VirtualBox

source: vbox/trunk/src/VBox/VMM/include/IEMInternal.h@ 105560

最後變更 在這個檔案從105560是 105560,由 vboxsync 提交於 8 月 前

VMM/IEM: A few more TLB tracing events. bugref:10727

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Author Date Id Revision
檔案大小: 350.6 KB
 
1/* $Id: IEMInternal.h 105560 2024-08-01 10:14:06Z vboxsync $ */
2/** @file
3 * IEM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2011-2024 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.alldomusa.eu.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28#ifndef VMM_INCLUDED_SRC_include_IEMInternal_h
29#define VMM_INCLUDED_SRC_include_IEMInternal_h
30#ifndef RT_WITHOUT_PRAGMA_ONCE
31# pragma once
32#endif
33
34#ifndef RT_IN_ASSEMBLER
35# include <VBox/vmm/cpum.h>
36# include <VBox/vmm/iem.h>
37# include <VBox/vmm/pgm.h>
38# include <VBox/vmm/stam.h>
39# include <VBox/param.h>
40
41# include <iprt/setjmp-without-sigmask.h>
42# include <iprt/list.h>
43#endif /* !RT_IN_ASSEMBLER */
44
45
46RT_C_DECLS_BEGIN
47
48
49/** @defgroup grp_iem_int Internals
50 * @ingroup grp_iem
51 * @internal
52 * @{
53 */
54
55/* Make doxygen happy w/o overcomplicating the #if checks. */
56#ifdef DOXYGEN_RUNNING
57# define IEM_WITH_THROW_CATCH
58# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
59#endif
60
61/** For expanding symbol in slickedit and other products tagging and
62 * crossreferencing IEM symbols. */
63#ifndef IEM_STATIC
64# define IEM_STATIC static
65#endif
66
67/** @def IEM_WITH_SETJMP
68 * Enables alternative status code handling using setjmps.
69 *
70 * This adds a bit of expense via the setjmp() call since it saves all the
71 * non-volatile registers. However, it eliminates return code checks and allows
72 * for more optimal return value passing (return regs instead of stack buffer).
73 */
74#if defined(DOXYGEN_RUNNING) || defined(RT_OS_WINDOWS) || 1
75# define IEM_WITH_SETJMP
76#endif
77
78/** @def IEM_WITH_THROW_CATCH
79 * Enables using C++ throw/catch as an alternative to setjmp/longjmp in user
80 * mode code when IEM_WITH_SETJMP is in effect.
81 *
82 * With GCC 11.3.1 and code TLB on linux, using throw/catch instead of
83 * setjmp/long resulted in bs2-test-1 running 3.00% faster and all but on test
84 * result value improving by more than 1%. (Best out of three.)
85 *
86 * With Visual C++ 2019 and code TLB on windows, using throw/catch instead of
87 * setjmp/long resulted in bs2-test-1 running 3.68% faster and all but some of
88 * the MMIO and CPUID tests ran noticeably faster. Variation is greater than on
89 * Linux, but it should be quite a bit faster for normal code.
90 */
91#if defined(__cplusplus) && defined(IEM_WITH_SETJMP) && defined(IN_RING3) && (defined(__GNUC__) || defined(_MSC_VER)) /* ASM-NOINC-START */
92# define IEM_WITH_THROW_CATCH
93#endif /*ASM-NOINC-END*/
94
95/** @def IEMNATIVE_WITH_DELAYED_PC_UPDATING
96 * Enables the delayed PC updating optimization (see @bugref{10373}).
97 */
98#if defined(DOXYGEN_RUNNING) || 1
99# define IEMNATIVE_WITH_DELAYED_PC_UPDATING
100#endif
101
102/** Enables the SIMD register allocator @bugref{10614}. */
103#if defined(DOXYGEN_RUNNING) || 1
104# define IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
105#endif
106/** Enables access to even callee saved registers. */
107//# define IEMNATIVE_WITH_SIMD_REG_ACCESS_ALL_REGISTERS
108
109#if defined(DOXYGEN_RUNNING) || 1
110/** @def IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
111 * Delay the writeback or dirty registers as long as possible. */
112# define IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK
113#endif
114
115/** @def IEM_WITH_TLB_STATISTICS
116 * Enables all TLB statistics. */
117#if defined(VBOX_WITH_STATISTICS) || defined(DOXYGEN_RUNNING)
118# define IEM_WITH_TLB_STATISTICS
119#endif
120
121/** @def IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
122 * Enable this to use native emitters for certain SIMD FP operations. */
123#if 1 || defined(DOXYGEN_RUNNING)
124# define IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
125#endif
126
127/** @def VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
128 * Enables a quicker alternative to throw/longjmp for IEM_DO_LONGJMP when
129 * executing native translation blocks.
130 *
131 * This exploits the fact that we save all non-volatile registers in the TB
132 * prologue and thus just need to do the same as the TB epilogue to get the
133 * effect of a longjmp/throw. Since MSC marks XMM6 thru XMM15 as
134 * non-volatile (and does something even more crazy for ARM), this probably
135 * won't work reliably on Windows. */
136#ifdef RT_ARCH_ARM64
137# ifndef RT_OS_WINDOWS
138# define VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
139# endif
140#endif
141/* ASM-NOINC-START */
142#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
143# if !defined(IN_RING3) \
144 || !defined(VBOX_WITH_IEM_RECOMPILER) \
145 || !defined(VBOX_WITH_IEM_NATIVE_RECOMPILER)
146# undef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
147# elif defined(RT_OS_WINDOWS)
148# pragma message("VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP is not safe to use on windows")
149# endif
150#endif
151
152
153/** @def IEM_DO_LONGJMP
154 *
155 * Wrapper around longjmp / throw.
156 *
157 * @param a_pVCpu The CPU handle.
158 * @param a_rc The status code jump back with / throw.
159 */
160#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
161# ifdef IEM_WITH_THROW_CATCH
162# ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
163# define IEM_DO_LONGJMP(a_pVCpu, a_rc) do { \
164 if ((a_pVCpu)->iem.s.pvTbFramePointerR3) \
165 iemNativeTbLongJmp((a_pVCpu)->iem.s.pvTbFramePointerR3, (a_rc)); \
166 throw int(a_rc); \
167 } while (0)
168# else
169# define IEM_DO_LONGJMP(a_pVCpu, a_rc) throw int(a_rc)
170# endif
171# else
172# define IEM_DO_LONGJMP(a_pVCpu, a_rc) longjmp(*(a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf), (a_rc))
173# endif
174#endif
175
176/** For use with IEM function that may do a longjmp (when enabled).
177 *
178 * Visual C++ has trouble longjmp'ing from/over functions with the noexcept
179 * attribute. So, we indicate that function that may be part of a longjmp may
180 * throw "exceptions" and that the compiler should definitely not generate and
181 * std::terminate calling unwind code.
182 *
183 * Here is one example of this ending in std::terminate:
184 * @code{.txt}
18500 00000041`cadfda10 00007ffc`5d5a1f9f ucrtbase!abort+0x4e
18601 00000041`cadfda40 00007ffc`57af229a ucrtbase!terminate+0x1f
18702 00000041`cadfda70 00007ffb`eec91030 VCRUNTIME140!__std_terminate+0xa [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\ehhelpers.cpp @ 192]
18803 00000041`cadfdaa0 00007ffb`eec92c6d VCRUNTIME140_1!_CallSettingFrame+0x20 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\handlers.asm @ 50]
18904 00000041`cadfdad0 00007ffb`eec93ae5 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToState+0x241 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 1085]
19005 00000041`cadfdc00 00007ffb`eec92258 VCRUNTIME140_1!__FrameHandler4::FrameUnwindToEmptyState+0x2d [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 218]
19106 00000041`cadfdc30 00007ffb`eec940e9 VCRUNTIME140_1!__InternalCxxFrameHandler<__FrameHandler4>+0x194 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\frame.cpp @ 304]
19207 00000041`cadfdcd0 00007ffc`5f9f249f VCRUNTIME140_1!__CxxFrameHandler4+0xa9 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\risctrnsctrl.cpp @ 290]
19308 00000041`cadfdd40 00007ffc`5f980939 ntdll!RtlpExecuteHandlerForUnwind+0xf
19409 00000041`cadfdd70 00007ffc`5f9a0edd ntdll!RtlUnwindEx+0x339
1950a 00000041`cadfe490 00007ffc`57aff976 ntdll!RtlUnwind+0xcd
1960b 00000041`cadfea00 00007ffb`e1b5de01 VCRUNTIME140!__longjmp_internal+0xe6 [d:\agent\_work\1\s\src\vctools\crt\vcruntime\src\eh\amd64\longjmp.asm @ 140]
1970c (Inline Function) --------`-------- VBoxVMM!iemOpcodeGetNextU8SlowJmp+0x95 [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 1155]
1980d 00000041`cadfea50 00007ffb`e1b60f6b VBoxVMM!iemOpcodeGetNextU8Jmp+0xc1 [L:\vbox-intern\src\VBox\VMM\include\IEMInline.h @ 402]
1990e 00000041`cadfea90 00007ffb`e1cc6201 VBoxVMM!IEMExecForExits+0xdb [L:\vbox-intern\src\VBox\VMM\VMMAll\IEMAll.cpp @ 10185]
2000f 00000041`cadfec70 00007ffb`e1d0df8d VBoxVMM!EMHistoryExec+0x4f1 [L:\vbox-intern\src\VBox\VMM\VMMAll\EMAll.cpp @ 452]
20110 00000041`cadfed60 00007ffb`e1d0d4c0 VBoxVMM!nemR3WinHandleExitCpuId+0x79d [L:\vbox-intern\src\VBox\VMM\VMMAll\NEMAllNativeTemplate-win.cpp.h @ 1829] @encode
202 @endcode
203 *
204 * @see https://developercommunity.visualstudio.com/t/fragile-behavior-of-longjmp-called-from-noexcept-f/1532859
205 */
206#if defined(IEM_WITH_SETJMP) && (defined(_MSC_VER) || defined(IEM_WITH_THROW_CATCH))
207# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT_EX(false)
208#else
209# define IEM_NOEXCEPT_MAY_LONGJMP RT_NOEXCEPT
210#endif
211/* ASM-NOINC-END */
212
213#define IEM_IMPLEMENTS_TASKSWITCH
214
215/** @def IEM_WITH_3DNOW
216 * Includes the 3DNow decoding. */
217#if !defined(IEM_WITH_3DNOW) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
218# ifndef IEM_WITHOUT_3DNOW
219# define IEM_WITH_3DNOW
220# endif
221#endif
222
223/** @def IEM_WITH_THREE_0F_38
224 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
225#if !defined(IEM_WITH_THREE_0F_38) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
226# ifndef IEM_WITHOUT_THREE_0F_38
227# define IEM_WITH_THREE_0F_38
228# endif
229#endif
230
231/** @def IEM_WITH_THREE_0F_3A
232 * Includes the three byte opcode map for instrs starting with 0x0f 0x38. */
233#if !defined(IEM_WITH_THREE_0F_3A) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
234# ifndef IEM_WITHOUT_THREE_0F_3A
235# define IEM_WITH_THREE_0F_3A
236# endif
237#endif
238
239/** @def IEM_WITH_VEX
240 * Includes the VEX decoding. */
241#if !defined(IEM_WITH_VEX) || defined(DOXYGEN_RUNNING) /* For doxygen, set in Config.kmk. */
242# ifndef IEM_WITHOUT_VEX
243# define IEM_WITH_VEX
244# endif
245#endif
246
247/** @def IEM_CFG_TARGET_CPU
248 * The minimum target CPU for the IEM emulation (IEMTARGETCPU_XXX value).
249 *
250 * By default we allow this to be configured by the user via the
251 * CPUM/GuestCpuName config string, but this comes at a slight cost during
252 * decoding. So, for applications of this code where there is no need to
253 * be dynamic wrt target CPU, just modify this define.
254 */
255#if !defined(IEM_CFG_TARGET_CPU) || defined(DOXYGEN_RUNNING)
256# define IEM_CFG_TARGET_CPU IEMTARGETCPU_DYNAMIC
257#endif
258
259//#define IEM_WITH_CODE_TLB // - work in progress
260//#define IEM_WITH_DATA_TLB // - work in progress
261
262
263/** @def IEM_USE_UNALIGNED_DATA_ACCESS
264 * Use unaligned accesses instead of elaborate byte assembly. */
265#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86) || defined(DOXYGEN_RUNNING) /*ASM-NOINC*/
266# define IEM_USE_UNALIGNED_DATA_ACCESS
267#endif /*ASM-NOINC*/
268
269//#define IEM_LOG_MEMORY_WRITES
270
271
272
273#ifndef RT_IN_ASSEMBLER /* ASM-NOINC-START - the rest of the file */
274
275# if !defined(IEM_WITHOUT_INSTRUCTION_STATS) && !defined(DOXYGEN_RUNNING)
276/** Instruction statistics. */
277typedef struct IEMINSTRSTATS
278{
279# define IEM_DO_INSTR_STAT(a_Name, a_szDesc) uint32_t a_Name;
280# include "IEMInstructionStatisticsTmpl.h"
281# undef IEM_DO_INSTR_STAT
282} IEMINSTRSTATS;
283#else
284struct IEMINSTRSTATS;
285typedef struct IEMINSTRSTATS IEMINSTRSTATS;
286#endif
287/** Pointer to IEM instruction statistics. */
288typedef IEMINSTRSTATS *PIEMINSTRSTATS;
289
290
291/** @name IEMTARGETCPU_EFL_BEHAVIOR_XXX - IEMCPU::aidxTargetCpuEflFlavour
292 * @{ */
293#define IEMTARGETCPU_EFL_BEHAVIOR_NATIVE 0 /**< Native x86 EFLAGS result; Intel EFLAGS when on non-x86 hosts. */
294#define IEMTARGETCPU_EFL_BEHAVIOR_INTEL 1 /**< Intel EFLAGS result. */
295#define IEMTARGETCPU_EFL_BEHAVIOR_AMD 2 /**< AMD EFLAGS result */
296#define IEMTARGETCPU_EFL_BEHAVIOR_RESERVED 3 /**< Reserved/dummy entry slot that's the same as 0. */
297#define IEMTARGETCPU_EFL_BEHAVIOR_MASK 3 /**< For masking the index before use. */
298/** Selects the right variant from a_aArray.
299 * pVCpu is implicit in the caller context. */
300#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT(a_aArray) \
301 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[1] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
302/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for when no native worker can
303 * be used because the host CPU does not support the operation. */
304#define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_NON_NATIVE(a_aArray) \
305 (a_aArray[pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
306/** Variation of IEMTARGETCPU_EFL_BEHAVIOR_SELECT for a two dimentional
307 * array paralleling IEMCPU::aidxTargetCpuEflFlavour and a single bit index
308 * into the two.
309 * @sa IEM_SELECT_NATIVE_OR_FALLBACK */
310#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
311# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
312 (a_aaArray[a_fNative][pVCpu->iem.s.aidxTargetCpuEflFlavour[a_fNative] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
313#else
314# define IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX(a_aaArray, a_fNative) \
315 (a_aaArray[0][pVCpu->iem.s.aidxTargetCpuEflFlavour[0] & IEMTARGETCPU_EFL_BEHAVIOR_MASK])
316#endif
317/** @} */
318
319/**
320 * Picks @a a_pfnNative or @a a_pfnFallback according to the host CPU feature
321 * indicator given by @a a_fCpumFeatureMember (CPUMFEATURES member).
322 *
323 * On non-x86 hosts, this will shortcut to the fallback w/o checking the
324 * indicator.
325 *
326 * @sa IEMTARGETCPU_EFL_BEHAVIOR_SELECT_EX
327 */
328#if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
329# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) \
330 (g_CpumHostFeatures.s.a_fCpumFeatureMember ? a_pfnNative : a_pfnFallback)
331#else
332# define IEM_SELECT_HOST_OR_FALLBACK(a_fCpumFeatureMember, a_pfnNative, a_pfnFallback) (a_pfnFallback)
333#endif
334
335
336/**
337 * Branch types.
338 */
339typedef enum IEMBRANCH
340{
341 IEMBRANCH_JUMP = 1,
342 IEMBRANCH_CALL,
343 IEMBRANCH_TRAP,
344 IEMBRANCH_SOFTWARE_INT,
345 IEMBRANCH_HARDWARE_INT
346} IEMBRANCH;
347AssertCompileSize(IEMBRANCH, 4);
348
349
350/**
351 * INT instruction types.
352 */
353typedef enum IEMINT
354{
355 /** INT n instruction (opcode 0xcd imm). */
356 IEMINT_INTN = 0,
357 /** Single byte INT3 instruction (opcode 0xcc). */
358 IEMINT_INT3 = IEM_XCPT_FLAGS_BP_INSTR,
359 /** Single byte INTO instruction (opcode 0xce). */
360 IEMINT_INTO = IEM_XCPT_FLAGS_OF_INSTR,
361 /** Single byte INT1 (ICEBP) instruction (opcode 0xf1). */
362 IEMINT_INT1 = IEM_XCPT_FLAGS_ICEBP_INSTR
363} IEMINT;
364AssertCompileSize(IEMINT, 4);
365
366
367/**
368 * A FPU result.
369 */
370typedef struct IEMFPURESULT
371{
372 /** The output value. */
373 RTFLOAT80U r80Result;
374 /** The output status. */
375 uint16_t FSW;
376} IEMFPURESULT;
377AssertCompileMemberOffset(IEMFPURESULT, FSW, 10);
378/** Pointer to a FPU result. */
379typedef IEMFPURESULT *PIEMFPURESULT;
380/** Pointer to a const FPU result. */
381typedef IEMFPURESULT const *PCIEMFPURESULT;
382
383
384/**
385 * A FPU result consisting of two output values and FSW.
386 */
387typedef struct IEMFPURESULTTWO
388{
389 /** The first output value. */
390 RTFLOAT80U r80Result1;
391 /** The output status. */
392 uint16_t FSW;
393 /** The second output value. */
394 RTFLOAT80U r80Result2;
395} IEMFPURESULTTWO;
396AssertCompileMemberOffset(IEMFPURESULTTWO, FSW, 10);
397AssertCompileMemberOffset(IEMFPURESULTTWO, r80Result2, 12);
398/** Pointer to a FPU result consisting of two output values and FSW. */
399typedef IEMFPURESULTTWO *PIEMFPURESULTTWO;
400/** Pointer to a const FPU result consisting of two output values and FSW. */
401typedef IEMFPURESULTTWO const *PCIEMFPURESULTTWO;
402
403
404/**
405 * IEM TLB entry.
406 *
407 * Lookup assembly:
408 * @code{.asm}
409 ; Calculate tag.
410 mov rax, [VA]
411 shl rax, 16
412 shr rax, 16 + X86_PAGE_SHIFT
413 or rax, [uTlbRevision]
414
415 ; Do indexing.
416 movzx ecx, al
417 lea rcx, [pTlbEntries + rcx]
418
419 ; Check tag.
420 cmp [rcx + IEMTLBENTRY.uTag], rax
421 jne .TlbMiss
422
423 ; Check access.
424 mov rax, ACCESS_FLAGS | MAPPING_R3_NOT_VALID | 0xffffff00
425 and rax, [rcx + IEMTLBENTRY.fFlagsAndPhysRev]
426 cmp rax, [uTlbPhysRev]
427 jne .TlbMiss
428
429 ; Calc address and we're done.
430 mov eax, X86_PAGE_OFFSET_MASK
431 and eax, [VA]
432 or rax, [rcx + IEMTLBENTRY.pMappingR3]
433 %ifdef VBOX_WITH_STATISTICS
434 inc qword [cTlbHits]
435 %endif
436 jmp .Done
437
438 .TlbMiss:
439 mov r8d, ACCESS_FLAGS
440 mov rdx, [VA]
441 mov rcx, [pVCpu]
442 call iemTlbTypeMiss
443 .Done:
444
445 @endcode
446 *
447 */
448typedef struct IEMTLBENTRY
449{
450 /** The TLB entry tag.
451 * Bits 35 thru 0 are made up of the virtual address shifted right 12 bits, this
452 * is ASSUMING a virtual address width of 48 bits.
453 *
454 * Bits 63 thru 36 are made up of the TLB revision (zero means invalid).
455 *
456 * The TLB lookup code uses the current TLB revision, which won't ever be zero,
457 * enabling an extremely cheap TLB invalidation most of the time. When the TLB
458 * revision wraps around though, the tags needs to be zeroed.
459 *
460 * @note Try use SHRD instruction? After seeing
461 * https://gmplib.org/~tege/x86-timing.pdf, maybe not.
462 *
463 * @todo This will need to be reorganized for 57-bit wide virtual address and
464 * PCID (currently 12 bits) and ASID (currently 6 bits) support. We'll
465 * have to move the TLB entry versioning entirely to the
466 * fFlagsAndPhysRev member then, 57 bit wide VAs means we'll only have
467 * 19 bits left (64 - 57 + 12 = 19) and they'll almost entire be
468 * consumed by PCID and ASID (12 + 6 = 18).
469 */
470 uint64_t uTag;
471 /** Access flags and physical TLB revision.
472 *
473 * - Bit 0 - page tables - not executable (X86_PTE_PAE_NX).
474 * - Bit 1 - page tables - not writable (complemented X86_PTE_RW).
475 * - Bit 2 - page tables - not user (complemented X86_PTE_US).
476 * - Bit 3 - pgm phys/virt - not directly writable.
477 * - Bit 4 - pgm phys page - not directly readable.
478 * - Bit 5 - page tables - not accessed (complemented X86_PTE_A).
479 * - Bit 6 - page tables - not dirty (complemented X86_PTE_D).
480 * - Bit 7 - tlb entry - pMappingR3 member not valid.
481 * - Bits 63 thru 8 are used for the physical TLB revision number.
482 *
483 * We're using complemented bit meanings here because it makes it easy to check
484 * whether special action is required. For instance a user mode write access
485 * would do a "TEST fFlags, (X86_PTE_RW | X86_PTE_US | X86_PTE_D)" and a
486 * non-zero result would mean special handling needed because either it wasn't
487 * writable, or it wasn't user, or the page wasn't dirty. A user mode read
488 * access would do "TEST fFlags, X86_PTE_US"; and a kernel mode read wouldn't
489 * need to check any PTE flag.
490 */
491 uint64_t fFlagsAndPhysRev;
492 /** The guest physical page address. */
493 uint64_t GCPhys;
494 /** Pointer to the ring-3 mapping. */
495 R3PTRTYPE(uint8_t *) pbMappingR3;
496#if HC_ARCH_BITS == 32
497 uint32_t u32Padding1;
498#endif
499} IEMTLBENTRY;
500AssertCompileSize(IEMTLBENTRY, 32);
501/** Pointer to an IEM TLB entry. */
502typedef IEMTLBENTRY *PIEMTLBENTRY;
503/** Pointer to a const IEM TLB entry. */
504typedef IEMTLBENTRY const *PCIEMTLBENTRY;
505
506/** @name IEMTLBE_F_XXX - TLB entry flags (IEMTLBENTRY::fFlagsAndPhysRev)
507 * @{ */
508#define IEMTLBE_F_PT_NO_EXEC RT_BIT_64(0) /**< Page tables: Not executable. */
509#define IEMTLBE_F_PT_NO_WRITE RT_BIT_64(1) /**< Page tables: Not writable. */
510#define IEMTLBE_F_PT_NO_USER RT_BIT_64(2) /**< Page tables: Not user accessible (supervisor only). */
511#define IEMTLBE_F_PG_NO_WRITE RT_BIT_64(3) /**< Phys page: Not writable (access handler, ROM, whatever). */
512#define IEMTLBE_F_PG_NO_READ RT_BIT_64(4) /**< Phys page: Not readable (MMIO / access handler, ROM) */
513#define IEMTLBE_F_PT_NO_ACCESSED RT_BIT_64(5) /**< Phys tables: Not accessed (need to be marked accessed). */
514#define IEMTLBE_F_PT_NO_DIRTY RT_BIT_64(6) /**< Page tables: Not dirty (needs to be made dirty on write). */
515#define IEMTLBE_F_PT_LARGE_PAGE RT_BIT_64(7) /**< Page tables: Large 2 or 4 MiB page (for flushing). */
516#define IEMTLBE_F_NO_MAPPINGR3 RT_BIT_64(8) /**< TLB entry: The IEMTLBENTRY::pMappingR3 member is invalid. */
517#define IEMTLBE_F_PG_UNASSIGNED RT_BIT_64(9) /**< Phys page: Unassigned memory (not RAM, ROM, MMIO2 or MMIO). */
518#define IEMTLBE_F_PG_CODE_PAGE RT_BIT_64(10) /**< Phys page: Code page. */
519#define IEMTLBE_F_PHYS_REV UINT64_C(0xfffffffffffff800) /**< Physical revision mask. @sa IEMTLB_PHYS_REV_INCR */
520/** @} */
521AssertCompile(PGMIEMGCPHYS2PTR_F_NO_WRITE == IEMTLBE_F_PG_NO_WRITE);
522AssertCompile(PGMIEMGCPHYS2PTR_F_NO_READ == IEMTLBE_F_PG_NO_READ);
523AssertCompile(PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 == IEMTLBE_F_NO_MAPPINGR3);
524AssertCompile(PGMIEMGCPHYS2PTR_F_UNASSIGNED == IEMTLBE_F_PG_UNASSIGNED);
525AssertCompile(PGMIEMGCPHYS2PTR_F_CODE_PAGE == IEMTLBE_F_PG_CODE_PAGE);
526AssertCompile(PGM_WALKINFO_BIG_PAGE == IEMTLBE_F_PT_LARGE_PAGE);
527/** The bits set by PGMPhysIemGCPhys2PtrNoLock. */
528#define IEMTLBE_GCPHYS2PTR_MASK ( PGMIEMGCPHYS2PTR_F_NO_WRITE \
529 | PGMIEMGCPHYS2PTR_F_NO_READ \
530 | PGMIEMGCPHYS2PTR_F_NO_MAPPINGR3 \
531 | PGMIEMGCPHYS2PTR_F_UNASSIGNED \
532 | PGMIEMGCPHYS2PTR_F_CODE_PAGE \
533 | IEMTLBE_F_PHYS_REV )
534
535
536/** The TLB size (power of two).
537 * We initially chose 256 because that way we can obtain the result directly
538 * from a 8-bit register without an additional AND instruction.
539 * See also @bugref{10687}. */
540#if defined(RT_ARCH_AMD64)
541# define IEMTLB_ENTRY_COUNT 256
542# define IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO 8
543#else
544# define IEMTLB_ENTRY_COUNT 8192
545# define IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO 13
546#endif
547AssertCompile(RT_BIT_32(IEMTLB_ENTRY_COUNT_AS_POWER_OF_TWO) == IEMTLB_ENTRY_COUNT);
548
549/** TLB slot format spec (assumes uint32_t or unsigned value). */
550#if IEMTLB_ENTRY_COUNT <= 0x100 / 2
551# define IEMTLB_SLOT_FMT "%02x"
552#elif IEMTLB_ENTRY_COUNT <= 0x1000 / 2
553# define IEMTLB_SLOT_FMT "%03x"
554#elif IEMTLB_ENTRY_COUNT <= 0x10000 / 2
555# define IEMTLB_SLOT_FMT "%04x"
556#else
557# define IEMTLB_SLOT_FMT "%05x"
558#endif
559
560
561/**
562 * An IEM TLB.
563 *
564 * We've got two of these, one for data and one for instructions.
565 */
566typedef struct IEMTLB
567{
568 /** The non-global TLB revision.
569 * This is actually only 28 bits wide (see IEMTLBENTRY::uTag) and is incremented
570 * by adding RT_BIT_64(36) to it. When it wraps around and becomes zero, all
571 * the tags in the TLB must be zeroed and the revision set to RT_BIT_64(36).
572 * (The revision zero indicates an invalid TLB entry.)
573 *
574 * The initial value is choosen to cause an early wraparound. */
575 uint64_t uTlbRevision;
576 /** The TLB physical address revision - shadow of PGM variable.
577 *
578 * This is actually only 56 bits wide (see IEMTLBENTRY::fFlagsAndPhysRev) and is
579 * incremented by adding RT_BIT_64(8). When it wraps around and becomes zero,
580 * a rendezvous is called and each CPU wipe the IEMTLBENTRY::pMappingR3 as well
581 * as IEMTLBENTRY::fFlagsAndPhysRev bits 63 thru 8, 4, and 3.
582 *
583 * The initial value is choosen to cause an early wraparound.
584 *
585 * @note This is placed between the two TLB revisions because we
586 * load it in pair with one or the other on arm64. */
587 uint64_t volatile uTlbPhysRev;
588 /** The global TLB revision.
589 * Same as uTlbRevision, but only increased for global flushes. */
590 uint64_t uTlbRevisionGlobal;
591
592 /** Large page tag range.
593 *
594 * This is used to avoid scanning a large page's worth of TLB entries for each
595 * INVLPG instruction, and only to do so iff we've loaded any and when the
596 * address is in this range. This is kept up to date when we loading new TLB
597 * entries.
598 */
599 struct LARGEPAGERANGE
600 {
601 /** The lowest large page address tag, UINT64_MAX if none. */
602 uint64_t uFirstTag;
603 /** The highest large page address tag (with offset mask part set), 0 if none. */
604 uint64_t uLastTag;
605 }
606 /** Large page range for non-global pages. */
607 NonGlobalLargePageRange,
608 /** Large page range for global pages. */
609 GlobalLargePageRange;
610 /** Number of non-global entries for large pages loaded since last TLB flush. */
611 uint32_t cTlbNonGlobalLargePageCurLoads;
612 /** Number of global entries for large pages loaded since last TLB flush. */
613 uint32_t cTlbGlobalLargePageCurLoads;
614
615 /* Statistics: */
616
617 /** TLB hits in IEMAll.cpp code (IEM_WITH_TLB_STATISTICS only; both).
618 * @note For the data TLB this is only used in iemMemMap and and for direct (i.e.
619 * not via safe read/write path) calls to iemMemMapJmp. */
620 uint64_t cTlbCoreHits;
621 /** Safe read/write TLB hits in iemMemMapJmp (IEM_WITH_TLB_STATISTICS
622 * only; data tlb only). */
623 uint64_t cTlbSafeHits;
624 /** TLB hits in IEMAllMemRWTmplInline.cpp.h (data + IEM_WITH_TLB_STATISTICS only). */
625 uint64_t cTlbInlineCodeHits;
626
627 /** TLB misses in IEMAll.cpp code (both).
628 * @note For the data TLB this is only used in iemMemMap and for direct (i.e.
629 * not via safe read/write path) calls to iemMemMapJmp. So,
630 * for the data TLB this more like 'other misses', while for the code
631 * TLB is all misses. */
632 uint64_t cTlbCoreMisses;
633 /** Subset of cTlbCoreMisses that results in PTE.G=1 loads (odd entries). */
634 uint64_t cTlbCoreGlobalLoads;
635 /** Safe read/write TLB misses in iemMemMapJmp (so data only). */
636 uint64_t cTlbSafeMisses;
637 /** Subset of cTlbSafeMisses that results in PTE.G=1 loads (odd entries). */
638 uint64_t cTlbSafeGlobalLoads;
639 /** Safe read path taken (data only). */
640 uint64_t cTlbSafeReadPath;
641 /** Safe write path taken (data only). */
642 uint64_t cTlbSafeWritePath;
643
644 /** @name Details for native code TLB misses.
645 * @note These counts are included in the above counters (cTlbSafeReadPath,
646 * cTlbSafeWritePath, cTlbInlineCodeHits).
647 * @{ */
648 /** TLB misses in native code due to tag mismatch. */
649 STAMCOUNTER cTlbNativeMissTag;
650 /** TLB misses in native code due to flags or physical revision mismatch. */
651 STAMCOUNTER cTlbNativeMissFlagsAndPhysRev;
652 /** TLB misses in native code due to misaligned access. */
653 STAMCOUNTER cTlbNativeMissAlignment;
654 /** TLB misses in native code due to cross page access. */
655 uint32_t cTlbNativeMissCrossPage;
656 /** TLB misses in native code due to non-canonical address. */
657 uint32_t cTlbNativeMissNonCanonical;
658 /** @} */
659
660 /** Slow read path (code only). */
661 uint32_t cTlbSlowCodeReadPath;
662
663 /** Regular TLB flush count. */
664 uint32_t cTlsFlushes;
665 /** Global TLB flush count. */
666 uint32_t cTlsGlobalFlushes;
667 /** Revision rollovers. */
668 uint32_t cTlbRevisionRollovers;
669 /** Physical revision flushes. */
670 uint32_t cTlbPhysRevFlushes;
671 /** Physical revision rollovers. */
672 uint32_t cTlbPhysRevRollovers;
673
674 /*uint32_t au32Padding[2];*/
675
676 /** The TLB entries.
677 * Even entries are for PTE.G=0 and uses uTlbRevision.
678 * Odd entries are for PTE.G=1 and uses uTlbRevisionGlobal. */
679 IEMTLBENTRY aEntries[IEMTLB_ENTRY_COUNT * 2];
680} IEMTLB;
681AssertCompileSizeAlignment(IEMTLB, 64);
682/** The width (in bits) of the address portion of the TLB tag. */
683#define IEMTLB_TAG_ADDR_WIDTH 36
684/** IEMTLB::uTlbRevision increment. */
685#define IEMTLB_REVISION_INCR RT_BIT_64(IEMTLB_TAG_ADDR_WIDTH)
686/** IEMTLB::uTlbRevision mask. */
687#define IEMTLB_REVISION_MASK (~(RT_BIT_64(IEMTLB_TAG_ADDR_WIDTH) - 1))
688
689/** IEMTLB::uTlbPhysRev increment.
690 * @sa IEMTLBE_F_PHYS_REV */
691#define IEMTLB_PHYS_REV_INCR RT_BIT_64(11)
692AssertCompile(IEMTLBE_F_PHYS_REV == ~(IEMTLB_PHYS_REV_INCR - 1U));
693
694/**
695 * Calculates the TLB tag for a virtual address but without TLB revision.
696 * @returns Tag value for indexing and comparing with IEMTLB::uTag.
697 * @param a_GCPtr The virtual address. Must be RTGCPTR or same size or
698 * the clearing of the top 16 bits won't work (if 32-bit
699 * we'll end up with mostly zeros).
700 */
701#define IEMTLB_CALC_TAG_NO_REV(a_GCPtr) ( (((a_GCPtr) << 16) >> (GUEST_PAGE_SHIFT + 16)) )
702/**
703 * Converts a TLB tag value into a even TLB index.
704 * @returns Index into IEMTLB::aEntries.
705 * @param a_uTag Value returned by IEMTLB_CALC_TAG.
706 */
707#if IEMTLB_ENTRY_COUNT == 256
708# define IEMTLB_TAG_TO_EVEN_INDEX(a_uTag) ( (uint8_t)(a_uTag) * 2U )
709#else
710# define IEMTLB_TAG_TO_EVEN_INDEX(a_uTag) ( ((a_uTag) & (IEMTLB_ENTRY_COUNT - 1U)) * 2U )
711AssertCompile(RT_IS_POWER_OF_TWO(IEMTLB_ENTRY_COUNT));
712#endif
713/**
714 * Converts a TLB tag value into an even TLB index.
715 * @returns Pointer into IEMTLB::aEntries corresponding to .
716 * @param a_pTlb The TLB.
717 * @param a_uTag Value returned by IEMTLB_CALC_TAG or
718 * IEMTLB_CALC_TAG_NO_REV.
719 */
720#define IEMTLB_TAG_TO_EVEN_ENTRY(a_pTlb, a_uTag) ( &(a_pTlb)->aEntries[IEMTLB_TAG_TO_EVEN_INDEX(a_uTag)] )
721
722/** Converts a GC address to an even TLB index. */
723#define IEMTLB_ADDR_TO_EVEN_INDEX(a_GCPtr) IEMTLB_TAG_TO_EVEN_INDEX(IEMTLB_CALC_TAG_NO_REV(a_GCPtr))
724
725
726/** @def IEM_WITH_TLB_TRACE
727 * Enables the TLB tracing.
728 * Adjust buffer size in IEMR3Init. */
729#if defined(DOXYGEN_RUNNING) || 0
730# define IEM_WITH_TLB_TRACE
731#endif
732
733#ifdef IEM_WITH_TLB_TRACE
734
735/** TLB trace entry types. */
736typedef enum : uint8_t
737{
738 kIemTlbTraceType_Invalid,
739 kIemTlbTraceType_InvlPg,
740 kIemTlbTraceType_Flush,
741 kIemTlbTraceType_FlushGlobal,
742 kIemTlbTraceType_Load,
743 kIemTlbTraceType_LoadGlobal,
744 kIemTlbTraceType_Load_Cr0,
745 kIemTlbTraceType_Load_Cr3,
746 kIemTlbTraceType_Load_Cr4,
747 kIemTlbTraceType_Load_Efer,
748 kIemTlbTraceType_Irq,
749 kIemTlbTraceType_Xcpt,
750 kIemTlbTraceType_IRet,
751 kIemTlbTraceType_Tb_Compile,
752 kIemTlbTraceType_Tb_Exec_Threaded,
753 kIemTlbTraceType_Tb_Exec_Native
754} IEMTLBTRACETYPE;
755
756/** TLB trace entry. */
757typedef struct IEMTLBTRACEENTRY
758{
759 /** The flattened RIP for the event. */
760 uint64_t rip;
761 /** The event type. */
762 IEMTLBTRACETYPE enmType;
763 /** Byte parameter - typically used as 'bool fDataTlb'. */
764 uint8_t bParam;
765 /** 16-bit parameter value. */
766 uint16_t u16Param;
767 /** 32-bit parameter value. */
768 uint32_t u32Param;
769 /** 64-bit parameter value. */
770 uint64_t u64Param;
771 /** 64-bit parameter value. */
772 uint64_t u64Param2;
773} IEMTLBTRACEENTRY;
774AssertCompileSize(IEMTLBTRACEENTRY, 32);
775/** Pointer to a TLB trace entry. */
776typedef IEMTLBTRACEENTRY *PIEMTLBTRACEENTRY;
777/** Pointer to a const TLB trace entry. */
778typedef IEMTLBTRACEENTRY const *PCIEMTLBTRACEENTRY;
779#endif /* !IEM_WITH_TLB_TRACE */
780
781#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3)
782# define IEMTLBTRACE_INVLPG(a_pVCpu, a_GCPtr) iemTlbTrace(a_pVCpu, kIemTlbTraceType_InvlPg, a_GCPtr)
783# define IEMTLBTRACE_FLUSH(a_pVCpu, a_uRev, a_fDataTlb) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Flush, a_uRev, 0, a_fDataTlb)
784# define IEMTLBTRACE_FLUSH_GLOBAL(a_pVCpu, a_uRev, a_uGRev, a_fDataTlb) \
785 iemTlbTrace(a_pVCpu, kIemTlbTraceType_FlushGlobal, a_uRev, a_uGRev, a_fDataTlb)
786# define IEMTLBTRACE_LOAD(a_pVCpu, a_GCPtr, a_fDataTlb) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load, a_GCPtr, 0, a_fDataTlb)
787# define IEMTLBTRACE_LOAD_GLOBAL(a_pVCpu, a_GCPtr, a_fDataTlb) \
788 iemTlbTrace(a_pVCpu, kIemTlbTraceType_LoadGlobal, a_GCPtr, 0, a_fDataTlb)
789#else
790# define IEMTLBTRACE_INVLPG(a_pVCpu, a_GCPtr) do { } while (0)
791# define IEMTLBTRACE_FLUSH(a_pVCpu, a_uRev, a_fDataTlb) do { } while (0)
792# define IEMTLBTRACE_FLUSH_GLOBAL(a_pVCpu, a_uRev, a_uGRev, a_fDataTlb) do { } while (0)
793# define IEMTLBTRACE_LOAD(a_pVCpu, a_GCPtr, a_fDataTlb) do { } while (0)
794# define IEMTLBTRACE_LOAD_GLOBAL(a_pVCpu, a_GCPtr, a_fDataTlb) do { } while (0)
795#endif
796
797#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
798# define IEMTLBTRACE_LOAD_CR0(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Cr0, a_uNew, a_uOld)
799# define IEMTLBTRACE_LOAD_CR3(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Cr3, a_uNew, a_uOld)
800# define IEMTLBTRACE_LOAD_CR4(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Cr4, a_uNew, a_uOld)
801# define IEMTLBTRACE_LOAD_EFER(a_pVCpu, a_uNew, a_uOld) iemTlbTrace(a_pVCpu, kIemTlbTraceType_Load_Efer, a_uNew, a_uOld)
802#else
803# define IEMTLBTRACE_LOAD_CR0(a_pVCpu, a_uNew, a_uOld) do { } while (0)
804# define IEMTLBTRACE_LOAD_CR3(a_pVCpu, a_uNew, a_uOld) do { } while (0)
805# define IEMTLBTRACE_LOAD_CR4(a_pVCpu, a_uNew, a_uOld) do { } while (0)
806# define IEMTLBTRACE_LOAD_EFER(a_pVCpu, a_uNew, a_uOld) do { } while (0)
807#endif
808
809#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
810# define IEMTLBTRACE_IRQ(a_pVCpu, a_uVector, a_fFlags, a_fEFlags) \
811 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Irq, a_fEFlags, 0, a_uVector, a_fFlags)
812# define IEMTLBTRACE_XCPT(a_pVCpu, a_uVector, a_uErr, a_uCr2, a_fFlags) \
813 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Xcpt, a_uErr, a_uCr2, a_uVector, a_fFlags)
814# define IEMTLBTRACE_IRET(a_pVCpu, a_uRetCs, a_uRetRip, a_fEFlags) \
815 iemTlbTrace(a_pVCpu, kIemTlbTraceType_IRet, a_uRetRip, a_fEFlags, 0, a_uRetCs)
816#else
817# define IEMTLBTRACE_IRQ(a_pVCpu, a_uVector, a_fFlags, a_fEFlags) do { } while (0)
818# define IEMTLBTRACE_XCPT(a_pVCpu, a_uVector, a_uErr, a_uCr2, a_fFlags) do { } while (0)
819# define IEMTLBTRACE_IRET(a_pVCpu, a_uRetCs, a_uRetRip, a_fEFlags) do { } while (0)
820#endif
821
822#if defined(IEM_WITH_TLB_TRACE) && defined(IN_RING3) && 1
823# define IEMTLBTRACE_TB_COMPILE(a_pVCpu, a_GCPhysPc) \
824 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Tb_Compile, a_GCPhysPc)
825# define IEMTLBTRACE_TB_EXEC_THRD(a_pVCpu, a_pTb) \
826 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Tb_Exec_Threaded, (a_pTb)->GCPhysPc, (uintptr_t)a_pTb, 0, (a_pTb)->cUsed)
827# define IEMTLBTRACE_TB_EXEC_N8VE(a_pVCpu, a_pTb) \
828 iemTlbTrace(a_pVCpu, kIemTlbTraceType_Tb_Exec_Native, (a_pTb)->GCPhysPc, (uintptr_t)a_pTb, 0, (a_pTb)->cUsed)
829#else
830# define IEMTLBTRACE_TB_COMPILE(a_pVCpu, a_GCPhysPc) do { } while (0)
831# define IEMTLBTRACE_TB_EXEC_THRD(a_pVCpu, a_pTb) do { } while (0)
832# define IEMTLBTRACE_TB_EXEC_N8VE(a_pVCpu, a_pTb) do { } while (0)
833#endif
834
835
836/** @name IEM_MC_F_XXX - MC block flags/clues.
837 * @todo Merge with IEM_CIMPL_F_XXX
838 * @{ */
839#define IEM_MC_F_ONLY_8086 RT_BIT_32(0)
840#define IEM_MC_F_MIN_186 RT_BIT_32(1)
841#define IEM_MC_F_MIN_286 RT_BIT_32(2)
842#define IEM_MC_F_NOT_286_OR_OLDER IEM_MC_F_MIN_386
843#define IEM_MC_F_MIN_386 RT_BIT_32(3)
844#define IEM_MC_F_MIN_486 RT_BIT_32(4)
845#define IEM_MC_F_MIN_PENTIUM RT_BIT_32(5)
846#define IEM_MC_F_MIN_PENTIUM_II IEM_MC_F_MIN_PENTIUM
847#define IEM_MC_F_MIN_CORE IEM_MC_F_MIN_PENTIUM
848#define IEM_MC_F_64BIT RT_BIT_32(6)
849#define IEM_MC_F_NOT_64BIT RT_BIT_32(7)
850/** This is set by IEMAllN8vePython.py to indicate a variation without the
851 * flags-clearing-and-checking, when there is also a variation with that.
852 * @note Do not use this manully, it's only for python and for testing in
853 * the native recompiler! */
854#define IEM_MC_F_WITHOUT_FLAGS RT_BIT_32(8)
855/** @} */
856
857/** @name IEM_CIMPL_F_XXX - State change clues for CIMPL calls.
858 *
859 * These clues are mainly for the recompiler, so that it can emit correct code.
860 *
861 * They are processed by the python script and which also automatically
862 * calculates flags for MC blocks based on the statements, extending the use of
863 * these flags to describe MC block behavior to the recompiler core. The python
864 * script pass the flags to the IEM_MC2_END_EMIT_CALLS macro, but mainly for
865 * error checking purposes. The script emits the necessary fEndTb = true and
866 * similar statements as this reduces compile time a tiny bit.
867 *
868 * @{ */
869/** Flag set if direct branch, clear if absolute or indirect. */
870#define IEM_CIMPL_F_BRANCH_DIRECT RT_BIT_32(0)
871/** Flag set if indirect branch, clear if direct or relative.
872 * This is also used for all system control transfers (SYSCALL, SYSRET, INT, ++)
873 * as well as for return instructions (RET, IRET, RETF). */
874#define IEM_CIMPL_F_BRANCH_INDIRECT RT_BIT_32(1)
875/** Flag set if relative branch, clear if absolute or indirect. */
876#define IEM_CIMPL_F_BRANCH_RELATIVE RT_BIT_32(2)
877/** Flag set if conditional branch, clear if unconditional. */
878#define IEM_CIMPL_F_BRANCH_CONDITIONAL RT_BIT_32(3)
879/** Flag set if it's a far branch (changes CS). */
880#define IEM_CIMPL_F_BRANCH_FAR RT_BIT_32(4)
881/** Convenience: Testing any kind of branch. */
882#define IEM_CIMPL_F_BRANCH_ANY (IEM_CIMPL_F_BRANCH_DIRECT | IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_RELATIVE)
883
884/** Execution flags may change (IEMCPU::fExec). */
885#define IEM_CIMPL_F_MODE RT_BIT_32(5)
886/** May change significant portions of RFLAGS. */
887#define IEM_CIMPL_F_RFLAGS RT_BIT_32(6)
888/** May change the status bits (X86_EFL_STATUS_BITS) in RFLAGS. */
889#define IEM_CIMPL_F_STATUS_FLAGS RT_BIT_32(7)
890/** May trigger interrupt shadowing. */
891#define IEM_CIMPL_F_INHIBIT_SHADOW RT_BIT_32(8)
892/** May enable interrupts, so recheck IRQ immediately afterwards executing
893 * the instruction. */
894#define IEM_CIMPL_F_CHECK_IRQ_AFTER RT_BIT_32(9)
895/** May disable interrupts, so recheck IRQ immediately before executing the
896 * instruction. */
897#define IEM_CIMPL_F_CHECK_IRQ_BEFORE RT_BIT_32(10)
898/** Convenience: Check for IRQ both before and after an instruction. */
899#define IEM_CIMPL_F_CHECK_IRQ_BEFORE_AND_AFTER (IEM_CIMPL_F_CHECK_IRQ_BEFORE | IEM_CIMPL_F_CHECK_IRQ_AFTER)
900/** May trigger a VM exit (treated like IEM_CIMPL_F_MODE atm). */
901#define IEM_CIMPL_F_VMEXIT RT_BIT_32(11)
902/** May modify FPU state.
903 * @todo Not sure if this is useful yet. */
904#define IEM_CIMPL_F_FPU RT_BIT_32(12)
905/** REP prefixed instruction which may yield before updating PC.
906 * @todo Not sure if this is useful, REP functions now return non-zero
907 * status if they don't update the PC. */
908#define IEM_CIMPL_F_REP RT_BIT_32(13)
909/** I/O instruction.
910 * @todo Not sure if this is useful yet. */
911#define IEM_CIMPL_F_IO RT_BIT_32(14)
912/** Force end of TB after the instruction. */
913#define IEM_CIMPL_F_END_TB RT_BIT_32(15)
914/** Flag set if a branch may also modify the stack (push/pop return address). */
915#define IEM_CIMPL_F_BRANCH_STACK RT_BIT_32(16)
916/** Flag set if a branch may also modify the stack (push/pop return address)
917 * and switch it (load/restore SS:RSP). */
918#define IEM_CIMPL_F_BRANCH_STACK_FAR RT_BIT_32(17)
919/** Convenience: Raise exception (technically unnecessary, since it shouldn't return VINF_SUCCESS). */
920#define IEM_CIMPL_F_XCPT \
921 (IEM_CIMPL_F_BRANCH_INDIRECT | IEM_CIMPL_F_BRANCH_FAR | IEM_CIMPL_F_BRANCH_STACK_FAR \
922 | IEM_CIMPL_F_MODE | IEM_CIMPL_F_RFLAGS | IEM_CIMPL_F_VMEXIT)
923
924/** The block calls a C-implementation instruction function with two implicit arguments.
925 * Mutually exclusive with IEM_CIMPL_F_CALLS_AIMPL and
926 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
927 * @note The python scripts will add this if missing. */
928#define IEM_CIMPL_F_CALLS_CIMPL RT_BIT_32(18)
929/** The block calls an ASM-implementation instruction function.
930 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL and
931 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
932 * @note The python scripts will add this if missing. */
933#define IEM_CIMPL_F_CALLS_AIMPL RT_BIT_32(19)
934/** The block calls an ASM-implementation instruction function with an implicit
935 * X86FXSTATE pointer argument.
936 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
937 * IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE.
938 * @note The python scripts will add this if missing. */
939#define IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE RT_BIT_32(20)
940/** The block calls an ASM-implementation instruction function with an implicit
941 * X86XSAVEAREA pointer argument.
942 * Mutually exclusive with IEM_CIMPL_F_CALLS_CIMPL, IEM_CIMPL_F_CALLS_AIMPL and
943 * IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE.
944 * @note No different from IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE, so same value.
945 * @note The python scripts will add this if missing. */
946#define IEM_CIMPL_F_CALLS_AIMPL_WITH_XSTATE IEM_CIMPL_F_CALLS_AIMPL_WITH_FXSTATE
947/** @} */
948
949
950/** @name IEM_F_XXX - Execution mode flags (IEMCPU::fExec, IEMTB::fFlags).
951 *
952 * These flags are set when entering IEM and adjusted as code is executed, such
953 * that they will always contain the current values as instructions are
954 * finished.
955 *
956 * In recompiled execution mode, (most of) these flags are included in the
957 * translation block selection key and stored in IEMTB::fFlags alongside the
958 * IEMTB_F_XXX flags. The latter flags uses bits 31 thru 24, which are all zero
959 * in IEMCPU::fExec.
960 *
961 * @{ */
962/** Mode: The block target mode mask. */
963#define IEM_F_MODE_MASK UINT32_C(0x0000001f)
964/** Mode: The IEMMODE part of the IEMTB_F_MODE_MASK value. */
965#define IEM_F_MODE_CPUMODE_MASK UINT32_C(0x00000003)
966/** X86 Mode: Bit used to indicating pre-386 CPU in 16-bit mode (for eliminating
967 * conditional in EIP/IP updating), and flat wide open CS, SS, DS, and ES in
968 * 32-bit mode (for simplifying most memory accesses). */
969#define IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK UINT32_C(0x00000004)
970/** X86 Mode: Bit indicating protected mode, real mode (or SMM) when not set. */
971#define IEM_F_MODE_X86_PROT_MASK UINT32_C(0x00000008)
972/** X86 Mode: Bit used to indicate virtual 8086 mode (only 16-bit). */
973#define IEM_F_MODE_X86_V86_MASK UINT32_C(0x00000010)
974
975/** X86 Mode: 16-bit on 386 or later. */
976#define IEM_F_MODE_X86_16BIT UINT32_C(0x00000000)
977/** X86 Mode: 80286, 80186 and 8086/88 targetting blocks (EIP update opt). */
978#define IEM_F_MODE_X86_16BIT_PRE_386 UINT32_C(0x00000004)
979/** X86 Mode: 16-bit protected mode on 386 or later. */
980#define IEM_F_MODE_X86_16BIT_PROT UINT32_C(0x00000008)
981/** X86 Mode: 16-bit protected mode on 386 or later. */
982#define IEM_F_MODE_X86_16BIT_PROT_PRE_386 UINT32_C(0x0000000c)
983/** X86 Mode: 16-bit virtual 8086 protected mode (on 386 or later). */
984#define IEM_F_MODE_X86_16BIT_PROT_V86 UINT32_C(0x00000018)
985
986/** X86 Mode: 32-bit on 386 or later. */
987#define IEM_F_MODE_X86_32BIT UINT32_C(0x00000001)
988/** X86 Mode: 32-bit mode with wide open flat CS, SS, DS and ES. */
989#define IEM_F_MODE_X86_32BIT_FLAT UINT32_C(0x00000005)
990/** X86 Mode: 32-bit protected mode. */
991#define IEM_F_MODE_X86_32BIT_PROT UINT32_C(0x00000009)
992/** X86 Mode: 32-bit protected mode with wide open flat CS, SS, DS and ES. */
993#define IEM_F_MODE_X86_32BIT_PROT_FLAT UINT32_C(0x0000000d)
994
995/** X86 Mode: 64-bit (includes protected, but not the flat bit). */
996#define IEM_F_MODE_X86_64BIT UINT32_C(0x0000000a)
997
998/** X86 Mode: Checks if @a a_fExec represent a FLAT mode. */
999#define IEM_F_MODE_X86_IS_FLAT(a_fExec) ( ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_64BIT \
1000 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_PROT_FLAT \
1001 || ((a_fExec) & IEM_F_MODE_MASK) == IEM_F_MODE_X86_32BIT_FLAT)
1002
1003/** Bypass access handlers when set. */
1004#define IEM_F_BYPASS_HANDLERS UINT32_C(0x00010000)
1005/** Have pending hardware instruction breakpoints. */
1006#define IEM_F_PENDING_BRK_INSTR UINT32_C(0x00020000)
1007/** Have pending hardware data breakpoints. */
1008#define IEM_F_PENDING_BRK_DATA UINT32_C(0x00040000)
1009
1010/** X86: Have pending hardware I/O breakpoints. */
1011#define IEM_F_PENDING_BRK_X86_IO UINT32_C(0x00000400)
1012/** X86: Disregard the lock prefix (implied or not) when set. */
1013#define IEM_F_X86_DISREGARD_LOCK UINT32_C(0x00000800)
1014
1015/** Pending breakpoint mask (what iemCalcExecDbgFlags works out). */
1016#define IEM_F_PENDING_BRK_MASK (IEM_F_PENDING_BRK_INSTR | IEM_F_PENDING_BRK_DATA | IEM_F_PENDING_BRK_X86_IO)
1017
1018/** Caller configurable options. */
1019#define IEM_F_USER_OPTS (IEM_F_BYPASS_HANDLERS | IEM_F_X86_DISREGARD_LOCK)
1020
1021/** X86: The current protection level (CPL) shift factor. */
1022#define IEM_F_X86_CPL_SHIFT 8
1023/** X86: The current protection level (CPL) mask. */
1024#define IEM_F_X86_CPL_MASK UINT32_C(0x00000300)
1025/** X86: The current protection level (CPL) shifted mask. */
1026#define IEM_F_X86_CPL_SMASK UINT32_C(0x00000003)
1027
1028/** X86: Alignment checks enabled (CR0.AM=1 & EFLAGS.AC=1). */
1029#define IEM_F_X86_AC UINT32_C(0x00080000)
1030
1031/** X86 execution context.
1032 * The IEM_F_X86_CTX_XXX values are individual flags that can be combined (with
1033 * the exception of IEM_F_X86_CTX_NORMAL). This allows running VMs from SMM
1034 * mode. */
1035#define IEM_F_X86_CTX_MASK UINT32_C(0x0000f000)
1036/** X86 context: Plain regular execution context. */
1037#define IEM_F_X86_CTX_NORMAL UINT32_C(0x00000000)
1038/** X86 context: VT-x enabled. */
1039#define IEM_F_X86_CTX_VMX UINT32_C(0x00001000)
1040/** X86 context: AMD-V enabled. */
1041#define IEM_F_X86_CTX_SVM UINT32_C(0x00002000)
1042/** X86 context: In AMD-V or VT-x guest mode. */
1043#define IEM_F_X86_CTX_IN_GUEST UINT32_C(0x00004000)
1044/** X86 context: System management mode (SMM). */
1045#define IEM_F_X86_CTX_SMM UINT32_C(0x00008000)
1046
1047/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
1048 * iemRegFinishClearingRF() most for most situations (CPUMCTX_DBG_HIT_DRX_MASK
1049 * and CPUMCTX_DBG_DBGF_MASK are covered by the IEM_F_PENDING_BRK_XXX bits
1050 * alread). */
1051
1052/** @todo Add TF+RF+INHIBIT indicator(s), so we can eliminate the conditional in
1053 * iemRegFinishClearingRF() most for most situations
1054 * (CPUMCTX_DBG_HIT_DRX_MASK and CPUMCTX_DBG_DBGF_MASK are covered by
1055 * the IEM_F_PENDING_BRK_XXX bits alread). */
1056
1057/** @} */
1058
1059
1060/** @name IEMTB_F_XXX - Translation block flags (IEMTB::fFlags).
1061 *
1062 * Extends the IEM_F_XXX flags (subject to IEMTB_F_IEM_F_MASK) to make up the
1063 * translation block flags. The combined flag mask (subject to
1064 * IEMTB_F_KEY_MASK) is used as part of the lookup key for translation blocks.
1065 *
1066 * @{ */
1067/** Mask of IEM_F_XXX flags included in IEMTB_F_XXX. */
1068#define IEMTB_F_IEM_F_MASK UINT32_C(0x00ffffff)
1069
1070/** Type: The block type mask. */
1071#define IEMTB_F_TYPE_MASK UINT32_C(0x03000000)
1072/** Type: Purly threaded recompiler (via tables). */
1073#define IEMTB_F_TYPE_THREADED UINT32_C(0x01000000)
1074/** Type: Native recompilation. */
1075#define IEMTB_F_TYPE_NATIVE UINT32_C(0x02000000)
1076
1077/** Set when we're starting the block in an "interrupt shadow".
1078 * We don't need to distingish between the two types of this mask, thus the one.
1079 * @see CPUMCTX_INHIBIT_SHADOW, CPUMIsInInterruptShadow() */
1080#define IEMTB_F_INHIBIT_SHADOW UINT32_C(0x04000000)
1081/** Set when we're currently inhibiting NMIs
1082 * @see CPUMCTX_INHIBIT_NMI, CPUMAreInterruptsInhibitedByNmi() */
1083#define IEMTB_F_INHIBIT_NMI UINT32_C(0x08000000)
1084
1085/** Checks that EIP/IP is wihin CS.LIM before each instruction. Used when
1086 * we're close the limit before starting a TB, as determined by
1087 * iemGetTbFlagsForCurrentPc(). */
1088#define IEMTB_F_CS_LIM_CHECKS UINT32_C(0x10000000)
1089
1090/** Mask of the IEMTB_F_XXX flags that are part of the TB lookup key.
1091 *
1092 * @note We skip all of IEM_F_X86_CTX_MASK, with the exception of SMM (which we
1093 * don't implement), because we don't currently generate any context
1094 * specific code - that's all handled in CIMPL functions.
1095 *
1096 * For the threaded recompiler we don't generate any CPL specific code
1097 * either, but the native recompiler does for memory access (saves getting
1098 * the CPL from fExec and turning it into IEMTLBE_F_PT_NO_USER).
1099 * Since most OSes will not share code between rings, this shouldn't
1100 * have any real effect on TB/memory/recompiling load.
1101 */
1102#define IEMTB_F_KEY_MASK ((UINT32_MAX & ~(IEM_F_X86_CTX_MASK | IEMTB_F_TYPE_MASK)) | IEM_F_X86_CTX_SMM)
1103/** @} */
1104
1105AssertCompile( (IEM_F_MODE_X86_16BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1106AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1107AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_PROT_MASK));
1108AssertCompile(!(IEM_F_MODE_X86_16BIT & IEM_F_MODE_X86_V86_MASK));
1109AssertCompile( (IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1110AssertCompile( IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1111AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_PROT_MASK));
1112AssertCompile(!(IEM_F_MODE_X86_16BIT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
1113AssertCompile( (IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1114AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1115AssertCompile( IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
1116AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT & IEM_F_MODE_X86_V86_MASK));
1117AssertCompile( (IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_16BIT);
1118AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1119AssertCompile( IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_PROT_MASK);
1120AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_PRE_386 & IEM_F_MODE_X86_V86_MASK));
1121AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_PROT_MASK);
1122AssertCompile(!(IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1123AssertCompile( IEM_F_MODE_X86_16BIT_PROT_V86 & IEM_F_MODE_X86_V86_MASK);
1124
1125AssertCompile( (IEM_F_MODE_X86_32BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1126AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1127AssertCompile(!(IEM_F_MODE_X86_32BIT & IEM_F_MODE_X86_PROT_MASK));
1128AssertCompile( (IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1129AssertCompile( IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1130AssertCompile(!(IEM_F_MODE_X86_32BIT_FLAT & IEM_F_MODE_X86_PROT_MASK));
1131AssertCompile( (IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1132AssertCompile(!(IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1133AssertCompile( IEM_F_MODE_X86_32BIT_PROT & IEM_F_MODE_X86_PROT_MASK);
1134AssertCompile( (IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_32BIT);
1135AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK);
1136AssertCompile( IEM_F_MODE_X86_32BIT_PROT_FLAT & IEM_F_MODE_X86_PROT_MASK);
1137
1138AssertCompile( (IEM_F_MODE_X86_64BIT & IEM_F_MODE_CPUMODE_MASK) == IEMMODE_64BIT);
1139AssertCompile( IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_PROT_MASK);
1140AssertCompile(!(IEM_F_MODE_X86_64BIT & IEM_F_MODE_X86_FLAT_OR_PRE_386_MASK));
1141
1142/** Native instruction type for use with the native code generator.
1143 * This is a byte (uint8_t) for x86 and amd64 and uint32_t for the other(s). */
1144#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1145typedef uint8_t IEMNATIVEINSTR;
1146#else
1147typedef uint32_t IEMNATIVEINSTR;
1148#endif
1149/** Pointer to a native instruction unit. */
1150typedef IEMNATIVEINSTR *PIEMNATIVEINSTR;
1151/** Pointer to a const native instruction unit. */
1152typedef IEMNATIVEINSTR const *PCIEMNATIVEINSTR;
1153
1154/**
1155 * A call for the threaded call table.
1156 */
1157typedef struct IEMTHRDEDCALLENTRY
1158{
1159 /** The function to call (IEMTHREADEDFUNCS). */
1160 uint16_t enmFunction;
1161
1162 /** Instruction number in the TB (for statistics). */
1163 uint8_t idxInstr;
1164 /** The opcode length. */
1165 uint8_t cbOpcode;
1166 /** Offset into IEMTB::pabOpcodes. */
1167 uint16_t offOpcode;
1168
1169 /** TB lookup table index (7 bits) and large size (1 bits).
1170 *
1171 * The default size is 1 entry, but for indirect calls and returns we set the
1172 * top bit and allocate 4 (IEM_TB_LOOKUP_TAB_LARGE_SIZE) entries. The large
1173 * tables uses RIP for selecting the entry to use, as it is assumed a hash table
1174 * lookup isn't that slow compared to sequentially trying out 4 TBs.
1175 *
1176 * By default lookup table entry 0 for a TB is reserved as a fallback for
1177 * calltable entries w/o explicit entreis, so this member will be non-zero if
1178 * there is a lookup entry associated with this call.
1179 *
1180 * @sa IEM_TB_LOOKUP_TAB_GET_SIZE, IEM_TB_LOOKUP_TAB_GET_IDX
1181 */
1182 uint8_t uTbLookup;
1183
1184 /** Unused atm. */
1185 uint8_t uUnused0;
1186
1187 /** Generic parameters. */
1188 uint64_t auParams[3];
1189} IEMTHRDEDCALLENTRY;
1190AssertCompileSize(IEMTHRDEDCALLENTRY, sizeof(uint64_t) * 4);
1191/** Pointer to a threaded call entry. */
1192typedef struct IEMTHRDEDCALLENTRY *PIEMTHRDEDCALLENTRY;
1193/** Pointer to a const threaded call entry. */
1194typedef IEMTHRDEDCALLENTRY const *PCIEMTHRDEDCALLENTRY;
1195
1196/** The number of TB lookup table entries for a large allocation
1197 * (IEMTHRDEDCALLENTRY::uTbLookup bit 7 set). */
1198#define IEM_TB_LOOKUP_TAB_LARGE_SIZE 4
1199/** Get the lookup table size from IEMTHRDEDCALLENTRY::uTbLookup. */
1200#define IEM_TB_LOOKUP_TAB_GET_SIZE(a_uTbLookup) (!((a_uTbLookup) & 0x80) ? 1 : IEM_TB_LOOKUP_TAB_LARGE_SIZE)
1201/** Get the first lookup table index from IEMTHRDEDCALLENTRY::uTbLookup. */
1202#define IEM_TB_LOOKUP_TAB_GET_IDX(a_uTbLookup) ((a_uTbLookup) & 0x7f)
1203/** Get the lookup table index from IEMTHRDEDCALLENTRY::uTbLookup and RIP. */
1204#define IEM_TB_LOOKUP_TAB_GET_IDX_WITH_RIP(a_uTbLookup, a_Rip) \
1205 (!((a_uTbLookup) & 0x80) ? (a_uTbLookup) & 0x7f : ((a_uTbLookup) & 0x7f) + ((a_Rip) & (IEM_TB_LOOKUP_TAB_LARGE_SIZE - 1)) )
1206
1207/** Make a IEMTHRDEDCALLENTRY::uTbLookup value. */
1208#define IEM_TB_LOOKUP_TAB_MAKE(a_idxTable, a_fLarge) ((a_idxTable) | ((a_fLarge) ? 0x80 : 0))
1209
1210/**
1211 * Native IEM TB 'function' typedef.
1212 *
1213 * This will throw/longjmp on occation.
1214 *
1215 * @note AMD64 doesn't have that many non-volatile registers and does sport
1216 * 32-bit address displacments, so we don't need pCtx.
1217 *
1218 * On ARM64 pCtx allows us to directly address the whole register
1219 * context without requiring a separate indexing register holding the
1220 * offset. This saves an instruction loading the offset for each guest
1221 * CPU context access, at the cost of a non-volatile register.
1222 * Fortunately, ARM64 has quite a lot more registers.
1223 */
1224typedef
1225#ifdef RT_ARCH_AMD64
1226int FNIEMTBNATIVE(PVMCPUCC pVCpu)
1227#else
1228int FNIEMTBNATIVE(PVMCPUCC pVCpu, PCPUMCTX pCtx)
1229#endif
1230#if RT_CPLUSPLUS_PREREQ(201700)
1231 IEM_NOEXCEPT_MAY_LONGJMP
1232#endif
1233 ;
1234/** Pointer to a native IEM TB entry point function.
1235 * This will throw/longjmp on occation. */
1236typedef FNIEMTBNATIVE *PFNIEMTBNATIVE;
1237
1238
1239/**
1240 * Translation block debug info entry type.
1241 */
1242typedef enum IEMTBDBGENTRYTYPE
1243{
1244 kIemTbDbgEntryType_Invalid = 0,
1245 /** The entry is for marking a native code position.
1246 * Entries following this all apply to this position. */
1247 kIemTbDbgEntryType_NativeOffset,
1248 /** The entry is for a new guest instruction. */
1249 kIemTbDbgEntryType_GuestInstruction,
1250 /** Marks the start of a threaded call. */
1251 kIemTbDbgEntryType_ThreadedCall,
1252 /** Marks the location of a label. */
1253 kIemTbDbgEntryType_Label,
1254 /** Info about a host register shadowing a guest register. */
1255 kIemTbDbgEntryType_GuestRegShadowing,
1256#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1257 /** Info about a host SIMD register shadowing a guest SIMD register. */
1258 kIemTbDbgEntryType_GuestSimdRegShadowing,
1259#endif
1260#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1261 /** Info about a delayed RIP update. */
1262 kIemTbDbgEntryType_DelayedPcUpdate,
1263#endif
1264#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1265 /** Info about a shadowed guest register becoming dirty. */
1266 kIemTbDbgEntryType_GuestRegDirty,
1267 /** Info about register writeback/flush oepration. */
1268 kIemTbDbgEntryType_GuestRegWriteback,
1269#endif
1270 kIemTbDbgEntryType_End
1271} IEMTBDBGENTRYTYPE;
1272
1273/**
1274 * Translation block debug info entry.
1275 */
1276typedef union IEMTBDBGENTRY
1277{
1278 /** Plain 32-bit view. */
1279 uint32_t u;
1280
1281 /** Generic view for getting at the type field. */
1282 struct
1283 {
1284 /** IEMTBDBGENTRYTYPE */
1285 uint32_t uType : 4;
1286 uint32_t uTypeSpecific : 28;
1287 } Gen;
1288
1289 struct
1290 {
1291 /** kIemTbDbgEntryType_ThreadedCall1. */
1292 uint32_t uType : 4;
1293 /** Native code offset. */
1294 uint32_t offNative : 28;
1295 } NativeOffset;
1296
1297 struct
1298 {
1299 /** kIemTbDbgEntryType_GuestInstruction. */
1300 uint32_t uType : 4;
1301 uint32_t uUnused : 4;
1302 /** The IEM_F_XXX flags. */
1303 uint32_t fExec : 24;
1304 } GuestInstruction;
1305
1306 struct
1307 {
1308 /* kIemTbDbgEntryType_ThreadedCall. */
1309 uint32_t uType : 4;
1310 /** Set if the call was recompiled to native code, clear if just calling
1311 * threaded function. */
1312 uint32_t fRecompiled : 1;
1313 uint32_t uUnused : 11;
1314 /** The threaded call number (IEMTHREADEDFUNCS). */
1315 uint32_t enmCall : 16;
1316 } ThreadedCall;
1317
1318 struct
1319 {
1320 /* kIemTbDbgEntryType_Label. */
1321 uint32_t uType : 4;
1322 uint32_t uUnused : 4;
1323 /** The label type (IEMNATIVELABELTYPE). */
1324 uint32_t enmLabel : 8;
1325 /** The label data. */
1326 uint32_t uData : 16;
1327 } Label;
1328
1329 struct
1330 {
1331 /* kIemTbDbgEntryType_GuestRegShadowing. */
1332 uint32_t uType : 4;
1333 uint32_t uUnused : 4;
1334 /** The guest register being shadowed (IEMNATIVEGSTREG). */
1335 uint32_t idxGstReg : 8;
1336 /** The host new register number, UINT8_MAX if dropped. */
1337 uint32_t idxHstReg : 8;
1338 /** The previous host register number, UINT8_MAX if new. */
1339 uint32_t idxHstRegPrev : 8;
1340 } GuestRegShadowing;
1341
1342#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
1343 struct
1344 {
1345 /* kIemTbDbgEntryType_GuestSimdRegShadowing. */
1346 uint32_t uType : 4;
1347 uint32_t uUnused : 4;
1348 /** The guest register being shadowed (IEMNATIVEGSTSIMDREG). */
1349 uint32_t idxGstSimdReg : 8;
1350 /** The host new register number, UINT8_MAX if dropped. */
1351 uint32_t idxHstSimdReg : 8;
1352 /** The previous host register number, UINT8_MAX if new. */
1353 uint32_t idxHstSimdRegPrev : 8;
1354 } GuestSimdRegShadowing;
1355#endif
1356
1357#ifdef IEMNATIVE_WITH_DELAYED_PC_UPDATING
1358 struct
1359 {
1360 /* kIemTbDbgEntryType_DelayedPcUpdate. */
1361 uint32_t uType : 4;
1362 /* The instruction offset added to the program counter. */
1363 uint32_t offPc : 14;
1364 /** Number of instructions skipped. */
1365 uint32_t cInstrSkipped : 14;
1366 } DelayedPcUpdate;
1367#endif
1368
1369#if defined(IEMNATIVE_WITH_DELAYED_REGISTER_WRITEBACK) || defined(IEMNATIVE_WITH_SIMD_REG_ALLOCATOR)
1370 struct
1371 {
1372 /* kIemTbDbgEntryType_GuestRegDirty. */
1373 uint32_t uType : 4;
1374 uint32_t uUnused : 11;
1375 /** Flag whether this is about a SIMD (true) or general (false) register. */
1376 uint32_t fSimdReg : 1;
1377 /** The guest register index being marked as dirty. */
1378 uint32_t idxGstReg : 8;
1379 /** The host register number this register is shadowed in .*/
1380 uint32_t idxHstReg : 8;
1381 } GuestRegDirty;
1382
1383 struct
1384 {
1385 /* kIemTbDbgEntryType_GuestRegWriteback. */
1386 uint32_t uType : 4;
1387 /** Flag whether this is about a SIMD (true) or general (false) register flush. */
1388 uint32_t fSimdReg : 1;
1389 /** The mask shift. */
1390 uint32_t cShift : 2;
1391 /** The guest register mask being written back. */
1392 uint32_t fGstReg : 25;
1393 } GuestRegWriteback;
1394#endif
1395
1396} IEMTBDBGENTRY;
1397AssertCompileSize(IEMTBDBGENTRY, sizeof(uint32_t));
1398/** Pointer to a debug info entry. */
1399typedef IEMTBDBGENTRY *PIEMTBDBGENTRY;
1400/** Pointer to a const debug info entry. */
1401typedef IEMTBDBGENTRY const *PCIEMTBDBGENTRY;
1402
1403/**
1404 * Translation block debug info.
1405 */
1406typedef struct IEMTBDBG
1407{
1408 /** Number of entries in aEntries. */
1409 uint32_t cEntries;
1410 /** The offset of the last kIemTbDbgEntryType_NativeOffset record. */
1411 uint32_t offNativeLast;
1412 /** Debug info entries. */
1413 RT_FLEXIBLE_ARRAY_EXTENSION
1414 IEMTBDBGENTRY aEntries[RT_FLEXIBLE_ARRAY];
1415} IEMTBDBG;
1416/** Pointer to TB debug info. */
1417typedef IEMTBDBG *PIEMTBDBG;
1418/** Pointer to const TB debug info. */
1419typedef IEMTBDBG const *PCIEMTBDBG;
1420
1421
1422/**
1423 * Translation block.
1424 *
1425 * The current plan is to just keep TBs and associated lookup hash table private
1426 * to each VCpu as that simplifies TB removal greatly (no races) and generally
1427 * avoids using expensive atomic primitives for updating lists and stuff.
1428 */
1429#pragma pack(2) /* to prevent the Thrd structure from being padded unnecessarily */
1430typedef struct IEMTB
1431{
1432 /** Next block with the same hash table entry. */
1433 struct IEMTB *pNext;
1434 /** Usage counter. */
1435 uint32_t cUsed;
1436 /** The IEMCPU::msRecompilerPollNow last time it was used. */
1437 uint32_t msLastUsed;
1438
1439 /** @name What uniquely identifies the block.
1440 * @{ */
1441 RTGCPHYS GCPhysPc;
1442 /** IEMTB_F_XXX (i.e. IEM_F_XXX ++). */
1443 uint32_t fFlags;
1444 union
1445 {
1446 struct
1447 {
1448 /**< Relevant CS X86DESCATTR_XXX bits. */
1449 uint16_t fAttr;
1450 } x86;
1451 };
1452 /** @} */
1453
1454 /** Number of opcode ranges. */
1455 uint8_t cRanges;
1456 /** Statistics: Number of instructions in the block. */
1457 uint8_t cInstructions;
1458
1459 /** Type specific info. */
1460 union
1461 {
1462 struct
1463 {
1464 /** The call sequence table. */
1465 PIEMTHRDEDCALLENTRY paCalls;
1466 /** Number of calls in paCalls. */
1467 uint16_t cCalls;
1468 /** Number of calls allocated. */
1469 uint16_t cAllocated;
1470 } Thrd;
1471 struct
1472 {
1473 /** The native instructions (PFNIEMTBNATIVE). */
1474 PIEMNATIVEINSTR paInstructions;
1475 /** Number of instructions pointed to by paInstructions. */
1476 uint32_t cInstructions;
1477 } Native;
1478 /** Generic view for zeroing when freeing. */
1479 struct
1480 {
1481 uintptr_t uPtr;
1482 uint32_t uData;
1483 } Gen;
1484 };
1485
1486 /** The allocation chunk this TB belongs to. */
1487 uint8_t idxAllocChunk;
1488 /** The number of entries in the lookup table.
1489 * Because we're out of space, the TB lookup table is located before the
1490 * opcodes pointed to by pabOpcodes. */
1491 uint8_t cTbLookupEntries;
1492
1493 /** Number of bytes of opcodes stored in pabOpcodes.
1494 * @todo this field isn't really needed, aRanges keeps the actual info. */
1495 uint16_t cbOpcodes;
1496 /** Pointer to the opcode bytes this block was recompiled from.
1497 * This also points to the TB lookup table, which starts cTbLookupEntries
1498 * entries before the opcodes (we don't have room atm for another point). */
1499 uint8_t *pabOpcodes;
1500
1501 /** Debug info if enabled.
1502 * This is only generated by the native recompiler. */
1503 PIEMTBDBG pDbgInfo;
1504
1505 /* --- 64 byte cache line end --- */
1506
1507 /** Opcode ranges.
1508 *
1509 * The opcode checkers and maybe TLB loading functions will use this to figure
1510 * out what to do. The parameter will specify an entry and the opcode offset to
1511 * start at and the minimum number of bytes to verify (instruction length).
1512 *
1513 * When VT-x and AMD-V looks up the opcode bytes for an exitting instruction,
1514 * they'll first translate RIP (+ cbInstr - 1) to a physical address using the
1515 * code TLB (must have a valid entry for that address) and scan the ranges to
1516 * locate the corresponding opcodes. Probably.
1517 */
1518 struct IEMTBOPCODERANGE
1519 {
1520 /** Offset within pabOpcodes. */
1521 uint16_t offOpcodes;
1522 /** Number of bytes. */
1523 uint16_t cbOpcodes;
1524 /** The page offset. */
1525 RT_GCC_EXTENSION
1526 uint16_t offPhysPage : 12;
1527 /** Unused bits. */
1528 RT_GCC_EXTENSION
1529 uint16_t u2Unused : 2;
1530 /** Index into GCPhysPc + aGCPhysPages for the physical page address. */
1531 RT_GCC_EXTENSION
1532 uint16_t idxPhysPage : 2;
1533 } aRanges[8];
1534
1535 /** Physical pages that this TB covers.
1536 * The GCPhysPc w/o page offset is element zero, so starting here with 1. */
1537 RTGCPHYS aGCPhysPages[2];
1538} IEMTB;
1539#pragma pack()
1540AssertCompileMemberAlignment(IEMTB, GCPhysPc, sizeof(RTGCPHYS));
1541AssertCompileMemberAlignment(IEMTB, Thrd, sizeof(void *));
1542AssertCompileMemberAlignment(IEMTB, pabOpcodes, sizeof(void *));
1543AssertCompileMemberAlignment(IEMTB, pDbgInfo, sizeof(void *));
1544AssertCompileMemberAlignment(IEMTB, aGCPhysPages, sizeof(RTGCPHYS));
1545AssertCompileMemberOffset(IEMTB, aRanges, 64);
1546AssertCompileMemberSize(IEMTB, aRanges[0], 6);
1547#if 1
1548AssertCompileSize(IEMTB, 128);
1549# define IEMTB_SIZE_IS_POWER_OF_TWO /**< The IEMTB size is a power of two. */
1550#else
1551AssertCompileSize(IEMTB, 168);
1552# undef IEMTB_SIZE_IS_POWER_OF_TWO
1553#endif
1554
1555/** Pointer to a translation block. */
1556typedef IEMTB *PIEMTB;
1557/** Pointer to a const translation block. */
1558typedef IEMTB const *PCIEMTB;
1559
1560/** Gets address of the given TB lookup table entry. */
1561#define IEMTB_GET_TB_LOOKUP_TAB_ENTRY(a_pTb, a_idx) \
1562 ((PIEMTB *)&(a_pTb)->pabOpcodes[-(int)((a_pTb)->cTbLookupEntries - (a_idx)) * sizeof(PIEMTB)])
1563
1564/**
1565 * Gets the physical address for a TB opcode range.
1566 */
1567DECL_FORCE_INLINE(RTGCPHYS) iemTbGetRangePhysPageAddr(PCIEMTB pTb, uint8_t idxRange)
1568{
1569 Assert(idxRange < RT_MIN(pTb->cRanges, RT_ELEMENTS(pTb->aRanges)));
1570 uint8_t const idxPage = pTb->aRanges[idxRange].idxPhysPage;
1571 Assert(idxPage <= RT_ELEMENTS(pTb->aGCPhysPages));
1572 if (idxPage == 0)
1573 return pTb->GCPhysPc & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
1574 Assert(!(pTb->aGCPhysPages[idxPage - 1] & GUEST_PAGE_OFFSET_MASK));
1575 return pTb->aGCPhysPages[idxPage - 1];
1576}
1577
1578
1579/**
1580 * A chunk of memory in the TB allocator.
1581 */
1582typedef struct IEMTBCHUNK
1583{
1584 /** Pointer to the translation blocks in this chunk. */
1585 PIEMTB paTbs;
1586#ifdef IN_RING0
1587 /** Allocation handle. */
1588 RTR0MEMOBJ hMemObj;
1589#endif
1590} IEMTBCHUNK;
1591
1592/**
1593 * A per-CPU translation block allocator.
1594 *
1595 * Because of how the IEMTBCACHE uses the lower 6 bits of the TB address to keep
1596 * the length of the collision list, and of course also for cache line alignment
1597 * reasons, the TBs must be allocated with at least 64-byte alignment.
1598 * Memory is there therefore allocated using one of the page aligned allocators.
1599 *
1600 *
1601 * To avoid wasting too much memory, it is allocated piecemeal as needed,
1602 * in chunks (IEMTBCHUNK) of 2 MiB or more. The TB has an 8-bit chunk index
1603 * that enables us to quickly calculate the allocation bitmap position when
1604 * freeing the translation block.
1605 */
1606typedef struct IEMTBALLOCATOR
1607{
1608 /** Magic value (IEMTBALLOCATOR_MAGIC). */
1609 uint32_t uMagic;
1610
1611#ifdef IEMTB_SIZE_IS_POWER_OF_TWO
1612 /** Mask corresponding to cTbsPerChunk - 1. */
1613 uint32_t fChunkMask;
1614 /** Shift count corresponding to cTbsPerChunk. */
1615 uint8_t cChunkShift;
1616#else
1617 uint32_t uUnused;
1618 uint8_t bUnused;
1619#endif
1620 /** Number of chunks we're allowed to allocate. */
1621 uint8_t cMaxChunks;
1622 /** Number of chunks currently populated. */
1623 uint16_t cAllocatedChunks;
1624 /** Number of translation blocks per chunk. */
1625 uint32_t cTbsPerChunk;
1626 /** Chunk size. */
1627 uint32_t cbPerChunk;
1628
1629 /** The maximum number of TBs. */
1630 uint32_t cMaxTbs;
1631 /** Total number of TBs in the populated chunks.
1632 * (cAllocatedChunks * cTbsPerChunk) */
1633 uint32_t cTotalTbs;
1634 /** The current number of TBs in use.
1635 * The number of free TBs: cAllocatedTbs - cInUseTbs; */
1636 uint32_t cInUseTbs;
1637 /** Statistics: Number of the cInUseTbs that are native ones. */
1638 uint32_t cNativeTbs;
1639 /** Statistics: Number of the cInUseTbs that are threaded ones. */
1640 uint32_t cThreadedTbs;
1641
1642 /** Where to start pruning TBs from when we're out.
1643 * See iemTbAllocatorAllocSlow for details. */
1644 uint32_t iPruneFrom;
1645 /** Where to start pruning native TBs from when we're out of executable memory.
1646 * See iemTbAllocatorFreeupNativeSpace for details. */
1647 uint32_t iPruneNativeFrom;
1648 uint64_t u64Padding;
1649
1650 /** Statistics: Number of TB allocation calls. */
1651 STAMCOUNTER StatAllocs;
1652 /** Statistics: Number of TB free calls. */
1653 STAMCOUNTER StatFrees;
1654 /** Statistics: Time spend pruning. */
1655 STAMPROFILE StatPrune;
1656 /** Statistics: Time spend pruning native TBs. */
1657 STAMPROFILE StatPruneNative;
1658
1659 /** The delayed free list (see iemTbAlloctorScheduleForFree). */
1660 PIEMTB pDelayedFreeHead;
1661 /* Head of the list of free TBs. */
1662 PIEMTB pTbsFreeHead;
1663
1664 /** Allocation chunks. */
1665 IEMTBCHUNK aChunks[256];
1666} IEMTBALLOCATOR;
1667/** Pointer to a TB allocator. */
1668typedef struct IEMTBALLOCATOR *PIEMTBALLOCATOR;
1669
1670/** Magic value for the TB allocator (Emmet Harley Cohen). */
1671#define IEMTBALLOCATOR_MAGIC UINT32_C(0x19900525)
1672
1673
1674/**
1675 * A per-CPU translation block cache (hash table).
1676 *
1677 * The hash table is allocated once during IEM initialization and size double
1678 * the max TB count, rounded up to the nearest power of two (so we can use and
1679 * AND mask rather than a rest division when hashing).
1680 */
1681typedef struct IEMTBCACHE
1682{
1683 /** Magic value (IEMTBCACHE_MAGIC). */
1684 uint32_t uMagic;
1685 /** Size of the hash table. This is a power of two. */
1686 uint32_t cHash;
1687 /** The mask corresponding to cHash. */
1688 uint32_t uHashMask;
1689 uint32_t uPadding;
1690
1691 /** @name Statistics
1692 * @{ */
1693 /** Number of collisions ever. */
1694 STAMCOUNTER cCollisions;
1695
1696 /** Statistics: Number of TB lookup misses. */
1697 STAMCOUNTER cLookupMisses;
1698 /** Statistics: Number of TB lookup hits via hash table (debug only). */
1699 STAMCOUNTER cLookupHits;
1700 /** Statistics: Number of TB lookup hits via TB associated lookup table (debug only). */
1701 STAMCOUNTER cLookupHitsViaTbLookupTable;
1702 STAMCOUNTER auPadding2[2];
1703 /** Statistics: Collision list length pruning. */
1704 STAMPROFILE StatPrune;
1705 /** @} */
1706
1707 /** The hash table itself.
1708 * @note The lower 6 bits of the pointer is used for keeping the collision
1709 * list length, so we can take action when it grows too long.
1710 * This works because TBs are allocated using a 64 byte (or
1711 * higher) alignment from page aligned chunks of memory, so the lower
1712 * 6 bits of the address will always be zero.
1713 * See IEMTBCACHE_PTR_COUNT_MASK, IEMTBCACHE_PTR_MAKE and friends.
1714 */
1715 RT_FLEXIBLE_ARRAY_EXTENSION
1716 PIEMTB apHash[RT_FLEXIBLE_ARRAY];
1717} IEMTBCACHE;
1718/** Pointer to a per-CPU translation block cahce. */
1719typedef IEMTBCACHE *PIEMTBCACHE;
1720
1721/** Magic value for IEMTBCACHE (Johnny O'Neal). */
1722#define IEMTBCACHE_MAGIC UINT32_C(0x19561010)
1723
1724/** The collision count mask for IEMTBCACHE::apHash entries. */
1725#define IEMTBCACHE_PTR_COUNT_MASK ((uintptr_t)0x3f)
1726/** The max collision count for IEMTBCACHE::apHash entries before pruning. */
1727#define IEMTBCACHE_PTR_MAX_COUNT ((uintptr_t)0x30)
1728/** Combine a TB pointer and a collision list length into a value for an
1729 * IEMTBCACHE::apHash entry. */
1730#define IEMTBCACHE_PTR_MAKE(a_pTb, a_cCount) (PIEMTB)((uintptr_t)(a_pTb) | (a_cCount))
1731/** Combine a TB pointer and a collision list length into a value for an
1732 * IEMTBCACHE::apHash entry. */
1733#define IEMTBCACHE_PTR_GET_TB(a_pHashEntry) (PIEMTB)((uintptr_t)(a_pHashEntry) & ~IEMTBCACHE_PTR_COUNT_MASK)
1734/** Combine a TB pointer and a collision list length into a value for an
1735 * IEMTBCACHE::apHash entry. */
1736#define IEMTBCACHE_PTR_GET_COUNT(a_pHashEntry) ((uintptr_t)(a_pHashEntry) & IEMTBCACHE_PTR_COUNT_MASK)
1737
1738/**
1739 * Calculates the hash table slot for a TB from physical PC address and TB flags.
1740 */
1741#define IEMTBCACHE_HASH(a_paCache, a_fTbFlags, a_GCPhysPc) \
1742 IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, (a_fTbFlags) & IEMTB_F_KEY_MASK, a_GCPhysPc)
1743
1744/**
1745 * Calculates the hash table slot for a TB from physical PC address and TB
1746 * flags, ASSUMING the caller has applied IEMTB_F_KEY_MASK to @a a_fTbFlags.
1747 */
1748#define IEMTBCACHE_HASH_NO_KEY_MASK(a_paCache, a_fTbFlags, a_GCPhysPc) \
1749 (((uint32_t)(a_GCPhysPc) ^ (a_fTbFlags)) & (a_paCache)->uHashMask)
1750
1751
1752/** @name IEMBRANCHED_F_XXX - Branched indicator (IEMCPU::fTbBranched).
1753 *
1754 * These flags parallels the main IEM_CIMPL_F_BRANCH_XXX flags.
1755 *
1756 * @{ */
1757/** Value if no branching happened recently. */
1758#define IEMBRANCHED_F_NO UINT8_C(0x00)
1759/** Flag set if direct branch, clear if absolute or indirect. */
1760#define IEMBRANCHED_F_DIRECT UINT8_C(0x01)
1761/** Flag set if indirect branch, clear if direct or relative. */
1762#define IEMBRANCHED_F_INDIRECT UINT8_C(0x02)
1763/** Flag set if relative branch, clear if absolute or indirect. */
1764#define IEMBRANCHED_F_RELATIVE UINT8_C(0x04)
1765/** Flag set if conditional branch, clear if unconditional. */
1766#define IEMBRANCHED_F_CONDITIONAL UINT8_C(0x08)
1767/** Flag set if it's a far branch. */
1768#define IEMBRANCHED_F_FAR UINT8_C(0x10)
1769/** Flag set if the stack pointer is modified. */
1770#define IEMBRANCHED_F_STACK UINT8_C(0x20)
1771/** Flag set if the stack pointer and (maybe) the stack segment are modified. */
1772#define IEMBRANCHED_F_STACK_FAR UINT8_C(0x40)
1773/** Flag set (by IEM_MC_REL_JMP_XXX) if it's a zero bytes relative jump. */
1774#define IEMBRANCHED_F_ZERO UINT8_C(0x80)
1775/** @} */
1776
1777
1778/**
1779 * The per-CPU IEM state.
1780 */
1781typedef struct IEMCPU
1782{
1783 /** Info status code that needs to be propagated to the IEM caller.
1784 * This cannot be passed internally, as it would complicate all success
1785 * checks within the interpreter making the code larger and almost impossible
1786 * to get right. Instead, we'll store status codes to pass on here. Each
1787 * source of these codes will perform appropriate sanity checks. */
1788 int32_t rcPassUp; /* 0x00 */
1789 /** Execution flag, IEM_F_XXX. */
1790 uint32_t fExec; /* 0x04 */
1791
1792 /** @name Decoder state.
1793 * @{ */
1794#ifdef IEM_WITH_CODE_TLB
1795 /** The offset of the next instruction byte. */
1796 uint32_t offInstrNextByte; /* 0x08 */
1797 /** The number of bytes available at pbInstrBuf for the current instruction.
1798 * This takes the max opcode length into account so that doesn't need to be
1799 * checked separately. */
1800 uint32_t cbInstrBuf; /* 0x0c */
1801 /** Pointer to the page containing RIP, user specified buffer or abOpcode.
1802 * This can be NULL if the page isn't mappable for some reason, in which
1803 * case we'll do fallback stuff.
1804 *
1805 * If we're executing an instruction from a user specified buffer,
1806 * IEMExecOneWithPrefetchedByPC and friends, this is not necessarily a page
1807 * aligned pointer but pointer to the user data.
1808 *
1809 * For instructions crossing pages, this will start on the first page and be
1810 * advanced to the next page by the time we've decoded the instruction. This
1811 * therefore precludes stuff like <tt>pbInstrBuf[offInstrNextByte + cbInstrBuf - cbCurInstr]</tt>
1812 */
1813 uint8_t const *pbInstrBuf; /* 0x10 */
1814# if ARCH_BITS == 32
1815 uint32_t uInstrBufHigh; /** The high dword of the host context pbInstrBuf member. */
1816# endif
1817 /** The program counter corresponding to pbInstrBuf.
1818 * This is set to a non-canonical address when we need to invalidate it. */
1819 uint64_t uInstrBufPc; /* 0x18 */
1820 /** The guest physical address corresponding to pbInstrBuf. */
1821 RTGCPHYS GCPhysInstrBuf; /* 0x20 */
1822 /** The number of bytes available at pbInstrBuf in total (for IEMExecLots).
1823 * This takes the CS segment limit into account.
1824 * @note Set to zero when the code TLB is flushed to trigger TLB reload. */
1825 uint16_t cbInstrBufTotal; /* 0x28 */
1826 /** Offset into pbInstrBuf of the first byte of the current instruction.
1827 * Can be negative to efficiently handle cross page instructions. */
1828 int16_t offCurInstrStart; /* 0x2a */
1829
1830# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1831 /** The prefix mask (IEM_OP_PRF_XXX). */
1832 uint32_t fPrefixes; /* 0x2c */
1833 /** The extra REX ModR/M register field bit (REX.R << 3). */
1834 uint8_t uRexReg; /* 0x30 */
1835 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1836 * (REX.B << 3). */
1837 uint8_t uRexB; /* 0x31 */
1838 /** The extra REX SIB index field bit (REX.X << 3). */
1839 uint8_t uRexIndex; /* 0x32 */
1840
1841 /** The effective segment register (X86_SREG_XXX). */
1842 uint8_t iEffSeg; /* 0x33 */
1843
1844 /** The offset of the ModR/M byte relative to the start of the instruction. */
1845 uint8_t offModRm; /* 0x34 */
1846
1847# ifdef IEM_WITH_CODE_TLB_AND_OPCODE_BUF
1848 /** The current offset into abOpcode. */
1849 uint8_t offOpcode; /* 0x35 */
1850# else
1851 uint8_t bUnused; /* 0x35 */
1852# endif
1853# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1854 uint8_t abOpaqueDecoderPart1[0x36 - 0x2c];
1855# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1856
1857#else /* !IEM_WITH_CODE_TLB */
1858# ifndef IEM_WITH_OPAQUE_DECODER_STATE
1859 /** The size of what has currently been fetched into abOpcode. */
1860 uint8_t cbOpcode; /* 0x08 */
1861 /** The current offset into abOpcode. */
1862 uint8_t offOpcode; /* 0x09 */
1863 /** The offset of the ModR/M byte relative to the start of the instruction. */
1864 uint8_t offModRm; /* 0x0a */
1865
1866 /** The effective segment register (X86_SREG_XXX). */
1867 uint8_t iEffSeg; /* 0x0b */
1868
1869 /** The prefix mask (IEM_OP_PRF_XXX). */
1870 uint32_t fPrefixes; /* 0x0c */
1871 /** The extra REX ModR/M register field bit (REX.R << 3). */
1872 uint8_t uRexReg; /* 0x10 */
1873 /** The extra REX ModR/M r/m field, SIB base and opcode reg bit
1874 * (REX.B << 3). */
1875 uint8_t uRexB; /* 0x11 */
1876 /** The extra REX SIB index field bit (REX.X << 3). */
1877 uint8_t uRexIndex; /* 0x12 */
1878
1879# else /* IEM_WITH_OPAQUE_DECODER_STATE */
1880 uint8_t abOpaqueDecoderPart1[0x13 - 0x08];
1881# endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1882#endif /* !IEM_WITH_CODE_TLB */
1883
1884#ifndef IEM_WITH_OPAQUE_DECODER_STATE
1885 /** The effective operand mode. */
1886 IEMMODE enmEffOpSize; /* 0x36, 0x13 */
1887 /** The default addressing mode. */
1888 IEMMODE enmDefAddrMode; /* 0x37, 0x14 */
1889 /** The effective addressing mode. */
1890 IEMMODE enmEffAddrMode; /* 0x38, 0x15 */
1891 /** The default operand mode. */
1892 IEMMODE enmDefOpSize; /* 0x39, 0x16 */
1893
1894 /** Prefix index (VEX.pp) for two byte and three byte tables. */
1895 uint8_t idxPrefix; /* 0x3a, 0x17 */
1896 /** 3rd VEX/EVEX/XOP register.
1897 * Please use IEM_GET_EFFECTIVE_VVVV to access. */
1898 uint8_t uVex3rdReg; /* 0x3b, 0x18 */
1899 /** The VEX/EVEX/XOP length field. */
1900 uint8_t uVexLength; /* 0x3c, 0x19 */
1901 /** Additional EVEX stuff. */
1902 uint8_t fEvexStuff; /* 0x3d, 0x1a */
1903
1904# ifndef IEM_WITH_CODE_TLB
1905 /** Explicit alignment padding. */
1906 uint8_t abAlignment2a[1]; /* 0x1b */
1907# endif
1908 /** The FPU opcode (FOP). */
1909 uint16_t uFpuOpcode; /* 0x3e, 0x1c */
1910# ifndef IEM_WITH_CODE_TLB
1911 /** Explicit alignment padding. */
1912 uint8_t abAlignment2b[2]; /* 0x1e */
1913# endif
1914
1915 /** The opcode bytes. */
1916 uint8_t abOpcode[15]; /* 0x40, 0x20 */
1917 /** Explicit alignment padding. */
1918# ifdef IEM_WITH_CODE_TLB
1919 //uint8_t abAlignment2c[0x4f - 0x4f]; /* 0x4f */
1920# else
1921 uint8_t abAlignment2c[0x4f - 0x2f]; /* 0x2f */
1922# endif
1923
1924#else /* IEM_WITH_OPAQUE_DECODER_STATE */
1925# ifdef IEM_WITH_CODE_TLB
1926 uint8_t abOpaqueDecoderPart2[0x4f - 0x36];
1927# else
1928 uint8_t abOpaqueDecoderPart2[0x4f - 0x13];
1929# endif
1930#endif /* IEM_WITH_OPAQUE_DECODER_STATE */
1931 /** @} */
1932
1933
1934 /** The number of active guest memory mappings. */
1935 uint8_t cActiveMappings; /* 0x4f, 0x4f */
1936
1937 /** Records for tracking guest memory mappings. */
1938 struct
1939 {
1940 /** The address of the mapped bytes. */
1941 R3R0PTRTYPE(void *) pv;
1942 /** The access flags (IEM_ACCESS_XXX).
1943 * IEM_ACCESS_INVALID if the entry is unused. */
1944 uint32_t fAccess;
1945#if HC_ARCH_BITS == 64
1946 uint32_t u32Alignment4; /**< Alignment padding. */
1947#endif
1948 } aMemMappings[3]; /* 0x50 LB 0x30 */
1949
1950 /** Locking records for the mapped memory. */
1951 union
1952 {
1953 PGMPAGEMAPLOCK Lock;
1954 uint64_t au64Padding[2];
1955 } aMemMappingLocks[3]; /* 0x80 LB 0x30 */
1956
1957 /** Bounce buffer info.
1958 * This runs in parallel to aMemMappings. */
1959 struct
1960 {
1961 /** The physical address of the first byte. */
1962 RTGCPHYS GCPhysFirst;
1963 /** The physical address of the second page. */
1964 RTGCPHYS GCPhysSecond;
1965 /** The number of bytes in the first page. */
1966 uint16_t cbFirst;
1967 /** The number of bytes in the second page. */
1968 uint16_t cbSecond;
1969 /** Whether it's unassigned memory. */
1970 bool fUnassigned;
1971 /** Explicit alignment padding. */
1972 bool afAlignment5[3];
1973 } aMemBbMappings[3]; /* 0xb0 LB 0x48 */
1974
1975 /** The flags of the current exception / interrupt. */
1976 uint32_t fCurXcpt; /* 0xf8 */
1977 /** The current exception / interrupt. */
1978 uint8_t uCurXcpt; /* 0xfc */
1979 /** Exception / interrupt recursion depth. */
1980 int8_t cXcptRecursions; /* 0xfb */
1981
1982 /** The next unused mapping index.
1983 * @todo try find room for this up with cActiveMappings. */
1984 uint8_t iNextMapping; /* 0xfd */
1985 uint8_t abAlignment7[1];
1986
1987 /** Bounce buffer storage.
1988 * This runs in parallel to aMemMappings and aMemBbMappings. */
1989 struct
1990 {
1991 uint8_t ab[512];
1992 } aBounceBuffers[3]; /* 0x100 LB 0x600 */
1993
1994
1995 /** Pointer set jump buffer - ring-3 context. */
1996 R3PTRTYPE(jmp_buf *) pJmpBufR3;
1997 /** Pointer set jump buffer - ring-0 context. */
1998 R0PTRTYPE(jmp_buf *) pJmpBufR0;
1999
2000 /** @todo Should move this near @a fCurXcpt later. */
2001 /** The CR2 for the current exception / interrupt. */
2002 uint64_t uCurXcptCr2;
2003 /** The error code for the current exception / interrupt. */
2004 uint32_t uCurXcptErr;
2005
2006 /** @name Statistics
2007 * @{ */
2008 /** The number of instructions we've executed. */
2009 uint32_t cInstructions;
2010 /** The number of potential exits. */
2011 uint32_t cPotentialExits;
2012 /** The number of bytes data or stack written (mostly for IEMExecOneEx).
2013 * This may contain uncommitted writes. */
2014 uint32_t cbWritten;
2015 /** Counts the VERR_IEM_INSTR_NOT_IMPLEMENTED returns. */
2016 uint32_t cRetInstrNotImplemented;
2017 /** Counts the VERR_IEM_ASPECT_NOT_IMPLEMENTED returns. */
2018 uint32_t cRetAspectNotImplemented;
2019 /** Counts informational statuses returned (other than VINF_SUCCESS). */
2020 uint32_t cRetInfStatuses;
2021 /** Counts other error statuses returned. */
2022 uint32_t cRetErrStatuses;
2023 /** Number of times rcPassUp has been used. */
2024 uint32_t cRetPassUpStatus;
2025 /** Number of times RZ left with instruction commit pending for ring-3. */
2026 uint32_t cPendingCommit;
2027 /** Number of misaligned (host sense) atomic instruction accesses. */
2028 uint32_t cMisalignedAtomics;
2029 /** Number of long jumps. */
2030 uint32_t cLongJumps;
2031 /** @} */
2032
2033 /** @name Target CPU information.
2034 * @{ */
2035#if IEM_CFG_TARGET_CPU == IEMTARGETCPU_DYNAMIC
2036 /** The target CPU. */
2037 uint8_t uTargetCpu;
2038#else
2039 uint8_t bTargetCpuPadding;
2040#endif
2041 /** For selecting assembly works matching the target CPU EFLAGS behaviour, see
2042 * IEMTARGETCPU_EFL_BEHAVIOR_XXX for values, with the 1st entry for when no
2043 * native host support and the 2nd for when there is.
2044 *
2045 * The two values are typically indexed by a g_CpumHostFeatures bit.
2046 *
2047 * This is for instance used for the BSF & BSR instructions where AMD and
2048 * Intel CPUs produce different EFLAGS. */
2049 uint8_t aidxTargetCpuEflFlavour[2];
2050
2051 /** The CPU vendor. */
2052 CPUMCPUVENDOR enmCpuVendor;
2053 /** @} */
2054
2055 /** @name Host CPU information.
2056 * @{ */
2057 /** The CPU vendor. */
2058 CPUMCPUVENDOR enmHostCpuVendor;
2059 /** @} */
2060
2061 /** Counts RDMSR \#GP(0) LogRel(). */
2062 uint8_t cLogRelRdMsr;
2063 /** Counts WRMSR \#GP(0) LogRel(). */
2064 uint8_t cLogRelWrMsr;
2065 /** Alignment padding. */
2066 uint8_t abAlignment9[42];
2067
2068 /** @name Recompilation
2069 * @{ */
2070 /** Pointer to the current translation block.
2071 * This can either be one being executed or one being compiled. */
2072 R3PTRTYPE(PIEMTB) pCurTbR3;
2073#ifdef VBOX_WITH_IEM_NATIVE_RECOMPILER_LONGJMP
2074 /** Frame pointer for the last native TB to execute. */
2075 R3PTRTYPE(void *) pvTbFramePointerR3;
2076#else
2077 R3PTRTYPE(void *) pvUnusedR3;
2078#endif
2079#ifdef IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS
2080 /** The saved host floating point control register (MXCSR on x86, FPCR on arm64)
2081 * needing restore when the TB finished, IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED indicates the TB
2082 * didn't modify it so we don't need to restore it. */
2083# ifdef RT_ARCH_AMD64
2084 uint32_t uRegFpCtrl;
2085 /** Temporary copy of MXCSR for stmxcsr/ldmxcsr (so we don't have to fiddle with stack pointers). */
2086 uint32_t uRegMxcsrTmp;
2087# elif defined(RT_ARCH_ARM64)
2088 uint64_t uRegFpCtrl;
2089# else
2090# error "Port me"
2091# endif
2092#else
2093 uint64_t u64Unused;
2094#endif
2095 /** Fixed TB used for threaded recompilation.
2096 * This is allocated once with maxed-out sizes and re-used afterwards. */
2097 R3PTRTYPE(PIEMTB) pThrdCompileTbR3;
2098 /** Pointer to the ring-3 TB cache for this EMT. */
2099 R3PTRTYPE(PIEMTBCACHE) pTbCacheR3;
2100 /** Pointer to the ring-3 TB lookup entry.
2101 * This either points to pTbLookupEntryDummyR3 or an actually lookuptable
2102 * entry, thus it can always safely be used w/o NULL checking. */
2103 R3PTRTYPE(PIEMTB *) ppTbLookupEntryR3;
2104 /** The PC (RIP) at the start of pCurTbR3/pCurTbR0.
2105 * The TBs are based on physical addresses, so this is needed to correleated
2106 * RIP to opcode bytes stored in the TB (AMD-V / VT-x). */
2107 uint64_t uCurTbStartPc;
2108 /** Number of threaded TBs executed. */
2109 uint64_t cTbExecThreaded;
2110 /** Number of native TBs executed. */
2111 uint64_t cTbExecNative;
2112 /** Whether we need to check the opcode bytes for the current instruction.
2113 * This is set by a previous instruction if it modified memory or similar. */
2114 bool fTbCheckOpcodes;
2115 /** Indicates whether and how we just branched - IEMBRANCHED_F_XXX. */
2116 uint8_t fTbBranched;
2117 /** Set when GCPhysInstrBuf is updated because of a page crossing. */
2118 bool fTbCrossedPage;
2119 /** Whether to end the current TB. */
2120 bool fEndTb;
2121 /** Number of instructions before we need emit an IRQ check call again.
2122 * This helps making sure we don't execute too long w/o checking for
2123 * interrupts and immediately following instructions that may enable
2124 * interrupts (e.g. POPF, IRET, STI). With STI an additional hack is
2125 * required to make sure we check following the next instruction as well, see
2126 * fTbCurInstrIsSti. */
2127 uint8_t cInstrTillIrqCheck;
2128 /** Indicates that the current instruction is an STI. This is set by the
2129 * iemCImpl_sti code and subsequently cleared by the recompiler. */
2130 bool fTbCurInstrIsSti;
2131 /** The size of the IEMTB::pabOpcodes allocation in pThrdCompileTbR3. */
2132 uint16_t cbOpcodesAllocated;
2133 /** The current instruction number in a native TB.
2134 * This is set by code that may trigger an unexpected TB exit (throw/longjmp)
2135 * and will be picked up by the TB execution loop. Only used when
2136 * IEMNATIVE_WITH_INSTRUCTION_COUNTING is defined. */
2137 uint8_t idxTbCurInstr;
2138 /** Spaced reserved for recompiler data / alignment. */
2139 bool afRecompilerStuff1[3];
2140 /** The virtual sync time at the last timer poll call. */
2141 uint32_t msRecompilerPollNow;
2142 /** The IEMTB::cUsed value when to attempt native recompilation of a TB. */
2143 uint32_t uTbNativeRecompileAtUsedCount;
2144 /** The IEM_CIMPL_F_XXX mask for the current instruction. */
2145 uint32_t fTbCurInstr;
2146 /** The IEM_CIMPL_F_XXX mask for the previous instruction. */
2147 uint32_t fTbPrevInstr;
2148 /** Strict: Tracking skipped EFLAGS calculations. Any bits set here are
2149 * currently not up to date in EFLAGS. */
2150 uint32_t fSkippingEFlags;
2151 /** Previous GCPhysInstrBuf value - only valid if fTbCrossedPage is set. */
2152 RTGCPHYS GCPhysInstrBufPrev;
2153 /** Pointer to the ring-3 TB allocator for this EMT. */
2154 R3PTRTYPE(PIEMTBALLOCATOR) pTbAllocatorR3;
2155 /** Pointer to the ring-3 executable memory allocator for this EMT. */
2156 R3PTRTYPE(struct IEMEXECMEMALLOCATOR *) pExecMemAllocatorR3;
2157 /** Pointer to the native recompiler state for ring-3. */
2158 R3PTRTYPE(struct IEMRECOMPILERSTATE *) pNativeRecompilerStateR3;
2159 /** Dummy entry for ppTbLookupEntryR3. */
2160 R3PTRTYPE(PIEMTB) pTbLookupEntryDummyR3;
2161
2162 /** Dummy TLB entry used for accesses to pages with databreakpoints. */
2163 IEMTLBENTRY DataBreakpointTlbe;
2164
2165 /** Threaded TB statistics: Times TB execution was broken off before reaching the end. */
2166 STAMCOUNTER StatTbThreadedExecBreaks;
2167 /** Statistics: Times BltIn_CheckIrq breaks out of the TB. */
2168 STAMCOUNTER StatCheckIrqBreaks;
2169 /** Statistics: Times BltIn_CheckMode breaks out of the TB. */
2170 STAMCOUNTER StatCheckModeBreaks;
2171 /** Threaded TB statistics: Times execution break on call with lookup entries. */
2172 STAMCOUNTER StatTbThreadedExecBreaksWithLookup;
2173 /** Threaded TB statistics: Times execution break on call without lookup entries. */
2174 STAMCOUNTER StatTbThreadedExecBreaksWithoutLookup;
2175 /** Statistics: Times a post jump target check missed and had to find new TB. */
2176 STAMCOUNTER StatCheckBranchMisses;
2177 /** Statistics: Times a jump or page crossing required a TB with CS.LIM checking. */
2178 STAMCOUNTER StatCheckNeedCsLimChecking;
2179 /** Statistics: Times a loop was detected within a TB.. */
2180 STAMCOUNTER StatTbLoopInTbDetected;
2181 /** Exec memory allocator statistics: Number of times allocaintg executable memory failed. */
2182 STAMCOUNTER StatNativeExecMemInstrBufAllocFailed;
2183 /** Native TB statistics: Number of fully recompiled TBs. */
2184 STAMCOUNTER StatNativeFullyRecompiledTbs;
2185 /** TB statistics: Number of instructions per TB. */
2186 STAMPROFILE StatTbInstr;
2187 /** TB statistics: Number of TB lookup table entries per TB. */
2188 STAMPROFILE StatTbLookupEntries;
2189 /** Threaded TB statistics: Number of calls per TB. */
2190 STAMPROFILE StatTbThreadedCalls;
2191 /** Native TB statistics: Native code size per TB. */
2192 STAMPROFILE StatTbNativeCode;
2193 /** Native TB statistics: Profiling native recompilation. */
2194 STAMPROFILE StatNativeRecompilation;
2195 /** Native TB statistics: Number of calls per TB that were recompiled properly. */
2196 STAMPROFILE StatNativeCallsRecompiled;
2197 /** Native TB statistics: Number of threaded calls per TB that weren't recompiled. */
2198 STAMPROFILE StatNativeCallsThreaded;
2199 /** Native recompiled execution: TLB hits for data fetches. */
2200 STAMCOUNTER StatNativeTlbHitsForFetch;
2201 /** Native recompiled execution: TLB hits for data stores. */
2202 STAMCOUNTER StatNativeTlbHitsForStore;
2203 /** Native recompiled execution: TLB hits for stack accesses. */
2204 STAMCOUNTER StatNativeTlbHitsForStack;
2205 /** Native recompiled execution: TLB hits for mapped accesses. */
2206 STAMCOUNTER StatNativeTlbHitsForMapped;
2207 /** Native recompiled execution: Code TLB misses for new page. */
2208 STAMCOUNTER StatNativeCodeTlbMissesNewPage;
2209 /** Native recompiled execution: Code TLB hits for new page. */
2210 STAMCOUNTER StatNativeCodeTlbHitsForNewPage;
2211 /** Native recompiled execution: Code TLB misses for new page with offset. */
2212 STAMCOUNTER StatNativeCodeTlbMissesNewPageWithOffset;
2213 /** Native recompiled execution: Code TLB hits for new page with offset. */
2214 STAMCOUNTER StatNativeCodeTlbHitsForNewPageWithOffset;
2215
2216 /** Native recompiler: Number of calls to iemNativeRegAllocFindFree. */
2217 STAMCOUNTER StatNativeRegFindFree;
2218 /** Native recompiler: Number of times iemNativeRegAllocFindFree needed
2219 * to free a variable. */
2220 STAMCOUNTER StatNativeRegFindFreeVar;
2221 /** Native recompiler: Number of times iemNativeRegAllocFindFree did
2222 * not need to free any variables. */
2223 STAMCOUNTER StatNativeRegFindFreeNoVar;
2224 /** Native recompiler: Liveness info freed shadowed guest registers in
2225 * iemNativeRegAllocFindFree. */
2226 STAMCOUNTER StatNativeRegFindFreeLivenessUnshadowed;
2227 /** Native recompiler: Liveness info helped with the allocation in
2228 * iemNativeRegAllocFindFree. */
2229 STAMCOUNTER StatNativeRegFindFreeLivenessHelped;
2230
2231 /** Native recompiler: Number of times status flags calc has been skipped. */
2232 STAMCOUNTER StatNativeEflSkippedArithmetic;
2233 /** Native recompiler: Number of times status flags calc has been skipped. */
2234 STAMCOUNTER StatNativeEflSkippedLogical;
2235
2236 /** Native recompiler: Number of opportunities to skip EFLAGS.CF updating. */
2237 STAMCOUNTER StatNativeLivenessEflCfSkippable;
2238 /** Native recompiler: Number of opportunities to skip EFLAGS.PF updating. */
2239 STAMCOUNTER StatNativeLivenessEflPfSkippable;
2240 /** Native recompiler: Number of opportunities to skip EFLAGS.AF updating. */
2241 STAMCOUNTER StatNativeLivenessEflAfSkippable;
2242 /** Native recompiler: Number of opportunities to skip EFLAGS.ZF updating. */
2243 STAMCOUNTER StatNativeLivenessEflZfSkippable;
2244 /** Native recompiler: Number of opportunities to skip EFLAGS.SF updating. */
2245 STAMCOUNTER StatNativeLivenessEflSfSkippable;
2246 /** Native recompiler: Number of opportunities to skip EFLAGS.OF updating. */
2247 STAMCOUNTER StatNativeLivenessEflOfSkippable;
2248 /** Native recompiler: Number of required EFLAGS.CF updates. */
2249 STAMCOUNTER StatNativeLivenessEflCfRequired;
2250 /** Native recompiler: Number of required EFLAGS.PF updates. */
2251 STAMCOUNTER StatNativeLivenessEflPfRequired;
2252 /** Native recompiler: Number of required EFLAGS.AF updates. */
2253 STAMCOUNTER StatNativeLivenessEflAfRequired;
2254 /** Native recompiler: Number of required EFLAGS.ZF updates. */
2255 STAMCOUNTER StatNativeLivenessEflZfRequired;
2256 /** Native recompiler: Number of required EFLAGS.SF updates. */
2257 STAMCOUNTER StatNativeLivenessEflSfRequired;
2258 /** Native recompiler: Number of required EFLAGS.OF updates. */
2259 STAMCOUNTER StatNativeLivenessEflOfRequired;
2260 /** Native recompiler: Number of potentially delayable EFLAGS.CF updates. */
2261 STAMCOUNTER StatNativeLivenessEflCfDelayable;
2262 /** Native recompiler: Number of potentially delayable EFLAGS.PF updates. */
2263 STAMCOUNTER StatNativeLivenessEflPfDelayable;
2264 /** Native recompiler: Number of potentially delayable EFLAGS.AF updates. */
2265 STAMCOUNTER StatNativeLivenessEflAfDelayable;
2266 /** Native recompiler: Number of potentially delayable EFLAGS.ZF updates. */
2267 STAMCOUNTER StatNativeLivenessEflZfDelayable;
2268 /** Native recompiler: Number of potentially delayable EFLAGS.SF updates. */
2269 STAMCOUNTER StatNativeLivenessEflSfDelayable;
2270 /** Native recompiler: Number of potentially delayable EFLAGS.OF updates. */
2271 STAMCOUNTER StatNativeLivenessEflOfDelayable;
2272
2273 /** Native recompiler: Number of potential PC updates in total. */
2274 STAMCOUNTER StatNativePcUpdateTotal;
2275 /** Native recompiler: Number of PC updates which could be delayed. */
2276 STAMCOUNTER StatNativePcUpdateDelayed;
2277
2278//#ifdef IEMNATIVE_WITH_SIMD_REG_ALLOCATOR
2279 /** Native recompiler: Number of calls to iemNativeSimdRegAllocFindFree. */
2280 STAMCOUNTER StatNativeSimdRegFindFree;
2281 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree needed
2282 * to free a variable. */
2283 STAMCOUNTER StatNativeSimdRegFindFreeVar;
2284 /** Native recompiler: Number of times iemNativeSimdRegAllocFindFree did
2285 * not need to free any variables. */
2286 STAMCOUNTER StatNativeSimdRegFindFreeNoVar;
2287 /** Native recompiler: Liveness info freed shadowed guest registers in
2288 * iemNativeSimdRegAllocFindFree. */
2289 STAMCOUNTER StatNativeSimdRegFindFreeLivenessUnshadowed;
2290 /** Native recompiler: Liveness info helped with the allocation in
2291 * iemNativeSimdRegAllocFindFree. */
2292 STAMCOUNTER StatNativeSimdRegFindFreeLivenessHelped;
2293
2294 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks. */
2295 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckPotential;
2296 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks. */
2297 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckPotential;
2298 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks. */
2299 STAMCOUNTER StatNativeMaybeSseXcptCheckPotential;
2300 /** Native recompiler: Number of potential IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks. */
2301 STAMCOUNTER StatNativeMaybeAvxXcptCheckPotential;
2302
2303 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_DEVICE_NOT_AVAILABLE() checks omitted. */
2304 STAMCOUNTER StatNativeMaybeDeviceNotAvailXcptCheckOmitted;
2305 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_WAIT_DEVICE_NOT_AVAILABLE() checks omitted. */
2306 STAMCOUNTER StatNativeMaybeWaitDeviceNotAvailXcptCheckOmitted;
2307 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_SSE_RELATED_XCPT() checks omitted. */
2308 STAMCOUNTER StatNativeMaybeSseXcptCheckOmitted;
2309 /** Native recompiler: Number of IEM_MC_MAYBE_RAISE_AVX_RELATED_XCPT() checks omitted. */
2310 STAMCOUNTER StatNativeMaybeAvxXcptCheckOmitted;
2311//#endif
2312
2313 /** Native recompiler: The TB finished executing completely without jumping to a an exit label.
2314 * Not availabe in release builds. */
2315 STAMCOUNTER StatNativeTbFinished;
2316 /** Native recompiler: The TB finished executing jumping to the ReturnBreak label. */
2317 STAMCOUNTER StatNativeTbExitReturnBreak;
2318 /** Native recompiler: The TB finished executing jumping to the ReturnBreakFF label. */
2319 STAMCOUNTER StatNativeTbExitReturnBreakFF;
2320 /** Native recompiler: The TB finished executing jumping to the ReturnWithFlags label. */
2321 STAMCOUNTER StatNativeTbExitReturnWithFlags;
2322 /** Native recompiler: The TB finished executing with other non-zero status. */
2323 STAMCOUNTER StatNativeTbExitReturnOtherStatus;
2324 /** Native recompiler: The TB finished executing via throw / long jump. */
2325 STAMCOUNTER StatNativeTbExitLongJump;
2326 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2327 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2328 STAMCOUNTER StatNativeTbExitDirectLinking1NoIrq;
2329 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2330 * label, but directly jumped to the next TB, scenario \#1 with IRQ checks. */
2331 STAMCOUNTER StatNativeTbExitDirectLinking1Irq;
2332 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2333 * label, but directly jumped to the next TB, scenario \#1 w/o IRQ checks. */
2334 STAMCOUNTER StatNativeTbExitDirectLinking2NoIrq;
2335 /** Native recompiler: The TB finished executing jumping to the ReturnBreak
2336 * label, but directly jumped to the next TB, scenario \#2 with IRQ checks. */
2337 STAMCOUNTER StatNativeTbExitDirectLinking2Irq;
2338
2339 /** Native recompiler: The TB finished executing jumping to the RaiseDe label. */
2340 STAMCOUNTER StatNativeTbExitRaiseDe;
2341 /** Native recompiler: The TB finished executing jumping to the RaiseUd label. */
2342 STAMCOUNTER StatNativeTbExitRaiseUd;
2343 /** Native recompiler: The TB finished executing jumping to the RaiseSseRelated label. */
2344 STAMCOUNTER StatNativeTbExitRaiseSseRelated;
2345 /** Native recompiler: The TB finished executing jumping to the RaiseAvxRelated label. */
2346 STAMCOUNTER StatNativeTbExitRaiseAvxRelated;
2347 /** Native recompiler: The TB finished executing jumping to the RaiseSseAvxFpRelated label. */
2348 STAMCOUNTER StatNativeTbExitRaiseSseAvxFpRelated;
2349 /** Native recompiler: The TB finished executing jumping to the RaiseNm label. */
2350 STAMCOUNTER StatNativeTbExitRaiseNm;
2351 /** Native recompiler: The TB finished executing jumping to the RaiseGp0 label. */
2352 STAMCOUNTER StatNativeTbExitRaiseGp0;
2353 /** Native recompiler: The TB finished executing jumping to the RaiseMf label. */
2354 STAMCOUNTER StatNativeTbExitRaiseMf;
2355 /** Native recompiler: The TB finished executing jumping to the RaiseXf label. */
2356 STAMCOUNTER StatNativeTbExitRaiseXf;
2357 /** Native recompiler: The TB finished executing jumping to the ObsoleteTb label. */
2358 STAMCOUNTER StatNativeTbExitObsoleteTb;
2359
2360 /** Native recompiler: Failure situations with direct linking scenario \#1.
2361 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2362 * @{ */
2363 STAMCOUNTER StatNativeTbExitDirectLinking1NoTb;
2364 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchGCPhysPc;
2365 STAMCOUNTER StatNativeTbExitDirectLinking1MismatchFlags;
2366 STAMCOUNTER StatNativeTbExitDirectLinking1PendingIrq;
2367 /** @} */
2368
2369 /** Native recompiler: Failure situations with direct linking scenario \#2.
2370 * Counter with StatNativeTbExitReturnBreak. Not in release builds.
2371 * @{ */
2372 STAMCOUNTER StatNativeTbExitDirectLinking2NoTb;
2373 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchGCPhysPc;
2374 STAMCOUNTER StatNativeTbExitDirectLinking2MismatchFlags;
2375 STAMCOUNTER StatNativeTbExitDirectLinking2PendingIrq;
2376 /** @} */
2377
2378 /** iemMemMap and iemMemMapJmp statistics.
2379 * @{ */
2380 STAMCOUNTER StatMemMapJmp;
2381 STAMCOUNTER StatMemMapNoJmp;
2382 STAMCOUNTER StatMemBounceBufferCrossPage;
2383 STAMCOUNTER StatMemBounceBufferMapPhys;
2384 /** @} */
2385
2386#ifdef IEM_WITH_TLB_TRACE
2387 uint64_t au64Padding[2];
2388#else
2389 uint64_t au64Padding[4];
2390#endif
2391 /** @} */
2392
2393#ifdef IEM_WITH_TLB_TRACE
2394 /** The end (next) trace entry. */
2395 uint32_t idxTlbTraceEntry;
2396 /** Number of trace entries allocated expressed as a power of two. */
2397 uint32_t cTlbTraceEntriesShift;
2398 /** The trace entries. */
2399 PIEMTLBTRACEENTRY paTlbTraceEntries;
2400#endif
2401
2402 /** Data TLB.
2403 * @remarks Must be 64-byte aligned. */
2404 IEMTLB DataTlb;
2405 /** Instruction TLB.
2406 * @remarks Must be 64-byte aligned. */
2407 IEMTLB CodeTlb;
2408
2409 /** Exception statistics. */
2410 STAMCOUNTER aStatXcpts[32];
2411 /** Interrupt statistics. */
2412 uint32_t aStatInts[256];
2413
2414#if defined(VBOX_WITH_STATISTICS) && !defined(DOXYGEN_RUNNING) && !defined(IEM_WITHOUT_INSTRUCTION_STATS)
2415 /** Instruction statistics for ring-0/raw-mode. */
2416 IEMINSTRSTATS StatsRZ;
2417 /** Instruction statistics for ring-3. */
2418 IEMINSTRSTATS StatsR3;
2419# ifdef VBOX_WITH_IEM_RECOMPILER
2420 /** Statistics per threaded function call.
2421 * Updated by both the threaded and native recompilers. */
2422 uint32_t acThreadedFuncStats[0x6000 /*24576*/];
2423# endif
2424#endif
2425} IEMCPU;
2426AssertCompileMemberOffset(IEMCPU, cActiveMappings, 0x4f);
2427AssertCompileMemberAlignment(IEMCPU, aMemMappings, 16);
2428AssertCompileMemberAlignment(IEMCPU, aMemMappingLocks, 16);
2429AssertCompileMemberAlignment(IEMCPU, aBounceBuffers, 64);
2430AssertCompileMemberAlignment(IEMCPU, DataTlb, 64);
2431AssertCompileMemberAlignment(IEMCPU, CodeTlb, 64);
2432
2433/** Pointer to the per-CPU IEM state. */
2434typedef IEMCPU *PIEMCPU;
2435/** Pointer to the const per-CPU IEM state. */
2436typedef IEMCPU const *PCIEMCPU;
2437
2438/** @def IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED
2439 * Value indicating the TB didn't modified the floating point control register.
2440 * @note Neither FPCR nor MXCSR accept this as a valid value (MXCSR is not fully populated,
2441 * FPCR has the upper 32-bit reserved), so this is safe. */
2442#if defined(IEMNATIVE_WITH_SIMD_FP_NATIVE_EMITTERS) || defined(DOXYGEN_RUNNING)
2443# ifdef RT_ARCH_AMD64
2444# define IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED UINT32_MAX
2445# elif defined(RT_ARCH_ARM64)
2446# define IEMNATIVE_SIMD_FP_CTRL_REG_NOT_MODIFIED UINT64_MAX
2447# else
2448# error "Port me"
2449# endif
2450#endif
2451
2452/** @def IEM_GET_CTX
2453 * Gets the guest CPU context for the calling EMT.
2454 * @returns PCPUMCTX
2455 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2456 */
2457#define IEM_GET_CTX(a_pVCpu) (&(a_pVCpu)->cpum.GstCtx)
2458
2459/** @def IEM_CTX_ASSERT
2460 * Asserts that the @a a_fExtrnMbz is present in the CPU context.
2461 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2462 * @param a_fExtrnMbz The mask of CPUMCTX_EXTRN_XXX flags that must be zero.
2463 */
2464#define IEM_CTX_ASSERT(a_pVCpu, a_fExtrnMbz) \
2465 AssertMsg(!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz)), \
2466 ("fExtrn=%#RX64 & fExtrnMbz=%#RX64 -> %#RX64\n", \
2467 (a_pVCpu)->cpum.GstCtx.fExtrn, (a_fExtrnMbz), (a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnMbz) ))
2468
2469/** @def IEM_CTX_IMPORT_RET
2470 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2471 *
2472 * Will call the keep to import the bits as needed.
2473 *
2474 * Returns on import failure.
2475 *
2476 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2477 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2478 */
2479#define IEM_CTX_IMPORT_RET(a_pVCpu, a_fExtrnImport) \
2480 do { \
2481 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2482 { /* likely */ } \
2483 else \
2484 { \
2485 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2486 AssertRCReturn(rcCtxImport, rcCtxImport); \
2487 } \
2488 } while (0)
2489
2490/** @def IEM_CTX_IMPORT_NORET
2491 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2492 *
2493 * Will call the keep to import the bits as needed.
2494 *
2495 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2496 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2497 */
2498#define IEM_CTX_IMPORT_NORET(a_pVCpu, a_fExtrnImport) \
2499 do { \
2500 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2501 { /* likely */ } \
2502 else \
2503 { \
2504 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2505 AssertLogRelRC(rcCtxImport); \
2506 } \
2507 } while (0)
2508
2509/** @def IEM_CTX_IMPORT_JMP
2510 * Makes sure the CPU context bits given by @a a_fExtrnImport are imported.
2511 *
2512 * Will call the keep to import the bits as needed.
2513 *
2514 * Jumps on import failure.
2515 *
2516 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2517 * @param a_fExtrnImport The mask of CPUMCTX_EXTRN_XXX flags to import.
2518 */
2519#define IEM_CTX_IMPORT_JMP(a_pVCpu, a_fExtrnImport) \
2520 do { \
2521 if (!((a_pVCpu)->cpum.GstCtx.fExtrn & (a_fExtrnImport))) \
2522 { /* likely */ } \
2523 else \
2524 { \
2525 int rcCtxImport = CPUMImportGuestStateOnDemand(a_pVCpu, a_fExtrnImport); \
2526 AssertRCStmt(rcCtxImport, IEM_DO_LONGJMP(pVCpu, rcCtxImport)); \
2527 } \
2528 } while (0)
2529
2530
2531
2532/** @def IEM_GET_TARGET_CPU
2533 * Gets the current IEMTARGETCPU value.
2534 * @returns IEMTARGETCPU value.
2535 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
2536 */
2537#if IEM_CFG_TARGET_CPU != IEMTARGETCPU_DYNAMIC
2538# define IEM_GET_TARGET_CPU(a_pVCpu) (IEM_CFG_TARGET_CPU)
2539#else
2540# define IEM_GET_TARGET_CPU(a_pVCpu) ((a_pVCpu)->iem.s.uTargetCpu)
2541#endif
2542
2543/** @def IEM_GET_INSTR_LEN
2544 * Gets the instruction length. */
2545#ifdef IEM_WITH_CODE_TLB
2546# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offInstrNextByte - (uint32_t)(int32_t)(a_pVCpu)->iem.s.offCurInstrStart)
2547#else
2548# define IEM_GET_INSTR_LEN(a_pVCpu) ((a_pVCpu)->iem.s.offOpcode)
2549#endif
2550
2551/** @def IEM_TRY_SETJMP
2552 * Wrapper around setjmp / try, hiding all the ugly differences.
2553 *
2554 * @note Use with extreme care as this is a fragile macro.
2555 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2556 * @param a_rcTarget The variable that should receive the status code in case
2557 * of a longjmp/throw.
2558 */
2559/** @def IEM_TRY_SETJMP_AGAIN
2560 * For when setjmp / try is used again in the same variable scope as a previous
2561 * IEM_TRY_SETJMP invocation.
2562 */
2563/** @def IEM_CATCH_LONGJMP_BEGIN
2564 * Start wrapper for catch / setjmp-else.
2565 *
2566 * This will set up a scope.
2567 *
2568 * @note Use with extreme care as this is a fragile macro.
2569 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2570 * @param a_rcTarget The variable that should receive the status code in case
2571 * of a longjmp/throw.
2572 */
2573/** @def IEM_CATCH_LONGJMP_END
2574 * End wrapper for catch / setjmp-else.
2575 *
2576 * This will close the scope set up by IEM_CATCH_LONGJMP_BEGIN and clean up the
2577 * state.
2578 *
2579 * @note Use with extreme care as this is a fragile macro.
2580 * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
2581 */
2582#if defined(IEM_WITH_SETJMP) || defined(DOXYGEN_RUNNING)
2583# ifdef IEM_WITH_THROW_CATCH
2584# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2585 a_rcTarget = VINF_SUCCESS; \
2586 try
2587# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2588 IEM_TRY_SETJMP(a_pVCpu, a_rcTarget)
2589# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2590 catch (int rcThrown) \
2591 { \
2592 a_rcTarget = rcThrown
2593# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2594 } \
2595 ((void)0)
2596# else /* !IEM_WITH_THROW_CATCH */
2597# define IEM_TRY_SETJMP(a_pVCpu, a_rcTarget) \
2598 jmp_buf JmpBuf; \
2599 jmp_buf * volatile pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2600 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2601 if ((rcStrict = setjmp(JmpBuf)) == 0)
2602# define IEM_TRY_SETJMP_AGAIN(a_pVCpu, a_rcTarget) \
2603 pSavedJmpBuf = (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf); \
2604 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = &JmpBuf; \
2605 if ((rcStrict = setjmp(JmpBuf)) == 0)
2606# define IEM_CATCH_LONGJMP_BEGIN(a_pVCpu, a_rcTarget) \
2607 else \
2608 { \
2609 ((void)0)
2610# define IEM_CATCH_LONGJMP_END(a_pVCpu) \
2611 } \
2612 (a_pVCpu)->iem.s.CTX_SUFF(pJmpBuf) = pSavedJmpBuf
2613# endif /* !IEM_WITH_THROW_CATCH */
2614#endif /* IEM_WITH_SETJMP */
2615
2616
2617/**
2618 * Shared per-VM IEM data.
2619 */
2620typedef struct IEM
2621{
2622 /** The VMX APIC-access page handler type. */
2623 PGMPHYSHANDLERTYPE hVmxApicAccessPage;
2624#ifndef VBOX_WITHOUT_CPUID_HOST_CALL
2625 /** Set if the CPUID host call functionality is enabled. */
2626 bool fCpuIdHostCall;
2627#endif
2628} IEM;
2629
2630
2631
2632/** @name IEM_ACCESS_XXX - Access details.
2633 * @{ */
2634#define IEM_ACCESS_INVALID UINT32_C(0x000000ff)
2635#define IEM_ACCESS_TYPE_READ UINT32_C(0x00000001)
2636#define IEM_ACCESS_TYPE_WRITE UINT32_C(0x00000002)
2637#define IEM_ACCESS_TYPE_EXEC UINT32_C(0x00000004)
2638#define IEM_ACCESS_TYPE_MASK UINT32_C(0x00000007)
2639#define IEM_ACCESS_WHAT_CODE UINT32_C(0x00000010)
2640#define IEM_ACCESS_WHAT_DATA UINT32_C(0x00000020)
2641#define IEM_ACCESS_WHAT_STACK UINT32_C(0x00000030)
2642#define IEM_ACCESS_WHAT_SYS UINT32_C(0x00000040)
2643#define IEM_ACCESS_WHAT_MASK UINT32_C(0x00000070)
2644/** The writes are partial, so if initialize the bounce buffer with the
2645 * orignal RAM content. */
2646#define IEM_ACCESS_PARTIAL_WRITE UINT32_C(0x00000100)
2647/** Used in aMemMappings to indicate that the entry is bounce buffered. */
2648#define IEM_ACCESS_BOUNCE_BUFFERED UINT32_C(0x00000200)
2649/** Bounce buffer with ring-3 write pending, first page. */
2650#define IEM_ACCESS_PENDING_R3_WRITE_1ST UINT32_C(0x00000400)
2651/** Bounce buffer with ring-3 write pending, second page. */
2652#define IEM_ACCESS_PENDING_R3_WRITE_2ND UINT32_C(0x00000800)
2653/** Not locked, accessed via the TLB. */
2654#define IEM_ACCESS_NOT_LOCKED UINT32_C(0x00001000)
2655/** Atomic access.
2656 * This enables special alignment checks and the VINF_EM_EMULATE_SPLIT_LOCK
2657 * fallback for misaligned stuff. See @bugref{10547}. */
2658#define IEM_ACCESS_ATOMIC UINT32_C(0x00002000)
2659/** Valid bit mask. */
2660#define IEM_ACCESS_VALID_MASK UINT32_C(0x00003fff)
2661/** Shift count for the TLB flags (upper word). */
2662#define IEM_ACCESS_SHIFT_TLB_FLAGS 16
2663
2664/** Atomic read+write data alias. */
2665#define IEM_ACCESS_DATA_ATOMIC (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA | IEM_ACCESS_ATOMIC)
2666/** Read+write data alias. */
2667#define IEM_ACCESS_DATA_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2668/** Write data alias. */
2669#define IEM_ACCESS_DATA_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_DATA)
2670/** Read data alias. */
2671#define IEM_ACCESS_DATA_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_DATA)
2672/** Instruction fetch alias. */
2673#define IEM_ACCESS_INSTRUCTION (IEM_ACCESS_TYPE_EXEC | IEM_ACCESS_WHAT_CODE)
2674/** Stack write alias. */
2675#define IEM_ACCESS_STACK_W (IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2676/** Stack read alias. */
2677#define IEM_ACCESS_STACK_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_STACK)
2678/** Stack read+write alias. */
2679#define IEM_ACCESS_STACK_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_STACK)
2680/** Read system table alias. */
2681#define IEM_ACCESS_SYS_R (IEM_ACCESS_TYPE_READ | IEM_ACCESS_WHAT_SYS)
2682/** Read+write system table alias. */
2683#define IEM_ACCESS_SYS_RW (IEM_ACCESS_TYPE_READ | IEM_ACCESS_TYPE_WRITE | IEM_ACCESS_WHAT_SYS)
2684/** @} */
2685
2686/** @name Prefix constants (IEMCPU::fPrefixes)
2687 * @{ */
2688#define IEM_OP_PRF_SEG_CS RT_BIT_32(0) /**< CS segment prefix (0x2e). */
2689#define IEM_OP_PRF_SEG_SS RT_BIT_32(1) /**< SS segment prefix (0x36). */
2690#define IEM_OP_PRF_SEG_DS RT_BIT_32(2) /**< DS segment prefix (0x3e). */
2691#define IEM_OP_PRF_SEG_ES RT_BIT_32(3) /**< ES segment prefix (0x26). */
2692#define IEM_OP_PRF_SEG_FS RT_BIT_32(4) /**< FS segment prefix (0x64). */
2693#define IEM_OP_PRF_SEG_GS RT_BIT_32(5) /**< GS segment prefix (0x65). */
2694#define IEM_OP_PRF_SEG_MASK UINT32_C(0x3f)
2695
2696#define IEM_OP_PRF_SIZE_OP RT_BIT_32(8) /**< Operand size prefix (0x66). */
2697#define IEM_OP_PRF_SIZE_REX_W RT_BIT_32(9) /**< REX.W prefix (0x48-0x4f). */
2698#define IEM_OP_PRF_SIZE_ADDR RT_BIT_32(10) /**< Address size prefix (0x67). */
2699
2700#define IEM_OP_PRF_LOCK RT_BIT_32(16) /**< Lock prefix (0xf0). */
2701#define IEM_OP_PRF_REPNZ RT_BIT_32(17) /**< Repeat-not-zero prefix (0xf2). */
2702#define IEM_OP_PRF_REPZ RT_BIT_32(18) /**< Repeat-if-zero prefix (0xf3). */
2703
2704#define IEM_OP_PRF_REX RT_BIT_32(24) /**< Any REX prefix (0x40-0x4f). */
2705#define IEM_OP_PRF_REX_B RT_BIT_32(25) /**< REX.B prefix (0x41,0x43,0x45,0x47,0x49,0x4b,0x4d,0x4f). */
2706#define IEM_OP_PRF_REX_X RT_BIT_32(26) /**< REX.X prefix (0x42,0x43,0x46,0x47,0x4a,0x4b,0x4e,0x4f). */
2707#define IEM_OP_PRF_REX_R RT_BIT_32(27) /**< REX.R prefix (0x44,0x45,0x46,0x47,0x4c,0x4d,0x4e,0x4f). */
2708/** Mask with all the REX prefix flags.
2709 * This is generally for use when needing to undo the REX prefixes when they
2710 * are followed legacy prefixes and therefore does not immediately preceed
2711 * the first opcode byte.
2712 * For testing whether any REX prefix is present, use IEM_OP_PRF_REX instead. */
2713#define IEM_OP_PRF_REX_MASK (IEM_OP_PRF_REX | IEM_OP_PRF_REX_R | IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X | IEM_OP_PRF_SIZE_REX_W )
2714
2715#define IEM_OP_PRF_VEX RT_BIT_32(28) /**< Indiciates VEX prefix. */
2716#define IEM_OP_PRF_EVEX RT_BIT_32(29) /**< Indiciates EVEX prefix. */
2717#define IEM_OP_PRF_XOP RT_BIT_32(30) /**< Indiciates XOP prefix. */
2718/** @} */
2719
2720/** @name IEMOPFORM_XXX - Opcode forms
2721 * @note These are ORed together with IEMOPHINT_XXX.
2722 * @{ */
2723/** ModR/M: reg, r/m */
2724#define IEMOPFORM_RM 0
2725/** ModR/M: reg, r/m (register) */
2726#define IEMOPFORM_RM_REG (IEMOPFORM_RM | IEMOPFORM_MOD3)
2727/** ModR/M: reg, r/m (memory) */
2728#define IEMOPFORM_RM_MEM (IEMOPFORM_RM | IEMOPFORM_NOT_MOD3)
2729/** ModR/M: reg, r/m, imm */
2730#define IEMOPFORM_RMI 1
2731/** ModR/M: reg, r/m (register), imm */
2732#define IEMOPFORM_RMI_REG (IEMOPFORM_RMI | IEMOPFORM_MOD3)
2733/** ModR/M: reg, r/m (memory), imm */
2734#define IEMOPFORM_RMI_MEM (IEMOPFORM_RMI | IEMOPFORM_NOT_MOD3)
2735/** ModR/M: reg, r/m, xmm0 */
2736#define IEMOPFORM_RM0 2
2737/** ModR/M: reg, r/m (register), xmm0 */
2738#define IEMOPFORM_RM0_REG (IEMOPFORM_RM0 | IEMOPFORM_MOD3)
2739/** ModR/M: reg, r/m (memory), xmm0 */
2740#define IEMOPFORM_RM0_MEM (IEMOPFORM_RM0 | IEMOPFORM_NOT_MOD3)
2741/** ModR/M: r/m, reg */
2742#define IEMOPFORM_MR 3
2743/** ModR/M: r/m (register), reg */
2744#define IEMOPFORM_MR_REG (IEMOPFORM_MR | IEMOPFORM_MOD3)
2745/** ModR/M: r/m (memory), reg */
2746#define IEMOPFORM_MR_MEM (IEMOPFORM_MR | IEMOPFORM_NOT_MOD3)
2747/** ModR/M: r/m, reg, imm */
2748#define IEMOPFORM_MRI 4
2749/** ModR/M: r/m (register), reg, imm */
2750#define IEMOPFORM_MRI_REG (IEMOPFORM_MRI | IEMOPFORM_MOD3)
2751/** ModR/M: r/m (memory), reg, imm */
2752#define IEMOPFORM_MRI_MEM (IEMOPFORM_MRI | IEMOPFORM_NOT_MOD3)
2753/** ModR/M: r/m only */
2754#define IEMOPFORM_M 5
2755/** ModR/M: r/m only (register). */
2756#define IEMOPFORM_M_REG (IEMOPFORM_M | IEMOPFORM_MOD3)
2757/** ModR/M: r/m only (memory). */
2758#define IEMOPFORM_M_MEM (IEMOPFORM_M | IEMOPFORM_NOT_MOD3)
2759/** ModR/M: r/m, imm */
2760#define IEMOPFORM_MI 6
2761/** ModR/M: r/m (register), imm */
2762#define IEMOPFORM_MI_REG (IEMOPFORM_MI | IEMOPFORM_MOD3)
2763/** ModR/M: r/m (memory), imm */
2764#define IEMOPFORM_MI_MEM (IEMOPFORM_MI | IEMOPFORM_NOT_MOD3)
2765/** ModR/M: r/m, 1 (shift and rotate instructions) */
2766#define IEMOPFORM_M1 7
2767/** ModR/M: r/m (register), 1. */
2768#define IEMOPFORM_M1_REG (IEMOPFORM_M1 | IEMOPFORM_MOD3)
2769/** ModR/M: r/m (memory), 1. */
2770#define IEMOPFORM_M1_MEM (IEMOPFORM_M1 | IEMOPFORM_NOT_MOD3)
2771/** ModR/M: r/m, CL (shift and rotate instructions)
2772 * @todo This should just've been a generic fixed register. But the python
2773 * code doesn't needs more convincing. */
2774#define IEMOPFORM_M_CL 8
2775/** ModR/M: r/m (register), CL. */
2776#define IEMOPFORM_M_CL_REG (IEMOPFORM_M_CL | IEMOPFORM_MOD3)
2777/** ModR/M: r/m (memory), CL. */
2778#define IEMOPFORM_M_CL_MEM (IEMOPFORM_M_CL | IEMOPFORM_NOT_MOD3)
2779/** ModR/M: reg only */
2780#define IEMOPFORM_R 9
2781
2782/** VEX+ModR/M: reg, r/m */
2783#define IEMOPFORM_VEX_RM 16
2784/** VEX+ModR/M: reg, r/m (register) */
2785#define IEMOPFORM_VEX_RM_REG (IEMOPFORM_VEX_RM | IEMOPFORM_MOD3)
2786/** VEX+ModR/M: reg, r/m (memory) */
2787#define IEMOPFORM_VEX_RM_MEM (IEMOPFORM_VEX_RM | IEMOPFORM_NOT_MOD3)
2788/** VEX+ModR/M: r/m, reg */
2789#define IEMOPFORM_VEX_MR 17
2790/** VEX+ModR/M: r/m (register), reg */
2791#define IEMOPFORM_VEX_MR_REG (IEMOPFORM_VEX_MR | IEMOPFORM_MOD3)
2792/** VEX+ModR/M: r/m (memory), reg */
2793#define IEMOPFORM_VEX_MR_MEM (IEMOPFORM_VEX_MR | IEMOPFORM_NOT_MOD3)
2794/** VEX+ModR/M: r/m, reg, imm8 */
2795#define IEMOPFORM_VEX_MRI 18
2796/** VEX+ModR/M: r/m (register), reg, imm8 */
2797#define IEMOPFORM_VEX_MRI_REG (IEMOPFORM_VEX_MRI | IEMOPFORM_MOD3)
2798/** VEX+ModR/M: r/m (memory), reg, imm8 */
2799#define IEMOPFORM_VEX_MRI_MEM (IEMOPFORM_VEX_MRI | IEMOPFORM_NOT_MOD3)
2800/** VEX+ModR/M: r/m only */
2801#define IEMOPFORM_VEX_M 19
2802/** VEX+ModR/M: r/m only (register). */
2803#define IEMOPFORM_VEX_M_REG (IEMOPFORM_VEX_M | IEMOPFORM_MOD3)
2804/** VEX+ModR/M: r/m only (memory). */
2805#define IEMOPFORM_VEX_M_MEM (IEMOPFORM_VEX_M | IEMOPFORM_NOT_MOD3)
2806/** VEX+ModR/M: reg only */
2807#define IEMOPFORM_VEX_R 20
2808/** VEX+ModR/M: reg, vvvv, r/m */
2809#define IEMOPFORM_VEX_RVM 21
2810/** VEX+ModR/M: reg, vvvv, r/m (register). */
2811#define IEMOPFORM_VEX_RVM_REG (IEMOPFORM_VEX_RVM | IEMOPFORM_MOD3)
2812/** VEX+ModR/M: reg, vvvv, r/m (memory). */
2813#define IEMOPFORM_VEX_RVM_MEM (IEMOPFORM_VEX_RVM | IEMOPFORM_NOT_MOD3)
2814/** VEX+ModR/M: reg, vvvv, r/m, imm */
2815#define IEMOPFORM_VEX_RVMI 22
2816/** VEX+ModR/M: reg, vvvv, r/m (register), imm. */
2817#define IEMOPFORM_VEX_RVMI_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2818/** VEX+ModR/M: reg, vvvv, r/m (memory), imm. */
2819#define IEMOPFORM_VEX_RVMI_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2820/** VEX+ModR/M: reg, vvvv, r/m, imm(reg) */
2821#define IEMOPFORM_VEX_RVMR 23
2822/** VEX+ModR/M: reg, vvvv, r/m (register), imm(reg). */
2823#define IEMOPFORM_VEX_RVMR_REG (IEMOPFORM_VEX_RVMI | IEMOPFORM_MOD3)
2824/** VEX+ModR/M: reg, vvvv, r/m (memory), imm(reg). */
2825#define IEMOPFORM_VEX_RVMR_MEM (IEMOPFORM_VEX_RVMI | IEMOPFORM_NOT_MOD3)
2826/** VEX+ModR/M: reg, r/m, vvvv */
2827#define IEMOPFORM_VEX_RMV 24
2828/** VEX+ModR/M: reg, r/m, vvvv (register). */
2829#define IEMOPFORM_VEX_RMV_REG (IEMOPFORM_VEX_RMV | IEMOPFORM_MOD3)
2830/** VEX+ModR/M: reg, r/m, vvvv (memory). */
2831#define IEMOPFORM_VEX_RMV_MEM (IEMOPFORM_VEX_RMV | IEMOPFORM_NOT_MOD3)
2832/** VEX+ModR/M: reg, r/m, imm8 */
2833#define IEMOPFORM_VEX_RMI 25
2834/** VEX+ModR/M: reg, r/m, imm8 (register). */
2835#define IEMOPFORM_VEX_RMI_REG (IEMOPFORM_VEX_RMI | IEMOPFORM_MOD3)
2836/** VEX+ModR/M: reg, r/m, imm8 (memory). */
2837#define IEMOPFORM_VEX_RMI_MEM (IEMOPFORM_VEX_RMI | IEMOPFORM_NOT_MOD3)
2838/** VEX+ModR/M: r/m, vvvv, reg */
2839#define IEMOPFORM_VEX_MVR 26
2840/** VEX+ModR/M: r/m, vvvv, reg (register) */
2841#define IEMOPFORM_VEX_MVR_REG (IEMOPFORM_VEX_MVR | IEMOPFORM_MOD3)
2842/** VEX+ModR/M: r/m, vvvv, reg (memory) */
2843#define IEMOPFORM_VEX_MVR_MEM (IEMOPFORM_VEX_MVR | IEMOPFORM_NOT_MOD3)
2844/** VEX+ModR/M+/n: vvvv, r/m */
2845#define IEMOPFORM_VEX_VM 27
2846/** VEX+ModR/M+/n: vvvv, r/m (register) */
2847#define IEMOPFORM_VEX_VM_REG (IEMOPFORM_VEX_VM | IEMOPFORM_MOD3)
2848/** VEX+ModR/M+/n: vvvv, r/m (memory) */
2849#define IEMOPFORM_VEX_VM_MEM (IEMOPFORM_VEX_VM | IEMOPFORM_NOT_MOD3)
2850/** VEX+ModR/M+/n: vvvv, r/m, imm8 */
2851#define IEMOPFORM_VEX_VMI 28
2852/** VEX+ModR/M+/n: vvvv, r/m, imm8 (register) */
2853#define IEMOPFORM_VEX_VMI_REG (IEMOPFORM_VEX_VMI | IEMOPFORM_MOD3)
2854/** VEX+ModR/M+/n: vvvv, r/m, imm8 (memory) */
2855#define IEMOPFORM_VEX_VMI_MEM (IEMOPFORM_VEX_VMI | IEMOPFORM_NOT_MOD3)
2856
2857/** Fixed register instruction, no R/M. */
2858#define IEMOPFORM_FIXED 32
2859
2860/** The r/m is a register. */
2861#define IEMOPFORM_MOD3 RT_BIT_32(8)
2862/** The r/m is a memory access. */
2863#define IEMOPFORM_NOT_MOD3 RT_BIT_32(9)
2864/** @} */
2865
2866/** @name IEMOPHINT_XXX - Additional Opcode Hints
2867 * @note These are ORed together with IEMOPFORM_XXX.
2868 * @{ */
2869/** Ignores the operand size prefix (66h). */
2870#define IEMOPHINT_IGNORES_OZ_PFX RT_BIT_32(10)
2871/** Ignores REX.W (aka WIG). */
2872#define IEMOPHINT_IGNORES_REXW RT_BIT_32(11)
2873/** Both the operand size prefixes (66h + REX.W) are ignored. */
2874#define IEMOPHINT_IGNORES_OP_SIZES (IEMOPHINT_IGNORES_OZ_PFX | IEMOPHINT_IGNORES_REXW)
2875/** Allowed with the lock prefix. */
2876#define IEMOPHINT_LOCK_ALLOWED RT_BIT_32(11)
2877/** The VEX.L value is ignored (aka LIG). */
2878#define IEMOPHINT_VEX_L_IGNORED RT_BIT_32(12)
2879/** The VEX.L value must be zero (i.e. 128-bit width only). */
2880#define IEMOPHINT_VEX_L_ZERO RT_BIT_32(13)
2881/** The VEX.L value must be one (i.e. 256-bit width only). */
2882#define IEMOPHINT_VEX_L_ONE RT_BIT_32(14)
2883/** The VEX.V value must be zero. */
2884#define IEMOPHINT_VEX_V_ZERO RT_BIT_32(15)
2885/** The REX.W/VEX.V value must be zero. */
2886#define IEMOPHINT_REX_W_ZERO RT_BIT_32(16)
2887#define IEMOPHINT_VEX_W_ZERO IEMOPHINT_REX_W_ZERO
2888/** The REX.W/VEX.V value must be one. */
2889#define IEMOPHINT_REX_W_ONE RT_BIT_32(17)
2890#define IEMOPHINT_VEX_W_ONE IEMOPHINT_REX_W_ONE
2891
2892/** Hint to IEMAllInstructionPython.py that this macro should be skipped. */
2893#define IEMOPHINT_SKIP_PYTHON RT_BIT_32(31)
2894/** @} */
2895
2896/**
2897 * Possible hardware task switch sources.
2898 */
2899typedef enum IEMTASKSWITCH
2900{
2901 /** Task switch caused by an interrupt/exception. */
2902 IEMTASKSWITCH_INT_XCPT = 1,
2903 /** Task switch caused by a far CALL. */
2904 IEMTASKSWITCH_CALL,
2905 /** Task switch caused by a far JMP. */
2906 IEMTASKSWITCH_JUMP,
2907 /** Task switch caused by an IRET. */
2908 IEMTASKSWITCH_IRET
2909} IEMTASKSWITCH;
2910AssertCompileSize(IEMTASKSWITCH, 4);
2911
2912/**
2913 * Possible CrX load (write) sources.
2914 */
2915typedef enum IEMACCESSCRX
2916{
2917 /** CrX access caused by 'mov crX' instruction. */
2918 IEMACCESSCRX_MOV_CRX,
2919 /** CrX (CR0) write caused by 'lmsw' instruction. */
2920 IEMACCESSCRX_LMSW,
2921 /** CrX (CR0) write caused by 'clts' instruction. */
2922 IEMACCESSCRX_CLTS,
2923 /** CrX (CR0) read caused by 'smsw' instruction. */
2924 IEMACCESSCRX_SMSW
2925} IEMACCESSCRX;
2926
2927#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
2928/** @name IEM_SLAT_FAIL_XXX - Second-level address translation failure information.
2929 *
2930 * These flags provide further context to SLAT page-walk failures that could not be
2931 * determined by PGM (e.g, PGM is not privy to memory access permissions).
2932 *
2933 * @{
2934 */
2935/** Translating a nested-guest linear address failed accessing a nested-guest
2936 * physical address. */
2937# define IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR RT_BIT_32(0)
2938/** Translating a nested-guest linear address failed accessing a
2939 * paging-structure entry or updating accessed/dirty bits. */
2940# define IEM_SLAT_FAIL_LINEAR_TO_PAGE_TABLE RT_BIT_32(1)
2941/** @} */
2942
2943DECLCALLBACK(FNPGMPHYSHANDLER) iemVmxApicAccessPageHandler;
2944# ifndef IN_RING3
2945DECLCALLBACK(FNPGMRZPHYSPFHANDLER) iemVmxApicAccessPagePfHandler;
2946# endif
2947#endif
2948
2949/**
2950 * Indicates to the verifier that the given flag set is undefined.
2951 *
2952 * Can be invoked again to add more flags.
2953 *
2954 * This is a NOOP if the verifier isn't compiled in.
2955 *
2956 * @note We're temporarily keeping this until code is converted to new
2957 * disassembler style opcode handling.
2958 */
2959#define IEMOP_VERIFICATION_UNDEFINED_EFLAGS(a_fEfl) do { } while (0)
2960
2961
2962/** @def IEM_DECL_IMPL_TYPE
2963 * For typedef'ing an instruction implementation function.
2964 *
2965 * @param a_RetType The return type.
2966 * @param a_Name The name of the type.
2967 * @param a_ArgList The argument list enclosed in parentheses.
2968 */
2969
2970/** @def IEM_DECL_IMPL_DEF
2971 * For defining an instruction implementation function.
2972 *
2973 * @param a_RetType The return type.
2974 * @param a_Name The name of the type.
2975 * @param a_ArgList The argument list enclosed in parentheses.
2976 */
2977
2978#if defined(__GNUC__) && defined(RT_ARCH_X86)
2979# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2980 __attribute__((__fastcall__)) a_RetType (a_Name) a_ArgList
2981# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2982 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2983# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2984 __attribute__((__fastcall__, __nothrow__)) DECL_HIDDEN_ONLY(a_RetType) a_Name a_ArgList
2985
2986#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
2987# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2988 a_RetType (__fastcall a_Name) a_ArgList
2989# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2990 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2991# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
2992 a_RetType __fastcall a_Name a_ArgList RT_NOEXCEPT
2993
2994#elif __cplusplus >= 201700 /* P0012R1 support */
2995# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
2996 a_RetType (VBOXCALL a_Name) a_ArgList RT_NOEXCEPT
2997# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
2998 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
2999# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3000 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList RT_NOEXCEPT
3001
3002#else
3003# define IEM_DECL_IMPL_TYPE(a_RetType, a_Name, a_ArgList) \
3004 a_RetType (VBOXCALL a_Name) a_ArgList
3005# define IEM_DECL_IMPL_DEF(a_RetType, a_Name, a_ArgList) \
3006 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
3007# define IEM_DECL_IMPL_PROTO(a_RetType, a_Name, a_ArgList) \
3008 DECL_HIDDEN_ONLY(a_RetType) VBOXCALL a_Name a_ArgList
3009
3010#endif
3011
3012/** Defined in IEMAllAImplC.cpp but also used by IEMAllAImplA.asm. */
3013RT_C_DECLS_BEGIN
3014extern uint8_t const g_afParity[256];
3015RT_C_DECLS_END
3016
3017
3018/** @name Arithmetic assignment operations on bytes (binary).
3019 * @{ */
3020typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU8, (uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t u8Src));
3021typedef FNIEMAIMPLBINU8 *PFNIEMAIMPLBINU8;
3022FNIEMAIMPLBINU8 iemAImpl_add_u8, iemAImpl_add_u8_locked;
3023FNIEMAIMPLBINU8 iemAImpl_adc_u8, iemAImpl_adc_u8_locked;
3024FNIEMAIMPLBINU8 iemAImpl_sub_u8, iemAImpl_sub_u8_locked;
3025FNIEMAIMPLBINU8 iemAImpl_sbb_u8, iemAImpl_sbb_u8_locked;
3026FNIEMAIMPLBINU8 iemAImpl_or_u8, iemAImpl_or_u8_locked;
3027FNIEMAIMPLBINU8 iemAImpl_xor_u8, iemAImpl_xor_u8_locked;
3028FNIEMAIMPLBINU8 iemAImpl_and_u8, iemAImpl_and_u8_locked;
3029/** @} */
3030
3031/** @name Arithmetic assignment operations on words (binary).
3032 * @{ */
3033typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU16, (uint32_t fEFlagsIn, uint16_t *pu16Dst, uint16_t u16Src));
3034typedef FNIEMAIMPLBINU16 *PFNIEMAIMPLBINU16;
3035FNIEMAIMPLBINU16 iemAImpl_add_u16, iemAImpl_add_u16_locked;
3036FNIEMAIMPLBINU16 iemAImpl_adc_u16, iemAImpl_adc_u16_locked;
3037FNIEMAIMPLBINU16 iemAImpl_sub_u16, iemAImpl_sub_u16_locked;
3038FNIEMAIMPLBINU16 iemAImpl_sbb_u16, iemAImpl_sbb_u16_locked;
3039FNIEMAIMPLBINU16 iemAImpl_or_u16, iemAImpl_or_u16_locked;
3040FNIEMAIMPLBINU16 iemAImpl_xor_u16, iemAImpl_xor_u16_locked;
3041FNIEMAIMPLBINU16 iemAImpl_and_u16, iemAImpl_and_u16_locked;
3042/** @} */
3043
3044
3045/** @name Arithmetic assignment operations on double words (binary).
3046 * @{ */
3047typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU32, (uint32_t fEFlagsIn, uint32_t *pu32Dst, uint32_t u32Src));
3048typedef FNIEMAIMPLBINU32 *PFNIEMAIMPLBINU32;
3049FNIEMAIMPLBINU32 iemAImpl_add_u32, iemAImpl_add_u32_locked;
3050FNIEMAIMPLBINU32 iemAImpl_adc_u32, iemAImpl_adc_u32_locked;
3051FNIEMAIMPLBINU32 iemAImpl_sub_u32, iemAImpl_sub_u32_locked;
3052FNIEMAIMPLBINU32 iemAImpl_sbb_u32, iemAImpl_sbb_u32_locked;
3053FNIEMAIMPLBINU32 iemAImpl_or_u32, iemAImpl_or_u32_locked;
3054FNIEMAIMPLBINU32 iemAImpl_xor_u32, iemAImpl_xor_u32_locked;
3055FNIEMAIMPLBINU32 iemAImpl_and_u32, iemAImpl_and_u32_locked;
3056FNIEMAIMPLBINU32 iemAImpl_blsi_u32, iemAImpl_blsi_u32_fallback;
3057FNIEMAIMPLBINU32 iemAImpl_blsr_u32, iemAImpl_blsr_u32_fallback;
3058FNIEMAIMPLBINU32 iemAImpl_blsmsk_u32, iemAImpl_blsmsk_u32_fallback;
3059/** @} */
3060
3061/** @name Arithmetic assignment operations on quad words (binary).
3062 * @{ */
3063typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINU64, (uint32_t fEFlagsIn, uint64_t *pu64Dst, uint64_t u64Src));
3064typedef FNIEMAIMPLBINU64 *PFNIEMAIMPLBINU64;
3065FNIEMAIMPLBINU64 iemAImpl_add_u64, iemAImpl_add_u64_locked;
3066FNIEMAIMPLBINU64 iemAImpl_adc_u64, iemAImpl_adc_u64_locked;
3067FNIEMAIMPLBINU64 iemAImpl_sub_u64, iemAImpl_sub_u64_locked;
3068FNIEMAIMPLBINU64 iemAImpl_sbb_u64, iemAImpl_sbb_u64_locked;
3069FNIEMAIMPLBINU64 iemAImpl_or_u64, iemAImpl_or_u64_locked;
3070FNIEMAIMPLBINU64 iemAImpl_xor_u64, iemAImpl_xor_u64_locked;
3071FNIEMAIMPLBINU64 iemAImpl_and_u64, iemAImpl_and_u64_locked;
3072FNIEMAIMPLBINU64 iemAImpl_blsi_u64, iemAImpl_blsi_u64_fallback;
3073FNIEMAIMPLBINU64 iemAImpl_blsr_u64, iemAImpl_blsr_u64_fallback;
3074FNIEMAIMPLBINU64 iemAImpl_blsmsk_u64, iemAImpl_blsmsk_u64_fallback;
3075/** @} */
3076
3077typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU8, (uint32_t fEFlagsIn, uint8_t const *pu8Dst, uint8_t u8Src));
3078typedef FNIEMAIMPLBINROU8 *PFNIEMAIMPLBINROU8;
3079typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU16,(uint32_t fEFlagsIn, uint16_t const *pu16Dst, uint16_t u16Src));
3080typedef FNIEMAIMPLBINROU16 *PFNIEMAIMPLBINROU16;
3081typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU32,(uint32_t fEFlagsIn, uint32_t const *pu32Dst, uint32_t u32Src));
3082typedef FNIEMAIMPLBINROU32 *PFNIEMAIMPLBINROU32;
3083typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLBINROU64,(uint32_t fEFlagsIn, uint64_t const *pu64Dst, uint64_t u64Src));
3084typedef FNIEMAIMPLBINROU64 *PFNIEMAIMPLBINROU64;
3085
3086/** @name Compare operations (thrown in with the binary ops).
3087 * @{ */
3088FNIEMAIMPLBINROU8 iemAImpl_cmp_u8;
3089FNIEMAIMPLBINROU16 iemAImpl_cmp_u16;
3090FNIEMAIMPLBINROU32 iemAImpl_cmp_u32;
3091FNIEMAIMPLBINROU64 iemAImpl_cmp_u64;
3092/** @} */
3093
3094/** @name Test operations (thrown in with the binary ops).
3095 * @{ */
3096FNIEMAIMPLBINROU8 iemAImpl_test_u8;
3097FNIEMAIMPLBINROU16 iemAImpl_test_u16;
3098FNIEMAIMPLBINROU32 iemAImpl_test_u32;
3099FNIEMAIMPLBINROU64 iemAImpl_test_u64;
3100/** @} */
3101
3102/** @name Bit operations operations (thrown in with the binary ops).
3103 * @{ */
3104FNIEMAIMPLBINROU16 iemAImpl_bt_u16;
3105FNIEMAIMPLBINROU32 iemAImpl_bt_u32;
3106FNIEMAIMPLBINROU64 iemAImpl_bt_u64;
3107FNIEMAIMPLBINU16 iemAImpl_btc_u16, iemAImpl_btc_u16_locked;
3108FNIEMAIMPLBINU32 iemAImpl_btc_u32, iemAImpl_btc_u32_locked;
3109FNIEMAIMPLBINU64 iemAImpl_btc_u64, iemAImpl_btc_u64_locked;
3110FNIEMAIMPLBINU16 iemAImpl_btr_u16, iemAImpl_btr_u16_locked;
3111FNIEMAIMPLBINU32 iemAImpl_btr_u32, iemAImpl_btr_u32_locked;
3112FNIEMAIMPLBINU64 iemAImpl_btr_u64, iemAImpl_btr_u64_locked;
3113FNIEMAIMPLBINU16 iemAImpl_bts_u16, iemAImpl_bts_u16_locked;
3114FNIEMAIMPLBINU32 iemAImpl_bts_u32, iemAImpl_bts_u32_locked;
3115FNIEMAIMPLBINU64 iemAImpl_bts_u64, iemAImpl_bts_u64_locked;
3116/** @} */
3117
3118/** @name Arithmetic three operand operations on double words (binary).
3119 * @{ */
3120typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2, uint32_t *pEFlags));
3121typedef FNIEMAIMPLBINVEXU32 *PFNIEMAIMPLBINVEXU32;
3122FNIEMAIMPLBINVEXU32 iemAImpl_andn_u32, iemAImpl_andn_u32_fallback;
3123FNIEMAIMPLBINVEXU32 iemAImpl_bextr_u32, iemAImpl_bextr_u32_fallback;
3124FNIEMAIMPLBINVEXU32 iemAImpl_bzhi_u32, iemAImpl_bzhi_u32_fallback;
3125/** @} */
3126
3127/** @name Arithmetic three operand operations on quad words (binary).
3128 * @{ */
3129typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2, uint32_t *pEFlags));
3130typedef FNIEMAIMPLBINVEXU64 *PFNIEMAIMPLBINVEXU64;
3131FNIEMAIMPLBINVEXU64 iemAImpl_andn_u64, iemAImpl_andn_u64_fallback;
3132FNIEMAIMPLBINVEXU64 iemAImpl_bextr_u64, iemAImpl_bextr_u64_fallback;
3133FNIEMAIMPLBINVEXU64 iemAImpl_bzhi_u64, iemAImpl_bzhi_u64_fallback;
3134/** @} */
3135
3136/** @name Arithmetic three operand operations on double words w/o EFLAGS (binary).
3137 * @{ */
3138typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU32NOEFL, (uint32_t *pu32Dst, uint32_t u32Src1, uint32_t u32Src2));
3139typedef FNIEMAIMPLBINVEXU32NOEFL *PFNIEMAIMPLBINVEXU32NOEFL;
3140FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pdep_u32, iemAImpl_pdep_u32_fallback;
3141FNIEMAIMPLBINVEXU32NOEFL iemAImpl_pext_u32, iemAImpl_pext_u32_fallback;
3142FNIEMAIMPLBINVEXU32NOEFL iemAImpl_sarx_u32, iemAImpl_sarx_u32_fallback;
3143FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shlx_u32, iemAImpl_shlx_u32_fallback;
3144FNIEMAIMPLBINVEXU32NOEFL iemAImpl_shrx_u32, iemAImpl_shrx_u32_fallback;
3145FNIEMAIMPLBINVEXU32NOEFL iemAImpl_rorx_u32;
3146/** @} */
3147
3148/** @name Arithmetic three operand operations on quad words w/o EFLAGS (binary).
3149 * @{ */
3150typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBINVEXU64NOEFL, (uint64_t *pu64Dst, uint64_t u64Src1, uint64_t u64Src2));
3151typedef FNIEMAIMPLBINVEXU64NOEFL *PFNIEMAIMPLBINVEXU64NOEFL;
3152FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pdep_u64, iemAImpl_pdep_u64_fallback;
3153FNIEMAIMPLBINVEXU64NOEFL iemAImpl_pext_u64, iemAImpl_pext_u64_fallback;
3154FNIEMAIMPLBINVEXU64NOEFL iemAImpl_sarx_u64, iemAImpl_sarx_u64_fallback;
3155FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shlx_u64, iemAImpl_shlx_u64_fallback;
3156FNIEMAIMPLBINVEXU64NOEFL iemAImpl_shrx_u64, iemAImpl_shrx_u64_fallback;
3157FNIEMAIMPLBINVEXU64NOEFL iemAImpl_rorx_u64;
3158/** @} */
3159
3160/** @name MULX 32-bit and 64-bit.
3161 * @{ */
3162typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU32, (uint32_t *puDst1, uint32_t *puDst2, uint32_t uSrc1, uint32_t uSrc2));
3163typedef FNIEMAIMPLMULXVEXU32 *PFNIEMAIMPLMULXVEXU32;
3164FNIEMAIMPLMULXVEXU32 iemAImpl_mulx_u32, iemAImpl_mulx_u32_fallback;
3165
3166typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMULXVEXU64, (uint64_t *puDst1, uint64_t *puDst2, uint64_t uSrc1, uint64_t uSrc2));
3167typedef FNIEMAIMPLMULXVEXU64 *PFNIEMAIMPLMULXVEXU64;
3168FNIEMAIMPLMULXVEXU64 iemAImpl_mulx_u64, iemAImpl_mulx_u64_fallback;
3169/** @} */
3170
3171
3172/** @name Exchange memory with register operations.
3173 * @{ */
3174IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_locked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
3175IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_locked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
3176IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_locked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
3177IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_locked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
3178IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u8_unlocked, (uint8_t *pu8Mem, uint8_t *pu8Reg));
3179IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u16_unlocked,(uint16_t *pu16Mem, uint16_t *pu16Reg));
3180IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u32_unlocked,(uint32_t *pu32Mem, uint32_t *pu32Reg));
3181IEM_DECL_IMPL_DEF(void, iemAImpl_xchg_u64_unlocked,(uint64_t *pu64Mem, uint64_t *pu64Reg));
3182/** @} */
3183
3184/** @name Exchange and add operations.
3185 * @{ */
3186IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
3187IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
3188IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
3189IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
3190IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u8_locked, (uint8_t *pu8Dst, uint8_t *pu8Reg, uint32_t *pEFlags));
3191IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u16_locked,(uint16_t *pu16Dst, uint16_t *pu16Reg, uint32_t *pEFlags));
3192IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u32_locked,(uint32_t *pu32Dst, uint32_t *pu32Reg, uint32_t *pEFlags));
3193IEM_DECL_IMPL_DEF(void, iemAImpl_xadd_u64_locked,(uint64_t *pu64Dst, uint64_t *pu64Reg, uint32_t *pEFlags));
3194/** @} */
3195
3196/** @name Compare and exchange.
3197 * @{ */
3198IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
3199IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u8_locked, (uint8_t *pu8Dst, uint8_t *puAl, uint8_t uSrcReg, uint32_t *pEFlags));
3200IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16, (uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
3201IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u16_locked,(uint16_t *pu16Dst, uint16_t *puAx, uint16_t uSrcReg, uint32_t *pEFlags));
3202IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32, (uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
3203IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u32_locked,(uint32_t *pu32Dst, uint32_t *puEax, uint32_t uSrcReg, uint32_t *pEFlags));
3204#if ARCH_BITS == 32
3205IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
3206IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t *puSrcReg, uint32_t *pEFlags));
3207#else
3208IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64, (uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
3209IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg_u64_locked,(uint64_t *pu64Dst, uint64_t *puRax, uint64_t uSrcReg, uint32_t *pEFlags));
3210#endif
3211IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
3212 uint32_t *pEFlags));
3213IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg8b_locked,(uint64_t *pu64Dst, PRTUINT64U pu64EaxEdx, PRTUINT64U pu64EbxEcx,
3214 uint32_t *pEFlags));
3215IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
3216 uint32_t *pEFlags));
3217IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_locked,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx, PRTUINT128U pu128RbxRcx,
3218 uint32_t *pEFlags));
3219#ifndef RT_ARCH_ARM64
3220IEM_DECL_IMPL_DEF(void, iemAImpl_cmpxchg16b_fallback,(PRTUINT128U pu128Dst, PRTUINT128U pu128RaxRdx,
3221 PRTUINT128U pu128RbxRcx, uint32_t *pEFlags));
3222#endif
3223/** @} */
3224
3225/** @name Memory ordering
3226 * @{ */
3227typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEMFENCE,(void));
3228typedef FNIEMAIMPLMEMFENCE *PFNIEMAIMPLMEMFENCE;
3229IEM_DECL_IMPL_DEF(void, iemAImpl_mfence,(void));
3230IEM_DECL_IMPL_DEF(void, iemAImpl_sfence,(void));
3231IEM_DECL_IMPL_DEF(void, iemAImpl_lfence,(void));
3232#ifndef RT_ARCH_ARM64
3233IEM_DECL_IMPL_DEF(void, iemAImpl_alt_mem_fence,(void));
3234#endif
3235/** @} */
3236
3237/** @name Double precision shifts
3238 * @{ */
3239typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU16,(uint16_t *pu16Dst, uint16_t u16Src, uint8_t cShift, uint32_t *pEFlags));
3240typedef FNIEMAIMPLSHIFTDBLU16 *PFNIEMAIMPLSHIFTDBLU16;
3241typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU32,(uint32_t *pu32Dst, uint32_t u32Src, uint8_t cShift, uint32_t *pEFlags));
3242typedef FNIEMAIMPLSHIFTDBLU32 *PFNIEMAIMPLSHIFTDBLU32;
3243typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLSHIFTDBLU64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t cShift, uint32_t *pEFlags));
3244typedef FNIEMAIMPLSHIFTDBLU64 *PFNIEMAIMPLSHIFTDBLU64;
3245FNIEMAIMPLSHIFTDBLU16 iemAImpl_shld_u16, iemAImpl_shld_u16_amd, iemAImpl_shld_u16_intel;
3246FNIEMAIMPLSHIFTDBLU32 iemAImpl_shld_u32, iemAImpl_shld_u32_amd, iemAImpl_shld_u32_intel;
3247FNIEMAIMPLSHIFTDBLU64 iemAImpl_shld_u64, iemAImpl_shld_u64_amd, iemAImpl_shld_u64_intel;
3248FNIEMAIMPLSHIFTDBLU16 iemAImpl_shrd_u16, iemAImpl_shrd_u16_amd, iemAImpl_shrd_u16_intel;
3249FNIEMAIMPLSHIFTDBLU32 iemAImpl_shrd_u32, iemAImpl_shrd_u32_amd, iemAImpl_shrd_u32_intel;
3250FNIEMAIMPLSHIFTDBLU64 iemAImpl_shrd_u64, iemAImpl_shrd_u64_amd, iemAImpl_shrd_u64_intel;
3251/** @} */
3252
3253
3254/** @name Bit search operations (thrown in with the binary ops).
3255 * @{ */
3256FNIEMAIMPLBINU16 iemAImpl_bsf_u16, iemAImpl_bsf_u16_amd, iemAImpl_bsf_u16_intel;
3257FNIEMAIMPLBINU32 iemAImpl_bsf_u32, iemAImpl_bsf_u32_amd, iemAImpl_bsf_u32_intel;
3258FNIEMAIMPLBINU64 iemAImpl_bsf_u64, iemAImpl_bsf_u64_amd, iemAImpl_bsf_u64_intel;
3259FNIEMAIMPLBINU16 iemAImpl_bsr_u16, iemAImpl_bsr_u16_amd, iemAImpl_bsr_u16_intel;
3260FNIEMAIMPLBINU32 iemAImpl_bsr_u32, iemAImpl_bsr_u32_amd, iemAImpl_bsr_u32_intel;
3261FNIEMAIMPLBINU64 iemAImpl_bsr_u64, iemAImpl_bsr_u64_amd, iemAImpl_bsr_u64_intel;
3262FNIEMAIMPLBINU16 iemAImpl_lzcnt_u16, iemAImpl_lzcnt_u16_amd, iemAImpl_lzcnt_u16_intel;
3263FNIEMAIMPLBINU32 iemAImpl_lzcnt_u32, iemAImpl_lzcnt_u32_amd, iemAImpl_lzcnt_u32_intel;
3264FNIEMAIMPLBINU64 iemAImpl_lzcnt_u64, iemAImpl_lzcnt_u64_amd, iemAImpl_lzcnt_u64_intel;
3265FNIEMAIMPLBINU16 iemAImpl_tzcnt_u16, iemAImpl_tzcnt_u16_amd, iemAImpl_tzcnt_u16_intel;
3266FNIEMAIMPLBINU32 iemAImpl_tzcnt_u32, iemAImpl_tzcnt_u32_amd, iemAImpl_tzcnt_u32_intel;
3267FNIEMAIMPLBINU64 iemAImpl_tzcnt_u64, iemAImpl_tzcnt_u64_amd, iemAImpl_tzcnt_u64_intel;
3268FNIEMAIMPLBINU16 iemAImpl_popcnt_u16, iemAImpl_popcnt_u16_fallback;
3269FNIEMAIMPLBINU32 iemAImpl_popcnt_u32, iemAImpl_popcnt_u32_fallback;
3270FNIEMAIMPLBINU64 iemAImpl_popcnt_u64, iemAImpl_popcnt_u64_fallback;
3271/** @} */
3272
3273/** @name Signed multiplication operations (thrown in with the binary ops).
3274 * @{ */
3275FNIEMAIMPLBINU16 iemAImpl_imul_two_u16, iemAImpl_imul_two_u16_amd, iemAImpl_imul_two_u16_intel;
3276FNIEMAIMPLBINU32 iemAImpl_imul_two_u32, iemAImpl_imul_two_u32_amd, iemAImpl_imul_two_u32_intel;
3277FNIEMAIMPLBINU64 iemAImpl_imul_two_u64, iemAImpl_imul_two_u64_amd, iemAImpl_imul_two_u64_intel;
3278/** @} */
3279
3280/** @name Arithmetic assignment operations on bytes (unary).
3281 * @{ */
3282typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU8, (uint8_t *pu8Dst, uint32_t *pEFlags));
3283typedef FNIEMAIMPLUNARYU8 *PFNIEMAIMPLUNARYU8;
3284FNIEMAIMPLUNARYU8 iemAImpl_inc_u8, iemAImpl_inc_u8_locked;
3285FNIEMAIMPLUNARYU8 iemAImpl_dec_u8, iemAImpl_dec_u8_locked;
3286FNIEMAIMPLUNARYU8 iemAImpl_not_u8, iemAImpl_not_u8_locked;
3287FNIEMAIMPLUNARYU8 iemAImpl_neg_u8, iemAImpl_neg_u8_locked;
3288/** @} */
3289
3290/** @name Arithmetic assignment operations on words (unary).
3291 * @{ */
3292typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU16, (uint16_t *pu16Dst, uint32_t *pEFlags));
3293typedef FNIEMAIMPLUNARYU16 *PFNIEMAIMPLUNARYU16;
3294FNIEMAIMPLUNARYU16 iemAImpl_inc_u16, iemAImpl_inc_u16_locked;
3295FNIEMAIMPLUNARYU16 iemAImpl_dec_u16, iemAImpl_dec_u16_locked;
3296FNIEMAIMPLUNARYU16 iemAImpl_not_u16, iemAImpl_not_u16_locked;
3297FNIEMAIMPLUNARYU16 iemAImpl_neg_u16, iemAImpl_neg_u16_locked;
3298/** @} */
3299
3300/** @name Arithmetic assignment operations on double words (unary).
3301 * @{ */
3302typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU32, (uint32_t *pu32Dst, uint32_t *pEFlags));
3303typedef FNIEMAIMPLUNARYU32 *PFNIEMAIMPLUNARYU32;
3304FNIEMAIMPLUNARYU32 iemAImpl_inc_u32, iemAImpl_inc_u32_locked;
3305FNIEMAIMPLUNARYU32 iemAImpl_dec_u32, iemAImpl_dec_u32_locked;
3306FNIEMAIMPLUNARYU32 iemAImpl_not_u32, iemAImpl_not_u32_locked;
3307FNIEMAIMPLUNARYU32 iemAImpl_neg_u32, iemAImpl_neg_u32_locked;
3308/** @} */
3309
3310/** @name Arithmetic assignment operations on quad words (unary).
3311 * @{ */
3312typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLUNARYU64, (uint64_t *pu64Dst, uint32_t *pEFlags));
3313typedef FNIEMAIMPLUNARYU64 *PFNIEMAIMPLUNARYU64;
3314FNIEMAIMPLUNARYU64 iemAImpl_inc_u64, iemAImpl_inc_u64_locked;
3315FNIEMAIMPLUNARYU64 iemAImpl_dec_u64, iemAImpl_dec_u64_locked;
3316FNIEMAIMPLUNARYU64 iemAImpl_not_u64, iemAImpl_not_u64_locked;
3317FNIEMAIMPLUNARYU64 iemAImpl_neg_u64, iemAImpl_neg_u64_locked;
3318/** @} */
3319
3320
3321/** @name Shift operations on bytes (Group 2).
3322 * @{ */
3323typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU8,(uint32_t fEFlagsIn, uint8_t *pu8Dst, uint8_t cShift));
3324typedef FNIEMAIMPLSHIFTU8 *PFNIEMAIMPLSHIFTU8;
3325FNIEMAIMPLSHIFTU8 iemAImpl_rol_u8, iemAImpl_rol_u8_amd, iemAImpl_rol_u8_intel;
3326FNIEMAIMPLSHIFTU8 iemAImpl_ror_u8, iemAImpl_ror_u8_amd, iemAImpl_ror_u8_intel;
3327FNIEMAIMPLSHIFTU8 iemAImpl_rcl_u8, iemAImpl_rcl_u8_amd, iemAImpl_rcl_u8_intel;
3328FNIEMAIMPLSHIFTU8 iemAImpl_rcr_u8, iemAImpl_rcr_u8_amd, iemAImpl_rcr_u8_intel;
3329FNIEMAIMPLSHIFTU8 iemAImpl_shl_u8, iemAImpl_shl_u8_amd, iemAImpl_shl_u8_intel;
3330FNIEMAIMPLSHIFTU8 iemAImpl_shr_u8, iemAImpl_shr_u8_amd, iemAImpl_shr_u8_intel;
3331FNIEMAIMPLSHIFTU8 iemAImpl_sar_u8, iemAImpl_sar_u8_amd, iemAImpl_sar_u8_intel;
3332/** @} */
3333
3334/** @name Shift operations on words (Group 2).
3335 * @{ */
3336typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU16,(uint32_t fEFlagsIn, uint16_t *pu16Dst, uint8_t cShift));
3337typedef FNIEMAIMPLSHIFTU16 *PFNIEMAIMPLSHIFTU16;
3338FNIEMAIMPLSHIFTU16 iemAImpl_rol_u16, iemAImpl_rol_u16_amd, iemAImpl_rol_u16_intel;
3339FNIEMAIMPLSHIFTU16 iemAImpl_ror_u16, iemAImpl_ror_u16_amd, iemAImpl_ror_u16_intel;
3340FNIEMAIMPLSHIFTU16 iemAImpl_rcl_u16, iemAImpl_rcl_u16_amd, iemAImpl_rcl_u16_intel;
3341FNIEMAIMPLSHIFTU16 iemAImpl_rcr_u16, iemAImpl_rcr_u16_amd, iemAImpl_rcr_u16_intel;
3342FNIEMAIMPLSHIFTU16 iemAImpl_shl_u16, iemAImpl_shl_u16_amd, iemAImpl_shl_u16_intel;
3343FNIEMAIMPLSHIFTU16 iemAImpl_shr_u16, iemAImpl_shr_u16_amd, iemAImpl_shr_u16_intel;
3344FNIEMAIMPLSHIFTU16 iemAImpl_sar_u16, iemAImpl_sar_u16_amd, iemAImpl_sar_u16_intel;
3345/** @} */
3346
3347/** @name Shift operations on double words (Group 2).
3348 * @{ */
3349typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU32,(uint32_t fEFlagsIn, uint32_t *pu32Dst, uint8_t cShift));
3350typedef FNIEMAIMPLSHIFTU32 *PFNIEMAIMPLSHIFTU32;
3351FNIEMAIMPLSHIFTU32 iemAImpl_rol_u32, iemAImpl_rol_u32_amd, iemAImpl_rol_u32_intel;
3352FNIEMAIMPLSHIFTU32 iemAImpl_ror_u32, iemAImpl_ror_u32_amd, iemAImpl_ror_u32_intel;
3353FNIEMAIMPLSHIFTU32 iemAImpl_rcl_u32, iemAImpl_rcl_u32_amd, iemAImpl_rcl_u32_intel;
3354FNIEMAIMPLSHIFTU32 iemAImpl_rcr_u32, iemAImpl_rcr_u32_amd, iemAImpl_rcr_u32_intel;
3355FNIEMAIMPLSHIFTU32 iemAImpl_shl_u32, iemAImpl_shl_u32_amd, iemAImpl_shl_u32_intel;
3356FNIEMAIMPLSHIFTU32 iemAImpl_shr_u32, iemAImpl_shr_u32_amd, iemAImpl_shr_u32_intel;
3357FNIEMAIMPLSHIFTU32 iemAImpl_sar_u32, iemAImpl_sar_u32_amd, iemAImpl_sar_u32_intel;
3358/** @} */
3359
3360/** @name Shift operations on words (Group 2).
3361 * @{ */
3362typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSHIFTU64,(uint32_t fEFlagsIn, uint64_t *pu64Dst, uint8_t cShift));
3363typedef FNIEMAIMPLSHIFTU64 *PFNIEMAIMPLSHIFTU64;
3364FNIEMAIMPLSHIFTU64 iemAImpl_rol_u64, iemAImpl_rol_u64_amd, iemAImpl_rol_u64_intel;
3365FNIEMAIMPLSHIFTU64 iemAImpl_ror_u64, iemAImpl_ror_u64_amd, iemAImpl_ror_u64_intel;
3366FNIEMAIMPLSHIFTU64 iemAImpl_rcl_u64, iemAImpl_rcl_u64_amd, iemAImpl_rcl_u64_intel;
3367FNIEMAIMPLSHIFTU64 iemAImpl_rcr_u64, iemAImpl_rcr_u64_amd, iemAImpl_rcr_u64_intel;
3368FNIEMAIMPLSHIFTU64 iemAImpl_shl_u64, iemAImpl_shl_u64_amd, iemAImpl_shl_u64_intel;
3369FNIEMAIMPLSHIFTU64 iemAImpl_shr_u64, iemAImpl_shr_u64_amd, iemAImpl_shr_u64_intel;
3370FNIEMAIMPLSHIFTU64 iemAImpl_sar_u64, iemAImpl_sar_u64_amd, iemAImpl_sar_u64_intel;
3371/** @} */
3372
3373/** @name Multiplication and division operations.
3374 * @{ */
3375typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU8,(uint16_t *pu16AX, uint8_t u8FactorDivisor, uint32_t *pEFlags));
3376typedef FNIEMAIMPLMULDIVU8 *PFNIEMAIMPLMULDIVU8;
3377FNIEMAIMPLMULDIVU8 iemAImpl_mul_u8, iemAImpl_mul_u8_amd, iemAImpl_mul_u8_intel;
3378FNIEMAIMPLMULDIVU8 iemAImpl_imul_u8, iemAImpl_imul_u8_amd, iemAImpl_imul_u8_intel;
3379FNIEMAIMPLMULDIVU8 iemAImpl_div_u8, iemAImpl_div_u8_amd, iemAImpl_div_u8_intel;
3380FNIEMAIMPLMULDIVU8 iemAImpl_idiv_u8, iemAImpl_idiv_u8_amd, iemAImpl_idiv_u8_intel;
3381
3382typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU16,(uint16_t *pu16AX, uint16_t *pu16DX, uint16_t u16FactorDivisor, uint32_t *pEFlags));
3383typedef FNIEMAIMPLMULDIVU16 *PFNIEMAIMPLMULDIVU16;
3384FNIEMAIMPLMULDIVU16 iemAImpl_mul_u16, iemAImpl_mul_u16_amd, iemAImpl_mul_u16_intel;
3385FNIEMAIMPLMULDIVU16 iemAImpl_imul_u16, iemAImpl_imul_u16_amd, iemAImpl_imul_u16_intel;
3386FNIEMAIMPLMULDIVU16 iemAImpl_div_u16, iemAImpl_div_u16_amd, iemAImpl_div_u16_intel;
3387FNIEMAIMPLMULDIVU16 iemAImpl_idiv_u16, iemAImpl_idiv_u16_amd, iemAImpl_idiv_u16_intel;
3388
3389typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU32,(uint32_t *pu32EAX, uint32_t *pu32EDX, uint32_t u32FactorDivisor, uint32_t *pEFlags));
3390typedef FNIEMAIMPLMULDIVU32 *PFNIEMAIMPLMULDIVU32;
3391FNIEMAIMPLMULDIVU32 iemAImpl_mul_u32, iemAImpl_mul_u32_amd, iemAImpl_mul_u32_intel;
3392FNIEMAIMPLMULDIVU32 iemAImpl_imul_u32, iemAImpl_imul_u32_amd, iemAImpl_imul_u32_intel;
3393FNIEMAIMPLMULDIVU32 iemAImpl_div_u32, iemAImpl_div_u32_amd, iemAImpl_div_u32_intel;
3394FNIEMAIMPLMULDIVU32 iemAImpl_idiv_u32, iemAImpl_idiv_u32_amd, iemAImpl_idiv_u32_intel;
3395
3396typedef IEM_DECL_IMPL_TYPE(int, FNIEMAIMPLMULDIVU64,(uint64_t *pu64RAX, uint64_t *pu64RDX, uint64_t u64FactorDivisor, uint32_t *pEFlags));
3397typedef FNIEMAIMPLMULDIVU64 *PFNIEMAIMPLMULDIVU64;
3398FNIEMAIMPLMULDIVU64 iemAImpl_mul_u64, iemAImpl_mul_u64_amd, iemAImpl_mul_u64_intel;
3399FNIEMAIMPLMULDIVU64 iemAImpl_imul_u64, iemAImpl_imul_u64_amd, iemAImpl_imul_u64_intel;
3400FNIEMAIMPLMULDIVU64 iemAImpl_div_u64, iemAImpl_div_u64_amd, iemAImpl_div_u64_intel;
3401FNIEMAIMPLMULDIVU64 iemAImpl_idiv_u64, iemAImpl_idiv_u64_amd, iemAImpl_idiv_u64_intel;
3402/** @} */
3403
3404/** @name Byte Swap.
3405 * @{ */
3406IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u16,(uint32_t *pu32Dst)); /* Yes, 32-bit register access. */
3407IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u32,(uint32_t *pu32Dst));
3408IEM_DECL_IMPL_TYPE(void, iemAImpl_bswap_u64,(uint64_t *pu64Dst));
3409/** @} */
3410
3411/** @name Misc.
3412 * @{ */
3413FNIEMAIMPLBINU16 iemAImpl_arpl;
3414/** @} */
3415
3416/** @name RDRAND and RDSEED
3417 * @{ */
3418typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU16,(uint16_t *puDst, uint32_t *pEFlags));
3419typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU32,(uint32_t *puDst, uint32_t *pEFlags));
3420typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLRDRANDSEEDU64,(uint64_t *puDst, uint32_t *pEFlags));
3421typedef FNIEMAIMPLRDRANDSEEDU16 *PFNIEMAIMPLRDRANDSEEDU16;
3422typedef FNIEMAIMPLRDRANDSEEDU32 *PFNIEMAIMPLRDRANDSEEDU32;
3423typedef FNIEMAIMPLRDRANDSEEDU64 *PFNIEMAIMPLRDRANDSEEDU64;
3424
3425FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdrand_u16, iemAImpl_rdrand_u16_fallback;
3426FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdrand_u32, iemAImpl_rdrand_u32_fallback;
3427FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdrand_u64, iemAImpl_rdrand_u64_fallback;
3428FNIEMAIMPLRDRANDSEEDU16 iemAImpl_rdseed_u16, iemAImpl_rdseed_u16_fallback;
3429FNIEMAIMPLRDRANDSEEDU32 iemAImpl_rdseed_u32, iemAImpl_rdseed_u32_fallback;
3430FNIEMAIMPLRDRANDSEEDU64 iemAImpl_rdseed_u64, iemAImpl_rdseed_u64_fallback;
3431/** @} */
3432
3433/** @name ADOX and ADCX
3434 * @{ */
3435FNIEMAIMPLBINU32 iemAImpl_adcx_u32, iemAImpl_adcx_u32_fallback;
3436FNIEMAIMPLBINU64 iemAImpl_adcx_u64, iemAImpl_adcx_u64_fallback;
3437FNIEMAIMPLBINU32 iemAImpl_adox_u32, iemAImpl_adox_u32_fallback;
3438FNIEMAIMPLBINU64 iemAImpl_adox_u64, iemAImpl_adox_u64_fallback;
3439/** @} */
3440
3441/** @name FPU operations taking a 32-bit float argument
3442 * @{ */
3443typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3444 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3445typedef FNIEMAIMPLFPUR32FSW *PFNIEMAIMPLFPUR32FSW;
3446
3447typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3448 PCRTFLOAT80U pr80Val1, PCRTFLOAT32U pr32Val2));
3449typedef FNIEMAIMPLFPUR32 *PFNIEMAIMPLFPUR32;
3450
3451FNIEMAIMPLFPUR32FSW iemAImpl_fcom_r80_by_r32;
3452FNIEMAIMPLFPUR32 iemAImpl_fadd_r80_by_r32;
3453FNIEMAIMPLFPUR32 iemAImpl_fmul_r80_by_r32;
3454FNIEMAIMPLFPUR32 iemAImpl_fsub_r80_by_r32;
3455FNIEMAIMPLFPUR32 iemAImpl_fsubr_r80_by_r32;
3456FNIEMAIMPLFPUR32 iemAImpl_fdiv_r80_by_r32;
3457FNIEMAIMPLFPUR32 iemAImpl_fdivr_r80_by_r32;
3458
3459IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT32U pr32Val));
3460IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r32,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3461 PRTFLOAT32U pr32Val, PCRTFLOAT80U pr80Val));
3462/** @} */
3463
3464/** @name FPU operations taking a 64-bit float argument
3465 * @{ */
3466typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3467 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3468typedef FNIEMAIMPLFPUR64FSW *PFNIEMAIMPLFPUR64FSW;
3469
3470typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3471 PCRTFLOAT80U pr80Val1, PCRTFLOAT64U pr64Val2));
3472typedef FNIEMAIMPLFPUR64 *PFNIEMAIMPLFPUR64;
3473
3474FNIEMAIMPLFPUR64FSW iemAImpl_fcom_r80_by_r64;
3475FNIEMAIMPLFPUR64 iemAImpl_fadd_r80_by_r64;
3476FNIEMAIMPLFPUR64 iemAImpl_fmul_r80_by_r64;
3477FNIEMAIMPLFPUR64 iemAImpl_fsub_r80_by_r64;
3478FNIEMAIMPLFPUR64 iemAImpl_fsubr_r80_by_r64;
3479FNIEMAIMPLFPUR64 iemAImpl_fdiv_r80_by_r64;
3480FNIEMAIMPLFPUR64 iemAImpl_fdivr_r80_by_r64;
3481
3482IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT64U pr64Val));
3483IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r64,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3484 PRTFLOAT64U pr32Val, PCRTFLOAT80U pr80Val));
3485/** @} */
3486
3487/** @name FPU operations taking a 80-bit float argument
3488 * @{ */
3489typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3490 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3491typedef FNIEMAIMPLFPUR80 *PFNIEMAIMPLFPUR80;
3492FNIEMAIMPLFPUR80 iemAImpl_fadd_r80_by_r80;
3493FNIEMAIMPLFPUR80 iemAImpl_fmul_r80_by_r80;
3494FNIEMAIMPLFPUR80 iemAImpl_fsub_r80_by_r80;
3495FNIEMAIMPLFPUR80 iemAImpl_fsubr_r80_by_r80;
3496FNIEMAIMPLFPUR80 iemAImpl_fdiv_r80_by_r80;
3497FNIEMAIMPLFPUR80 iemAImpl_fdivr_r80_by_r80;
3498FNIEMAIMPLFPUR80 iemAImpl_fprem_r80_by_r80;
3499FNIEMAIMPLFPUR80 iemAImpl_fprem1_r80_by_r80;
3500FNIEMAIMPLFPUR80 iemAImpl_fscale_r80_by_r80;
3501
3502FNIEMAIMPLFPUR80 iemAImpl_fpatan_r80_by_r80, iemAImpl_fpatan_r80_by_r80_amd, iemAImpl_fpatan_r80_by_r80_intel;
3503FNIEMAIMPLFPUR80 iemAImpl_fyl2x_r80_by_r80, iemAImpl_fyl2x_r80_by_r80_amd, iemAImpl_fyl2x_r80_by_r80_intel;
3504FNIEMAIMPLFPUR80 iemAImpl_fyl2xp1_r80_by_r80, iemAImpl_fyl2xp1_r80_by_r80_amd, iemAImpl_fyl2xp1_r80_by_r80_intel;
3505
3506typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3507 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3508typedef FNIEMAIMPLFPUR80FSW *PFNIEMAIMPLFPUR80FSW;
3509FNIEMAIMPLFPUR80FSW iemAImpl_fcom_r80_by_r80;
3510FNIEMAIMPLFPUR80FSW iemAImpl_fucom_r80_by_r80;
3511
3512typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPUR80EFL,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw,
3513 PCRTFLOAT80U pr80Val1, PCRTFLOAT80U pr80Val2));
3514typedef FNIEMAIMPLFPUR80EFL *PFNIEMAIMPLFPUR80EFL;
3515FNIEMAIMPLFPUR80EFL iemAImpl_fcomi_r80_by_r80;
3516FNIEMAIMPLFPUR80EFL iemAImpl_fucomi_r80_by_r80;
3517
3518typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARY,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3519typedef FNIEMAIMPLFPUR80UNARY *PFNIEMAIMPLFPUR80UNARY;
3520FNIEMAIMPLFPUR80UNARY iemAImpl_fabs_r80;
3521FNIEMAIMPLFPUR80UNARY iemAImpl_fchs_r80;
3522FNIEMAIMPLFPUR80UNARY iemAImpl_f2xm1_r80, iemAImpl_f2xm1_r80_amd, iemAImpl_f2xm1_r80_intel;
3523FNIEMAIMPLFPUR80UNARY iemAImpl_fsqrt_r80;
3524FNIEMAIMPLFPUR80UNARY iemAImpl_frndint_r80;
3525FNIEMAIMPLFPUR80UNARY iemAImpl_fsin_r80, iemAImpl_fsin_r80_amd, iemAImpl_fsin_r80_intel;
3526FNIEMAIMPLFPUR80UNARY iemAImpl_fcos_r80, iemAImpl_fcos_r80_amd, iemAImpl_fcos_r80_intel;
3527
3528typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYFSW,(PCX86FXSTATE pFpuState, uint16_t *pu16Fsw, PCRTFLOAT80U pr80Val));
3529typedef FNIEMAIMPLFPUR80UNARYFSW *PFNIEMAIMPLFPUR80UNARYFSW;
3530FNIEMAIMPLFPUR80UNARYFSW iemAImpl_ftst_r80;
3531FNIEMAIMPLFPUR80UNARYFSW iemAImpl_fxam_r80;
3532
3533typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80LDCONST,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes));
3534typedef FNIEMAIMPLFPUR80LDCONST *PFNIEMAIMPLFPUR80LDCONST;
3535FNIEMAIMPLFPUR80LDCONST iemAImpl_fld1;
3536FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2t;
3537FNIEMAIMPLFPUR80LDCONST iemAImpl_fldl2e;
3538FNIEMAIMPLFPUR80LDCONST iemAImpl_fldpi;
3539FNIEMAIMPLFPUR80LDCONST iemAImpl_fldlg2;
3540FNIEMAIMPLFPUR80LDCONST iemAImpl_fldln2;
3541FNIEMAIMPLFPUR80LDCONST iemAImpl_fldz;
3542
3543typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUR80UNARYTWO,(PCX86FXSTATE pFpuState, PIEMFPURESULTTWO pFpuResTwo,
3544 PCRTFLOAT80U pr80Val));
3545typedef FNIEMAIMPLFPUR80UNARYTWO *PFNIEMAIMPLFPUR80UNARYTWO;
3546FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fptan_r80_r80, iemAImpl_fptan_r80_r80_amd, iemAImpl_fptan_r80_r80_intel;
3547FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fxtract_r80_r80;
3548FNIEMAIMPLFPUR80UNARYTWO iemAImpl_fsincos_r80_r80, iemAImpl_fsincos_r80_r80_amd, iemAImpl_fsincos_r80_r80_intel;
3549
3550IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_r80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTFLOAT80U pr80Val));
3551IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_r80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3552 PRTFLOAT80U pr80Dst, PCRTFLOAT80U pr80Src));
3553
3554IEM_DECL_IMPL_DEF(void, iemAImpl_fld_r80_from_d80,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, PCRTPBCD80U pd80Val));
3555IEM_DECL_IMPL_DEF(void, iemAImpl_fst_r80_to_d80,(PCX86FXSTATE pFpuState, uint16_t *pu16FSW,
3556 PRTPBCD80U pd80Dst, PCRTFLOAT80U pr80Src));
3557
3558/** @} */
3559
3560/** @name FPU operations taking a 16-bit signed integer argument
3561 * @{ */
3562typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3563 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3564typedef FNIEMAIMPLFPUI16 *PFNIEMAIMPLFPUI16;
3565typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI16,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3566 int16_t *pi16Dst, PCRTFLOAT80U pr80Src));
3567typedef FNIEMAIMPLFPUSTR80TOI16 *PFNIEMAIMPLFPUSTR80TOI16;
3568
3569FNIEMAIMPLFPUI16 iemAImpl_fiadd_r80_by_i16;
3570FNIEMAIMPLFPUI16 iemAImpl_fimul_r80_by_i16;
3571FNIEMAIMPLFPUI16 iemAImpl_fisub_r80_by_i16;
3572FNIEMAIMPLFPUI16 iemAImpl_fisubr_r80_by_i16;
3573FNIEMAIMPLFPUI16 iemAImpl_fidiv_r80_by_i16;
3574FNIEMAIMPLFPUI16 iemAImpl_fidivr_r80_by_i16;
3575
3576typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI16FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3577 PCRTFLOAT80U pr80Val1, int16_t const *pi16Val2));
3578typedef FNIEMAIMPLFPUI16FSW *PFNIEMAIMPLFPUI16FSW;
3579FNIEMAIMPLFPUI16FSW iemAImpl_ficom_r80_by_i16;
3580
3581IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i16,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int16_t const *pi16Val));
3582FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fist_r80_to_i16;
3583FNIEMAIMPLFPUSTR80TOI16 iemAImpl_fistt_r80_to_i16, iemAImpl_fistt_r80_to_i16_amd, iemAImpl_fistt_r80_to_i16_intel;
3584/** @} */
3585
3586/** @name FPU operations taking a 32-bit signed integer argument
3587 * @{ */
3588typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes,
3589 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3590typedef FNIEMAIMPLFPUI32 *PFNIEMAIMPLFPUI32;
3591typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI32,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3592 int32_t *pi32Dst, PCRTFLOAT80U pr80Src));
3593typedef FNIEMAIMPLFPUSTR80TOI32 *PFNIEMAIMPLFPUSTR80TOI32;
3594
3595FNIEMAIMPLFPUI32 iemAImpl_fiadd_r80_by_i32;
3596FNIEMAIMPLFPUI32 iemAImpl_fimul_r80_by_i32;
3597FNIEMAIMPLFPUI32 iemAImpl_fisub_r80_by_i32;
3598FNIEMAIMPLFPUI32 iemAImpl_fisubr_r80_by_i32;
3599FNIEMAIMPLFPUI32 iemAImpl_fidiv_r80_by_i32;
3600FNIEMAIMPLFPUI32 iemAImpl_fidivr_r80_by_i32;
3601
3602typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUI32FSW,(PCX86FXSTATE pFpuState, uint16_t *pFSW,
3603 PCRTFLOAT80U pr80Val1, int32_t const *pi32Val2));
3604typedef FNIEMAIMPLFPUI32FSW *PFNIEMAIMPLFPUI32FSW;
3605FNIEMAIMPLFPUI32FSW iemAImpl_ficom_r80_by_i32;
3606
3607IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i32,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int32_t const *pi32Val));
3608FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fist_r80_to_i32;
3609FNIEMAIMPLFPUSTR80TOI32 iemAImpl_fistt_r80_to_i32;
3610/** @} */
3611
3612/** @name FPU operations taking a 64-bit signed integer argument
3613 * @{ */
3614typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLFPUSTR80TOI64,(PCX86FXSTATE pFpuState, uint16_t *pFpuRes,
3615 int64_t *pi64Dst, PCRTFLOAT80U pr80Src));
3616typedef FNIEMAIMPLFPUSTR80TOI64 *PFNIEMAIMPLFPUSTR80TOI64;
3617
3618IEM_DECL_IMPL_DEF(void, iemAImpl_fild_r80_from_i64,(PCX86FXSTATE pFpuState, PIEMFPURESULT pFpuRes, int64_t const *pi64Val));
3619FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fist_r80_to_i64;
3620FNIEMAIMPLFPUSTR80TOI64 iemAImpl_fistt_r80_to_i64;
3621/** @} */
3622
3623
3624/** Temporary type representing a 256-bit vector register. */
3625typedef struct { uint64_t au64[4]; } IEMVMM256;
3626/** Temporary type pointing to a 256-bit vector register. */
3627typedef IEMVMM256 *PIEMVMM256;
3628/** Temporary type pointing to a const 256-bit vector register. */
3629typedef IEMVMM256 *PCIEMVMM256;
3630
3631
3632/** @name Media (SSE/MMX/AVX) operations: full1 + full2 -> full1.
3633 * @{ */
3634typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAF2U64,(PCX86FXSTATE pFpuState, uint64_t *puDst, uint64_t const *puSrc));
3635typedef FNIEMAIMPLMEDIAF2U64 *PFNIEMAIMPLMEDIAF2U64;
3636typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
3637typedef FNIEMAIMPLMEDIAF2U128 *PFNIEMAIMPLMEDIAF2U128;
3638typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U256,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc));
3639typedef FNIEMAIMPLMEDIAF2U256 *PFNIEMAIMPLMEDIAF2U256;
3640typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3U128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
3641typedef FNIEMAIMPLMEDIAF3U128 *PFNIEMAIMPLMEDIAF3U128;
3642typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3U256,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
3643typedef FNIEMAIMPLMEDIAF3U256 *PFNIEMAIMPLMEDIAF3U256;
3644typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U64,(uint64_t *puDst, uint64_t const *puSrc));
3645typedef FNIEMAIMPLMEDIAOPTF2U64 *PFNIEMAIMPLMEDIAOPTF2U64;
3646typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128,(PRTUINT128U puDst, PCRTUINT128U puSrc));
3647typedef FNIEMAIMPLMEDIAOPTF2U128 *PFNIEMAIMPLMEDIAOPTF2U128;
3648typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2));
3649typedef FNIEMAIMPLMEDIAOPTF3U128 *PFNIEMAIMPLMEDIAOPTF3U128;
3650typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2));
3651typedef FNIEMAIMPLMEDIAOPTF3U256 *PFNIEMAIMPLMEDIAOPTF3U256;
3652typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256,(PRTUINT256U puDst, PCRTUINT256U puSrc));
3653typedef FNIEMAIMPLMEDIAOPTF2U256 *PFNIEMAIMPLMEDIAOPTF2U256;
3654FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pshufb_u64, iemAImpl_pshufb_u64_fallback;
3655FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pand_u64, iemAImpl_pandn_u64, iemAImpl_por_u64, iemAImpl_pxor_u64;
3656FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpeqb_u64, iemAImpl_pcmpeqw_u64, iemAImpl_pcmpeqd_u64;
3657FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pcmpgtb_u64, iemAImpl_pcmpgtw_u64, iemAImpl_pcmpgtd_u64;
3658FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddb_u64, iemAImpl_paddsb_u64, iemAImpl_paddusb_u64;
3659FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddw_u64, iemAImpl_paddsw_u64, iemAImpl_paddusw_u64;
3660FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddd_u64;
3661FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_paddq_u64;
3662FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubb_u64, iemAImpl_psubsb_u64, iemAImpl_psubusb_u64;
3663FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubw_u64, iemAImpl_psubsw_u64, iemAImpl_psubusw_u64;
3664FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubd_u64;
3665FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psubq_u64;
3666FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddwd_u64, iemAImpl_pmaddwd_u64_fallback;
3667FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmullw_u64, iemAImpl_pmulhw_u64;
3668FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminub_u64, iemAImpl_pmaxub_u64;
3669FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pminsw_u64, iemAImpl_pmaxsw_u64;
3670FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsb_u64, iemAImpl_pabsb_u64_fallback;
3671FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsw_u64, iemAImpl_pabsw_u64_fallback;
3672FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pabsd_u64, iemAImpl_pabsd_u64_fallback;
3673FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignb_u64, iemAImpl_psignb_u64_fallback;
3674FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignw_u64, iemAImpl_psignw_u64_fallback;
3675FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psignd_u64, iemAImpl_psignd_u64_fallback;
3676FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddw_u64, iemAImpl_phaddw_u64_fallback;
3677FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddd_u64, iemAImpl_phaddd_u64_fallback;
3678FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubw_u64, iemAImpl_phsubw_u64_fallback;
3679FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubd_u64, iemAImpl_phsubd_u64_fallback;
3680FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phaddsw_u64, iemAImpl_phaddsw_u64_fallback;
3681FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_phsubsw_u64, iemAImpl_phsubsw_u64_fallback;
3682FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmaddubsw_u64, iemAImpl_pmaddubsw_u64_fallback;
3683FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhrsw_u64, iemAImpl_pmulhrsw_u64_fallback;
3684FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmuludq_u64;
3685FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllw_u64, iemAImpl_psrlw_u64, iemAImpl_psraw_u64;
3686FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pslld_u64, iemAImpl_psrld_u64, iemAImpl_psrad_u64;
3687FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psllq_u64, iemAImpl_psrlq_u64;
3688FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packsswb_u64, iemAImpl_packuswb_u64;
3689FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_packssdw_u64;
3690FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pmulhuw_u64;
3691FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_pavgb_u64, iemAImpl_pavgw_u64;
3692FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_psadbw_u64;
3693
3694FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pshufb_u128, iemAImpl_pshufb_u128_fallback;
3695FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pand_u128, iemAImpl_pandn_u128, iemAImpl_por_u128, iemAImpl_pxor_u128;
3696FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqb_u128, iemAImpl_pcmpeqw_u128, iemAImpl_pcmpeqd_u128;
3697FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpeqq_u128, iemAImpl_pcmpeqq_u128_fallback;
3698FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtb_u128, iemAImpl_pcmpgtw_u128, iemAImpl_pcmpgtd_u128;
3699FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pcmpgtq_u128, iemAImpl_pcmpgtq_u128_fallback;
3700FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddb_u128, iemAImpl_paddsb_u128, iemAImpl_paddusb_u128;
3701FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddw_u128, iemAImpl_paddsw_u128, iemAImpl_paddusw_u128;
3702FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddd_u128;
3703FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_paddq_u128;
3704FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubb_u128, iemAImpl_psubsb_u128, iemAImpl_psubusb_u128;
3705FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubw_u128, iemAImpl_psubsw_u128, iemAImpl_psubusw_u128;
3706FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubd_u128;
3707FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psubq_u128;
3708FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmullw_u128, iemAImpl_pmullw_u128_fallback;
3709FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhw_u128;
3710FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulld_u128, iemAImpl_pmulld_u128_fallback;
3711FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3712FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminub_u128;
3713FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminud_u128, iemAImpl_pminud_u128_fallback;
3714FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminuw_u128, iemAImpl_pminuw_u128_fallback;
3715FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsb_u128, iemAImpl_pminsb_u128_fallback;
3716FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsd_u128, iemAImpl_pminsd_u128_fallback;
3717FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pminsw_u128, iemAImpl_pminsw_u128_fallback;
3718FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxub_u128;
3719FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxud_u128, iemAImpl_pmaxud_u128_fallback;
3720FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxuw_u128, iemAImpl_pmaxuw_u128_fallback;
3721FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsb_u128, iemAImpl_pmaxsb_u128_fallback;
3722FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsw_u128;
3723FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaxsd_u128, iemAImpl_pmaxsd_u128_fallback;
3724FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsb_u128, iemAImpl_pabsb_u128_fallback;
3725FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsw_u128, iemAImpl_pabsw_u128_fallback;
3726FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pabsd_u128, iemAImpl_pabsd_u128_fallback;
3727FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignb_u128, iemAImpl_psignb_u128_fallback;
3728FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignw_u128, iemAImpl_psignw_u128_fallback;
3729FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psignd_u128, iemAImpl_psignd_u128_fallback;
3730FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddw_u128, iemAImpl_phaddw_u128_fallback;
3731FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddd_u128, iemAImpl_phaddd_u128_fallback;
3732FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubw_u128, iemAImpl_phsubw_u128_fallback;
3733FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubd_u128, iemAImpl_phsubd_u128_fallback;
3734FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phaddsw_u128, iemAImpl_phaddsw_u128_fallback;
3735FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phsubsw_u128, iemAImpl_phsubsw_u128_fallback;
3736FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddubsw_u128, iemAImpl_pmaddubsw_u128_fallback;
3737FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhrsw_u128, iemAImpl_pmulhrsw_u128_fallback;
3738FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuludq_u128;
3739FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmaddwd_u128, iemAImpl_pmaddwd_u128_fallback;
3740FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packsswb_u128, iemAImpl_packuswb_u128;
3741FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_packssdw_u128, iemAImpl_packusdw_u128;
3742FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllw_u128, iemAImpl_psrlw_u128, iemAImpl_psraw_u128;
3743FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pslld_u128, iemAImpl_psrld_u128, iemAImpl_psrad_u128;
3744FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psllq_u128, iemAImpl_psrlq_u128;
3745FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmulhuw_u128;
3746FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pavgb_u128, iemAImpl_pavgw_u128;
3747FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_psadbw_u128;
3748FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_pmuldq_u128, iemAImpl_pmuldq_u128_fallback;
3749FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpcklps_u128, iemAImpl_unpcklpd_u128;
3750FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_unpckhps_u128, iemAImpl_unpckhpd_u128;
3751FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_phminposuw_u128, iemAImpl_phminposuw_u128_fallback;
3752
3753FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpshufb_u128, iemAImpl_vpshufb_u128_fallback;
3754FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpand_u128, iemAImpl_vpand_u128_fallback;
3755FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpandn_u128, iemAImpl_vpandn_u128_fallback;
3756FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpor_u128, iemAImpl_vpor_u128_fallback;
3757FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpxor_u128, iemAImpl_vpxor_u128_fallback;
3758FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqb_u128, iemAImpl_vpcmpeqb_u128_fallback;
3759FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqw_u128, iemAImpl_vpcmpeqw_u128_fallback;
3760FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqd_u128, iemAImpl_vpcmpeqd_u128_fallback;
3761FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpeqq_u128, iemAImpl_vpcmpeqq_u128_fallback;
3762FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtb_u128, iemAImpl_vpcmpgtb_u128_fallback;
3763FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtw_u128, iemAImpl_vpcmpgtw_u128_fallback;
3764FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtd_u128, iemAImpl_vpcmpgtd_u128_fallback;
3765FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpcmpgtq_u128, iemAImpl_vpcmpgtq_u128_fallback;
3766FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddb_u128, iemAImpl_vpaddb_u128_fallback;
3767FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddw_u128, iemAImpl_vpaddw_u128_fallback;
3768FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddd_u128, iemAImpl_vpaddd_u128_fallback;
3769FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddq_u128, iemAImpl_vpaddq_u128_fallback;
3770FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubb_u128, iemAImpl_vpsubb_u128_fallback;
3771FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubw_u128, iemAImpl_vpsubw_u128_fallback;
3772FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubd_u128, iemAImpl_vpsubd_u128_fallback;
3773FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubq_u128, iemAImpl_vpsubq_u128_fallback;
3774FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminub_u128, iemAImpl_vpminub_u128_fallback;
3775FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminuw_u128, iemAImpl_vpminuw_u128_fallback;
3776FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminud_u128, iemAImpl_vpminud_u128_fallback;
3777FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsb_u128, iemAImpl_vpminsb_u128_fallback;
3778FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsw_u128, iemAImpl_vpminsw_u128_fallback;
3779FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpminsd_u128, iemAImpl_vpminsd_u128_fallback;
3780FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxub_u128, iemAImpl_vpmaxub_u128_fallback;
3781FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxuw_u128, iemAImpl_vpmaxuw_u128_fallback;
3782FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxud_u128, iemAImpl_vpmaxud_u128_fallback;
3783FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsb_u128, iemAImpl_vpmaxsb_u128_fallback;
3784FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsw_u128, iemAImpl_vpmaxsw_u128_fallback;
3785FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaxsd_u128, iemAImpl_vpmaxsd_u128_fallback;
3786FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpacksswb_u128, iemAImpl_vpacksswb_u128_fallback;
3787FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackssdw_u128, iemAImpl_vpackssdw_u128_fallback;
3788FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackuswb_u128, iemAImpl_vpackuswb_u128_fallback;
3789FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpackusdw_u128, iemAImpl_vpackusdw_u128_fallback;
3790FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmullw_u128, iemAImpl_vpmullw_u128_fallback;
3791FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulld_u128, iemAImpl_vpmulld_u128_fallback;
3792FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhw_u128, iemAImpl_vpmulhw_u128_fallback;
3793FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhuw_u128, iemAImpl_vpmulhuw_u128_fallback;
3794FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgb_u128, iemAImpl_vpavgb_u128_fallback;
3795FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpavgw_u128, iemAImpl_vpavgw_u128_fallback;
3796FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignb_u128, iemAImpl_vpsignb_u128_fallback;
3797FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignw_u128, iemAImpl_vpsignw_u128_fallback;
3798FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsignd_u128, iemAImpl_vpsignd_u128_fallback;
3799FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddw_u128, iemAImpl_vphaddw_u128_fallback;
3800FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddd_u128, iemAImpl_vphaddd_u128_fallback;
3801FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubw_u128, iemAImpl_vphsubw_u128_fallback;
3802FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubd_u128, iemAImpl_vphsubd_u128_fallback;
3803FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphaddsw_u128, iemAImpl_vphaddsw_u128_fallback;
3804FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vphsubsw_u128, iemAImpl_vphsubsw_u128_fallback;
3805FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddubsw_u128, iemAImpl_vpmaddubsw_u128_fallback;
3806FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmulhrsw_u128, iemAImpl_vpmulhrsw_u128_fallback;
3807FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsadbw_u128, iemAImpl_vpsadbw_u128_fallback;
3808FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuldq_u128, iemAImpl_vpmuldq_u128_fallback;
3809FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmuludq_u128, iemAImpl_vpmuludq_u128_fallback;
3810FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsb_u128, iemAImpl_vpsubsb_u128_fallback;
3811FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubsw_u128, iemAImpl_vpsubsw_u128_fallback;
3812FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusb_u128, iemAImpl_vpsubusb_u128_fallback;
3813FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsubusw_u128, iemAImpl_vpsubusw_u128_fallback;
3814FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusb_u128, iemAImpl_vpaddusb_u128_fallback;
3815FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddusw_u128, iemAImpl_vpaddusw_u128_fallback;
3816FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsb_u128, iemAImpl_vpaddsb_u128_fallback;
3817FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpaddsw_u128, iemAImpl_vpaddsw_u128_fallback;
3818FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllw_u128, iemAImpl_vpsllw_u128_fallback;
3819FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpslld_u128, iemAImpl_vpslld_u128_fallback;
3820FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllq_u128, iemAImpl_vpsllq_u128_fallback;
3821FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsraw_u128, iemAImpl_vpsraw_u128_fallback;
3822FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrad_u128, iemAImpl_vpsrad_u128_fallback;
3823FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlw_u128, iemAImpl_vpsrlw_u128_fallback;
3824FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrld_u128, iemAImpl_vpsrld_u128_fallback;
3825FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlq_u128, iemAImpl_vpsrlq_u128_fallback;
3826FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpmaddwd_u128, iemAImpl_vpmaddwd_u128_fallback;
3827
3828FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsb_u128, iemAImpl_vpabsb_u128_fallback;
3829FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsw_u128, iemAImpl_vpabsd_u128_fallback;
3830FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vpabsd_u128, iemAImpl_vpabsw_u128_fallback;
3831FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vphminposuw_u128, iemAImpl_vphminposuw_u128_fallback;
3832
3833FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpshufb_u256, iemAImpl_vpshufb_u256_fallback;
3834FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpand_u256, iemAImpl_vpand_u256_fallback;
3835FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpandn_u256, iemAImpl_vpandn_u256_fallback;
3836FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpor_u256, iemAImpl_vpor_u256_fallback;
3837FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpxor_u256, iemAImpl_vpxor_u256_fallback;
3838FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqb_u256, iemAImpl_vpcmpeqb_u256_fallback;
3839FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqw_u256, iemAImpl_vpcmpeqw_u256_fallback;
3840FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqd_u256, iemAImpl_vpcmpeqd_u256_fallback;
3841FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpeqq_u256, iemAImpl_vpcmpeqq_u256_fallback;
3842FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtb_u256, iemAImpl_vpcmpgtb_u256_fallback;
3843FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtw_u256, iemAImpl_vpcmpgtw_u256_fallback;
3844FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtd_u256, iemAImpl_vpcmpgtd_u256_fallback;
3845FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpcmpgtq_u256, iemAImpl_vpcmpgtq_u256_fallback;
3846FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddb_u256, iemAImpl_vpaddb_u256_fallback;
3847FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddw_u256, iemAImpl_vpaddw_u256_fallback;
3848FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddd_u256, iemAImpl_vpaddd_u256_fallback;
3849FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddq_u256, iemAImpl_vpaddq_u256_fallback;
3850FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubb_u256, iemAImpl_vpsubb_u256_fallback;
3851FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubw_u256, iemAImpl_vpsubw_u256_fallback;
3852FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubd_u256, iemAImpl_vpsubd_u256_fallback;
3853FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubq_u256, iemAImpl_vpsubq_u256_fallback;
3854FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminub_u256, iemAImpl_vpminub_u256_fallback;
3855FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminuw_u256, iemAImpl_vpminuw_u256_fallback;
3856FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminud_u256, iemAImpl_vpminud_u256_fallback;
3857FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsb_u256, iemAImpl_vpminsb_u256_fallback;
3858FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsw_u256, iemAImpl_vpminsw_u256_fallback;
3859FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpminsd_u256, iemAImpl_vpminsd_u256_fallback;
3860FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxub_u256, iemAImpl_vpmaxub_u256_fallback;
3861FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxuw_u256, iemAImpl_vpmaxuw_u256_fallback;
3862FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxud_u256, iemAImpl_vpmaxud_u256_fallback;
3863FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsb_u256, iemAImpl_vpmaxsb_u256_fallback;
3864FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsw_u256, iemAImpl_vpmaxsw_u256_fallback;
3865FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaxsd_u256, iemAImpl_vpmaxsd_u256_fallback;
3866FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpacksswb_u256, iemAImpl_vpacksswb_u256_fallback;
3867FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackssdw_u256, iemAImpl_vpackssdw_u256_fallback;
3868FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackuswb_u256, iemAImpl_vpackuswb_u256_fallback;
3869FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpackusdw_u256, iemAImpl_vpackusdw_u256_fallback;
3870FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmullw_u256, iemAImpl_vpmullw_u256_fallback;
3871FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulld_u256, iemAImpl_vpmulld_u256_fallback;
3872FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhw_u256, iemAImpl_vpmulhw_u256_fallback;
3873FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhuw_u256, iemAImpl_vpmulhuw_u256_fallback;
3874FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgb_u256, iemAImpl_vpavgb_u256_fallback;
3875FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpavgw_u256, iemAImpl_vpavgw_u256_fallback;
3876FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignb_u256, iemAImpl_vpsignb_u256_fallback;
3877FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignw_u256, iemAImpl_vpsignw_u256_fallback;
3878FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsignd_u256, iemAImpl_vpsignd_u256_fallback;
3879FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddw_u256, iemAImpl_vphaddw_u256_fallback;
3880FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddd_u256, iemAImpl_vphaddd_u256_fallback;
3881FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubw_u256, iemAImpl_vphsubw_u256_fallback;
3882FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubd_u256, iemAImpl_vphsubd_u256_fallback;
3883FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphaddsw_u256, iemAImpl_vphaddsw_u256_fallback;
3884FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vphsubsw_u256, iemAImpl_vphsubsw_u256_fallback;
3885FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddubsw_u256, iemAImpl_vpmaddubsw_u256_fallback;
3886FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmulhrsw_u256, iemAImpl_vpmulhrsw_u256_fallback;
3887FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsadbw_u256, iemAImpl_vpsadbw_u256_fallback;
3888FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuldq_u256, iemAImpl_vpmuldq_u256_fallback;
3889FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmuludq_u256, iemAImpl_vpmuludq_u256_fallback;
3890FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsb_u256, iemAImpl_vpsubsb_u256_fallback;
3891FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubsw_u256, iemAImpl_vpsubsw_u256_fallback;
3892FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusb_u256, iemAImpl_vpsubusb_u256_fallback;
3893FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsubusw_u256, iemAImpl_vpsubusw_u256_fallback;
3894FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusb_u256, iemAImpl_vpaddusb_u256_fallback;
3895FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddusw_u256, iemAImpl_vpaddusw_u256_fallback;
3896FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsb_u256, iemAImpl_vpaddsb_u256_fallback;
3897FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpaddsw_u256, iemAImpl_vpaddsw_u256_fallback;
3898FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllw_u256, iemAImpl_vpsllw_u256_fallback;
3899FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpslld_u256, iemAImpl_vpslld_u256_fallback;
3900FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllq_u256, iemAImpl_vpsllq_u256_fallback;
3901FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsraw_u256, iemAImpl_vpsraw_u256_fallback;
3902FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrad_u256, iemAImpl_vpsrad_u256_fallback;
3903FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlw_u256, iemAImpl_vpsrlw_u256_fallback;
3904FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrld_u256, iemAImpl_vpsrld_u256_fallback;
3905FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlq_u256, iemAImpl_vpsrlq_u256_fallback;
3906FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpmaddwd_u256, iemAImpl_vpmaddwd_u256_fallback;
3907FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermps_u256, iemAImpl_vpermps_u256_fallback;
3908FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermd_u256, iemAImpl_vpermd_u256_fallback;
3909
3910FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsb_u256, iemAImpl_vpabsb_u256_fallback;
3911FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsw_u256, iemAImpl_vpabsw_u256_fallback;
3912FNIEMAIMPLMEDIAOPTF2U256 iemAImpl_vpabsd_u256, iemAImpl_vpabsd_u256_fallback;
3913/** @} */
3914
3915/** @name Media (SSE/MMX/AVX) operations: lowhalf1 + lowhalf1 -> full1.
3916 * @{ */
3917FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpcklbw_u64, iemAImpl_punpcklwd_u64, iemAImpl_punpckldq_u64;
3918FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpcklbw_u128, iemAImpl_punpcklwd_u128, iemAImpl_punpckldq_u128, iemAImpl_punpcklqdq_u128;
3919FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpcklbw_u128, iemAImpl_vpunpcklbw_u128_fallback,
3920 iemAImpl_vpunpcklwd_u128, iemAImpl_vpunpcklwd_u128_fallback,
3921 iemAImpl_vpunpckldq_u128, iemAImpl_vpunpckldq_u128_fallback,
3922 iemAImpl_vpunpcklqdq_u128, iemAImpl_vpunpcklqdq_u128_fallback,
3923 iemAImpl_vunpcklps_u128, iemAImpl_vunpcklps_u128_fallback,
3924 iemAImpl_vunpcklpd_u128, iemAImpl_vunpcklpd_u128_fallback,
3925 iemAImpl_vunpckhps_u128, iemAImpl_vunpckhps_u128_fallback,
3926 iemAImpl_vunpckhpd_u128, iemAImpl_vunpckhpd_u128_fallback;
3927
3928FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpcklbw_u256, iemAImpl_vpunpcklbw_u256_fallback,
3929 iemAImpl_vpunpcklwd_u256, iemAImpl_vpunpcklwd_u256_fallback,
3930 iemAImpl_vpunpckldq_u256, iemAImpl_vpunpckldq_u256_fallback,
3931 iemAImpl_vpunpcklqdq_u256, iemAImpl_vpunpcklqdq_u256_fallback,
3932 iemAImpl_vunpcklps_u256, iemAImpl_vunpcklps_u256_fallback,
3933 iemAImpl_vunpcklpd_u256, iemAImpl_vunpcklpd_u256_fallback,
3934 iemAImpl_vunpckhps_u256, iemAImpl_vunpckhps_u256_fallback,
3935 iemAImpl_vunpckhpd_u256, iemAImpl_vunpckhpd_u256_fallback;
3936/** @} */
3937
3938/** @name Media (SSE/MMX/AVX) operations: hihalf1 + hihalf2 -> full1.
3939 * @{ */
3940FNIEMAIMPLMEDIAOPTF2U64 iemAImpl_punpckhbw_u64, iemAImpl_punpckhwd_u64, iemAImpl_punpckhdq_u64;
3941FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_punpckhbw_u128, iemAImpl_punpckhwd_u128, iemAImpl_punpckhdq_u128, iemAImpl_punpckhqdq_u128;
3942FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpunpckhbw_u128, iemAImpl_vpunpckhbw_u128_fallback,
3943 iemAImpl_vpunpckhwd_u128, iemAImpl_vpunpckhwd_u128_fallback,
3944 iemAImpl_vpunpckhdq_u128, iemAImpl_vpunpckhdq_u128_fallback,
3945 iemAImpl_vpunpckhqdq_u128, iemAImpl_vpunpckhqdq_u128_fallback;
3946FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpunpckhbw_u256, iemAImpl_vpunpckhbw_u256_fallback,
3947 iemAImpl_vpunpckhwd_u256, iemAImpl_vpunpckhwd_u256_fallback,
3948 iemAImpl_vpunpckhdq_u256, iemAImpl_vpunpckhdq_u256_fallback,
3949 iemAImpl_vpunpckhqdq_u256, iemAImpl_vpunpckhqdq_u256_fallback;
3950/** @} */
3951
3952/** @name Media (SSE/MMX/AVX) operation: Packed Shuffle Stuff (evil)
3953 * @{ */
3954typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
3955typedef FNIEMAIMPLMEDIAPSHUFU128 *PFNIEMAIMPLMEDIAPSHUFU128;
3956typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHUFU256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
3957typedef FNIEMAIMPLMEDIAPSHUFU256 *PFNIEMAIMPLMEDIAPSHUFU256;
3958IEM_DECL_IMPL_DEF(void, iemAImpl_pshufw_u64,(uint64_t *puDst, uint64_t const *puSrc, uint8_t bEvil));
3959FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_pshufhw_u128, iemAImpl_pshuflw_u128, iemAImpl_pshufd_u128;
3960#ifndef IEM_WITHOUT_ASSEMBLY
3961FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256, iemAImpl_vpshuflw_u256, iemAImpl_vpshufd_u256;
3962#endif
3963FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpshufhw_u256_fallback, iemAImpl_vpshuflw_u256_fallback, iemAImpl_vpshufd_u256_fallback;
3964/** @} */
3965
3966/** @name Media (SSE/MMX/AVX) operation: Shift Immediate Stuff (evil)
3967 * @{ */
3968typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU64,(uint64_t *puDst, uint8_t bShift));
3969typedef FNIEMAIMPLMEDIAPSHIFTU64 *PFNIEMAIMPLMEDIAPSHIFTU64;
3970typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU128,(PRTUINT128U puDst, uint8_t bShift));
3971typedef FNIEMAIMPLMEDIAPSHIFTU128 *PFNIEMAIMPLMEDIAPSHIFTU128;
3972typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAPSHIFTU256,(PRTUINT256U puDst, uint8_t bShift));
3973typedef FNIEMAIMPLMEDIAPSHIFTU256 *PFNIEMAIMPLMEDIAPSHIFTU256;
3974FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psllw_imm_u64, iemAImpl_pslld_imm_u64, iemAImpl_psllq_imm_u64;
3975FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psrlw_imm_u64, iemAImpl_psrld_imm_u64, iemAImpl_psrlq_imm_u64;
3976FNIEMAIMPLMEDIAPSHIFTU64 iemAImpl_psraw_imm_u64, iemAImpl_psrad_imm_u64;
3977FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psllw_imm_u128, iemAImpl_pslld_imm_u128, iemAImpl_psllq_imm_u128;
3978FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psrlw_imm_u128, iemAImpl_psrld_imm_u128, iemAImpl_psrlq_imm_u128;
3979FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_psraw_imm_u128, iemAImpl_psrad_imm_u128;
3980FNIEMAIMPLMEDIAPSHIFTU128 iemAImpl_pslldq_imm_u128, iemAImpl_psrldq_imm_u128;
3981/** @} */
3982
3983/** @name Media (SSE/MMX/AVX) operation: Move Byte Mask
3984 * @{ */
3985IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovq_u64,(uint64_t *puMem, uint64_t const *puSrc, uint64_t const *puMsk));
3986IEM_DECL_IMPL_DEF(void, iemAImpl_maskmovdqu_u128,(PRTUINT128U puMem, PCRTUINT128U puSrc, PCRTUINT128U puMsk));
3987IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u64,(uint64_t *pu64Dst, uint64_t const *puSrc));
3988IEM_DECL_IMPL_DEF(void, iemAImpl_pmovmskb_u128,(uint64_t *pu64Dst, PCRTUINT128U puSrc));
3989#ifndef IEM_WITHOUT_ASSEMBLY
3990IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3991#endif
3992IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovmskb_u256_fallback,(uint64_t *pu64Dst, PCRTUINT256U puSrc));
3993/** @} */
3994
3995/** @name Media (SSE/MMX/AVX) operations: Variable Blend Packed Bytes/R32/R64.
3996 * @{ */
3997typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puMask));
3998typedef FNIEMAIMPLBLENDU128 *PFNIEMAIMPLBLENDU128;
3999typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, PCRTUINT128U puMask));
4000typedef FNIEMAIMPLAVXBLENDU128 *PFNIEMAIMPLAVXBLENDU128;
4001typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLAVXBLENDU256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, PCRTUINT256U puMask));
4002typedef FNIEMAIMPLAVXBLENDU256 *PFNIEMAIMPLAVXBLENDU256;
4003
4004FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128;
4005FNIEMAIMPLBLENDU128 iemAImpl_pblendvb_u128_fallback;
4006FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128;
4007FNIEMAIMPLAVXBLENDU128 iemAImpl_vpblendvb_u128_fallback;
4008FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256;
4009FNIEMAIMPLAVXBLENDU256 iemAImpl_vpblendvb_u256_fallback;
4010
4011FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128;
4012FNIEMAIMPLBLENDU128 iemAImpl_blendvps_u128_fallback;
4013FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128;
4014FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvps_u128_fallback;
4015FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256;
4016FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvps_u256_fallback;
4017
4018FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128;
4019FNIEMAIMPLBLENDU128 iemAImpl_blendvpd_u128_fallback;
4020FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128;
4021FNIEMAIMPLAVXBLENDU128 iemAImpl_vblendvpd_u128_fallback;
4022FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256;
4023FNIEMAIMPLAVXBLENDU256 iemAImpl_vblendvpd_u256_fallback;
4024/** @} */
4025
4026
4027/** @name Media (SSE/MMX/AVX) operation: Sort this later
4028 * @{ */
4029IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4030IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4031IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4032IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4033IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4034
4035IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4036IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4037IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4038IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4039IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4040
4041IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4042IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4043IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
4044IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4045IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4046
4047IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4048IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4049IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4050IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4051IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4052
4053IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4054IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4055IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4056IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4057IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4058
4059IEM_DECL_IMPL_DEF(void, iemAImpl_pmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4060IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4061IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4062IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4063IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovsxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4064
4065IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4066IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128,(PRTUINT128U puDst, uint64_t uSrc));
4067IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4068IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4069IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbw_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4070
4071IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4072IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128,(PRTUINT128U puDst, uint32_t uSrc));
4073IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4074IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4075IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4076
4077IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4078IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128,(PRTUINT128U puDst, uint16_t uSrc));
4079IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u128_fallback,(PRTUINT128U puDst, uint16_t uSrc));
4080IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4081IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxbq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4082
4083IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4084IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128,(PRTUINT128U puDst, uint64_t uSrc));
4085IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4086IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4087IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwd_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4088
4089IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4090IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128,(PRTUINT128U puDst, uint32_t uSrc));
4091IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u128_fallback,(PRTUINT128U puDst, uint32_t uSrc));
4092IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4093IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxwq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4094
4095IEM_DECL_IMPL_DEF(void, iemAImpl_pmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4096IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128,(PRTUINT128U puDst, uint64_t uSrc));
4097IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u128_fallback,(PRTUINT128U puDst, uint64_t uSrc));
4098IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4099IEM_DECL_IMPL_DEF(void, iemAImpl_vpmovzxdq_u256_fallback,(PRTUINT256U puDst, PCRTUINT128U puSrc));
4100
4101IEM_DECL_IMPL_DEF(void, iemAImpl_shufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4102IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4103IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4104IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4105IEM_DECL_IMPL_DEF(void, iemAImpl_vshufpd_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4106
4107IEM_DECL_IMPL_DEF(void, iemAImpl_shufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4108IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4109IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4110IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4111IEM_DECL_IMPL_DEF(void, iemAImpl_vshufps_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4112
4113IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
4114IEM_DECL_IMPL_DEF(void, iemAImpl_palignr_u64_fallback,(uint64_t *pu64Dst, uint64_t u64Src, uint8_t bEvil));
4115
4116IEM_DECL_IMPL_DEF(void, iemAImpl_movmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4117IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4118IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4119IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4120IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskps_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4121
4122IEM_DECL_IMPL_DEF(void, iemAImpl_movmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4123IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4124IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u128_fallback,(uint8_t *pu8Dst, PCRTUINT128U puSrc));
4125IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4126IEM_DECL_IMPL_DEF(void, iemAImpl_vmovmskpd_u256_fallback,(uint8_t *pu8Dst, PCRTUINT256U puSrc));
4127
4128
4129typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t bEvil));
4130typedef FNIEMAIMPLMEDIAOPTF2U128IMM8 *PFNIEMAIMPLMEDIAOPTF2U128IMM8;
4131typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF2U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t bEvil));
4132typedef FNIEMAIMPLMEDIAOPTF2U256IMM8 *PFNIEMAIMPLMEDIAOPTF2U256IMM8;
4133typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U128IMM8,(PRTUINT128U puDst, PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint8_t bEvil));
4134typedef FNIEMAIMPLMEDIAOPTF3U128IMM8 *PFNIEMAIMPLMEDIAOPTF3U128IMM8;
4135typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLMEDIAOPTF3U256IMM8,(PRTUINT256U puDst, PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint8_t bEvil));
4136typedef FNIEMAIMPLMEDIAOPTF3U256IMM8 *PFNIEMAIMPLMEDIAOPTF3U256IMM8;
4137
4138FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_palignr_u128, iemAImpl_palignr_u128_fallback;
4139FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pblendw_u128, iemAImpl_pblendw_u128_fallback;
4140FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendps_u128, iemAImpl_blendps_u128_fallback;
4141FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_blendpd_u128, iemAImpl_blendpd_u128_fallback;
4142
4143FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpalignr_u128, iemAImpl_vpalignr_u128_fallback;
4144FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendw_u128, iemAImpl_vpblendw_u128_fallback;
4145FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpblendd_u128, iemAImpl_vpblendd_u128_fallback;
4146FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendps_u128, iemAImpl_vblendps_u128_fallback;
4147FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vblendpd_u128, iemAImpl_vblendpd_u128_fallback;
4148
4149FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpalignr_u256, iemAImpl_vpalignr_u256_fallback;
4150FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendw_u256, iemAImpl_vpblendw_u256_fallback;
4151FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vpblendd_u256, iemAImpl_vpblendd_u256_fallback;
4152FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendps_u256, iemAImpl_vblendps_u256_fallback;
4153FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vblendpd_u256, iemAImpl_vblendpd_u256_fallback;
4154FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2i128_u256, iemAImpl_vperm2i128_u256_fallback;
4155FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vperm2f128_u256, iemAImpl_vperm2f128_u256_fallback;
4156
4157FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesimc_u128, iemAImpl_aesimc_u128_fallback;
4158FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenc_u128, iemAImpl_aesenc_u128_fallback;
4159FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesenclast_u128, iemAImpl_aesenclast_u128_fallback;
4160FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdec_u128, iemAImpl_aesdec_u128_fallback;
4161FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_aesdeclast_u128, iemAImpl_aesdeclast_u128_fallback;
4162
4163FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_vaesimc_u128, iemAImpl_vaesimc_u128_fallback;
4164FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesenc_u128, iemAImpl_vaesenc_u128_fallback;
4165FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesenclast_u128, iemAImpl_vaesenclast_u128_fallback;
4166FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesdec_u128, iemAImpl_vaesdec_u128_fallback;
4167FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vaesdeclast_u128, iemAImpl_vaesdeclast_u128_fallback;
4168
4169FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_aeskeygenassist_u128, iemAImpl_aeskeygenassist_u128_fallback;
4170
4171FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vaeskeygenassist_u128, iemAImpl_vaeskeygenassist_u128_fallback;
4172
4173FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1nexte_u128, iemAImpl_sha1nexte_u128_fallback;
4174FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg1_u128, iemAImpl_sha1msg1_u128_fallback;
4175FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha1msg2_u128, iemAImpl_sha1msg2_u128_fallback;
4176FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg1_u128, iemAImpl_sha256msg1_u128_fallback;
4177FNIEMAIMPLMEDIAOPTF2U128 iemAImpl_sha256msg2_u128, iemAImpl_sha256msg2_u128_fallback;
4178FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_sha1rnds4_u128, iemAImpl_sha1rnds4_u128_fallback;
4179IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
4180IEM_DECL_IMPL_DEF(void, iemAImpl_sha256rnds2_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, PCRTUINT128U puXmm0Constants));
4181
4182FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermq_u256, iemAImpl_vpermq_u256_fallback;
4183FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermpd_u256, iemAImpl_vpermpd_u256_fallback;
4184
4185typedef struct IEMPCMPISTRXSRC
4186{
4187 RTUINT128U uSrc1;
4188 RTUINT128U uSrc2;
4189} IEMPCMPISTRXSRC;
4190typedef IEMPCMPISTRXSRC *PIEMPCMPISTRXSRC;
4191typedef const IEMPCMPISTRXSRC *PCIEMPCMPISTRXSRC;
4192
4193typedef struct IEMPCMPESTRXSRC
4194{
4195 RTUINT128U uSrc1;
4196 RTUINT128U uSrc2;
4197 uint64_t u64Rax;
4198 uint64_t u64Rdx;
4199} IEMPCMPESTRXSRC;
4200typedef IEMPCMPESTRXSRC *PIEMPCMPESTRXSRC;
4201typedef const IEMPCMPESTRXSRC *PCIEMPCMPESTRXSRC;
4202
4203typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLPCMPISTRIU128IMM8,(uint32_t *pEFlags, PCRTUINT128U pSrc1, PCRTUINT128U pSrc2, uint8_t bEvil));
4204typedef FNIEMAIMPLPCMPISTRIU128IMM8 *PFNIEMAIMPLPCMPISTRIU128IMM8;
4205typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRIU128IMM8,(uint32_t *pu32Ecx, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
4206typedef FNIEMAIMPLPCMPESTRIU128IMM8 *PFNIEMAIMPLPCMPESTRIU128IMM8;
4207
4208typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPISTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPISTRXSRC pSrc, uint8_t bEvil));
4209typedef FNIEMAIMPLPCMPISTRMU128IMM8 *PFNIEMAIMPLPCMPISTRMU128IMM8;
4210typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLPCMPESTRMU128IMM8,(PRTUINT128U puDst, uint32_t *pEFlags, PCIEMPCMPESTRXSRC pSrc, uint8_t bEvil));
4211typedef FNIEMAIMPLPCMPESTRMU128IMM8 *PFNIEMAIMPLPCMPESTRMU128IMM8;
4212
4213FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_pcmpistri_u128, iemAImpl_pcmpistri_u128_fallback;
4214FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_pcmpestri_u128, iemAImpl_pcmpestri_u128_fallback;
4215FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_pcmpistrm_u128, iemAImpl_pcmpistrm_u128_fallback;
4216FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_pcmpestrm_u128, iemAImpl_pcmpestrm_u128_fallback;
4217FNIEMAIMPLPCMPISTRIU128IMM8 iemAImpl_vpcmpistri_u128, iemAImpl_vpcmpistri_u128_fallback;
4218FNIEMAIMPLPCMPESTRIU128IMM8 iemAImpl_vpcmpestri_u128, iemAImpl_vpcmpestri_u128_fallback;
4219FNIEMAIMPLPCMPISTRMU128IMM8 iemAImpl_vpcmpistrm_u128, iemAImpl_vpcmpistrm_u128_fallback;
4220FNIEMAIMPLPCMPESTRMU128IMM8 iemAImpl_vpcmpestrm_u128, iemAImpl_vpcmpestrm_u128_fallback;
4221
4222
4223FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_pclmulqdq_u128, iemAImpl_pclmulqdq_u128_fallback;
4224FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vpclmulqdq_u128, iemAImpl_vpclmulqdq_u128_fallback;
4225
4226FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_mpsadbw_u128, iemAImpl_mpsadbw_u128_fallback;
4227FNIEMAIMPLMEDIAOPTF3U128IMM8 iemAImpl_vmpsadbw_u128, iemAImpl_vmpsadbw_u128_fallback;
4228FNIEMAIMPLMEDIAOPTF3U256IMM8 iemAImpl_vmpsadbw_u256, iemAImpl_vmpsadbw_u256_fallback;
4229
4230FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllw_imm_u128, iemAImpl_vpsllw_imm_u128_fallback;
4231FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllw_imm_u256, iemAImpl_vpsllw_imm_u256_fallback;
4232FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpslld_imm_u128, iemAImpl_vpslld_imm_u128_fallback;
4233FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpslld_imm_u256, iemAImpl_vpslld_imm_u256_fallback;
4234FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsllq_imm_u128, iemAImpl_vpsllq_imm_u128_fallback;
4235FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsllq_imm_u256, iemAImpl_vpsllq_imm_u256_fallback;
4236IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4237IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4238IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4239IEM_DECL_IMPL_DEF(void, iemAImpl_vpslldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4240
4241FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsraw_imm_u128, iemAImpl_vpsraw_imm_u128_fallback;
4242FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsraw_imm_u256, iemAImpl_vpsraw_imm_u256_fallback;
4243FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrad_imm_u128, iemAImpl_vpsrad_imm_u128_fallback;
4244FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrad_imm_u256, iemAImpl_vpsrad_imm_u256_fallback;
4245
4246FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlw_imm_u128, iemAImpl_vpsrlw_imm_u128_fallback;
4247FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlw_imm_u256, iemAImpl_vpsrlw_imm_u256_fallback;
4248FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrld_imm_u128, iemAImpl_vpsrld_imm_u128_fallback;
4249FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrld_imm_u256, iemAImpl_vpsrld_imm_u256_fallback;
4250FNIEMAIMPLMEDIAPSHUFU128 iemAImpl_vpsrlq_imm_u128, iemAImpl_vpsrlq_imm_u128_fallback;
4251FNIEMAIMPLMEDIAPSHUFU256 iemAImpl_vpsrlq_imm_u256, iemAImpl_vpsrlq_imm_u256_fallback;
4252IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4253IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u128_fallback,(PRTUINT128U puDst, PCRTUINT128U puSrc, uint8_t uShift));
4254IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4255IEM_DECL_IMPL_DEF(void, iemAImpl_vpsrldq_imm_u256_fallback,(PRTUINT256U puDst, PCRTUINT256U puSrc, uint8_t uShift));
4256
4257FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilps_u128, iemAImpl_vpermilps_u128_fallback;
4258FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilps_imm_u128, iemAImpl_vpermilps_imm_u128_fallback;
4259FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilps_u256, iemAImpl_vpermilps_u256_fallback;
4260FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilps_imm_u256, iemAImpl_vpermilps_imm_u256_fallback;
4261
4262FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpermilpd_u128, iemAImpl_vpermilpd_u128_fallback;
4263FNIEMAIMPLMEDIAOPTF2U128IMM8 iemAImpl_vpermilpd_imm_u128, iemAImpl_vpermilpd_imm_u128_fallback;
4264FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpermilpd_u256, iemAImpl_vpermilpd_u256_fallback;
4265FNIEMAIMPLMEDIAOPTF2U256IMM8 iemAImpl_vpermilpd_imm_u256, iemAImpl_vpermilpd_imm_u256_fallback;
4266
4267FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvd_u128, iemAImpl_vpsllvd_u128_fallback;
4268FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvd_u256, iemAImpl_vpsllvd_u256_fallback;
4269FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsllvq_u128, iemAImpl_vpsllvq_u128_fallback;
4270FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsllvq_u256, iemAImpl_vpsllvq_u256_fallback;
4271FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsravd_u128, iemAImpl_vpsravd_u128_fallback;
4272FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsravd_u256, iemAImpl_vpsravd_u256_fallback;
4273FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvd_u128, iemAImpl_vpsrlvd_u128_fallback;
4274FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvd_u256, iemAImpl_vpsrlvd_u256_fallback;
4275FNIEMAIMPLMEDIAOPTF3U128 iemAImpl_vpsrlvq_u128, iemAImpl_vpsrlvq_u128_fallback;
4276FNIEMAIMPLMEDIAOPTF3U256 iemAImpl_vpsrlvq_u256, iemAImpl_vpsrlvq_u256_fallback;
4277/** @} */
4278
4279/** @name Media Odds and Ends
4280 * @{ */
4281typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U8,(uint32_t *puDst, uint8_t uSrc));
4282typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U16,(uint32_t *puDst, uint16_t uSrc));
4283typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U32,(uint32_t *puDst, uint32_t uSrc));
4284typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLCR32U64,(uint32_t *puDst, uint64_t uSrc));
4285FNIEMAIMPLCR32U8 iemAImpl_crc32_u8, iemAImpl_crc32_u8_fallback;
4286FNIEMAIMPLCR32U16 iemAImpl_crc32_u16, iemAImpl_crc32_u16_fallback;
4287FNIEMAIMPLCR32U32 iemAImpl_crc32_u32, iemAImpl_crc32_u32_fallback;
4288FNIEMAIMPLCR32U64 iemAImpl_crc32_u64, iemAImpl_crc32_u64_fallback;
4289
4290typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL128,(PCRTUINT128U puSrc1, PCRTUINT128U puSrc2, uint32_t *pEFlags));
4291typedef FNIEMAIMPLF2EFL128 *PFNIEMAIMPLF2EFL128;
4292typedef IEM_DECL_IMPL_TYPE(void, FNIEMAIMPLF2EFL256,(PCRTUINT256U puSrc1, PCRTUINT256U puSrc2, uint32_t *pEFlags));
4293typedef FNIEMAIMPLF2EFL256 *PFNIEMAIMPLF2EFL256;
4294FNIEMAIMPLF2EFL128 iemAImpl_ptest_u128;
4295FNIEMAIMPLF2EFL256 iemAImpl_vptest_u256, iemAImpl_vptest_u256_fallback;
4296FNIEMAIMPLF2EFL128 iemAImpl_vtestps_u128, iemAImpl_vtestps_u128_fallback;
4297FNIEMAIMPLF2EFL256 iemAImpl_vtestps_u256, iemAImpl_vtestps_u256_fallback;
4298FNIEMAIMPLF2EFL128 iemAImpl_vtestpd_u128, iemAImpl_vtestpd_u128_fallback;
4299FNIEMAIMPLF2EFL256 iemAImpl_vtestpd_u256, iemAImpl_vtestpd_u256_fallback;
4300
4301typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U64,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4302typedef FNIEMAIMPLSSEF2I32U64 *PFNIEMAIMPLSSEF2I32U64;
4303typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U64,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint64_t *pu64Src)); /* pu64Src is a double precision floating point. */
4304typedef FNIEMAIMPLSSEF2I64U64 *PFNIEMAIMPLSSEF2I64U64;
4305typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32U32,(uint32_t uMxCsrIn, int32_t *pi32Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4306typedef FNIEMAIMPLSSEF2I32U32 *PFNIEMAIMPLSSEF2I32U32;
4307typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64U32,(uint32_t uMxCsrIn, int64_t *pi64Dst, const uint32_t *pu32Src)); /* pu32Src is a single precision floating point. */
4308typedef FNIEMAIMPLSSEF2I64U32 *PFNIEMAIMPLSSEF2I64U32;
4309typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32R32,(uint32_t uMxCsrIn, int32_t *pi32Dst, PCRTFLOAT32U pr32Src));
4310typedef FNIEMAIMPLSSEF2I32R32 *PFNIEMAIMPLSSEF2I32R32;
4311typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64R32,(uint32_t uMxCsrIn, int64_t *pi64Dst, PCRTFLOAT32U pr32Src));
4312typedef FNIEMAIMPLSSEF2I64R32 *PFNIEMAIMPLSSEF2I64R32;
4313typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I32R64,(uint32_t uMxCsrIn, int32_t *pi32Dst, PCRTFLOAT64U pr64Src));
4314typedef FNIEMAIMPLSSEF2I32R64 *PFNIEMAIMPLSSEF2I32R64;
4315typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2I64R64,(uint32_t uMxCsrIn, int64_t *pi64Dst, PCRTFLOAT64U pr64Src));
4316typedef FNIEMAIMPLSSEF2I64R64 *PFNIEMAIMPLSSEF2I64R64;
4317
4318FNIEMAIMPLSSEF2I32U64 iemAImpl_cvttsd2si_i32_r64;
4319FNIEMAIMPLSSEF2I32U64 iemAImpl_cvtsd2si_i32_r64;
4320
4321FNIEMAIMPLSSEF2I64U64 iemAImpl_cvttsd2si_i64_r64;
4322FNIEMAIMPLSSEF2I64U64 iemAImpl_cvtsd2si_i64_r64;
4323
4324FNIEMAIMPLSSEF2I32U32 iemAImpl_cvttss2si_i32_r32;
4325FNIEMAIMPLSSEF2I32U32 iemAImpl_cvtss2si_i32_r32;
4326
4327FNIEMAIMPLSSEF2I64U32 iemAImpl_cvttss2si_i64_r32;
4328FNIEMAIMPLSSEF2I64U32 iemAImpl_cvtss2si_i64_r32;
4329
4330FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvttss2si_i32_r32, iemAImpl_vcvttss2si_i32_r32_fallback;
4331FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvttss2si_i64_r32, iemAImpl_vcvttss2si_i64_r32_fallback;
4332FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvtss2si_i32_r32, iemAImpl_vcvtss2si_i32_r32_fallback;
4333FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvtss2si_i64_r32, iemAImpl_vcvtss2si_i64_r32_fallback;
4334
4335FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvttss2si_i32_r64, iemAImpl_vcvttss2si_i32_r64_fallback;
4336FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvttss2si_i64_r64, iemAImpl_vcvttss2si_i64_r64_fallback;
4337FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvtss2si_i32_r64, iemAImpl_vcvtss2si_i32_r64_fallback;
4338FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvtss2si_i64_r64, iemAImpl_vcvtss2si_i64_r64_fallback;
4339
4340FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvttsd2si_i32_r32, iemAImpl_vcvttsd2si_i32_r32_fallback;
4341FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvttsd2si_i64_r32, iemAImpl_vcvttsd2si_i64_r32_fallback;
4342FNIEMAIMPLSSEF2I32R32 iemAImpl_vcvtsd2si_i32_r32, iemAImpl_vcvtsd2si_i32_r32_fallback;
4343FNIEMAIMPLSSEF2I64R32 iemAImpl_vcvtsd2si_i64_r32, iemAImpl_vcvtsd2si_i64_r32_fallback;
4344
4345FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvttsd2si_i32_r64, iemAImpl_vcvttsd2si_i32_r64_fallback;
4346FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvttsd2si_i64_r64, iemAImpl_vcvttsd2si_i64_r64_fallback;
4347FNIEMAIMPLSSEF2I32R64 iemAImpl_vcvtsd2si_i32_r64, iemAImpl_vcvtsd2si_i32_r64_fallback;
4348FNIEMAIMPLSSEF2I64R64 iemAImpl_vcvtsd2si_i64_r64, iemAImpl_vcvtsd2si_i64_r64_fallback;
4349
4350typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I32,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int32_t *pi32Src));
4351typedef FNIEMAIMPLSSEF2R32I32 *PFNIEMAIMPLSSEF2R32I32;
4352typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R32I64,(uint32_t uMxCsrIn, PRTFLOAT32U pr32Dst, const int64_t *pi64Src));
4353typedef FNIEMAIMPLSSEF2R32I64 *PFNIEMAIMPLSSEF2R32I64;
4354
4355FNIEMAIMPLSSEF2R32I32 iemAImpl_cvtsi2ss_r32_i32;
4356FNIEMAIMPLSSEF2R32I64 iemAImpl_cvtsi2ss_r32_i64;
4357
4358typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLAVXF3XMMI32,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc, const int32_t *pi32Src));
4359typedef FNIEMAIMPLAVXF3XMMI32 *PFNIEMAIMPLAVXF3XMMI32;
4360typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLAVXF3XMMI64,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc, const int64_t *pi64Src));
4361typedef FNIEMAIMPLAVXF3XMMI64 *PFNIEMAIMPLAVXF3XMMI64;
4362
4363FNIEMAIMPLAVXF3XMMI32 iemAImpl_vcvtsi2ss_u128_i32, iemAImpl_vcvtsi2ss_u128_i32_fallback;
4364FNIEMAIMPLAVXF3XMMI64 iemAImpl_vcvtsi2ss_u128_i64, iemAImpl_vcvtsi2ss_u128_i64_fallback;
4365
4366
4367typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I32,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int32_t *pi32Src));
4368typedef FNIEMAIMPLSSEF2R64I32 *PFNIEMAIMPLSSEF2R64I32;
4369typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLSSEF2R64I64,(uint32_t uMxCsrIn, PRTFLOAT64U pr64Dst, const int64_t *pi64Src));
4370typedef FNIEMAIMPLSSEF2R64I64 *PFNIEMAIMPLSSEF2R64I64;
4371
4372FNIEMAIMPLSSEF2R64I32 iemAImpl_cvtsi2sd_r64_i32;
4373FNIEMAIMPLSSEF2R64I64 iemAImpl_cvtsi2sd_r64_i64;
4374
4375FNIEMAIMPLAVXF3XMMI32 iemAImpl_vcvtsi2sd_u128_i32, iemAImpl_vcvtsi2sd_u128_i32_fallback;
4376FNIEMAIMPLAVXF3XMMI64 iemAImpl_vcvtsi2sd_u128_i64, iemAImpl_vcvtsi2sd_u128_i64_fallback;
4377
4378IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u128_u64,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4379IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u128_u64_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4380IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u256_u128,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4381IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtps2pd_u256_u128_fallback,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4382
4383
4384IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u128_u64,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4385IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u128_u64_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, const uint64_t *pu64Src)); /* Actually two single precision floating point values. */
4386IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u256_u128,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4387IEM_DECL_IMPL_DEF(uint32_t, iemAImpl_vcvtdq2pd_u256_u128_fallback,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86XMMREG puSrc));
4388
4389
4390typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR32R32,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT32U uSrc1, RTFLOAT32U uSrc2));
4391typedef FNIEMAIMPLF2EFLMXCSRR32R32 *PFNIEMAIMPLF2EFLMXCSRR32R32;
4392
4393typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLF2EFLMXCSRR64R64,(uint32_t uMxCsrIn, uint32_t *pfEFlags, RTFLOAT64U uSrc1, RTFLOAT64U uSrc2));
4394typedef FNIEMAIMPLF2EFLMXCSRR64R64 *PFNIEMAIMPLF2EFLMXCSRR64R64;
4395
4396FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_ucomiss_u128;
4397FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vucomiss_u128, iemAImpl_vucomiss_u128_fallback;
4398
4399FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_ucomisd_u128;
4400FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vucomisd_u128, iemAImpl_vucomisd_u128_fallback;
4401
4402FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_comiss_u128;
4403FNIEMAIMPLF2EFLMXCSRR32R32 iemAImpl_vcomiss_u128, iemAImpl_vcomiss_u128_fallback;
4404
4405FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_comisd_u128;
4406FNIEMAIMPLF2EFLMXCSRR64R64 iemAImpl_vcomisd_u128, iemAImpl_vcomisd_u128_fallback;
4407
4408
4409typedef struct IEMMEDIAF2XMMSRC
4410{
4411 X86XMMREG uSrc1;
4412 X86XMMREG uSrc2;
4413} IEMMEDIAF2XMMSRC;
4414typedef IEMMEDIAF2XMMSRC *PIEMMEDIAF2XMMSRC;
4415typedef const IEMMEDIAF2XMMSRC *PCIEMMEDIAF2XMMSRC;
4416
4417
4418typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3XMMIMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCIEMMEDIAF2XMMSRC puSrc, uint8_t bEvil));
4419typedef FNIEMAIMPLMEDIAF3XMMIMM8 *PFNIEMAIMPLMEDIAF3XMMIMM8;
4420
4421
4422typedef struct IEMMEDIAF2YMMSRC
4423{
4424 X86YMMREG uSrc1;
4425 X86YMMREG uSrc2;
4426} IEMMEDIAF2YMMSRC;
4427typedef IEMMEDIAF2YMMSRC *PIEMMEDIAF2YMMSRC;
4428typedef const IEMMEDIAF2YMMSRC *PCIEMMEDIAF2YMMSRC;
4429
4430
4431typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF3YMMIMM8,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCIEMMEDIAF2YMMSRC puSrc, uint8_t bEvil));
4432typedef FNIEMAIMPLMEDIAF3YMMIMM8 *PFNIEMAIMPLMEDIAF3YMMIMM8;
4433
4434
4435FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmpps_u128;
4436FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmppd_u128;
4437FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmpss_u128;
4438FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_cmpsd_u128;
4439
4440FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmpps_u128, iemAImpl_vcmpps_u128_fallback;
4441FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmppd_u128, iemAImpl_vcmppd_u128_fallback;
4442FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmpss_u128, iemAImpl_vcmpss_u128_fallback;
4443FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vcmpsd_u128, iemAImpl_vcmpsd_u128_fallback;
4444
4445FNIEMAIMPLMEDIAF3YMMIMM8 iemAImpl_vcmpps_u256, iemAImpl_vcmpps_u256_fallback;
4446FNIEMAIMPLMEDIAF3YMMIMM8 iemAImpl_vcmppd_u256, iemAImpl_vcmppd_u256_fallback;
4447
4448FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_roundss_u128;
4449FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_roundsd_u128;
4450
4451FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_dpps_u128, iemAImpl_dpps_u128_fallback;
4452FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_dppd_u128, iemAImpl_dppd_u128_fallback;
4453
4454
4455typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U128IMM8,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc, uint8_t bEvil));
4456typedef FNIEMAIMPLMEDIAF2U128IMM8 *PFNIEMAIMPLMEDIAF2U128IMM8;
4457
4458
4459typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMEDIAF2U256IMM8,(uint32_t uMxCsrIn, PX86YMMREG puDst, PCX86YMMREG puSrc, uint8_t bEvil));
4460typedef FNIEMAIMPLMEDIAF2U256IMM8 *PFNIEMAIMPLMEDIAF2U256IMM8;
4461
4462
4463FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_roundps_u128, iemAImpl_roundps_u128_fallback;
4464FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_roundpd_u128, iemAImpl_roundpd_u128_fallback;
4465
4466FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_vroundps_u128, iemAImpl_vroundps_u128_fallback;
4467FNIEMAIMPLMEDIAF2U128IMM8 iemAImpl_vroundpd_u128, iemAImpl_vroundpd_u128_fallback;
4468
4469FNIEMAIMPLMEDIAF2U256IMM8 iemAImpl_vroundps_u256, iemAImpl_vroundps_u256_fallback;
4470FNIEMAIMPLMEDIAF2U256IMM8 iemAImpl_vroundpd_u256, iemAImpl_vroundpd_u256_fallback;
4471
4472FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vroundss_u128, iemAImpl_vroundss_u128_fallback;
4473FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vroundsd_u128, iemAImpl_vroundsd_u128_fallback;
4474
4475FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vdpps_u128, iemAImpl_vdpps_u128_fallback;
4476FNIEMAIMPLMEDIAF3XMMIMM8 iemAImpl_vdppd_u128, iemAImpl_vdppd_u128_fallback;
4477
4478FNIEMAIMPLMEDIAF3YMMIMM8 iemAImpl_vdpps_u256, iemAImpl_vdpps_u256_fallback;
4479
4480
4481typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U128,(uint32_t fMxCsrIn, uint64_t *pu64Dst, PCX86XMMREG pSrc));
4482typedef FNIEMAIMPLMXCSRU64U128 *PFNIEMAIMPLMXCSRU64U128;
4483
4484FNIEMAIMPLMXCSRU64U128 iemAImpl_cvtpd2pi_u128;
4485FNIEMAIMPLMXCSRU64U128 iemAImpl_cvttpd2pi_u128;
4486
4487typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU128U64,(uint32_t fMxCsrIn, PX86XMMREG pDst, uint64_t u64Src));
4488typedef FNIEMAIMPLMXCSRU128U64 *PFNIEMAIMPLMXCSRU128U64;
4489
4490FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2ps_u128;
4491FNIEMAIMPLMXCSRU128U64 iemAImpl_cvtpi2pd_u128;
4492
4493typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLMXCSRU64U64,(uint32_t fMxCsrIn, uint64_t *pu64Dst, uint64_t u64Src));
4494typedef FNIEMAIMPLMXCSRU64U64 *PFNIEMAIMPLMXCSRU64U64;
4495
4496FNIEMAIMPLMXCSRU64U64 iemAImpl_cvtps2pi_u128;
4497FNIEMAIMPLMXCSRU64U64 iemAImpl_cvttps2pi_u128;
4498
4499/** @} */
4500
4501
4502/** @name Function tables.
4503 * @{
4504 */
4505
4506/**
4507 * Function table for a binary operator providing implementation based on
4508 * operand size.
4509 */
4510typedef struct IEMOPBINSIZES
4511{
4512 PFNIEMAIMPLBINU8 pfnNormalU8, pfnLockedU8;
4513 PFNIEMAIMPLBINU16 pfnNormalU16, pfnLockedU16;
4514 PFNIEMAIMPLBINU32 pfnNormalU32, pfnLockedU32;
4515 PFNIEMAIMPLBINU64 pfnNormalU64, pfnLockedU64;
4516} IEMOPBINSIZES;
4517/** Pointer to a binary operator function table. */
4518typedef IEMOPBINSIZES const *PCIEMOPBINSIZES;
4519
4520
4521/**
4522 * Function table for a unary operator providing implementation based on
4523 * operand size.
4524 */
4525typedef struct IEMOPUNARYSIZES
4526{
4527 PFNIEMAIMPLUNARYU8 pfnNormalU8, pfnLockedU8;
4528 PFNIEMAIMPLUNARYU16 pfnNormalU16, pfnLockedU16;
4529 PFNIEMAIMPLUNARYU32 pfnNormalU32, pfnLockedU32;
4530 PFNIEMAIMPLUNARYU64 pfnNormalU64, pfnLockedU64;
4531} IEMOPUNARYSIZES;
4532/** Pointer to a unary operator function table. */
4533typedef IEMOPUNARYSIZES const *PCIEMOPUNARYSIZES;
4534
4535
4536/**
4537 * Function table for a shift operator providing implementation based on
4538 * operand size.
4539 */
4540typedef struct IEMOPSHIFTSIZES
4541{
4542 PFNIEMAIMPLSHIFTU8 pfnNormalU8;
4543 PFNIEMAIMPLSHIFTU16 pfnNormalU16;
4544 PFNIEMAIMPLSHIFTU32 pfnNormalU32;
4545 PFNIEMAIMPLSHIFTU64 pfnNormalU64;
4546} IEMOPSHIFTSIZES;
4547/** Pointer to a shift operator function table. */
4548typedef IEMOPSHIFTSIZES const *PCIEMOPSHIFTSIZES;
4549
4550
4551/**
4552 * Function table for a multiplication or division operation.
4553 */
4554typedef struct IEMOPMULDIVSIZES
4555{
4556 PFNIEMAIMPLMULDIVU8 pfnU8;
4557 PFNIEMAIMPLMULDIVU16 pfnU16;
4558 PFNIEMAIMPLMULDIVU32 pfnU32;
4559 PFNIEMAIMPLMULDIVU64 pfnU64;
4560} IEMOPMULDIVSIZES;
4561/** Pointer to a multiplication or division operation function table. */
4562typedef IEMOPMULDIVSIZES const *PCIEMOPMULDIVSIZES;
4563
4564
4565/**
4566 * Function table for a double precision shift operator providing implementation
4567 * based on operand size.
4568 */
4569typedef struct IEMOPSHIFTDBLSIZES
4570{
4571 PFNIEMAIMPLSHIFTDBLU16 pfnNormalU16;
4572 PFNIEMAIMPLSHIFTDBLU32 pfnNormalU32;
4573 PFNIEMAIMPLSHIFTDBLU64 pfnNormalU64;
4574} IEMOPSHIFTDBLSIZES;
4575/** Pointer to a double precision shift function table. */
4576typedef IEMOPSHIFTDBLSIZES const *PCIEMOPSHIFTDBLSIZES;
4577
4578
4579/**
4580 * Function table for media instruction taking two full sized media source
4581 * registers and one full sized destination register (AVX).
4582 */
4583typedef struct IEMOPMEDIAF3
4584{
4585 PFNIEMAIMPLMEDIAF3U128 pfnU128;
4586 PFNIEMAIMPLMEDIAF3U256 pfnU256;
4587} IEMOPMEDIAF3;
4588/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4589typedef IEMOPMEDIAF3 const *PCIEMOPMEDIAF3;
4590
4591/** @def IEMOPMEDIAF3_INIT_VARS_EX
4592 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4593 * given functions as initializers. For use in AVX functions where a pair of
4594 * functions are only used once and the function table need not be public. */
4595#ifndef TST_IEM_CHECK_MC
4596# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4597# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4598 static IEMOPMEDIAF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4599 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4600# else
4601# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4602 static IEMOPMEDIAF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4603# endif
4604#else
4605# define IEMOPMEDIAF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4606#endif
4607/** @def IEMOPMEDIAF3_INIT_VARS
4608 * Generate AVX function tables for the @a a_InstrNm instruction.
4609 * @sa IEMOPMEDIAF3_INIT_VARS_EX */
4610#define IEMOPMEDIAF3_INIT_VARS(a_InstrNm) \
4611 IEMOPMEDIAF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4612 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4613
4614
4615/**
4616 * Function table for media instruction taking one full sized media source
4617 * registers and one full sized destination register (AVX).
4618 */
4619typedef struct IEMOPMEDIAF2
4620{
4621 PFNIEMAIMPLMEDIAF2U128 pfnU128;
4622 PFNIEMAIMPLMEDIAF2U256 pfnU256;
4623} IEMOPMEDIAF2;
4624/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4625typedef IEMOPMEDIAF2 const *PCIEMOPMEDIAF2;
4626
4627/** @def IEMOPMEDIAF2_INIT_VARS_EX
4628 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4629 * given functions as initializers. For use in AVX functions where a pair of
4630 * functions are only used once and the function table need not be public. */
4631#ifndef TST_IEM_CHECK_MC
4632# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4633# define IEMOPMEDIAF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4634 static IEMOPMEDIAF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4635 static IEMOPMEDIAF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4636# else
4637# define IEMOPMEDIAF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4638 static IEMOPMEDIAF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4639# endif
4640#else
4641# define IEMOPMEDIAF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4642#endif
4643/** @def IEMOPMEDIAF2_INIT_VARS
4644 * Generate AVX function tables for the @a a_InstrNm instruction.
4645 * @sa IEMOPMEDIAF2_INIT_VARS_EX */
4646#define IEMOPMEDIAF2_INIT_VARS(a_InstrNm) \
4647 IEMOPMEDIAF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4648 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4649
4650
4651/**
4652 * Function table for media instruction taking two full sized media source
4653 * registers and one full sized destination register, but no additional state
4654 * (AVX).
4655 */
4656typedef struct IEMOPMEDIAOPTF3
4657{
4658 PFNIEMAIMPLMEDIAOPTF3U128 pfnU128;
4659 PFNIEMAIMPLMEDIAOPTF3U256 pfnU256;
4660} IEMOPMEDIAOPTF3;
4661/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4662typedef IEMOPMEDIAOPTF3 const *PCIEMOPMEDIAOPTF3;
4663
4664/** @def IEMOPMEDIAOPTF3_INIT_VARS_EX
4665 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4666 * given functions as initializers. For use in AVX functions where a pair of
4667 * functions are only used once and the function table need not be public. */
4668#ifndef TST_IEM_CHECK_MC
4669# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4670# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4671 static IEMOPMEDIAOPTF3 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4672 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4673# else
4674# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4675 static IEMOPMEDIAOPTF3 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4676# endif
4677#else
4678# define IEMOPMEDIAOPTF3_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4679#endif
4680/** @def IEMOPMEDIAOPTF3_INIT_VARS
4681 * Generate AVX function tables for the @a a_InstrNm instruction.
4682 * @sa IEMOPMEDIAOPTF3_INIT_VARS_EX */
4683#define IEMOPMEDIAOPTF3_INIT_VARS(a_InstrNm) \
4684 IEMOPMEDIAOPTF3_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4685 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4686
4687/**
4688 * Function table for media instruction taking one full sized media source
4689 * registers and one full sized destination register, but no additional state
4690 * (AVX).
4691 */
4692typedef struct IEMOPMEDIAOPTF2
4693{
4694 PFNIEMAIMPLMEDIAOPTF2U128 pfnU128;
4695 PFNIEMAIMPLMEDIAOPTF2U256 pfnU256;
4696} IEMOPMEDIAOPTF2;
4697/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4698typedef IEMOPMEDIAOPTF2 const *PCIEMOPMEDIAOPTF2;
4699
4700/** @def IEMOPMEDIAOPTF2_INIT_VARS_EX
4701 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4702 * given functions as initializers. For use in AVX functions where a pair of
4703 * functions are only used once and the function table need not be public. */
4704#ifndef TST_IEM_CHECK_MC
4705# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4706# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4707 static IEMOPMEDIAOPTF2 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4708 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4709# else
4710# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4711 static IEMOPMEDIAOPTF2 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4712# endif
4713#else
4714# define IEMOPMEDIAOPTF2_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4715#endif
4716/** @def IEMOPMEDIAOPTF2_INIT_VARS
4717 * Generate AVX function tables for the @a a_InstrNm instruction.
4718 * @sa IEMOPMEDIAOPTF2_INIT_VARS_EX */
4719#define IEMOPMEDIAOPTF2_INIT_VARS(a_InstrNm) \
4720 IEMOPMEDIAOPTF2_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4721 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4722
4723
4724/**
4725 * Function table for media instruction taking one full sized media source
4726 * register and one full sized destination register and an 8-bit immediate (AVX).
4727 */
4728typedef struct IEMOPMEDIAF2IMM8
4729{
4730 PFNIEMAIMPLMEDIAF2U128IMM8 pfnU128;
4731 PFNIEMAIMPLMEDIAF2U256IMM8 pfnU256;
4732} IEMOPMEDIAF2IMM8;
4733/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4734typedef IEMOPMEDIAF2IMM8 const *PCIEMOPMEDIAF2IMM8;
4735
4736/** @def IEMOPMEDIAF2IMM8_INIT_VARS_EX
4737 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4738 * given functions as initializers. For use in AVX functions where a pair of
4739 * functions are only used once and the function table need not be public. */
4740#ifndef TST_IEM_CHECK_MC
4741# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4742# define IEMOPMEDIAF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4743 static IEMOPMEDIAF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4744 static IEMOPMEDIAF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4745# else
4746# define IEMOPMEDIAF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4747 static IEMOPMEDIAF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4748# endif
4749#else
4750# define IEMOPMEDIAF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4751#endif
4752/** @def IEMOPMEDIAF2IMM8_INIT_VARS
4753 * Generate AVX function tables for the @a a_InstrNm instruction.
4754 * @sa IEMOPMEDIAF2IMM8_INIT_VARS_EX */
4755#define IEMOPMEDIAF2IMM8_INIT_VARS(a_InstrNm) \
4756 IEMOPMEDIAF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4757 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4758
4759
4760/**
4761 * Function table for media instruction taking one full sized media source
4762 * register and one full sized destination register and an 8-bit immediate, but no additional state
4763 * (AVX).
4764 */
4765typedef struct IEMOPMEDIAOPTF2IMM8
4766{
4767 PFNIEMAIMPLMEDIAOPTF2U128IMM8 pfnU128;
4768 PFNIEMAIMPLMEDIAOPTF2U256IMM8 pfnU256;
4769} IEMOPMEDIAOPTF2IMM8;
4770/** Pointer to a media operation function table for 2 full sized ops (AVX). */
4771typedef IEMOPMEDIAOPTF2IMM8 const *PCIEMOPMEDIAOPTF2IMM8;
4772
4773/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX
4774 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4775 * given functions as initializers. For use in AVX functions where a pair of
4776 * functions are only used once and the function table need not be public. */
4777#ifndef TST_IEM_CHECK_MC
4778# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4779# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4780 static IEMOPMEDIAOPTF2IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4781 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4782# else
4783# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4784 static IEMOPMEDIAOPTF2IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4785# endif
4786#else
4787# define IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4788#endif
4789/** @def IEMOPMEDIAOPTF2IMM8_INIT_VARS
4790 * Generate AVX function tables for the @a a_InstrNm instruction.
4791 * @sa IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX */
4792#define IEMOPMEDIAOPTF2IMM8_INIT_VARS(a_InstrNm) \
4793 IEMOPMEDIAOPTF2IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256),\
4794 RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_imm_u256_fallback))
4795
4796/**
4797 * Function table for media instruction taking two full sized media source
4798 * registers and one full sized destination register and an 8-bit immediate, but no additional state
4799 * (AVX).
4800 */
4801typedef struct IEMOPMEDIAOPTF3IMM8
4802{
4803 PFNIEMAIMPLMEDIAOPTF3U128IMM8 pfnU128;
4804 PFNIEMAIMPLMEDIAOPTF3U256IMM8 pfnU256;
4805} IEMOPMEDIAOPTF3IMM8;
4806/** Pointer to a media operation function table for 3 full sized ops (AVX). */
4807typedef IEMOPMEDIAOPTF3IMM8 const *PCIEMOPMEDIAOPTF3IMM8;
4808
4809/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX
4810 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4811 * given functions as initializers. For use in AVX functions where a pair of
4812 * functions are only used once and the function table need not be public. */
4813#ifndef TST_IEM_CHECK_MC
4814# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4815# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4816 static IEMOPMEDIAOPTF3IMM8 const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4817 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4818# else
4819# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4820 static IEMOPMEDIAOPTF3IMM8 const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4821# endif
4822#else
4823# define IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4824#endif
4825/** @def IEMOPMEDIAOPTF3IMM8_INIT_VARS
4826 * Generate AVX function tables for the @a a_InstrNm instruction.
4827 * @sa IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX */
4828#define IEMOPMEDIAOPTF3IMM8_INIT_VARS(a_InstrNm) \
4829 IEMOPMEDIAOPTF3IMM8_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4830 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4831/** @} */
4832
4833
4834/**
4835 * Function table for blend type instruction taking three full sized media source
4836 * registers and one full sized destination register, but no additional state
4837 * (AVX).
4838 */
4839typedef struct IEMOPBLENDOP
4840{
4841 PFNIEMAIMPLAVXBLENDU128 pfnU128;
4842 PFNIEMAIMPLAVXBLENDU256 pfnU256;
4843} IEMOPBLENDOP;
4844/** Pointer to a media operation function table for 4 full sized ops (AVX). */
4845typedef IEMOPBLENDOP const *PCIEMOPBLENDOP;
4846
4847/** @def IEMOPBLENDOP_INIT_VARS_EX
4848 * Declares a s_Host (x86 & amd64 only) and a s_Fallback variable with the
4849 * given functions as initializers. For use in AVX functions where a pair of
4850 * functions are only used once and the function table need not be public. */
4851#ifndef TST_IEM_CHECK_MC
4852# if (defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)) && !defined(IEM_WITHOUT_ASSEMBLY)
4853# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnHostU128, a_pfnHostU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4854 static IEMOPBLENDOP const s_Host = { a_pfnHostU128, a_pfnHostU256 }; \
4855 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4856# else
4857# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) \
4858 static IEMOPBLENDOP const s_Fallback = { a_pfnFallbackU128, a_pfnFallbackU256 }
4859# endif
4860#else
4861# define IEMOPBLENDOP_INIT_VARS_EX(a_pfnU128, a_pfnU256, a_pfnFallbackU128, a_pfnFallbackU256) (void)0
4862#endif
4863/** @def IEMOPBLENDOP_INIT_VARS
4864 * Generate AVX function tables for the @a a_InstrNm instruction.
4865 * @sa IEMOPBLENDOP_INIT_VARS_EX */
4866#define IEMOPBLENDOP_INIT_VARS(a_InstrNm) \
4867 IEMOPBLENDOP_INIT_VARS_EX(RT_CONCAT3(iemAImpl_,a_InstrNm,_u128), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256),\
4868 RT_CONCAT3(iemAImpl_,a_InstrNm,_u128_fallback), RT_CONCAT3(iemAImpl_,a_InstrNm,_u256_fallback))
4869
4870
4871/** @name SSE/AVX single/double precision floating point operations.
4872 * @{ */
4873typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4874typedef FNIEMAIMPLFPSSEF2U128 *PFNIEMAIMPLFPSSEF2U128;
4875typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R32,(uint32_t uMxCsrIn, PX86XMMREG Result, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4876typedef FNIEMAIMPLFPSSEF2U128R32 *PFNIEMAIMPLFPSSEF2U128R32;
4877typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPSSEF2U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4878typedef FNIEMAIMPLFPSSEF2U128R64 *PFNIEMAIMPLFPSSEF2U128R64;
4879
4880typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCX86XMMREG puSrc2));
4881typedef FNIEMAIMPLFPAVXF3U128 *PFNIEMAIMPLFPAVXF3U128;
4882typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R32,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT32U pr32Src2));
4883typedef FNIEMAIMPLFPAVXF3U128R32 *PFNIEMAIMPLFPAVXF3U128R32;
4884typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U128R64,(uint32_t uMxCsrIn, PX86XMMREG pResult, PCX86XMMREG puSrc1, PCRTFLOAT64U pr64Src2));
4885typedef FNIEMAIMPLFPAVXF3U128R64 *PFNIEMAIMPLFPAVXF3U128R64;
4886
4887typedef IEM_DECL_IMPL_TYPE(uint32_t, FNIEMAIMPLFPAVXF3U256,(uint32_t uMxCsrIn, PX86YMMREG pResult, PCX86YMMREG puSrc1, PCX86YMMREG puSrc2));
4888typedef FNIEMAIMPLFPAVXF3U256 *PFNIEMAIMPLFPAVXF3U256;
4889
4890FNIEMAIMPLFPSSEF2U128 iemAImpl_addps_u128;
4891FNIEMAIMPLFPSSEF2U128 iemAImpl_addpd_u128;
4892FNIEMAIMPLFPSSEF2U128 iemAImpl_mulps_u128;
4893FNIEMAIMPLFPSSEF2U128 iemAImpl_mulpd_u128;
4894FNIEMAIMPLFPSSEF2U128 iemAImpl_subps_u128;
4895FNIEMAIMPLFPSSEF2U128 iemAImpl_subpd_u128;
4896FNIEMAIMPLFPSSEF2U128 iemAImpl_minps_u128;
4897FNIEMAIMPLFPSSEF2U128 iemAImpl_minpd_u128;
4898FNIEMAIMPLFPSSEF2U128 iemAImpl_divps_u128;
4899FNIEMAIMPLFPSSEF2U128 iemAImpl_divpd_u128;
4900FNIEMAIMPLFPSSEF2U128 iemAImpl_maxps_u128;
4901FNIEMAIMPLFPSSEF2U128 iemAImpl_maxpd_u128;
4902FNIEMAIMPLFPSSEF2U128 iemAImpl_haddps_u128;
4903FNIEMAIMPLFPSSEF2U128 iemAImpl_haddpd_u128;
4904FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubps_u128;
4905FNIEMAIMPLFPSSEF2U128 iemAImpl_hsubpd_u128;
4906FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtps_u128;
4907FNIEMAIMPLFPSSEF2U128 iemAImpl_rsqrtps_u128;
4908FNIEMAIMPLFPSSEF2U128 iemAImpl_sqrtpd_u128;
4909FNIEMAIMPLFPSSEF2U128 iemAImpl_rcpps_u128;
4910FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubps_u128;
4911FNIEMAIMPLFPSSEF2U128 iemAImpl_addsubpd_u128;
4912
4913FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2ps_u128;
4914IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_cvtps2pd_u128,(uint32_t uMxCsrIn, PX86XMMREG pResult, uint64_t const *pu64Src));
4915
4916FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2ps_u128;
4917FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtps2dq_u128;
4918FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttps2dq_u128;
4919FNIEMAIMPLFPSSEF2U128 iemAImpl_cvttpd2dq_u128;
4920FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtdq2pd_u128;
4921FNIEMAIMPLFPSSEF2U128 iemAImpl_cvtpd2dq_u128;
4922
4923FNIEMAIMPLFPSSEF2U128R32 iemAImpl_addss_u128_r32;
4924FNIEMAIMPLFPSSEF2U128R64 iemAImpl_addsd_u128_r64;
4925FNIEMAIMPLFPSSEF2U128R32 iemAImpl_mulss_u128_r32;
4926FNIEMAIMPLFPSSEF2U128R64 iemAImpl_mulsd_u128_r64;
4927FNIEMAIMPLFPSSEF2U128R32 iemAImpl_subss_u128_r32;
4928FNIEMAIMPLFPSSEF2U128R64 iemAImpl_subsd_u128_r64;
4929FNIEMAIMPLFPSSEF2U128R32 iemAImpl_minss_u128_r32;
4930FNIEMAIMPLFPSSEF2U128R64 iemAImpl_minsd_u128_r64;
4931FNIEMAIMPLFPSSEF2U128R32 iemAImpl_divss_u128_r32;
4932FNIEMAIMPLFPSSEF2U128R64 iemAImpl_divsd_u128_r64;
4933FNIEMAIMPLFPSSEF2U128R32 iemAImpl_maxss_u128_r32;
4934FNIEMAIMPLFPSSEF2U128R64 iemAImpl_maxsd_u128_r64;
4935FNIEMAIMPLFPSSEF2U128R32 iemAImpl_cvtss2sd_u128_r32;
4936FNIEMAIMPLFPSSEF2U128R64 iemAImpl_cvtsd2ss_u128_r64;
4937FNIEMAIMPLFPSSEF2U128R32 iemAImpl_sqrtss_u128_r32;
4938FNIEMAIMPLFPSSEF2U128R64 iemAImpl_sqrtsd_u128_r64;
4939FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rsqrtss_u128_r32;
4940FNIEMAIMPLFPSSEF2U128R32 iemAImpl_rcpss_u128_r32;
4941
4942FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddps_u128, iemAImpl_vaddps_u128_fallback;
4943FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddpd_u128, iemAImpl_vaddpd_u128_fallback;
4944FNIEMAIMPLMEDIAF3U128 iemAImpl_vmulps_u128, iemAImpl_vmulps_u128_fallback;
4945FNIEMAIMPLMEDIAF3U128 iemAImpl_vmulpd_u128, iemAImpl_vmulpd_u128_fallback;
4946FNIEMAIMPLMEDIAF3U128 iemAImpl_vsubps_u128, iemAImpl_vsubps_u128_fallback;
4947FNIEMAIMPLMEDIAF3U128 iemAImpl_vsubpd_u128, iemAImpl_vsubpd_u128_fallback;
4948FNIEMAIMPLMEDIAF3U128 iemAImpl_vminps_u128, iemAImpl_vminps_u128_fallback;
4949FNIEMAIMPLMEDIAF3U128 iemAImpl_vminpd_u128, iemAImpl_vminpd_u128_fallback;
4950FNIEMAIMPLMEDIAF3U128 iemAImpl_vdivps_u128, iemAImpl_vdivps_u128_fallback;
4951FNIEMAIMPLMEDIAF3U128 iemAImpl_vdivpd_u128, iemAImpl_vdivpd_u128_fallback;
4952FNIEMAIMPLMEDIAF3U128 iemAImpl_vmaxps_u128, iemAImpl_vmaxps_u128_fallback;
4953FNIEMAIMPLMEDIAF3U128 iemAImpl_vmaxpd_u128, iemAImpl_vmaxpd_u128_fallback;
4954FNIEMAIMPLMEDIAF3U128 iemAImpl_vhaddps_u128, iemAImpl_vhaddps_u128_fallback;
4955FNIEMAIMPLMEDIAF3U128 iemAImpl_vhaddpd_u128, iemAImpl_vhaddpd_u128_fallback;
4956FNIEMAIMPLMEDIAF3U128 iemAImpl_vhsubps_u128, iemAImpl_vhsubps_u128_fallback;
4957FNIEMAIMPLMEDIAF3U128 iemAImpl_vhsubpd_u128, iemAImpl_vhsubpd_u128_fallback;
4958FNIEMAIMPLMEDIAF2U128 iemAImpl_vsqrtps_u128, iemAImpl_vsqrtps_u128_fallback;
4959FNIEMAIMPLMEDIAF2U128 iemAImpl_vsqrtpd_u128, iemAImpl_vsqrtpd_u128_fallback;
4960FNIEMAIMPLMEDIAF2U128 iemAImpl_vrsqrtps_u128, iemAImpl_vrsqrtps_u128_fallback;
4961FNIEMAIMPLMEDIAF2U128 iemAImpl_vrcpps_u128, iemAImpl_vrcpps_u128_fallback;
4962FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddsubps_u128, iemAImpl_vaddsubps_u128_fallback;
4963FNIEMAIMPLMEDIAF3U128 iemAImpl_vaddsubpd_u128, iemAImpl_vaddsubpd_u128_fallback;
4964FNIEMAIMPLMEDIAF2U128 iemAImpl_vcvtdq2ps_u128, iemAImpl_vcvtdq2ps_u128_fallback;
4965FNIEMAIMPLMEDIAF2U128 iemAImpl_vcvtps2dq_u128, iemAImpl_vcvtps2dq_u128_fallback;
4966FNIEMAIMPLMEDIAF2U128 iemAImpl_vcvttps2dq_u128, iemAImpl_vcvttps2dq_u128_fallback;
4967IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4968IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u128_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4969IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4970IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u128_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4971IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u128,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4972IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u128_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86XMMREG puSrc));
4973
4974
4975FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vaddss_u128_r32, iemAImpl_vaddss_u128_r32_fallback;
4976FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vaddsd_u128_r64, iemAImpl_vaddsd_u128_r64_fallback;
4977FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmulss_u128_r32, iemAImpl_vmulss_u128_r32_fallback;
4978FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmulsd_u128_r64, iemAImpl_vmulsd_u128_r64_fallback;
4979FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsubss_u128_r32, iemAImpl_vsubss_u128_r32_fallback;
4980FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsubsd_u128_r64, iemAImpl_vsubsd_u128_r64_fallback;
4981FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vminss_u128_r32, iemAImpl_vminss_u128_r32_fallback;
4982FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vminsd_u128_r64, iemAImpl_vminsd_u128_r64_fallback;
4983FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vdivss_u128_r32, iemAImpl_vdivss_u128_r32_fallback;
4984FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vdivsd_u128_r64, iemAImpl_vdivsd_u128_r64_fallback;
4985FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vmaxss_u128_r32, iemAImpl_vmaxss_u128_r32_fallback;
4986FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vmaxsd_u128_r64, iemAImpl_vmaxsd_u128_r64_fallback;
4987FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vsqrtss_u128_r32, iemAImpl_vsqrtss_u128_r32_fallback;
4988FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vsqrtsd_u128_r64, iemAImpl_vsqrtsd_u128_r64_fallback;
4989FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vrsqrtss_u128_r32, iemAImpl_vrsqrtss_u128_r32_fallback;
4990FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vrcpss_u128_r32, iemAImpl_vrcpss_u128_r32_fallback;
4991FNIEMAIMPLFPAVXF3U128R32 iemAImpl_vcvtss2sd_u128_r32, iemAImpl_vcvtss2sd_u128_r32_fallback;
4992FNIEMAIMPLFPAVXF3U128R64 iemAImpl_vcvtsd2ss_u128_r64, iemAImpl_vcvtsd2ss_u128_r64_fallback;
4993
4994
4995FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddps_u256, iemAImpl_vaddps_u256_fallback;
4996FNIEMAIMPLFPAVXF3U256 iemAImpl_vaddpd_u256, iemAImpl_vaddpd_u256_fallback;
4997FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulps_u256, iemAImpl_vmulps_u256_fallback;
4998FNIEMAIMPLFPAVXF3U256 iemAImpl_vmulpd_u256, iemAImpl_vmulpd_u256_fallback;
4999FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubps_u256, iemAImpl_vsubps_u256_fallback;
5000FNIEMAIMPLFPAVXF3U256 iemAImpl_vsubpd_u256, iemAImpl_vsubpd_u256_fallback;
5001FNIEMAIMPLFPAVXF3U256 iemAImpl_vminps_u256, iemAImpl_vminps_u256_fallback;
5002FNIEMAIMPLFPAVXF3U256 iemAImpl_vminpd_u256, iemAImpl_vminpd_u256_fallback;
5003FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivps_u256, iemAImpl_vdivps_u256_fallback;
5004FNIEMAIMPLFPAVXF3U256 iemAImpl_vdivpd_u256, iemAImpl_vdivpd_u256_fallback;
5005FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxps_u256, iemAImpl_vmaxps_u256_fallback;
5006FNIEMAIMPLFPAVXF3U256 iemAImpl_vmaxpd_u256, iemAImpl_vmaxpd_u256_fallback;
5007FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddps_u256, iemAImpl_vhaddps_u256_fallback;
5008FNIEMAIMPLFPAVXF3U256 iemAImpl_vhaddpd_u256, iemAImpl_vhaddpd_u256_fallback;
5009FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubps_u256, iemAImpl_vhsubps_u256_fallback;
5010FNIEMAIMPLFPAVXF3U256 iemAImpl_vhsubpd_u256, iemAImpl_vhsubpd_u256_fallback;
5011FNIEMAIMPLMEDIAF3U256 iemAImpl_vaddsubps_u256, iemAImpl_vaddsubps_u256_fallback;
5012FNIEMAIMPLMEDIAF3U256 iemAImpl_vaddsubpd_u256, iemAImpl_vaddsubpd_u256_fallback;
5013FNIEMAIMPLMEDIAF2U256 iemAImpl_vsqrtps_u256, iemAImpl_vsqrtps_u256_fallback;
5014FNIEMAIMPLMEDIAF2U256 iemAImpl_vsqrtpd_u256, iemAImpl_vsqrtpd_u256_fallback;
5015FNIEMAIMPLMEDIAF2U256 iemAImpl_vrsqrtps_u256, iemAImpl_vrsqrtps_u256_fallback;
5016FNIEMAIMPLMEDIAF2U256 iemAImpl_vrcpps_u256, iemAImpl_vrcpps_u256_fallback;
5017FNIEMAIMPLMEDIAF2U256 iemAImpl_vcvtdq2ps_u256, iemAImpl_vcvtdq2ps_u256_fallback;
5018FNIEMAIMPLMEDIAF2U256 iemAImpl_vcvtps2dq_u256, iemAImpl_vcvtps2dq_u256_fallback;
5019FNIEMAIMPLMEDIAF2U256 iemAImpl_vcvttps2dq_u256, iemAImpl_vcvttps2dq_u256_fallback;
5020IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u256,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5021IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2ps_u128_u256_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5022IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u256,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5023IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvttpd2dq_u128_u256_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5024IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u256,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5025IEM_DECL_IMPL_PROTO(uint32_t, iemAImpl_vcvtpd2dq_u128_u256_fallback,(uint32_t uMxCsrIn, PX86XMMREG puDst, PCX86YMMREG puSrc));
5026/** @} */
5027
5028/** @name C instruction implementations for anything slightly complicated.
5029 * @{ */
5030
5031/**
5032 * For typedef'ing or declaring a C instruction implementation function taking
5033 * no extra arguments.
5034 *
5035 * @param a_Name The name of the type.
5036 */
5037# define IEM_CIMPL_DECL_TYPE_0(a_Name) \
5038 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
5039/**
5040 * For defining a C instruction implementation function taking no extra
5041 * arguments.
5042 *
5043 * @param a_Name The name of the function
5044 */
5045# define IEM_CIMPL_DEF_0(a_Name) \
5046 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
5047/**
5048 * Prototype version of IEM_CIMPL_DEF_0.
5049 */
5050# define IEM_CIMPL_PROTO_0(a_Name) \
5051 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr))
5052/**
5053 * For calling a C instruction implementation function taking no extra
5054 * arguments.
5055 *
5056 * This special call macro adds default arguments to the call and allow us to
5057 * change these later.
5058 *
5059 * @param a_fn The name of the function.
5060 */
5061# define IEM_CIMPL_CALL_0(a_fn) a_fn(pVCpu, cbInstr)
5062
5063/** Type for a C instruction implementation function taking no extra
5064 * arguments. */
5065typedef IEM_CIMPL_DECL_TYPE_0(FNIEMCIMPL0);
5066/** Function pointer type for a C instruction implementation function taking
5067 * no extra arguments. */
5068typedef FNIEMCIMPL0 *PFNIEMCIMPL0;
5069
5070/**
5071 * For typedef'ing or declaring a C instruction implementation function taking
5072 * one extra argument.
5073 *
5074 * @param a_Name The name of the type.
5075 * @param a_Type0 The argument type.
5076 * @param a_Arg0 The argument name.
5077 */
5078# define IEM_CIMPL_DECL_TYPE_1(a_Name, a_Type0, a_Arg0) \
5079 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
5080/**
5081 * For defining a C instruction implementation function taking one extra
5082 * argument.
5083 *
5084 * @param a_Name The name of the function
5085 * @param a_Type0 The argument type.
5086 * @param a_Arg0 The argument name.
5087 */
5088# define IEM_CIMPL_DEF_1(a_Name, a_Type0, a_Arg0) \
5089 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
5090/**
5091 * Prototype version of IEM_CIMPL_DEF_1.
5092 */
5093# define IEM_CIMPL_PROTO_1(a_Name, a_Type0, a_Arg0) \
5094 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0))
5095/**
5096 * For calling a C instruction implementation function taking one extra
5097 * argument.
5098 *
5099 * This special call macro adds default arguments to the call and allow us to
5100 * change these later.
5101 *
5102 * @param a_fn The name of the function.
5103 * @param a0 The name of the 1st argument.
5104 */
5105# define IEM_CIMPL_CALL_1(a_fn, a0) a_fn(pVCpu, cbInstr, (a0))
5106
5107/**
5108 * For typedef'ing or declaring a C instruction implementation function taking
5109 * two extra arguments.
5110 *
5111 * @param a_Name The name of the type.
5112 * @param a_Type0 The type of the 1st argument
5113 * @param a_Arg0 The name of the 1st argument.
5114 * @param a_Type1 The type of the 2nd argument.
5115 * @param a_Arg1 The name of the 2nd argument.
5116 */
5117# define IEM_CIMPL_DECL_TYPE_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
5118 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
5119/**
5120 * For defining a C instruction implementation function taking two extra
5121 * arguments.
5122 *
5123 * @param a_Name The name of the function.
5124 * @param a_Type0 The type of the 1st argument
5125 * @param a_Arg0 The name of the 1st argument.
5126 * @param a_Type1 The type of the 2nd argument.
5127 * @param a_Arg1 The name of the 2nd argument.
5128 */
5129# define IEM_CIMPL_DEF_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
5130 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
5131/**
5132 * Prototype version of IEM_CIMPL_DEF_2.
5133 */
5134# define IEM_CIMPL_PROTO_2(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1) \
5135 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1))
5136/**
5137 * For calling a C instruction implementation function taking two extra
5138 * arguments.
5139 *
5140 * This special call macro adds default arguments to the call and allow us to
5141 * change these later.
5142 *
5143 * @param a_fn The name of the function.
5144 * @param a0 The name of the 1st argument.
5145 * @param a1 The name of the 2nd argument.
5146 */
5147# define IEM_CIMPL_CALL_2(a_fn, a0, a1) a_fn(pVCpu, cbInstr, (a0), (a1))
5148
5149/**
5150 * For typedef'ing or declaring a C instruction implementation function taking
5151 * three extra arguments.
5152 *
5153 * @param a_Name The name of the type.
5154 * @param a_Type0 The type of the 1st argument
5155 * @param a_Arg0 The name of the 1st argument.
5156 * @param a_Type1 The type of the 2nd argument.
5157 * @param a_Arg1 The name of the 2nd argument.
5158 * @param a_Type2 The type of the 3rd argument.
5159 * @param a_Arg2 The name of the 3rd argument.
5160 */
5161# define IEM_CIMPL_DECL_TYPE_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
5162 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
5163/**
5164 * For defining a C instruction implementation function taking three extra
5165 * arguments.
5166 *
5167 * @param a_Name The name of the function.
5168 * @param a_Type0 The type of the 1st argument
5169 * @param a_Arg0 The name of the 1st argument.
5170 * @param a_Type1 The type of the 2nd argument.
5171 * @param a_Arg1 The name of the 2nd argument.
5172 * @param a_Type2 The type of the 3rd argument.
5173 * @param a_Arg2 The name of the 3rd argument.
5174 */
5175# define IEM_CIMPL_DEF_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
5176 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
5177/**
5178 * Prototype version of IEM_CIMPL_DEF_3.
5179 */
5180# define IEM_CIMPL_PROTO_3(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2) \
5181 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2))
5182/**
5183 * For calling a C instruction implementation function taking three extra
5184 * arguments.
5185 *
5186 * This special call macro adds default arguments to the call and allow us to
5187 * change these later.
5188 *
5189 * @param a_fn The name of the function.
5190 * @param a0 The name of the 1st argument.
5191 * @param a1 The name of the 2nd argument.
5192 * @param a2 The name of the 3rd argument.
5193 */
5194# define IEM_CIMPL_CALL_3(a_fn, a0, a1, a2) a_fn(pVCpu, cbInstr, (a0), (a1), (a2))
5195
5196
5197/**
5198 * For typedef'ing or declaring a C instruction implementation function taking
5199 * four extra arguments.
5200 *
5201 * @param a_Name The name of the type.
5202 * @param a_Type0 The type of the 1st argument
5203 * @param a_Arg0 The name of the 1st argument.
5204 * @param a_Type1 The type of the 2nd argument.
5205 * @param a_Arg1 The name of the 2nd argument.
5206 * @param a_Type2 The type of the 3rd argument.
5207 * @param a_Arg2 The name of the 3rd argument.
5208 * @param a_Type3 The type of the 4th argument.
5209 * @param a_Arg3 The name of the 4th argument.
5210 */
5211# define IEM_CIMPL_DECL_TYPE_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
5212 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, a_Type3 a_Arg3))
5213/**
5214 * For defining a C instruction implementation function taking four extra
5215 * arguments.
5216 *
5217 * @param a_Name The name of the function.
5218 * @param a_Type0 The type of the 1st argument
5219 * @param a_Arg0 The name of the 1st argument.
5220 * @param a_Type1 The type of the 2nd argument.
5221 * @param a_Arg1 The name of the 2nd argument.
5222 * @param a_Type2 The type of the 3rd argument.
5223 * @param a_Arg2 The name of the 3rd argument.
5224 * @param a_Type3 The type of the 4th argument.
5225 * @param a_Arg3 The name of the 4th argument.
5226 */
5227# define IEM_CIMPL_DEF_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
5228 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5229 a_Type2 a_Arg2, a_Type3 a_Arg3))
5230/**
5231 * Prototype version of IEM_CIMPL_DEF_4.
5232 */
5233# define IEM_CIMPL_PROTO_4(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3) \
5234 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5235 a_Type2 a_Arg2, a_Type3 a_Arg3))
5236/**
5237 * For calling a C instruction implementation function taking four extra
5238 * arguments.
5239 *
5240 * This special call macro adds default arguments to the call and allow us to
5241 * change these later.
5242 *
5243 * @param a_fn The name of the function.
5244 * @param a0 The name of the 1st argument.
5245 * @param a1 The name of the 2nd argument.
5246 * @param a2 The name of the 3rd argument.
5247 * @param a3 The name of the 4th argument.
5248 */
5249# define IEM_CIMPL_CALL_4(a_fn, a0, a1, a2, a3) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3))
5250
5251
5252/**
5253 * For typedef'ing or declaring a C instruction implementation function taking
5254 * five extra arguments.
5255 *
5256 * @param a_Name The name of the type.
5257 * @param a_Type0 The type of the 1st argument
5258 * @param a_Arg0 The name of the 1st argument.
5259 * @param a_Type1 The type of the 2nd argument.
5260 * @param a_Arg1 The name of the 2nd argument.
5261 * @param a_Type2 The type of the 3rd argument.
5262 * @param a_Arg2 The name of the 3rd argument.
5263 * @param a_Type3 The type of the 4th argument.
5264 * @param a_Arg3 The name of the 4th argument.
5265 * @param a_Type4 The type of the 5th argument.
5266 * @param a_Arg4 The name of the 5th argument.
5267 */
5268# define IEM_CIMPL_DECL_TYPE_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
5269 IEM_DECL_IMPL_TYPE(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, \
5270 a_Type0 a_Arg0, a_Type1 a_Arg1, a_Type2 a_Arg2, \
5271 a_Type3 a_Arg3, a_Type4 a_Arg4))
5272/**
5273 * For defining a C instruction implementation function taking five extra
5274 * arguments.
5275 *
5276 * @param a_Name The name of the function.
5277 * @param a_Type0 The type of the 1st argument
5278 * @param a_Arg0 The name of the 1st argument.
5279 * @param a_Type1 The type of the 2nd argument.
5280 * @param a_Arg1 The name of the 2nd argument.
5281 * @param a_Type2 The type of the 3rd argument.
5282 * @param a_Arg2 The name of the 3rd argument.
5283 * @param a_Type3 The type of the 4th argument.
5284 * @param a_Arg3 The name of the 4th argument.
5285 * @param a_Type4 The type of the 5th argument.
5286 * @param a_Arg4 The name of the 5th argument.
5287 */
5288# define IEM_CIMPL_DEF_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
5289 IEM_DECL_IMPL_DEF(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5290 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
5291/**
5292 * Prototype version of IEM_CIMPL_DEF_5.
5293 */
5294# define IEM_CIMPL_PROTO_5(a_Name, a_Type0, a_Arg0, a_Type1, a_Arg1, a_Type2, a_Arg2, a_Type3, a_Arg3, a_Type4, a_Arg4) \
5295 IEM_DECL_IMPL_PROTO(VBOXSTRICTRC, a_Name, (PVMCPUCC pVCpu, uint8_t cbInstr, a_Type0 a_Arg0, a_Type1 a_Arg1, \
5296 a_Type2 a_Arg2, a_Type3 a_Arg3, a_Type4 a_Arg4))
5297/**
5298 * For calling a C instruction implementation function taking five extra
5299 * arguments.
5300 *
5301 * This special call macro adds default arguments to the call and allow us to
5302 * change these later.
5303 *
5304 * @param a_fn The name of the function.
5305 * @param a0 The name of the 1st argument.
5306 * @param a1 The name of the 2nd argument.
5307 * @param a2 The name of the 3rd argument.
5308 * @param a3 The name of the 4th argument.
5309 * @param a4 The name of the 5th argument.
5310 */
5311# define IEM_CIMPL_CALL_5(a_fn, a0, a1, a2, a3, a4) a_fn(pVCpu, cbInstr, (a0), (a1), (a2), (a3), (a4))
5312
5313/** @} */
5314
5315
5316/** @name Opcode Decoder Function Types.
5317 * @{ */
5318
5319/** @typedef PFNIEMOP
5320 * Pointer to an opcode decoder function.
5321 */
5322
5323/** @def FNIEMOP_DEF
5324 * Define an opcode decoder function.
5325 *
5326 * We're using macors for this so that adding and removing parameters as well as
5327 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL
5328 *
5329 * @param a_Name The function name.
5330 */
5331
5332/** @typedef PFNIEMOPRM
5333 * Pointer to an opcode decoder function with RM byte.
5334 */
5335
5336/** @def FNIEMOPRM_DEF
5337 * Define an opcode decoder function with RM byte.
5338 *
5339 * We're using macors for this so that adding and removing parameters as well as
5340 * tweaking compiler specific attributes becomes easier. See FNIEMOP_CALL_1
5341 *
5342 * @param a_Name The function name.
5343 */
5344
5345#if defined(__GNUC__) && defined(RT_ARCH_X86)
5346typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOP)(PVMCPUCC pVCpu);
5347typedef VBOXSTRICTRC (__attribute__((__fastcall__)) * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5348# define FNIEMOP_DEF(a_Name) \
5349 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu)
5350# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5351 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
5352# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5353 IEM_STATIC VBOXSTRICTRC __attribute__((__fastcall__, __nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
5354
5355#elif defined(_MSC_VER) && defined(RT_ARCH_X86)
5356typedef VBOXSTRICTRC (__fastcall * PFNIEMOP)(PVMCPUCC pVCpu);
5357typedef VBOXSTRICTRC (__fastcall * PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5358# define FNIEMOP_DEF(a_Name) \
5359 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
5360# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5361 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
5362# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5363 IEM_STATIC /*__declspec(naked)*/ VBOXSTRICTRC __fastcall a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
5364
5365#elif defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
5366typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
5367typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5368# define FNIEMOP_DEF(a_Name) \
5369 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu)
5370# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5371 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0)
5372# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5373 IEM_STATIC VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1)
5374
5375#else
5376typedef VBOXSTRICTRC (* PFNIEMOP)(PVMCPUCC pVCpu);
5377typedef VBOXSTRICTRC (* PFNIEMOPRM)(PVMCPUCC pVCpu, uint8_t bRm);
5378# define FNIEMOP_DEF(a_Name) \
5379 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP
5380# define FNIEMOP_DEF_1(a_Name, a_Type0, a_Name0) \
5381 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0) IEM_NOEXCEPT_MAY_LONGJMP
5382# define FNIEMOP_DEF_2(a_Name, a_Type0, a_Name0, a_Type1, a_Name1) \
5383 IEM_STATIC VBOXSTRICTRC a_Name(PVMCPUCC pVCpu, a_Type0 a_Name0, a_Type1 a_Name1) IEM_NOEXCEPT_MAY_LONGJMP
5384
5385#endif
5386#define FNIEMOPRM_DEF(a_Name) FNIEMOP_DEF_1(a_Name, uint8_t, bRm)
5387
5388/**
5389 * Call an opcode decoder function.
5390 *
5391 * We're using macors for this so that adding and removing parameters can be
5392 * done as we please. See FNIEMOP_DEF.
5393 */
5394#define FNIEMOP_CALL(a_pfn) (a_pfn)(pVCpu)
5395
5396/**
5397 * Call a common opcode decoder function taking one extra argument.
5398 *
5399 * We're using macors for this so that adding and removing parameters can be
5400 * done as we please. See FNIEMOP_DEF_1.
5401 */
5402#define FNIEMOP_CALL_1(a_pfn, a0) (a_pfn)(pVCpu, a0)
5403
5404/**
5405 * Call a common opcode decoder function taking one extra argument.
5406 *
5407 * We're using macors for this so that adding and removing parameters can be
5408 * done as we please. See FNIEMOP_DEF_1.
5409 */
5410#define FNIEMOP_CALL_2(a_pfn, a0, a1) (a_pfn)(pVCpu, a0, a1)
5411/** @} */
5412
5413
5414/** @name Misc Helpers
5415 * @{ */
5416
5417/** Used to shut up GCC warnings about variables that 'may be used uninitialized'
5418 * due to GCC lacking knowledge about the value range of a switch. */
5419#if RT_CPLUSPLUS_PREREQ(202000)
5420# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: [[unlikely]] AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
5421#else
5422# define IEM_NOT_REACHED_DEFAULT_CASE_RET() default: AssertFailedReturn(VERR_IPE_NOT_REACHED_DEFAULT_CASE)
5423#endif
5424
5425/** Variant of IEM_NOT_REACHED_DEFAULT_CASE_RET that returns a custom value. */
5426#if RT_CPLUSPLUS_PREREQ(202000)
5427# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: [[unlikely]] AssertFailedReturn(a_RetValue)
5428#else
5429# define IEM_NOT_REACHED_DEFAULT_CASE_RET2(a_RetValue) default: AssertFailedReturn(a_RetValue)
5430#endif
5431
5432/**
5433 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
5434 * occation.
5435 */
5436#ifdef LOG_ENABLED
5437# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5438 do { \
5439 /*Log*/ LogAlways(("%s: returning IEM_RETURN_ASPECT_NOT_IMPLEMENTED (line %d)\n", __FUNCTION__, __LINE__)); \
5440 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5441 } while (0)
5442#else
5443# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED() \
5444 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5445#endif
5446
5447/**
5448 * Returns IEM_RETURN_ASPECT_NOT_IMPLEMENTED, and in debug builds logs the
5449 * occation using the supplied logger statement.
5450 *
5451 * @param a_LoggerArgs What to log on failure.
5452 */
5453#ifdef LOG_ENABLED
5454# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5455 do { \
5456 LogAlways((LOG_FN_FMT ": ", __PRETTY_FUNCTION__)); LogAlways(a_LoggerArgs); \
5457 /*LogFunc(a_LoggerArgs);*/ \
5458 return VERR_IEM_ASPECT_NOT_IMPLEMENTED; \
5459 } while (0)
5460#else
5461# define IEM_RETURN_ASPECT_NOT_IMPLEMENTED_LOG(a_LoggerArgs) \
5462 return VERR_IEM_ASPECT_NOT_IMPLEMENTED
5463#endif
5464
5465/**
5466 * Gets the CPU mode (from fExec) as a IEMMODE value.
5467 *
5468 * @returns IEMMODE
5469 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5470 */
5471#define IEM_GET_CPU_MODE(a_pVCpu) ((a_pVCpu)->iem.s.fExec & IEM_F_MODE_CPUMODE_MASK)
5472
5473/**
5474 * Check if we're currently executing in real or virtual 8086 mode.
5475 *
5476 * @returns @c true if it is, @c false if not.
5477 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5478 */
5479#define IEM_IS_REAL_OR_V86_MODE(a_pVCpu) (( ((a_pVCpu)->iem.s.fExec ^ IEM_F_MODE_X86_PROT_MASK) \
5480 & (IEM_F_MODE_X86_V86_MASK | IEM_F_MODE_X86_PROT_MASK)) != 0)
5481
5482/**
5483 * Check if we're currently executing in virtual 8086 mode.
5484 *
5485 * @returns @c true if it is, @c false if not.
5486 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5487 */
5488#define IEM_IS_V86_MODE(a_pVCpu) (((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_V86_MASK) != 0)
5489
5490/**
5491 * Check if we're currently executing in long mode.
5492 *
5493 * @returns @c true if it is, @c false if not.
5494 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5495 */
5496#define IEM_IS_LONG_MODE(a_pVCpu) (CPUMIsGuestInLongModeEx(IEM_GET_CTX(a_pVCpu)))
5497
5498/**
5499 * Check if we're currently executing in a 16-bit code segment.
5500 *
5501 * @returns @c true if it is, @c false if not.
5502 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5503 */
5504#define IEM_IS_16BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_16BIT)
5505
5506/**
5507 * Check if we're currently executing in a 32-bit code segment.
5508 *
5509 * @returns @c true if it is, @c false if not.
5510 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5511 */
5512#define IEM_IS_32BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_32BIT)
5513
5514/**
5515 * Check if we're currently executing in a 64-bit code segment.
5516 *
5517 * @returns @c true if it is, @c false if not.
5518 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5519 */
5520#define IEM_IS_64BIT_CODE(a_pVCpu) (IEM_GET_CPU_MODE(a_pVCpu) == IEMMODE_64BIT)
5521
5522/**
5523 * Check if we're currently executing in real mode.
5524 *
5525 * @returns @c true if it is, @c false if not.
5526 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5527 */
5528#define IEM_IS_REAL_MODE(a_pVCpu) (!((a_pVCpu)->iem.s.fExec & IEM_F_MODE_X86_PROT_MASK))
5529
5530/**
5531 * Gets the current protection level (CPL).
5532 *
5533 * @returns 0..3
5534 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5535 */
5536#define IEM_GET_CPL(a_pVCpu) (((a_pVCpu)->iem.s.fExec >> IEM_F_X86_CPL_SHIFT) & IEM_F_X86_CPL_SMASK)
5537
5538/**
5539 * Sets the current protection level (CPL).
5540 *
5541 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5542 */
5543#define IEM_SET_CPL(a_pVCpu, a_uCpl) \
5544 do { (a_pVCpu)->iem.s.fExec = ((a_pVCpu)->iem.s.fExec & ~IEM_F_X86_CPL_MASK) | ((a_uCpl) << IEM_F_X86_CPL_SHIFT); } while (0)
5545
5546/**
5547 * Returns a (const) pointer to the CPUMFEATURES for the guest CPU.
5548 * @returns PCCPUMFEATURES
5549 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5550 */
5551#define IEM_GET_GUEST_CPU_FEATURES(a_pVCpu) (&((a_pVCpu)->CTX_SUFF(pVM)->cpum.ro.GuestFeatures))
5552
5553/**
5554 * Returns a (const) pointer to the CPUMFEATURES for the host CPU.
5555 * @returns PCCPUMFEATURES
5556 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5557 */
5558#define IEM_GET_HOST_CPU_FEATURES(a_pVCpu) (&g_CpumHostFeatures.s)
5559
5560/**
5561 * Evaluates to true if we're presenting an Intel CPU to the guest.
5562 */
5563#define IEM_IS_GUEST_CPU_INTEL(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_INTEL )
5564
5565/**
5566 * Evaluates to true if we're presenting an AMD CPU to the guest.
5567 */
5568#define IEM_IS_GUEST_CPU_AMD(a_pVCpu) ( (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_AMD || (a_pVCpu)->iem.s.enmCpuVendor == CPUMCPUVENDOR_HYGON )
5569
5570/**
5571 * Check if the address is canonical.
5572 */
5573#define IEM_IS_CANONICAL(a_u64Addr) X86_IS_CANONICAL(a_u64Addr)
5574
5575/** Checks if the ModR/M byte is in register mode or not. */
5576#define IEM_IS_MODRM_REG_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT) )
5577/** Checks if the ModR/M byte is in memory mode or not. */
5578#define IEM_IS_MODRM_MEM_MODE(a_bRm) ( ((a_bRm) & X86_MODRM_MOD_MASK) != (3 << X86_MODRM_MOD_SHIFT) )
5579
5580/**
5581 * Gets the register (reg) part of a ModR/M encoding, with REX.R added in.
5582 *
5583 * For use during decoding.
5584 */
5585#define IEM_GET_MODRM_REG(a_pVCpu, a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | (a_pVCpu)->iem.s.uRexReg )
5586/**
5587 * Gets the r/m part of a ModR/M encoding as a register index, with REX.B added in.
5588 *
5589 * For use during decoding.
5590 */
5591#define IEM_GET_MODRM_RM(a_pVCpu, a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) | (a_pVCpu)->iem.s.uRexB )
5592
5593/**
5594 * Gets the register (reg) part of a ModR/M encoding, without REX.R.
5595 *
5596 * For use during decoding.
5597 */
5598#define IEM_GET_MODRM_REG_8(a_bRm) ( (((a_bRm) >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) )
5599/**
5600 * Gets the r/m part of a ModR/M encoding as a register index, without REX.B.
5601 *
5602 * For use during decoding.
5603 */
5604#define IEM_GET_MODRM_RM_8(a_bRm) ( ((a_bRm) & X86_MODRM_RM_MASK) )
5605
5606/**
5607 * Gets the register (reg) part of a ModR/M encoding as an extended 8-bit
5608 * register index, with REX.R added in.
5609 *
5610 * For use during decoding.
5611 *
5612 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5613 */
5614#define IEM_GET_MODRM_REG_EX8(a_pVCpu, a_bRm) \
5615 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5616 || !((a_bRm) & (4 << X86_MODRM_REG_SHIFT)) /* IEM_GET_MODRM_REG(pVCpu, a_bRm) < 4 */ \
5617 ? IEM_GET_MODRM_REG(pVCpu, a_bRm) : (((a_bRm) >> X86_MODRM_REG_SHIFT) & 3) | 16)
5618/**
5619 * Gets the r/m part of a ModR/M encoding as an extended 8-bit register index,
5620 * with REX.B added in.
5621 *
5622 * For use during decoding.
5623 *
5624 * @see iemGRegRefU8Ex, iemGRegFetchU8Ex, iemGRegStoreU8Ex
5625 */
5626#define IEM_GET_MODRM_RM_EX8(a_pVCpu, a_bRm) \
5627 ( (pVCpu->iem.s.fPrefixes & IEM_OP_PRF_REX) \
5628 || !((a_bRm) & 4) /* IEM_GET_MODRM_RM(pVCpu, a_bRm) < 4 */ \
5629 ? IEM_GET_MODRM_RM(pVCpu, a_bRm) : ((a_bRm) & 3) | 16)
5630
5631/**
5632 * Combines the prefix REX and ModR/M byte for passing to
5633 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5634 *
5635 * @returns The ModRM byte but with bit 3 set to REX.B and bit 4 to REX.X.
5636 * The two bits are part of the REG sub-field, which isn't needed in
5637 * iemOpHlpCalcRmEffAddrThreadedAddr64().
5638 *
5639 * For use during decoding/recompiling.
5640 */
5641#define IEM_GET_MODRM_EX(a_pVCpu, a_bRm) \
5642 ( ((a_bRm) & ~X86_MODRM_REG_MASK) \
5643 | (uint8_t)( (pVCpu->iem.s.fPrefixes & (IEM_OP_PRF_REX_B | IEM_OP_PRF_REX_X)) >> (25 - 3) ) )
5644AssertCompile(IEM_OP_PRF_REX_B == RT_BIT_32(25));
5645AssertCompile(IEM_OP_PRF_REX_X == RT_BIT_32(26));
5646
5647/**
5648 * Gets the effective VEX.VVVV value.
5649 *
5650 * The 4th bit is ignored if not 64-bit code.
5651 * @returns effective V-register value.
5652 * @param a_pVCpu The cross context virtual CPU structure of the calling thread.
5653 */
5654#define IEM_GET_EFFECTIVE_VVVV(a_pVCpu) \
5655 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_pVCpu)->iem.s.uVex3rdReg : (a_pVCpu)->iem.s.uVex3rdReg & 7)
5656
5657
5658/**
5659 * Gets the register (reg) part of a the special 4th register byte used by
5660 * vblendvps and vblendvpd.
5661 *
5662 * For use during decoding.
5663 */
5664#define IEM_GET_IMM8_REG(a_pVCpu, a_bRegImm8) \
5665 (IEM_IS_64BIT_CODE(a_pVCpu) ? (a_bRegImm8) >> 4 : ((a_bRegImm8) >> 4) & 7)
5666
5667
5668/**
5669 * Checks if we're executing inside an AMD-V or VT-x guest.
5670 */
5671#if defined(VBOX_WITH_NESTED_HWVIRT_VMX) || defined(VBOX_WITH_NESTED_HWVIRT_SVM)
5672# define IEM_IS_IN_GUEST(a_pVCpu) RT_BOOL((a_pVCpu)->iem.s.fExec & IEM_F_X86_CTX_IN_GUEST)
5673#else
5674# define IEM_IS_IN_GUEST(a_pVCpu) false
5675#endif
5676
5677
5678#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
5679
5680/**
5681 * Check if the guest has entered VMX root operation.
5682 */
5683# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (CPUMIsGuestInVmxRootMode(IEM_GET_CTX(a_pVCpu)))
5684
5685/**
5686 * Check if the guest has entered VMX non-root operation.
5687 */
5688# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) ( ((a_pVCpu)->iem.s.fExec & (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST)) \
5689 == (IEM_F_X86_CTX_VMX | IEM_F_X86_CTX_IN_GUEST) )
5690
5691/**
5692 * Check if the nested-guest has the given Pin-based VM-execution control set.
5693 */
5694# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_PinCtl) (CPUMIsGuestVmxPinCtlsSet(IEM_GET_CTX(a_pVCpu), (a_PinCtl)))
5695
5696/**
5697 * Check if the nested-guest has the given Processor-based VM-execution control set.
5698 */
5699# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_ProcCtl) (CPUMIsGuestVmxProcCtlsSet(IEM_GET_CTX(a_pVCpu), (a_ProcCtl)))
5700
5701/**
5702 * Check if the nested-guest has the given Secondary Processor-based VM-execution
5703 * control set.
5704 */
5705# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_ProcCtl2) (CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(a_pVCpu), (a_ProcCtl2)))
5706
5707/** Gets the guest-physical address of the shadows VMCS for the given VCPU. */
5708# define IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs)
5709
5710/** Whether a shadow VMCS is present for the given VCPU. */
5711# define IEM_VMX_HAS_SHADOW_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_SHADOW_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5712
5713/** Gets the VMXON region pointer. */
5714# define IEM_VMX_GET_VMXON_PTR(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
5715
5716/** Gets the guest-physical address of the current VMCS for the given VCPU. */
5717# define IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) ((a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs)
5718
5719/** Whether a current VMCS is present for the given VCPU. */
5720# define IEM_VMX_HAS_CURRENT_VMCS(a_pVCpu) RT_BOOL(IEM_VMX_GET_CURRENT_VMCS(a_pVCpu) != NIL_RTGCPHYS)
5721
5722/** Assigns the guest-physical address of the current VMCS for the given VCPU. */
5723# define IEM_VMX_SET_CURRENT_VMCS(a_pVCpu, a_GCPhysVmcs) \
5724 do \
5725 { \
5726 Assert((a_GCPhysVmcs) != NIL_RTGCPHYS); \
5727 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = (a_GCPhysVmcs); \
5728 } while (0)
5729
5730/** Clears any current VMCS for the given VCPU. */
5731# define IEM_VMX_CLEAR_CURRENT_VMCS(a_pVCpu) \
5732 do \
5733 { \
5734 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.GCPhysVmcs = NIL_RTGCPHYS; \
5735 } while (0)
5736
5737/**
5738 * Invokes the VMX VM-exit handler for an instruction intercept.
5739 */
5740# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) \
5741 do { return iemVmxVmexitInstr((a_pVCpu), (a_uExitReason), (a_cbInstr)); } while (0)
5742
5743/**
5744 * Invokes the VMX VM-exit handler for an instruction intercept where the
5745 * instruction provides additional VM-exit information.
5746 */
5747# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) \
5748 do { return iemVmxVmexitInstrNeedsInfo((a_pVCpu), (a_uExitReason), (a_uInstrId), (a_cbInstr)); } while (0)
5749
5750/**
5751 * Invokes the VMX VM-exit handler for a task switch.
5752 */
5753# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) \
5754 do { return iemVmxVmexitTaskSwitch((a_pVCpu), (a_enmTaskSwitch), (a_SelNewTss), (a_cbInstr)); } while (0)
5755
5756/**
5757 * Invokes the VMX VM-exit handler for MWAIT.
5758 */
5759# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) \
5760 do { return iemVmxVmexitInstrMwait((a_pVCpu), (a_fMonitorArmed), (a_cbInstr)); } while (0)
5761
5762/**
5763 * Invokes the VMX VM-exit handler for EPT faults.
5764 */
5765# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) \
5766 do { return iemVmxVmexitEpt(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr); } while (0)
5767
5768/**
5769 * Invokes the VMX VM-exit handler.
5770 */
5771# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) \
5772 do { return iemVmxVmexit((a_pVCpu), (a_uExitReason), (a_uExitQual)); } while (0)
5773
5774#else
5775# define IEM_VMX_IS_ROOT_MODE(a_pVCpu) (false)
5776# define IEM_VMX_IS_NON_ROOT_MODE(a_pVCpu) (false)
5777# define IEM_VMX_IS_PINCTLS_SET(a_pVCpu, a_cbInstr) (false)
5778# define IEM_VMX_IS_PROCCTLS_SET(a_pVCpu, a_cbInstr) (false)
5779# define IEM_VMX_IS_PROCCTLS2_SET(a_pVCpu, a_cbInstr) (false)
5780# define IEM_VMX_VMEXIT_INSTR_RET(a_pVCpu, a_uExitReason, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5781# define IEM_VMX_VMEXIT_INSTR_NEEDS_INFO_RET(a_pVCpu, a_uExitReason, a_uInstrId, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5782# define IEM_VMX_VMEXIT_TASK_SWITCH_RET(a_pVCpu, a_enmTaskSwitch, a_SelNewTss, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5783# define IEM_VMX_VMEXIT_MWAIT_RET(a_pVCpu, a_fMonitorArmed, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5784# define IEM_VMX_VMEXIT_EPT_RET(a_pVCpu, a_pPtWalk, a_fAccess, a_fSlatFail, a_cbInstr) do { return VERR_VMX_IPE_1; } while (0)
5785# define IEM_VMX_VMEXIT_TRIPLE_FAULT_RET(a_pVCpu, a_uExitReason, a_uExitQual) do { return VERR_VMX_IPE_1; } while (0)
5786
5787#endif
5788
5789#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
5790/**
5791 * Checks if we're executing a guest using AMD-V.
5792 */
5793# define IEM_SVM_IS_IN_GUEST(a_pVCpu) ( (a_pVCpu->iem.s.fExec & (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST)) \
5794 == (IEM_F_X86_CTX_SVM | IEM_F_X86_CTX_IN_GUEST))
5795/**
5796 * Check if an SVM control/instruction intercept is set.
5797 */
5798# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) \
5799 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmCtrlInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_Intercept)))
5800
5801/**
5802 * Check if an SVM read CRx intercept is set.
5803 */
5804# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5805 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5806
5807/**
5808 * Check if an SVM write CRx intercept is set.
5809 */
5810# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) \
5811 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteCRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uCr)))
5812
5813/**
5814 * Check if an SVM read DRx intercept is set.
5815 */
5816# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5817 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmReadDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5818
5819/**
5820 * Check if an SVM write DRx intercept is set.
5821 */
5822# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) \
5823 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmWriteDRxInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uDr)))
5824
5825/**
5826 * Check if an SVM exception intercept is set.
5827 */
5828# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) \
5829 (IEM_SVM_IS_IN_GUEST(a_pVCpu) && CPUMIsGuestSvmXcptInterceptSet(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_uVector)))
5830
5831/**
5832 * Invokes the SVM \#VMEXIT handler for the nested-guest.
5833 */
5834# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) \
5835 do { return iemSvmVmexit((a_pVCpu), (a_uExitCode), (a_uExitInfo1), (a_uExitInfo2)); } while (0)
5836
5837/**
5838 * Invokes the 'MOV CRx' SVM \#VMEXIT handler after constructing the
5839 * corresponding decode assist information.
5840 */
5841# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) \
5842 do \
5843 { \
5844 uint64_t uExitInfo1; \
5845 if ( IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmDecodeAssists \
5846 && (a_enmAccessCrX) == IEMACCESSCRX_MOV_CRX) \
5847 uExitInfo1 = SVM_EXIT1_MOV_CRX_MASK | ((a_iGReg) & 7); \
5848 else \
5849 uExitInfo1 = 0; \
5850 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, uExitInfo1, 0); \
5851 } while (0)
5852
5853/** Check and handles SVM nested-guest instruction intercept and updates
5854 * NRIP if needed.
5855 */
5856# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5857 do \
5858 { \
5859 if (IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept)) \
5860 { \
5861 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5862 IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2); \
5863 } \
5864 } while (0)
5865
5866/** Checks and handles SVM nested-guest CR0 read intercept. */
5867# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) \
5868 do \
5869 { \
5870 if (!IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, 0)) \
5871 { /* probably likely */ } \
5872 else \
5873 { \
5874 IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr); \
5875 IEM_SVM_VMEXIT_RET(a_pVCpu, SVM_EXIT_READ_CR0, a_uExitInfo1, a_uExitInfo2); \
5876 } \
5877 } while (0)
5878
5879/**
5880 * Updates the NextRIP (NRI) field in the nested-guest VMCB.
5881 */
5882# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) \
5883 do { \
5884 if (IEM_GET_GUEST_CPU_FEATURES(a_pVCpu)->fSvmNextRipSave) \
5885 CPUMGuestSvmUpdateNRip(a_pVCpu, IEM_GET_CTX(a_pVCpu), (a_cbInstr)); \
5886 } while (0)
5887
5888#else
5889# define IEM_SVM_IS_CTRL_INTERCEPT_SET(a_pVCpu, a_Intercept) (false)
5890# define IEM_SVM_IS_READ_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5891# define IEM_SVM_IS_WRITE_CR_INTERCEPT_SET(a_pVCpu, a_uCr) (false)
5892# define IEM_SVM_IS_READ_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5893# define IEM_SVM_IS_WRITE_DR_INTERCEPT_SET(a_pVCpu, a_uDr) (false)
5894# define IEM_SVM_IS_XCPT_INTERCEPT_SET(a_pVCpu, a_uVector) (false)
5895# define IEM_SVM_VMEXIT_RET(a_pVCpu, a_uExitCode, a_uExitInfo1, a_uExitInfo2) do { return VERR_SVM_IPE_1; } while (0)
5896# define IEM_SVM_CRX_VMEXIT_RET(a_pVCpu, a_uExitCode, a_enmAccessCrX, a_iGReg) do { return VERR_SVM_IPE_1; } while (0)
5897# define IEM_SVM_CHECK_INSTR_INTERCEPT(a_pVCpu, a_Intercept, a_uExitCode, \
5898 a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5899# define IEM_SVM_CHECK_READ_CR0_INTERCEPT(a_pVCpu, a_uExitInfo1, a_uExitInfo2, a_cbInstr) do { } while (0)
5900# define IEM_SVM_UPDATE_NRIP(a_pVCpu, a_cbInstr) do { } while (0)
5901
5902#endif
5903
5904/** @} */
5905
5906uint32_t iemCalcExecDbgFlagsSlow(PVMCPUCC pVCpu);
5907VBOXSTRICTRC iemExecInjectPendingTrap(PVMCPUCC pVCpu);
5908
5909
5910/**
5911 * Selector descriptor table entry as fetched by iemMemFetchSelDesc.
5912 */
5913typedef union IEMSELDESC
5914{
5915 /** The legacy view. */
5916 X86DESC Legacy;
5917 /** The long mode view. */
5918 X86DESC64 Long;
5919} IEMSELDESC;
5920/** Pointer to a selector descriptor table entry. */
5921typedef IEMSELDESC *PIEMSELDESC;
5922
5923/** @name Raising Exceptions.
5924 * @{ */
5925VBOXSTRICTRC iemTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, uint32_t uNextEip, uint32_t fFlags,
5926 uint16_t uErr, uint64_t uCr2, RTSEL SelTSS, PIEMSELDESC pNewDescTSS) RT_NOEXCEPT;
5927
5928VBOXSTRICTRC iemRaiseXcptOrInt(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags,
5929 uint16_t uErr, uint64_t uCr2) RT_NOEXCEPT;
5930#ifdef IEM_WITH_SETJMP
5931DECL_NO_RETURN(void) iemRaiseXcptOrIntJmp(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector,
5932 uint32_t fFlags, uint16_t uErr, uint64_t uCr2) IEM_NOEXCEPT_MAY_LONGJMP;
5933#endif
5934VBOXSTRICTRC iemRaiseDivideError(PVMCPUCC pVCpu) RT_NOEXCEPT;
5935#ifdef IEM_WITH_SETJMP
5936DECL_NO_RETURN(void) iemRaiseDivideErrorJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5937#endif
5938VBOXSTRICTRC iemRaiseDebugException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5939VBOXSTRICTRC iemRaiseBoundRangeExceeded(PVMCPUCC pVCpu) RT_NOEXCEPT;
5940VBOXSTRICTRC iemRaiseUndefinedOpcode(PVMCPUCC pVCpu) RT_NOEXCEPT;
5941#ifdef IEM_WITH_SETJMP
5942DECL_NO_RETURN(void) iemRaiseUndefinedOpcodeJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5943#endif
5944VBOXSTRICTRC iemRaiseDeviceNotAvailable(PVMCPUCC pVCpu) RT_NOEXCEPT;
5945#ifdef IEM_WITH_SETJMP
5946DECL_NO_RETURN(void) iemRaiseDeviceNotAvailableJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5947#endif
5948VBOXSTRICTRC iemRaiseTaskSwitchFaultWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5949VBOXSTRICTRC iemRaiseTaskSwitchFaultCurrentTSS(PVMCPUCC pVCpu) RT_NOEXCEPT;
5950VBOXSTRICTRC iemRaiseTaskSwitchFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5951VBOXSTRICTRC iemRaiseTaskSwitchFaultBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5952/*VBOXSTRICTRC iemRaiseSelectorNotPresent(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;*/
5953VBOXSTRICTRC iemRaiseSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5954VBOXSTRICTRC iemRaiseSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5955VBOXSTRICTRC iemRaiseStackSelectorNotPresentBySelector(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
5956VBOXSTRICTRC iemRaiseStackSelectorNotPresentWithErr(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5957VBOXSTRICTRC iemRaiseGeneralProtectionFault(PVMCPUCC pVCpu, uint16_t uErr) RT_NOEXCEPT;
5958VBOXSTRICTRC iemRaiseGeneralProtectionFault0(PVMCPUCC pVCpu) RT_NOEXCEPT;
5959#ifdef IEM_WITH_SETJMP
5960DECL_NO_RETURN(void) iemRaiseGeneralProtectionFault0Jmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5961#endif
5962VBOXSTRICTRC iemRaiseGeneralProtectionFaultBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5963VBOXSTRICTRC iemRaiseNotCanonical(PVMCPUCC pVCpu) RT_NOEXCEPT;
5964VBOXSTRICTRC iemRaiseSelectorBounds(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5965#ifdef IEM_WITH_SETJMP
5966DECL_NO_RETURN(void) iemRaiseSelectorBoundsJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5967#endif
5968VBOXSTRICTRC iemRaiseSelectorBoundsBySelector(PVMCPUCC pVCpu, RTSEL Sel) RT_NOEXCEPT;
5969#ifdef IEM_WITH_SETJMP
5970DECL_NO_RETURN(void) iemRaiseSelectorBoundsBySelectorJmp(PVMCPUCC pVCpu, RTSEL Sel) IEM_NOEXCEPT_MAY_LONGJMP;
5971#endif
5972VBOXSTRICTRC iemRaiseSelectorInvalidAccess(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) RT_NOEXCEPT;
5973#ifdef IEM_WITH_SETJMP
5974DECL_NO_RETURN(void) iemRaiseSelectorInvalidAccessJmp(PVMCPUCC pVCpu, uint32_t iSegReg, uint32_t fAccess) IEM_NOEXCEPT_MAY_LONGJMP;
5975#endif
5976VBOXSTRICTRC iemRaisePageFault(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) RT_NOEXCEPT;
5977#ifdef IEM_WITH_SETJMP
5978DECL_NO_RETURN(void) iemRaisePageFaultJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrWhere, uint32_t cbAccess, uint32_t fAccess, int rc) IEM_NOEXCEPT_MAY_LONGJMP;
5979#endif
5980VBOXSTRICTRC iemRaiseMathFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
5981#ifdef IEM_WITH_SETJMP
5982DECL_NO_RETURN(void) iemRaiseMathFaultJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5983#endif
5984VBOXSTRICTRC iemRaiseAlignmentCheckException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5985#ifdef IEM_WITH_SETJMP
5986DECL_NO_RETURN(void) iemRaiseAlignmentCheckExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5987#endif
5988VBOXSTRICTRC iemRaiseSimdFpException(PVMCPUCC pVCpu) RT_NOEXCEPT;
5989#ifdef IEM_WITH_SETJMP
5990DECL_NO_RETURN(void) iemRaiseSimdFpExceptionJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
5991#endif
5992
5993void iemLogSyscallRealModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5994void iemLogSyscallProtModeInt(PVMCPUCC pVCpu, uint8_t u8Vector, uint8_t cbInstr);
5995
5996IEM_CIMPL_DEF_0(iemCImplRaiseDivideError);
5997IEM_CIMPL_DEF_0(iemCImplRaiseInvalidLockPrefix);
5998IEM_CIMPL_DEF_0(iemCImplRaiseInvalidOpcode);
5999
6000/**
6001 * Macro for calling iemCImplRaiseDivideError().
6002 *
6003 * This is for things that will _always_ decode to an \#DE, taking the
6004 * recompiler into consideration and everything.
6005 *
6006 * @return Strict VBox status code.
6007 */
6008#define IEMOP_RAISE_DIVIDE_ERROR_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseDivideError)
6009
6010/**
6011 * Macro for calling iemCImplRaiseInvalidLockPrefix().
6012 *
6013 * This is for things that will _always_ decode to an \#UD, taking the
6014 * recompiler into consideration and everything.
6015 *
6016 * @return Strict VBox status code.
6017 */
6018#define IEMOP_RAISE_INVALID_LOCK_PREFIX_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidLockPrefix)
6019
6020/**
6021 * Macro for calling iemCImplRaiseInvalidOpcode() for decode/static \#UDs.
6022 *
6023 * This is for things that will _always_ decode to an \#UD, taking the
6024 * recompiler into consideration and everything.
6025 *
6026 * @return Strict VBox status code.
6027 */
6028#define IEMOP_RAISE_INVALID_OPCODE_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
6029
6030/**
6031 * Macro for calling iemCImplRaiseInvalidOpcode() for runtime-style \#UDs.
6032 *
6033 * Using this macro means you've got _buggy_ _code_ and are doing things that
6034 * belongs exclusively in IEMAllCImpl.cpp during decoding.
6035 *
6036 * @return Strict VBox status code.
6037 * @see IEMOP_RAISE_INVALID_OPCODE_RET
6038 */
6039#define IEMOP_RAISE_INVALID_OPCODE_RUNTIME_RET() IEM_MC_DEFER_TO_CIMPL_0_RET(IEM_CIMPL_F_XCPT, 0, iemCImplRaiseInvalidOpcode)
6040
6041/** @} */
6042
6043/** @name Register Access.
6044 * @{ */
6045VBOXSTRICTRC iemRegRipRelativeJumpS8AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int8_t offNextInstr,
6046 IEMMODE enmEffOpSize) RT_NOEXCEPT;
6047VBOXSTRICTRC iemRegRipRelativeJumpS16AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int16_t offNextInstr) RT_NOEXCEPT;
6048VBOXSTRICTRC iemRegRipRelativeJumpS32AndFinishClearingRF(PVMCPUCC pVCpu, uint8_t cbInstr, int32_t offNextInstr,
6049 IEMMODE enmEffOpSize) RT_NOEXCEPT;
6050/** @} */
6051
6052/** @name FPU access and helpers.
6053 * @{ */
6054void iemFpuPushResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
6055void iemFpuPushResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6056void iemFpuPushResultTwo(PVMCPUCC pVCpu, PIEMFPURESULTTWO pResult, uint16_t uFpuOpcode) RT_NOEXCEPT;
6057void iemFpuStoreResult(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6058void iemFpuStoreResultThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6059void iemFpuStoreResultWithMemOp(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
6060 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6061void iemFpuStoreResultWithMemOpThenPop(PVMCPUCC pVCpu, PIEMFPURESULT pResult, uint8_t iStReg,
6062 uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6063void iemFpuUpdateOpcodeAndIp(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6064void iemFpuUpdateFSW(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
6065void iemFpuUpdateFSWThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
6066void iemFpuUpdateFSWWithMemOp(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6067void iemFpuUpdateFSWThenPopPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint16_t uFpuOpcode) RT_NOEXCEPT;
6068void iemFpuUpdateFSWWithMemOpThenPop(PVMCPUCC pVCpu, uint16_t u16FSW, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6069void iemFpuStackUnderflow(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6070void iemFpuStackUnderflowWithMemOp(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6071void iemFpuStackUnderflowThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint16_t uFpuOpcode) RT_NOEXCEPT;
6072void iemFpuStackUnderflowWithMemOpThenPop(PVMCPUCC pVCpu, uint8_t iStReg, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6073void iemFpuStackUnderflowThenPopPop(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6074void iemFpuStackPushUnderflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6075void iemFpuStackPushUnderflowTwo(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6076void iemFpuStackPushOverflow(PVMCPUCC pVCpu, uint16_t uFpuOpcode) RT_NOEXCEPT;
6077void iemFpuStackPushOverflowWithMemOp(PVMCPUCC pVCpu, uint8_t iEffSeg, RTGCPTR GCPtrEff, uint16_t uFpuOpcode) RT_NOEXCEPT;
6078/** @} */
6079
6080/** @name SSE+AVX SIMD access and helpers.
6081 * @{ */
6082void iemSseUpdateMxcsr(PVMCPUCC pVCpu, uint32_t fMxcsr) RT_NOEXCEPT;
6083/** @} */
6084
6085/** @name Memory access.
6086 * @{ */
6087
6088/** Report a \#GP instead of \#AC and do not restrict to ring-3 */
6089#define IEM_MEMMAP_F_ALIGN_GP RT_BIT_32(16)
6090/** SSE access that should report a \#GP instead of \#AC, unless MXCSR.MM=1
6091 * when it works like normal \#AC. Always used with IEM_MEMMAP_F_ALIGN_GP. */
6092#define IEM_MEMMAP_F_ALIGN_SSE RT_BIT_32(17)
6093/** If \#AC is applicable, raise it. Always used with IEM_MEMMAP_F_ALIGN_GP.
6094 * Users include FXSAVE & FXRSTOR. */
6095#define IEM_MEMMAP_F_ALIGN_GP_OR_AC RT_BIT_32(18)
6096
6097VBOXSTRICTRC iemMemMap(PVMCPUCC pVCpu, void **ppvMem, uint8_t *pbUnmapInfo, size_t cbMem, uint8_t iSegReg, RTGCPTR GCPtrMem,
6098 uint32_t fAccess, uint32_t uAlignCtl) RT_NOEXCEPT;
6099VBOXSTRICTRC iemMemCommitAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6100#ifndef IN_RING3
6101VBOXSTRICTRC iemMemCommitAndUnmapPostponeTroubleToR3(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6102#endif
6103void iemMemRollbackAndUnmap(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6104void iemMemRollback(PVMCPUCC pVCpu) RT_NOEXCEPT;
6105VBOXSTRICTRC iemMemApplySegment(PVMCPUCC pVCpu, uint32_t fAccess, uint8_t iSegReg, size_t cbMem, PRTGCPTR pGCPtrMem) RT_NOEXCEPT;
6106VBOXSTRICTRC iemMemMarkSelDescAccessed(PVMCPUCC pVCpu, uint16_t uSel) RT_NOEXCEPT;
6107VBOXSTRICTRC iemMemPageTranslateAndCheckAccess(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t cbAccess, uint32_t fAccess, PRTGCPHYS pGCPhysMem) RT_NOEXCEPT;
6108
6109void iemOpcodeFlushLight(PVMCPUCC pVCpu, uint8_t cbInstr);
6110void iemOpcodeFlushHeavy(PVMCPUCC pVCpu, uint8_t cbInstr);
6111#ifdef IEM_WITH_CODE_TLB
6112void iemOpcodeFetchBytesJmp(PVMCPUCC pVCpu, size_t cbDst, void *pvDst) IEM_NOEXCEPT_MAY_LONGJMP;
6113#else
6114VBOXSTRICTRC iemOpcodeFetchMoreBytes(PVMCPUCC pVCpu, size_t cbMin) RT_NOEXCEPT;
6115#endif
6116#ifdef IEM_WITH_SETJMP
6117uint8_t iemOpcodeGetNextU8SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6118uint16_t iemOpcodeGetNextU16SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6119uint32_t iemOpcodeGetNextU32SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6120uint64_t iemOpcodeGetNextU64SlowJmp(PVMCPUCC pVCpu) IEM_NOEXCEPT_MAY_LONGJMP;
6121#else
6122VBOXSTRICTRC iemOpcodeGetNextU8Slow(PVMCPUCC pVCpu, uint8_t *pb) RT_NOEXCEPT;
6123VBOXSTRICTRC iemOpcodeGetNextS8SxU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
6124VBOXSTRICTRC iemOpcodeGetNextS8SxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
6125VBOXSTRICTRC iemOpcodeGetNextS8SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6126VBOXSTRICTRC iemOpcodeGetNextU16Slow(PVMCPUCC pVCpu, uint16_t *pu16) RT_NOEXCEPT;
6127VBOXSTRICTRC iemOpcodeGetNextU16ZxU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
6128VBOXSTRICTRC iemOpcodeGetNextU16ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6129VBOXSTRICTRC iemOpcodeGetNextU32Slow(PVMCPUCC pVCpu, uint32_t *pu32) RT_NOEXCEPT;
6130VBOXSTRICTRC iemOpcodeGetNextU32ZxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6131VBOXSTRICTRC iemOpcodeGetNextS32SxU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6132VBOXSTRICTRC iemOpcodeGetNextU64Slow(PVMCPUCC pVCpu, uint64_t *pu64) RT_NOEXCEPT;
6133#endif
6134
6135VBOXSTRICTRC iemMemFetchDataU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6136VBOXSTRICTRC iemMemFetchDataU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6137VBOXSTRICTRC iemMemFetchDataU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6138VBOXSTRICTRC iemMemFetchDataU32_ZX_U64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6139VBOXSTRICTRC iemMemFetchDataU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6140VBOXSTRICTRC iemMemFetchDataU64AlignedU128(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6141VBOXSTRICTRC iemMemFetchDataR80(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6142VBOXSTRICTRC iemMemFetchDataD80(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6143VBOXSTRICTRC iemMemFetchDataU128(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6144VBOXSTRICTRC iemMemFetchDataU128NoAc(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6145VBOXSTRICTRC iemMemFetchDataU128AlignedSse(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6146VBOXSTRICTRC iemMemFetchDataU256(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6147VBOXSTRICTRC iemMemFetchDataU256NoAc(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6148VBOXSTRICTRC iemMemFetchDataU256AlignedAvx(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6149VBOXSTRICTRC iemMemFetchDataXdtr(PVMCPUCC pVCpu, uint16_t *pcbLimit, PRTGCPTR pGCPtrBase, uint8_t iSegReg,
6150 RTGCPTR GCPtrMem, IEMMODE enmOpSize) RT_NOEXCEPT;
6151#ifdef IEM_WITH_SETJMP
6152uint8_t iemMemFetchDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6153uint16_t iemMemFetchDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6154uint32_t iemMemFetchDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6155uint32_t iemMemFetchDataU32NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6156uint32_t iemMemFlatFetchDataU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6157uint64_t iemMemFetchDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6158uint64_t iemMemFetchDataU64NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6159uint64_t iemMemFetchDataU64AlignedU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6160void iemMemFetchDataR80SafeJmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6161void iemMemFetchDataD80SafeJmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6162void iemMemFetchDataU128SafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6163void iemMemFetchDataU128NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6164void iemMemFetchDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6165void iemMemFetchDataU256SafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6166void iemMemFetchDataU256NoAcSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6167void iemMemFetchDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6168# if 0 /* these are inlined now */
6169uint8_t iemMemFetchDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6170uint16_t iemMemFetchDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6171uint32_t iemMemFetchDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6172uint32_t iemMemFlatFetchDataU32Jmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6173uint64_t iemMemFetchDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6174uint64_t iemMemFetchDataU64AlignedU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6175void iemMemFetchDataR80Jmp(PVMCPUCC pVCpu, PRTFLOAT80U pr80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6176void iemMemFetchDataD80Jmp(PVMCPUCC pVCpu, PRTPBCD80U pd80Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6177void iemMemFetchDataU128Jmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6178void iemMemFetchDataU128NoAcJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6179void iemMemFetchDataU128AlignedSseJmp(PVMCPUCC pVCpu, PRTUINT128U pu128Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6180void iemMemFetchDataU256NoAcJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6181void iemMemFetchDataU256AlignedAvxJmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6182# endif
6183void iemMemFetchDataU256Jmp(PVMCPUCC pVCpu, PRTUINT256U pu256Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6184#endif
6185
6186VBOXSTRICTRC iemMemFetchSysU8(PVMCPUCC pVCpu, uint8_t *pu8Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6187VBOXSTRICTRC iemMemFetchSysU16(PVMCPUCC pVCpu, uint16_t *pu16Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6188VBOXSTRICTRC iemMemFetchSysU32(PVMCPUCC pVCpu, uint32_t *pu32Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6189VBOXSTRICTRC iemMemFetchSysU64(PVMCPUCC pVCpu, uint64_t *pu64Dst, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6190VBOXSTRICTRC iemMemFetchSelDesc(PVMCPUCC pVCpu, PIEMSELDESC pDesc, uint16_t uSel, uint8_t uXcpt) RT_NOEXCEPT;
6191
6192VBOXSTRICTRC iemMemStoreDataU8(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) RT_NOEXCEPT;
6193VBOXSTRICTRC iemMemStoreDataU16(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) RT_NOEXCEPT;
6194VBOXSTRICTRC iemMemStoreDataU32(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) RT_NOEXCEPT;
6195VBOXSTRICTRC iemMemStoreDataU64(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) RT_NOEXCEPT;
6196VBOXSTRICTRC iemMemStoreDataU128(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
6197VBOXSTRICTRC iemMemStoreDataU128NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
6198VBOXSTRICTRC iemMemStoreDataU128AlignedSse(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) RT_NOEXCEPT;
6199VBOXSTRICTRC iemMemStoreDataU256(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
6200VBOXSTRICTRC iemMemStoreDataU256NoAc(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
6201VBOXSTRICTRC iemMemStoreDataU256AlignedAvx(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) RT_NOEXCEPT;
6202VBOXSTRICTRC iemMemStoreDataXdtr(PVMCPUCC pVCpu, uint16_t cbLimit, RTGCPTR GCPtrBase, uint8_t iSegReg, RTGCPTR GCPtrMem) RT_NOEXCEPT;
6203#ifdef IEM_WITH_SETJMP
6204void iemMemStoreDataU8SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
6205void iemMemStoreDataU16SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
6206void iemMemStoreDataU32SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
6207void iemMemStoreDataU64SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
6208void iemMemStoreDataU128SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6209void iemMemStoreDataU128NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6210void iemMemStoreDataU128AlignedSseSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT128U pu128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6211void iemMemStoreDataU256SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6212void iemMemStoreDataU256NoAcSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6213void iemMemStoreDataU256AlignedAvxSafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6214void iemMemStoreDataR80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTFLOAT80U pr80Value) IEM_NOEXCEPT_MAY_LONGJMP;
6215void iemMemStoreDataD80SafeJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTPBCD80U pd80Value) IEM_NOEXCEPT_MAY_LONGJMP;
6216#if 0
6217void iemMemStoreDataU8Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint8_t u8Value) IEM_NOEXCEPT_MAY_LONGJMP;
6218void iemMemStoreDataU16Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint16_t u16Value) IEM_NOEXCEPT_MAY_LONGJMP;
6219void iemMemStoreDataU32Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint32_t u32Value) IEM_NOEXCEPT_MAY_LONGJMP;
6220void iemMemStoreDataU64Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, uint64_t u64Value) IEM_NOEXCEPT_MAY_LONGJMP;
6221void iemMemStoreDataU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6222void iemMemStoreDataNoAcU128Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6223void iemMemStoreDataU256NoAcJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6224void iemMemStoreDataU256AlignedAvxJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6225#endif
6226void iemMemStoreDataU128AlignedSseJmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, RTUINT128U u128Value) IEM_NOEXCEPT_MAY_LONGJMP;
6227void iemMemStoreDataU256Jmp(PVMCPUCC pVCpu, uint8_t iSegReg, RTGCPTR GCPtrMem, PCRTUINT256U pu256Value) IEM_NOEXCEPT_MAY_LONGJMP;
6228#endif
6229
6230#ifdef IEM_WITH_SETJMP
6231uint8_t *iemMemMapDataU8RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6232uint8_t *iemMemMapDataU8AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6233uint8_t *iemMemMapDataU8WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6234uint8_t const *iemMemMapDataU8RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6235uint16_t *iemMemMapDataU16RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6236uint16_t *iemMemMapDataU16AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6237uint16_t *iemMemMapDataU16WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6238uint16_t const *iemMemMapDataU16RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6239uint32_t *iemMemMapDataU32RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6240uint32_t *iemMemMapDataU32AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6241uint32_t *iemMemMapDataU32WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6242uint32_t const *iemMemMapDataU32RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6243uint64_t *iemMemMapDataU64RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6244uint64_t *iemMemMapDataU64AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6245uint64_t *iemMemMapDataU64WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6246uint64_t const *iemMemMapDataU64RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6247PRTFLOAT80U iemMemMapDataR80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6248PRTFLOAT80U iemMemMapDataR80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6249PCRTFLOAT80U iemMemMapDataR80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6250PRTPBCD80U iemMemMapDataD80RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6251PRTPBCD80U iemMemMapDataD80WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6252PCRTPBCD80U iemMemMapDataD80RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6253PRTUINT128U iemMemMapDataU128RwSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6254PRTUINT128U iemMemMapDataU128AtSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6255PRTUINT128U iemMemMapDataU128WoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6256PCRTUINT128U iemMemMapDataU128RoSafeJmp(PVMCPUCC pVCpu, uint8_t *pbUnmapInfo, uint8_t iSegReg, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6257
6258void iemMemCommitAndUnmapJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6259void iemMemCommitAndUnmapRwSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6260void iemMemCommitAndUnmapAtSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6261void iemMemCommitAndUnmapWoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6262void iemMemCommitAndUnmapRoSafeJmp(PVMCPUCC pVCpu, uint8_t bUnmapInfo) IEM_NOEXCEPT_MAY_LONGJMP;
6263void iemMemRollbackAndUnmapWoSafe(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6264#endif
6265
6266VBOXSTRICTRC iemMemStackPushBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
6267 void **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
6268VBOXSTRICTRC iemMemStackPushCommitSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo, uint64_t uNewRsp) RT_NOEXCEPT;
6269VBOXSTRICTRC iemMemStackPushU16(PVMCPUCC pVCpu, uint16_t u16Value) RT_NOEXCEPT;
6270VBOXSTRICTRC iemMemStackPushU32(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
6271VBOXSTRICTRC iemMemStackPushU64(PVMCPUCC pVCpu, uint64_t u64Value) RT_NOEXCEPT;
6272VBOXSTRICTRC iemMemStackPushU16Ex(PVMCPUCC pVCpu, uint16_t u16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6273VBOXSTRICTRC iemMemStackPushU32Ex(PVMCPUCC pVCpu, uint32_t u32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6274VBOXSTRICTRC iemMemStackPushU64Ex(PVMCPUCC pVCpu, uint64_t u64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6275VBOXSTRICTRC iemMemStackPushU32SReg(PVMCPUCC pVCpu, uint32_t u32Value) RT_NOEXCEPT;
6276VBOXSTRICTRC iemMemStackPopBeginSpecial(PVMCPUCC pVCpu, size_t cbMem, uint32_t cbAlign,
6277 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t *puNewRsp) RT_NOEXCEPT;
6278VBOXSTRICTRC iemMemStackPopContinueSpecial(PVMCPUCC pVCpu, size_t off, size_t cbMem,
6279 void const **ppvMem, uint8_t *pbUnmapInfo, uint64_t uCurNewRsp) RT_NOEXCEPT;
6280VBOXSTRICTRC iemMemStackPopDoneSpecial(PVMCPUCC pVCpu, uint8_t bUnmapInfo) RT_NOEXCEPT;
6281VBOXSTRICTRC iemMemStackPopU16(PVMCPUCC pVCpu, uint16_t *pu16Value) RT_NOEXCEPT;
6282VBOXSTRICTRC iemMemStackPopU32(PVMCPUCC pVCpu, uint32_t *pu32Value) RT_NOEXCEPT;
6283VBOXSTRICTRC iemMemStackPopU64(PVMCPUCC pVCpu, uint64_t *pu64Value) RT_NOEXCEPT;
6284VBOXSTRICTRC iemMemStackPopU16Ex(PVMCPUCC pVCpu, uint16_t *pu16Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6285VBOXSTRICTRC iemMemStackPopU32Ex(PVMCPUCC pVCpu, uint32_t *pu32Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6286VBOXSTRICTRC iemMemStackPopU64Ex(PVMCPUCC pVCpu, uint64_t *pu64Value, PRTUINT64U pTmpRsp) RT_NOEXCEPT;
6287
6288#ifdef IEM_WITH_SETJMP
6289void iemMemStackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6290void iemMemStackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6291void iemMemStackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6292void iemMemStackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6293void iemMemStackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6294void iemMemStackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6295void iemMemStackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6296
6297void iemMemFlat32StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6298void iemMemFlat32StackPushU32SafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6299void iemMemFlat32StackPushU32SRegSafeJmp(PVMCPUCC pVCpu, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6300void iemMemFlat32StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6301void iemMemFlat32StackPopGRegU32SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6302
6303void iemMemFlat64StackPushU16SafeJmp(PVMCPUCC pVCpu, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6304void iemMemFlat64StackPushU64SafeJmp(PVMCPUCC pVCpu, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6305void iemMemFlat64StackPopGRegU16SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6306void iemMemFlat64StackPopGRegU64SafeJmp(PVMCPUCC pVCpu, uint8_t iGReg) IEM_NOEXCEPT_MAY_LONGJMP;
6307
6308void iemMemStoreStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint16_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6309void iemMemStoreStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6310void iemMemStoreStackU32SRegSafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint32_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6311void iemMemStoreStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem, uint64_t uValue) IEM_NOEXCEPT_MAY_LONGJMP;
6312
6313uint16_t iemMemFetchStackU16SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6314uint32_t iemMemFetchStackU32SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6315uint64_t iemMemFetchStackU64SafeJmp(PVMCPUCC pVCpu, RTGCPTR GCPtrMem) IEM_NOEXCEPT_MAY_LONGJMP;
6316
6317#endif
6318
6319/** @} */
6320
6321/** @name IEMAllCImpl.cpp
6322 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/'
6323 * @{ */
6324IEM_CIMPL_PROTO_2(iemCImpl_pop_mem16, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6325IEM_CIMPL_PROTO_2(iemCImpl_pop_mem32, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6326IEM_CIMPL_PROTO_2(iemCImpl_pop_mem64, uint16_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6327IEM_CIMPL_PROTO_0(iemCImpl_popa_16);
6328IEM_CIMPL_PROTO_0(iemCImpl_popa_32);
6329IEM_CIMPL_PROTO_0(iemCImpl_pusha_16);
6330IEM_CIMPL_PROTO_0(iemCImpl_pusha_32);
6331IEM_CIMPL_PROTO_1(iemCImpl_pushf, IEMMODE, enmEffOpSize);
6332IEM_CIMPL_PROTO_1(iemCImpl_popf, IEMMODE, enmEffOpSize);
6333IEM_CIMPL_PROTO_3(iemCImpl_FarJmp, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
6334IEM_CIMPL_PROTO_3(iemCImpl_callf, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
6335typedef IEM_CIMPL_DECL_TYPE_3(FNIEMCIMPLFARBRANCH, uint16_t, uSel, uint64_t, offSeg, IEMMODE, enmEffOpSize);
6336typedef FNIEMCIMPLFARBRANCH *PFNIEMCIMPLFARBRANCH;
6337IEM_CIMPL_PROTO_2(iemCImpl_retf, IEMMODE, enmEffOpSize, uint16_t, cbPop);
6338IEM_CIMPL_PROTO_3(iemCImpl_enter, IEMMODE, enmEffOpSize, uint16_t, cbFrame, uint8_t, cParameters);
6339IEM_CIMPL_PROTO_1(iemCImpl_leave, IEMMODE, enmEffOpSize);
6340IEM_CIMPL_PROTO_2(iemCImpl_int, uint8_t, u8Int, IEMINT, enmInt);
6341IEM_CIMPL_PROTO_1(iemCImpl_iret_real_v8086, IEMMODE, enmEffOpSize);
6342IEM_CIMPL_PROTO_4(iemCImpl_iret_prot_v8086, uint32_t, uNewEip, uint16_t, uNewCs, uint32_t, uNewFlags, uint64_t, uNewRsp);
6343IEM_CIMPL_PROTO_1(iemCImpl_iret_prot_NestedTask, IEMMODE, enmEffOpSize);
6344IEM_CIMPL_PROTO_1(iemCImpl_iret_prot, IEMMODE, enmEffOpSize);
6345IEM_CIMPL_PROTO_1(iemCImpl_iret_64bit, IEMMODE, enmEffOpSize);
6346IEM_CIMPL_PROTO_1(iemCImpl_iret, IEMMODE, enmEffOpSize);
6347IEM_CIMPL_PROTO_0(iemCImpl_loadall286);
6348IEM_CIMPL_PROTO_0(iemCImpl_syscall);
6349IEM_CIMPL_PROTO_1(iemCImpl_sysret, IEMMODE, enmEffOpSize);
6350IEM_CIMPL_PROTO_0(iemCImpl_sysenter);
6351IEM_CIMPL_PROTO_1(iemCImpl_sysexit, IEMMODE, enmEffOpSize);
6352IEM_CIMPL_PROTO_2(iemCImpl_LoadSReg, uint8_t, iSegReg, uint16_t, uSel);
6353IEM_CIMPL_PROTO_2(iemCImpl_load_SReg, uint8_t, iSegReg, uint16_t, uSel);
6354IEM_CIMPL_PROTO_2(iemCImpl_pop_Sreg, uint8_t, iSegReg, IEMMODE, enmEffOpSize);
6355IEM_CIMPL_PROTO_5(iemCImpl_load_SReg_Greg, uint16_t, uSel, uint64_t, offSeg, uint8_t, iSegReg, uint8_t, iGReg, IEMMODE, enmEffOpSize);
6356IEM_CIMPL_PROTO_2(iemCImpl_VerX, uint16_t, uSel, bool, fWrite);
6357IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u64, uint64_t *, pu64Dst, uint16_t, uSel, bool, fIsLar);
6358IEM_CIMPL_PROTO_3(iemCImpl_LarLsl_u16, uint16_t *, pu16Dst, uint16_t, uSel, bool, fIsLar);
6359IEM_CIMPL_PROTO_3(iemCImpl_lgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
6360IEM_CIMPL_PROTO_2(iemCImpl_sgdt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6361IEM_CIMPL_PROTO_3(iemCImpl_lidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc, IEMMODE, enmEffOpSize);
6362IEM_CIMPL_PROTO_2(iemCImpl_sidt, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6363IEM_CIMPL_PROTO_1(iemCImpl_lldt, uint16_t, uNewLdt);
6364IEM_CIMPL_PROTO_2(iemCImpl_sldt_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
6365IEM_CIMPL_PROTO_2(iemCImpl_sldt_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6366IEM_CIMPL_PROTO_1(iemCImpl_ltr, uint16_t, uNewTr);
6367IEM_CIMPL_PROTO_2(iemCImpl_str_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
6368IEM_CIMPL_PROTO_2(iemCImpl_str_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6369IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Cd, uint8_t, iGReg, uint8_t, iCrReg);
6370IEM_CIMPL_PROTO_2(iemCImpl_smsw_reg, uint8_t, iGReg, uint8_t, enmEffOpSize);
6371IEM_CIMPL_PROTO_2(iemCImpl_smsw_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6372IEM_CIMPL_PROTO_4(iemCImpl_load_CrX, uint8_t, iCrReg, uint64_t, uNewCrX, IEMACCESSCRX, enmAccessCrX, uint8_t, iGReg);
6373IEM_CIMPL_PROTO_2(iemCImpl_mov_Cd_Rd, uint8_t, iCrReg, uint8_t, iGReg);
6374IEM_CIMPL_PROTO_2(iemCImpl_lmsw, uint16_t, u16NewMsw, RTGCPTR, GCPtrEffDst);
6375IEM_CIMPL_PROTO_0(iemCImpl_clts);
6376IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Dd, uint8_t, iGReg, uint8_t, iDrReg);
6377IEM_CIMPL_PROTO_2(iemCImpl_mov_Dd_Rd, uint8_t, iDrReg, uint8_t, iGReg);
6378IEM_CIMPL_PROTO_2(iemCImpl_mov_Rd_Td, uint8_t, iGReg, uint8_t, iTrReg);
6379IEM_CIMPL_PROTO_2(iemCImpl_mov_Td_Rd, uint8_t, iTrReg, uint8_t, iGReg);
6380IEM_CIMPL_PROTO_1(iemCImpl_invlpg, RTGCPTR, GCPtrPage);
6381IEM_CIMPL_PROTO_3(iemCImpl_invpcid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvpcidDesc, uint64_t, uInvpcidType);
6382IEM_CIMPL_PROTO_0(iemCImpl_invd);
6383IEM_CIMPL_PROTO_0(iemCImpl_wbinvd);
6384IEM_CIMPL_PROTO_0(iemCImpl_rsm);
6385IEM_CIMPL_PROTO_0(iemCImpl_rdtsc);
6386IEM_CIMPL_PROTO_0(iemCImpl_rdtscp);
6387IEM_CIMPL_PROTO_0(iemCImpl_rdpmc);
6388IEM_CIMPL_PROTO_0(iemCImpl_rdmsr);
6389IEM_CIMPL_PROTO_0(iemCImpl_wrmsr);
6390IEM_CIMPL_PROTO_3(iemCImpl_in, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
6391IEM_CIMPL_PROTO_2(iemCImpl_in_eAX_DX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
6392IEM_CIMPL_PROTO_3(iemCImpl_out, uint16_t, u16Port, uint8_t, cbReg, uint8_t, bImmAndEffAddrMode);
6393IEM_CIMPL_PROTO_2(iemCImpl_out_DX_eAX, uint8_t, cbReg, IEMMODE, enmEffAddrMode);
6394IEM_CIMPL_PROTO_0(iemCImpl_cli);
6395IEM_CIMPL_PROTO_0(iemCImpl_sti);
6396IEM_CIMPL_PROTO_0(iemCImpl_hlt);
6397IEM_CIMPL_PROTO_1(iemCImpl_monitor, uint8_t, iEffSeg);
6398IEM_CIMPL_PROTO_0(iemCImpl_mwait);
6399IEM_CIMPL_PROTO_0(iemCImpl_swapgs);
6400IEM_CIMPL_PROTO_0(iemCImpl_cpuid);
6401IEM_CIMPL_PROTO_1(iemCImpl_aad, uint8_t, bImm);
6402IEM_CIMPL_PROTO_1(iemCImpl_aam, uint8_t, bImm);
6403IEM_CIMPL_PROTO_0(iemCImpl_daa);
6404IEM_CIMPL_PROTO_0(iemCImpl_das);
6405IEM_CIMPL_PROTO_0(iemCImpl_aaa);
6406IEM_CIMPL_PROTO_0(iemCImpl_aas);
6407IEM_CIMPL_PROTO_3(iemCImpl_bound_16, int16_t, idxArray, int16_t, idxLowerBound, int16_t, idxUpperBound);
6408IEM_CIMPL_PROTO_3(iemCImpl_bound_32, int32_t, idxArray, int32_t, idxLowerBound, int32_t, idxUpperBound);
6409IEM_CIMPL_PROTO_0(iemCImpl_xgetbv);
6410IEM_CIMPL_PROTO_0(iemCImpl_xsetbv);
6411IEM_CIMPL_PROTO_5(iemCImpl_cmpxchg16b_fallback_rendezvous, PRTUINT128U, pu128Dst, PRTUINT128U, pu128RaxRdx,
6412 PRTUINT128U, pu128RbxRcx, uint32_t *, pEFlags, uint8_t, bUnmapInfo);
6413IEM_CIMPL_PROTO_2(iemCImpl_clflush_clflushopt, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6414IEM_CIMPL_PROTO_1(iemCImpl_finit, bool, fCheckXcpts);
6415IEM_CIMPL_PROTO_3(iemCImpl_fxsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6416IEM_CIMPL_PROTO_3(iemCImpl_fxrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6417IEM_CIMPL_PROTO_3(iemCImpl_xsave, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6418IEM_CIMPL_PROTO_3(iemCImpl_xrstor, uint8_t, iEffSeg, RTGCPTR, GCPtrEff, IEMMODE, enmEffOpSize);
6419IEM_CIMPL_PROTO_2(iemCImpl_stmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6420IEM_CIMPL_PROTO_2(iemCImpl_vstmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6421IEM_CIMPL_PROTO_2(iemCImpl_ldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6422IEM_CIMPL_PROTO_2(iemCImpl_vldmxcsr, uint8_t, iEffSeg, RTGCPTR, GCPtrEff);
6423IEM_CIMPL_PROTO_3(iemCImpl_fnstenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6424IEM_CIMPL_PROTO_3(iemCImpl_fnsave, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst);
6425IEM_CIMPL_PROTO_3(iemCImpl_fldenv, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6426IEM_CIMPL_PROTO_3(iemCImpl_frstor, IEMMODE, enmEffOpSize, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6427IEM_CIMPL_PROTO_1(iemCImpl_fldcw, uint16_t, u16Fcw);
6428IEM_CIMPL_PROTO_2(iemCImpl_fxch_underflow, uint8_t, iStReg, uint16_t, uFpuOpcode);
6429IEM_CIMPL_PROTO_3(iemCImpl_fcomi_fucomi, uint8_t, iStReg, bool, fUCmp, uint32_t, uPopAndFpuOpcode);
6430IEM_CIMPL_PROTO_2(iemCImpl_rdseed, uint8_t, iReg, IEMMODE, enmEffOpSize);
6431IEM_CIMPL_PROTO_2(iemCImpl_rdrand, uint8_t, iReg, IEMMODE, enmEffOpSize);
6432IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6433IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6434IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6435IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovps_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6436IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6437IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6438IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6439IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6440IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6441IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6442IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6443IEM_CIMPL_PROTO_4(iemCImpl_vmaskmovpd_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6444IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u128, uint8_t, iXRegDst, uint8_t, iXRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6445IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_load_u256, uint8_t, iYRegDst, uint8_t, iYRegMsk, uint8_t, iEffSeg, RTGCPTR, GCPtrEffSrc);
6446IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u128, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iXRegMsk, uint8_t, iXRegSrc);
6447IEM_CIMPL_PROTO_4(iemCImpl_vpmaskmovq_store_u256, uint8_t, iEffSeg, RTGCPTR, GCPtrEffDst, uint8_t, iYRegMsk, uint8_t, iYRegSrc);
6448
6449/** @} */
6450
6451/** @name IEMAllCImplStrInstr.cpp.h
6452 * @note sed -e '/IEM_CIMPL_DEF_/!d' -e 's/IEM_CIMPL_DEF_/IEM_CIMPL_PROTO_/' -e 's/$/;/' -e 's/RT_CONCAT4(//' \
6453 * -e 's/,ADDR_SIZE)/64/g' -e 's/,OP_SIZE,/64/g' -e 's/,OP_rAX,/rax/g' IEMAllCImplStrInstr.cpp.h
6454 * @{ */
6455IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr16, uint8_t, iEffSeg);
6456IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr16, uint8_t, iEffSeg);
6457IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m16);
6458IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m16);
6459IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr16, uint8_t, iEffSeg);
6460IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m16);
6461IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m16, int8_t, iEffSeg);
6462IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr16, bool, fIoChecked);
6463IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr16, bool, fIoChecked);
6464IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6465IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6466
6467IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr16, uint8_t, iEffSeg);
6468IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr16, uint8_t, iEffSeg);
6469IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m16);
6470IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m16);
6471IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr16, uint8_t, iEffSeg);
6472IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m16);
6473IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m16, int8_t, iEffSeg);
6474IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr16, bool, fIoChecked);
6475IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr16, bool, fIoChecked);
6476IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6477IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6478
6479IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr16, uint8_t, iEffSeg);
6480IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr16, uint8_t, iEffSeg);
6481IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m16);
6482IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m16);
6483IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr16, uint8_t, iEffSeg);
6484IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m16);
6485IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m16, int8_t, iEffSeg);
6486IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr16, bool, fIoChecked);
6487IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr16, bool, fIoChecked);
6488IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6489IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr16, uint8_t, iEffSeg, bool, fIoChecked);
6490
6491
6492IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr32, uint8_t, iEffSeg);
6493IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr32, uint8_t, iEffSeg);
6494IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m32);
6495IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m32);
6496IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr32, uint8_t, iEffSeg);
6497IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m32);
6498IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m32, int8_t, iEffSeg);
6499IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr32, bool, fIoChecked);
6500IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr32, bool, fIoChecked);
6501IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6502IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6503
6504IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr32, uint8_t, iEffSeg);
6505IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr32, uint8_t, iEffSeg);
6506IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m32);
6507IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m32);
6508IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr32, uint8_t, iEffSeg);
6509IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m32);
6510IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m32, int8_t, iEffSeg);
6511IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr32, bool, fIoChecked);
6512IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr32, bool, fIoChecked);
6513IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6514IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6515
6516IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr32, uint8_t, iEffSeg);
6517IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr32, uint8_t, iEffSeg);
6518IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m32);
6519IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m32);
6520IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr32, uint8_t, iEffSeg);
6521IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m32);
6522IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m32, int8_t, iEffSeg);
6523IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr32, bool, fIoChecked);
6524IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr32, bool, fIoChecked);
6525IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6526IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6527
6528IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr32, uint8_t, iEffSeg);
6529IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr32, uint8_t, iEffSeg);
6530IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m32);
6531IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m32);
6532IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr32, uint8_t, iEffSeg);
6533IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m32);
6534IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m32, int8_t, iEffSeg);
6535IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr32, bool, fIoChecked);
6536IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr32, bool, fIoChecked);
6537IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6538IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr32, uint8_t, iEffSeg, bool, fIoChecked);
6539
6540
6541IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op8_addr64, uint8_t, iEffSeg);
6542IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op8_addr64, uint8_t, iEffSeg);
6543IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_al_m64);
6544IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_al_m64);
6545IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op8_addr64, uint8_t, iEffSeg);
6546IEM_CIMPL_PROTO_0(iemCImpl_stos_al_m64);
6547IEM_CIMPL_PROTO_1(iemCImpl_lods_al_m64, int8_t, iEffSeg);
6548IEM_CIMPL_PROTO_1(iemCImpl_ins_op8_addr64, bool, fIoChecked);
6549IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op8_addr64, bool, fIoChecked);
6550IEM_CIMPL_PROTO_2(iemCImpl_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6551IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op8_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6552
6553IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op16_addr64, uint8_t, iEffSeg);
6554IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op16_addr64, uint8_t, iEffSeg);
6555IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_ax_m64);
6556IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_ax_m64);
6557IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op16_addr64, uint8_t, iEffSeg);
6558IEM_CIMPL_PROTO_0(iemCImpl_stos_ax_m64);
6559IEM_CIMPL_PROTO_1(iemCImpl_lods_ax_m64, int8_t, iEffSeg);
6560IEM_CIMPL_PROTO_1(iemCImpl_ins_op16_addr64, bool, fIoChecked);
6561IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op16_addr64, bool, fIoChecked);
6562IEM_CIMPL_PROTO_2(iemCImpl_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6563IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op16_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6564
6565IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op32_addr64, uint8_t, iEffSeg);
6566IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op32_addr64, uint8_t, iEffSeg);
6567IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_eax_m64);
6568IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_eax_m64);
6569IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op32_addr64, uint8_t, iEffSeg);
6570IEM_CIMPL_PROTO_0(iemCImpl_stos_eax_m64);
6571IEM_CIMPL_PROTO_1(iemCImpl_lods_eax_m64, int8_t, iEffSeg);
6572IEM_CIMPL_PROTO_1(iemCImpl_ins_op32_addr64, bool, fIoChecked);
6573IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op32_addr64, bool, fIoChecked);
6574IEM_CIMPL_PROTO_2(iemCImpl_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6575IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op32_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6576
6577IEM_CIMPL_PROTO_1(iemCImpl_repe_cmps_op64_addr64, uint8_t, iEffSeg);
6578IEM_CIMPL_PROTO_1(iemCImpl_repne_cmps_op64_addr64, uint8_t, iEffSeg);
6579IEM_CIMPL_PROTO_0(iemCImpl_repe_scas_rax_m64);
6580IEM_CIMPL_PROTO_0(iemCImpl_repne_scas_rax_m64);
6581IEM_CIMPL_PROTO_1(iemCImpl_rep_movs_op64_addr64, uint8_t, iEffSeg);
6582IEM_CIMPL_PROTO_0(iemCImpl_stos_rax_m64);
6583IEM_CIMPL_PROTO_1(iemCImpl_lods_rax_m64, int8_t, iEffSeg);
6584IEM_CIMPL_PROTO_1(iemCImpl_ins_op64_addr64, bool, fIoChecked);
6585IEM_CIMPL_PROTO_1(iemCImpl_rep_ins_op64_addr64, bool, fIoChecked);
6586IEM_CIMPL_PROTO_2(iemCImpl_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6587IEM_CIMPL_PROTO_2(iemCImpl_rep_outs_op64_addr64, uint8_t, iEffSeg, bool, fIoChecked);
6588/** @} */
6589
6590#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
6591VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT;
6592VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT;
6593VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT;
6594VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT;
6595VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode, uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT;
6596VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT;
6597VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALKFAST pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT;
6598VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT;
6599VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT;
6600VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
6601 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT;
6602VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
6603 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT;
6604VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6605VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6606VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6607VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6608VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6609VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT;
6610VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT;
6611VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
6612 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT;
6613VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT;
6614VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT;
6615VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT;
6616uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT;
6617void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT;
6618VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
6619 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT;
6620bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT;
6621IEM_CIMPL_PROTO_0(iemCImpl_vmxoff);
6622IEM_CIMPL_PROTO_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon);
6623IEM_CIMPL_PROTO_0(iemCImpl_vmlaunch);
6624IEM_CIMPL_PROTO_0(iemCImpl_vmresume);
6625IEM_CIMPL_PROTO_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6626IEM_CIMPL_PROTO_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6627IEM_CIMPL_PROTO_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs);
6628IEM_CIMPL_PROTO_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField);
6629IEM_CIMPL_PROTO_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField);
6630IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField);
6631IEM_CIMPL_PROTO_2(iemCImpl_vmread_reg32, uint64_t *, pu32Dst, uint32_t, u32VmcsField);
6632IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField);
6633IEM_CIMPL_PROTO_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField);
6634IEM_CIMPL_PROTO_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType);
6635IEM_CIMPL_PROTO_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType);
6636IEM_CIMPL_PROTO_0(iemCImpl_vmx_pause);
6637#endif
6638
6639#ifdef VBOX_WITH_NESTED_HWVIRT_SVM
6640VBOXSTRICTRC iemSvmVmexit(PVMCPUCC pVCpu, uint64_t uExitCode, uint64_t uExitInfo1, uint64_t uExitInfo2) RT_NOEXCEPT;
6641VBOXSTRICTRC iemHandleSvmEventIntercept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t u8Vector, uint32_t fFlags, uint32_t uErr, uint64_t uCr2) RT_NOEXCEPT;
6642VBOXSTRICTRC iemSvmHandleIOIntercept(PVMCPUCC pVCpu, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
6643 uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo, uint8_t cbInstr) RT_NOEXCEPT;
6644VBOXSTRICTRC iemSvmHandleMsrIntercept(PVMCPUCC pVCpu, uint32_t idMsr, bool fWrite, uint8_t cbInstr) RT_NOEXCEPT;
6645IEM_CIMPL_PROTO_0(iemCImpl_vmrun);
6646IEM_CIMPL_PROTO_0(iemCImpl_vmload);
6647IEM_CIMPL_PROTO_0(iemCImpl_vmsave);
6648IEM_CIMPL_PROTO_0(iemCImpl_clgi);
6649IEM_CIMPL_PROTO_0(iemCImpl_stgi);
6650IEM_CIMPL_PROTO_0(iemCImpl_invlpga);
6651IEM_CIMPL_PROTO_0(iemCImpl_skinit);
6652IEM_CIMPL_PROTO_0(iemCImpl_svm_pause);
6653#endif
6654
6655IEM_CIMPL_PROTO_0(iemCImpl_vmcall); /* vmx */
6656IEM_CIMPL_PROTO_0(iemCImpl_vmmcall); /* svm */
6657IEM_CIMPL_PROTO_1(iemCImpl_Hypercall, uint16_t, uDisOpcode); /* both */
6658
6659extern const PFNIEMOP g_apfnIemInterpretOnlyOneByteMap[256];
6660extern const PFNIEMOP g_apfnIemInterpretOnlyTwoByteMap[1024];
6661extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f3a[1024];
6662extern const PFNIEMOP g_apfnIemInterpretOnlyThreeByte0f38[1024];
6663extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap1[1024];
6664extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap2[1024];
6665extern const PFNIEMOP g_apfnIemInterpretOnlyVecMap3[1024];
6666
6667/*
6668 * Recompiler related stuff.
6669 */
6670extern const PFNIEMOP g_apfnIemThreadedRecompilerOneByteMap[256];
6671extern const PFNIEMOP g_apfnIemThreadedRecompilerTwoByteMap[1024];
6672extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f3a[1024];
6673extern const PFNIEMOP g_apfnIemThreadedRecompilerThreeByte0f38[1024];
6674extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap1[1024];
6675extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap2[1024];
6676extern const PFNIEMOP g_apfnIemThreadedRecompilerVecMap3[1024];
6677
6678DECLCALLBACK(int) iemTbInit(PVMCC pVM, uint32_t cInitialTbs, uint32_t cMaxTbs,
6679 uint64_t cbInitialExec, uint64_t cbMaxExec, uint32_t cbChunkExec);
6680void iemThreadedTbObsolete(PVMCPUCC pVCpu, PIEMTB pTb, bool fSafeToFree);
6681DECLHIDDEN(void) iemTbAllocatorFree(PVMCPUCC pVCpu, PIEMTB pTb);
6682void iemTbAllocatorProcessDelayedFrees(PVMCPUCC pVCpu, PIEMTBALLOCATOR pTbAllocator);
6683void iemTbAllocatorFreeupNativeSpace(PVMCPUCC pVCpu, uint32_t cNeededInstrs);
6684DECLHIDDEN(const char *) iemTbFlagsToString(uint32_t fFlags, char *pszBuf, size_t cbBuf) RT_NOEXCEPT;
6685DECLHIDDEN(void) iemThreadedDisassembleTb(PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6686
6687
6688/** @todo FNIEMTHREADEDFUNC and friends may need more work... */
6689#if defined(__GNUC__) && !defined(IEM_WITH_THROW_CATCH)
6690typedef VBOXSTRICTRC /*__attribute__((__nothrow__))*/ FNIEMTHREADEDFUNC(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6691typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6692# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6693 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6694# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6695 VBOXSTRICTRC __attribute__((__nothrow__)) a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2)
6696
6697#else
6698typedef VBOXSTRICTRC (FNIEMTHREADEDFUNC)(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2);
6699typedef FNIEMTHREADEDFUNC *PFNIEMTHREADEDFUNC;
6700# define IEM_DECL_IEMTHREADEDFUNC_DEF(a_Name) \
6701 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6702# define IEM_DECL_IEMTHREADEDFUNC_PROTO(a_Name) \
6703 VBOXSTRICTRC a_Name(PVMCPU pVCpu, uint64_t uParam0, uint64_t uParam1, uint64_t uParam2) IEM_NOEXCEPT_MAY_LONGJMP
6704#endif
6705
6706
6707IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_Nop);
6708IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_LogCpuState);
6709
6710IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_DeferToCImpl0);
6711
6712IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckIrq);
6713IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckMode);
6714IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckHwInstrBps);
6715IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLim);
6716
6717IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodes);
6718IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodes);
6719IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesConsiderCsLim);
6720
6721/* Branching: */
6722IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndPcAndOpcodes);
6723IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodes);
6724IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckPcAndOpcodesConsiderCsLim);
6725
6726IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesLoadingTlb);
6727IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlb);
6728IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesLoadingTlbConsiderCsLim);
6729
6730/* Natural page crossing: */
6731IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesAcrossPageLoadingTlb);
6732IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlb);
6733IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesAcrossPageLoadingTlbConsiderCsLim);
6734
6735IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNextPageLoadingTlb);
6736IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlb);
6737IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNextPageLoadingTlbConsiderCsLim);
6738
6739IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckCsLimAndOpcodesOnNewPageLoadingTlb);
6740IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlb);
6741IEM_DECL_IEMTHREADEDFUNC_PROTO(iemThreadedFunc_BltIn_CheckOpcodesOnNewPageLoadingTlbConsiderCsLim);
6742
6743bool iemThreadedCompileEmitIrqCheckBefore(PVMCPUCC pVCpu, PIEMTB pTb);
6744bool iemThreadedCompileBeginEmitCallsComplications(PVMCPUCC pVCpu, PIEMTB pTb);
6745
6746/* Native recompiler public bits: */
6747
6748DECLHIDDEN(PIEMTB) iemNativeRecompile(PVMCPUCC pVCpu, PIEMTB pTb) RT_NOEXCEPT;
6749DECLHIDDEN(void) iemNativeDisassembleTb(PVMCPU pVCpu, PCIEMTB pTb, PCDBGFINFOHLP pHlp) RT_NOEXCEPT;
6750int iemExecMemAllocatorInit(PVMCPU pVCpu, uint64_t cbMax, uint64_t cbInitial, uint32_t cbChunk) RT_NOEXCEPT;
6751DECLHIDDEN(PIEMNATIVEINSTR) iemExecMemAllocatorAlloc(PVMCPU pVCpu, uint32_t cbReq, PIEMTB pTb, PIEMNATIVEINSTR *ppaExec,
6752 struct IEMNATIVEPERCHUNKCTX const **ppChunkCtx) RT_NOEXCEPT;
6753DECLHIDDEN(PIEMNATIVEINSTR) iemExecMemAllocatorAllocFromChunk(PVMCPU pVCpu, uint32_t idxChunk, uint32_t cbReq,
6754 PIEMNATIVEINSTR *ppaExec);
6755DECLHIDDEN(void) iemExecMemAllocatorReadyForUse(PVMCPUCC pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6756void iemExecMemAllocatorFree(PVMCPU pVCpu, void *pv, size_t cb) RT_NOEXCEPT;
6757DECLASM(DECL_NO_RETURN(void)) iemNativeTbLongJmp(void *pvFramePointer, int rc) RT_NOEXCEPT;
6758DECLHIDDEN(struct IEMNATIVEPERCHUNKCTX const *) iemExecMemGetTbChunkCtx(PVMCPU pVCpu, PCIEMTB pTb);
6759DECLHIDDEN(struct IEMNATIVEPERCHUNKCTX const *) iemNativeRecompileAttachExecMemChunkCtx(PVMCPU pVCpu, uint32_t idxChunk);
6760
6761#endif /* !RT_IN_ASSEMBLER - ASM-NOINC-END */
6762
6763
6764/** @} */
6765
6766RT_C_DECLS_END
6767
6768/* ASM-INC: %include "IEMInternalStruct.mac" */
6769
6770#endif /* !VMM_INCLUDED_SRC_include_IEMInternal_h */
6771
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette