VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMRZ/PGMRZDynMap.cpp@ 39072

最後變更 在這個檔案從39072是 39034,由 vboxsync 提交於 13 年 前

VMM,INTNET: Addressing unused variable warnings.

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Author Date Id Revision
檔案大小: 96.9 KB
 
1/* $Id: PGMRZDynMap.cpp 39034 2011-10-19 11:43:52Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, dynamic mapping cache.
4 */
5
6/*
7 * Copyright (C) 2008-2011 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Internal Functions *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_DYNMAP
23#include <VBox/vmm/pgm.h>
24#include "PGMInternal.h"
25#include <VBox/vmm/vm.h>
26#include "PGMInline.h"
27#include <VBox/err.h>
28#include <VBox/param.h>
29#include <VBox/sup.h>
30#include <iprt/asm.h>
31#include <iprt/asm-amd64-x86.h>
32#include <iprt/assert.h>
33#ifndef IN_RC
34# include <iprt/cpuset.h>
35# include <iprt/mem.h>
36# include <iprt/memobj.h>
37# include <iprt/mp.h>
38# include <iprt/semaphore.h>
39# include <iprt/spinlock.h>
40#endif
41#include <iprt/string.h>
42
43
44/*******************************************************************************
45* Defined Constants And Macros *
46*******************************************************************************/
47#ifdef IN_RING0
48/** The max size of the mapping cache (in pages). */
49# define PGMR0DYNMAP_MAX_PAGES ((16*_1M) >> PAGE_SHIFT)
50/** The small segment size that is adopted on out-of-memory conditions with a
51 * single big segment. */
52# define PGMR0DYNMAP_SMALL_SEG_PAGES 128
53/** The number of pages we reserve per CPU. */
54# define PGMR0DYNMAP_PAGES_PER_CPU 256
55/** The minimum number of pages we reserve per CPU.
56 * This must be equal or larger than the autoset size. */
57# define PGMR0DYNMAP_PAGES_PER_CPU_MIN 64
58/** Calcs the overload threshold (safety margin). Current set at 50%. */
59# define PGMR0DYNMAP_CALC_OVERLOAD(cPages) ((cPages) / 2)
60/** The number of guard pages.
61 * @remarks Never do tuning of the hashing or whatnot with a strict build! */
62# if defined(VBOX_STRICT)
63# define PGMR0DYNMAP_GUARD_PAGES 1
64# else
65# define PGMR0DYNMAP_GUARD_PAGES 0
66# endif
67#endif /* IN_RING0 */
68/** The dummy physical address of guard pages. */
69#define PGMR0DYNMAP_GUARD_PAGE_HCPHYS UINT32_C(0x7777feed)
70/** The dummy reference count of guard pages. (Must be non-zero.) */
71#define PGMR0DYNMAP_GUARD_PAGE_REF_COUNT INT32_C(0x7777feed)
72#if 0
73/** Define this to just clear the present bit on guard pages.
74 * The alternative is to replace the entire PTE with an bad not-present
75 * PTE. Either way, XNU will screw us. :-/ */
76# define PGMR0DYNMAP_GUARD_NP
77#endif
78/** The dummy PTE value for a page. */
79#define PGMR0DYNMAP_GUARD_PAGE_LEGACY_PTE X86_PTE_PG_MASK
80/** The dummy PTE value for a page. */
81#define PGMR0DYNMAP_GUARD_PAGE_PAE_PTE UINT64_MAX /*X86_PTE_PAE_PG_MASK*/
82
83#ifdef IN_RING0 /* Note! Assertions causes panics if preemption is disabled,
84 * disable this to work around that. */
85/**
86 * Acquire the spinlock.
87 * This will declare a temporary variable and expands to two statements!
88 */
89# define PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis) \
90 RTSPINLOCKTMP MySpinlockTmp = RTSPINLOCKTMP_INITIALIZER; \
91 RTSpinlockAcquire((pThis)->hSpinlock, &MySpinlockTmp)
92/**
93 * Releases the spinlock.
94 */
95# define PGMRZDYNMAP_SPINLOCK_RELEASE(pThis) \
96 RTSpinlockRelease((pThis)->hSpinlock, &MySpinlockTmp)
97
98/**
99 * Re-acquires the spinlock.
100 */
101# define PGMRZDYNMAP_SPINLOCK_REACQUIRE(pThis) \
102 RTSpinlockAcquire((pThis)->hSpinlock, &MySpinlockTmp)
103#else
104# define PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis) do { } while (0)
105# define PGMRZDYNMAP_SPINLOCK_RELEASE(pThis) do { } while (0)
106# define PGMRZDYNMAP_SPINLOCK_REACQUIRE(pThis) do { } while (0)
107#endif
108
109
110/** Converts a PGMCPUM::AutoSet pointer into a PVMCPU. */
111#define PGMRZDYNMAP_SET_2_VMCPU(pSet) (RT_FROM_MEMBER(pSet, VMCPU, pgm.s.AutoSet))
112
113/** Converts a PGMCPUM::AutoSet pointer into a PVM. */
114#define PGMRZDYNMAP_SET_2_VM(pSet) (PGMRZDYNMAP_SET_2_VMCPU(pSet)->CTX_SUFF(pVM))
115
116/** Converts a PGMCPUM::AutoSet pointer into a PVM. */
117#ifdef IN_RC
118# define PGMRZDYNMAP_SET_2_DYNMAP(pSet) (PGMRZDYNMAP_SET_2_VM(pSet)->pgm.s.pRCDynMap)
119#else
120# define PGMRZDYNMAP_SET_2_DYNMAP(pSet) (g_pPGMR0DynMap)
121#endif
122
123/**
124 * Gets the set index of the current CPU.
125 *
126 * This always returns 0 when in raw-mode context because there is only ever
127 * one EMT in that context (at least presently).
128 */
129#ifdef IN_RC
130# define PGMRZDYNMAP_CUR_CPU() (0)
131#else
132# define PGMRZDYNMAP_CUR_CPU() RTMpCpuIdToSetIndex(RTMpCpuId())
133#endif
134
135/** PGMRZDYNMAP::u32Magic. (Jens Christian Bugge Wesseltoft) */
136#define PGMRZDYNMAP_MAGIC UINT32_C(0x19640201)
137
138
139/** Zaps an set entry. */
140#define PGMRZDYNMAP_ZAP_ENTRY(pEntry) \
141 do \
142 { \
143 (pEntry)->iPage = UINT16_MAX; \
144 (pEntry)->cRefs = 0; \
145 (pEntry)->cInlinedRefs = 0; \
146 (pEntry)->cUnrefs = 0; \
147 } while (0)
148
149
150/** @def PGMRZDYNMAP_STRICT_RELEASE
151 * Define this to force pages to be released and make non-present ASAP after
152 * use. This should not normally be enabled as it is a bit expensive. */
153#if 0 || defined(DOXYGEN_RUNNING)
154# define PGMRZDYNMAP_STRICT_RELEASE
155#endif
156
157
158/*******************************************************************************
159* Structures and Typedefs *
160*******************************************************************************/
161#ifdef IN_RING0
162/**
163 * Ring-0 dynamic mapping cache segment.
164 *
165 * The dynamic mapping cache can be extended with additional segments if the
166 * load is found to be too high. This done the next time a VM is created, under
167 * the protection of the init mutex. The arrays is reallocated and the new
168 * segment is added to the end of these. Nothing is rehashed of course, as the
169 * indexes / addresses must remain unchanged.
170 *
171 * This structure is only modified while owning the init mutex or during module
172 * init / term.
173 */
174typedef struct PGMR0DYNMAPSEG
175{
176 /** Pointer to the next segment. */
177 struct PGMR0DYNMAPSEG *pNext;
178 /** The memory object for the virtual address range that we're abusing. */
179 RTR0MEMOBJ hMemObj;
180 /** The start page in the cache. (I.e. index into the arrays.) */
181 uint16_t iPage;
182 /** The number of pages this segment contributes. */
183 uint16_t cPages;
184 /** The number of page tables. */
185 uint16_t cPTs;
186 /** The memory objects for the page tables. */
187 RTR0MEMOBJ ahMemObjPTs[1];
188} PGMR0DYNMAPSEG;
189/** Pointer to a ring-0 dynamic mapping cache segment. */
190typedef PGMR0DYNMAPSEG *PPGMR0DYNMAPSEG;
191
192
193/**
194 * Ring-0 dynamic mapping cache entry.
195 *
196 * @sa PGMRZDYNMAPENTRY, PGMRCDYNMAPENTRY.
197 */
198typedef struct PGMR0DYNMAPENTRY
199{
200 /** The physical address of the currently mapped page.
201 * This is duplicate for three reasons: cache locality, cache policy of the PT
202 * mappings and sanity checks. */
203 RTHCPHYS HCPhys;
204 /** Pointer to the page. */
205 void *pvPage;
206 /** The number of references. */
207 int32_t volatile cRefs;
208 /** PTE pointer union. */
209 union PGMR0DYNMAPENTRY_PPTE
210 {
211 /** PTE pointer, 32-bit legacy version. */
212 PX86PTE pLegacy;
213 /** PTE pointer, PAE version. */
214 PX86PTEPAE pPae;
215 /** PTE pointer, the void version. */
216 void *pv;
217 } uPte;
218 /** CPUs that haven't invalidated this entry after it's last update. */
219 RTCPUSET PendingSet;
220} PGMR0DYNMAPENTRY;
221/** Pointer a mapping cache entry for the ring-0.
222 * @sa PPGMRZDYNMAPENTRY, PPGMRCDYNMAPENTRY, */
223typedef PGMR0DYNMAPENTRY *PPGMR0DYNMAPENTRY;
224
225
226/**
227 * Dynamic mapping cache for ring-0.
228 *
229 * This is initialized during VMMR0 module init but no segments are allocated
230 * at that time. Segments will be added when the first VM is started and
231 * removed again when the last VM shuts down, thus avoid consuming memory while
232 * dormant. At module termination, the remaining bits will be freed up.
233 *
234 * @sa PPGMRZDYNMAP, PGMRCDYNMAP.
235 */
236typedef struct PGMR0DYNMAP
237{
238 /** The usual magic number / eye catcher (PGMRZDYNMAP_MAGIC). */
239 uint32_t u32Magic;
240 /** Spinlock serializing the normal operation of the cache. */
241 RTSPINLOCK hSpinlock;
242 /** Array for tracking and managing the pages. */
243 PPGMR0DYNMAPENTRY paPages;
244 /** The cache size given as a number of pages. */
245 uint32_t cPages;
246 /** Whether it's 32-bit legacy or PAE/AMD64 paging mode. */
247 bool fLegacyMode;
248 /** The current load.
249 * This does not include guard pages. */
250 uint32_t cLoad;
251 /** The max load ever.
252 * This is maintained to trigger the adding of more mapping space. */
253 uint32_t cMaxLoad;
254 /** Initialization / termination lock. */
255 RTSEMFASTMUTEX hInitLock;
256 /** The number of guard pages. */
257 uint32_t cGuardPages;
258 /** The number of users (protected by hInitLock). */
259 uint32_t cUsers;
260 /** Array containing a copy of the original page tables.
261 * The entries are either X86PTE or X86PTEPAE according to fLegacyMode. */
262 void *pvSavedPTEs;
263 /** List of segments. */
264 PPGMR0DYNMAPSEG pSegHead;
265 /** The paging mode. */
266 SUPPAGINGMODE enmPgMode;
267} PGMR0DYNMAP;
268
269
270/**
271 * Paging level data.
272 */
273typedef struct PGMR0DYNMAPPGLVL
274{
275 uint32_t cLevels; /**< The number of levels. */
276 struct
277 {
278 RTHCPHYS HCPhys; /**< The address of the page for the current level,
279 * i.e. what hMemObj/hMapObj is currently mapping. */
280 RTHCPHYS fPhysMask; /**< Mask for extracting HCPhys from uEntry. */
281 RTR0MEMOBJ hMemObj; /**< Memory object for HCPhys, PAGE_SIZE. */
282 RTR0MEMOBJ hMapObj; /**< Mapping object for hMemObj. */
283 uint32_t fPtrShift; /**< The pointer shift count. */
284 uint64_t fPtrMask; /**< The mask to apply to the shifted pointer to get the table index. */
285 uint64_t fAndMask; /**< And mask to check entry flags. */
286 uint64_t fResMask; /**< The result from applying fAndMask. */
287 union
288 {
289 void *pv; /**< hMapObj address. */
290 PX86PGUINT paLegacy; /**< Legacy table view. */
291 PX86PGPAEUINT paPae; /**< PAE/AMD64 table view. */
292 } u;
293 } a[4];
294} PGMR0DYNMAPPGLVL;
295/** Pointer to paging level data. */
296typedef PGMR0DYNMAPPGLVL *PPGMR0DYNMAPPGLVL;
297#endif
298
299/** Mapping cache entry for the current context.
300 * @sa PGMR0DYNMAPENTRY, PGMRCDYNMAPENTRY */
301typedef CTX_MID(PGM,DYNMAPENTRY) PGMRZDYNMAPENTRY;
302/** Pointer a mapping cache entry for the current context.
303 * @sa PGMR0DYNMAPENTRY, PGMRCDYNMAPENTRY */
304typedef PGMRZDYNMAPENTRY *PPGMRZDYNMAPENTRY;
305
306/** Pointer the mapping cache instance for the current context.
307 * @sa PGMR0DYNMAP, PGMRCDYNMAP */
308typedef CTX_MID(PGM,DYNMAP) *PPGMRZDYNMAP;
309
310
311
312/*******************************************************************************
313* Global Variables *
314*******************************************************************************/
315#ifdef IN_RING0
316/** Pointer to the ring-0 dynamic mapping cache. */
317static PGMR0DYNMAP *g_pPGMR0DynMap;
318#endif
319/** For overflow testing. */
320static bool g_fPGMR0DynMapTestRunning = false;
321
322
323/*******************************************************************************
324* Internal Functions *
325*******************************************************************************/
326static void pgmRZDynMapReleasePage(PPGMRZDYNMAP pThis, uint32_t iPage, uint32_t cRefs);
327#ifdef IN_RING0
328static int pgmR0DynMapSetup(PPGMRZDYNMAP pThis);
329static int pgmR0DynMapExpand(PPGMRZDYNMAP pThis);
330static void pgmR0DynMapTearDown(PPGMRZDYNMAP pThis);
331#endif
332#if 0 /*def DEBUG*/
333static int pgmR0DynMapTest(PVM pVM);
334#endif
335
336
337/**
338 * Initializes the auto mapping sets for a VM.
339 *
340 * @returns VINF_SUCCESS on success, VERR_INTERNAL_ERROR on failure.
341 * @param pVM The VM in question.
342 */
343static int pgmRZDynMapInitAutoSetsForVM(PVM pVM)
344{
345 VMCPUID idCpu = pVM->cCpus;
346 AssertReturn(idCpu > 0 && idCpu <= VMM_MAX_CPU_COUNT, VERR_INTERNAL_ERROR);
347 while (idCpu-- > 0)
348 {
349 PPGMMAPSET pSet = &pVM->aCpus[idCpu].pgm.s.AutoSet;
350 uint32_t j = RT_ELEMENTS(pSet->aEntries);
351 while (j-- > 0)
352 {
353 pSet->aEntries[j].pvPage = NULL;
354 pSet->aEntries[j].HCPhys = NIL_RTHCPHYS;
355 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[j]);
356 }
357 pSet->cEntries = PGMMAPSET_CLOSED;
358 pSet->iSubset = UINT32_MAX;
359 pSet->iCpu = -1;
360 memset(&pSet->aiHashTable[0], 0xff, sizeof(pSet->aiHashTable));
361 }
362
363 return VINF_SUCCESS;
364}
365
366
367#ifdef IN_RING0
368
369/**
370 * Initializes the ring-0 dynamic mapping cache.
371 *
372 * @returns VBox status code.
373 */
374VMMR0DECL(int) PGMR0DynMapInit(void)
375{
376 Assert(!g_pPGMR0DynMap);
377
378 /*
379 * Create and initialize the cache instance.
380 */
381 PPGMRZDYNMAP pThis = (PPGMRZDYNMAP)RTMemAllocZ(sizeof(*pThis));
382 AssertLogRelReturn(pThis, VERR_NO_MEMORY);
383 int rc = VINF_SUCCESS;
384 pThis->enmPgMode = SUPR0GetPagingMode();
385 switch (pThis->enmPgMode)
386 {
387 case SUPPAGINGMODE_32_BIT:
388 case SUPPAGINGMODE_32_BIT_GLOBAL:
389 pThis->fLegacyMode = false;
390 break;
391 case SUPPAGINGMODE_PAE:
392 case SUPPAGINGMODE_PAE_GLOBAL:
393 case SUPPAGINGMODE_PAE_NX:
394 case SUPPAGINGMODE_PAE_GLOBAL_NX:
395 case SUPPAGINGMODE_AMD64:
396 case SUPPAGINGMODE_AMD64_GLOBAL:
397 case SUPPAGINGMODE_AMD64_NX:
398 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
399 pThis->fLegacyMode = false;
400 break;
401 default:
402 rc = VERR_INTERNAL_ERROR;
403 break;
404 }
405 if (RT_SUCCESS(rc))
406 {
407 rc = RTSemFastMutexCreate(&pThis->hInitLock);
408 if (RT_SUCCESS(rc))
409 {
410 rc = RTSpinlockCreate(&pThis->hSpinlock);
411 if (RT_SUCCESS(rc))
412 {
413 pThis->u32Magic = PGMRZDYNMAP_MAGIC;
414 g_pPGMR0DynMap = pThis;
415 return VINF_SUCCESS;
416 }
417 RTSemFastMutexDestroy(pThis->hInitLock);
418 }
419 }
420 RTMemFree(pThis);
421 return rc;
422}
423
424
425/**
426 * Terminates the ring-0 dynamic mapping cache.
427 */
428VMMR0DECL(void) PGMR0DynMapTerm(void)
429{
430 /*
431 * Destroy the cache.
432 *
433 * There is not supposed to be any races here, the loader should
434 * make sure about that. So, don't bother locking anything.
435 *
436 * The VM objects should all be destroyed by now, so there is no
437 * dangling users or anything like that to clean up. This routine
438 * is just a mirror image of PGMR0DynMapInit.
439 */
440 PPGMRZDYNMAP pThis = g_pPGMR0DynMap;
441 if (pThis)
442 {
443 AssertPtr(pThis);
444 g_pPGMR0DynMap = NULL;
445
446 /* This should *never* happen, but in case it does try not to leak memory. */
447 AssertLogRelMsg(!pThis->cUsers && !pThis->paPages && !pThis->pvSavedPTEs && !pThis->cPages,
448 ("cUsers=%d paPages=%p pvSavedPTEs=%p cPages=%#x\n",
449 pThis->cUsers, pThis->paPages, pThis->pvSavedPTEs, pThis->cPages));
450 if (pThis->paPages)
451 pgmR0DynMapTearDown(pThis);
452
453 /* Free the associated resources. */
454 RTSemFastMutexDestroy(pThis->hInitLock);
455 pThis->hInitLock = NIL_RTSEMFASTMUTEX;
456 RTSpinlockDestroy(pThis->hSpinlock);
457 pThis->hSpinlock = NIL_RTSPINLOCK;
458 pThis->u32Magic = UINT32_MAX;
459 RTMemFree(pThis);
460 }
461}
462
463
464/**
465 * Initializes the dynamic mapping cache for a new VM.
466 *
467 * @returns VBox status code.
468 * @param pVM Pointer to the shared VM structure.
469 */
470VMMR0DECL(int) PGMR0DynMapInitVM(PVM pVM)
471{
472 AssertMsgReturn(!pVM->pgm.s.pvR0DynMapUsed, ("%p (pThis=%p)\n", pVM->pgm.s.pvR0DynMapUsed, g_pPGMR0DynMap), VERR_WRONG_ORDER);
473
474 /*
475 * Initialize the auto sets.
476 */
477 int rc = pgmRZDynMapInitAutoSetsForVM(pVM);
478 if (RT_FAILURE(rc))
479 return rc;
480
481 /*
482 * Do we need the cache? Skip the last bit if we don't.
483 */
484 if (!VMMIsHwVirtExtForced(pVM))
485 return VINF_SUCCESS;
486
487 /*
488 * Reference and if necessary setup or expand the cache.
489 */
490 PPGMRZDYNMAP pThis = g_pPGMR0DynMap;
491 AssertPtrReturn(pThis, VERR_INTERNAL_ERROR);
492 rc = RTSemFastMutexRequest(pThis->hInitLock);
493 AssertLogRelRCReturn(rc, rc);
494
495 pThis->cUsers++;
496 if (pThis->cUsers == 1)
497 {
498 rc = pgmR0DynMapSetup(pThis);
499#if 0 /*def DEBUG*/
500 if (RT_SUCCESS(rc))
501 {
502 rc = pgmR0DynMapTest(pVM);
503 if (RT_FAILURE(rc))
504 pgmR0DynMapTearDown(pThis);
505 }
506#endif
507 }
508 else if (pThis->cMaxLoad > PGMR0DYNMAP_CALC_OVERLOAD(pThis->cPages - pThis->cGuardPages))
509 rc = pgmR0DynMapExpand(pThis);
510 if (RT_SUCCESS(rc))
511 pVM->pgm.s.pvR0DynMapUsed = pThis;
512 else
513 pThis->cUsers--;
514
515 RTSemFastMutexRelease(pThis->hInitLock);
516 return rc;
517}
518
519
520/**
521 * Terminates the dynamic mapping cache usage for a VM.
522 *
523 * @param pVM Pointer to the shared VM structure.
524 */
525VMMR0DECL(void) PGMR0DynMapTermVM(PVM pVM)
526{
527 /*
528 * Return immediately if we're not using the cache.
529 */
530 if (!pVM->pgm.s.pvR0DynMapUsed)
531 return;
532
533 PPGMRZDYNMAP pThis = g_pPGMR0DynMap;
534 AssertPtrReturnVoid(pThis);
535
536 int rc = RTSemFastMutexRequest(pThis->hInitLock);
537 AssertLogRelRCReturnVoid(rc);
538
539 if (pVM->pgm.s.pvR0DynMapUsed == pThis)
540 {
541 pVM->pgm.s.pvR0DynMapUsed = NULL;
542
543#ifdef VBOX_STRICT
544 PGMR0DynMapAssertIntegrity();
545#endif
546
547 /*
548 * Clean up and check the auto sets.
549 */
550 VMCPUID idCpu = pVM->cCpus;
551 while (idCpu-- > 0)
552 {
553 PPGMMAPSET pSet = &pVM->aCpus[idCpu].pgm.s.AutoSet;
554 uint32_t j = pSet->cEntries;
555 if (j <= RT_ELEMENTS(pSet->aEntries))
556 {
557 /*
558 * The set is open, close it.
559 */
560 while (j-- > 0)
561 {
562 int32_t cRefs = pSet->aEntries[j].cRefs;
563 uint32_t iPage = pSet->aEntries[j].iPage;
564 LogRel(("PGMR0DynMapTermVM: %d dangling refs to %#x\n", cRefs, iPage));
565 if (iPage < pThis->cPages && cRefs > 0)
566 pgmRZDynMapReleasePage(pThis, iPage, cRefs);
567 else
568 AssertLogRelMsgFailed(("cRefs=%d iPage=%#x cPages=%u\n", cRefs, iPage, pThis->cPages));
569
570 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[j]);
571 }
572 pSet->cEntries = PGMMAPSET_CLOSED;
573 pSet->iSubset = UINT32_MAX;
574 pSet->iCpu = -1;
575 }
576 else
577 AssertMsg(j == PGMMAPSET_CLOSED, ("cEntries=%#x\n", j));
578
579 j = RT_ELEMENTS(pSet->aEntries);
580 while (j-- > 0)
581 {
582 Assert(pSet->aEntries[j].iPage == UINT16_MAX);
583 Assert(!pSet->aEntries[j].cRefs);
584 }
585 }
586
587 /*
588 * Release our reference to the mapping cache.
589 */
590 Assert(pThis->cUsers > 0);
591 pThis->cUsers--;
592 if (!pThis->cUsers)
593 pgmR0DynMapTearDown(pThis);
594 }
595 else
596 AssertLogRelMsgFailed(("pvR0DynMapUsed=%p pThis=%p\n", pVM->pgm.s.pvR0DynMapUsed, pThis));
597
598 RTSemFastMutexRelease(pThis->hInitLock);
599}
600
601
602/**
603 * Shoots down the TLBs for all the cache pages, pgmR0DynMapTearDown helper.
604 *
605 * @param idCpu The current CPU.
606 * @param pvUser1 The dynamic mapping cache instance.
607 * @param pvUser2 Unused, NULL.
608 */
609static DECLCALLBACK(void) pgmR0DynMapShootDownTlbs(RTCPUID idCpu, void *pvUser1, void *pvUser2)
610{
611 Assert(!pvUser2);
612 PPGMRZDYNMAP pThis = (PPGMRZDYNMAP)pvUser1;
613 Assert(pThis == g_pPGMR0DynMap);
614 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
615 uint32_t iPage = pThis->cPages;
616 while (iPage-- > 0)
617 ASMInvalidatePage(paPages[iPage].pvPage);
618}
619
620
621/**
622 * Shoot down the TLBs for every single cache entry on all CPUs.
623 *
624 * @returns IPRT status code (RTMpOnAll).
625 * @param pThis The dynamic mapping cache instance.
626 */
627static int pgmR0DynMapTlbShootDown(PPGMRZDYNMAP pThis)
628{
629 int rc = RTMpOnAll(pgmR0DynMapShootDownTlbs, pThis, NULL);
630 AssertRC(rc);
631 if (RT_FAILURE(rc))
632 {
633 uint32_t iPage = pThis->cPages;
634 while (iPage-- > 0)
635 ASMInvalidatePage(pThis->paPages[iPage].pvPage);
636 }
637 return rc;
638}
639
640
641/**
642 * Calculate the new cache size based on cMaxLoad statistics.
643 *
644 * @returns Number of pages.
645 * @param pThis The dynamic mapping cache instance.
646 * @param pcMinPages The minimal size in pages.
647 */
648static uint32_t pgmR0DynMapCalcNewSize(PPGMRZDYNMAP pThis, uint32_t *pcMinPages)
649{
650 Assert(pThis->cPages <= PGMR0DYNMAP_MAX_PAGES);
651
652 /* cCpus * PGMR0DYNMAP_PAGES_PER_CPU(_MIN). */
653 RTCPUID cCpus = RTMpGetCount();
654 AssertReturn(cCpus > 0 && cCpus <= RTCPUSET_MAX_CPUS, 0);
655 uint32_t cPages = cCpus * PGMR0DYNMAP_PAGES_PER_CPU;
656 uint32_t cMinPages = cCpus * PGMR0DYNMAP_PAGES_PER_CPU_MIN;
657
658 /* adjust against cMaxLoad. */
659 AssertMsg(pThis->cMaxLoad <= PGMR0DYNMAP_MAX_PAGES, ("%#x\n", pThis->cMaxLoad));
660 if (pThis->cMaxLoad > PGMR0DYNMAP_MAX_PAGES)
661 pThis->cMaxLoad = 0;
662
663 while (pThis->cMaxLoad > PGMR0DYNMAP_CALC_OVERLOAD(cPages))
664 cPages += PGMR0DYNMAP_PAGES_PER_CPU;
665
666 if (pThis->cMaxLoad > cMinPages)
667 cMinPages = pThis->cMaxLoad;
668
669 /* adjust against max and current size. */
670 if (cPages < pThis->cPages)
671 cPages = pThis->cPages;
672 cPages *= PGMR0DYNMAP_GUARD_PAGES + 1;
673 if (cPages > PGMR0DYNMAP_MAX_PAGES)
674 cPages = PGMR0DYNMAP_MAX_PAGES;
675
676 if (cMinPages < pThis->cPages)
677 cMinPages = pThis->cPages;
678 cMinPages *= PGMR0DYNMAP_GUARD_PAGES + 1;
679 if (cMinPages > PGMR0DYNMAP_MAX_PAGES)
680 cMinPages = PGMR0DYNMAP_MAX_PAGES;
681
682 Assert(cMinPages);
683 *pcMinPages = cMinPages;
684 return cPages;
685}
686
687
688/**
689 * Initializes the paging level data.
690 *
691 * @param pThis The dynamic mapping cache instance.
692 * @param pPgLvl The paging level data.
693 */
694void pgmR0DynMapPagingArrayInit(PPGMRZDYNMAP pThis, PPGMR0DYNMAPPGLVL pPgLvl)
695{
696 RTCCUINTREG cr4 = ASMGetCR4();
697 switch (pThis->enmPgMode)
698 {
699 case SUPPAGINGMODE_32_BIT:
700 case SUPPAGINGMODE_32_BIT_GLOBAL:
701 pPgLvl->cLevels = 2;
702 pPgLvl->a[0].fPhysMask = X86_CR3_PAGE_MASK;
703 pPgLvl->a[0].fAndMask = X86_PDE_P | X86_PDE_RW | (cr4 & X86_CR4_PSE ? X86_PDE_PS : 0);
704 pPgLvl->a[0].fResMask = X86_PDE_P | X86_PDE_RW;
705 pPgLvl->a[0].fPtrMask = X86_PD_MASK;
706 pPgLvl->a[0].fPtrShift = X86_PD_SHIFT;
707
708 pPgLvl->a[1].fPhysMask = X86_PDE_PG_MASK;
709 pPgLvl->a[1].fAndMask = X86_PTE_P | X86_PTE_RW;
710 pPgLvl->a[1].fResMask = X86_PTE_P | X86_PTE_RW;
711 pPgLvl->a[1].fPtrMask = X86_PT_MASK;
712 pPgLvl->a[1].fPtrShift = X86_PT_SHIFT;
713 break;
714
715 case SUPPAGINGMODE_PAE:
716 case SUPPAGINGMODE_PAE_GLOBAL:
717 case SUPPAGINGMODE_PAE_NX:
718 case SUPPAGINGMODE_PAE_GLOBAL_NX:
719 pPgLvl->cLevels = 3;
720 pPgLvl->a[0].fPhysMask = X86_CR3_PAE_PAGE_MASK;
721 pPgLvl->a[0].fPtrMask = X86_PDPT_MASK_PAE;
722 pPgLvl->a[0].fPtrShift = X86_PDPT_SHIFT;
723 pPgLvl->a[0].fAndMask = X86_PDPE_P;
724 pPgLvl->a[0].fResMask = X86_PDPE_P;
725
726 pPgLvl->a[1].fPhysMask = X86_PDPE_PG_MASK;
727 pPgLvl->a[1].fPtrMask = X86_PD_PAE_MASK;
728 pPgLvl->a[1].fPtrShift = X86_PD_PAE_SHIFT;
729 pPgLvl->a[1].fAndMask = X86_PDE_P | X86_PDE_RW | (cr4 & X86_CR4_PSE ? X86_PDE_PS : 0);
730 pPgLvl->a[1].fResMask = X86_PDE_P | X86_PDE_RW;
731
732 pPgLvl->a[2].fPhysMask = X86_PDE_PAE_PG_MASK;
733 pPgLvl->a[2].fPtrMask = X86_PT_PAE_MASK;
734 pPgLvl->a[2].fPtrShift = X86_PT_PAE_SHIFT;
735 pPgLvl->a[2].fAndMask = X86_PTE_P | X86_PTE_RW;
736 pPgLvl->a[2].fResMask = X86_PTE_P | X86_PTE_RW;
737 break;
738
739 case SUPPAGINGMODE_AMD64:
740 case SUPPAGINGMODE_AMD64_GLOBAL:
741 case SUPPAGINGMODE_AMD64_NX:
742 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
743 pPgLvl->cLevels = 4;
744 pPgLvl->a[0].fPhysMask = X86_CR3_AMD64_PAGE_MASK;
745 pPgLvl->a[0].fPtrShift = X86_PML4_SHIFT;
746 pPgLvl->a[0].fPtrMask = X86_PML4_MASK;
747 pPgLvl->a[0].fAndMask = X86_PML4E_P | X86_PML4E_RW;
748 pPgLvl->a[0].fResMask = X86_PML4E_P | X86_PML4E_RW;
749
750 pPgLvl->a[1].fPhysMask = X86_PML4E_PG_MASK;
751 pPgLvl->a[1].fPtrShift = X86_PDPT_SHIFT;
752 pPgLvl->a[1].fPtrMask = X86_PDPT_MASK_AMD64;
753 pPgLvl->a[1].fAndMask = X86_PDPE_P | X86_PDPE_RW /** @todo check for X86_PDPT_PS support. */;
754 pPgLvl->a[1].fResMask = X86_PDPE_P | X86_PDPE_RW;
755
756 pPgLvl->a[2].fPhysMask = X86_PDPE_PG_MASK;
757 pPgLvl->a[2].fPtrShift = X86_PD_PAE_SHIFT;
758 pPgLvl->a[2].fPtrMask = X86_PD_PAE_MASK;
759 pPgLvl->a[2].fAndMask = X86_PDE_P | X86_PDE_RW | (cr4 & X86_CR4_PSE ? X86_PDE_PS : 0);
760 pPgLvl->a[2].fResMask = X86_PDE_P | X86_PDE_RW;
761
762 pPgLvl->a[3].fPhysMask = X86_PDE_PAE_PG_MASK;
763 pPgLvl->a[3].fPtrShift = X86_PT_PAE_SHIFT;
764 pPgLvl->a[3].fPtrMask = X86_PT_PAE_MASK;
765 pPgLvl->a[3].fAndMask = X86_PTE_P | X86_PTE_RW;
766 pPgLvl->a[3].fResMask = X86_PTE_P | X86_PTE_RW;
767 break;
768
769 default:
770 AssertFailed();
771 pPgLvl->cLevels = 0;
772 break;
773 }
774
775 for (uint32_t i = 0; i < 4; i++) /* ASSUMING array size. */
776 {
777 pPgLvl->a[i].HCPhys = NIL_RTHCPHYS;
778 pPgLvl->a[i].hMapObj = NIL_RTR0MEMOBJ;
779 pPgLvl->a[i].hMemObj = NIL_RTR0MEMOBJ;
780 pPgLvl->a[i].u.pv = NULL;
781 }
782}
783
784
785/**
786 * Maps a PTE.
787 *
788 * This will update the segment structure when new PTs are mapped.
789 *
790 * It also assumes that we (for paranoid reasons) wish to establish a mapping
791 * chain from CR3 to the PT that all corresponds to the processor we're
792 * currently running on, and go about this by running with interrupts disabled
793 * and restarting from CR3 for every change.
794 *
795 * @returns VBox status code, VINF_TRY_AGAIN if we changed any mappings and had
796 * to re-enable interrupts.
797 * @param pThis The dynamic mapping cache instance.
798 * @param pPgLvl The paging level structure.
799 * @param pvPage The page.
800 * @param pSeg The segment.
801 * @param cMaxPTs The max number of PTs expected in the segment.
802 * @param ppvPTE Where to store the PTE address.
803 */
804static int pgmR0DynMapPagingArrayMapPte(PPGMRZDYNMAP pThis, PPGMR0DYNMAPPGLVL pPgLvl, void *pvPage,
805 PPGMR0DYNMAPSEG pSeg, uint32_t cMaxPTs, void **ppvPTE)
806{
807 Assert(!(ASMGetFlags() & X86_EFL_IF));
808 void *pvEntry = NULL;
809 X86PGPAEUINT uEntry = ASMGetCR3();
810 for (uint32_t i = 0; i < pPgLvl->cLevels; i++)
811 {
812 RTHCPHYS HCPhys = uEntry & pPgLvl->a[i].fPhysMask;
813 if (pPgLvl->a[i].HCPhys != HCPhys)
814 {
815 /*
816 * Need to remap this level.
817 * The final level, the PT, will not be freed since that is what it's all about.
818 */
819 ASMIntEnable();
820 if (i + 1 == pPgLvl->cLevels)
821 AssertReturn(pSeg->cPTs < cMaxPTs, VERR_INTERNAL_ERROR);
822 else
823 {
824 int rc2 = RTR0MemObjFree(pPgLvl->a[i].hMemObj, true /* fFreeMappings */); AssertRC(rc2);
825 pPgLvl->a[i].hMemObj = pPgLvl->a[i].hMapObj = NIL_RTR0MEMOBJ;
826 }
827
828 int rc = RTR0MemObjEnterPhys(&pPgLvl->a[i].hMemObj, HCPhys, PAGE_SIZE, RTMEM_CACHE_POLICY_DONT_CARE);
829 if (RT_SUCCESS(rc))
830 {
831 rc = RTR0MemObjMapKernel(&pPgLvl->a[i].hMapObj, pPgLvl->a[i].hMemObj,
832 (void *)-1 /* pvFixed */, 0 /* cbAlignment */,
833 RTMEM_PROT_WRITE | RTMEM_PROT_READ);
834 if (RT_SUCCESS(rc))
835 {
836 pPgLvl->a[i].u.pv = RTR0MemObjAddress(pPgLvl->a[i].hMapObj);
837 AssertMsg(((uintptr_t)pPgLvl->a[i].u.pv & ~(uintptr_t)PAGE_OFFSET_MASK), ("%p\n", pPgLvl->a[i].u.pv));
838 pPgLvl->a[i].HCPhys = HCPhys;
839 if (i + 1 == pPgLvl->cLevels)
840 pSeg->ahMemObjPTs[pSeg->cPTs++] = pPgLvl->a[i].hMemObj;
841 ASMIntDisable();
842 return VINF_TRY_AGAIN;
843 }
844
845 pPgLvl->a[i].hMapObj = NIL_RTR0MEMOBJ;
846 }
847 else
848 pPgLvl->a[i].hMemObj = NIL_RTR0MEMOBJ;
849 pPgLvl->a[i].HCPhys = NIL_RTHCPHYS;
850 return rc;
851 }
852
853 /*
854 * The next level.
855 */
856 uint32_t iEntry = ((uint64_t)(uintptr_t)pvPage >> pPgLvl->a[i].fPtrShift) & pPgLvl->a[i].fPtrMask;
857 if (pThis->fLegacyMode)
858 {
859 pvEntry = &pPgLvl->a[i].u.paLegacy[iEntry];
860 uEntry = pPgLvl->a[i].u.paLegacy[iEntry];
861 }
862 else
863 {
864 pvEntry = &pPgLvl->a[i].u.paPae[iEntry];
865 uEntry = pPgLvl->a[i].u.paPae[iEntry];
866 }
867
868 if ((uEntry & pPgLvl->a[i].fAndMask) != pPgLvl->a[i].fResMask)
869 {
870 LogRel(("PGMR0DynMap: internal error - iPgLvl=%u cLevels=%u uEntry=%#llx fAnd=%#llx fRes=%#llx got=%#llx\n"
871 "PGMR0DynMap: pv=%p pvPage=%p iEntry=%#x fLegacyMode=%RTbool\n",
872 i, pPgLvl->cLevels, uEntry, pPgLvl->a[i].fAndMask, pPgLvl->a[i].fResMask, uEntry & pPgLvl->a[i].fAndMask,
873 pPgLvl->a[i].u.pv, pvPage, iEntry, pThis->fLegacyMode));
874 return VERR_INTERNAL_ERROR;
875 }
876 /*Log(("#%d: iEntry=%4d uEntry=%#llx pvEntry=%p HCPhys=%RHp \n", i, iEntry, uEntry, pvEntry, pPgLvl->a[i].HCPhys));*/
877 }
878
879 /* made it thru without needing to remap anything. */
880 *ppvPTE = pvEntry;
881 return VINF_SUCCESS;
882}
883
884
885/**
886 * Sets up a guard page.
887 *
888 * @param pThis The dynamic mapping cache instance.
889 * @param pPage The page.
890 */
891DECLINLINE(void) pgmR0DynMapSetupGuardPage(PPGMRZDYNMAP pThis, PPGMRZDYNMAPENTRY pPage)
892{
893 memset(pPage->pvPage, 0xfd, PAGE_SIZE);
894 pPage->cRefs = PGMR0DYNMAP_GUARD_PAGE_REF_COUNT;
895 pPage->HCPhys = PGMR0DYNMAP_GUARD_PAGE_HCPHYS;
896#ifdef PGMR0DYNMAP_GUARD_NP
897 ASMAtomicBitClear(pPage->uPte.pv, X86_PTE_BIT_P);
898#else
899 if (pThis->fLegacyMode)
900 ASMAtomicWriteU32(&pPage->uPte.pLegacy->u, PGMR0DYNMAP_GUARD_PAGE_LEGACY_PTE);
901 else
902 ASMAtomicWriteU64(&pPage->uPte.pPae->u, PGMR0DYNMAP_GUARD_PAGE_PAE_PTE);
903#endif
904 pThis->cGuardPages++;
905}
906
907
908/**
909 * Adds a new segment of the specified size.
910 *
911 * @returns VBox status code.
912 * @param pThis The dynamic mapping cache instance.
913 * @param cPages The size of the new segment, give as a page count.
914 */
915static int pgmR0DynMapAddSeg(PPGMRZDYNMAP pThis, uint32_t cPages)
916{
917 int rc2;
918 AssertReturn(ASMGetFlags() & X86_EFL_IF, VERR_PREEMPT_DISABLED);
919
920 /*
921 * Do the array reallocations first.
922 * (The pages array has to be replaced behind the spinlock of course.)
923 */
924 void *pvSavedPTEs = RTMemRealloc(pThis->pvSavedPTEs, (pThis->fLegacyMode ? sizeof(X86PGUINT) : sizeof(X86PGPAEUINT)) * (pThis->cPages + cPages));
925 if (!pvSavedPTEs)
926 return VERR_NO_MEMORY;
927 pThis->pvSavedPTEs = pvSavedPTEs;
928
929 void *pvPages = RTMemAllocZ(sizeof(pThis->paPages[0]) * (pThis->cPages + cPages));
930 if (!pvPages)
931 {
932 pvSavedPTEs = RTMemRealloc(pThis->pvSavedPTEs, (pThis->fLegacyMode ? sizeof(X86PGUINT) : sizeof(X86PGPAEUINT)) * pThis->cPages);
933 if (pvSavedPTEs)
934 pThis->pvSavedPTEs = pvSavedPTEs;
935 return VERR_NO_MEMORY;
936 }
937
938 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
939
940 memcpy(pvPages, pThis->paPages, sizeof(pThis->paPages[0]) * pThis->cPages);
941 void *pvToFree = pThis->paPages;
942 pThis->paPages = (PPGMRZDYNMAPENTRY)pvPages;
943
944 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
945 RTMemFree(pvToFree);
946
947 /*
948 * Allocate the segment structure and pages of memory, then touch all the pages (paranoia).
949 */
950 uint32_t cMaxPTs = cPages / (pThis->fLegacyMode ? X86_PG_ENTRIES : X86_PG_PAE_ENTRIES) + 2;
951 PPGMR0DYNMAPSEG pSeg = (PPGMR0DYNMAPSEG)RTMemAllocZ(RT_UOFFSETOF(PGMR0DYNMAPSEG, ahMemObjPTs[cMaxPTs]));
952 if (!pSeg)
953 return VERR_NO_MEMORY;
954 pSeg->pNext = NULL;
955 pSeg->cPages = cPages;
956 pSeg->iPage = pThis->cPages;
957 pSeg->cPTs = 0;
958 int rc = RTR0MemObjAllocPage(&pSeg->hMemObj, cPages << PAGE_SHIFT, false);
959 if (RT_SUCCESS(rc))
960 {
961 uint8_t *pbPage = (uint8_t *)RTR0MemObjAddress(pSeg->hMemObj);
962 AssertMsg(VALID_PTR(pbPage) && !((uintptr_t)pbPage & PAGE_OFFSET_MASK), ("%p\n", pbPage));
963 memset(pbPage, 0xfe, cPages << PAGE_SHIFT);
964
965 /*
966 * Walk thru the pages and set them up with a mapping of their PTE and everything.
967 */
968 ASMIntDisable();
969 PGMR0DYNMAPPGLVL PgLvl;
970 pgmR0DynMapPagingArrayInit(pThis, &PgLvl);
971 uint32_t const iEndPage = pSeg->iPage + cPages;
972 for (uint32_t iPage = pSeg->iPage;
973 iPage < iEndPage;
974 iPage++, pbPage += PAGE_SIZE)
975 {
976 /* Initialize the page data. */
977 pThis->paPages[iPage].HCPhys = NIL_RTHCPHYS;
978 pThis->paPages[iPage].pvPage = pbPage;
979 pThis->paPages[iPage].cRefs = 0;
980 pThis->paPages[iPage].uPte.pPae = 0;
981#ifndef IN_RC
982 RTCpuSetFill(&pThis->paPages[iPage].PendingSet);
983#endif
984
985 /* Map its page table, retry until we've got a clean run (paranoia). */
986 do
987 rc = pgmR0DynMapPagingArrayMapPte(pThis, &PgLvl, pbPage, pSeg, cMaxPTs,
988 &pThis->paPages[iPage].uPte.pv);
989 while (rc == VINF_TRY_AGAIN);
990 if (RT_FAILURE(rc))
991 break;
992
993 /* Save the PTE. */
994 if (pThis->fLegacyMode)
995 ((PX86PGUINT)pThis->pvSavedPTEs)[iPage] = pThis->paPages[iPage].uPte.pLegacy->u;
996 else
997 ((PX86PGPAEUINT)pThis->pvSavedPTEs)[iPage] = pThis->paPages[iPage].uPte.pPae->u;
998
999#ifdef VBOX_STRICT
1000 /* Check that we've got the right entry. */
1001 RTHCPHYS HCPhysPage = RTR0MemObjGetPagePhysAddr(pSeg->hMemObj, iPage - pSeg->iPage);
1002 RTHCPHYS HCPhysPte = pThis->fLegacyMode
1003 ? pThis->paPages[iPage].uPte.pLegacy->u & X86_PTE_PG_MASK
1004 : pThis->paPages[iPage].uPte.pPae->u & X86_PTE_PAE_PG_MASK;
1005 if (HCPhysPage != HCPhysPte)
1006 {
1007 LogRel(("pgmR0DynMapAddSeg: internal error - page #%u HCPhysPage=%RHp HCPhysPte=%RHp pbPage=%p pvPte=%p\n",
1008 iPage - pSeg->iPage, HCPhysPage, HCPhysPte, pbPage, pThis->paPages[iPage].uPte.pv));
1009 rc = VERR_INTERNAL_ERROR;
1010 break;
1011 }
1012#endif
1013 } /* for each page */
1014 ASMIntEnable();
1015
1016 /* cleanup non-PT mappings */
1017 for (uint32_t i = 0; i < PgLvl.cLevels - 1; i++)
1018 RTR0MemObjFree(PgLvl.a[i].hMemObj, true /* fFreeMappings */);
1019
1020 if (RT_SUCCESS(rc))
1021 {
1022#if PGMR0DYNMAP_GUARD_PAGES > 0
1023 /*
1024 * Setup guard pages.
1025 * (Note: TLBs will be shot down later on.)
1026 */
1027 uint32_t iPage = pSeg->iPage;
1028 while (iPage < iEndPage)
1029 {
1030 for (uint32_t iGPg = 0; iGPg < PGMR0DYNMAP_GUARD_PAGES && iPage < iEndPage; iGPg++, iPage++)
1031 pgmR0DynMapSetupGuardPage(pThis, &pThis->paPages[iPage]);
1032 iPage++; /* the guarded page */
1033 }
1034
1035 /* Make sure the very last page is a guard page too. */
1036 iPage = iEndPage - 1;
1037 if (pThis->paPages[iPage].cRefs != PGMR0DYNMAP_GUARD_PAGE_REF_COUNT)
1038 pgmR0DynMapSetupGuardPage(pThis, &pThis->paPages[iPage]);
1039#endif /* PGMR0DYNMAP_GUARD_PAGES > 0 */
1040
1041 /*
1042 * Commit it by adding the segment to the list and updating the page count.
1043 */
1044 pSeg->pNext = pThis->pSegHead;
1045 pThis->pSegHead = pSeg;
1046 pThis->cPages += cPages;
1047 return VINF_SUCCESS;
1048 }
1049
1050 /*
1051 * Bail out.
1052 */
1053 while (pSeg->cPTs-- > 0)
1054 {
1055 rc2 = RTR0MemObjFree(pSeg->ahMemObjPTs[pSeg->cPTs], true /* fFreeMappings */);
1056 AssertRC(rc2);
1057 pSeg->ahMemObjPTs[pSeg->cPTs] = NIL_RTR0MEMOBJ;
1058 }
1059
1060 rc2 = RTR0MemObjFree(pSeg->hMemObj, true /* fFreeMappings */);
1061 AssertRC(rc2);
1062 pSeg->hMemObj = NIL_RTR0MEMOBJ;
1063 }
1064 RTMemFree(pSeg);
1065
1066 /* Don't bother resizing the arrays, but free them if we're the only user. */
1067 if (!pThis->cPages)
1068 {
1069 RTMemFree(pThis->paPages);
1070 pThis->paPages = NULL;
1071 RTMemFree(pThis->pvSavedPTEs);
1072 pThis->pvSavedPTEs = NULL;
1073 }
1074 return rc;
1075}
1076
1077
1078/**
1079 * Called by PGMR0DynMapInitVM under the init lock.
1080 *
1081 * @returns VBox status code.
1082 * @param pThis The dynamic mapping cache instance.
1083 */
1084static int pgmR0DynMapSetup(PPGMRZDYNMAP pThis)
1085{
1086 /*
1087 * Calc the size and add a segment of that size.
1088 */
1089 uint32_t cMinPages;
1090 uint32_t cPages = pgmR0DynMapCalcNewSize(pThis, &cMinPages);
1091 AssertReturn(cPages, VERR_INTERNAL_ERROR);
1092 int rc = pgmR0DynMapAddSeg(pThis, cPages);
1093 if (rc == VERR_NO_MEMORY)
1094 {
1095 /*
1096 * Try adding smaller segments.
1097 */
1098 do
1099 rc = pgmR0DynMapAddSeg(pThis, PGMR0DYNMAP_SMALL_SEG_PAGES);
1100 while (RT_SUCCESS(rc) && pThis->cPages < cPages);
1101 if (rc == VERR_NO_MEMORY && pThis->cPages >= cMinPages)
1102 rc = VINF_SUCCESS;
1103 if (rc == VERR_NO_MEMORY)
1104 {
1105 if (pThis->cPages)
1106 pgmR0DynMapTearDown(pThis);
1107 rc = VERR_PGM_DYNMAP_SETUP_ERROR;
1108 }
1109 }
1110 Assert(ASMGetFlags() & X86_EFL_IF);
1111
1112#if PGMR0DYNMAP_GUARD_PAGES > 0
1113 /* paranoia */
1114 if (RT_SUCCESS(rc))
1115 pgmR0DynMapTlbShootDown(pThis);
1116#endif
1117 return rc;
1118}
1119
1120
1121/**
1122 * Called by PGMR0DynMapInitVM under the init lock.
1123 *
1124 * @returns VBox status code.
1125 * @param pThis The dynamic mapping cache instance.
1126 */
1127static int pgmR0DynMapExpand(PPGMRZDYNMAP pThis)
1128{
1129 /*
1130 * Calc the new target size and add a segment of the appropriate size.
1131 */
1132 uint32_t cMinPages;
1133 uint32_t cPages = pgmR0DynMapCalcNewSize(pThis, &cMinPages);
1134 AssertReturn(cPages, VERR_INTERNAL_ERROR);
1135 if (pThis->cPages >= cPages)
1136 return VINF_SUCCESS;
1137
1138 uint32_t cAdd = cPages - pThis->cPages;
1139 int rc = pgmR0DynMapAddSeg(pThis, cAdd);
1140 if (rc == VERR_NO_MEMORY)
1141 {
1142 /*
1143 * Try adding smaller segments.
1144 */
1145 do
1146 rc = pgmR0DynMapAddSeg(pThis, PGMR0DYNMAP_SMALL_SEG_PAGES);
1147 while (RT_SUCCESS(rc) && pThis->cPages < cPages);
1148 if (rc == VERR_NO_MEMORY && pThis->cPages >= cMinPages)
1149 rc = VINF_SUCCESS;
1150 if (rc == VERR_NO_MEMORY)
1151 rc = VERR_PGM_DYNMAP_EXPAND_ERROR;
1152 }
1153 Assert(ASMGetFlags() & X86_EFL_IF);
1154
1155#if PGMR0DYNMAP_GUARD_PAGES > 0
1156 /* paranoia */
1157 if (RT_SUCCESS(rc))
1158 pgmR0DynMapTlbShootDown(pThis);
1159#endif
1160 return rc;
1161}
1162
1163
1164/**
1165 * Called by PGMR0DynMapTermVM under the init lock.
1166 *
1167 * @returns VBox status code.
1168 * @param pThis The dynamic mapping cache instance.
1169 */
1170static void pgmR0DynMapTearDown(PPGMRZDYNMAP pThis)
1171{
1172 /*
1173 * Restore the original page table entries
1174 */
1175 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1176 uint32_t iPage = pThis->cPages;
1177 if (pThis->fLegacyMode)
1178 {
1179 X86PGUINT const *paSavedPTEs = (X86PGUINT const *)pThis->pvSavedPTEs;
1180 while (iPage-- > 0)
1181 {
1182 X86PGUINT uOld = paPages[iPage].uPte.pLegacy->u;
1183 X86PGUINT uOld2 = uOld; NOREF(uOld2);
1184 X86PGUINT uNew = paSavedPTEs[iPage];
1185 while (!ASMAtomicCmpXchgExU32(&paPages[iPage].uPte.pLegacy->u, uNew, uOld, &uOld))
1186 AssertMsgFailed(("uOld=%#x uOld2=%#x uNew=%#x\n", uOld, uOld2, uNew));
1187 Assert(paPages[iPage].uPte.pLegacy->u == paSavedPTEs[iPage]);
1188 }
1189 }
1190 else
1191 {
1192 X86PGPAEUINT const *paSavedPTEs = (X86PGPAEUINT const *)pThis->pvSavedPTEs;
1193 while (iPage-- > 0)
1194 {
1195 X86PGPAEUINT uOld = paPages[iPage].uPte.pPae->u;
1196 X86PGPAEUINT uOld2 = uOld; NOREF(uOld2);
1197 X86PGPAEUINT uNew = paSavedPTEs[iPage];
1198 while (!ASMAtomicCmpXchgExU64(&paPages[iPage].uPte.pPae->u, uNew, uOld, &uOld))
1199 AssertMsgFailed(("uOld=%#llx uOld2=%#llx uNew=%#llx\n", uOld, uOld2, uNew));
1200 Assert(paPages[iPage].uPte.pPae->u == paSavedPTEs[iPage]);
1201 }
1202 }
1203
1204 /*
1205 * Shoot down the TLBs on all CPUs before freeing them.
1206 */
1207 pgmR0DynMapTlbShootDown(pThis);
1208
1209 /*
1210 * Free the segments.
1211 */
1212 while (pThis->pSegHead)
1213 {
1214 int rc;
1215 PPGMR0DYNMAPSEG pSeg = pThis->pSegHead;
1216 pThis->pSegHead = pSeg->pNext;
1217
1218 uint32_t iPT = pSeg->cPTs;
1219 while (iPT-- > 0)
1220 {
1221 rc = RTR0MemObjFree(pSeg->ahMemObjPTs[iPT], true /* fFreeMappings */); AssertRC(rc);
1222 pSeg->ahMemObjPTs[iPT] = NIL_RTR0MEMOBJ;
1223 }
1224 rc = RTR0MemObjFree(pSeg->hMemObj, true /* fFreeMappings */); AssertRC(rc);
1225 pSeg->hMemObj = NIL_RTR0MEMOBJ;
1226 pSeg->pNext = NULL;
1227 pSeg->iPage = UINT16_MAX;
1228 pSeg->cPages = 0;
1229 pSeg->cPTs = 0;
1230 RTMemFree(pSeg);
1231 }
1232
1233 /*
1234 * Free the arrays and restore the initial state.
1235 * The cLoadMax value is left behind for the next setup.
1236 */
1237 RTMemFree(pThis->paPages);
1238 pThis->paPages = NULL;
1239 RTMemFree(pThis->pvSavedPTEs);
1240 pThis->pvSavedPTEs = NULL;
1241 pThis->cPages = 0;
1242 pThis->cLoad = 0;
1243 pThis->cGuardPages = 0;
1244}
1245
1246#endif /* IN_RING0 */
1247#ifdef IN_RC
1248
1249/**
1250 * Initializes the dynamic mapping cache in raw-mode context.
1251 *
1252 * @returns VBox status code.
1253 * @param pVM The VM handle.
1254 */
1255VMMRCDECL(int) PGMRCDynMapInit(PVM pVM)
1256{
1257 /*
1258 * Allocate and initialize the instance data and page array.
1259 */
1260 PPGMRZDYNMAP pThis;
1261 size_t const cPages = MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE;
1262 size_t const cb = RT_ALIGN_Z(sizeof(*pThis), 32)
1263 + sizeof(PGMRZDYNMAPENTRY) * cPages;
1264 int rc = MMHyperAlloc(pVM, cb, 32, MM_TAG_PGM, (void **)&pThis);
1265 if (RT_FAILURE(rc))
1266 return rc;
1267
1268 pThis->u32Magic = PGMRZDYNMAP_MAGIC;
1269 pThis->paPages = RT_ALIGN_PT(pThis + 1, 32, PPGMRZDYNMAPENTRY);
1270 pThis->cPages = cPages;
1271 pThis->cLoad = 0;
1272 pThis->cMaxLoad = 0;
1273 pThis->cGuardPages = 0;
1274 pThis->cUsers = 1;
1275
1276 for (size_t iPage = 0; iPage < cPages; iPage++)
1277 {
1278 pThis->paPages[iPage].HCPhys = NIL_RTHCPHYS;
1279 pThis->paPages[iPage].pvPage = pVM->pgm.s.pbDynPageMapBaseGC + iPage * PAGE_SIZE;
1280 pThis->paPages[iPage].cRefs = 0;
1281 pThis->paPages[iPage].uPte.pLegacy = &pVM->pgm.s.paDynPageMap32BitPTEsGC[iPage];
1282 pThis->paPages[iPage].uPte.pPae = (PX86PTEPAE)&pVM->pgm.s.paDynPageMapPaePTEsGC[iPage];
1283 }
1284
1285 pVM->pgm.s.pRCDynMap = pThis;
1286
1287 /*
1288 * Initialize the autosets the VM.
1289 */
1290 rc = pgmRZDynMapInitAutoSetsForVM(pVM);
1291 if (RT_FAILURE(rc))
1292 return rc;
1293
1294 return VINF_SUCCESS;
1295}
1296
1297#endif /* IN_RC */
1298
1299/**
1300 * Release references to a page, caller owns the spin lock.
1301 *
1302 * @param pThis The dynamic mapping cache instance.
1303 * @param iPage The page.
1304 * @param cRefs The number of references to release.
1305 */
1306DECLINLINE(void) pgmRZDynMapReleasePageLocked(PPGMRZDYNMAP pThis, uint32_t iPage, int32_t cRefs)
1307{
1308 cRefs = ASMAtomicSubS32(&pThis->paPages[iPage].cRefs, cRefs) - cRefs;
1309 AssertMsg(cRefs >= 0, ("%d\n", cRefs));
1310 if (!cRefs)
1311 {
1312 pThis->cLoad--;
1313#ifdef PGMRZDYNMAP_STRICT_RELEASE
1314 pThis->paPages[iPage].HCPhys = NIL_RTHCPHYS;
1315 ASMAtomicBitClear(pThis->paPages[iPage].uPte.pv, X86_PTE_BIT_P);
1316 ASMInvalidatePage(pThis->paPages[iPage].pvPage);
1317#endif
1318 }
1319}
1320
1321
1322/**
1323 * Release references to a page, caller does not own the spin lock.
1324 *
1325 * @param pThis The dynamic mapping cache instance.
1326 * @param iPage The page.
1327 * @param cRefs The number of references to release.
1328 */
1329static void pgmRZDynMapReleasePage(PPGMRZDYNMAP pThis, uint32_t iPage, uint32_t cRefs)
1330{
1331 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1332 pgmRZDynMapReleasePageLocked(pThis, iPage, cRefs);
1333 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1334}
1335
1336
1337/**
1338 * pgmR0DynMapPage worker that deals with the tedious bits.
1339 *
1340 * @returns The page index on success, UINT32_MAX on failure.
1341 * @param pThis The dynamic mapping cache instance.
1342 * @param HCPhys The address of the page to be mapped.
1343 * @param iPage The page index pgmR0DynMapPage hashed HCPhys to.
1344 * @param pVCpu The current CPU, for statistics.
1345 * @param pfNew Set to @c true if a new entry was made and @c false if
1346 * an old entry was found and reused.
1347 */
1348static uint32_t pgmR0DynMapPageSlow(PPGMRZDYNMAP pThis, RTHCPHYS HCPhys, uint32_t iPage, PVMCPU pVCpu, bool *pfNew)
1349{
1350 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageSlow);
1351
1352 /*
1353 * Check if any of the first 3 pages are unreferenced since the caller
1354 * already has made sure they aren't matching.
1355 */
1356#ifdef VBOX_WITH_STATISTICS
1357 bool fLooped = false;
1358#endif
1359 uint32_t const cPages = pThis->cPages;
1360 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1361 uint32_t iFreePage;
1362 if (!paPages[iPage].cRefs)
1363 iFreePage = iPage;
1364 else if (!paPages[(iPage + 1) % cPages].cRefs)
1365 iFreePage = (iPage + 1) % cPages;
1366 else if (!paPages[(iPage + 2) % cPages].cRefs)
1367 iFreePage = (iPage + 2) % cPages;
1368 else
1369 {
1370 /*
1371 * Search for an unused or matching entry.
1372 */
1373 iFreePage = (iPage + 3) % cPages;
1374 for (;;)
1375 {
1376 if (paPages[iFreePage].HCPhys == HCPhys)
1377 {
1378 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageSlowLoopHits);
1379 *pfNew = false;
1380 return iFreePage;
1381 }
1382 if (!paPages[iFreePage].cRefs)
1383 break;
1384
1385 /* advance */
1386 iFreePage = (iFreePage + 1) % cPages;
1387 if (RT_UNLIKELY(iFreePage == iPage))
1388 return UINT32_MAX;
1389 }
1390 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageSlowLoopMisses);
1391#ifdef VBOX_WITH_STATISTICS
1392 fLooped = true;
1393#endif
1394 }
1395 Assert(iFreePage < cPages);
1396
1397#if 0 //def VBOX_WITH_STATISTICS
1398 /* Check for lost hits. */
1399 if (!fLooped)
1400 for (uint32_t iPage2 = (iPage + 3) % cPages; iPage2 != iPage; iPage2 = (iPage2 + 1) % cPages)
1401 if (paPages[iPage2].HCPhys == HCPhys)
1402 STAM_COUNTER_INC(&pVCpu->pgm.s.StatRZDynMapPageSlowLostHits);
1403#endif
1404
1405 /*
1406 * Setup the new entry.
1407 */
1408 *pfNew = true;
1409 /*Log6(("pgmR0DynMapPageSlow: old - %RHp %#x %#llx\n", paPages[iFreePage].HCPhys, paPages[iFreePage].cRefs, paPages[iFreePage].uPte.pPae->u));*/
1410 paPages[iFreePage].HCPhys = HCPhys;
1411#ifndef IN_RC
1412 RTCpuSetFill(&paPages[iFreePage].PendingSet);
1413
1414 if (pThis->fLegacyMode)
1415#endif
1416 {
1417 X86PGUINT uOld = paPages[iFreePage].uPte.pLegacy->u;
1418 X86PGUINT uOld2 = uOld; NOREF(uOld2);
1419 X86PGUINT uNew = (uOld & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1420 | X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1421 | (HCPhys & X86_PTE_PG_MASK);
1422 while (!ASMAtomicCmpXchgExU32(&paPages[iFreePage].uPte.pLegacy->u, uNew, uOld, &uOld))
1423 AssertMsgFailed(("uOld=%#x uOld2=%#x uNew=%#x\n", uOld, uOld2, uNew));
1424 Assert(paPages[iFreePage].uPte.pLegacy->u == uNew);
1425 }
1426#ifndef IN_RC
1427 else
1428#endif
1429 {
1430 X86PGPAEUINT uOld = paPages[iFreePage].uPte.pPae->u;
1431 X86PGPAEUINT uOld2 = uOld; NOREF(uOld2);
1432 X86PGPAEUINT uNew = (uOld & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1433 | X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1434 | (HCPhys & X86_PTE_PAE_PG_MASK);
1435 while (!ASMAtomicCmpXchgExU64(&paPages[iFreePage].uPte.pPae->u, uNew, uOld, &uOld))
1436 AssertMsgFailed(("uOld=%#llx uOld2=%#llx uNew=%#llx\n", uOld, uOld2, uNew));
1437 Assert(paPages[iFreePage].uPte.pPae->u == uNew);
1438 /*Log6(("pgmR0DynMapPageSlow: #%x - %RHp %p %#llx\n", iFreePage, HCPhys, paPages[iFreePage].pvPage, uNew));*/
1439 }
1440 return iFreePage;
1441}
1442
1443
1444/**
1445 * Maps a page into the pool.
1446 *
1447 * @returns Page index on success, UINT32_MAX on failure.
1448 * @param pThis The dynamic mapping cache instance.
1449 * @param HCPhys The address of the page to be mapped.
1450 * @param iRealCpu The real cpu set index. (optimization)
1451 * @param pVCpu The current CPU (for statistics).
1452 * @param ppvPage Where to the page address.
1453 */
1454DECLINLINE(uint32_t) pgmR0DynMapPage(PPGMRZDYNMAP pThis, RTHCPHYS HCPhys, int32_t iRealCpu, PVMCPU pVCpu, void **ppvPage)
1455{
1456 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1457 AssertMsg(!(HCPhys & PAGE_OFFSET_MASK), ("HCPhys=%RHp\n", HCPhys));
1458 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPage);
1459
1460 /*
1461 * Find an entry, if possible a matching one. The HCPhys address is hashed
1462 * down to a page index, collisions are handled by linear searching.
1463 * Optimized for a hit in the first 3 pages.
1464 *
1465 * Field easy hits here and defer the tedious searching and inserting
1466 * to pgmR0DynMapPageSlow().
1467 */
1468 bool fNew = false;
1469 uint32_t const cPages = pThis->cPages;
1470 uint32_t iPage = (HCPhys >> PAGE_SHIFT) % cPages;
1471 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1472 if (RT_LIKELY(paPages[iPage].HCPhys == HCPhys))
1473 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageHits0);
1474 else
1475 {
1476 uint32_t iPage2 = (iPage + 1) % cPages;
1477 if (RT_LIKELY(paPages[iPage2].HCPhys == HCPhys))
1478 {
1479 iPage = iPage2;
1480 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageHits1);
1481 }
1482 else
1483 {
1484 iPage2 = (iPage + 2) % cPages;
1485 if (paPages[iPage2].HCPhys == HCPhys)
1486 {
1487 iPage = iPage2;
1488 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageHits2);
1489 }
1490 else
1491 {
1492 iPage = pgmR0DynMapPageSlow(pThis, HCPhys, iPage, pVCpu, &fNew);
1493 if (RT_UNLIKELY(iPage == UINT32_MAX))
1494 {
1495 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1496 *ppvPage = NULL;
1497 return iPage;
1498 }
1499 }
1500 }
1501 }
1502
1503 /*
1504 * Reference it, update statistics and get the return address.
1505 */
1506 int32_t cRefs = ASMAtomicIncS32(&paPages[iPage].cRefs);
1507 if (cRefs == 1)
1508 {
1509 pThis->cLoad++;
1510 if (pThis->cLoad > pThis->cMaxLoad)
1511 pThis->cMaxLoad = pThis->cLoad;
1512 AssertMsg(pThis->cLoad <= pThis->cPages - pThis->cGuardPages, ("%d/%d\n", pThis->cLoad, pThis->cPages - pThis->cGuardPages));
1513 }
1514 else if (RT_UNLIKELY(cRefs <= 0))
1515 {
1516 ASMAtomicDecS32(&paPages[iPage].cRefs);
1517 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1518 *ppvPage = NULL;
1519 AssertLogRelMsgFailedReturn(("cRefs=%d iPage=%p HCPhys=%RHp\n", cRefs, iPage, HCPhys), UINT32_MAX);
1520 }
1521 void *pvPage = paPages[iPage].pvPage;
1522
1523#ifndef IN_RC
1524 /*
1525 * Invalidate the entry?
1526 */
1527 bool fInvalidateIt = RTCpuSetIsMemberByIndex(&paPages[iPage].PendingSet, iRealCpu);
1528 if (RT_UNLIKELY(fInvalidateIt))
1529 RTCpuSetDelByIndex(&paPages[iPage].PendingSet, iRealCpu);
1530#endif
1531
1532 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1533
1534 /*
1535 * Do the actual invalidation outside the spinlock.
1536 */
1537#ifdef IN_RC
1538 if (RT_UNLIKELY(fNew))
1539#else
1540 if (RT_UNLIKELY(fInvalidateIt))
1541#endif
1542 {
1543 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapPageInvlPg);
1544 ASMInvalidatePage(pvPage);
1545 }
1546
1547 *ppvPage = pvPage;
1548 return iPage;
1549}
1550
1551
1552/**
1553 * Assert the the integrity of the pool.
1554 *
1555 * @returns VBox status code.
1556 */
1557static int pgmRZDynMapAssertIntegrity(PPGMRZDYNMAP pThis)
1558{
1559 /*
1560 * Basic pool stuff that doesn't require any lock, just assumes we're a user.
1561 */
1562 if (!pThis)
1563 return VINF_SUCCESS;
1564 AssertPtrReturn(pThis, VERR_INVALID_POINTER);
1565 AssertReturn(pThis->u32Magic == PGMRZDYNMAP_MAGIC, VERR_INVALID_MAGIC);
1566 if (!pThis->cUsers)
1567 return VERR_INVALID_PARAMETER;
1568
1569 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1570
1571#define CHECK_RET(expr, a) \
1572 do { \
1573 if (RT_UNLIKELY(!(expr))) \
1574 { \
1575 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis); \
1576 RTAssertMsg1Weak(#expr, __LINE__, __FILE__, __PRETTY_FUNCTION__); \
1577 RTAssertMsg2Weak a; \
1578 return VERR_INTERNAL_ERROR; \
1579 } \
1580 } while (0)
1581
1582 /*
1583 * Check that the PTEs are correct.
1584 */
1585 uint32_t cGuard = 0;
1586 uint32_t cLoad = 0;
1587 PPGMRZDYNMAPENTRY paPages = pThis->paPages;
1588 uint32_t iPage = pThis->cPages;
1589
1590#ifndef IN_RC
1591 if (pThis->fLegacyMode)
1592#endif
1593 {
1594#ifdef IN_RING0
1595 PCX86PGUINT paSavedPTEs = (PCX86PGUINT)pThis->pvSavedPTEs; NOREF(paSavedPTEs);
1596#endif
1597 while (iPage-- > 0)
1598 {
1599 CHECK_RET(!((uintptr_t)paPages[iPage].pvPage & PAGE_OFFSET_MASK), ("#%u: %p\n", iPage, paPages[iPage].pvPage));
1600 if ( paPages[iPage].cRefs == PGMR0DYNMAP_GUARD_PAGE_REF_COUNT
1601 && paPages[iPage].HCPhys == PGMR0DYNMAP_GUARD_PAGE_HCPHYS)
1602 {
1603#ifdef PGMR0DYNMAP_GUARD_NP
1604 CHECK_RET(paPages[iPage].uPte.pLegacy->u == (paSavedPTEs[iPage] & ~(X86PGUINT)X86_PTE_P),
1605 ("#%u: %#x %#x", iPage, paPages[iPage].uPte.pLegacy->u, paSavedPTEs[iPage]));
1606#else
1607 CHECK_RET(paPages[iPage].uPte.pLegacy->u == PGMR0DYNMAP_GUARD_PAGE_LEGACY_PTE,
1608 ("#%u: %#x", iPage, paPages[iPage].uPte.pLegacy->u));
1609#endif
1610 cGuard++;
1611 }
1612 else if (paPages[iPage].HCPhys != NIL_RTHCPHYS)
1613 {
1614 CHECK_RET(!(paPages[iPage].HCPhys & PAGE_OFFSET_MASK), ("#%u: %RHp\n", iPage, paPages[iPage].HCPhys));
1615 X86PGUINT uPte = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1616#ifdef IN_RING0
1617 | (paSavedPTEs[iPage] & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1618#endif
1619 | (paPages[iPage].HCPhys & X86_PTE_PAE_PG_MASK);
1620 CHECK_RET(paPages[iPage].uPte.pLegacy->u == uPte,
1621 ("#%u: %#x %#x", iPage, paPages[iPage].uPte.pLegacy->u, uPte));
1622 if (paPages[iPage].cRefs)
1623 cLoad++;
1624 }
1625#if defined(IN_RING0) && !defined(PGMRZDYNMAP_STRICT_RELEASE)
1626 else
1627 CHECK_RET(paPages[iPage].uPte.pLegacy->u == paSavedPTEs[iPage],
1628 ("#%u: %#x %#x", iPage, paPages[iPage].uPte.pLegacy->u, paSavedPTEs[iPage]));
1629#endif
1630 }
1631 }
1632#ifndef IN_RC
1633 else
1634#endif
1635 {
1636#ifdef IN_RING0
1637 PCX86PGPAEUINT paSavedPTEs = (PCX86PGPAEUINT)pThis->pvSavedPTEs; NOREF(paSavedPTEs);
1638#endif
1639 while (iPage-- > 0)
1640 {
1641 CHECK_RET(!((uintptr_t)paPages[iPage].pvPage & PAGE_OFFSET_MASK), ("#%u: %p\n", iPage, paPages[iPage].pvPage));
1642 if ( paPages[iPage].cRefs == PGMR0DYNMAP_GUARD_PAGE_REF_COUNT
1643 && paPages[iPage].HCPhys == PGMR0DYNMAP_GUARD_PAGE_HCPHYS)
1644 {
1645#ifdef PGMR0DYNMAP_GUARD_NP
1646 CHECK_RET(paPages[iPage].uPte.pPae->u == (paSavedPTEs[iPage] & ~(X86PGPAEUINT)X86_PTE_P),
1647 ("#%u: %#llx %#llx", iPage, paPages[iPage].uPte.pPae->u, paSavedPTEs[iPage]));
1648#else
1649 CHECK_RET(paPages[iPage].uPte.pPae->u == PGMR0DYNMAP_GUARD_PAGE_PAE_PTE,
1650 ("#%u: %#llx", iPage, paPages[iPage].uPte.pPae->u));
1651#endif
1652 cGuard++;
1653 }
1654 else if (paPages[iPage].HCPhys != NIL_RTHCPHYS)
1655 {
1656 CHECK_RET(!(paPages[iPage].HCPhys & PAGE_OFFSET_MASK), ("#%u: %RHp\n", iPage, paPages[iPage].HCPhys));
1657 X86PGPAEUINT uPte = X86_PTE_P | X86_PTE_RW | X86_PTE_A | X86_PTE_D
1658#ifdef IN_RING0
1659 | (paSavedPTEs[iPage] & (X86_PTE_G | X86_PTE_PAT | X86_PTE_PCD | X86_PTE_PWT))
1660#endif
1661 | (paPages[iPage].HCPhys & X86_PTE_PAE_PG_MASK);
1662 CHECK_RET(paPages[iPage].uPte.pPae->u == uPte,
1663 ("#%u: %#llx %#llx", iPage, paPages[iPage].uPte.pLegacy->u, uPte));
1664 if (paPages[iPage].cRefs)
1665 cLoad++;
1666 }
1667#ifdef IN_RING0
1668 else
1669 CHECK_RET(paPages[iPage].uPte.pPae->u == paSavedPTEs[iPage],
1670 ("#%u: %#llx %#llx", iPage, paPages[iPage].uPte.pPae->u, paSavedPTEs[iPage]));
1671#endif
1672 }
1673 }
1674
1675 CHECK_RET(cLoad == pThis->cLoad, ("%u %u\n", cLoad, pThis->cLoad));
1676 CHECK_RET(cGuard == pThis->cGuardPages, ("%u %u\n", cGuard, pThis->cGuardPages));
1677
1678#undef CHECK_RET
1679 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1680 return VINF_SUCCESS;
1681}
1682
1683#ifdef IN_RING0
1684/**
1685 * Assert the the integrity of the pool.
1686 *
1687 * @returns VBox status code.
1688 */
1689VMMR0DECL(int) PGMR0DynMapAssertIntegrity(void)
1690{
1691 return pgmRZDynMapAssertIntegrity(g_pPGMR0DynMap);
1692}
1693#endif /* IN_RING0 */
1694
1695#ifdef IN_RC
1696/**
1697 * Assert the the integrity of the pool.
1698 *
1699 * @returns VBox status code.
1700 */
1701VMMRCDECL(int) PGMRCDynMapAssertIntegrity(PVM pVM)
1702{
1703 return pgmRZDynMapAssertIntegrity((PPGMRZDYNMAP)pVM->pgm.s.pRCDynMap);
1704}
1705#endif /* IN_RC */
1706
1707
1708/**
1709 * As a final resort for a (somewhat) full auto set or full cache, try merge
1710 * duplicate entries and flush the ones we can.
1711 *
1712 * @param pSet The set.
1713 */
1714static void pgmDynMapOptimizeAutoSet(PPGMMAPSET pSet)
1715{
1716 LogFlow(("pgmDynMapOptimizeAutoSet\n"));
1717
1718 for (uint32_t i = 0 ; i < pSet->cEntries; i++)
1719 {
1720 /*
1721 * Try merge entries.
1722 */
1723 uint16_t const iPage = pSet->aEntries[i].iPage;
1724 uint32_t j = i + 1;
1725 while ( j < pSet->cEntries
1726 && ( pSet->iSubset == UINT32_MAX
1727 || pSet->iSubset < pSet->cEntries) )
1728 {
1729 if (pSet->aEntries[j].iPage != iPage)
1730 j++;
1731 else
1732 {
1733 uint32_t const cHardRefs = (uint32_t)pSet->aEntries[i].cRefs
1734 + (uint32_t)pSet->aEntries[j].cRefs;
1735 uint32_t cInlinedRefs = (uint32_t)pSet->aEntries[i].cInlinedRefs
1736 + (uint32_t)pSet->aEntries[j].cInlinedRefs;
1737 uint32_t cUnrefs = (uint32_t)pSet->aEntries[i].cUnrefs
1738 + (uint32_t)pSet->aEntries[j].cUnrefs;
1739 uint32_t cSub = RT_MIN(cUnrefs, cInlinedRefs);
1740 cInlinedRefs -= cSub;
1741 cUnrefs -= cSub;
1742
1743 if ( cHardRefs < UINT16_MAX
1744 && cInlinedRefs < UINT16_MAX
1745 && cUnrefs < UINT16_MAX)
1746 {
1747 /* merge j into i removing j. */
1748 Log2(("pgmDynMapOptimizeAutoSet: Merging #%u into #%u\n", j, i));
1749 pSet->aEntries[i].cRefs = cHardRefs;
1750 pSet->aEntries[i].cInlinedRefs = cInlinedRefs;
1751 pSet->aEntries[i].cUnrefs = cUnrefs;
1752 pSet->cEntries--;
1753 if (j < pSet->cEntries)
1754 {
1755 pSet->aEntries[j] = pSet->aEntries[pSet->cEntries];
1756 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[pSet->cEntries]);
1757 }
1758 else
1759 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[j]);
1760 }
1761#if 0 /* too complicated, skip it. */
1762 else
1763 {
1764 /* migrate the max number of refs from j into i and quit the inner loop. */
1765 uint32_t cMigrate = UINT16_MAX - 1 - pSet->aEntries[i].cRefs;
1766 Assert(pSet->aEntries[j].cRefs > cMigrate);
1767 pSet->aEntries[j].cRefs -= cMigrate;
1768 pSet->aEntries[i].cRefs = UINT16_MAX - 1;
1769 break;
1770 }
1771#endif
1772 }
1773 }
1774
1775 /*
1776 * Try make use of the unused hinting (cUnrefs) to evict entries
1777 * from both the set as well as the mapping cache.
1778 */
1779
1780 uint32_t const cTotalRefs = (uint32_t)pSet->aEntries[i].cRefs + pSet->aEntries[i].cInlinedRefs;
1781 Log2(("pgmDynMapOptimizeAutoSet: #%u/%u/%u pvPage=%p iPage=%u cRefs=%u cInlinedRefs=%u cUnrefs=%u cTotalRefs=%u\n",
1782 i,
1783 pSet->iSubset,
1784 pSet->cEntries,
1785 pSet->aEntries[i].pvPage,
1786 pSet->aEntries[i].iPage,
1787 pSet->aEntries[i].cRefs,
1788 pSet->aEntries[i].cInlinedRefs,
1789 pSet->aEntries[i].cUnrefs,
1790 cTotalRefs));
1791 Assert(cTotalRefs >= pSet->aEntries[i].cUnrefs);
1792
1793 if ( cTotalRefs == pSet->aEntries[i].cUnrefs
1794 && ( pSet->iSubset == UINT32_MAX
1795 || pSet->iSubset < pSet->cEntries)
1796 )
1797 {
1798 Log2(("pgmDynMapOptimizeAutoSet: Releasing iPage=%d/%p\n", pSet->aEntries[i].iPage, pSet->aEntries[i].pvPage));
1799 //LogFlow(("pgmDynMapOptimizeAutoSet: Releasing iPage=%d/%p\n", pSet->aEntries[i].iPage, pSet->aEntries[i].pvPage));
1800 pgmRZDynMapReleasePage(PGMRZDYNMAP_SET_2_DYNMAP(pSet),
1801 pSet->aEntries[i].iPage,
1802 pSet->aEntries[i].cRefs);
1803 pSet->cEntries--;
1804 if (i < pSet->cEntries)
1805 {
1806 pSet->aEntries[i] = pSet->aEntries[pSet->cEntries];
1807 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[pSet->cEntries]);
1808 }
1809
1810 i--;
1811 }
1812 }
1813}
1814
1815
1816
1817
1818/**
1819 * Signals the start of a new set of mappings.
1820 *
1821 * Mostly for strictness. PGMDynMapHCPage won't work unless this
1822 * API is called.
1823 *
1824 * @param pVCpu The shared data for the current virtual CPU.
1825 */
1826VMMDECL(void) PGMRZDynMapStartAutoSet(PVMCPU pVCpu)
1827{
1828 LogFlow(("PGMRZDynMapStartAutoSet:\n"));
1829 Assert(pVCpu->pgm.s.AutoSet.cEntries == PGMMAPSET_CLOSED);
1830 Assert(pVCpu->pgm.s.AutoSet.iSubset == UINT32_MAX);
1831 pVCpu->pgm.s.AutoSet.cEntries = 0;
1832 pVCpu->pgm.s.AutoSet.iCpu = PGMRZDYNMAP_CUR_CPU();
1833}
1834
1835
1836#ifdef IN_RING0
1837/**
1838 * Starts or migrates the autoset of a virtual CPU.
1839 *
1840 * This is used by HWACCMR0Enter. When we've longjumped out of the HWACCM
1841 * execution loop with the set open, we'll migrate it when re-entering. While
1842 * under normal circumstances, we'll start it so VMXR0LoadGuestState can access
1843 * guest memory.
1844 *
1845 * @returns @c true if started, @c false if migrated.
1846 * @param pVCpu The shared data for the current virtual CPU.
1847 * @thread EMT
1848 */
1849VMMR0DECL(bool) PGMR0DynMapStartOrMigrateAutoSet(PVMCPU pVCpu)
1850{
1851 bool fStartIt = pVCpu->pgm.s.AutoSet.cEntries == PGMMAPSET_CLOSED;
1852 if (fStartIt)
1853 PGMRZDynMapStartAutoSet(pVCpu);
1854 else
1855 PGMR0DynMapMigrateAutoSet(pVCpu);
1856 return fStartIt;
1857}
1858#endif /* IN_RING0 */
1859
1860
1861/**
1862 * Checks if the set has high load.
1863 *
1864 * @returns true on high load, otherwise false.
1865 * @param pSet The set.
1866 */
1867DECLINLINE(bool) pgmRZDynMapHasHighLoad(PPGMMAPSET pSet)
1868{
1869#ifdef IN_RC
1870 if (pSet->cEntries < MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE / 2)
1871 return false;
1872#endif
1873
1874 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
1875 uint32_t cUnusedPages = pThis->cPages - pThis->cLoad;
1876#ifdef IN_RC
1877 return cUnusedPages <= MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE * 36 / 100;
1878#else
1879 return cUnusedPages <= PGMR0DYNMAP_PAGES_PER_CPU_MIN;
1880#endif
1881}
1882
1883
1884/**
1885 * Worker that performs the actual flushing of the set.
1886 *
1887 * @param pSet The set to flush.
1888 * @param cEntries The number of entries.
1889 */
1890DECLINLINE(void) pgmDynMapFlushAutoSetWorker(PPGMMAPSET pSet, uint32_t cEntries)
1891{
1892 /*
1893 * Release any pages it's referencing.
1894 */
1895 if ( cEntries != 0
1896 && RT_LIKELY(cEntries <= RT_ELEMENTS(pSet->aEntries)))
1897 {
1898 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
1899 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
1900
1901 uint32_t i = cEntries;
1902 while (i-- > 0)
1903 {
1904 uint32_t iPage = pSet->aEntries[i].iPage;
1905 Assert(iPage < pThis->cPages);
1906 int32_t cRefs = pSet->aEntries[i].cRefs;
1907 Assert(cRefs > 0);
1908 pgmRZDynMapReleasePageLocked(pThis, iPage, cRefs);
1909
1910 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[i]);
1911 }
1912
1913 Assert(pThis->cLoad <= pThis->cPages - pThis->cGuardPages);
1914 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
1915 }
1916}
1917
1918
1919/**
1920 * Releases the dynamic memory mappings made by PGMDynMapHCPage and associates
1921 * since the PGMDynMapStartAutoSet call.
1922 *
1923 * @param pVCpu The shared data for the current virtual CPU.
1924 */
1925VMMDECL(void) PGMRZDynMapReleaseAutoSet(PVMCPU pVCpu)
1926{
1927 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
1928
1929 /*
1930 * Close and flush the set.
1931 */
1932 uint32_t cEntries = pSet->cEntries;
1933 AssertReturnVoid(cEntries != PGMMAPSET_CLOSED);
1934 pSet->cEntries = PGMMAPSET_CLOSED;
1935 pSet->iSubset = UINT32_MAX;
1936 pSet->iCpu = -1;
1937
1938#ifdef IN_RC
1939 if (RT_ELEMENTS(pSet->aEntries) > MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)
1940 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / (MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)) % 11]);
1941 else
1942#endif
1943 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
1944 if (cEntries > RT_ELEMENTS(pSet->aEntries) * 50 / 100)
1945 Log(("PGMRZDynMapReleaseAutoSet: cEntries=%d\n", cEntries));
1946 else
1947 LogFlow(("PGMRZDynMapReleaseAutoSet: cEntries=%d\n", cEntries));
1948
1949 pgmDynMapFlushAutoSetWorker(pSet, cEntries);
1950}
1951
1952
1953/**
1954 * Flushes the set if it's above a certain threshold.
1955 *
1956 * @param pVCpu The shared data for the current virtual CPU.
1957 */
1958VMMDECL(void) PGMRZDynMapFlushAutoSet(PVMCPU pVCpu)
1959{
1960 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
1961 AssertMsg(pSet->iCpu == PGMRZDYNMAP_CUR_CPU(), ("%d %d efl=%#x\n", pSet->iCpu, PGMRZDYNMAP_CUR_CPU(), ASMGetFlags()));
1962
1963 /*
1964 * Only flush it if it's 45% full.
1965 */
1966 uint32_t cEntries = pSet->cEntries;
1967 AssertReturnVoid(cEntries != PGMMAPSET_CLOSED);
1968 Assert(pSet->iSubset == UINT32_MAX);
1969#ifdef IN_RC
1970 if (RT_ELEMENTS(pSet->aEntries) > MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)
1971 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / (MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)) % 11]);
1972 else
1973#endif
1974 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
1975 if ( cEntries >= RT_ELEMENTS(pSet->aEntries) * 45 / 100
1976 || pgmRZDynMapHasHighLoad(pSet))
1977 {
1978 pSet->cEntries = 0;
1979 Log(("PGMDynMapFlushAutoSet: cEntries=%d\n", pSet->cEntries));
1980
1981 pgmDynMapFlushAutoSetWorker(pSet, cEntries);
1982 AssertMsg(pSet->iCpu == PGMRZDYNMAP_CUR_CPU(), ("%d %d efl=%#x\n", pSet->iCpu, PGMRZDYNMAP_CUR_CPU(), ASMGetFlags()));
1983 }
1984}
1985
1986
1987#ifndef IN_RC
1988/**
1989 * Migrates the automatic mapping set of the current vCPU if it's active and
1990 * necessary.
1991 *
1992 * This is called when re-entering the hardware assisted execution mode after a
1993 * nip down to ring-3. We run the risk that the CPU might have change and we
1994 * will therefore make sure all the cache entries currently in the auto set will
1995 * be valid on the new CPU. If the cpu didn't change nothing will happen as all
1996 * the entries will have been flagged as invalidated.
1997 *
1998 * @param pVCpu The shared data for the current virtual CPU.
1999 * @thread EMT
2000 */
2001VMMR0DECL(void) PGMR0DynMapMigrateAutoSet(PVMCPU pVCpu)
2002{
2003 LogFlow(("PGMR0DynMapMigrateAutoSet\n"));
2004 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
2005 int32_t iRealCpu = PGMRZDYNMAP_CUR_CPU();
2006 if (pSet->iCpu != iRealCpu)
2007 {
2008 uint32_t i = pSet->cEntries;
2009 if (i != PGMMAPSET_CLOSED)
2010 {
2011 AssertMsg(i <= RT_ELEMENTS(pSet->aEntries), ("%#x (%u)\n", i, i));
2012 if (i != 0 && RT_LIKELY(i <= RT_ELEMENTS(pSet->aEntries)))
2013 {
2014 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
2015 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
2016
2017 while (i-- > 0)
2018 {
2019 Assert(pSet->aEntries[i].cRefs > 0);
2020 uint32_t iPage = pSet->aEntries[i].iPage;
2021 Assert(iPage < pThis->cPages);
2022 if (RTCpuSetIsMemberByIndex(&pThis->paPages[iPage].PendingSet, iRealCpu))
2023 {
2024 RTCpuSetDelByIndex(&pThis->paPages[iPage].PendingSet, iRealCpu);
2025 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
2026
2027 ASMInvalidatePage(pThis->paPages[iPage].pvPage);
2028 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapMigrateInvlPg);
2029
2030 PGMRZDYNMAP_SPINLOCK_REACQUIRE(pThis);
2031 }
2032 }
2033
2034 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
2035 }
2036 }
2037 pSet->iCpu = iRealCpu;
2038 }
2039}
2040#endif /* !IN_RC */
2041
2042
2043/**
2044 * Worker function that flushes the current subset.
2045 *
2046 * This is called when the set is popped or when the set
2047 * hash a too high load. As also pointed out elsewhere, the
2048 * whole subset thing is a hack for working around code that
2049 * accesses too many pages. Like PGMPool.
2050 *
2051 * @param pSet The set which subset to flush.
2052 */
2053static void pgmDynMapFlushSubset(PPGMMAPSET pSet)
2054{
2055 uint32_t iSubset = pSet->iSubset;
2056 uint32_t i = pSet->cEntries;
2057 Assert(i <= RT_ELEMENTS(pSet->aEntries));
2058 if ( i > iSubset
2059 && i <= RT_ELEMENTS(pSet->aEntries))
2060 {
2061 Log(("pgmDynMapFlushSubset: cEntries=%d iSubset=%d\n", pSet->cEntries, iSubset));
2062 pSet->cEntries = iSubset;
2063
2064 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
2065 PGMRZDYNMAP_SPINLOCK_ACQUIRE(pThis);
2066
2067 while (i-- > iSubset)
2068 {
2069 uint32_t iPage = pSet->aEntries[i].iPage;
2070 Assert(iPage < pThis->cPages);
2071 int32_t cRefs = pSet->aEntries[i].cRefs;
2072 Assert(cRefs > 0);
2073 pgmRZDynMapReleasePageLocked(pThis, iPage, cRefs);
2074
2075 PGMRZDYNMAP_ZAP_ENTRY(&pSet->aEntries[i]);
2076 }
2077
2078 PGMRZDYNMAP_SPINLOCK_RELEASE(pThis);
2079 }
2080}
2081
2082
2083/**
2084 * Creates a subset.
2085 *
2086 * A subset is a hack to avoid having to rewrite code that touches a lot of
2087 * pages. It prevents the mapping set from being overflowed by automatically
2088 * flushing previous mappings when a certain threshold is reached.
2089 *
2090 * Pages mapped after calling this function are only valid until the next page
2091 * is mapped.
2092 *
2093 * @returns The index of the previous subset. Pass this to
2094 * PGMDynMapPopAutoSubset when popping it.
2095 * @param pVCpu Pointer to the virtual cpu data.
2096 */
2097VMMDECL(uint32_t) PGMRZDynMapPushAutoSubset(PVMCPU pVCpu)
2098{
2099 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
2100 AssertReturn(pSet->cEntries != PGMMAPSET_CLOSED, UINT32_MAX);
2101 uint32_t iPrevSubset = pSet->iSubset;
2102 LogFlow(("PGMRZDynMapPushAutoSubset: pVCpu=%p iPrevSubset=%u\n", pVCpu, iPrevSubset));
2103
2104 /*
2105 * If it looks like we're approaching the max set size or mapping space
2106 * optimize the set to drop off unused pages.
2107 */
2108 if ( pSet->cEntries > RT_ELEMENTS(pSet->aEntries) * 60 / 100
2109 || pgmRZDynMapHasHighLoad(pSet))
2110 {
2111 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetOptimize);
2112 pgmDynMapOptimizeAutoSet(pSet);
2113 }
2114
2115 pSet->iSubset = pSet->cEntries;
2116 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSubsets);
2117
2118 AssertMsg(iPrevSubset <= pSet->iSubset || iPrevSubset == UINT32_MAX, ("iPrevSubset=%#x iSubset=%#x\n", iPrevSubset, pSet->iSubset));
2119 return iPrevSubset;
2120}
2121
2122
2123/**
2124 * Pops a subset created by a previous call to PGMDynMapPushAutoSubset.
2125 *
2126 * @param pVCpu Pointer to the virtual cpu data.
2127 * @param iPrevSubset What PGMDynMapPushAutoSubset returned.
2128 */
2129VMMDECL(void) PGMRZDynMapPopAutoSubset(PVMCPU pVCpu, uint32_t iPrevSubset)
2130{
2131 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
2132 uint32_t cEntries = pSet->cEntries;
2133 LogFlow(("PGMRZDynMapPopAutoSubset: pVCpu=%p iPrevSubset=%u iSubset=%u cEntries=%u\n", pVCpu, iPrevSubset, pSet->iSubset, cEntries));
2134 AssertReturnVoid(cEntries != PGMMAPSET_CLOSED);
2135 AssertMsgReturnVoid(pSet->iSubset >= iPrevSubset || iPrevSubset == UINT32_MAX, ("iPrevSubset=%u iSubset=%u cEntries=%u\n", iPrevSubset, pSet->iSubset, cEntries));
2136#ifdef IN_RC
2137 if (RT_ELEMENTS(pSet->aEntries) > MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)
2138 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / (MM_HYPER_DYNAMIC_SIZE / PAGE_SIZE)) % 11]);
2139 else
2140#endif
2141 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
2142 if ( cEntries >= RT_ELEMENTS(pSet->aEntries) * 40 / 100
2143 && cEntries != pSet->iSubset)
2144 {
2145 pgmDynMapFlushSubset(pSet);
2146 Assert(pSet->cEntries >= iPrevSubset || iPrevSubset == UINT32_MAX);
2147 }
2148 pSet->iSubset = iPrevSubset;
2149}
2150
2151
2152/**
2153 * Indicates that the given page is unused and its mapping can be re-used.
2154 *
2155 * @param pVCpu The current CPU.
2156 * @param pvHint The page that is now unused. This does not have to
2157 * point at the start of the page. NULL is ignored.
2158 */
2159#ifdef LOG_ENABLED
2160void pgmRZDynMapUnusedHint(PVMCPU pVCpu, void *pvHint, RT_SRC_POS_DECL)
2161#else
2162void pgmRZDynMapUnusedHint(PVMCPU pVCpu, void *pvHint)
2163#endif
2164{
2165 /*
2166 * Ignore NULL pointers and mask off the page offset bits.
2167 */
2168 if (pvHint == NULL)
2169 return;
2170 pvHint = (void *)((uintptr_t)pvHint & ~(uintptr_t)PAGE_OFFSET_MASK);
2171
2172 PPGMMAPSET pSet = &pVCpu->pgm.s.AutoSet;
2173 uint32_t iEntry = pSet->cEntries;
2174 AssertReturnVoid(iEntry > 0);
2175
2176 /*
2177 * Find the entry in the usual unrolled fashion.
2178 */
2179 /** @todo add a hint to the set which entry was used last since it's not
2180 * always the last entry? */
2181#define IS_MATCHING_ENTRY(pSet, iEntry, pvHint) \
2182 ( (pSet)->aEntries[(iEntry)].pvPage == (pvHint) \
2183 && (uint32_t)(pSet)->aEntries[(iEntry)].cRefs + (pSet)->aEntries[(iEntry)].cInlinedRefs \
2184 > (pSet)->aEntries[(iEntry)].cUnrefs )
2185 if ( iEntry >= 1 && IS_MATCHING_ENTRY(pSet, iEntry - 1, pvHint))
2186 iEntry = iEntry - 1;
2187 else if (iEntry >= 2 && IS_MATCHING_ENTRY(pSet, iEntry - 2, pvHint))
2188 iEntry = iEntry - 2;
2189 else if (iEntry >= 3 && IS_MATCHING_ENTRY(pSet, iEntry - 3, pvHint))
2190 iEntry = iEntry - 3;
2191 else if (iEntry >= 4 && IS_MATCHING_ENTRY(pSet, iEntry - 4, pvHint))
2192 iEntry = iEntry - 4;
2193 else if (iEntry >= 5 && IS_MATCHING_ENTRY(pSet, iEntry - 5, pvHint))
2194 iEntry = iEntry - 5;
2195 else if (iEntry >= 6 && IS_MATCHING_ENTRY(pSet, iEntry - 6, pvHint))
2196 iEntry = iEntry - 6;
2197 else if (iEntry >= 7 && IS_MATCHING_ENTRY(pSet, iEntry - 7, pvHint))
2198 iEntry = iEntry - 7;
2199 else
2200 {
2201 /*
2202 * Loop till we find it.
2203 */
2204 bool fFound = false;
2205 if (iEntry > 7)
2206 {
2207 iEntry -= 7;
2208 while (iEntry-- > 0)
2209 if (IS_MATCHING_ENTRY(pSet, iEntry, pvHint))
2210 {
2211 fFound = true;
2212 break;
2213 }
2214 }
2215 AssertMsgReturnVoid(fFound,
2216 ("pvHint=%p cEntries=%#x iSubset=%#x\n"
2217 "aEntries[0] = {%#x, %#x, %#x, %#x, %p}\n"
2218 "aEntries[1] = {%#x, %#x, %#x, %#x, %p}\n"
2219 "aEntries[2] = {%#x, %#x, %#x, %#x, %p}\n"
2220 "aEntries[3] = {%#x, %#x, %#x, %#x, %p}\n"
2221 "aEntries[4] = {%#x, %#x, %#x, %#x, %p}\n"
2222 "aEntries[5] = {%#x, %#x, %#x, %#x, %p}\n"
2223 ,
2224 pvHint, pSet->cEntries, pSet->iSubset,
2225 pSet->aEntries[0].iPage, pSet->aEntries[0].cRefs, pSet->aEntries[0].cInlinedRefs, pSet->aEntries[0].cUnrefs, pSet->aEntries[0].pvPage,
2226 pSet->aEntries[1].iPage, pSet->aEntries[1].cRefs, pSet->aEntries[1].cInlinedRefs, pSet->aEntries[1].cUnrefs, pSet->aEntries[1].pvPage,
2227 pSet->aEntries[2].iPage, pSet->aEntries[2].cRefs, pSet->aEntries[2].cInlinedRefs, pSet->aEntries[2].cUnrefs, pSet->aEntries[2].pvPage,
2228 pSet->aEntries[3].iPage, pSet->aEntries[3].cRefs, pSet->aEntries[3].cInlinedRefs, pSet->aEntries[3].cUnrefs, pSet->aEntries[3].pvPage,
2229 pSet->aEntries[4].iPage, pSet->aEntries[4].cRefs, pSet->aEntries[4].cInlinedRefs, pSet->aEntries[4].cUnrefs, pSet->aEntries[4].pvPage,
2230 pSet->aEntries[5].iPage, pSet->aEntries[5].cRefs, pSet->aEntries[5].cInlinedRefs, pSet->aEntries[5].cUnrefs, pSet->aEntries[5].pvPage));
2231 }
2232#undef IS_MATCHING_ENTRY
2233
2234 /*
2235 * Update it.
2236 */
2237 uint32_t const cTotalRefs = (uint32_t)pSet->aEntries[iEntry].cRefs + pSet->aEntries[iEntry].cInlinedRefs;
2238 uint32_t const cUnrefs = pSet->aEntries[iEntry].cUnrefs;
2239 LogFlow(("pgmRZDynMapUnusedHint: pvHint=%p #%u cRefs=%d cInlinedRefs=%d cUnrefs=%d (+1) cTotalRefs=%d %s(%d) %s\n",
2240 pvHint, iEntry, pSet->aEntries[iEntry].cRefs, pSet->aEntries[iEntry].cInlinedRefs, cUnrefs, cTotalRefs, pszFile, iLine, pszFunction));
2241 AssertReturnVoid(cTotalRefs > cUnrefs);
2242
2243 if (RT_LIKELY(cUnrefs < UINT16_MAX - 1))
2244 pSet->aEntries[iEntry].cUnrefs++;
2245 else if (pSet->aEntries[iEntry].cInlinedRefs)
2246 {
2247 uint32_t cSub = RT_MIN(pSet->aEntries[iEntry].cInlinedRefs, pSet->aEntries[iEntry].cUnrefs);
2248 pSet->aEntries[iEntry].cInlinedRefs -= cSub;
2249 pSet->aEntries[iEntry].cUnrefs -= cSub;
2250 pSet->aEntries[iEntry].cUnrefs++;
2251 }
2252 else
2253 Log(("pgmRZDynMapUnusedHint: pvHint=%p ignored because of overflow! %s(%d) %s\n", pvHint, pszFile, iLine, pszFunction));
2254
2255#ifdef PGMRZDYNMAP_STRICT_RELEASE
2256 /*
2257 * Optimize the set to trigger the unmapping and invalidation of the page.
2258 */
2259 if (cUnrefs + 1 == cTotalRefs)
2260 pgmDynMapOptimizeAutoSet(pSet);
2261#endif
2262}
2263
2264
2265/**
2266 * Common worker code for pgmRZDynMapHCPageInlined, pgmRZDynMapHCPageV2Inlined
2267 * and pgmR0DynMapGCPageOffInlined.
2268 *
2269 * @returns VINF_SUCCESS, bails out to ring-3 on failure.
2270 * @param pSet The set.
2271 * @param HCPhys The physical address of the page.
2272 * @param ppv Where to store the address of the mapping on success.
2273 *
2274 * @remarks This is a very hot path.
2275 */
2276int pgmRZDynMapHCPageCommon(PPGMMAPSET pSet, RTHCPHYS HCPhys, void **ppv RTLOG_COMMA_SRC_POS_DECL)
2277{
2278 AssertMsg(pSet->iCpu == PGMRZDYNMAP_CUR_CPU(), ("%d %d efl=%#x\n", pSet->iCpu, PGMRZDYNMAP_CUR_CPU(), ASMGetFlags()));
2279 PVMCPU pVCpu = PGMRZDYNMAP_SET_2_VMCPU(pSet);
2280 STAM_PROFILE_START(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2281
2282 /*
2283 * Map it.
2284 */
2285 void *pvPage;
2286 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
2287 uint32_t iPage = pgmR0DynMapPage(pThis, HCPhys, pSet->iCpu, pVCpu, &pvPage);
2288 if (RT_UNLIKELY(iPage == UINT32_MAX))
2289 {
2290 /*
2291 * We're out of mapping space, optimize our set to try remedy the
2292 * situation. (Only works if there are unreference hints.)
2293 */
2294 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetOptimize);
2295 pgmDynMapOptimizeAutoSet(pSet);
2296
2297 iPage = pgmR0DynMapPage(pThis, HCPhys, pSet->iCpu, pVCpu, &pvPage);
2298 if (RT_UNLIKELY(iPage == UINT32_MAX))
2299 {
2300 RTAssertMsg2Weak("pgmRZDynMapHCPageCommon: cLoad=%u/%u cPages=%u cGuardPages=%u\n",
2301 pThis->cLoad, pThis->cMaxLoad, pThis->cPages, pThis->cGuardPages);
2302 if (!g_fPGMR0DynMapTestRunning)
2303 VMMRZCallRing3NoCpu(PGMRZDYNMAP_SET_2_VM(pSet), VMMCALLRING3_VM_R0_ASSERTION, 0);
2304 *ppv = NULL;
2305 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2306 return VERR_PGM_DYNMAP_FAILED;
2307 }
2308 }
2309
2310 /*
2311 * Add the page to the auto reference set.
2312 *
2313 * The typical usage pattern means that the same pages will be mapped
2314 * several times in the same set. We can catch most of these
2315 * remappings by looking a few pages back into the set. (The searching
2316 * and set optimizing path will hardly ever be used when doing this.)
2317 */
2318 AssertCompile(RT_ELEMENTS(pSet->aEntries) >= 8);
2319 int32_t i = pSet->cEntries;
2320 if (i-- < 5)
2321 {
2322 unsigned iEntry = pSet->cEntries++;
2323 pSet->aEntries[iEntry].cRefs = 1;
2324 pSet->aEntries[iEntry].cUnrefs = 0;
2325 pSet->aEntries[iEntry].cInlinedRefs = 0;
2326 pSet->aEntries[iEntry].iPage = iPage;
2327 pSet->aEntries[iEntry].pvPage = pvPage;
2328 pSet->aEntries[iEntry].HCPhys = HCPhys;
2329 pSet->aiHashTable[PGMMAPSET_HASH(HCPhys)] = iEntry;
2330 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/0/0 iPage=%#x [a] %s(%d) %s\n",
2331 pSet, HCPhys, iEntry, iEntry + 1, pvPage, 1, iPage, pszFile, iLine, pszFunction));
2332 }
2333 /* Any of the last 5 pages? */
2334 else if ( pSet->aEntries[i - 0].iPage == iPage
2335 && pSet->aEntries[i - 0].cRefs < UINT16_MAX - 1)
2336 {
2337 pSet->aEntries[i - 0].cRefs++;
2338 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [0] %s(%d) %s\n", pSet, HCPhys, i - 0, pSet->cEntries, pvPage, pSet->aEntries[i - 0].cRefs, pSet->aEntries[i - 0].cInlinedRefs, pSet->aEntries[i - 0].cUnrefs, iPage, pszFile, iLine, pszFunction));
2339 }
2340 else if ( pSet->aEntries[i - 1].iPage == iPage
2341 && pSet->aEntries[i - 1].cRefs < UINT16_MAX - 1)
2342 {
2343 pSet->aEntries[i - 1].cRefs++;
2344 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [1] %s(%d) %s\n", pSet, HCPhys, i - 1, pSet->cEntries, pvPage, pSet->aEntries[i - 1].cRefs, pSet->aEntries[i - 1].cInlinedRefs, pSet->aEntries[i - 1].cUnrefs, iPage, pszFile, iLine, pszFunction));
2345 }
2346 else if ( pSet->aEntries[i - 2].iPage == iPage
2347 && pSet->aEntries[i - 2].cRefs < UINT16_MAX - 1)
2348 {
2349 pSet->aEntries[i - 2].cRefs++;
2350 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [2] %s(%d) %s\n", pSet, HCPhys, i - 2, pSet->cEntries, pvPage, pSet->aEntries[i - 2].cRefs, pSet->aEntries[i - 2].cInlinedRefs, pSet->aEntries[i - 2].cUnrefs, iPage, pszFile, iLine, pszFunction));
2351 }
2352 else if ( pSet->aEntries[i - 3].iPage == iPage
2353 && pSet->aEntries[i - 3].cRefs < UINT16_MAX - 1)
2354 {
2355 pSet->aEntries[i - 3].cRefs++;
2356 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [4] %s(%d) %s\n", pSet, HCPhys, i - 3, pSet->cEntries, pvPage, pSet->aEntries[i - 3].cRefs, pSet->aEntries[i - 3].cInlinedRefs, pSet->aEntries[i - 3].cUnrefs, iPage, pszFile, iLine, pszFunction));
2357 }
2358 else if ( pSet->aEntries[i - 4].iPage == iPage
2359 && pSet->aEntries[i - 4].cRefs < UINT16_MAX - 1)
2360 {
2361 pSet->aEntries[i - 4].cRefs++;
2362 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [4] %s(%d) %s\n", pSet, HCPhys, i - 4, pSet->cEntries, pvPage, pSet->aEntries[i - 4].cRefs, pSet->aEntries[i - 4].cInlinedRefs, pSet->aEntries[i - 4].cUnrefs, iPage, pszFile, iLine, pszFunction));
2363 }
2364 /* Don't bother searching unless we're above a 60% load. */
2365 else if (RT_LIKELY(i <= (int32_t)RT_ELEMENTS(pSet->aEntries) * 60 / 100))
2366 {
2367 unsigned iEntry = pSet->cEntries++;
2368 pSet->aEntries[iEntry].cRefs = 1;
2369 pSet->aEntries[iEntry].cUnrefs = 0;
2370 pSet->aEntries[iEntry].cInlinedRefs = 0;
2371 pSet->aEntries[iEntry].iPage = iPage;
2372 pSet->aEntries[iEntry].pvPage = pvPage;
2373 pSet->aEntries[iEntry].HCPhys = HCPhys;
2374 pSet->aiHashTable[PGMMAPSET_HASH(HCPhys)] = iEntry;
2375 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=1/0/0 iPage=%#x [b] %s(%d) %s\n", pSet, HCPhys, iEntry, pSet->cEntries, pvPage, iPage, pszFile, iLine, pszFunction));
2376 }
2377 else
2378 {
2379 /* Search the rest of the set. */
2380 Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries));
2381 i -= 4;
2382 while (i-- > 0)
2383 if ( pSet->aEntries[i].iPage == iPage
2384 && pSet->aEntries[i].cRefs < UINT16_MAX - 1)
2385 {
2386 pSet->aEntries[i].cRefs++;
2387 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetSearchHits);
2388 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=%u/%u/%u iPage=%#x [c] %s(%d) %s\n", pSet, HCPhys, i, pSet->cEntries, pvPage, pSet->aEntries[i].cRefs, pSet->aEntries[i].cInlinedRefs, pSet->aEntries[i].cUnrefs, iPage, pszFile, iLine, pszFunction));
2389 break;
2390 }
2391 if (i < 0)
2392 {
2393 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetSearchMisses);
2394#if 0 /* this is very bogus */
2395 if (pSet->iSubset < pSet->cEntries)
2396 {
2397 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetSearchFlushes);
2398 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->aStatRZDynMapSetFilledPct[(pSet->cEntries * 10 / RT_ELEMENTS(pSet->aEntries)) % 11]);
2399 pgmDynMapFlushSubset(pSet);
2400 }
2401#endif
2402
2403 if (RT_UNLIKELY(pSet->cEntries >= RT_ELEMENTS(pSet->aEntries)))
2404 {
2405 STAM_COUNTER_INC(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapSetOptimize);
2406 pgmDynMapOptimizeAutoSet(pSet);
2407 }
2408
2409 if (RT_LIKELY(pSet->cEntries < RT_ELEMENTS(pSet->aEntries)))
2410 {
2411 unsigned iEntry = pSet->cEntries++;
2412 pSet->aEntries[iEntry].cRefs = 1;
2413 pSet->aEntries[iEntry].cUnrefs = 0;
2414 pSet->aEntries[iEntry].cInlinedRefs = 0;
2415 pSet->aEntries[iEntry].iPage = iPage;
2416 pSet->aEntries[iEntry].pvPage = pvPage;
2417 pSet->aEntries[iEntry].HCPhys = HCPhys;
2418 pSet->aiHashTable[PGMMAPSET_HASH(HCPhys)] = iEntry;
2419 LogFlow(("pgmRZDynMapHCPageCommon: pSet=%p HCPhys=%RHp #%u/%u/%p cRefs=1/0/0 iPage=%#x [d] %s(%d) %s\n", pSet, HCPhys, iEntry, pSet->cEntries, pvPage, iPage, pszFile, iLine, pszFunction));
2420 }
2421 else
2422 {
2423 /* We're screwed. */
2424 pgmRZDynMapReleasePage(pThis, iPage, 1);
2425
2426 RTAssertMsg2Weak("pgmRZDynMapHCPageCommon: set is full!\n");
2427 if (!g_fPGMR0DynMapTestRunning)
2428 VMMRZCallRing3NoCpu(PGMRZDYNMAP_SET_2_VM(pSet), VMMCALLRING3_VM_R0_ASSERTION, 0);
2429 *ppv = NULL;
2430 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2431 return VERR_PGM_DYNMAP_FULL_SET;
2432 }
2433 }
2434 }
2435
2436 *ppv = pvPage;
2437 STAM_PROFILE_STOP(&pVCpu->pgm.s.CTX_SUFF(pStats)->StatRZDynMapHCPage, a);
2438 return VINF_SUCCESS;
2439}
2440
2441
2442#if 0 /*def DEBUG*/
2443/** For pgmR0DynMapTest3PerCpu. */
2444typedef struct PGMR0DYNMAPTEST
2445{
2446 uint32_t u32Expect;
2447 uint32_t *pu32;
2448 uint32_t volatile cFailures;
2449} PGMR0DYNMAPTEST;
2450typedef PGMR0DYNMAPTEST *PPGMR0DYNMAPTEST;
2451
2452/**
2453 * Checks that the content of the page is the same on all CPUs, i.e. that there
2454 * are no CPU specific PTs or similar nasty stuff involved.
2455 *
2456 * @param idCpu The current CPU.
2457 * @param pvUser1 Pointer a PGMR0DYNMAPTEST structure.
2458 * @param pvUser2 Unused, ignored.
2459 */
2460static DECLCALLBACK(void) pgmR0DynMapTest3PerCpu(RTCPUID idCpu, void *pvUser1, void *pvUser2)
2461{
2462 PPGMR0DYNMAPTEST pTest = (PPGMR0DYNMAPTEST)pvUser1;
2463 ASMInvalidatePage(pTest->pu32);
2464 if (*pTest->pu32 != pTest->u32Expect)
2465 ASMAtomicIncU32(&pTest->cFailures);
2466 NOREF(pvUser2); NOREF(idCpu);
2467}
2468
2469
2470/**
2471 * Performs some basic tests in debug builds.
2472 */
2473static int pgmR0DynMapTest(PVM pVM)
2474{
2475 LogRel(("pgmR0DynMapTest: ****** START ******\n"));
2476 PPGMMAPSET pSet = &pVM->aCpus[0].pgm.s.AutoSet;
2477 PPGMRZDYNMAP pThis = PGMRZDYNMAP_SET_2_DYNMAP(pSet);
2478 uint32_t i;
2479
2480 /*
2481 * Assert internal integrity first.
2482 */
2483 LogRel(("Test #0\n"));
2484 int rc = PGMR0DynMapAssertIntegrity();
2485 if (RT_FAILURE(rc))
2486 return rc;
2487
2488 void *pvR0DynMapUsedSaved = pVM->pgm.s.pvR0DynMapUsed;
2489 pVM->pgm.s.pvR0DynMapUsed = pThis;
2490 g_fPGMR0DynMapTestRunning = true;
2491
2492 /*
2493 * Simple test, map CR3 twice and check that we're getting the
2494 * same mapping address back.
2495 */
2496 LogRel(("Test #1\n"));
2497 ASMIntDisable();
2498 PGMRZDynMapStartAutoSet(&pVM->aCpus[0]);
2499
2500 uint64_t cr3 = ASMGetCR3() & ~(uint64_t)PAGE_OFFSET_MASK;
2501 void *pv = (void *)(intptr_t)-1;
2502 void *pv2 = (void *)(intptr_t)-2;
2503 rc = pgmRZDynMapHCPageCommon(pVM, cr3, &pv RTLOG_COMMA_SRC_POS);
2504 int rc2 = pgmRZDynMapHCPageCommon(pVM, cr3, &pv2 RTLOG_COMMA_SRC_POS);
2505 ASMIntEnable();
2506 if ( RT_SUCCESS(rc2)
2507 && RT_SUCCESS(rc)
2508 && pv == pv2)
2509 {
2510 LogRel(("Load=%u/%u/%u Set=%u/%u\n", pThis->cLoad, pThis->cMaxLoad, pThis->cPages - pThis->cPages, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2511 rc = PGMR0DynMapAssertIntegrity();
2512
2513 /*
2514 * Check that the simple set overflow code works by filling it
2515 * with more CR3 mappings.
2516 */
2517 LogRel(("Test #2\n"));
2518 ASMIntDisable();
2519 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2520 for (i = 0 ; i < UINT16_MAX*2 - 1 && RT_SUCCESS(rc) && pv2 == pv; i++)
2521 {
2522 pv2 = (void *)(intptr_t)-4;
2523 rc = pgmRZDynMapHCPageCommon(pVM, cr3, &pv2 RTLOG_COMMA_SRC_POS);
2524 }
2525 ASMIntEnable();
2526 if (RT_FAILURE(rc) || pv != pv2)
2527 {
2528 LogRel(("failed(%d): rc=%Rrc; pv=%p pv2=%p i=%p\n", __LINE__, rc, pv, pv2, i));
2529 if (RT_SUCCESS(rc)) rc = VERR_INTERNAL_ERROR;
2530 }
2531 else if (pSet->cEntries != 5)
2532 {
2533 LogRel(("failed(%d): cEntries=%d expected %d\n", __LINE__, pSet->cEntries, RT_ELEMENTS(pSet->aEntries) / 2));
2534 rc = VERR_INTERNAL_ERROR;
2535 }
2536 else if ( pSet->aEntries[4].cRefs != UINT16_MAX - 1
2537 || pSet->aEntries[3].cRefs != UINT16_MAX - 1
2538 || pSet->aEntries[2].cRefs != 1
2539 || pSet->aEntries[1].cRefs != 1
2540 || pSet->aEntries[0].cRefs != 1)
2541 {
2542 LogRel(("failed(%d): bad set dist: ", __LINE__));
2543 for (i = 0; i < pSet->cEntries; i++)
2544 LogRel(("[%d]=%d, ", i, pSet->aEntries[i].cRefs));
2545 LogRel(("\n"));
2546 rc = VERR_INTERNAL_ERROR;
2547 }
2548 if (RT_SUCCESS(rc))
2549 rc = PGMR0DynMapAssertIntegrity();
2550 if (RT_SUCCESS(rc))
2551 {
2552 /*
2553 * Trigger an set optimization run (exactly).
2554 */
2555 LogRel(("Test #3\n"));
2556 ASMIntDisable();
2557 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2558 pv2 = NULL;
2559 for (i = 0 ; i < RT_ELEMENTS(pSet->aEntries) - 5 && RT_SUCCESS(rc) && pv2 != pv; i++)
2560 {
2561 pv2 = (void *)(intptr_t)(-5 - i);
2562 rc = pgmRZDynMapHCPageCommon(pVM, cr3 + PAGE_SIZE * (i + 5), &pv2 RTLOG_COMMA_SRC_POS);
2563 }
2564 ASMIntEnable();
2565 if (RT_FAILURE(rc) || pv == pv2)
2566 {
2567 LogRel(("failed(%d): rc=%Rrc; pv=%p pv2=%p i=%d\n", __LINE__, rc, pv, pv2, i));
2568 if (RT_SUCCESS(rc)) rc = VERR_INTERNAL_ERROR;
2569 }
2570 else if (pSet->cEntries != RT_ELEMENTS(pSet->aEntries))
2571 {
2572 LogRel(("failed(%d): cEntries=%d expected %d\n", __LINE__, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2573 rc = VERR_INTERNAL_ERROR;
2574 }
2575 LogRel(("Load=%u/%u/%u Set=%u/%u\n", pThis->cLoad, pThis->cMaxLoad, pThis->cPages - pThis->cPages, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2576 if (RT_SUCCESS(rc))
2577 rc = PGMR0DynMapAssertIntegrity();
2578 if (RT_SUCCESS(rc))
2579 {
2580 /*
2581 * Trigger an overflow error.
2582 */
2583 LogRel(("Test #4\n"));
2584 ASMIntDisable();
2585 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2586 for (i = 0 ; i < RT_ELEMENTS(pSet->aEntries) + 2; i++)
2587 {
2588 rc = pgmRZDynMapHCPageCommon(pVM, cr3 - PAGE_SIZE * (i + 5), &pv2 RTLOG_COMMA_SRC_POS);
2589 if (RT_SUCCESS(rc))
2590 rc = PGMR0DynMapAssertIntegrity();
2591 if (RT_FAILURE(rc))
2592 break;
2593 }
2594 ASMIntEnable();
2595 if (rc == VERR_PGM_DYNMAP_FULL_SET)
2596 {
2597 /* flush the set. */
2598 LogRel(("Test #5\n"));
2599 ASMIntDisable();
2600 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2601 PGMRZDynMapReleaseAutoSet(&pVM->aCpus[0]);
2602 PGMRZDynMapStartAutoSet(&pVM->aCpus[0]);
2603 ASMIntEnable();
2604
2605 rc = PGMR0DynMapAssertIntegrity();
2606 }
2607 else
2608 {
2609 LogRel(("failed(%d): rc=%Rrc, wanted %d ; pv2=%p Set=%u/%u; i=%d\n", __LINE__,
2610 rc, VERR_PGM_DYNMAP_FULL_SET, pv2, pSet->cEntries, RT_ELEMENTS(pSet->aEntries), i));
2611 if (RT_SUCCESS(rc)) rc = VERR_INTERNAL_ERROR;
2612 }
2613 }
2614 }
2615 }
2616 else
2617 {
2618 LogRel(("failed(%d): rc=%Rrc rc2=%Rrc; pv=%p pv2=%p\n", __LINE__, rc, rc2, pv, pv2));
2619 if (RT_SUCCESS(rc))
2620 rc = rc2;
2621 }
2622
2623 /*
2624 * Check that everyone sees the same stuff.
2625 */
2626 if (RT_SUCCESS(rc))
2627 {
2628 LogRel(("Test #5\n"));
2629 ASMIntDisable();
2630 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2631 RTHCPHYS HCPhysPT = RTR0MemObjGetPagePhysAddr(pThis->pSegHead->ahMemObjPTs[0], 0);
2632 rc = pgmRZDynMapHCPageCommon(pVM, HCPhysPT, &pv RTLOG_COMMA_SRC_POS);
2633 if (RT_SUCCESS(rc))
2634 {
2635 PGMR0DYNMAPTEST Test;
2636 uint32_t *pu32Real = &pThis->paPages[pThis->pSegHead->iPage].uPte.pLegacy->u;
2637 Test.pu32 = (uint32_t *)((uintptr_t)pv | ((uintptr_t)pu32Real & PAGE_OFFSET_MASK));
2638 Test.u32Expect = *pu32Real;
2639 ASMAtomicWriteU32(&Test.cFailures, 0);
2640 ASMIntEnable();
2641
2642 rc = RTMpOnAll(pgmR0DynMapTest3PerCpu, &Test, NULL);
2643 if (RT_FAILURE(rc))
2644 LogRel(("failed(%d): RTMpOnAll rc=%Rrc\n", __LINE__, rc));
2645 else if (Test.cFailures)
2646 {
2647 LogRel(("failed(%d): cFailures=%d pu32Real=%p pu32=%p u32Expect=%#x *pu32=%#x\n", __LINE__,
2648 Test.cFailures, pu32Real, Test.pu32, Test.u32Expect, *Test.pu32));
2649 rc = VERR_INTERNAL_ERROR;
2650 }
2651 else
2652 LogRel(("pu32Real=%p pu32=%p u32Expect=%#x *pu32=%#x\n",
2653 pu32Real, Test.pu32, Test.u32Expect, *Test.pu32));
2654 }
2655 else
2656 {
2657 ASMIntEnable();
2658 LogRel(("failed(%d): rc=%Rrc\n", rc));
2659 }
2660 }
2661
2662 /*
2663 * Clean up.
2664 */
2665 LogRel(("Cleanup.\n"));
2666 ASMIntDisable();
2667 PGMR0DynMapMigrateAutoSet(&pVM->aCpus[0]);
2668 PGMRZDynMapFlushAutoSet(&pVM->aCpus[0]);
2669 PGMRZDynMapReleaseAutoSet(&pVM->aCpus[0]);
2670 ASMIntEnable();
2671
2672 if (RT_SUCCESS(rc))
2673 rc = PGMR0DynMapAssertIntegrity();
2674 else
2675 PGMR0DynMapAssertIntegrity();
2676
2677 g_fPGMR0DynMapTestRunning = false;
2678 LogRel(("Result: rc=%Rrc Load=%u/%u/%u Set=%#x/%u\n", rc,
2679 pThis->cLoad, pThis->cMaxLoad, pThis->cPages - pThis->cPages, pSet->cEntries, RT_ELEMENTS(pSet->aEntries)));
2680 pVM->pgm.s.pvR0DynMapUsed = pvR0DynMapUsedSaved;
2681 LogRel(("pgmR0DynMapTest: ****** END ******\n"));
2682 return rc;
2683}
2684#endif /* DEBUG */
2685
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette