VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMMSwitcher.cpp@ 43864

最後變更 在這個檔案從43864是 43864,由 vboxsync 提交於 12 年 前

VMM: a few compile fixes for VBOX_WITH_RAW_MODE disabled

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id Revision
檔案大小: 37.4 KB
 
1/* $Id: VMMSwitcher.cpp 43864 2012-11-13 14:16:42Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor, World Switcher(s).
4 */
5
6/*
7 * Copyright (C) 2006-2012 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/*******************************************************************************
19* Header Files *
20*******************************************************************************/
21#define LOG_GROUP LOG_GROUP_VMM
22#include <VBox/vmm/vmm.h>
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/selm.h>
25#include <VBox/vmm/mm.h>
26#include <VBox/sup.h>
27#include "VMMInternal.h"
28#include "VMMSwitcher.h"
29#include <VBox/vmm/vm.h>
30#include <VBox/dis.h>
31
32#include <VBox/err.h>
33#include <VBox/param.h>
34#include <iprt/assert.h>
35#include <iprt/alloc.h>
36#include <iprt/asm.h>
37#include <iprt/asm-amd64-x86.h>
38#include <iprt/string.h>
39#include <iprt/ctype.h>
40
41
42/*******************************************************************************
43* Global Variables *
44*******************************************************************************/
45/** Array of switcher definitions.
46 * The type and index shall match!
47 */
48static PVMMSWITCHERDEF s_apSwitchers[VMMSWITCHER_MAX] =
49{
50 NULL, /* invalid entry */
51#ifdef VBOX_WITH_RAW_MODE
52# ifndef RT_ARCH_AMD64
53 &vmmR3Switcher32BitTo32Bit_Def,
54 &vmmR3Switcher32BitToPAE_Def,
55 &vmmR3Switcher32BitToAMD64_Def,
56 &vmmR3SwitcherPAETo32Bit_Def,
57 &vmmR3SwitcherPAEToPAE_Def,
58 &vmmR3SwitcherPAEToAMD64_Def,
59 NULL, //&vmmR3SwitcherPAETo32Bit_Def,
60# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
61 &vmmR3SwitcherAMD64ToPAE_Def,
62# else
63 NULL, //&vmmR3SwitcherAMD64ToPAE_Def,
64# endif
65 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
66# else /* RT_ARCH_AMD64 */
67 NULL, //&vmmR3Switcher32BitTo32Bit_Def,
68 NULL, //&vmmR3Switcher32BitToPAE_Def,
69 NULL, //&vmmR3Switcher32BitToAMD64_Def,
70 NULL, //&vmmR3SwitcherPAETo32Bit_Def,
71 NULL, //&vmmR3SwitcherPAEToPAE_Def,
72 NULL, //&vmmR3SwitcherPAEToAMD64_Def,
73 &vmmR3SwitcherAMD64To32Bit_Def,
74 &vmmR3SwitcherAMD64ToPAE_Def,
75 NULL //&vmmR3SwitcherAMD64ToAMD64_Def,
76# endif /* RT_ARCH_AMD64 */
77#else /* !VBOX_WITH_RAW_MODE */
78 NULL,
79 NULL,
80 NULL,
81 NULL,
82 NULL,
83 NULL,
84 NULL,
85 NULL,
86 NULL
87#endif /* !VBOX_WITH_RAW_MODE */
88};
89
90
91/**
92 * VMMR3Init worker that initiates the switcher code (aka core code).
93 *
94 * This is core per VM code which might need fixups and/or for ease of use are
95 * put on linear contiguous backing.
96 *
97 * @returns VBox status code.
98 * @param pVM Pointer to the VM.
99 */
100int vmmR3SwitcherInit(PVM pVM)
101{
102#ifndef VBOX_WITH_RAW_MODE
103 return VINF_SUCCESS;
104#else
105 /*
106 * Calc the size.
107 */
108 unsigned cbCoreCode = 0;
109 for (unsigned iSwitcher = 0; iSwitcher < RT_ELEMENTS(s_apSwitchers); iSwitcher++)
110 {
111 pVM->vmm.s.aoffSwitchers[iSwitcher] = cbCoreCode;
112 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
113 if (pSwitcher)
114 {
115 AssertRelease((unsigned)pSwitcher->enmType == iSwitcher);
116 cbCoreCode += RT_ALIGN_32(pSwitcher->cbCode + 1, 32);
117 }
118 }
119
120 /*
121 * Allocate contiguous pages for switchers and deal with
122 * conflicts in the intermediate mapping of the code.
123 */
124 pVM->vmm.s.cbCoreCode = RT_ALIGN_32(cbCoreCode, PAGE_SIZE);
125 pVM->vmm.s.pvCoreCodeR3 = SUPR3ContAlloc(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
126 int rc = VERR_NO_MEMORY;
127 if (pVM->vmm.s.pvCoreCodeR3)
128 {
129 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
130 if (rc == VERR_PGM_INTERMEDIATE_PAGING_CONFLICT)
131 {
132 /* try more allocations - Solaris, Linux. */
133 const unsigned cTries = 8234;
134 struct VMMInitBadTry
135 {
136 RTR0PTR pvR0;
137 void *pvR3;
138 RTHCPHYS HCPhys;
139 RTUINT cb;
140 } *paBadTries = (struct VMMInitBadTry *)RTMemTmpAlloc(sizeof(*paBadTries) * cTries);
141 AssertReturn(paBadTries, VERR_NO_TMP_MEMORY);
142 unsigned i = 0;
143 do
144 {
145 paBadTries[i].pvR3 = pVM->vmm.s.pvCoreCodeR3;
146 paBadTries[i].pvR0 = pVM->vmm.s.pvCoreCodeR0;
147 paBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
148 i++;
149 pVM->vmm.s.pvCoreCodeR0 = NIL_RTR0PTR;
150 pVM->vmm.s.HCPhysCoreCode = NIL_RTHCPHYS;
151 pVM->vmm.s.pvCoreCodeR3 = SUPR3ContAlloc(pVM->vmm.s.cbCoreCode >> PAGE_SHIFT, &pVM->vmm.s.pvCoreCodeR0, &pVM->vmm.s.HCPhysCoreCode);
152 if (!pVM->vmm.s.pvCoreCodeR3)
153 break;
154 rc = PGMR3MapIntermediate(pVM, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.HCPhysCoreCode, cbCoreCode);
155 } while ( rc == VERR_PGM_INTERMEDIATE_PAGING_CONFLICT
156 && i < cTries - 1);
157
158 /* cleanup */
159 if (RT_FAILURE(rc))
160 {
161 paBadTries[i].pvR3 = pVM->vmm.s.pvCoreCodeR3;
162 paBadTries[i].pvR0 = pVM->vmm.s.pvCoreCodeR0;
163 paBadTries[i].HCPhys = pVM->vmm.s.HCPhysCoreCode;
164 paBadTries[i].cb = pVM->vmm.s.cbCoreCode;
165 i++;
166 LogRel(("Failed to allocated and map core code: rc=%Rrc\n", rc));
167 }
168 while (i-- > 0)
169 {
170 LogRel(("Core code alloc attempt #%d: pvR3=%p pvR0=%p HCPhys=%RHp\n",
171 i, paBadTries[i].pvR3, paBadTries[i].pvR0, paBadTries[i].HCPhys));
172 SUPR3ContFree(paBadTries[i].pvR3, paBadTries[i].cb >> PAGE_SHIFT);
173 }
174 RTMemTmpFree(paBadTries);
175 }
176 }
177 if (RT_SUCCESS(rc))
178 {
179 /*
180 * copy the code.
181 */
182 for (unsigned iSwitcher = 0; iSwitcher < RT_ELEMENTS(s_apSwitchers); iSwitcher++)
183 {
184 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
185 if (pSwitcher)
186 memcpy((uint8_t *)pVM->vmm.s.pvCoreCodeR3 + pVM->vmm.s.aoffSwitchers[iSwitcher],
187 pSwitcher->pvCode, pSwitcher->cbCode);
188 }
189
190 /*
191 * Map the code into the GC address space.
192 */
193 RTGCPTR GCPtr;
194 rc = MMR3HyperMapHCPhys(pVM, pVM->vmm.s.pvCoreCodeR3, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.HCPhysCoreCode,
195 cbCoreCode, "Core Code", &GCPtr);
196 if (RT_SUCCESS(rc))
197 {
198 pVM->vmm.s.pvCoreCodeRC = GCPtr;
199 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
200 LogRel(("CoreCode: R3=%RHv R0=%RHv RC=%RRv Phys=%RHp cb=%#x\n",
201 pVM->vmm.s.pvCoreCodeR3, pVM->vmm.s.pvCoreCodeR0, pVM->vmm.s.pvCoreCodeRC, pVM->vmm.s.HCPhysCoreCode, pVM->vmm.s.cbCoreCode));
202
203 /*
204 * Finally, PGM probably has selected a switcher already but we need
205 * to get the routine addresses, so we'll reselect it.
206 * This may legally fail so, we're ignoring the rc.
207 */
208 VMMR3SelectSwitcher(pVM, pVM->vmm.s.enmSwitcher);
209 return rc;
210 }
211
212 /* shit */
213 AssertMsgFailed(("PGMR3Map(,%RRv, %RHp, %#x, 0) failed with rc=%Rrc\n", pVM->vmm.s.pvCoreCodeRC, pVM->vmm.s.HCPhysCoreCode, cbCoreCode, rc));
214 SUPR3ContFree(pVM->vmm.s.pvCoreCodeR3, pVM->vmm.s.cbCoreCode >> PAGE_SHIFT);
215 }
216 else
217 VMSetError(pVM, rc, RT_SRC_POS,
218 N_("Failed to allocate %d bytes of contiguous memory for the world switcher code"),
219 cbCoreCode);
220
221 pVM->vmm.s.pvCoreCodeR3 = NULL;
222 pVM->vmm.s.pvCoreCodeR0 = NIL_RTR0PTR;
223 pVM->vmm.s.pvCoreCodeRC = 0;
224 return rc;
225#endif
226}
227
228/**
229 * Relocate the switchers, called by VMMR#Relocate.
230 *
231 * @param pVM Pointer to the VM.
232 * @param offDelta The relocation delta.
233 */
234void vmmR3SwitcherRelocate(PVM pVM, RTGCINTPTR offDelta)
235{
236#ifdef VBOX_WITH_RAW_MODE
237 /*
238 * Relocate all the switchers.
239 */
240 for (unsigned iSwitcher = 0; iSwitcher < RT_ELEMENTS(s_apSwitchers); iSwitcher++)
241 {
242 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[iSwitcher];
243 if (pSwitcher && pSwitcher->pfnRelocate)
244 {
245 unsigned off = pVM->vmm.s.aoffSwitchers[iSwitcher];
246 pSwitcher->pfnRelocate(pVM,
247 pSwitcher,
248 pVM->vmm.s.pvCoreCodeR0 + off,
249 (uint8_t *)pVM->vmm.s.pvCoreCodeR3 + off,
250 pVM->vmm.s.pvCoreCodeRC + off,
251 pVM->vmm.s.HCPhysCoreCode + off);
252 }
253 }
254
255 /*
256 * Recalc the RC address for the current switcher.
257 */
258 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[pVM->vmm.s.enmSwitcher];
259 RTRCPTR RCPtr = pVM->vmm.s.pvCoreCodeRC + pVM->vmm.s.aoffSwitchers[pVM->vmm.s.enmSwitcher];
260 pVM->vmm.s.pfnRCToHost = RCPtr + pSwitcher->offRCToHost;
261 pVM->vmm.s.pfnCallTrampolineRC = RCPtr + pSwitcher->offRCCallTrampoline;
262 pVM->pfnVMMRCToHostAsm = RCPtr + pSwitcher->offRCToHostAsm;
263 pVM->pfnVMMRCToHostAsmNoReturn = RCPtr + pSwitcher->offRCToHostAsmNoReturn;
264
265// AssertFailed();
266#else
267 NOREF(pVM);
268#endif
269 NOREF(offDelta);
270}
271
272
273#ifdef VBOX_WITH_RAW_MODE
274
275/**
276 * Generic switcher code relocator.
277 *
278 * @param pVM Pointer to the VM.
279 * @param pSwitcher The switcher definition.
280 * @param pu8CodeR3 Pointer to the core code block for the switcher, ring-3 mapping.
281 * @param R0PtrCode Pointer to the core code block for the switcher, ring-0 mapping.
282 * @param GCPtrCode The guest context address corresponding to pu8Code.
283 * @param u32IDCode The identity mapped (ID) address corresponding to pu8Code.
284 * @param SelCS The hypervisor CS selector.
285 * @param SelDS The hypervisor DS selector.
286 * @param SelTSS The hypervisor TSS selector.
287 * @param GCPtrGDT The GC address of the hypervisor GDT.
288 * @param SelCS64 The 64-bit mode hypervisor CS selector.
289 */
290static void vmmR3SwitcherGenericRelocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode,
291 RTSEL SelCS, RTSEL SelDS, RTSEL SelTSS, RTGCPTR GCPtrGDT, RTSEL SelCS64)
292{
293 union
294 {
295 const uint8_t *pu8;
296 const uint16_t *pu16;
297 const uint32_t *pu32;
298 const uint64_t *pu64;
299 const void *pv;
300 uintptr_t u;
301 } u;
302 u.pv = pSwitcher->pvFixups;
303
304 /*
305 * Process fixups.
306 */
307 uint8_t u8;
308 while ((u8 = *u.pu8++) != FIX_THE_END)
309 {
310 /*
311 * Get the source (where to write the fixup).
312 */
313 uint32_t offSrc = *u.pu32++;
314 Assert(offSrc < pSwitcher->cbCode);
315 union
316 {
317 uint8_t *pu8;
318 uint16_t *pu16;
319 uint32_t *pu32;
320 uint64_t *pu64;
321 uintptr_t u;
322 } uSrc;
323 uSrc.pu8 = pu8CodeR3 + offSrc;
324
325 /* The fixup target and method depends on the type. */
326 switch (u8)
327 {
328 /*
329 * 32-bit relative, source in HC and target in GC.
330 */
331 case FIX_HC_2_GC_NEAR_REL:
332 {
333 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
334 uint32_t offTrg = *u.pu32++;
335 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
336 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (uSrc.u + 4));
337 break;
338 }
339
340 /*
341 * 32-bit relative, source in HC and target in ID.
342 */
343 case FIX_HC_2_ID_NEAR_REL:
344 {
345 Assert(offSrc - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offSrc - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
346 uint32_t offTrg = *u.pu32++;
347 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
348 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (R0PtrCode + offSrc + 4));
349 break;
350 }
351
352 /*
353 * 32-bit relative, source in GC and target in HC.
354 */
355 case FIX_GC_2_HC_NEAR_REL:
356 {
357 Assert(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode);
358 uint32_t offTrg = *u.pu32++;
359 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
360 *uSrc.pu32 = (uint32_t)((R0PtrCode + offTrg) - (GCPtrCode + offSrc + 4));
361 break;
362 }
363
364 /*
365 * 32-bit relative, source in GC and target in ID.
366 */
367 case FIX_GC_2_ID_NEAR_REL:
368 {
369 AssertMsg(offSrc - pSwitcher->offGCCode < pSwitcher->cbGCCode, ("%x - %x < %x\n", offSrc, pSwitcher->offGCCode, pSwitcher->cbGCCode));
370 uint32_t offTrg = *u.pu32++;
371 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
372 *uSrc.pu32 = (uint32_t)((u32IDCode + offTrg) - (GCPtrCode + offSrc + 4));
373 break;
374 }
375
376 /*
377 * 32-bit relative, source in ID and target in HC.
378 */
379 case FIX_ID_2_HC_NEAR_REL:
380 {
381 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
382 uint32_t offTrg = *u.pu32++;
383 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
384 *uSrc.pu32 = (uint32_t)((R0PtrCode + offTrg) - (u32IDCode + offSrc + 4));
385 break;
386 }
387
388 /*
389 * 32-bit relative, source in ID and target in HC.
390 */
391 case FIX_ID_2_GC_NEAR_REL:
392 {
393 Assert(offSrc - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offSrc - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
394 uint32_t offTrg = *u.pu32++;
395 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
396 *uSrc.pu32 = (uint32_t)((GCPtrCode + offTrg) - (u32IDCode + offSrc + 4));
397 break;
398 }
399
400 /*
401 * 16:32 far jump, target in GC.
402 */
403 case FIX_GC_FAR32:
404 {
405 uint32_t offTrg = *u.pu32++;
406 Assert(offTrg - pSwitcher->offGCCode < pSwitcher->cbGCCode);
407 *uSrc.pu32++ = (uint32_t)(GCPtrCode + offTrg);
408 *uSrc.pu16++ = SelCS;
409 break;
410 }
411
412 /*
413 * Make 32-bit GC pointer given CPUM offset.
414 */
415 case FIX_GC_CPUM_OFF:
416 {
417 uint32_t offCPUM = *u.pu32++;
418 Assert(offCPUM < sizeof(pVM->cpum));
419 *uSrc.pu32 = (uint32_t)(VM_RC_ADDR(pVM, &pVM->cpum) + offCPUM);
420 break;
421 }
422
423 /*
424 * Make 32-bit GC pointer given CPUMCPU offset.
425 */
426 case FIX_GC_CPUMCPU_OFF:
427 {
428 uint32_t offCPUM = *u.pu32++;
429 Assert(offCPUM < sizeof(pVM->aCpus[0].cpum));
430 *uSrc.pu32 = (uint32_t)(VM_RC_ADDR(pVM, &pVM->aCpus[0].cpum) + offCPUM);
431 break;
432 }
433
434 /*
435 * Make 32-bit GC pointer given VM offset.
436 */
437 case FIX_GC_VM_OFF:
438 {
439 uint32_t offVM = *u.pu32++;
440 Assert(offVM < sizeof(VM));
441 *uSrc.pu32 = (uint32_t)(VM_RC_ADDR(pVM, pVM) + offVM);
442 break;
443 }
444
445 /*
446 * Make 32-bit HC pointer given CPUM offset.
447 */
448 case FIX_HC_CPUM_OFF:
449 {
450 uint32_t offCPUM = *u.pu32++;
451 Assert(offCPUM < sizeof(pVM->cpum));
452 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + RT_OFFSETOF(VM, cpum) + offCPUM;
453 break;
454 }
455
456 /*
457 * Make 32-bit R0 pointer given VM offset.
458 */
459 case FIX_HC_VM_OFF:
460 {
461 uint32_t offVM = *u.pu32++;
462 Assert(offVM < sizeof(VM));
463 *uSrc.pu32 = (uint32_t)pVM->pVMR0 + offVM;
464 break;
465 }
466
467 /*
468 * Store the 32-Bit CR3 (32-bit) for the intermediate memory context.
469 */
470 case FIX_INTER_32BIT_CR3:
471 {
472
473 *uSrc.pu32 = PGMGetInter32BitCR3(pVM);
474 break;
475 }
476
477 /*
478 * Store the PAE CR3 (32-bit) for the intermediate memory context.
479 */
480 case FIX_INTER_PAE_CR3:
481 {
482
483 *uSrc.pu32 = PGMGetInterPaeCR3(pVM);
484 break;
485 }
486
487 /*
488 * Store the AMD64 CR3 (32-bit) for the intermediate memory context.
489 */
490 case FIX_INTER_AMD64_CR3:
491 {
492
493 *uSrc.pu32 = PGMGetInterAmd64CR3(pVM);
494 break;
495 }
496
497 /*
498 * Store Hypervisor CS (16-bit).
499 */
500 case FIX_HYPER_CS:
501 {
502 *uSrc.pu16 = SelCS;
503 break;
504 }
505
506 /*
507 * Store Hypervisor DS (16-bit).
508 */
509 case FIX_HYPER_DS:
510 {
511 *uSrc.pu16 = SelDS;
512 break;
513 }
514
515 /*
516 * Store Hypervisor TSS (16-bit).
517 */
518 case FIX_HYPER_TSS:
519 {
520 *uSrc.pu16 = SelTSS;
521 break;
522 }
523
524 /*
525 * Store the 32-bit GC address of the 2nd dword of the TSS descriptor (in the GDT).
526 */
527 case FIX_GC_TSS_GDTE_DW2:
528 {
529 RTGCPTR GCPtr = GCPtrGDT + (SelTSS & ~7) + 4;
530 *uSrc.pu32 = (uint32_t)GCPtr;
531 break;
532 }
533
534 /*
535 * Store the EFER or mask for the 32->64 bit switcher.
536 */
537 case FIX_EFER_OR_MASK:
538 {
539 uint32_t u32OrMask = MSR_K6_EFER_LME | MSR_K6_EFER_SCE;
540 /*
541 * We don't care if cpuid 0x8000001 isn't supported as that implies
542 * long mode isn't supported either, so this switched would never be used.
543 */
544 if (!!(ASMCpuId_EDX(0x80000001) & X86_CPUID_EXT_FEATURE_EDX_NX))
545 u32OrMask |= MSR_K6_EFER_NXE;
546
547 *uSrc.pu32 = u32OrMask;
548 break;
549 }
550
551 /*
552 * Insert relative jump to specified target it FXSAVE/FXRSTOR isn't supported by the cpu.
553 */
554 case FIX_NO_FXSAVE_JMP:
555 {
556 uint32_t offTrg = *u.pu32++;
557 Assert(offTrg < pSwitcher->cbCode);
558 if (!CPUMSupportsFXSR(pVM))
559 {
560 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
561 *uSrc.pu32++ = offTrg - (offSrc + 5);
562 }
563 else
564 {
565 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
566 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
567 }
568 break;
569 }
570
571 /*
572 * Insert relative jump to specified target it SYSENTER isn't used by the host.
573 */
574 case FIX_NO_SYSENTER_JMP:
575 {
576 uint32_t offTrg = *u.pu32++;
577 Assert(offTrg < pSwitcher->cbCode);
578 if (!CPUMIsHostUsingSysEnter(pVM))
579 {
580 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
581 *uSrc.pu32++ = offTrg - (offSrc + 5);
582 }
583 else
584 {
585 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
586 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
587 }
588 break;
589 }
590
591 /*
592 * Insert relative jump to specified target it SYSCALL isn't used by the host.
593 */
594 case FIX_NO_SYSCALL_JMP:
595 {
596 uint32_t offTrg = *u.pu32++;
597 Assert(offTrg < pSwitcher->cbCode);
598 if (!CPUMIsHostUsingSysCall(pVM))
599 {
600 *uSrc.pu8++ = 0xe9; /* jmp rel32 */
601 *uSrc.pu32++ = offTrg - (offSrc + 5);
602 }
603 else
604 {
605 *uSrc.pu8++ = *((uint8_t *)pSwitcher->pvCode + offSrc);
606 *uSrc.pu32++ = *(uint32_t *)((uint8_t *)pSwitcher->pvCode + offSrc + 1);
607 }
608 break;
609 }
610
611 /*
612 * 32-bit HC pointer fixup to (HC) target within the code (32-bit offset).
613 */
614 case FIX_HC_32BIT:
615 {
616 uint32_t offTrg = *u.pu32++;
617 Assert(offSrc < pSwitcher->cbCode);
618 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
619 *uSrc.pu32 = R0PtrCode + offTrg;
620 break;
621 }
622
623#if defined(RT_ARCH_AMD64) || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
624 /*
625 * 64-bit HC Code Selector (no argument).
626 */
627 case FIX_HC_64BIT_CS:
628 {
629 Assert(offSrc < pSwitcher->cbCode);
630# if defined(RT_OS_DARWIN) && defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
631 *uSrc.pu16 = 0x80; /* KERNEL64_CS from i386/seg.h */
632# else
633 AssertFatalMsgFailed(("FIX_HC_64BIT_CS not implemented for this host\n"));
634# endif
635 break;
636 }
637
638 /*
639 * 64-bit HC pointer to the CPUM instance data (no argument).
640 */
641 case FIX_HC_64BIT_CPUM:
642 {
643 Assert(offSrc < pSwitcher->cbCode);
644 *uSrc.pu64 = pVM->pVMR0 + RT_OFFSETOF(VM, cpum);
645 break;
646 }
647#endif
648 /*
649 * 64-bit HC pointer fixup to (HC) target within the code (32-bit offset).
650 */
651 case FIX_HC_64BIT:
652 {
653 uint32_t offTrg = *u.pu32++;
654 Assert(offSrc < pSwitcher->cbCode);
655 Assert(offTrg - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0 || offTrg - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1);
656 *uSrc.pu64 = R0PtrCode + offTrg;
657 break;
658 }
659
660#ifdef RT_ARCH_X86
661 case FIX_GC_64_BIT_CPUM_OFF:
662 {
663 uint32_t offCPUM = *u.pu32++;
664 Assert(offCPUM < sizeof(pVM->cpum));
665 *uSrc.pu64 = (uint32_t)(VM_RC_ADDR(pVM, &pVM->cpum) + offCPUM);
666 break;
667 }
668#endif
669
670 /*
671 * 32-bit ID pointer to (ID) target within the code (32-bit offset).
672 */
673 case FIX_ID_32BIT:
674 {
675 uint32_t offTrg = *u.pu32++;
676 Assert(offSrc < pSwitcher->cbCode);
677 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
678 *uSrc.pu32 = u32IDCode + offTrg;
679 break;
680 }
681
682 /*
683 * 64-bit ID pointer to (ID) target within the code (32-bit offset).
684 */
685 case FIX_ID_64BIT:
686 case FIX_HC_64BIT_NOCHECK:
687 {
688 uint32_t offTrg = *u.pu32++;
689 Assert(offSrc < pSwitcher->cbCode);
690 Assert(u8 == FIX_HC_64BIT_NOCHECK || offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
691 *uSrc.pu64 = u32IDCode + offTrg;
692 break;
693 }
694
695 /*
696 * Far 16:32 ID pointer to 64-bit mode (ID) target within the code (32-bit offset).
697 */
698 case FIX_ID_FAR32_TO_64BIT_MODE:
699 {
700 uint32_t offTrg = *u.pu32++;
701 Assert(offSrc < pSwitcher->cbCode);
702 Assert(offTrg - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0 || offTrg - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1);
703 *uSrc.pu32++ = u32IDCode + offTrg;
704 *uSrc.pu16 = SelCS64;
705 AssertRelease(SelCS64);
706 break;
707 }
708
709#ifdef VBOX_WITH_NMI
710 /*
711 * 32-bit address to the APIC base.
712 */
713 case FIX_GC_APIC_BASE_32BIT:
714 {
715 *uSrc.pu32 = pVM->vmm.s.GCPtrApicBase;
716 break;
717 }
718#endif
719
720 default:
721 AssertReleaseMsgFailed(("Unknown fixup %d in switcher %s\n", u8, pSwitcher->pszDesc));
722 break;
723 }
724 }
725
726#ifdef LOG_ENABLED
727 /*
728 * If Log2 is enabled disassemble the switcher code.
729 *
730 * The switcher code have 1-2 HC parts, 1 GC part and 0-2 ID parts.
731 */
732 if (LogIs2Enabled())
733 {
734 RTLogPrintf("*** Disassembly of switcher %d '%s' %#x bytes ***\n"
735 " R0PtrCode = %p\n"
736 " pu8CodeR3 = %p\n"
737 " GCPtrCode = %RGv\n"
738 " u32IDCode = %08x\n"
739 " pVMRC = %RRv\n"
740 " pCPUMRC = %RRv\n"
741 " pVMR3 = %p\n"
742 " pCPUMR3 = %p\n"
743 " GCPtrGDT = %RGv\n"
744 " InterCR3s = %08RHp, %08RHp, %08RHp (32-Bit, PAE, AMD64)\n"
745 " HyperCR3s = %08RHp (32-Bit, PAE & AMD64)\n"
746 " SelCS = %04x\n"
747 " SelDS = %04x\n"
748 " SelCS64 = %04x\n"
749 " SelTSS = %04x\n",
750 pSwitcher->enmType, pSwitcher->pszDesc, pSwitcher->cbCode,
751 R0PtrCode,
752 pu8CodeR3,
753 GCPtrCode,
754 u32IDCode,
755 VM_RC_ADDR(pVM, pVM),
756 VM_RC_ADDR(pVM, &pVM->cpum),
757 pVM,
758 &pVM->cpum,
759 GCPtrGDT,
760 PGMGetInter32BitCR3(pVM), PGMGetInterPaeCR3(pVM), PGMGetInterAmd64CR3(pVM),
761 PGMGetHyperCR3(VMMGetCpu(pVM)),
762 SelCS, SelDS, SelCS64, SelTSS);
763
764 uint32_t offCode = 0;
765 while (offCode < pSwitcher->cbCode)
766 {
767 /*
768 * Figure out where this is.
769 */
770 const char *pszDesc = NULL;
771 RTUINTPTR uBase;
772 uint32_t cbCode;
773 if (offCode - pSwitcher->offHCCode0 < pSwitcher->cbHCCode0)
774 {
775 pszDesc = "HCCode0";
776 uBase = R0PtrCode;
777 offCode = pSwitcher->offHCCode0;
778 cbCode = pSwitcher->cbHCCode0;
779 }
780 else if (offCode - pSwitcher->offHCCode1 < pSwitcher->cbHCCode1)
781 {
782 pszDesc = "HCCode1";
783 uBase = R0PtrCode;
784 offCode = pSwitcher->offHCCode1;
785 cbCode = pSwitcher->cbHCCode1;
786 }
787 else if (offCode - pSwitcher->offGCCode < pSwitcher->cbGCCode)
788 {
789 pszDesc = "GCCode";
790 uBase = GCPtrCode;
791 offCode = pSwitcher->offGCCode;
792 cbCode = pSwitcher->cbGCCode;
793 }
794 else if (offCode - pSwitcher->offIDCode0 < pSwitcher->cbIDCode0)
795 {
796 pszDesc = "IDCode0";
797 uBase = u32IDCode;
798 offCode = pSwitcher->offIDCode0;
799 cbCode = pSwitcher->cbIDCode0;
800 }
801 else if (offCode - pSwitcher->offIDCode1 < pSwitcher->cbIDCode1)
802 {
803 pszDesc = "IDCode1";
804 uBase = u32IDCode;
805 offCode = pSwitcher->offIDCode1;
806 cbCode = pSwitcher->cbIDCode1;
807 }
808 else
809 {
810 RTLogPrintf(" %04x: %02x '%c' (nowhere)\n",
811 offCode, pu8CodeR3[offCode], RT_C_IS_PRINT(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ');
812 offCode++;
813 continue;
814 }
815
816 /*
817 * Disassemble it.
818 */
819 RTLogPrintf(" %s: offCode=%#x cbCode=%#x\n", pszDesc, offCode, cbCode);
820
821 while (cbCode > 0)
822 {
823 /* try label it */
824 if (pSwitcher->offR0ToRawMode == offCode)
825 RTLogPrintf(" *R0ToRawMode:\n");
826 if (pSwitcher->offRCToHost == offCode)
827 RTLogPrintf(" *RCToHost:\n");
828 if (pSwitcher->offRCCallTrampoline == offCode)
829 RTLogPrintf(" *RCCallTrampoline:\n");
830 if (pSwitcher->offRCToHostAsm == offCode)
831 RTLogPrintf(" *RCToHostAsm:\n");
832 if (pSwitcher->offRCToHostAsmNoReturn == offCode)
833 RTLogPrintf(" *RCToHostAsmNoReturn:\n");
834
835 /* disas */
836 uint32_t cbInstr = 0;
837 DISCPUSTATE Cpu;
838 char szDisas[256];
839 int rc = DISInstr(pu8CodeR3 + offCode, DISCPUMODE_32BIT, &Cpu, &cbInstr);
840 if (RT_SUCCESS(rc))
841 {
842 Cpu.uInstrAddr += uBase - (uintptr_t)pu8CodeR3;
843 DISFormatYasmEx(&Cpu, szDisas, sizeof(szDisas),
844 DIS_FMT_FLAGS_ADDR_LEFT | DIS_FMT_FLAGS_BYTES_LEFT | DIS_FMT_FLAGS_BYTES_SPACED
845 | DIS_FMT_FLAGS_RELATIVE_BRANCH,
846 NULL, NULL);
847 }
848 if (RT_SUCCESS(rc))
849 RTLogPrintf(" %04x: %s\n", offCode, szDisas);
850 else
851 {
852 RTLogPrintf(" %04x: %02x '%c' (rc=%Rrc\n",
853 offCode, pu8CodeR3[offCode], RT_C_IS_PRINT(pu8CodeR3[offCode]) ? pu8CodeR3[offCode] : ' ', rc);
854 cbInstr = 1;
855 }
856 offCode += cbInstr;
857 cbCode -= RT_MIN(cbInstr, cbCode);
858 }
859 }
860 }
861#endif
862}
863
864/**
865 * Relocator for the 32-Bit to 32-Bit world switcher.
866 */
867DECLCALLBACK(void) vmmR3Switcher32BitTo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
868{
869 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
870 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
871}
872
873
874/**
875 * Relocator for the 32-Bit to PAE world switcher.
876 */
877DECLCALLBACK(void) vmmR3Switcher32BitToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
878{
879 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
880 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
881}
882
883
884/**
885 * Relocator for the 32-Bit to AMD64 world switcher.
886 */
887DECLCALLBACK(void) vmmR3Switcher32BitToAMD64_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
888{
889 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
890 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
891}
892
893
894/**
895 * Relocator for the PAE to 32-Bit world switcher.
896 */
897DECLCALLBACK(void) vmmR3SwitcherPAETo32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
898{
899 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
900 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
901}
902
903
904/**
905 * Relocator for the PAE to PAE world switcher.
906 */
907DECLCALLBACK(void) vmmR3SwitcherPAEToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
908{
909 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
910 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), 0);
911}
912
913/**
914 * Relocator for the PAE to AMD64 world switcher.
915 */
916DECLCALLBACK(void) vmmR3SwitcherPAEToAMD64_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
917{
918 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
919 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
920}
921
922
923/**
924 * Relocator for the AMD64 to 32-bit world switcher.
925 */
926DECLCALLBACK(void) vmmR3SwitcherAMD64To32Bit_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
927{
928 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
929 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
930}
931
932
933/**
934 * Relocator for the AMD64 to PAE world switcher.
935 */
936DECLCALLBACK(void) vmmR3SwitcherAMD64ToPAE_Relocate(PVM pVM, PVMMSWITCHERDEF pSwitcher, RTR0PTR R0PtrCode, uint8_t *pu8CodeR3, RTGCPTR GCPtrCode, uint32_t u32IDCode)
937{
938 vmmR3SwitcherGenericRelocate(pVM, pSwitcher, R0PtrCode, pu8CodeR3, GCPtrCode, u32IDCode,
939 SELMGetHyperCS(pVM), SELMGetHyperDS(pVM), SELMGetHyperTSS(pVM), SELMGetHyperGDT(pVM), SELMGetHyperCS64(pVM));
940}
941
942
943/**
944 * Selects the switcher to be used for switching to raw-mode context.
945 *
946 * @returns VBox status code.
947 * @param pVM Pointer to the VM.
948 * @param enmSwitcher The new switcher.
949 * @remark This function may be called before the VMM is initialized.
950 */
951VMMR3_INT_DECL(int) VMMR3SelectSwitcher(PVM pVM, VMMSWITCHER enmSwitcher)
952{
953 /*
954 * Validate input.
955 */
956 if ( enmSwitcher < VMMSWITCHER_INVALID
957 || enmSwitcher >= VMMSWITCHER_MAX)
958 {
959 AssertMsgFailed(("Invalid input enmSwitcher=%d\n", enmSwitcher));
960 return VERR_INVALID_PARAMETER;
961 }
962
963 /* Do nothing if the switcher is disabled. */
964 if (pVM->vmm.s.fSwitcherDisabled)
965 return VINF_SUCCESS;
966
967 /*
968 * Select the new switcher.
969 */
970 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[enmSwitcher];
971 if (pSwitcher)
972 {
973 Log(("VMMR3SelectSwitcher: enmSwitcher %d -> %d %s\n", pVM->vmm.s.enmSwitcher, enmSwitcher, pSwitcher->pszDesc));
974 pVM->vmm.s.enmSwitcher = enmSwitcher;
975
976 RTR0PTR pbCodeR0 = (RTR0PTR)pVM->vmm.s.pvCoreCodeR0 + pVM->vmm.s.aoffSwitchers[enmSwitcher]; /** @todo fix the pvCoreCodeR0 type */
977 pVM->vmm.s.pfnR0ToRawMode = pbCodeR0 + pSwitcher->offR0ToRawMode;
978
979 RTRCPTR RCPtr = pVM->vmm.s.pvCoreCodeRC + pVM->vmm.s.aoffSwitchers[enmSwitcher];
980 pVM->vmm.s.pfnRCToHost = RCPtr + pSwitcher->offRCToHost;
981 pVM->vmm.s.pfnCallTrampolineRC = RCPtr + pSwitcher->offRCCallTrampoline;
982 pVM->pfnVMMRCToHostAsm = RCPtr + pSwitcher->offRCToHostAsm;
983 pVM->pfnVMMRCToHostAsmNoReturn = RCPtr + pSwitcher->offRCToHostAsmNoReturn;
984 return VINF_SUCCESS;
985 }
986
987 return VERR_NOT_IMPLEMENTED;
988}
989
990#endif /* VBOX_WITH_RAW_MODE */
991
992
993/**
994 * Disable the switcher logic permanently.
995 *
996 * @returns VBox status code.
997 * @param pVM Pointer to the VM.
998 */
999VMMR3_INT_DECL(int) VMMR3DisableSwitcher(PVM pVM)
1000{
1001/** @todo r=bird: I would suggest that we create a dummy switcher which just does something like:
1002 * @code
1003 * mov eax, VERR_VMM_DUMMY_SWITCHER
1004 * ret
1005 * @endcode
1006 * And then check for fSwitcherDisabled in VMMR3SelectSwitcher() in order to prevent it from being removed.
1007 */
1008 pVM->vmm.s.fSwitcherDisabled = true;
1009 return VINF_SUCCESS;
1010}
1011
1012
1013/**
1014 * Gets the switcher to be used for switching to GC.
1015 *
1016 * @returns host to guest ring 0 switcher entrypoint
1017 * @param pVM Pointer to the VM.
1018 * @param enmSwitcher The new switcher.
1019 */
1020VMMR3_INT_DECL(RTR0PTR) VMMR3GetHostToGuestSwitcher(PVM pVM, VMMSWITCHER enmSwitcher)
1021{
1022 /*
1023 * Validate input.
1024 */
1025 if ( enmSwitcher < VMMSWITCHER_INVALID
1026 || enmSwitcher >= VMMSWITCHER_MAX)
1027 {
1028 AssertMsgFailed(("Invalid input enmSwitcher=%d\n", enmSwitcher));
1029 return NIL_RTR0PTR;
1030 }
1031
1032 /*
1033 * Select the new switcher.
1034 */
1035 PVMMSWITCHERDEF pSwitcher = s_apSwitchers[enmSwitcher];
1036 if (pSwitcher)
1037 {
1038 RTR0PTR pbCodeR0 = (RTR0PTR)pVM->vmm.s.pvCoreCodeR0 + pVM->vmm.s.aoffSwitchers[enmSwitcher]; /** @todo fix the pvCoreCodeR0 type */
1039 return pbCodeR0 + pSwitcher->offR0ToRawMode;
1040 }
1041 return NIL_RTR0PTR;
1042}
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette