VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMRZ/PGMRZDynMap.cpp@ 39278

最後變更 在這個檔案從39278是 39078,由 vboxsync 提交於 13 年 前

VMM: -Wunused-parameter

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Author Date Id Revision
檔案大小: 96.9 KB
 
1/* $Id: PGMRZDynMap.cpp 39078 2011-10-21 14:18:22Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, dynamic mapping cache.
4 */
5
6/*
7 * Copyright (C) 2008-2011 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Internal Functions *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_DYNMAP
23#include <VBox/vmm/pgm.h>
24#include "PGMInternal.h"
25#include <VBox/vmm/vm.h>
26#include "PGMInline.h"
27#include <VBox/err.h>
28#include <VBox/param.h>
29#include <VBox/sup.h>
30#include <iprt/asm.h>
31#include <iprt/asm-amd64-x86.h>
32#include <iprt/assert.h>
33#ifndef IN_RC
34# include <iprt/cpuset.h>
35# include <iprt/mem.h>
36# include <iprt/memobj.h>
37# include <iprt/mp.h>
38# include <iprt/semaphore.h>
39# include <iprt/spinlock.h>
40#endif
41#include <iprt/string.h>
42
43
44/*******************************************************************************
45* Defined Constants And Macros *
46*******************************************************************************/
47#ifdef IN_RING0
48/** The max size of the mapping cache (in pages). */
49# define PGMR0DYNMAP_MAX_PAGES ((16*_1M) >> PAGE_SHIFT)
50/** The small segment size that is adopted on out-of-memory conditions with a
51 * single big segment. */
52# define PGMR0DYNMAP_SMALL_SEG_PAGES 128
53/** The number of pages we reserve per CPU. */
54# define PGMR0DYNMAP_PAGES_PER_CPU 256
55/** The minimum number of pages we reserve per CPU.
56 * This must be equal or larger than the autoset size. */
57# define PGMR0DYNMAP_PAGES_PER_CPU_MIN 64
58/** Calcs the overload threshold (safety margin). Current set at 50%. */
59# define PGMR0DYNMAP_CALC_OVERLOAD(cPages) ((cPages) / 2)
60/** The number of guard pages.
61 * @remarks Never do tuning of the hashing or whatnot with a strict build! */
62# if defined(VBOX_STRICT)
63# define PGMR0DYNMAP_GUARD_PAGES 1
64# else
65# define PGMR0DYNMAP_GUARD_PAGES 0
66# endif
67#endif /* IN_RING0 */
68/** The dummy physical address of guard pages. */
69#define PGMR0DYNMAP_GUARD_PAGE_HCPHYS UINT32_C(0x7777feed)
70/** The dummy reference count of guard pages. (Must be non-zero.) */
71#define PGMR0DYNMAP_GUARD_PAGE_REF_COUNT INT32_C(0x7777feed)
72#if 0
73/** Define this to just clear the present bit on guard pages.
74 * The alternative is to replace the entire PTE with an bad not-present
75 * PTE. Either way, XNU will screw us. :-/ */
76# define PGMR0DYNMAP_GUARD_NP
77#endif
78/** The dummy PTE value for a page. */
79#define PGMR0DYNMAP_GUARD_PAGE_LEGACY_PTE X86_PTE_PG_MASK
80/** The dummy PTE value for a page. */
81#define PGMR0DYNMAP_GUARD_PAGE_PAE_PTE UINT64_MAX /*X86_PTE_PAE_PG_MASK*/
82
83#ifdef IN_RING0 /* Note! Assertions causes panics if preemption is disabled,
84 * disable this to work around that. */
85/**
86 * Acquire the spinlock.
87 * This will declare a temporary variable and expands to two statements!
88 */
89# define PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis) \
90 RTSPINLOCKTMP MySpinlockTmp = RTSPINLOCKTMP_INITIALIZER; \
91 RTSpinlockAcquire((pThis)->hSpinlock, &MySpinlockTmp)
92/**
93 * Releases the spinlock.
94 */
95# define PGMRZDYNMAP_SPINLOCK_RELEASE(pThis) \
96 RTSpinlockRelease((pThis)->hSpinlock, &MySpinlockTmp)
97
98/**
99 * Re-acquires the spinlock.
100 */
101# define PGMRZDYNMAP_SPINLOCK_REACQUIRE(pThis) \
102 RTSpinlockAcquire((pThis)->hSpinlock, &MySpinlockTmp)
103#else
104# define PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis) do { } while (0)
105# define PGMRZDYNMAP_SPINLOCK_RELEASE(pThis) do { } while (0)
106# define PGMRZDYNMAP_SPINLOCK_REACQUIRE(pThis) do { } while (0)
107#endif
108
109
110/** Converts a PGMCPUM::AutoSet pointer into a PVMCPU. */
111#define PGMRZDYNMAP_SET_2_VMCPU(pSet) (RT_FROM_MEMBER(pSet, VMCPU, pgm.s.AutoSet))
112
113/** Converts a PGMCPUM::AutoSet pointer into a PVM. */
114#define PGMRZDYNMAP_SET_2_VM(pSet) (PGMRZDYNMAP_SET_2_VMCPU(pSet)->CTX_SUFF(pVM))
115
116/** Converts a PGMCPUM::AutoSet pointer into a PVM. */
117#ifdef IN_RC
118# define PGMRZDYNMAP_SET_2_DYNMAP(pSet) (PGMRZDYNMAP_SET_2_VM(pSet)->pgm.s.pRCDynMap)
119#else
120# define PGMRZDYNMAP_SET_2_DYNMAP(pSet) (g_pPGMR0DynMap)
121#endif
122
123/**
124 * Gets the set index of the current CPU.
125 *
126 * This always returns 0 when in raw-mode context because there is only ever
127 * one EMT in that context (at least presently).
128 */
129#ifdef IN_RC
130# define PGMRZDYNMAP_CUR_CPU() (0)
131#else
132# define PGMRZDYNMAP_CUR_CPU() RTMpCpuIdToSetIndex(RTMpCpuId())
133#endif
134
135/** PGMRZDYNMAP::u32Magic. (Jens Christian Bugge Wesseltoft) */
136#define PGMRZDYNMAP_MAGIC UINT32_C(0x19640201)
137
138
139/** Zaps an set entry. */
140#define PGMRZDYNMAP_ZAP_ENTRY(pEntry) \
141 do \
142 { \
143 (pEntry)->iPage = UINT16_MAX; \
144 (pEntry)->cRefs = 0; \
145 (pEntry)->cInlinedRefs = 0; \
146 (pEntry)->cUnrefs = 0; \
147 } while (0)
148
149
150/** @def PGMRZDYNMAP_STRICT_RELEASE
151 * Define this to force pages to be released and make non-present ASAP after
152 * use. This should not normally be enabled as it is a bit expensive. */
153#if 0 || defined(DOXYGEN_RUNNING)
154# define PGMRZDYNMAP_STRICT_RELEASE
155#endif
156
157
158/*******************************************************************************
159* Structures and Typedefs *
160*******************************************************************************/
161#ifdef IN_RING0
162/**
163 * Ring-0 dynamic mapping cache segment.
164 *
165 * The dynamic mapping cache can be extended with additional segments if the
166 * load is found to be too high. This done the next time a VM is created, under
167 * the protection of the init mutex. The arrays is reallocated and the new
168 * segment is added to the end of these. Nothing is rehashed of course, as the
169 * indexes / addresses must remain unchanged.
170 *
171 * This structure is only modified while owning the init mutex or during module
172 * init / term.
173 */
174typedef struct PGMR0DYNMAPSEG
175{
176 /** Pointer to the next segment. */
177 struct PGMR0DYNMAPSEG *pNext;
178 /** The memory object for the virtual address range that we're abusing. */
179 RTR0MEMOBJ hMemObj;
180 /** The start page in the cache. (I.e. index into the arrays.) */
181 uint16_t iPage;
182 /** The number of pages this segment contributes. */
183 uint16_t cPages;
184 /** The number of page tables. */
185 uint16_t cPTs;
186 /** The memory objects for the page tables. */
187 RTR0MEMOBJ ahMemObjPTs[1];
188} PGMR0DYNMAPSEG;
189/** Pointer to a ring-0 dynamic mapping cache segment. */
190typedef PGMR0DYNMAPSEG *PPGMR0DYNMAPSEG;
191
192
193/**
194 * Ring-0 dynamic mapping cache entry.
195 *
196 * @sa PGMRZDYNMAPENTRY, PGMRCDYNMAPENTRY.
197 */
198typedef struct PGMR0DYNMAPENTRY
199{
200 /** The physical address of the currently mapped page.
201 * This is duplicate for three reasons: cache locality, cache policy of the PT
202 * mappings and sanity checks. */
203 RTHCPHYS HCPhys;
204 /** Pointer to the page. */
205 void *pvPage;
206 /** The number of references. */
207 int32_t volatile cRefs;
208 /** PTE pointer union. */
209 union PGMR0DYNMAPENTRY_PPTE
210 {
211 /** PTE pointer, 32-bit legacy version. */
212 PX86PTE pLegacy;
213 /** PTE pointer, PAE version. */
214 PX86PTEPAE pPae;
215 /** PTE pointer, the void version. */
216 void *pv;
217 } uPte;
218 /** CPUs that haven't invalidated this entry after it's last update. */
219 RTCPUSET PendingSet;
220} PGMR0DYNMAPENTRY;
221/** Pointer a mapping cache entry for the ring-0.
222 * @sa PPGMRZDYNMAPENTRY, PPGMRCDYNMAPENTRY, */
223typedef PGMR0DYNMAPENTRY *PPGMR0DYNMAPENTRY;
224
225
226/**
227 * Dynamic mapping cache for ring-0.
228 *
229 * This is initialized during VMMR0 module init but no segments are allocated
230 * at that time. Segments will be added when the first VM is started and
231 * removed again when the last VM shuts down, thus avoid consuming memory while
232 * dormant. At module termination, the remaining bits will be freed up.
233 *
234 * @sa PPGMRZDYNMAP, PGMRCDYNMAP.
235 */
236typedef struct PGMR0DYNMAP
237{
238 /** The usual magic number / eye catcher (PGMRZDYNMAP_MAGIC). */
239 uint32_t u32Magic;
240 /** Spinlock serializing the normal operation of the cache. */
241 RTSPINLOCK hSpinlock;
242 /** Array for tracking and managing the pages. */
243 PPGMR0DYNMAPENTRY paPages;
244 /** The cache size given as a number of pages. */
245 uint32_t cPages;
246 /** Whether it's 32-bit legacy or PAE/AMD64 paging mode. */
247 bool fLegacyMode;
248 /** The current load.
249 * This does not include guard pages. */
250 uint32_t cLoad;
251 /** The max load ever.
252 * This is maintained to trigger the adding of more mapping space. */
253 uint32_t cMaxLoad;
254 /** Initialization / termination lock. */
255 RTSEMFASTMUTEX hInitLock;
256 /** The number of guard pages. */
257 uint32_t cGuardPages;
258 /** The number of users (protected by hInitLock). */
259 uint32_t cUsers;
260 /** Array containing a copy of the original page tables.
261 * The entries are either X86PTE or X86PTEPAE according to fLegacyMode. */
262 void *pvSavedPTEs;
263 /** List of segments. */
264 PPGMR0DYNMAPSEG pSegHead;
265 /** The paging mode. */
266 SUPPAGINGMODE enmPgMode;
267} PGMR0DYNMAP;
268
269
270/**
271 * Paging level data.
272 */
273typedef struct PGMR0DYNMAPPGLVL
274{
275 uint32_t cLevels; /**< The number of levels. */
276 struct
277 {
278 RTHCPHYS HCPhys; /**< The address of the page for the current level,
279 * i.e. what hMemObj/hMapObj is currently mapping. */
280 RTHCPHYS fPhysMask; /**< Mask for extracting HCPhys from uEntry. */
281 RTR0MEMOBJ hMemObj; /**< Memory object for HCPhys, PAGE_SIZE. */
282 RTR0MEMOBJ hMapObj; /**< Mapping object for hMemObj. */
283 uint32_t fPtrShift; /**< The pointer shift count. */
284 uint64_t fPtrMask; /**< The mask to apply to the shifted pointer to get the table index. */
285 uint64_t fAndMask; /**< And mask to check entry flags. */
286 uint64_t fResMask; /**< The result from applying fAndMask. */
287 union
288 {
289 void *pv; /**< hMapObj address. */
290 PX86PGUINT paLegacy; /**< Legacy table view. */
291 PX86PGPAEUINT paPae; /**< PAE/AMD64 table view. */
292 } u;
293 } a[4];
294} PGMR0DYNMAPPGLVL;
295/** Pointer to paging level data. */
296typedef PGMR0DYNMAPPGLVL *PPGMR0DYNMAPPGLVL;
297#endif
298
299/** Mapping cache entry for the current context.
300 * @sa PGMR0DYNMAPENTRY, PGMRCDYNMAPENTRY */
301typedef CTX_MID(PGM,DYNMAPENTRY) PGMRZDYNMAPENTRY;
302/** Pointer a mapping cache entry for the current context.
303 * @sa PGMR0DYNMAPENTRY, PGMRCDYNMAPENTRY */
304typedef PGMRZDYNMAPENTRY *PPGMRZDYNMAPENTRY;
305
306/** Pointer the mapping cache instance for the current context.
307 * @sa PGMR0DYNMAP, PGMRCDYNMAP */
308typedef CTX_MID(PGM,DYNMAP) *PPGMRZDYNMAP;
309
310
311
312/*******************************************************************************
313* Global Variables *
314*******************************************************************************/
315#ifdef IN_RING0
316/** Pointer to the ring-0 dynamic mapping cache. */
317static PGMR0DYNMAP *g_pPGMR0DynMap;
318#endif
319/** For overflow testing. */
320static bool g_fPGMR0DynMapTestRunning = false;
321
322
323/*******************************************************************************
324* Internal Functions *
325*******************************************************************************/
326static void pgmRZDynMapReleasePage(PPGMRZDYNMAP pThis, uint32_t iPage, uint32_t cRefs);
327#ifdef IN_RING0
328static int pgmR0DynMapSetup(PPGMRZDYNMAP pThis);
329static int pgmR0DynMapExpand(PPGMRZDYNMAP pThis);
330static void pgmR0DynMapTearDown(PPGMRZDYNMAP pThis);
331#endif
332#if 0 /*def DEBUG*/
333static int pgmR0DynMapTest(PVM pVM);
334#endif
335
336
337/**
338 * Initializes the auto mapping sets for a VM.
339 *
340 * @returns VINF_SUCCESS on success, VERR_INTERNAL_ERROR on failure.
341 * @param pVM The VM in question.
342 */
343static int pgmRZDynMapInitAutoSetsForVM(PVM pVM)
344{
345 VMCPUID idCpu = pVM->cCpus;
346 AssertReturn(idCpu > 0 && idCpu <= VMM_MAX_CPU_COUNT, VERR_INTERNAL_ERROR);
347 while (idCpu-- > 0)
348 {
349 PPGMMAPSET pSet = &pVM->aCpus[idCpu].pgm.s.AutoSet;
350 uint32_t j = RT_ELEMENTS(pSet->aEntries);
351 while (j-- > 0)
352 {
353 pSet->aEntries[j].pvPage = NULL;
354 pSet->aEntries[j].HCPhys = NIL_RTHCPHYS;
355 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[j]);
356 }
357 pSet->cEntries = PGMMAPSET_CLOSED;
358 pSet->iSubset = UINT32_MAX;
359 pSet->iCpu = -1;
360 memset(&pSet->aiHashTable[0], 0xff, sizeof(pSet->aiHashTable));
361 }
362
363 return VINF_SUCCESS;
364}
365
366
367#ifdef IN_RING0
368
369/**
370 * Initializes the ring-0 dynamic mapping cache.
371 *
372 * @returns VBox status code.
373 */
374VMMR0DECL(int) PGMR0DynMapInit(void)
375{
376 Assert(!g_pPGMR0DynMap);
377
378 /*
379 * Create and initialize the cache instance.
380 */
381 PPGMRZDYNMAP pThis = (PPGMRZDYNMAP)RTMemAllocZ(sizeof(*pThis));
382 AssertLogRelReturn(pThis, VERR_NO_MEMORY);
383 int rc = VINF_SUCCESS;
384 pThis->enmPgMode = SUPR0GetPagingMode();
385 switch (pThis->enmPgMode)
386 {
387 case SUPPAGINGMODE_32_BIT:
388 case SUPPAGINGMODE_32_BIT_GLOBAL:
389 pThis->fLegacyMode = false;
390 break;
391 case SUPPAGINGMODE_PAE:
392 case SUPPAGINGMODE_PAE_GLOBAL:
393 case SUPPAGINGMODE_PAE_NX:
394 case SUPPAGINGMODE_PAE_GLOBAL_NX:
395 case SUPPAGINGMODE_AMD64:
396 case SUPPAGINGMODE_AMD64_GLOBAL:
397 case SUPPAGINGMODE_AMD64_NX:
398 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
399 pThis->fLegacyMode = false;
400 break;
401 default:
402 rc = VERR_INTERNAL_ERROR;
403 break;
404 }
405 if (RT_SUCCESS(rc))
406 {
407 rc = RTSemFastMutexCreate(&pThis->hInitLock);
408 if (RT_SUCCESS(rc))
409 {
410 rc = RTSpinlockCreate(&pThis->hSpinlock);
411 if (RT_SUCCESS(rc))
412 {
413 pThis->u32Magic = PGMRZDYNMAP_MAGIC;
414 g_pPGMR0DynMap = pThis;
415 return VINF_SUCCESS;
416 }
417 RTSemFastMutexDestroy(pThis->hInitLock);
418 }
419 }
420 RTMemFree(pThis);
421 return rc;
422}
423
424
425/**
426 * Terminates the ring-0 dynamic mapping cache.
427 */
428VMMR0DECL(void) PGMR0DynMapTerm(void)
429{
430 /*
431 * Destroy the cache.
432 *
433 * There is not supposed to be any races here, the loader should
434 * make sure about that. So, don't bother locking anything.
435 *
436 * The VM objects should all be destroyed by now, so there is no
437 * dangling users or anything like that to clean up. This routine
438 * is just a mirror image of PGMR0DynMapInit.
439 */
440 PPGMRZDYNMAP pThis = g_pPGMR0DynMap;
441 if (pThis)
442 {
443 AssertPtr(pThis);
444 g_pPGMR0DynMap = NULL;
445
446 /* This should *never* happen, but in case it does try not to leak memory. */
447 AssertLogRelMsg(!pThis->cUsers && !pThis->paPages && !pThis->pvSavedPTEs && !pThis->cPages,
448 ("cUsers=%d paPages=%p pvSavedPTEs=%p cPages=%#x\n",
449 pThis->cUsers, pThis->paPages, pThis->pvSavedPTEs, pThis->cPages));
450 if (pThis->paPages)
451 pgmR0DynMapTearDown(pThis);
452
453 /* Free the associated resources. */
454 RTSemFastMutexDestroy(pThis->hInitLock);
455 pThis->hInitLock = NIL_RTSEMFASTMUTEX;
456 RTSpinlockDestroy(pThis->hSpinlock);
457 pThis->hSpinlock = NIL_RTSPINLOCK;
458 pThis->u32Magic = UINT32_MAX;
459 RTMemFree(pThis);
460 }
461}
462
463
464/**
465 * Initializes the dynamic mapping cache for a new VM.
466 *
467 * @returns VBox status code.
468 * @param pVM Pointer to the shared VM structure.
469 */
470VMMR0DECL(int) PGMR0DynMapInitVM(PVM pVM)
471{
472 AssertMsgReturn(!pVM->pgm.s.pvR0DynMapUsed, ("%p (pThis=%p)\n", pVM->pgm.s.pvR0DynMapUsed, g_pPGMR0DynMap), VERR_WRONG_ORDER);
473
474 /*
475 * Initialize the auto sets.
476 */
477 int rc = pgmRZDynMapInitAutoSetsForVM(pVM);
478 if (RT_FAILURE(rc))
479 return rc;
480
481 /*
482 * Do we need the cache? Skip the last bit if we don't.
483 */
484 if (!VMMIsHwVirtExtForced(pVM))
485 return VINF_SUCCESS;
486
487 /*
488 * Reference and if necessary setup or expand the cache.
489 */
490 PPGMRZDYNMAP pThis = g_pPGMR0DynMap;
491 AssertPtrReturn(pThis, VERR_INTERNAL_ERROR);
492 rc = RTSemFastMutexRequest(pThis->hInitLock);
493 AssertLogRelRCReturn(rc, rc);
494
495 pThis->cUsers++;
496 if (pThis->cUsers == 1)
497 {
498 rc = pgmR0DynMapSetup(pThis);
499#if 0 /*def DEBUG*/
500 if (RT_SUCCESS(rc))
501 {
502 rc = pgmR0DynMapTest(pVM);
503 if (RT_FAILURE(rc))
504 pgmR0DynMapTearDown(pThis);
505 }
506#endif
507 }
508 else if (pThis->cMaxLoad > PGMR0DYNMAP_CALC_OVERLOAD(pThis->cPages - pThis->cGuardPages))
509 rc = pgmR0DynMapExpand(pThis);
510 if (RT_SUCCESS(rc))
511 pVM->pgm.s.pvR0DynMapUsed = pThis;
512 else
513 pThis->cUsers--;
514
515 RTSemFastMutexRelease(pThis->hInitLock);
516 return rc;
517}
518
519
520/**
521 * Terminates the dynamic mapping cache usage for a VM.
522 *
523 * @param pVM Pointer to the shared VM structure.
524 */
525VMMR0DECL(void) PGMR0DynMapTermVM(PVM pVM)
526{
527 /*
528 * Return immediately if we're not using the cache.
529 */
530 if (!pVM->pgm.s.pvR0DynMapUsed)
531 return;
532
533 PPGMRZDYNMAP pThis = g_pPGMR0DynMap;
534 AssertPtrReturnVoid(pThis);
535
536 int rc = RTSemFastMutexRequest(pThis->hInitLock);
537 AssertLogRelRCReturnVoid(rc);
538
539 if (pVM->pgm.s.pvR0DynMapUsed == pThis)
540 {
541 pVM->pgm.s.pvR0DynMapUsed = NULL;
542
543#ifdef VBOX_STRICT
544 PGMR0DynMapAssertIntegrity();
545#endif
546
547 /*
548 * Clean up and check the auto sets.
549 */
550 VMCPUID idCpu = pVM->cCpus;
551 while (idCpu-- > 0)
552 {
553 PPGMMAPSET pSet = &pVM->aCpus[idCpu].pgm.s.AutoSet;
554 uint32_t j = pSet->cEntries;
555 if (j <= RT_ELEMENTS(pSet->aEntries))
556 {
557 /*
558 * The set is open, close it.
559 */
560 while (j-- > 0)
561 {
562 int32_t cRefs = pSet->aEntries[j].cRefs;
563 uint32_t iPage = pSet->aEntries[j].iPage;
564 LogRel(("PGMR0DynMapTermVM: %d dangling refs to %#x\n", cRefs, iPage));
565 if (iPage < pThis->cPages && cRefs > 0)
566 pgmRZDynMapReleasePage(pThis, iPage, cRefs);
567 else
568 AssertLogRelMsgFailed(("cRefs=%d iPage=%#x cPages=%u\n", cRefs, iPage, pThis->cPages));
569
570 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[j]);
571 }
572 pSet->cEntries = PGMMAPSET_CLOSED;
573 pSet->iSubset = UINT32_MAX;
574 pSet->iCpu = -1;
575 }
576 else
577 AssertMsg(j == PGMMAPSET_CLOSED, ("cEntries=%#x\n", j));
578
579 j = RT_ELEMENTS(pSet->aEntries);
580 while (j-- > 0)
581 {
582 Assert(pSet->aEntries[j].iPage == UINT16_MAX);
583 Assert(!pSet->aEntries[j].cRefs);
584 }
585 }
586
587 /*
588 * Release our reference to the mapping cache.
589 */
590 Assert(pThis->cUsers > 0);
591 pThis->cUsers--;
592 if (!pThis->cUsers)
593 pgmR0DynMapTearDown(pThis);
594 }
595 else
596 AssertLogRelMsgFailed(("pvR0DynMapUsed=%p pThis=%p\n", pVM->pgm.s.pvR0DynMapUsed, pThis));
597
598 RTSemFastMutexRelease(pThis->hInitLock);
599}
600
601
602/**
603 * Shoots down the TLBs for all the cache pages, pgmR0DynMapTearDown helper.
604 *
605 * @param idCpu The current CPU.
606 * @param pvUser1 The dynamic mapping cache instance.
607 * @param pvUser2 Unused, NULL.
608 */
609static DECLCALLBACK(void) pgmR0DynMapShootDownTlbs(RTCPUID idCpu, void *pvUser1, void *pvUser2)
610{
611 Assert(!pvUser2);
612 PPGMRZDYNMAP pThis = (PPGMRZDYNMAP)pvUser1;
613 Assert(pThis == g_pPGMR0DynMap);
614 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
615 uint32_t iPage = pThis->cPages;
616 while (iPage-- > 0)
617 ASMInvalidatePage(paPages[iPage].pvPage);
618}
619
620
621/**
622 * Shoot down the TLBs for every single cache entry on all CPUs.
623 *
624 * @returns IPRT status code (RTMpOnAll).
625 * @param pThis The dynamic mapping cache instance.
626 */
627static int pgmR0DynMapTlbShootDown(PPGMRZDYNMAP pThis)
628{
629 int rc = RTMpOnAll(pgmR0DynMapShootDownTlbs, pThis, NULL);
630 AssertRC(rc);
631 if (RT_FAILURE(rc))
632 {
633 uint32_t iPage = pThis->cPages;
634 while (iPage-- > 0)
635 ASMInvalidatePage(pThis->paPages[iPage].pvPage);
636 }
637 return rc;
638}
639
640
641/**
642 * Calculate the new cache size based on cMaxLoad statistics.
643 *
644 * @returns Number of pages.
645 * @param pThis The dynamic mapping cache instance.
646 * @param pcMinPages The minimal size in pages.
647 */
648static uint32_t pgmR0DynMapCalcNewSize(PPGMRZDYNMAP pThis, uint32_t *pcMinPages)
649{
650 Assert(pThis->cPages <= PGMR0DYNMAP_MAX_PAGES);
651
652 /* cCpus * PGMR0DYNMAP_PAGES_PER_CPU(_MIN). */
653 RTCPUID cCpus = RTMpGetCount();
654 AssertReturn(cCpus > 0 && cCpus <= RTCPUSET_MAX_CPUS, 0);
655 uint32_t cPages = cCpus * PGMR0DYNMAP_PAGES_PER_CPU;
656 uint32_t cMinPages = cCpus * PGMR0DYNMAP_PAGES_PER_CPU_MIN;
657
658 /* adjust against cMaxLoad. */
659 AssertMsg(pThis->cMaxLoad <= PGMR0DYNMAP_MAX_PAGES, ("%#x\n", pThis->cMaxLoad));
660 if (pThis->cMaxLoad > PGMR0DYNMAP_MAX_PAGES)
661 pThis->cMaxLoad = 0;
662
663 while (pThis->cMaxLoad > PGMR0DYNMAP_CALC_OVERLOAD(cPages))
664 cPages += PGMR0DYNMAP_PAGES_PER_CPU;
665
666 if (pThis->cMaxLoad > cMinPages)
667 cMinPages = pThis->cMaxLoad;
668
669 /* adjust against max and current size. */
670 if (cPages < pThis->cPages)
671 cPages = pThis->cPages;
672 cPages *= PGMR0DYNMAP_GUARD_PAGES + 1;
673 if (cPages > PGMR0DYNMAP_MAX_PAGES)
674 cPages = PGMR0DYNMAP_MAX_PAGES;
675
676 if (cMinPages < pThis->cPages)
677 cMinPages = pThis->cPages;
678 cMinPages *= PGMR0DYNMAP_GUARD_PAGES + 1;
679 if (cMinPages > PGMR0DYNMAP_MAX_PAGES)
680 cMinPages = PGMR0DYNMAP_MAX_PAGES;
681
682 Assert(cMinPages);
683 *pcMinPages = cMinPages;
684 return cPages;
685}
686
687
688/**
689 * Initializes the paging level data.
690 *
691 * @param pThis The dynamic mapping cache instance.
692 * @param pPgLvl The paging level data.
693 */
694void pgmR0DynMapPagingArrayInit(PPGMRZDYNMAP pThis, PPGMR0DYNMAPPGLVL pPgLvl)
695{
696 RTCCUINTREG cr4 = ASMGetCR4();
697 switch (pThis->enmPgMode)
698 {
699 case SUPPAGINGMODE_32_BIT:
700 case SUPPAGINGMODE_32_BIT_GLOBAL:
701 pPgLvl->cLevels = 2;
702 pPgLvl->a[0].fPhysMask = X86_CR3_PAGE_MASK;
703 pPgLvl->a[0].fAndMask = X86_PDE_P | X86_PDE_RW | (cr4 & X86_CR4_PSE ? X86_PDE_PS : 0);
704 pPgLvl->a[0].fResMask = X86_PDE_P | X86_PDE_RW;
705 pPgLvl->a[0].fPtrMask = X86_PD_MASK;
706 pPgLvl->a[0].fPtrShift = X86_PD_SHIFT;
707
708 pPgLvl->a[1].fPhysMask = X86_PDE_PG_MASK;
709 pPgLvl->a[1].fAndMask = X86_PTE_P | X86_PTE_RW;
710 pPgLvl->a[1].fResMask = X86_PTE_P | X86_PTE_RW;
711 pPgLvl->a[1].fPtrMask = X86_PT_MASK;
712 pPgLvl->a[1].fPtrShift = X86_PT_SHIFT;
713 break;
714
715 case SUPPAGINGMODE_PAE:
716 case SUPPAGINGMODE_PAE_GLOBAL:
717 case SUPPAGINGMODE_PAE_NX:
718 case SUPPAGINGMODE_PAE_GLOBAL_NX:
719 pPgLvl->cLevels = 3;
720 pPgLvl->a[0].fPhysMask = X86_CR3_PAE_PAGE_MASK;
721 pPgLvl->a[0].fPtrMask = X86_PDPT_MASK_PAE;
722 pPgLvl->a[0].fPtrShift = X86_PDPT_SHIFT;
723 pPgLvl->a[0].fAndMask = X86_PDPE_P;
724 pPgLvl->a[0].fResMask = X86_PDPE_P;
725
726 pPgLvl->a[1].fPhysMask = X86_PDPE_PG_MASK;
727 pPgLvl->a[1].fPtrMask = X86_PD_PAE_MASK;
728 pPgLvl->a[1].fPtrShift = X86_PD_PAE_SHIFT;
729 pPgLvl->a[1].fAndMask = X86_PDE_P | X86_PDE_RW | (cr4 & X86_CR4_PSE ? X86_PDE_PS : 0);
730 pPgLvl->a[1].fResMask = X86_PDE_P | X86_PDE_RW;
731
732 pPgLvl->a[2].fPhysMask = X86_PDE_PAE_PG_MASK;
733 pPgLvl->a[2].fPtrMask = X86_PT_PAE_MASK;
734 pPgLvl->a[2].fPtrShift = X86_PT_PAE_SHIFT;
735 pPgLvl->a[2].fAndMask = X86_PTE_P | X86_PTE_RW;
736 pPgLvl->a[2].fResMask = X86_PTE_P | X86_PTE_RW;
737 break;
738
739 case SUPPAGINGMODE_AMD64:
740 case SUPPAGINGMODE_AMD64_GLOBAL:
741 case SUPPAGINGMODE_AMD64_NX:
742 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
743 pPgLvl->cLevels = 4;
744 pPgLvl->a[0].fPhysMask = X86_CR3_AMD64_PAGE_MASK;
745 pPgLvl->a[0].fPtrShift = X86_PML4_SHIFT;
746 pPgLvl->a[0].fPtrMask = X86_PML4_MASK;
747 pPgLvl->a[0].fAndMask = X86_PML4E_P | X86_PML4E_RW;
748 pPgLvl->a[0].fResMask = X86_PML4E_P | X86_PML4E_RW;
749
750 pPgLvl->a[1].fPhysMask = X86_PML4E_PG_MASK;
751 pPgLvl->a[1].fPtrShift = X86_PDPT_SHIFT;
752 pPgLvl->a[1].fPtrMask = X86_PDPT_MASK_AMD64;
753 pPgLvl->a[1].fAndMask = X86_PDPE_P | X86_PDPE_RW /** @todo check for X86_PDPT_PS support. */;
754 pPgLvl->a[1].fResMask = X86_PDPE_P | X86_PDPE_RW;
755
756 pPgLvl->a[2].fPhysMask = X86_PDPE_PG_MASK;
757 pPgLvl->a[2].fPtrShift = X86_PD_PAE_SHIFT;
758 pPgLvl->a[2].fPtrMask = X86_PD_PAE_MASK;
759 pPgLvl->a[2].fAndMask = X86_PDE_P | X86_PDE_RW | (cr4 & X86_CR4_PSE ? X86_PDE_PS : 0);
760 pPgLvl->a[2].fResMask = X86_PDE_P | X86_PDE_RW;
761
762 pPgLvl->a[3].fPhysMask = X86_PDE_PAE_PG_MASK;
763 pPgLvl->a[3].fPtrShift = X86_PT_PAE_SHIFT;
764 pPgLvl->a[3].fPtrMask = X86_PT_PAE_MASK;
765 pPgLvl->a[3].fAndMask = X86_PTE_P | X86_PTE_RW;
766 pPgLvl->a[3].fResMask = X86_PTE_P | X86_PTE_RW;
767 break;
768
769 default:
770 AssertFailed();
771 pPgLvl->cLevels = 0;
772 break;
773 }
774
775 for (uint32_t i = 0; i < 4; i++) /* ASSUMING array size. */
776 {
777 pPgLvl->a[i].HCPhys = NIL_RTHCPHYS;
778 pPgLvl->a[i].hMapObj = NIL_RTR0MEMOBJ;
779 pPgLvl->a[i].hMemObj = NIL_RTR0MEMOBJ;
780 pPgLvl->a[i].u.pv = NULL;
781 }
782}
783
784
785/**
786 * Maps a PTE.
787 *
788 * This will update the segment structure when new PTs are mapped.
789 *
790 * It also assumes that we (for paranoid reasons) wish to establish a mapping
791 * chain from CR3 to the PT that all corresponds to the processor we're
792 * currently running on, and go about this by running with interrupts disabled
793 * and restarting from CR3 for every change.
794 *
795 * @returns VBox status code, VINF_TRY_AGAIN if we changed any mappings and had
796 * to re-enable interrupts.
797 * @param pThis The dynamic mapping cache instance.
798 * @param pPgLvl The paging level structure.
799 * @param pvPage The page.
800 * @param pSeg The segment.
801 * @param cMaxPTs The max number of PTs expected in the segment.
802 * @param ppvPTE Where to store the PTE address.
803 */
804static int pgmR0DynMapPagingArrayMapPte(PPGMRZDYNMAP pThis, PPGMR0DYNMAPPGLVL pPgLvl, void *pvPage,
805 PPGMR0DYNMAPSEG pSeg, uint32_t cMaxPTs, void **ppvPTE)
806{
807 Assert(!(ASMGetFlags() & X86_EFL_IF));
808 void *pvEntry = NULL;
809 X86PGPAEUINT uEntry = ASMGetCR3();
810 for (uint32_t i = 0; i < pPgLvl->cLevels; i++)
811 {
812 RTHCPHYS HCPhys = uEntry & pPgLvl->a[i].fPhysMask;
813 if (pPgLvl->a[i].HCPhys != HCPhys)
814 {
815 /*
816 * Need to remap this level.
817 * The final level, the PT, will not be freed since that is what it's all about.
818 */
819 ASMIntEnable();
820 if (i + 1 == pPgLvl->cLevels)
821 AssertReturn(pSeg->cPTs < cMaxPTs, VERR_INTERNAL_ERROR);
822 else
823 {
824 int rc2 = RTR0MemObjFree(pPgLvl->a[i].hMemObj, true /* fFreeMappings */); AssertRC(rc2);
825 pPgLvl->a[i].hMemObj = pPgLvl->a[i].hMapObj = NIL_RTR0MEMOBJ;
826 }
827
828 int rc = RTR0MemObjEnterPhys(&pPgLvl->a[i].hMemObj, HCPhys, PAGE_SIZE, RTMEM_CACHE_POLICY_DONT_CARE);
829 if (RT_SUCCESS(rc))
830 {
831 rc = RTR0MemObjMapKernel(&pPgLvl->a[i].hMapObj, pPgLvl->a[i].hMemObj,
832 (void *)-1 /* pvFixed */, 0 /* cbAlignment */,
833 RTMEM_PROT_WRITE | RTMEM_PROT_READ);
834 if (RT_SUCCESS(rc))
835 {
836 pPgLvl->a[i].u.pv = RTR0MemObjAddress(pPgLvl->a[i].hMapObj);
837 AssertMsg(((uintptr_t)pPgLvl->a[i].u.pv & ~(uintptr_t)PAGE_OFFSET_MASK), ("%p\n", pPgLvl->a[i].u.pv));
838 pPgLvl->a[i].HCPhys = HCPhys;
839 if (i + 1 == pPgLvl->cLevels)
840 pSeg->ahMemObjPTs[pSeg->cPTs++] = pPgLvl->a[i].hMemObj;
841 ASMIntDisable();
842 return VINF_TRY_AGAIN;
843 }
844
845 pPgLvl->a[i].hMapObj = NIL_RTR0MEMOBJ;
846 }
847 else
848 pPgLvl->a[i].hMemObj = NIL_RTR0MEMOBJ;
849 pPgLvl->a[i].HCPhys = NIL_RTHCPHYS;
850 return rc;
851 }
852
853 /*
854 * The next level.
855 */
856 uint32_t iEntry = ((uint64_t)(uintptr_t)pvPage >> pPgLvl->a[i].fPtrShift) & pPgLvl->a[i].fPtrMask;
857 if (pThis->fLegacyMode)
858 {
859 pvEntry = &pPgLvl->a[i].u.paLegacy[iEntry];
860 uEntry = pPgLvl->a[i].u.paLegacy[iEntry];
861 }
862 else
863 {
864 pvEntry = &pPgLvl->a[i].u.paPae[iEntry];
865 uEntry = pPgLvl->a[i].u.paPae[iEntry];
866 }
867
868 if ((uEntry & pPgLvl->a[i].fAndMask) != pPgLvl->a[i].fResMask)
869 {
870 LogRel(("PGMR0DynMap: internal error - iPgLvl=%u cLevels=%u uEntry=%#llx fAnd=%#llx fRes=%#llx got=%#llx\n"
871 "PGMR0DynMap: pv=%p pvPage=%p iEntry=%#x fLegacyMode=%RTbool\n",
872 i, pPgLvl->cLevels, uEntry, pPgLvl->a[i].fAndMask, pPgLvl->a[i].fResMask, uEntry & pPgLvl->a[i].fAndMask,
873 pPgLvl->a[i].u.pv, pvPage, iEntry, pThis->fLegacyMode));
874 return VERR_INTERNAL_ERROR;
875 }
876 /*Log(("#%d: iEntry=%4d uEntry=%#llx pvEntry=%p HCPhys=%RHp \n", i, iEntry, uEntry, pvEntry, pPgLvl->a[i].HCPhys));*/
877 }
878
879 /* made it thru without needing to remap anything. */
880 *ppvPTE = pvEntry;
881 return VINF_SUCCESS;
882}
883
884
885/**
886 * Sets up a guard page.
887 *
888 * @param pThis The dynamic mapping cache instance.
889 * @param pPage The page.
890 */
891DECLINLINE(void) pgmR0DynMapSetupGuardPage(PPGMRZDYNMAP pThis, PPGMRZDYNMAPENTRY pPage)
892{
893 memset(pPage->pvPage, 0xfd, PAGE_SIZE);
894 pPage->cRefs = PGMR0DYNMAP_GUARD_PAGE_REF_COUNT;
895 pPage->HCPhys = PGMR0DYNMAP_GUARD_PAGE_HCPHYS;
896#ifdef PGMR0DYNMAP_GUARD_NP
897 ASMAtomicBitClear(pPage->uPte.pv, X86_PTE_BIT_P);
898#else
899 if (pThis->fLegacyMode)
900 ASMAtomicWriteU32(&pPage->uPte.pLegacy->u, PGMR0DYNMAP_GUARD_PAGE_LEGACY_PTE);
901 else
902 ASMAtomicWriteU64(&pPage->uPte.pPae->u, PGMR0DYNMAP_GUARD_PAGE_PAE_PTE);
903#endif
904 pThis->cGuardPages++;
905}
906
907
908/**
909 * Adds a new segment of the specified size.
910 *
911 * @returns VBox status code.
912 * @param pThis The dynamic mapping cache instance.
913 * @param cPages The size of the new segment, give as a page count.
914 */
915static int pgmR0DynMapAddSeg(PPGMRZDYNMAP pThis, uint32_t cPages)
916{
917 int rc2;
918 AssertReturn(ASMGetFlags() & X86_EFL_IF, VERR_PREEMPT_DISABLED);
919
920 /*
921 * Do the array reallocations first.
922 * (The pages array has to be replaced behind the spinlock of course.)
923 */
924 void *pvSavedPTEs = RTMemRealloc(pThis->pvSavedPTEs, (pThis->fLegacyMode ? sizeof(X86PGUINT) : sizeof(X86PGPAEUINT)) * (pThis->cPages + cPages));
925 if (!pvSavedPTEs)
926 return VERR_NO_MEMORY;
927 pThis->pvSavedPTEs = pvSavedPTEs;
928
929 void *pvPages = RTMemAllocZ(sizeof(pThis->paPages[0]) * (pThis->cPages + cPages));
930 if (!pvPages)
931 {
932 pvSavedPTEs = RTMemRealloc(pThis->pvSavedPTEs, (pThis->fLegacyMode ? sizeof(X86PGUINT) : sizeof(X86PGPAEUINT)) * pThis->cPages);
933 if (pvSavedPTEs)
934 pThis->pvSavedPTEs = pvSavedPTEs;
935 return VERR_NO_MEMORY;
936 }
937
938 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
939
940 memcpy(pvPages, pThis->paPages, sizeof(pThis->paPages[0]) * pThis->cPages);
941 void *pvToFree = pThis->paPages;
942 pThis->paPages = (PPGMRZDYNMAPENTRY)pvPages;
943
944 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
945 RTMemFree(pvToFree);
946
947 /*
948 * Allocate the segment structure and pages of memory, then touch all the pages (paranoia).
949 */
950 uint32_t cMaxPTs = cPages / (pThis->fLegacyMode ? X86_PG_ENTRIES : X86_PG_PAE_ENTRIES) + 2;
951 PPGMR0DYNMAPSEG pSeg = (PPGMR0DYNMAPSEG)RTMemAllocZ(RT_UOFFSETOF(PGMR0DYNMAPSEG, ahMemObjPTs[cMaxPTs]));
952 if (!pSeg)
953 return VERR_NO_MEMORY;
954 pSeg->pNext = NULL;
955 pSeg->cPages = cPages;
956 pSeg->iPage = pThis->cPages;
957 pSeg->cPTs = 0;
958 int rc = RTR0MemObjAllocPage(&pSeg->hMemObj, cPages << PAGE_SHIFT, false);
959 if (RT_SUCCESS(rc))
960 {
961 uint8_t *pbPage = (uint8_t *)RTR0MemObjAddress(pSeg->hMemObj);
962 AssertMsg(VALID_PTR(pbPage) && !((uintptr_t)pbPage & PAGE_OFFSET_MASK), ("%p\n", pbPage));
963 memset(pbPage, 0xfe, cPages << PAGE_SHIFT);
964
965 /*
966 * Walk thru the pages and set them up with a mapping of their PTE and everything.
967 */
968 ASMIntDisable();
969 PGMR0DYNMAPPGLVL PgLvl;
970 pgmR0DynMapPagingArrayInit(pThis, &PgLvl);
971 uint32_t const iEndPage = pSeg->iPage + cPages;
972 for (uint32_t iPage = pSeg->iPage;
973 iPage < iEndPage;
974 iPage++, pbPage += PAGE_SIZE)
975 {
976 /* Initialize the page data. */
977 pThis->paPages[iPage].HCPhys = NIL_RTHCPHYS;
978 pThis->paPages[iPage].pvPage = pbPage;
979 pThis->paPages[iPage].cRefs = 0;
980 pThis->paPages[iPage].uPte.pPae = 0;
981#ifndef IN_RC
982 RTCpuSetFill(&pThis->paPages[iPage].PendingSet);
983#endif
984
985 /* Map its page table, retry until we've got a clean run (paranoia). */
986 do
987 rc = pgmR0DynMapPagingArrayMapPte(pThis, &PgLvl, pbPage, pSeg, cMaxPTs,
988 &pThis->paPages[iPage].uPte.pv);
989 while (rc == VINF_TRY_AGAIN);
990 if (RT_FAILURE(rc))
991 break;
992
993 /* Save the PTE. */
994 if (pThis->fLegacyMode)
995 ((PX86PGUINT)pThis->pvSavedPTEs)[iPage] = pThis->paPages[iPage].uPte.pLegacy->u;
996 else
997 ((PX86PGPAEUINT)pThis->pvSavedPTEs)[iPage] = pThis->paPages[iPage].uPte.pPae->u;
998
999#ifdef VBOX_STRICT
1000 /* Check that we've got the right entry. */
1001 RTHCPHYS HCPhysPage = RTR0MemObjGetPagePhysAddr(pSeg->hMemObj, iPage - pSeg->iPage);
1002 RTHCPHYS HCPhysPte = pThis->fLegacyMode
1003 ? pThis->paPages[iPage].uPte.pLegacy->u & X86_PTE_PG_MASK
1004 : pThis->paPages[iPage].uPte.pPae->u & X86_PTE_PAE_PG_MASK;
1005 if (HCPhysPage != HCPhysPte)
1006 {
1007 LogRel(("pgmR0DynMapAddSeg: internal error - page #%u HCPhysPage=%RHp HCPhysPte=%RHp pbPage=%p pvPte=%p\n",
1008 iPage - pSeg->iPage, HCPhysPage, HCPhysPte, pbPage, pThis->paPages[iPage].uPte.pv));
1009 rc = VERR_INTERNAL_ERROR;
1010 break;
1011 }
1012#endif
1013 } /* for each page */
1014 ASMIntEnable();
1015
1016 /* cleanup non-PT mappings */
1017 for (uint32_t i = 0; i < PgLvl.cLevels - 1; i++)
1018 RTR0MemObjFree(PgLvl.a[i].hMemObj, true /* fFreeMappings */);
1019
1020 if (RT_SUCCESS(rc))
1021 {
1022#if PGMR0DYNMAP_GUARD_PAGES > 0
1023 /*
1024 * Setup guard pages.
1025 * (Note: TLBs will be shot down later on.)
1026 */
1027 uint32_t iPage = pSeg->iPage;
1028 while (iPage < iEndPage)
1029 {
1030 for (uint32_t iGPg = 0; iGPg < PGMR0DYNMAP_GUARD_PAGES && iPage < iEndPage; iGPg++, iPage++)
1031 pgmR0DynMapSetupGuardPage(pThis, &pThis->paPages[iPage]);
1032 iPage++; /* the guarded page */
1033 }
1034
1035 /* Make sure the very last page is a guard page too. */
1036 iPage = iEndPage - 1;
1037 if (pThis->paPages[iPage].cRefs != PGMR0DYNMAP_GUARD_PAGE_REF_COUNT)
1038 pgmR0DynMapSetupGuardPage(pThis, &pThis->paPages[iPage]);
1039#endif /* PGMR0DYNMAP_GUARD_PAGES > 0 */
1040
1041 /*
1042 * Commit it by adding the segment to the list and updating the page count.
1043 */
1044 pSeg->pNext = pThis->pSegHead;
1045 pThis->pSegHead = pSeg;
1046 pThis->cPages += cPages;
1047 return VINF_SUCCESS;
1048 }
1049
1050 /*
1051 * Bail out.
1052 */
1053 while (pSeg->cPTs-- > 0)
1054 {
1055 rc2 = RTR0MemObjFree(pSeg->ahMemObjPTs[pSeg->cPTs], true /* fFreeMappings */);
1056 AssertRC(rc2);
1057 pSeg->ahMemObjPTs[pSeg->cPTs] = NIL_RTR0MEMOBJ;
1058 }
1059
1060 rc2 = RTR0MemObjFree(pSeg->hMemObj, true /* fFreeMappings */);
1061 AssertRC(rc2);
1062 pSeg->hMemObj = NIL_RTR0MEMOBJ;
1063 }
1064 RTMemFree(pSeg);
1065
1066 /* Don't bother resizing the arrays, but free them if we're the only user. */
1067 if (!pThis->cPages)
1068 {
1069 RTMemFree(pThis->paPages);
1070 pThis->paPages = NULL;
1071 RTMemFree(pThis->pvSavedPTEs);
1072 pThis->pvSavedPTEs = NULL;
1073 }
1074 return rc;
1075}
1076
1077
1078/**
1079 * Called by PGMR0DynMapInitVM under the init lock.
1080 *
1081 * @returns VBox status code.
1082 * @param pThis The dynamic mapping cache instance.
1083 */
1084static int pgmR0DynMapSetup(PPGMRZDYNMAP pThis)
1085{
1086 /*
1087 * Calc the size and add a segment of that size.
1088 */
1089 uint32_t cMinPages;
1090 uint32_t cPages = pgmR0DynMapCalcNewSize(pThis, &cMinPages);
1091 AssertReturn(cPages, VERR_INTERNAL_ERROR);
1092 int rc = pgmR0DynMapAddSeg(pThis, cPages);
1093 if (rc == VERR_NO_MEMORY)
1094 {
1095 /*
1096 * Try adding smaller segments.
1097 */
1098 do
1099 rc = pgmR0DynMapAddSeg(pThis, PGMR0DYNMAP_SMALL_SEG_PAGES);
1100 while (RT_SUCCESS(rc) && pThis->cPages < cPages);
1101 if (rc == VERR_NO_MEMORY && pThis->cPages >= cMinPages)
1102 rc = VINF_SUCCESS;
1103 if (rc == VERR_NO_MEMORY)
1104 {
1105 if (pThis->cPages)
1106 pgmR0DynMapTearDown(pThis);
1107 rc = VERR_PGM_DYNMAP_SETUP_ERROR;
1108 }
1109 }
1110 Assert(ASMGetFlags() & X86_EFL_IF);
1111
1112#if PGMR0DYNMAP_GUARD_PAGES > 0
1113 /* paranoia */
1114 if (RT_SUCCESS(rc))
1115 pgmR0DynMapTlbShootDown(pThis);
1116#endif
1117 return rc;
1118}
1119
1120
1121/**
1122 * Called by PGMR0DynMapInitVM under the init lock.
1123 *
1124 * @returns VBox status code.
1125 * @param pThis The dynamic mapping cache instance.
1126 */
1127static int pgmR0DynMapExpand(PPGMRZDYNMAP pThis)
1128{
1129 /*
1130 * Calc the new target size and add a segment of the appropriate size.
1131 */
1132 uint32_t cMinPages;
1133 uint32_t cPages = pgmR0DynMapCalcNewSize(pThis, &cMinPages);
1134 AssertReturn(cPages, VERR_INTERNAL_ERROR);
1135 if (pThis->cPages >= cPages)
1136 return VINF_SUCCESS;
1137
1138 uint32_t cAdd = cPages - pThis->cPages;
1139 int rc = pgmR0DynMapAddSeg(pThis, cAdd);
1140 if (rc == VERR_NO_MEMORY)
1141 {
1142 /*
1143 * Try adding smaller segments.
1144 */
1145 do
1146 rc = pgmR0DynMapAddSeg(pThis, PGMR0DYNMAP_SMALL_SEG_PAGES);
1147 while (RT_SUCCESS(rc) && pThis->cPages < cPages);
1148 if (rc == VERR_NO_MEMORY && pThis->cPages >= cMinPages)
1149 rc = VINF_SUCCESS;
1150 if (rc == VERR_NO_MEMORY)
1151 rc = VERR_PGM_DYNMAP_EXPAND_ERROR;
1152 }
1153 Assert(ASMGetFlags() & X86_EFL_IF);
1154
1155#if PGMR0DYNMAP_GUARD_PAGES > 0
1156 /* paranoia */
1157 if (RT_SUCCESS(rc))
1158 pgmR0DynMapTlbShootDown(pThis);
1159#endif
1160 return rc;
1161}
1162
1163
1164/**
1165 * Called by PGMR0DynMapTermVM under the init lock.
1166 *
1167 * @returns VBox status code.
1168 * @param pThis The dynamic mapping cache instance.
1169 */
1170static void pgmR0DynMapTearDown(PPGMRZDYNMAP pThis)
1171{
1172 /*
1173 * Restore the original page table entries
1174 */
1175 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1176 uint32_t iPage = pThis->cPages;
1177 if (pThis->fLegacyMode)
1178 {
1179 X86PGUINT const *paSavedPTEs = (X86PGUINT const *)pThis->pvSavedPTEs;
1180 while (iPage-- > 0)
1181 {
1182 X86PGUINT uOld = paPages[iPage].uPte.pLegacy->u;
1183 X86PGUINT uOld2 = uOld; NOREF(uOld2);
1184 X86PGUINT uNew = paSavedPTEs[iPage];
1185 while (!ASMAtomicCmpXchgExU32(&paPages[iPage].uPte.pLegacy->u, uNew, uOld, &uOld))
1186 AssertMsgFailed(("uOld=%#x uOld2=%#x uNew=%#x\n", uOld, uOld2, uNew));
1187 Assert(paPages[iPage].uPte.pLegacy->u == paSavedPTEs[iPage]);
1188 }
1189 }
1190 else
1191 {
1192 X86PGPAEUINT const *paSavedPTEs = (X86PGPAEUINT const *)pThis->pvSavedPTEs;
1193 while (iPage-- > 0)
1194 {
1195 X86PGPAEUINT uOld = paPages[iPage].uPte.pPae->u;
1196 X86PGPAEUINT uOld2 = uOld; NOREF(uOld2);
1197 X86PGPAEUINT uNew = paSavedPTEs[iPage];
1198 while (!ASMAtomicCmpXchgExU64(&paPages[iPage].uPte.pPae->u, uNew, uOld, &uOld))
1199 AssertMsgFailed(("uOld=%#llx uOld2=%#llx uNew=%#llx\n", uOld, uOld2, uNew));
1200 Assert(paPages[iPage].uPte.pPae->u == paSavedPTEs[iPage]);
1201 }
1202 }
1203
1204 /*
1205 * Shoot down the TLBs on all CPUs before freeing them.
1206 */
1207 pgmR0DynMapTlbShootDown(pThis);
1208
1209 /*
1210 * Free the segments.
1211 */
1212 while (pThis->pSegHead)
1213 {
1214 int rc;
1215 PPGMR0DYNMAPSEG pSeg = pThis->pSegHead;
1216 pThis->pSegHead = pSeg->pNext;
1217
1218 uint32_t iPT = pSeg->cPTs;
1219 while (iPT-- > 0)
1220 {
1221 rc = RTR0MemObjFree(pSeg->ahMemObjPTs[iPT], true /* fFreeMappings */); AssertRC(rc);
1222 pSeg->ahMemObjPTs[iPT] = NIL_RTR0MEMOBJ;
1223 }
1224 rc = RTR0MemObjFree(pSeg->hMemObj, true /* fFreeMappings */); AssertRC(rc);
1225 pSeg->hMemObj = NIL_RTR0MEMOBJ;
1226 pSeg->pNext = NULL;
1227 pSeg->iPage = UINT16_MAX;
1228 pSeg->cPages = 0;
1229 pSeg->cPTs = 0;
1230 RTMemFree(pSeg);
1231 }
1232
1233 /*
1234 * Free the arrays and restore the initial state.
1235 * The cLoadMax value is left behind for the next setup.
1236 */
1237 RTMemFree(pThis->paPages);
1238 pThis->paPages = NULL;
1239 RTMemFree(pThis->pvSavedPTEs);
1240 pThis->pvSavedPTEs = NULL;
1241 pThis->cPages = 0;
1242 pThis->cLoad = 0;
1243 pThis->cGuardPages = 0;
1244}
1245
1246#endif /* IN_RING0 */
1247#ifdef IN_RC
1248
1249/**
1250 * Initializes the dynamic mapping cache in raw-mode context.
1251 *
1252 * @returns VBox status code.
1253 * @param pVM The VM handle.
1254 */
1255VMMRCDECL(int) PGMRCDynMapInit(PVM pVM)
1256{
1257 /*
1258 * Allocate and initialize the instance data and page array.
1259 */
1260 PPGMRZDYNMAP pThis;
1261 size_t const cPages = MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE;
1262 size_t const cb = RT_ALIGN_Z(sizeof(*pThis), 32)
1263 + sizeof(PGMRZDYNMAPENTRY) * cPages;
1264 int rc = MMHyperAlloc(pVM, cb, 32, MM_TAG_PGM, (void **)&pThis);
1265 if (RT_FAILURE(rc))
1266 return rc;
1267
1268 pThis->u32Magic = PGMRZDYNMAP_MAGIC;
1269 pThis->paPages = RT_ALIGN_PT(pThis + 1, 32, PPGMRZDYNMAPENTRY);
1270 pThis->cPages = cPages;
1271 pThis->cLoad = 0;
1272 pThis->cMaxLoad = 0;
1273 pThis->cGuardPages = 0;
1274 pThis->cUsers = 1;
1275
1276 for (size_t iPage = 0; iPage < cPages; iPage++)
1277 {
1278 pThis->paPages[iPage].HCPhys = NIL_RTHCPHYS;
1279 pThis->paPages[iPage].pvPage = pVM->pgm.s.pbDynPageMapBaseGC + iPage * PAGE_SIZE;
1280 pThis->paPages[iPage].cRefs = 0;
1281 pThis->paPages[iPage].uPte.pLegacy = &pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage];
1282 pThis->paPages[iPage].uPte.pPae = (PX86PTEPAE)&pVM->pgm.s.paDynPageMapPaePTEsGC[iPage];
1283 }
1284
1285 pVM->pgm.s.pRCDynMap = pThis;
1286
1287 /*
1288 * Initialize the autosets the VM.
1289 */
1290 rc = pgmRZDynMapInitAutoSetsForVM(pVM);
1291 if (RT_FAILURE(rc))
1292 return rc;
1293
1294 return VINF_SUCCESS;
1295}
1296
1297#endif /* IN_RC */
1298
1299/**
1300 * Release references to a page, caller owns the spin lock.
1301 *
1302 * @param pThis The dynamic mapping cache instance.
1303 * @param iPage The page.
1304 * @param cRefs The number of references to release.
1305 */
1306DECLINLINE(void) pgmRZDynMapReleasePageLocked(PPGMRZDYNMAP pThis, uint32_t iPage, int32_t cRefs)
1307{
1308 cRefs = ASMAtomicSubS32(&pThis->paPages[iPage].cRefs, cRefs) - cRefs;
1309 AssertMsg(cRefs >= 0, ("%d\n", cRefs));
1310 if (!cRefs)
1311 {
1312 pThis->cLoad--;
1313#ifdef PGMRZDYNMAP_STRICT_RELEASE
1314 pThis->paPages[iPage].HCPhys = NIL_RTHCPHYS;
1315 ASMAtomicBitClear(pThis->paPages[iPage].uPte.pv, X86_PTE_BIT_P);
1316 ASMInvalidatePage(pThis->paPages[iPage].pvPage);
1317#endif
1318 }
1319}
1320
1321
1322/**
1323 * Release references to a page, caller does not own the spin lock.
1324 *
1325 * @param pThis The dynamic mapping cache instance.
1326 * @param iPage The page.
1327 * @param cRefs The number of references to release.
1328 */
1329static void pgmRZDynMapReleasePage(PPGMRZDYNMAP pThis, uint32_t iPage, uint32_t cRefs)
1330{
1331 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1332 pgmRZDynMapReleasePageLocked(pThis, iPage, cRefs);
1333 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1334}
1335
1336
1337/**
1338 * pgmR0DynMapPage worker that deals with the tedious bits.
1339 *
1340 * @returns The page index on success, UINT32_MAX on failure.
1341 * @param pThis The dynamic mapping cache instance.
1342 * @param HCPhys The address of the page to be mapped.
1343 * @param iPage The page index pgmR0DynMapPage hashed HCPhys to.
1344 * @param pVCpu The current CPU, for statistics.
1345 * @param pfNew Set to @c true if a new entry was made and @c false if
1346 * an old entry was found and reused.
1347 */
1348static uint32_t pgmR0DynMapPageSlow(PPGMRZDYNMAP pThis, RTHCPHYS HCPhys, uint32_t iPage, PVMCPU pVCpu, bool *pfNew)
1349{
1350 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageSlow);
1351
1352 /*
1353 * Check if any of the first 3 pages are unreferenced since the caller
1354 * already has made sure they aren't matching.
1355 */
1356#ifdef VBOX_WITH_STATISTICS
1357 bool fLooped = false;
1358#endif
1359 uint32_t const cPages = pThis->cPages;
1360 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1361 uint32_t iFreePage;
1362 if (!paPages[iPage].cRefs)
1363 iFreePage = iPage;
1364 else if (!paPages[(iPage + 1) % cPages].cRefs)
1365 iFreePage = (iPage + 1) % cPages;
1366 else if (!paPages[(iPage + 2) % cPages].cRefs)
1367 iFreePage = (iPage + 2) % cPages;
1368 else
1369 {
1370 /*
1371 * Search for an unused or matching entry.
1372 */
1373 iFreePage = (iPage + 3) % cPages;
1374 for (;;)
1375 {
1376 if (paPages[iFreePage].HCPhys == HCPhys)
1377 {
1378 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageSlowLoopHits);
1379 *pfNew = false;
1380 return iFreePage;
1381 }
1382 if (!paPages[iFreePage].cRefs)
1383 break;
1384
1385 /* advance */
1386 iFreePage = (iFreePage + 1) % cPages;
1387 if (RT_UNLIKELY(iFreePage == iPage))
1388 return UINT32_MAX;
1389 }
1390 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageSlowLoopMisses);
1391#ifdef VBOX_WITH_STATISTICS
1392 fLooped = true;
1393#endif
1394 }
1395 Assert(iFreePage < cPages);
1396
1397#if 0 //def VBOX_WITH_STATISTICS
1398 /* Check for lost hits. */
1399 if (!fLooped)
1400 for (uint32_t iPage2 = (iPage + 3) % cPages; iPage2 != iPage; iPage2 = (iPage2 + 1) % cPages)
1401 if (paPages[iPage2].HCPhys == HCPhys)
1402 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZDynMapPageSlowLostHits);
1403#endif
1404
1405 /*
1406 * Setup the new entry.
1407 */
1408 *pfNew = true;
1409 /*Log6(("pgmR0DynMapPageSlow: old - %RHp %#x %#llx\n", paPages[iFreePage].HCPhys, paPages[iFreePage].cRefs, paPages[iFreePage].uPte.pPae->u));*/
1410 paPages[iFreePage].HCPhys = HCPhys;
1411#ifndef IN_RC
1412 RTCpuSetFill(&paPages[iFreePage].PendingSet);
1413
1414 if (pThis->fLegacyMode)
1415#endif
1416 {
1417 X86PGUINT uOld = paPages[iFreePage].uPte.pLegacy->u;
1418 X86PGUINT uOld2 = uOld; NOREF(uOld2);
1419 X86PGUINT uNew = (uOld & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1420 | X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1421 | (HCPhys & X86_PTE_PG_MASK);
1422 while (!ASMAtomicCmpXchgExU32(&paPages[iFreePage].uPte.pLegacy->u, uNew, uOld, &uOld))
1423 AssertMsgFailed(("uOld=%#x uOld2=%#x uNew=%#x\n", uOld, uOld2, uNew));
1424 Assert(paPages[iFreePage].uPte.pLegacy->u == uNew);
1425 }
1426#ifndef IN_RC
1427 else
1428#endif
1429 {
1430 X86PGPAEUINT uOld = paPages[iFreePage].uPte.pPae->u;
1431 X86PGPAEUINT uOld2 = uOld; NOREF(uOld2);
1432 X86PGPAEUINT uNew = (uOld & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1433 | X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1434 | (HCPhys & X86_PTE_PAE_PG_MASK);
1435 while (!ASMAtomicCmpXchgExU64(&paPages[iFreePage].uPte.pPae->u, uNew, uOld, &uOld))
1436 AssertMsgFailed(("uOld=%#llx uOld2=%#llx uNew=%#llx\n", uOld, uOld2, uNew));
1437 Assert(paPages[iFreePage].uPte.pPae->u == uNew);
1438 /*Log6(("pgmR0DynMapPageSlow: #%x - %RHp %p %#llx\n", iFreePage, HCPhys, paPages[iFreePage].pvPage, uNew));*/
1439 }
1440 return iFreePage;
1441}
1442
1443
1444/**
1445 * Maps a page into the pool.
1446 *
1447 * @returns Page index on success, UINT32_MAX on failure.
1448 * @param pThis The dynamic mapping cache instance.
1449 * @param HCPhys The address of the page to be mapped.
1450 * @param iRealCpu The real cpu set index. (optimization)
1451 * @param pVCpu The current CPU (for statistics).
1452 * @param ppvPage Where to the page address.
1453 */
1454DECLINLINE(uint32_t) pgmR0DynMapPage(PPGMRZDYNMAP pThis, RTHCPHYS HCPhys, int32_t iRealCpu, PVMCPU pVCpu, void **ppvPage)
1455{
1456 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1457 AssertMsg(!(HCPhys & PAGE_OFFSET_MASK), ("HCPhys=%RHp\n", HCPhys));
1458 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPage);
1459
1460 /*
1461 * Find an entry, if possible a matching one. The HCPhys address is hashed
1462 * down to a page index, collisions are handled by linear searching.
1463 * Optimized for a hit in the first 3 pages.
1464 *
1465 * Field easy hits here and defer the tedious searching and inserting
1466 * to pgmR0DynMapPageSlow().
1467 */
1468 bool fNew = false;
1469 uint32_t const cPages = pThis->cPages;
1470 uint32_t iPage = (HCPhys >> PAGE_SHIFT) % cPages;
1471 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1472 if (RT_LIKELY(paPages[iPage].HCPhys == HCPhys))
1473 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageHits0);
1474 else
1475 {
1476 uint32_t iPage2 = (iPage + 1) % cPages;
1477 if (RT_LIKELY(paPages[iPage2].HCPhys == HCPhys))
1478 {
1479 iPage = iPage2;
1480 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageHits1);
1481 }
1482 else
1483 {
1484 iPage2 = (iPage + 2) % cPages;
1485 if (paPages[iPage2].HCPhys == HCPhys)
1486 {
1487 iPage = iPage2;
1488 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageHits2);
1489 }
1490 else
1491 {
1492 iPage = pgmR0DynMapPageSlow(pThis, HCPhys, iPage, pVCpu, &fNew);
1493 if (RT_UNLIKELY(iPage == UINT32_MAX))
1494 {
1495 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1496 *ppvPage = NULL;
1497 return iPage;
1498 }
1499 }
1500 }
1501 }
1502
1503 /*
1504 * Reference it, update statistics and get the return address.
1505 */
1506 int32_t cRefs = ASMAtomicIncS32(&paPages[iPage].cRefs);
1507 if (cRefs == 1)
1508 {
1509 pThis->cLoad++;
1510 if (pThis->cLoad > pThis->cMaxLoad)
1511 pThis->cMaxLoad = pThis->cLoad;
1512 AssertMsg(pThis->cLoad <= pThis->cPages - pThis->cGuardPages, ("%d/%d\n", pThis->cLoad, pThis->cPages - pThis->cGuardPages));
1513 }
1514 else if (RT_UNLIKELY(cRefs <= 0))
1515 {
1516 ASMAtomicDecS32(&paPages[iPage].cRefs);
1517 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1518 *ppvPage = NULL;
1519 AssertLogRelMsgFailedReturn(("cRefs=%d iPage=%p HCPhys=%RHp\n", cRefs, iPage, HCPhys), UINT32_MAX);
1520 }
1521 void *pvPage = paPages[iPage].pvPage;
1522
1523#ifndef IN_RC
1524 /*
1525 * Invalidate the entry?
1526 */
1527 bool fInvalidateIt = RTCpuSetIsMemberByIndex(&paPages[iPage].PendingSet, iRealCpu);
1528 if (RT_UNLIKELY(fInvalidateIt))
1529 RTCpuSetDelByIndex(&paPages[iPage].PendingSet, iRealCpu);
1530#else
1531 NOREF(iRealCpu);
1532#endif
1533
1534 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1535
1536 /*
1537 * Do the actual invalidation outside the spinlock.
1538 */
1539#ifdef IN_RC
1540 if (RT_UNLIKELY(fNew))
1541#else
1542 if (RT_UNLIKELY(fInvalidateIt))
1543#endif
1544 {
1545 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageInvlPg);
1546 ASMInvalidatePage(pvPage);
1547 }
1548
1549 *ppvPage = pvPage;
1550 return iPage;
1551}
1552
1553
1554/**
1555 * Assert the the integrity of the pool.
1556 *
1557 * @returns VBox status code.
1558 */
1559static int pgmRZDynMapAssertIntegrity(PPGMRZDYNMAP pThis)
1560{
1561 /*
1562 * Basic pool stuff that doesn't require any lock, just assumes we're a user.
1563 */
1564 if (!pThis)
1565 return VINF_SUCCESS;
1566 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1567 AssertReturn(pThis->u32Magic == PGMRZDYNMAP_MAGIC, VERR_INVALID_MAGIC);
1568 if (!pThis->cUsers)
1569 return VERR_INVALID_PARAMETER;
1570
1571 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1572
1573#define CHECK_RET(expr, a) \
1574 do { \
1575 if (RT_UNLIKELY(!(expr))) \
1576 { \
1577 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis); \
1578 RTAssertMsg1Weak(#expr, __LINE__, __FILE__, __PRETTY_FUNCTION__); \
1579 RTAssertMsg2Weak a; \
1580 return VERR_INTERNAL_ERROR; \
1581 } \
1582 } while (0)
1583
1584 /*
1585 * Check that the PTEs are correct.
1586 */
1587 uint32_t cGuard = 0;
1588 uint32_t cLoad = 0;
1589 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1590 uint32_t iPage = pThis->cPages;
1591
1592#ifndef IN_RC
1593 if (pThis->fLegacyMode)
1594#endif
1595 {
1596#ifdef IN_RING0
1597 PCX86PGUINT paSavedPTEs = (PCX86PGUINT)pThis->pvSavedPTEs; NOREF(paSavedPTEs);
1598#endif
1599 while (iPage-- > 0)
1600 {
1601 CHECK_RET(!((uintptr_t)paPages[iPage].pvPage & PAGE_OFFSET_MASK), ("#%u: %p\n", iPage, paPages[iPage].pvPage));
1602 if ( paPages[iPage].cRefs == PGMR0DYNMAP_GUARD_PAGE_REF_COUNT
1603 && paPages[iPage].HCPhys == PGMR0DYNMAP_GUARD_PAGE_HCPHYS)
1604 {
1605#ifdef PGMR0DYNMAP_GUARD_NP
1606 CHECK_RET(paPages[iPage].uPte.pLegacy->u == (paSavedPTEs[iPage] & ~(X86PGUINT)X86_PTE_P),
1607 ("#%u: %#x %#x", iPage, paPages[iPage].uPte.pLegacy->u, paSavedPTEs[iPage]));
1608#else
1609 CHECK_RET(paPages[iPage].uPte.pLegacy->u == PGMR0DYNMAP_GUARD_PAGE_LEGACY_PTE,
1610 ("#%u: %#x", iPage, paPages[iPage].uPte.pLegacy->u));
1611#endif
1612 cGuard++;
1613 }
1614 else if (paPages[iPage].HCPhys != NIL_RTHCPHYS)
1615 {
1616 CHECK_RET(!(paPages[iPage].HCPhys & PAGE_OFFSET_MASK), ("#%u: %RHp\n", iPage, paPages[iPage].HCPhys));
1617 X86PGUINT uPte = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1618#ifdef IN_RING0
1619 | (paSavedPTEs[iPage] & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1620#endif
1621 | (paPages[iPage].HCPhys & X86_PTE_PAE_PG_MASK);
1622 CHECK_RET(paPages[iPage].uPte.pLegacy->u == uPte,
1623 ("#%u: %#x %#x", iPage, paPages[iPage].uPte.pLegacy->u, uPte));
1624 if (paPages[iPage].cRefs)
1625 cLoad++;
1626 }
1627#if defined(IN_RING0) && !defined(PGMRZDYNMAP_STRICT_RELEASE)
1628 else
1629 CHECK_RET(paPages[iPage].uPte.pLegacy->u == paSavedPTEs[iPage],
1630 ("#%u: %#x %#x", iPage, paPages[iPage].uPte.pLegacy->u, paSavedPTEs[iPage]));
1631#endif
1632 }
1633 }
1634#ifndef IN_RC
1635 else
1636#endif
1637 {
1638#ifdef IN_RING0
1639 PCX86PGPAEUINT paSavedPTEs = (PCX86PGPAEUINT)pThis->pvSavedPTEs; NOREF(paSavedPTEs);
1640#endif
1641 while (iPage-- > 0)
1642 {
1643 CHECK_RET(!((uintptr_t)paPages[iPage].pvPage & PAGE_OFFSET_MASK), ("#%u: %p\n", iPage, paPages[iPage].pvPage));
1644 if ( paPages[iPage].cRefs == PGMR0DYNMAP_GUARD_PAGE_REF_COUNT
1645 && paPages[iPage].HCPhys == PGMR0DYNMAP_GUARD_PAGE_HCPHYS)
1646 {
1647#ifdef PGMR0DYNMAP_GUARD_NP
1648 CHECK_RET(paPages[iPage].uPte.pPae->u == (paSavedPTEs[iPage] & ~(X86PGPAEUINT)X86_PTE_P),
1649 ("#%u: %#llx %#llx", iPage, paPages[iPage].uPte.pPae->u, paSavedPTEs[iPage]));
1650#else
1651 CHECK_RET(paPages[iPage].uPte.pPae->u == PGMR0DYNMAP_GUARD_PAGE_PAE_PTE,
1652 ("#%u: %#llx", iPage, paPages[iPage].uPte.pPae->u));
1653#endif
1654 cGuard++;
1655 }
1656 else if (paPages[iPage].HCPhys != NIL_RTHCPHYS)
1657 {
1658 CHECK_RET(!(paPages[iPage].HCPhys & PAGE_OFFSET_MASK), ("#%u: %RHp\n", iPage, paPages[iPage].HCPhys));
1659 X86PGPAEUINT uPte = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1660#ifdef IN_RING0
1661 | (paSavedPTEs[iPage] & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1662#endif
1663 | (paPages[iPage].HCPhys & X86_PTE_PAE_PG_MASK);
1664 CHECK_RET(paPages[iPage].uPte.pPae->u == uPte,
1665 ("#%u: %#llx %#llx", iPage, paPages[iPage].uPte.pLegacy->u, uPte));
1666 if (paPages[iPage].cRefs)
1667 cLoad++;
1668 }
1669#ifdef IN_RING0
1670 else
1671 CHECK_RET(paPages[iPage].uPte.pPae->u == paSavedPTEs[iPage],
1672 ("#%u: %#llx %#llx", iPage, paPages[iPage].uPte.pPae->u, paSavedPTEs[iPage]));
1673#endif
1674 }
1675 }
1676
1677 CHECK_RET(cLoad == pThis->cLoad, ("%u %u\n", cLoad, pThis->cLoad));
1678 CHECK_RET(cGuard == pThis->cGuardPages, ("%u %u\n", cGuard, pThis->cGuardPages));
1679
1680#undef CHECK_RET
1681 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1682 return VINF_SUCCESS;
1683}
1684
1685#ifdef IN_RING0
1686/**
1687 * Assert the the integrity of the pool.
1688 *
1689 * @returns VBox status code.
1690 */
1691VMMR0DECL(int) PGMR0DynMapAssertIntegrity(void)
1692{
1693 return pgmRZDynMapAssertIntegrity(g_pPGMR0DynMap);
1694}
1695#endif /* IN_RING0 */
1696
1697#ifdef IN_RC
1698/**
1699 * Assert the the integrity of the pool.
1700 *
1701 * @returns VBox status code.
1702 */
1703VMMRCDECL(int) PGMRCDynMapAssertIntegrity(PVM pVM)
1704{
1705 return pgmRZDynMapAssertIntegrity((PPGMRZDYNMAP)pVM->pgm.s.pRCDynMap);
1706}
1707#endif /* IN_RC */
1708
1709
1710/**
1711 * As a final resort for a (somewhat) full auto set or full cache, try merge
1712 * duplicate entries and flush the ones we can.
1713 *
1714 * @param pSet The set.
1715 */
1716static void pgmDynMapOptimizeAutoSet(PPGMMAPSET pSet)
1717{
1718 LogFlow(("pgmDynMapOptimizeAutoSet\n"));
1719
1720 for (uint32_t i = 0 ; i < pSet->cEntries; i++)
1721 {
1722 /*
1723 * Try merge entries.
1724 */
1725 uint16_t const iPage = pSet->aEntries[i].iPage;
1726 uint32_t j = i + 1;
1727 while ( j < pSet->cEntries
1728 && ( pSet->iSubset == UINT32_MAX
1729 || pSet->iSubset < pSet->cEntries) )
1730 {
1731 if (pSet->aEntries[j].iPage != iPage)
1732 j++;
1733 else
1734 {
1735 uint32_t const cHardRefs = (uint32_t)pSet->aEntries[i].cRefs
1736 + (uint32_t)pSet->aEntries[j].cRefs;
1737 uint32_t cInlinedRefs = (uint32_t)pSet->aEntries[i].cInlinedRefs
1738 + (uint32_t)pSet->aEntries[j].cInlinedRefs;
1739 uint32_t cUnrefs = (uint32_t)pSet->aEntries[i].cUnrefs
1740 + (uint32_t)pSet->aEntries[j].cUnrefs;
1741 uint32_t cSub = RT_MIN(cUnrefs, cInlinedRefs);
1742 cInlinedRefs -= cSub;
1743 cUnrefs -= cSub;
1744
1745 if ( cHardRefs < UINT16_MAX
1746 && cInlinedRefs < UINT16_MAX
1747 && cUnrefs < UINT16_MAX)
1748 {
1749 /* merge j into i removing j. */
1750 Log2(("pgmDynMapOptimizeAutoSet: Merging #%u into #%u\n", j, i));
1751 pSet->aEntries[i].cRefs = cHardRefs;
1752 pSet->aEntries[i].cInlinedRefs = cInlinedRefs;
1753 pSet->aEntries[i].cUnrefs = cUnrefs;
1754 pSet->cEntries--;
1755 if (j < pSet->cEntries)
1756 {
1757 pSet->aEntries[j] = pSet->aEntries[pSet->cEntries];
1758 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[pSet->cEntries]);
1759 }
1760 else
1761 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[j]);
1762 }
1763#if 0 /* too complicated, skip it. */
1764 else
1765 {
1766 /* migrate the max number of refs from j into i and quit the inner loop. */
1767 uint32_t cMigrate = UINT16_MAX - 1 - pSet->aEntries[i].cRefs;
1768 Assert(pSet->aEntries[j].cRefs > cMigrate);
1769 pSet->aEntries[j].cRefs -= cMigrate;
1770 pSet->aEntries[i].cRefs = UINT16_MAX - 1;
1771 break;
1772 }
1773#endif
1774 }
1775 }
1776
1777 /*
1778 * Try make use of the unused hinting (cUnrefs) to evict entries
1779 * from both the set as well as the mapping cache.
1780 */
1781
1782 uint32_t const cTotalRefs = (uint32_t)pSet->aEntries[i].cRefs + pSet->aEntries[i].cInlinedRefs;
1783 Log2(("pgmDynMapOptimizeAutoSet: #%u/%u/%u pvPage=%p iPage=%u cRefs=%u cInlinedRefs=%u cUnrefs=%u cTotalRefs=%u\n",
1784 i,
1785 pSet->iSubset,
1786 pSet->cEntries,
1787 pSet->aEntries[i].pvPage,
1788 pSet->aEntries[i].iPage,
1789 pSet->aEntries[i].cRefs,
1790 pSet->aEntries[i].cInlinedRefs,
1791 pSet->aEntries[i].cUnrefs,
1792 cTotalRefs));
1793 Assert(cTotalRefs >= pSet->aEntries[i].cUnrefs);
1794
1795 if ( cTotalRefs == pSet->aEntries[i].cUnrefs
1796 && ( pSet->iSubset == UINT32_MAX
1797 || pSet->iSubset < pSet->cEntries)
1798 )
1799 {
1800 Log2(("pgmDynMapOptimizeAutoSet: Releasing iPage=%d/%p\n", pSet->aEntries[i].iPage, pSet->aEntries[i].pvPage));
1801 //LogFlow(("pgmDynMapOptimizeAutoSet: Releasing iPage=%d/%p\n", pSet->aEntries[i].iPage, pSet->aEntries[i].pvPage));
1802 pgmRZDynMapReleasePage(PGMRZDYNMAP_SET_2_DYNMAP(pSet),
1803 pSet->aEntries[i].iPage,
1804 pSet->aEntries[i].cRefs);
1805 pSet->cEntries--;
1806 if (i < pSet->cEntries)
1807 {
1808 pSet->aEntries[i] = pSet->aEntries[pSet->cEntries];
1809 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[pSet->cEntries]);
1810 }
1811
1812 i--;
1813 }
1814 }
1815}
1816
1817
1818
1819
1820/**
1821 * Signals the start of a new set of mappings.
1822 *
1823 * Mostly for strictness. PGMDynMapHCPage won't work unless this
1824 * API is called.
1825 *
1826 * @param pVCpu The shared data for the current virtual CPU.
1827 */
1828VMMDECL(void) PGMRZDynMapStartAutoSet(PVMCPU pVCpu)
1829{
1830 LogFlow(("PGMRZDynMapStartAutoSet:\n"));
1831 Assert(pVCpu->pgm.s.AutoSet.cEntries == PGMMAPSET_CLOSED);
1832 Assert(pVCpu->pgm.s.AutoSet.iSubset == UINT32_MAX);
1833 pVCpu->pgm.s.AutoSet.cEntries = 0;
1834 pVCpu->pgm.s.AutoSet.iCpu = PGMRZDYNMAP_CUR_CPU();
1835}
1836
1837
1838#ifdef IN_RING0
1839/**
1840 * Starts or migrates the autoset of a virtual CPU.
1841 *
1842 * This is used by HWACCMR0Enter. When we've longjumped out of the HWACCM
1843 * execution loop with the set open, we'll migrate it when re-entering. While
1844 * under normal circumstances, we'll start it so VMXR0LoadGuestState can access
1845 * guest memory.
1846 *
1847 * @returns @c true if started, @c false if migrated.
1848 * @param pVCpu The shared data for the current virtual CPU.
1849 * @thread EMT
1850 */
1851VMMR0DECL(bool) PGMR0DynMapStartOrMigrateAutoSet(PVMCPU pVCpu)
1852{
1853 bool fStartIt = pVCpu->pgm.s.AutoSet.cEntries == PGMMAPSET_CLOSED;
1854 if (fStartIt)
1855 PGMRZDynMapStartAutoSet(pVCpu);
1856 else
1857 PGMR0DynMapMigrateAutoSet(pVCpu);
1858 return fStartIt;
1859}
1860#endif /* IN_RING0 */
1861
1862
1863/**
1864 * Checks if the set has high load.
1865 *
1866 * @returns true on high load, otherwise false.
1867 * @param pSet The set.
1868 */
1869DECLINLINE(bool) pgmRZDynMapHasHighLoad(PPGMMAPSET pSet)
1870{
1871#ifdef IN_RC
1872 if (pSet->cEntries < MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE / 2)
1873 return false;
1874#endif
1875
1876 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
1877 uint32_t cUnusedPages = pThis->cPages - pThis->cLoad;
1878#ifdef IN_RC
1879 return cUnusedPages <= MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE * 36 / 100;
1880#else
1881 return cUnusedPages <= PGMR0DYNMAP_PAGES_PER_CPU_MIN;
1882#endif
1883}
1884
1885
1886/**
1887 * Worker that performs the actual flushing of the set.
1888 *
1889 * @param pSet The set to flush.
1890 * @param cEntries The number of entries.
1891 */
1892DECLINLINE(void) pgmDynMapFlushAutoSetWorker(PPGMMAPSET pSet, uint32_t cEntries)
1893{
1894 /*
1895 * Release any pages it's referencing.
1896 */
1897 if ( cEntries != 0
1898 && RT_LIKELY(cEntries <= RT_ELEMENTS(pSet->aEntries)))
1899 {
1900 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
1901 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1902
1903 uint32_t i = cEntries;
1904 while (i-- > 0)
1905 {
1906 uint32_t iPage = pSet->aEntries[i].iPage;
1907 Assert(iPage < pThis->cPages);
1908 int32_t cRefs = pSet->aEntries[i].cRefs;
1909 Assert(cRefs > 0);
1910 pgmRZDynMapReleasePageLocked(pThis, iPage, cRefs);
1911
1912 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[i]);
1913 }
1914
1915 Assert(pThis->cLoad <= pThis->cPages - pThis->cGuardPages);
1916 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1917 }
1918}
1919
1920
1921/**
1922 * Releases the dynamic memory mappings made by PGMDynMapHCPage and associates
1923 * since the PGMDynMapStartAutoSet call.
1924 *
1925 * @param pVCpu The shared data for the current virtual CPU.
1926 */
1927VMMDECL(void) PGMRZDynMapReleaseAutoSet(PVMCPU pVCpu)
1928{
1929 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
1930
1931 /*
1932 * Close and flush the set.
1933 */
1934 uint32_t cEntries = pSet->cEntries;
1935 AssertReturnVoid(cEntries != PGMMAPSET_CLOSED);
1936 pSet->cEntries = PGMMAPSET_CLOSED;
1937 pSet->iSubset = UINT32_MAX;
1938 pSet->iCpu = -1;
1939
1940#ifdef IN_RC
1941 if (RT_ELEMENTS(pSet->aEntries) > MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)
1942 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / (MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)) % 11]);
1943 else
1944#endif
1945 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
1946 if (cEntries > RT_ELEMENTS(pSet->aEntries) * 50 / 100)
1947 Log(("PGMRZDynMapReleaseAutoSet: cEntries=%d\n", cEntries));
1948 else
1949 LogFlow(("PGMRZDynMapReleaseAutoSet: cEntries=%d\n", cEntries));
1950
1951 pgmDynMapFlushAutoSetWorker(pSet, cEntries);
1952}
1953
1954
1955/**
1956 * Flushes the set if it's above a certain threshold.
1957 *
1958 * @param pVCpu The shared data for the current virtual CPU.
1959 */
1960VMMDECL(void) PGMRZDynMapFlushAutoSet(PVMCPU pVCpu)
1961{
1962 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
1963 AssertMsg(pSet->iCpu == PGMRZDYNMAP_CUR_CPU(), ("%d %d efl=%#x\n", pSet->iCpu, PGMRZDYNMAP_CUR_CPU(), ASMGetFlags()));
1964
1965 /*
1966 * Only flush it if it's 45% full.
1967 */
1968 uint32_t cEntries = pSet->cEntries;
1969 AssertReturnVoid(cEntries != PGMMAPSET_CLOSED);
1970 Assert(pSet->iSubset == UINT32_MAX);
1971#ifdef IN_RC
1972 if (RT_ELEMENTS(pSet->aEntries) > MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)
1973 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / (MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)) % 11]);
1974 else
1975#endif
1976 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
1977 if ( cEntries >= RT_ELEMENTS(pSet->aEntries) * 45 / 100
1978 || pgmRZDynMapHasHighLoad(pSet))
1979 {
1980 pSet->cEntries = 0;
1981 Log(("PGMDynMapFlushAutoSet: cEntries=%d\n", pSet->cEntries));
1982
1983 pgmDynMapFlushAutoSetWorker(pSet, cEntries);
1984 AssertMsg(pSet->iCpu == PGMRZDYNMAP_CUR_CPU(), ("%d %d efl=%#x\n", pSet->iCpu, PGMRZDYNMAP_CUR_CPU(), ASMGetFlags()));
1985 }
1986}
1987
1988
1989#ifndef IN_RC
1990/**
1991 * Migrates the automatic mapping set of the current vCPU if it's active and
1992 * necessary.
1993 *
1994 * This is called when re-entering the hardware assisted execution mode after a
1995 * nip down to ring-3. We run the risk that the CPU might have change and we
1996 * will therefore make sure all the cache entries currently in the auto set will
1997 * be valid on the new CPU. If the cpu didn't change nothing will happen as all
1998 * the entries will have been flagged as invalidated.
1999 *
2000 * @param pVCpu The shared data for the current virtual CPU.
2001 * @thread EMT
2002 */
2003VMMR0DECL(void) PGMR0DynMapMigrateAutoSet(PVMCPU pVCpu)
2004{
2005 LogFlow(("PGMR0DynMapMigrateAutoSet\n"));
2006 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
2007 int32_t iRealCpu = PGMRZDYNMAP_CUR_CPU();
2008 if (pSet->iCpu != iRealCpu)
2009 {
2010 uint32_t i = pSet->cEntries;
2011 if (i != PGMMAPSET_CLOSED)
2012 {
2013 AssertMsg(i <= RT_ELEMENTS(pSet->aEntries), ("%#x (%u)\n", i, i));
2014 if (i != 0 && RT_LIKELY(i <= RT_ELEMENTS(pSet->aEntries)))
2015 {
2016 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
2017 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
2018
2019 while (i-- > 0)
2020 {
2021 Assert(pSet->aEntries[i].cRefs > 0);
2022 uint32_t iPage = pSet->aEntries[i].iPage;
2023 Assert(iPage < pThis->cPages);
2024 if (RTCpuSetIsMemberByIndex(&pThis->paPages[iPage].PendingSet, iRealCpu))
2025 {
2026 RTCpuSetDelByIndex(&pThis->paPages[iPage].PendingSet, iRealCpu);
2027 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
2028
2029 ASMInvalidatePage(pThis->paPages[iPage].pvPage);
2030 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapMigrateInvlPg);
2031
2032 PGMRZDYNMAP_SPINLOCK_REACQUIRE(pThis);
2033 }
2034 }
2035
2036 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
2037 }
2038 }
2039 pSet->iCpu = iRealCpu;
2040 }
2041}
2042#endif /* !IN_RC */
2043
2044
2045/**
2046 * Worker function that flushes the current subset.
2047 *
2048 * This is called when the set is popped or when the set
2049 * hash a too high load. As also pointed out elsewhere, the
2050 * whole subset thing is a hack for working around code that
2051 * accesses too many pages. Like PGMPool.
2052 *
2053 * @param pSet The set which subset to flush.
2054 */
2055static void pgmDynMapFlushSubset(PPGMMAPSET pSet)
2056{
2057 uint32_t iSubset = pSet->iSubset;
2058 uint32_t i = pSet->cEntries;
2059 Assert(i <= RT_ELEMENTS(pSet->aEntries));
2060 if ( i > iSubset
2061 && i <= RT_ELEMENTS(pSet->aEntries))
2062 {
2063 Log(("pgmDynMapFlushSubset: cEntries=%d iSubset=%d\n", pSet->cEntries, iSubset));
2064 pSet->cEntries = iSubset;
2065
2066 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
2067 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
2068
2069 while (i-- > iSubset)
2070 {
2071 uint32_t iPage = pSet->aEntries[i].iPage;
2072 Assert(iPage < pThis->cPages);
2073 int32_t cRefs = pSet->aEntries[i].cRefs;
2074 Assert(cRefs > 0);
2075 pgmRZDynMapReleasePageLocked(pThis, iPage, cRefs);
2076
2077 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[i]);
2078 }
2079
2080 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
2081 }
2082}
2083
2084
2085/**
2086 * Creates a subset.
2087 *
2088 * A subset is a hack to avoid having to rewrite code that touches a lot of
2089 * pages. It prevents the mapping set from being overflowed by automatically
2090 * flushing previous mappings when a certain threshold is reached.
2091 *
2092 * Pages mapped after calling this function are only valid until the next page
2093 * is mapped.
2094 *
2095 * @returns The index of the previous subset. Pass this to
2096 * PGMDynMapPopAutoSubset when popping it.
2097 * @param pVCpu Pointer to the virtual cpu data.
2098 */
2099VMMDECL(uint32_t) PGMRZDynMapPushAutoSubset(PVMCPU pVCpu)
2100{
2101 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
2102 AssertReturn(pSet->cEntries != PGMMAPSET_CLOSED, UINT32_MAX);
2103 uint32_t iPrevSubset = pSet->iSubset;
2104 LogFlow(("PGMRZDynMapPushAutoSubset: pVCpu=%p iPrevSubset=%u\n", pVCpu, iPrevSubset));
2105
2106 /*
2107 * If it looks like we're approaching the max set size or mapping space
2108 * optimize the set to drop off unused pages.
2109 */
2110 if ( pSet->cEntries > RT_ELEMENTS(pSet->aEntries) * 60 / 100
2111 || pgmRZDynMapHasHighLoad(pSet))
2112 {
2113 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetOptimize);
2114 pgmDynMapOptimizeAutoSet(pSet);
2115 }
2116
2117 pSet->iSubset = pSet->cEntries;
2118 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSubsets);
2119
2120 AssertMsg(iPrevSubset <= pSet->iSubset || iPrevSubset == UINT32_MAX, ("iPrevSubset=%#x iSubset=%#x\n", iPrevSubset, pSet->iSubset));
2121 return iPrevSubset;
2122}
2123
2124
2125/**
2126 * Pops a subset created by a previous call to PGMDynMapPushAutoSubset.
2127 *
2128 * @param pVCpu Pointer to the virtual cpu data.
2129 * @param iPrevSubset What PGMDynMapPushAutoSubset returned.
2130 */
2131VMMDECL(void) PGMRZDynMapPopAutoSubset(PVMCPU pVCpu, uint32_t iPrevSubset)
2132{
2133 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
2134 uint32_t cEntries = pSet->cEntries;
2135 LogFlow(("PGMRZDynMapPopAutoSubset: pVCpu=%p iPrevSubset=%u iSubset=%u cEntries=%u\n", pVCpu, iPrevSubset, pSet->iSubset, cEntries));
2136 AssertReturnVoid(cEntries != PGMMAPSET_CLOSED);
2137 AssertMsgReturnVoid(pSet->iSubset >= iPrevSubset || iPrevSubset == UINT32_MAX, ("iPrevSubset=%u iSubset=%u cEntries=%u\n", iPrevSubset, pSet->iSubset, cEntries));
2138#ifdef IN_RC
2139 if (RT_ELEMENTS(pSet->aEntries) > MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)
2140 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / (MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)) % 11]);
2141 else
2142#endif
2143 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
2144 if ( cEntries >= RT_ELEMENTS(pSet->aEntries) * 40 / 100
2145 && cEntries != pSet->iSubset)
2146 {
2147 pgmDynMapFlushSubset(pSet);
2148 Assert(pSet->cEntries >= iPrevSubset || iPrevSubset == UINT32_MAX);
2149 }
2150 pSet->iSubset = iPrevSubset;
2151}
2152
2153
2154/**
2155 * Indicates that the given page is unused and its mapping can be re-used.
2156 *
2157 * @param pVCpu The current CPU.
2158 * @param pvHint The page that is now unused. This does not have to
2159 * point at the start of the page. NULL is ignored.
2160 */
2161#ifdef LOG_ENABLED
2162void pgmRZDynMapUnusedHint(PVMCPU pVCpu, void *pvHint, RT_SRC_POS_DECL)
2163#else
2164void pgmRZDynMapUnusedHint(PVMCPU pVCpu, void *pvHint)
2165#endif
2166{
2167 /*
2168 * Ignore NULL pointers and mask off the page offset bits.
2169 */
2170 if (pvHint == NULL)
2171 return;
2172 pvHint = (void *)((uintptr_t)pvHint & ~(uintptr_t)PAGE_OFFSET_MASK);
2173
2174 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
2175 uint32_t iEntry = pSet->cEntries;
2176 AssertReturnVoid(iEntry > 0);
2177
2178 /*
2179 * Find the entry in the usual unrolled fashion.
2180 */
2181 /** @todo add a hint to the set which entry was used last since it's not
2182 * always the last entry? */
2183#define IS_MATCHING_ENTRY(pSet, iEntry, pvHint) \
2184 ( (pSet)->aEntries[(iEntry)].pvPage == (pvHint) \
2185 && (uint32_t)(pSet)->aEntries[(iEntry)].cRefs + (pSet)->aEntries[(iEntry)].cInlinedRefs \
2186 > (pSet)->aEntries[(iEntry)].cUnrefs )
2187 if ( iEntry >= 1 && IS_MATCHING_ENTRY(pSet, iEntry - 1, pvHint))
2188 iEntry = iEntry - 1;
2189 else if (iEntry >= 2 && IS_MATCHING_ENTRY(pSet, iEntry - 2, pvHint))
2190 iEntry = iEntry - 2;
2191 else if (iEntry >= 3 && IS_MATCHING_ENTRY(pSet, iEntry - 3, pvHint))
2192 iEntry = iEntry - 3;
2193 else if (iEntry >= 4 && IS_MATCHING_ENTRY(pSet, iEntry - 4, pvHint))
2194 iEntry = iEntry - 4;
2195 else if (iEntry >= 5 && IS_MATCHING_ENTRY(pSet, iEntry - 5, pvHint))
2196 iEntry = iEntry - 5;
2197 else if (iEntry >= 6 && IS_MATCHING_ENTRY(pSet, iEntry - 6, pvHint))
2198 iEntry = iEntry - 6;
2199 else if (iEntry >= 7 && IS_MATCHING_ENTRY(pSet, iEntry - 7, pvHint))
2200 iEntry = iEntry - 7;
2201 else
2202 {
2203 /*
2204 * Loop till we find it.
2205 */
2206 bool fFound = false;
2207 if (iEntry > 7)
2208 {
2209 iEntry -= 7;
2210 while (iEntry-- > 0)
2211 if (IS_MATCHING_ENTRY(pSet, iEntry, pvHint))
2212 {
2213 fFound = true;
2214 break;
2215 }
2216 }
2217 AssertMsgReturnVoid(fFound,
2218 ("pvHint=%p cEntries=%#x iSubset=%#x\n"
2219 "aEntries[0] = {%#x, %#x, %#x, %#x, %p}\n"
2220 "aEntries[1] = {%#x, %#x, %#x, %#x, %p}\n"
2221 "aEntries[2] = {%#x, %#x, %#x, %#x, %p}\n"
2222 "aEntries[3] = {%#x, %#x, %#x, %#x, %p}\n"
2223 "aEntries[4] = {%#x, %#x, %#x, %#x, %p}\n"
2224 "aEntries[5] = {%#x, %#x, %#x, %#x, %p}\n"
2225 ,
2226 pvHint, pSet->cEntries, pSet->iSubset,
2227 pSet->aEntries[0].iPage, pSet->aEntries[0].cRefs, pSet->aEntries[0].cInlinedRefs, pSet->aEntries[0].cUnrefs, pSet->aEntries[0].pvPage,
2228 pSet->aEntries[1].iPage, pSet->aEntries[1].cRefs, pSet->aEntries[1].cInlinedRefs, pSet->aEntries[1].cUnrefs, pSet->aEntries[1].pvPage,
2229 pSet->aEntries[2].iPage, pSet->aEntries[2].cRefs, pSet->aEntries[2].cInlinedRefs, pSet->aEntries[2].cUnrefs, pSet->aEntries[2].pvPage,
2230 pSet->aEntries[3].iPage, pSet->aEntries[3].cRefs, pSet->aEntries[3].cInlinedRefs, pSet->aEntries[3].cUnrefs, pSet->aEntries[3].pvPage,
2231 pSet->aEntries[4].iPage, pSet->aEntries[4].cRefs, pSet->aEntries[4].cInlinedRefs, pSet->aEntries[4].cUnrefs, pSet->aEntries[4].pvPage,
2232 pSet->aEntries[5].iPage, pSet->aEntries[5].cRefs, pSet->aEntries[5].cInlinedRefs, pSet->aEntries[5].cUnrefs, pSet->aEntries[5].pvPage));
2233 }
2234#undef IS_MATCHING_ENTRY
2235
2236 /*
2237 * Update it.
2238 */
2239 uint32_t const cTotalRefs = (uint32_t)pSet->aEntries[iEntry].cRefs + pSet->aEntries[iEntry].cInlinedRefs;
2240 uint32_t const cUnrefs = pSet->aEntries[iEntry].cUnrefs;
2241 LogFlow(("pgmRZDynMapUnusedHint: pvHint=%p #%u cRefs=%d cInlinedRefs=%d cUnrefs=%d (+1) cTotalRefs=%d %s(%d) %s\n",
2242 pvHint, iEntry, pSet->aEntries[iEntry].cRefs, pSet->aEntries[iEntry].cInlinedRefs, cUnrefs, cTotalRefs, pszFile, iLine, pszFunction));
2243 AssertReturnVoid(cTotalRefs > cUnrefs);
2244
2245 if (RT_LIKELY(cUnrefs < UINT16_MAX - 1))
2246 pSet->aEntries[iEntry].cUnrefs++;
2247 else if (pSet->aEntries[iEntry].cInlinedRefs)
2248 {
2249 uint32_t cSub = RT_MIN(pSet->aEntries[iEntry].cInlinedRefs, pSet->aEntries[iEntry].cUnrefs);
2250 pSet->aEntries[iEntry].cInlinedRefs -= cSub;
2251 pSet->aEntries[iEntry].cUnrefs -= cSub;
2252 pSet->aEntries[iEntry].cUnrefs++;
2253 }
2254 else
2255 Log(("pgmRZDynMapUnusedHint: pvHint=%p ignored because of overflow! %s(%d) %s\n", pvHint, pszFile, iLine, pszFunction));
2256
2257#ifdef PGMRZDYNMAP_STRICT_RELEASE
2258 /*
2259 * Optimize the set to trigger the unmapping and invalidation of the page.
2260 */
2261 if (cUnrefs + 1 == cTotalRefs)
2262 pgmDynMapOptimizeAutoSet(pSet);
2263#endif
2264}
2265
2266
2267/**
2268 * Common worker code for pgmRZDynMapHCPageInlined, pgmRZDynMapHCPageV2Inlined
2269 * and pgmR0DynMapGCPageOffInlined.
2270 *
2271 * @returns VINF_SUCCESS, bails out to ring-3 on failure.
2272 * @param pSet The set.
2273 * @param HCPhys The physical address of the page.
2274 * @param ppv Where to store the address of the mapping on success.
2275 *
2276 * @remarks This is a very hot path.
2277 */
2278int pgmRZDynMapHCPageCommon(PPGMMAPSET pSet, RTHCPHYS HCPhys, void **ppv RTLOG_COMMA_SRC_POS_DECL)
2279{
2280 AssertMsg(pSet->iCpu == PGMRZDYNMAP_CUR_CPU(), ("%d %d efl=%#x\n", pSet->iCpu, PGMRZDYNMAP_CUR_CPU(), ASMGetFlags()));
2281 PVMCPU pVCpu = PGMRZDYNMAP_SET_2_VMCPU(pSet);
2282 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2283
2284 /*
2285 * Map it.
2286 */
2287 void *pvPage;
2288 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
2289 uint32_t iPage = pgmR0DynMapPage(pThis, HCPhys, pSet->iCpu, pVCpu, &pvPage);
2290 if (RT_UNLIKELY(iPage == UINT32_MAX))
2291 {
2292 /*
2293 * We're out of mapping space, optimize our set to try remedy the
2294 * situation. (Only works if there are unreference hints.)
2295 */
2296 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetOptimize);
2297 pgmDynMapOptimizeAutoSet(pSet);
2298
2299 iPage = pgmR0DynMapPage(pThis, HCPhys, pSet->iCpu, pVCpu, &pvPage);
2300 if (RT_UNLIKELY(iPage == UINT32_MAX))
2301 {
2302 RTAssertMsg2Weak("pgmRZDynMapHCPageCommon: cLoad=%u/%u cPages=%u cGuardPages=%u\n",
2303 pThis->cLoad, pThis->cMaxLoad, pThis->cPages, pThis->cGuardPages);
2304 if (!g_fPGMR0DynMapTestRunning)
2305 VMMRZCallRing3NoCpu(PGMRZDYNMAP_SET_2_VM(pSet), VMMCALLRING3_VM_R0_ASSERTION, 0);
2306 *ppv = NULL;
2307 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2308 return VERR_PGM_DYNMAP_FAILED;
2309 }
2310 }
2311
2312 /*
2313 * Add the page to the auto reference set.
2314 *
2315 * The typical usage pattern means that the same pages will be mapped
2316 * several times in the same set. We can catch most of these
2317 * remappings by looking a few pages back into the set. (The searching
2318 * and set optimizing path will hardly ever be used when doing this.)
2319 */
2320 AssertCompile(RT_ELEMENTS(pSet->aEntries) >= 8);
2321 int32_t i = pSet->cEntries;
2322 if (i-- < 5)
2323 {
2324 unsigned iEntry = pSet->cEntries++;
2325 pSet->aEntries[iEntry].cRefs = 1;
2326 pSet->aEntries[iEntry].cUnrefs = 0;
2327 pSet->aEntries[iEntry].cInlinedRefs = 0;
2328 pSet->aEntries[iEntry].iPage = iPage;
2329 pSet->aEntries[iEntry].pvPage = pvPage;
2330 pSet->aEntries[iEntry].HCPhys = HCPhys;
2331 pSet->aiHashTable[PGMMAPSET_HASH(HCPhys)] = iEntry;
2332 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/0/0 iPage=%#x [a] %s(%d) %s\n",
2333 pSet, HCPhys, iEntry, iEntry + 1, pvPage, 1, iPage, pszFile, iLine, pszFunction));
2334 }
2335 /* Any of the last 5 pages? */
2336 else if ( pSet->aEntries[i - 0].iPage == iPage
2337 && pSet->aEntries[i - 0].cRefs < UINT16_MAX - 1)
2338 {
2339 pSet->aEntries[i - 0].cRefs++;
2340 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [0] %s(%d) %s\n", pSet, HCPhys, i - 0, pSet->cEntries, pvPage, pSet->aEntries[i - 0].cRefs, pSet->aEntries[i - 0].cInlinedRefs, pSet->aEntries[i - 0].cUnrefs, iPage, pszFile, iLine, pszFunction));
2341 }
2342 else if ( pSet->aEntries[i - 1].iPage == iPage
2343 && pSet->aEntries[i - 1].cRefs < UINT16_MAX - 1)
2344 {
2345 pSet->aEntries[i - 1].cRefs++;
2346 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [1] %s(%d) %s\n", pSet, HCPhys, i - 1, pSet->cEntries, pvPage, pSet->aEntries[i - 1].cRefs, pSet->aEntries[i - 1].cInlinedRefs, pSet->aEntries[i - 1].cUnrefs, iPage, pszFile, iLine, pszFunction));
2347 }
2348 else if ( pSet->aEntries[i - 2].iPage == iPage
2349 && pSet->aEntries[i - 2].cRefs < UINT16_MAX - 1)
2350 {
2351 pSet->aEntries[i - 2].cRefs++;
2352 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [2] %s(%d) %s\n", pSet, HCPhys, i - 2, pSet->cEntries, pvPage, pSet->aEntries[i - 2].cRefs, pSet->aEntries[i - 2].cInlinedRefs, pSet->aEntries[i - 2].cUnrefs, iPage, pszFile, iLine, pszFunction));
2353 }
2354 else if ( pSet->aEntries[i - 3].iPage == iPage
2355 && pSet->aEntries[i - 3].cRefs < UINT16_MAX - 1)
2356 {
2357 pSet->aEntries[i - 3].cRefs++;
2358 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [4] %s(%d) %s\n", pSet, HCPhys, i - 3, pSet->cEntries, pvPage, pSet->aEntries[i - 3].cRefs, pSet->aEntries[i - 3].cInlinedRefs, pSet->aEntries[i - 3].cUnrefs, iPage, pszFile, iLine, pszFunction));
2359 }
2360 else if ( pSet->aEntries[i - 4].iPage == iPage
2361 && pSet->aEntries[i - 4].cRefs < UINT16_MAX - 1)
2362 {
2363 pSet->aEntries[i - 4].cRefs++;
2364 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [4] %s(%d) %s\n", pSet, HCPhys, i - 4, pSet->cEntries, pvPage, pSet->aEntries[i - 4].cRefs, pSet->aEntries[i - 4].cInlinedRefs, pSet->aEntries[i - 4].cUnrefs, iPage, pszFile, iLine, pszFunction));
2365 }
2366 /* Don't bother searching unless we're above a 60% load. */
2367 else if (RT_LIKELY(i <= (int32_t)RT_ELEMENTS(pSet->aEntries) * 60 / 100))
2368 {
2369 unsigned iEntry = pSet->cEntries++;
2370 pSet->aEntries[iEntry].cRefs = 1;
2371 pSet->aEntries[iEntry].cUnrefs = 0;
2372 pSet->aEntries[iEntry].cInlinedRefs = 0;
2373 pSet->aEntries[iEntry].iPage = iPage;
2374 pSet->aEntries[iEntry].pvPage = pvPage;
2375 pSet->aEntries[iEntry].HCPhys = HCPhys;
2376 pSet->aiHashTable[PGMMAPSET_HASH(HCPhys)] = iEntry;
2377 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=1/0/0 iPage=%#x [b] %s(%d) %s\n", pSet, HCPhys, iEntry, pSet->cEntries, pvPage, iPage, pszFile, iLine, pszFunction));
2378 }
2379 else
2380 {
2381 /* Search the rest of the set. */
2382 Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries));
2383 i -= 4;
2384 while (i-- > 0)
2385 if ( pSet->aEntries[i].iPage == iPage
2386 && pSet->aEntries[i].cRefs < UINT16_MAX - 1)
2387 {
2388 pSet->aEntries[i].cRefs++;
2389 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetSearchHits);
2390 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [c] %s(%d) %s\n", pSet, HCPhys, i, pSet->cEntries, pvPage, pSet->aEntries[i].cRefs, pSet->aEntries[i].cInlinedRefs, pSet->aEntries[i].cUnrefs, iPage, pszFile, iLine, pszFunction));
2391 break;
2392 }
2393 if (i < 0)
2394 {
2395 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetSearchMisses);
2396#if 0 /* this is very bogus */
2397 if (pSet->iSubset < pSet->cEntries)
2398 {
2399 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetSearchFlushes);
2400 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(pSet->cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
2401 pgmDynMapFlushSubset(pSet);
2402 }
2403#endif
2404
2405 if (RT_UNLIKELY(pSet->cEntries >= RT_ELEMENTS(pSet->aEntries)))
2406 {
2407 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetOptimize);
2408 pgmDynMapOptimizeAutoSet(pSet);
2409 }
2410
2411 if (RT_LIKELY(pSet->cEntries < RT_ELEMENTS(pSet->aEntries)))
2412 {
2413 unsigned iEntry = pSet->cEntries++;
2414 pSet->aEntries[iEntry].cRefs = 1;
2415 pSet->aEntries[iEntry].cUnrefs = 0;
2416 pSet->aEntries[iEntry].cInlinedRefs = 0;
2417 pSet->aEntries[iEntry].iPage = iPage;
2418 pSet->aEntries[iEntry].pvPage = pvPage;
2419 pSet->aEntries[iEntry].HCPhys = HCPhys;
2420 pSet->aiHashTable[PGMMAPSET_HASH(HCPhys)] = iEntry;
2421 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=1/0/0 iPage=%#x [d] %s(%d) %s\n", pSet, HCPhys, iEntry, pSet->cEntries, pvPage, iPage, pszFile, iLine, pszFunction));
2422 }
2423 else
2424 {
2425 /* We're screwed. */
2426 pgmRZDynMapReleasePage(pThis, iPage, 1);
2427
2428 RTAssertMsg2Weak("pgmRZDynMapHCPageCommon: set is full!\n");
2429 if (!g_fPGMR0DynMapTestRunning)
2430 VMMRZCallRing3NoCpu(PGMRZDYNMAP_SET_2_VM(pSet), VMMCALLRING3_VM_R0_ASSERTION, 0);
2431 *ppv = NULL;
2432 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2433 return VERR_PGM_DYNMAP_FULL_SET;
2434 }
2435 }
2436 }
2437
2438 *ppv = pvPage;
2439 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2440 return VINF_SUCCESS;
2441}
2442
2443
2444#if 0 /*def DEBUG*/
2445/** For pgmR0DynMapTest3PerCpu. */
2446typedef struct PGMR0DYNMAPTEST
2447{
2448 uint32_t u32Expect;
2449 uint32_t *pu32;
2450 uint32_t volatile cFailures;
2451} PGMR0DYNMAPTEST;
2452typedef PGMR0DYNMAPTEST *PPGMR0DYNMAPTEST;
2453
2454/**
2455 * Checks that the content of the page is the same on all CPUs, i.e. that there
2456 * are no CPU specific PTs or similar nasty stuff involved.
2457 *
2458 * @param idCpu The current CPU.
2459 * @param pvUser1 Pointer a PGMR0DYNMAPTEST structure.
2460 * @param pvUser2 Unused, ignored.
2461 */
2462static DECLCALLBACK(void) pgmR0DynMapTest3PerCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
2463{
2464 PPGMR0DYNMAPTEST pTest = (PPGMR0DYNMAPTEST)pvUser1;
2465 ASMInvalidatePage(pTest->pu32);
2466 if (*pTest->pu32 != pTest->u32Expect)
2467 ASMAtomicIncU32(&pTest->cFailures);
2468 NOREF(pvUser2); NOREF(idCpu);
2469}
2470
2471
2472/**
2473 * Performs some basic tests in debug builds.
2474 */
2475static int pgmR0DynMapTest(PVM pVM)
2476{
2477 LogRel(("pgmR0DynMapTest: ****** START ******\n"));
2478 PPGMMAPSET pSet = &pVM->aCpus[0].pgm.s.AutoSet;
2479 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
2480 uint32_t i;
2481
2482 /*
2483 * Assert internal integrity first.
2484 */
2485 LogRel(("Test #0\n"));
2486 int rc = PGMR0DynMapAssertIntegrity();
2487 if (RT_FAILURE(rc))
2488 return rc;
2489
2490 void *pvR0DynMapUsedSaved = pVM->pgm.s.pvR0DynMapUsed;
2491 pVM->pgm.s.pvR0DynMapUsed = pThis;
2492 g_fPGMR0DynMapTestRunning = true;
2493
2494 /*
2495 * Simple test, map CR3 twice and check that we're getting the
2496 * same mapping address back.
2497 */
2498 LogRel(("Test #1\n"));
2499 ASMIntDisable();
2500 PGMRZDynMapStartAutoSet(&pVM->aCpus[0]);
2501
2502 uint64_t cr3 = ASMGetCR3() & ~(uint64_t)PAGE_OFFSET_MASK;
2503 void *pv = (void *)(intptr_t)-1;
2504 void *pv2 = (void *)(intptr_t)-2;
2505 rc = pgmRZDynMapHCPageCommon(pVM, cr3, &pv RTLOG_COMMA_SRC_POS);
2506 int rc2 = pgmRZDynMapHCPageCommon(pVM, cr3, &pv2 RTLOG_COMMA_SRC_POS);
2507 ASMIntEnable();
2508 if ( RT_SUCCESS(rc2)
2509 && RT_SUCCESS(rc)
2510 && pv == pv2)
2511 {
2512 LogRel(("Load=%u/%u/%u Set=%u/%u\n", pThis->cLoad, pThis->cMaxLoad, pThis->cPages - pThis->cPages, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2513 rc = PGMR0DynMapAssertIntegrity();
2514
2515 /*
2516 * Check that the simple set overflow code works by filling it
2517 * with more CR3 mappings.
2518 */
2519 LogRel(("Test #2\n"));
2520 ASMIntDisable();
2521 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2522 for (i = 0 ; i < UINT16_MAX*2 - 1 && RT_SUCCESS(rc) && pv2 == pv; i++)
2523 {
2524 pv2 = (void *)(intptr_t)-4;
2525 rc = pgmRZDynMapHCPageCommon(pVM, cr3, &pv2 RTLOG_COMMA_SRC_POS);
2526 }
2527 ASMIntEnable();
2528 if (RT_FAILURE(rc) || pv != pv2)
2529 {
2530 LogRel(("failed(%d): rc=%Rrc; pv=%p pv2=%p i=%p\n", __LINE__, rc, pv, pv2, i));
2531 if (RT_SUCCESS(rc)) rc = VERR_INTERNAL_ERROR;
2532 }
2533 else if (pSet->cEntries != 5)
2534 {
2535 LogRel(("failed(%d): cEntries=%d expected %d\n", __LINE__, pSet->cEntries, RT_ELEMENTS(pSet->aEntries) / 2));
2536 rc = VERR_INTERNAL_ERROR;
2537 }
2538 else if ( pSet->aEntries[4].cRefs != UINT16_MAX - 1
2539 || pSet->aEntries[3].cRefs != UINT16_MAX - 1
2540 || pSet->aEntries[2].cRefs != 1
2541 || pSet->aEntries[1].cRefs != 1
2542 || pSet->aEntries[0].cRefs != 1)
2543 {
2544 LogRel(("failed(%d): bad set dist: ", __LINE__));
2545 for (i = 0; i < pSet->cEntries; i++)
2546 LogRel(("[%d]=%d, ", i, pSet->aEntries[i].cRefs));
2547 LogRel(("\n"));
2548 rc = VERR_INTERNAL_ERROR;
2549 }
2550 if (RT_SUCCESS(rc))
2551 rc = PGMR0DynMapAssertIntegrity();
2552 if (RT_SUCCESS(rc))
2553 {
2554 /*
2555 * Trigger an set optimization run (exactly).
2556 */
2557 LogRel(("Test #3\n"));
2558 ASMIntDisable();
2559 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2560 pv2 = NULL;
2561 for (i = 0 ; i < RT_ELEMENTS(pSet->aEntries) - 5 && RT_SUCCESS(rc) && pv2 != pv; i++)
2562 {
2563 pv2 = (void *)(intptr_t)(-5 - i);
2564 rc = pgmRZDynMapHCPageCommon(pVM, cr3 + PAGE_SIZE * (i + 5), &pv2 RTLOG_COMMA_SRC_POS);
2565 }
2566 ASMIntEnable();
2567 if (RT_FAILURE(rc) || pv == pv2)
2568 {
2569 LogRel(("failed(%d): rc=%Rrc; pv=%p pv2=%p i=%d\n", __LINE__, rc, pv, pv2, i));
2570 if (RT_SUCCESS(rc)) rc = VERR_INTERNAL_ERROR;
2571 }
2572 else if (pSet->cEntries != RT_ELEMENTS(pSet->aEntries))
2573 {
2574 LogRel(("failed(%d): cEntries=%d expected %d\n", __LINE__, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2575 rc = VERR_INTERNAL_ERROR;
2576 }
2577 LogRel(("Load=%u/%u/%u Set=%u/%u\n", pThis->cLoad, pThis->cMaxLoad, pThis->cPages - pThis->cPages, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2578 if (RT_SUCCESS(rc))
2579 rc = PGMR0DynMapAssertIntegrity();
2580 if (RT_SUCCESS(rc))
2581 {
2582 /*
2583 * Trigger an overflow error.
2584 */
2585 LogRel(("Test #4\n"));
2586 ASMIntDisable();
2587 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2588 for (i = 0 ; i < RT_ELEMENTS(pSet->aEntries) + 2; i++)
2589 {
2590 rc = pgmRZDynMapHCPageCommon(pVM, cr3 - PAGE_SIZE * (i + 5), &pv2 RTLOG_COMMA_SRC_POS);
2591 if (RT_SUCCESS(rc))
2592 rc = PGMR0DynMapAssertIntegrity();
2593 if (RT_FAILURE(rc))
2594 break;
2595 }
2596 ASMIntEnable();
2597 if (rc == VERR_PGM_DYNMAP_FULL_SET)
2598 {
2599 /* flush the set. */
2600 LogRel(("Test #5\n"));
2601 ASMIntDisable();
2602 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2603 PGMRZDynMapReleaseAutoSet(&pVM->aCpus[0]);
2604 PGMRZDynMapStartAutoSet(&pVM->aCpus[0]);
2605 ASMIntEnable();
2606
2607 rc = PGMR0DynMapAssertIntegrity();
2608 }
2609 else
2610 {
2611 LogRel(("failed(%d): rc=%Rrc, wanted %d ; pv2=%p Set=%u/%u; i=%d\n", __LINE__,
2612 rc, VERR_PGM_DYNMAP_FULL_SET, pv2, pSet->cEntries, RT_ELEMENTS(pSet->aEntries), i));
2613 if (RT_SUCCESS(rc)) rc = VERR_INTERNAL_ERROR;
2614 }
2615 }
2616 }
2617 }
2618 else
2619 {
2620 LogRel(("failed(%d): rc=%Rrc rc2=%Rrc; pv=%p pv2=%p\n", __LINE__, rc, rc2, pv, pv2));
2621 if (RT_SUCCESS(rc))
2622 rc = rc2;
2623 }
2624
2625 /*
2626 * Check that everyone sees the same stuff.
2627 */
2628 if (RT_SUCCESS(rc))
2629 {
2630 LogRel(("Test #5\n"));
2631 ASMIntDisable();
2632 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2633 RTHCPHYS HCPhysPT = RTR0MemObjGetPagePhysAddr(pThis->pSegHead->ahMemObjPTs[0], 0);
2634 rc = pgmRZDynMapHCPageCommon(pVM, HCPhysPT, &pv RTLOG_COMMA_SRC_POS);
2635 if (RT_SUCCESS(rc))
2636 {
2637 PGMR0DYNMAPTEST Test;
2638 uint32_t *pu32Real = &pThis->paPages[pThis->pSegHead->iPage].uPte.pLegacy->u;
2639 Test.pu32 = (uint32_t *)((uintptr_t)pv | ((uintptr_t)pu32Real & PAGE_OFFSET_MASK));
2640 Test.u32Expect = *pu32Real;
2641 ASMAtomicWriteU32(&Test.cFailures, 0);
2642 ASMIntEnable();
2643
2644 rc = RTMpOnAll(pgmR0DynMapTest3PerCpu, &Test, NULL);
2645 if (RT_FAILURE(rc))
2646 LogRel(("failed(%d): RTMpOnAll rc=%Rrc\n", __LINE__, rc));
2647 else if (Test.cFailures)
2648 {
2649 LogRel(("failed(%d): cFailures=%d pu32Real=%p pu32=%p u32Expect=%#x *pu32=%#x\n", __LINE__,
2650 Test.cFailures, pu32Real, Test.pu32, Test.u32Expect, *Test.pu32));
2651 rc = VERR_INTERNAL_ERROR;
2652 }
2653 else
2654 LogRel(("pu32Real=%p pu32=%p u32Expect=%#x *pu32=%#x\n",
2655 pu32Real, Test.pu32, Test.u32Expect, *Test.pu32));
2656 }
2657 else
2658 {
2659 ASMIntEnable();
2660 LogRel(("failed(%d): rc=%Rrc\n", rc));
2661 }
2662 }
2663
2664 /*
2665 * Clean up.
2666 */
2667 LogRel(("Cleanup.\n"));
2668 ASMIntDisable();
2669 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2670 PGMRZDynMapFlushAutoSet(&pVM->aCpus[0]);
2671 PGMRZDynMapReleaseAutoSet(&pVM->aCpus[0]);
2672 ASMIntEnable();
2673
2674 if (RT_SUCCESS(rc))
2675 rc = PGMR0DynMapAssertIntegrity();
2676 else
2677 PGMR0DynMapAssertIntegrity();
2678
2679 g_fPGMR0DynMapTestRunning = false;
2680 LogRel(("Result: rc=%Rrc Load=%u/%u/%u Set=%#x/%u\n", rc,
2681 pThis->cLoad, pThis->cMaxLoad, pThis->cPages - pThis->cPages, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2682 pVM->pgm.s.pvR0DynMapUsed = pvR0DynMapUsedSaved;
2683 LogRel(("pgmR0DynMapTest: ****** END ******\n"));
2684 return rc;
2685}
2686#endif /* DEBUG */
2687
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette