_u128_fallback;
5001FNIEMAIMPLMEDIAF2U128 iemAImpl_vcvttps2dq_u128, iemAImpl_vcvttps2dq_u128_fallback;
5002IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
5003IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u128_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
5004IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
5005IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u128_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
5006IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
5007IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u128_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
5008
5009
5010FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
5011FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
5012FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
5013FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
5014FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
5015FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
5016FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
5017FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
5018FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
5019FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
5020FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
5021FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
5022FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
5023FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
5024FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vrsqrtss_u128_r32, iemAImpl_vrsqrtss_u128_r32_fallback;
5025FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vrcpss_u128_r32, iemAImpl_vrcpss_u128_r32_fallback;
5026FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vcvtss2sd_u128_r32, iemAImpl_vcvtss2sd_u128_r32_fallback;
5027FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vcvtsd2ss_u128_r64, iemAImpl_vcvtsd2ss_u128_r64_fallback;
5028
5029
5030FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
5031FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
5032FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
5033FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
5034FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
5035FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
5036FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
5037FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
5038FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
5039FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
5040FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
5041FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
5042FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
5043FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
5044FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
5045FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
5046FNIEMAIMPLMEDIAF3U256 iemAImpl_vaddsubps_u256, iemAImpl_vaddsubps_u256_fallback;
5047FNIEMAIMPLMEDIAF3U256 iemAImpl_vaddsubpd_u256, iemAImpl_vaddsubpd_u256_fallback;
5048FNIEMAIMPLMEDIAF2U256 iemAImpl_vsqrtps_u256, iemAImpl_vsqrtps_u256_fallback;
5049FNIEMAIMPLMEDIAF2U256 iemAImpl_vsqrtpd_u256, iemAImpl_vsqrtpd_u256_fallback;
5050FNIEMAIMPLMEDIAF2U256 iemAImpl_vrsqrtps_u256, iemAImpl_vrsqrtps_u256_fallback;
5051FNIEMAIMPLMEDIAF2U256 iemAImpl_vrcpps_u256, iemAImpl_vrcpps_u256_fallback;
5052FNIEMAIMPLMEDIAF2U256 iemAImpl_vcvtdq2ps_u256, iemAImpl_vcvtdq2ps_u256_fallback;
5053FNIEMAIMPLMEDIAF2U256 iemAImpl_vcvtps2dq_u256, iemAImpl_vcvtps2dq_u256_fallback;
5054FNIEMAIMPLMEDIAF2U256 iemAImpl_vcvttps2dq_u256, iemAImpl_vcvttps2dq_u256_fallback;
5055IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u256,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5056IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u256_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5057IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u256,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5058IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u256_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5059IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u256,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5060IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u256_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5061/** @} */
5062
5063/** @name C instruction implementations for anything slightly complicated.
5064 * @{ */
5065
5066/**
5067 * For typedef'ing or declaring a C instruction implementation function taking
5068 * no extra arguments.
5069 *
5070 * @param a_Name The name of the type.
5071 */
5072# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
5073 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
5074/**
5075 * For defining a C instruction implementation function taking no extra
5076 * arguments.
5077 *
5078 * @param a_Name The name of the function
5079 */
5080# define IEM_CIMPL_DEF_0(a_Name) \
5081 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
5082/**
5083 * Prototype version of IEM_CIMPL_DEF_0.
5084 */
5085# define IEM_CIMPL_PROTO_0(a_Name) \
5086 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
5087/**
5088 * For calling a C instruction implementation function taking no extra
5089 * arguments.
5090 *
5091 * This special call macro adds default arguments to the call and allow us to
5092 * change these later.
5093 *
5094 * @param a_fn The name of the function.
5095 */
5096# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
5097
5098/** Type for a C instruction implementation function taking no extra
5099 * arguments. */
5100typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
5101/** Function pointer type for a C instruction implementation function taking
5102 * no extra arguments. */
5103typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
5104
5105/**
5106 * For typedef'ing or declaring a C instruction implementation function taking
5107 * one extra argument.
5108 *
5109 * @param a_Name The name of the type.
5110 * @param a_Type0 The argument type.
5111 * @param a_Arg0 The argument name.
5112 */
5113# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
5114 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
5115/**
5116 * For defining a C instruction implementation function taking one extra
5117 * argument.
5118 *
5119 * @param a_Name The name of the function
5120 * @param a_Type0 The argument type.
5121 * @param a_Arg0 The argument name.
5122 */
5123# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
5124 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
5125/**
5126 * Prototype version of IEM_CIMPL_DEF_1.
5127 */
5128# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
5129 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
5130/**
5131 * For calling a C instruction implementation function taking one extra
5132 * argument.
5133 *
5134 * This special call macro adds default arguments to the call and allow us to
5135 * change these later.
5136 *
5137 * @param a_fn The name of the function.
5138 * @param a0 The name of the 1st argument.
5139 */
5140# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
5141
5142/**
5143 * For typedef'ing or declaring a C instruction implementation function taking
5144 * two extra arguments.
5145 *
5146 * @param a_Name The name of the type.
5147 * @param a_Type0 The type of the 1st argument
5148 * @param a_Arg0 The name of the 1st argument.
5149 * @param a_Type1 The type of the 2nd argument.
5150 * @param a_Arg1 The name of the 2nd argument.
5151 */
5152# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
5153 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
5154/**
5155 * For defining a C instruction implementation function taking two extra
5156 * arguments.
5157 *
5158 * @param a_Name The name of the function.
5159 * @param a_Type0 The type of the 1st argument
5160 * @param a_Arg0 The name of the 1st argument.
5161 * @param a_Type1 The type of the 2nd argument.
5162 * @param a_Arg1 The name of the 2nd argument.
5163 */
5164# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
5165 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
5166/**
5167 * Prototype version of IEM_CIMPL_DEF_2.
5168 */
5169# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
5170 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
5171/**
5172 * For calling a C instruction implementation function taking two extra
5173 * arguments.
5174 *
5175 * This special call macro adds default arguments to the call and allow us to
5176 * change these later.
5177 *
5178 * @param a_fn The name of the function.
5179 * @param a0 The name of the 1st argument.
5180 * @param a1 The name of the 2nd argument.
5181 */
5182# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
5183
5184/**
5185 * For typedef'ing or declaring a C instruction implementation function taking
5186 * three extra arguments.
5187 *
5188 * @param a_Name The name of the type.
5189 * @param a_Type0 The type of the 1st argument
5190 * @param a_Arg0 The name of the 1st argument.
5191 * @param a_Type1 The type of the 2nd argument.
5192 * @param a_Arg1 The name of the 2nd argument.
5193 * @param a_Type2 The type of the 3rd argument.
5194 * @param a_Arg2 The name of the 3rd argument.
5195 */
5196# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
5197 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
5198/**
5199 * For defining a C instruction implementation function taking three extra
5200 * arguments.
5201 *
5202 * @param a_Name The name of the function.
5203 * @param a_Type0 The type of the 1st argument
5204 * @param a_Arg0 The name of the 1st argument.
5205 * @param a_Type1 The type of the 2nd argument.
5206 * @param a_Arg1 The name of the 2nd argument.
5207 * @param a_Type2 The type of the 3rd argument.
5208 * @param a_Arg2 The name of the 3rd argument.
5209 */
5210# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
5211 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
5212/**
5213 * Prototype version of IEM_CIMPL_DEF_3.
5214 */
5215# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
5216 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
5217/**
5218 * For calling a C instruction implementation function taking three extra
5219 * arguments.
5220 *
5221 * This special call macro adds default arguments to the call and allow us to
5222 * change these later.
5223 *
5224 * @param a_fn The name of the function.
5225 * @param a0 The name of the 1st argument.
5226 * @param a1 The name of the 2nd argument.
5227 * @param a2 The name of the 3rd argument.
5228 */
5229# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
5230
5231
5232/**
5233 * For typedef'ing or declaring a C instruction implementation function taking
5234 * four extra arguments.
5235 *
5236 * @param a_Name The name of the type.
5237 * @param a_Type0 The type of the 1st argument
5238 * @param a_Arg0 The name of the 1st argument.
5239 * @param a_Type1 The type of the 2nd argument.
5240 * @param a_Arg1 The name of the 2nd argument.
5241 * @param a_Type2 The type of the 3rd argument.
5242 * @param a_Arg2 The name of the 3rd argument.
5243 * @param a_Type3 The type of the 4th argument.
5244 * @param a_Arg3 The name of the 4th argument.
5245 */
5246# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
5247 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
5248/**
5249 * For defining a C instruction implementation function taking four extra
5250 * arguments.
5251 *
5252 * @param a_Name The name of the function.
5253 * @param a_Type0 The type of the 1st argument
5254 * @param a_Arg0 The name of the 1st argument.
5255 * @param a_Type1 The type of the 2nd argument.
5256 * @param a_Arg1 The name of the 2nd argument.
5257 * @param a_Type2 The type of the 3rd argument.
5258 * @param a_Arg2 The name of the 3rd argument.
5259 * @param a_Type3 The type of the 4th argument.
5260 * @param a_Arg3 The name of the 4th argument.
5261 */
5262# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
5263 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5264 a_Type2 a_Arg2, a_Type3 a_Arg3))
5265/**
5266 * Prototype version of IEM_CIMPL_DEF_4.
5267 */
5268# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
5269 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5270 a_Type2 a_Arg2, a_Type3 a_Arg3))
5271/**
5272 * For calling a C instruction implementation function taking four extra
5273 * arguments.
5274 *
5275 * This special call macro adds default arguments to the call and allow us to
5276 * change these later.
5277 *
5278 * @param a_fn The name of the function.
5279 * @param a0 The name of the 1st argument.
5280 * @param a1 The name of the 2nd argument.
5281 * @param a2 The name of the 3rd argument.
5282 * @param a3 The name of the 4th argument.
5283 */
5284# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
5285
5286
5287/**
5288 * For typedef'ing or declaring a C instruction implementation function taking
5289 * five extra arguments.
5290 *
5291 * @param a_Name The name of the type.
5292 * @param a_Type0 The type of the 1st argument
5293 * @param a_Arg0 The name of the 1st argument.
5294 * @param a_Type1 The type of the 2nd argument.
5295 * @param a_Arg1 The name of the 2nd argument.
5296 * @param a_Type2 The type of the 3rd argument.
5297 * @param a_Arg2 The name of the 3rd argument.
5298 * @param a_Type3 The type of the 4th argument.
5299 * @param a_Arg3 The name of the 4th argument.
5300 * @param a_Type4 The type of the 5th argument.
5301 * @param a_Arg4 The name of the 5th argument.
5302 */
5303# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
5304 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
5305 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
5306 a_Type3 a_Arg3, a_Type4 a_Arg4))
5307/**
5308 * For defining a C instruction implementation function taking five extra
5309 * arguments.
5310 *
5311 * @param a_Name The name of the function.
5312 * @param a_Type0 The type of the 1st argument
5313 * @param a_Arg0 The name of the 1st argument.
5314 * @param a_Type1 The type of the 2nd argument.
5315 * @param a_Arg1 The name of the 2nd argument.
5316 * @param a_Type2 The type of the 3rd argument.
5317 * @param a_Arg2 The name of the 3rd argument.
5318 * @param a_Type3 The type of the 4th argument.
5319 * @param a_Arg3 The name of the 4th argument.
5320 * @param a_Type4 The type of the 5th argument.
5321 * @param a_Arg4 The name of the 5th argument.
5322 */
5323# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
5324 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5325 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
5326/**
5327 * Prototype version of IEM_CIMPL_DEF_5.
5328 */
5329# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
5330 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5331 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
5332/**
5333 * For calling a C instruction implementation function taking five extra
5334 * arguments.
5335 *
5336 * This special call macro adds default arguments to the call and allow us to
5337 * change these later.
5338 *
5339 * @param a_fn The name of the function.
5340 * @param a0 The name of the 1st argument.
5341 * @param a1 The name of the 2nd argument.
5342 * @param a2 The name of the 3rd argument.
5343 * @param a3 The name of the 4th argument.
5344 * @param a4 The name of the 5th argument.
5345 */
5346# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
5347
5348/** @} */
5349
5350
5351/** @name Opcode Decoder Function Types.
5352 * @{ */
5353
5354/** @typedef PFNIEMOP
5355 * Pointer to an opcode decoder function.
5356 */
5357
5358/** @def FNIEMOP_DEF
5359 * Define an opcode decoder function.
5360 *
5361 * We're using macors for this so that adding and removing parameters as well as
5362 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
5363 *
5364 * @param a_Name The function name.
5365 */
5366
5367/** @typedef PFNIEMOPRM
5368 * Pointer to an opcode decoder function with RM byte.
5369 */
5370
5371/** @def FNIEMOPRM_DEF
5372 * Define an opcode decoder function with RM byte.
5373 *
5374 * We're using macors for this so that adding and removing parameters as well as
5375 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
5376 *
5377 * @param a_Name The function name.
5378 */
5379
5380#if defined(__GNUC__) && defined(RT_ARCH_X86)
5381typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
5382typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5383# define FNIEMOP_DEF(a_Name) \
5384 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
5385# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5386 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
5387# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5388 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
5389
5390#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
5391typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
5392typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5393# define FNIEMOP_DEF(a_Name) \
5394 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
5395# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5396 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
5397# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5398 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
5399
5400#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
5401typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
5402typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5403# define FNIEMOP_DEF(a_Name) \
5404 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
5405# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5406 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
5407# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5408 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
5409
5410#else
5411typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
5412typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5413# define FNIEMOP_DEF(a_Name) \
5414 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
5415# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5416 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
5417# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5418 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
5419
5420#endif
5421#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
5422
5423/**
5424 * Call an opcode decoder function.
5425 *
5426 * We're using macors for this so that adding and removing parameters can be
5427 * done as we please. See FNIEMOP_DEF.
5428 */
5429#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
5430
5431/**
5432 * Call a common opcode decoder function taking one extra argument.
5433 *
5434 * We're using macors for this so that adding and removing parameters can be
5435 * done as we please. See FNIEMOP_DEF_1.
5436 */
5437#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
5438
5439/**
5440 * Call a common opcode decoder function taking one extra argument.
5441 *
5442 * We're using macors for this so that adding and removing parameters can be
5443 * done as we please. See FNIEMOP_DEF_1.
5444 */
5445#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
5446/** @} */
5447
5448
5449/** @name Misc Helpers
5450 * @{ */
5451
5452/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
5453 * due to GCC lacking knowledge about the value range of a switch. */
5454#if RT_CPLUSPLUS_PREREQ(202000)
5455# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
5456#else
5457# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
5458#endif
5459
5460/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
5461#if RT_CPLUSPLUS_PREREQ(202000)
5462# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
5463#else
5464# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
5465#endif
5466
5467/**
5468 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
5469 * occation.
5470 */
5471#ifdef LOG_ENABLED
5472# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5473 do { \
5474 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
5475 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5476 } while (0)
5477#else
5478# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5479 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5480#endif
5481
5482/**
5483 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
5484 * occation using the supplied logger statement.
5485 *
5486 * @param a_LoggerArgs What to log on failure.
5487 */
5488#ifdef LOG_ENABLED
5489# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5490 do { \
5491 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
5492 /*LogFunc(a_LoggerArgs);*/ \
5493 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5494 } while (0)
5495#else
5496# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5497 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5498#endif
5499
5500/**
5501 * Gets the CPU mode (from fExec) as a IEMMODE value.
5502 *
5503 * @returns IEMMODE
5504 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5505 */
5506#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
5507
5508/**
5509 * Check if we're currently executing in real or virtual 8086 mode.
5510 *
5511 * @returns @c true if it is, @c false if not.
5512 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5513 */
5514#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
5515 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
5516
5517/**
5518 * Check if we're currently executing in virtual 8086 mode.
5519 *
5520 * @returns @c true if it is, @c false if not.
5521 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5522 */
5523#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
5524
5525/**
5526 * Check if we're currently executing in long mode.
5527 *
5528 * @returns @c true if it is, @c false if not.
5529 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5530 */
5531#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
5532
5533/**
5534 * Check if we're currently executing in a 16-bit code segment.
5535 *
5536 * @returns @c true if it is, @c false if not.
5537 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5538 */
5539#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
5540
5541/**
5542 * Check if we're currently executing in a 32-bit code segment.
5543 *
5544 * @returns @c true if it is, @c false if not.
5545 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5546 */
5547#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
5548
5549/**
5550 * Check if we're currently executing in a 64-bit code segment.
5551 *
5552 * @returns @c true if it is, @c false if not.
5553 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5554 */
5555#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
5556
5557/**
5558 * Check if we're currently executing in real mode.
5559 *
5560 * @returns @c true if it is, @c false if not.
5561 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5562 */
5563#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
5564
5565/**
5566 * Gets the current protection level (CPL).
5567 *
5568 * @returns 0..3
5569 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5570 */
5571#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
5572
5573/**
5574 * Sets the current protection level (CPL).
5575 *
5576 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5577 */
5578#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
5579 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
5580
5581/**
5582 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
5583 * @returns PCCPUMFEATURES
5584 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5585 */
5586#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
5587
5588/**
5589 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
5590 * @returns PCCPUMFEATURES
5591 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5592 */
5593#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
5594
5595/**
5596 * Evaluates to true if we're presenting an Intel CPU to the guest.
5597 */
5598#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
5599
5600/**
5601 * Evaluates to true if we're presenting an AMD CPU to the guest.
5602 */
5603#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
5604
5605/**
5606 * Check if the address is canonical.
5607 */
5608#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
5609
5610/** Checks if the ModR/M byte is in register mode or not. */
5611#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
5612/** Checks if the ModR/M byte is in memory mode or not. */
5613#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
5614
5615/**
5616 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
5617 *
5618 * For use during decoding.
5619 */
5620#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
5621/**
5622 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
5623 *
5624 * For use during decoding.
5625 */
5626#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
5627
5628/**
5629 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
5630 *
5631 * For use during decoding.
5632 */
5633#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
5634/**
5635 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
5636 *
5637 * For use during decoding.
5638 */
5639#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
5640
5641/**
5642 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
5643 * register index, with REX.R added in.
5644 *
5645 * For use during decoding.
5646 *
5647 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5648 */
5649#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
5650 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5651 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
5652 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
5653/**
5654 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
5655 * with REX.B added in.
5656 *
5657 * For use during decoding.
5658 *
5659 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5660 */
5661#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
5662 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5663 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
5664 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
5665
5666/**
5667 * Combines the prefix REX and ModR/M byte for passing to
5668 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5669 *
5670 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
5671 * The two bits are part of the REG sub-field, which isn't needed in
5672 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5673 *
5674 * For use during decoding/recompiling.
5675 */
5676#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
5677 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
5678 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (25 - 3) ) )
5679AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(25));
5680AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(26));
5681
5682/**
5683 * Gets the effective VEX.VVVV value.
5684 *
5685 * The 4th bit is ignored if not 64-bit code.
5686 * @returns effective V-register value.
5687 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5688 */
5689#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
5690 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
5691
5692
5693/**
5694 * Gets the register (reg) part of a the special 4th register byte used by
5695 * vblendvps and vblendvpd.
5696 *
5697 * For use during decoding.
5698 */
5699#define IEM_GET_IMM8_REG(a_pVCpu, a_bRegImm8) \
5700 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_bRegImm8) >> 4 : ((a_bRegImm8) >> 4) & 7)
5701
5702
5703/**
5704 * Checks if we're executing inside an AMD-V or VT-x guest.
5705 */
5706#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
5707# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
5708#else
5709# define IEM_IS_IN_GUEST(a_pVCpu) false
5710#endif
5711
5712
5713#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5714
5715/**
5716 * Check if the guest has entered VMX root operation.
5717 */
5718# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
5719
5720/**
5721 * Check if the guest has entered VMX non-root operation.
5722 */
5723# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
5724 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
5725
5726/**
5727 * Check if the nested-guest has the given Pin-based VM-execution control set.
5728 */
5729# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
5730
5731/**
5732 * Check if the nested-guest has the given Processor-based VM-execution control set.
5733 */
5734# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
5735
5736/**
5737 * Check if the nested-guest has the given Secondary Processor-based VM-execution
5738 * control set.
5739 */
5740# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
5741
5742/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
5743# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
5744
5745/** Whether a shadow VMCS is present for the given VCPU. */
5746# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5747
5748/** Gets the VMXON region pointer. */
5749# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
5750
5751/** Gets the guest-physical address of the current VMCS for the given VCPU. */
5752# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
5753
5754/** Whether a current VMCS is present for the given VCPU. */
5755# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5756
5757/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
5758# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
5759 do \
5760 { \
5761 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
5762 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
5763 } while (0)
5764
5765/** Clears any current VMCS for the given VCPU. */
5766# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
5767 do \
5768 { \
5769 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
5770 } while (0)
5771
5772/**
5773 * Invokes the VMX VM-exit handler for an instruction intercept.
5774 */
5775# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
5776 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
5777
5778/**
5779 * Invokes the VMX VM-exit handler for an instruction intercept where the
5780 * instruction provides additional VM-exit information.
5781 */
5782# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
5783 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
5784
5785/**
5786 * Invokes the VMX VM-exit handler for a task switch.
5787 */
5788# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
5789 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
5790
5791/**
5792 * Invokes the VMX VM-exit handler for MWAIT.
5793 */
5794# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
5795 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
5796
5797/**
5798 * Invokes the VMX VM-exit handler for EPT faults.
5799 */
5800# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
5801 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
5802
5803/**
5804 * Invokes the VMX VM-exit handler.
5805 */
5806# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
5807 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
5808
5809#else
5810# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
5811# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
5812# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
5813# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
5814# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
5815# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5816# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5817# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5818# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5819# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5820# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
5821
5822#endif
5823
5824#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5825/**
5826 * Checks if we're executing a guest using AMD-V.
5827 */
5828# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
5829 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
5830/**
5831 * Check if an SVM control/instruction intercept is set.
5832 */
5833# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
5834 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
5835
5836/**
5837 * Check if an SVM read CRx intercept is set.
5838 */
5839# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5840 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5841
5842/**
5843 * Check if an SVM write CRx intercept is set.
5844 */
5845# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5846 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5847
5848/**
5849 * Check if an SVM read DRx intercept is set.
5850 */
5851# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5852 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5853
5854/**
5855 * Check if an SVM write DRx intercept is set.
5856 */
5857# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5858 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5859
5860/**
5861 * Check if an SVM exception intercept is set.
5862 */
5863# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
5864 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
5865
5866/**
5867 * Invokes the SVM \#VMEXIT handler for the nested-guest.
5868 */
5869# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5870 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
5871
5872/**
5873 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
5874 * corresponding decode assist information.
5875 */
5876# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
5877 do \
5878 { \
5879 uint64_t uExitInfo1; \
5880 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
5881 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
5882 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
5883 else \
5884 uExitInfo1 = 0; \
5885 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
5886 } while (0)
5887
5888/** Check and handles SVM nested-guest instruction intercept and updates
5889 * NRIP if needed.
5890 */
5891# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5892 do \
5893 { \
5894 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
5895 { \
5896 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5897 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
5898 } \
5899 } while (0)
5900
5901/** Checks and handles SVM nested-guest CR0 read intercept. */
5902# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5903 do \
5904 { \
5905 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
5906 { /* probably likely */ } \
5907 else \
5908 { \
5909 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5910 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
5911 } \
5912 } while (0)
5913
5914/**
5915 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
5916 */
5917# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
5918 do { \
5919 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
5920 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
5921 } while (0)
5922
5923#else
5924# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
5925# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5926# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5927# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5928# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5929# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
5930# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
5931# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
5932# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
5933 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5934# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5935# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
5936
5937#endif
5938
5939/** @} */
5940
5941uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
5942VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
5943
5944
5945/**
5946 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
5947 */
5948typedef union IEMSELDESC
5949{
5950 /** The legacy view. */
5951 X86DESC Legacy;
5952 /** The long mode view. */
5953 X86DESC64 Long;
5954} IEMSELDESC;
5955/** Pointer to a selector descriptor table entry. */
5956typedef IEMSELDESC *PIEMSELDESC;
5957
5958/** @name Raising Exceptions.
5959 * @{ */
5960VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
5961 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
5962
5963VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
5964 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5965#ifdef IEM_WITH_SETJMP
5966DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
5967 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
5968#endif
5969VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
5970#ifdef IEM_WITH_SETJMP
5971DECL_NO_RETURN(void) iemRaiseDivideErrorJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5972#endif
5973VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5974VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
5975VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
5976#ifdef IEM_WITH_SETJMP
5977DECL_NO_RETURN(void) iemRaiseUndefinedOpcodeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5978#endif
5979VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
5980#ifdef IEM_WITH_SETJMP
5981DECL_NO_RETURN(void) iemRaiseDeviceNotAvailableJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5982#endif
5983VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5984VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
5985VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5986VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5987/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
5988VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5989VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5990VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5991VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5992VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5993VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5994#ifdef IEM_WITH_SETJMP
5995DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5996#endif
5997VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5998VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
5999VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
6000#ifdef IEM_WITH_SETJMP
6001DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
6002#endif
6003VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
6004#ifdef IEM_WITH_SETJMP
6005DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
6006#endif
6007VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
6008#ifdef IEM_WITH_SETJMP
6009DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
6010#endif
6011VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
6012#ifdef IEM_WITH_SETJMP
6013DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
6014#endif
6015VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
6016#ifdef IEM_WITH_SETJMP
6017DECL_NO_RETURN(void) iemRaiseMathFaultJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6018#endif
6019VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
6020#ifdef IEM_WITH_SETJMP
6021DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6022#endif
6023VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
6024#ifdef IEM_WITH_SETJMP
6025DECL_NO_RETURN(void) iemRaiseSimdFpExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6026#endif
6027
6028void iemLogSyscallRealModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
6029void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
6030
6031IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
6032IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
6033IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
6034
6035/**
6036 * Macro for calling iemCImplRaiseDivideError().
6037 *
6038 * This is for things that will _always_ decode to an \#DE, taking the
6039 * recompiler into consideration and everything.
6040 *
6041 * @return Strict VBox status code.
6042 */
6043#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
6044
6045/**
6046 * Macro for calling iemCImplRaiseInvalidLockPrefix().
6047 *
6048 * This is for things that will _always_ decode to an \#UD, taking the
6049 * recompiler into consideration and everything.
6050 *
6051 * @return Strict VBox status code.
6052 */
6053#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
6054
6055/**
6056 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
6057 *
6058 * This is for things that will _always_ decode to an \#UD, taking the
6059 * recompiler into consideration and everything.
6060 *
6061 * @return Strict VBox status code.
6062 */
6063#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
6064
6065/**
6066 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
6067 *
6068 * Using this macro means you've got _buggy_ _code_ and are doing things that
6069 * belongs exclusively in IEMAllCImpl.cpp during decoding.
6070 *
6071 * @return Strict VBox status code.
6072 * @see IEMOP_RAISE_INVALID_OPCODE_RET
6073 */
6074#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
6075
6076/** @} */
6077
6078/** @name Register Access.
6079 * @{ */
6080VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
6081 IEMMODE enmEffOpSize) RT_NOEXCEPT;
6082VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
6083VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
6084 IEMMODE enmEffOpSize) RT_NOEXCEPT;
6085/** @} */
6086
6087/** @name FPU access and helpers.
6088 * @{ */
6089void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
6090void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6091void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
6092void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6093void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6094void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
6095 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6096void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
6097 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6098void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6099void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
6100void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
6101void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6102void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
6103void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6104void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6105void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6106void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6107void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6108void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6109void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6110void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6111void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6112void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6113/** @} */
6114
6115/** @name SSE+AVX SIMD access and helpers.
6116 * @{ */
6117void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
6118/** @} */
6119
6120/** @name Memory access.
6121 * @{ */
6122
6123/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
6124#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
6125/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
6126 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
6127#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
6128/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
6129 * Users include FXSAVE & FXRSTOR. */
6130#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
6131
6132VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
6133 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
6134VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6135#ifndef IN_RING3
6136VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6137#endif
6138void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6139void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
6140VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
6141VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
6142VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
6143
6144void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
6145void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
6146#ifdef IEM_WITH_CODE_TLB
6147void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
6148#else
6149VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
6150#endif
6151#ifdef IEM_WITH_SETJMP
6152uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6153uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6154uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6155uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6156#else
6157VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
6158VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
6159VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
6160VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6161VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
6162VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
6163VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6164VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
6165VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6166VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6167VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6168#endif
6169
6170VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6171VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6172VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6173VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6174VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6175VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6176VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6177VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6178VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6179VBOXSTRICTRC iemMemFetchDataU128NoAc(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6180VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6181VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6182VBOXSTRICTRC iemMemFetchDataU256NoAc(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6183VBOXSTRICTRC iemMemFetchDataU256AlignedAvx(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6184VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
6185 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
6186#ifdef IEM_WITH_SETJMP
6187uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6188uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6189uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6190uint32_t iemMemFetchDataU32NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6191uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6192uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6193uint64_t iemMemFetchDataU64NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6194uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6195void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6196void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6197void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6198void iemMemFetchDataU128NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6199void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6200void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6201void iemMemFetchDataU256NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6202void iemMemFetchDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6203# if 0 /* these are inlined now */
6204uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6205uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6206uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6207uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6208uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6209uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6210void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6211void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6212void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6213void iemMemFetchDataU128NoAcJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6214void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6215void iemMemFetchDataU256NoAcJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6216void iemMemFetchDataU256AlignedAvxJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6217# endif
6218void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6219#endif
6220
6221VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6222VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6223VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6224VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6225VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
6226
6227VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
6228VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
6229VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
6230VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
6231VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
6232VBOXSTRICTRC iemMemStoreDataU128NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
6233VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
6234VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
6235VBOXSTRICTRC iemMemStoreDataU256NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
6236VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
6237VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6238#ifdef IEM_WITH_SETJMP
6239void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
6240void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
6241void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
6242void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
6243void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6244void iemMemStoreDataU128NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6245void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6246void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6247void iemMemStoreDataU256NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6248void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6249void iemMemStoreDataR80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTFLOAT80U pr80Value) IEM_NOEXCEPT_MAY_LONGJMP;
6250void iemMemStoreDataD80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTPBCD80U pd80Value) IEM_NOEXCEPT_MAY_LONGJMP;
6251#if 0
6252void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
6253void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
6254void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
6255void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
6256void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6257void iemMemStoreDataNoAcU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6258void iemMemStoreDataU256NoAcJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6259void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6260#endif
6261void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6262void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6263#endif
6264
6265#ifdef IEM_WITH_SETJMP
6266uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6267uint8_t *iemMemMapDataU8AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6268uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6269uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6270uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6271uint16_t *iemMemMapDataU16AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6272uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6273uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6274uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6275uint32_t *iemMemMapDataU32AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6276uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6277uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6278uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6279uint64_t *iemMemMapDataU64AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6280uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6281uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6282PRTFLOAT80U iemMemMapDataR80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6283PRTFLOAT80U iemMemMapDataR80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6284PCRTFLOAT80U iemMemMapDataR80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6285PRTPBCD80U iemMemMapDataD80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6286PRTPBCD80U iemMemMapDataD80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6287PCRTPBCD80U iemMemMapDataD80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6288PRTUINT128U iemMemMapDataU128RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6289PRTUINT128U iemMemMapDataU128AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6290PRTUINT128U iemMemMapDataU128WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6291PCRTUINT128U iemMemMapDataU128RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6292
6293void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6294void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6295void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6296void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6297void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6298void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6299#endif
6300
6301VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
6302 void **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
6303VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo, uint64_t uNewRsp) RT_NOEXCEPT;
6304VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
6305VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
6306VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
6307VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6308VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6309VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6310VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
6311VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
6312 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
6313VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
6314 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t uCurNewRsp) RT_NOEXCEPT;
6315VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6316VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
6317VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
6318VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
6319VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6320VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6321VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6322
6323#ifdef IEM_WITH_SETJMP
6324void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6325void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6326void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6327void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6328void iemMemStackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6329void iemMemStackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6330void iemMemStackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6331
6332void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6333void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6334void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6335void iemMemFlat32StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6336void iemMemFlat32StackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6337
6338void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6339void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6340void iemMemFlat64StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6341void iemMemFlat64StackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6342
6343void iemMemStoreStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6344void iemMemStoreStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6345void iemMemStoreStackU32SRegSafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6346void iemMemStoreStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6347
6348uint16_t iemMemFetchStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6349uint32_t iemMemFetchStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6350uint64_t iemMemFetchStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6351
6352#endif
6353
6354/** @} */
6355
6356/** @name IEMAllCImpl.cpp
6357 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
6358 * @{ */
6359IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6360IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6361IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6362IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
6363IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
6364IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
6365IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
6366IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
6367IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
6368IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
6369IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
6370typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
6371typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
6372IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
6373IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
6374IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
6375IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
6376IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
6377IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
6378IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
6379IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
6380IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
6381IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
6382IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
6383IEM_CIMPL_PROTO_0(iemCImpl_syscall);
6384IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
6385IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
6386IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
6387IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
6388IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
6389IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
6390IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
6391IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
6392IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
6393IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
6394IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
6395IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6396IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
6397IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6398IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
6399IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
6400IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6401IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
6402IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
6403IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6404IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
6405IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
6406IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6407IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
6408IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
6409IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
6410IEM_CIMPL_PROTO_0(iemCImpl_clts);
6411IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
6412IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
6413IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
6414IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
6415IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
6416IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
6417IEM_CIMPL_PROTO_0(iemCImpl_invd);
6418IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
6419IEM_CIMPL_PROTO_0(iemCImpl_rsm);
6420IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
6421IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
6422IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
6423IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
6424IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
6425IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
6426IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
6427IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
6428IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
6429IEM_CIMPL_PROTO_0(iemCImpl_cli);
6430IEM_CIMPL_PROTO_0(iemCImpl_sti);
6431IEM_CIMPL_PROTO_0(iemCImpl_hlt);
6432IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
6433IEM_CIMPL_PROTO_0(iemCImpl_mwait);
6434IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
6435IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
6436IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
6437IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
6438IEM_CIMPL_PROTO_0(iemCImpl_daa);
6439IEM_CIMPL_PROTO_0(iemCImpl_das);
6440IEM_CIMPL_PROTO_0(iemCImpl_aaa);
6441IEM_CIMPL_PROTO_0(iemCImpl_aas);
6442IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
6443IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
6444IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
6445IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
6446IEM_CIMPL_PROTO_5(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
6447 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags, uint8_t, bUnmapInfo);
6448IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6449IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
6450IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6451IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6452IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6453IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6454IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6455IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6456IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6457IEM_CIMPL_PROTO_2(iemCImpl_vldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6458IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6459IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6460IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6461IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6462IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
6463IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
6464IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
6465IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
6466IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
6467IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6468IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6469IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6470IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6471IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6472IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6473IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6474IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6475IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6476IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6477IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6478IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6479IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6480IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6481IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6482IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6483
6484/** @} */
6485
6486/** @name IEMAllCImplStrInstr.cpp.h
6487 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
6488 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
6489 * @{ */
6490IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
6491IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
6492IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
6493IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
6494IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
6495IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
6496IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
6497IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
6498IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
6499IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6500IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6501
6502IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
6503IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
6504IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
6505IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
6506IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
6507IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
6508IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
6509IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
6510IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
6511IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6512IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6513
6514IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
6515IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
6516IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
6517IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
6518IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
6519IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
6520IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
6521IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
6522IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
6523IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6524IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6525
6526
6527IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
6528IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
6529IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
6530IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
6531IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
6532IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
6533IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
6534IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
6535IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
6536IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6537IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6538
6539IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
6540IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
6541IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
6542IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
6543IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
6544IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
6545IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
6546IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
6547IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
6548IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6549IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6550
6551IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
6552IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
6553IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
6554IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
6555IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
6556IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
6557IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
6558IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
6559IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
6560IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6561IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6562
6563IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
6564IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
6565IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
6566IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
6567IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
6568IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
6569IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
6570IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
6571IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
6572IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6573IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6574
6575
6576IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
6577IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
6578IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
6579IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
6580IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
6581IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
6582IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
6583IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
6584IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
6585IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6586IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6587
6588IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
6589IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
6590IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
6591IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
6592IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
6593IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
6594IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
6595IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
6596IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
6597IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6598IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6599
6600IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
6601IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
6602IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
6603IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
6604IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
6605IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
6606IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
6607IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
6608IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
6609IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6610IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6611
6612IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
6613IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
6614IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
6615IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
6616IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
6617IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
6618IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
6619IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
6620IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
6621IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6622IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6623/** @} */
6624
6625#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6626VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
6627VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
6628VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
6629VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
6630VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
6631VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
6632VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALKFAST pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
6633VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
6634VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
6635VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
6636 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
6637VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
6638 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
6639VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6640VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6641VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6642VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6643VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6644VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6645VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
6646VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
6647 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
6648VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
6649VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
6650VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
6651uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
6652void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
6653VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
6654 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
6655bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
6656IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
6657IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
6658IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
6659IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
6660IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6661IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6662IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6663IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
6664IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
6665IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
6666IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
6667IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
6668IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
6669IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
6670IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
6671IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
6672#endif
6673
6674#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6675VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
6676VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
6677VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
6678 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
6679VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
6680IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
6681IEM_CIMPL_PROTO_0(iemCImpl_vmload);
6682IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
6683IEM_CIMPL_PROTO_0(iemCImpl_clgi);
6684IEM_CIMPL_PROTO_0(iemCImpl_stgi);
6685IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
6686IEM_CIMPL_PROTO_0(iemCImpl_skinit);
6687IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
6688#endif
6689
6690IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
6691IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
6692IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
6693
6694extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
6695extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
6696extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
6697extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
6698extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
6699extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
6700extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
6701
6702/*
6703 * Recompiler related stuff.
6704 */
6705extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
6706extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
6707extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
6708extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
6709extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
6710extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
6711extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
6712
6713DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
6714 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
6715void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
6716DECLHIDDEN(void) iemTbAllocatorFree(PVMCPUCC pVCpu, PIEMTB pTb);
6717void iemTbAllocatorProcessDelayedFrees(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator);
6718void iemTbAllocatorFreeupNativeSpace(PVMCPUCC pVCpu, uint32_t cNeededInstrs);
6719DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT;
6720DECLHIDDEN(void) iemThreadedDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6721
6722
6723/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
6724#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
6725typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6726typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6727# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6728 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6729# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6730 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6731
6732#else
6733typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6734typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6735# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6736 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6737# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6738 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6739#endif
6740
6741
6742IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Nop);
6743IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_LogCpuState);
6744
6745IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
6746
6747IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
6748IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
6749IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
6750IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
6751
6752IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
6753IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
6754IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
6755
6756/* Branching: */
6757IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
6758IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
6759IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
6760
6761IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
6762IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
6763IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
6764
6765/* Natural page crossing: */
6766IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
6767IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
6768IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
6769
6770IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
6771IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
6772IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
6773
6774IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
6775IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
6776IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
6777
6778bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
6779bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
6780
6781/* Native recompiler public bits: */
6782
6783DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6784DECLHIDDEN(void) iemNativeDisassembleTb(PVMCPU pVCpu, PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6785int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk) RT_NOEXCEPT;
6786DECLHIDDEN(PIEMNATIVEINSTR) iemExecMemAllocatorAlloc(PVMCPU pVCpu, uint32_t cbReq, PIEMTB pTb, PIEMNATIVEINSTR *ppaExec,
6787 struct IEMNATIVEPERCHUNKCTX const **ppChunkCtx) RT_NOEXCEPT;
6788DECLHIDDEN(PIEMNATIVEINSTR) iemExecMemAllocatorAllocFromChunk(PVMCPU pVCpu, uint32_t idxChunk, uint32_t cbReq,
6789 PIEMNATIVEINSTR *ppaExec);
6790DECLHIDDEN(void) iemExecMemAllocatorReadyForUse(PVMCPUCC pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6791void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6792DECLASM(DECL_NO_RETURN(void)) iemNativeTbLongJmp(void *pvFramePointer, int rc) RT_NOEXCEPT;
6793DECLHIDDEN(struct IEMNATIVEPERCHUNKCTX const *) iemExecMemGetTbChunkCtx(PVMCPU pVCpu, PCIEMTB pTb);
6794DECLHIDDEN(struct IEMNATIVEPERCHUNKCTX const *) iemNativeRecompileAttachExecMemChunkCtx(PVMCPU pVCpu, uint32_t idxChunk);
6795
6796#endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
6797
6798
6799/** @} */
6800
6801RT_C_DECLS_END
6802
6803/* ASM-INC: %include "IEMInternalStruct.mac" */
6804
6805#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
6806
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette