VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/VMM.cpp@ 99385

最後變更 在這個檔案從99385是 99385,由 vboxsync 提交於 2 年 前

VMM/ArmV8: Skeleton of the GICv3 interrupt controller emulation, bugref:10404

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id Revision
檔案大小: 106.1 KB
 
1/* $Id: VMM.cpp 99385 2023-04-13 11:05:39Z vboxsync $ */
2/** @file
3 * VMM - The Virtual Machine Monitor Core.
4 */
5
6/*
7 * Copyright (C) 2006-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.alldomusa.eu.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28//#define NO_SUPCALLR0VMM
29
30/** @page pg_vmm VMM - The Virtual Machine Monitor
31 *
32 * The VMM component is two things at the moment, it's a component doing a few
33 * management and routing tasks, and it's the whole virtual machine monitor
34 * thing. For hysterical reasons, it is not doing all the management that one
35 * would expect, this is instead done by @ref pg_vm. We'll address this
36 * misdesign eventually, maybe.
37 *
38 * VMM is made up of these components:
39 * - @subpage pg_cfgm
40 * - @subpage pg_cpum
41 * - @subpage pg_dbgf
42 * - @subpage pg_em
43 * - @subpage pg_gim
44 * - @subpage pg_gmm
45 * - @subpage pg_gvmm
46 * - @subpage pg_hm
47 * - @subpage pg_iem
48 * - @subpage pg_iom
49 * - @subpage pg_mm
50 * - @subpage pg_nem
51 * - @subpage pg_pdm
52 * - @subpage pg_pgm
53 * - @subpage pg_selm
54 * - @subpage pg_ssm
55 * - @subpage pg_stam
56 * - @subpage pg_tm
57 * - @subpage pg_trpm
58 * - @subpage pg_vm
59 *
60 *
61 * @see @ref grp_vmm @ref grp_vm @subpage pg_vmm_guideline @subpage pg_raw
62 *
63 *
64 * @section sec_vmmstate VMM State
65 *
66 * @image html VM_Statechart_Diagram.gif
67 *
68 * To be written.
69 *
70 *
71 * @subsection subsec_vmm_init VMM Initialization
72 *
73 * To be written.
74 *
75 *
76 * @subsection subsec_vmm_term VMM Termination
77 *
78 * To be written.
79 *
80 *
81 * @section sec_vmm_limits VMM Limits
82 *
83 * There are various resource limits imposed by the VMM and it's
84 * sub-components. We'll list some of them here.
85 *
86 * On 64-bit hosts:
87 * - Max 8191 VMs. Imposed by GVMM's handle allocation (GVMM_MAX_HANDLES),
88 * can be increased up to 64K - 1.
89 * - Max 16TB - 64KB of the host memory can be used for backing VM RAM and
90 * ROM pages. The limit is imposed by the 32-bit page ID used by GMM.
91 * - A VM can be assigned all the memory we can use (16TB), however, the
92 * Main API will restrict this to 2TB (MM_RAM_MAX_IN_MB).
93 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
94 *
95 * On 32-bit hosts:
96 * - Max 127 VMs. Imposed by GMM's per page structure.
97 * - Max 64GB - 64KB of the host memory can be used for backing VM RAM and
98 * ROM pages. The limit is imposed by the 28-bit page ID used
99 * internally in GMM. It is also limited by PAE.
100 * - A VM can be assigned all the memory GMM can allocate, however, the
101 * Main API will restrict this to 3584MB (MM_RAM_MAX_IN_MB).
102 * - Max 32 virtual CPUs (VMM_MAX_CPU_COUNT).
103 *
104 */
105
106
107/*********************************************************************************************************************************
108* Header Files *
109*********************************************************************************************************************************/
110#define LOG_GROUP LOG_GROUP_VMM
111#include <VBox/vmm/vmm.h>
112#include <VBox/vmm/vmapi.h>
113#include <VBox/vmm/pgm.h>
114#include <VBox/vmm/cfgm.h>
115#include <VBox/vmm/pdmqueue.h>
116#include <VBox/vmm/pdmcritsect.h>
117#include <VBox/vmm/pdmcritsectrw.h>
118#include <VBox/vmm/pdmapi.h>
119#include <VBox/vmm/cpum.h>
120#include <VBox/vmm/gim.h>
121#include <VBox/vmm/mm.h>
122#include <VBox/vmm/nem.h>
123#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
124# include <VBox/vmm/iem.h>
125#endif
126#include <VBox/vmm/iom.h>
127#include <VBox/vmm/trpm.h>
128#include <VBox/vmm/selm.h>
129#include <VBox/vmm/em.h>
130#include <VBox/sup.h>
131#include <VBox/vmm/dbgf.h>
132#if defined(VBOX_VMM_TARGET_ARMV8)
133# include <VBox/vmm/gic.h>
134#else
135# include <VBox/vmm/apic.h>
136#endif
137#include <VBox/vmm/ssm.h>
138#include <VBox/vmm/tm.h>
139#include "VMMInternal.h"
140#include <VBox/vmm/vmcc.h>
141
142#include <VBox/err.h>
143#include <VBox/param.h>
144#include <VBox/version.h>
145#include <VBox/vmm/hm.h>
146#include <iprt/assert.h>
147#include <iprt/alloc.h>
148#include <iprt/asm.h>
149#include <iprt/time.h>
150#include <iprt/semaphore.h>
151#include <iprt/stream.h>
152#include <iprt/string.h>
153#include <iprt/stdarg.h>
154#include <iprt/ctype.h>
155#include <iprt/x86.h>
156
157
158/*********************************************************************************************************************************
159* Defined Constants And Macros *
160*********************************************************************************************************************************/
161/** The saved state version. */
162#define VMM_SAVED_STATE_VERSION 4
163/** The saved state version used by v3.0 and earlier. (Teleportation) */
164#define VMM_SAVED_STATE_VERSION_3_0 3
165
166/** Macro for flushing the ring-0 logging. */
167#define VMM_FLUSH_R0_LOG(a_pVM, a_pVCpu, a_pLogger, a_pR3Logger) \
168 do { \
169 size_t const idxBuf = (a_pLogger)->idxBuf % VMMLOGGER_BUFFER_COUNT; \
170 if ( (a_pLogger)->aBufs[idxBuf].AuxDesc.offBuf == 0 \
171 || (a_pLogger)->aBufs[idxBuf].AuxDesc.fFlushedIndicator) \
172 { /* likely? */ } \
173 else \
174 vmmR3LogReturnFlush(a_pVM, a_pVCpu, a_pLogger, idxBuf, a_pR3Logger); \
175 } while (0)
176
177
178/*********************************************************************************************************************************
179* Internal Functions *
180*********************************************************************************************************************************/
181static void vmmR3InitRegisterStats(PVM pVM);
182static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM);
183static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
184#if 0 /* pointless when timers doesn't run on EMT */
185static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser);
186#endif
187static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
188 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser);
189static int vmmR3HandleRing0Assert(PVM pVM, PVMCPU pVCpu);
190static FNRTTHREAD vmmR3LogFlusher;
191static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf,
192 PRTLOGGER pDstLogger);
193static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
194
195
196
197/**
198 * Initializes the VMM.
199 *
200 * @returns VBox status code.
201 * @param pVM The cross context VM structure.
202 */
203VMMR3_INT_DECL(int) VMMR3Init(PVM pVM)
204{
205 LogFlow(("VMMR3Init\n"));
206
207 /*
208 * Assert alignment, sizes and order.
209 */
210 AssertCompile(sizeof(pVM->vmm.s) <= sizeof(pVM->vmm.padding));
211 AssertCompile(RT_SIZEOFMEMB(VMCPU, vmm.s) <= RT_SIZEOFMEMB(VMCPU, vmm.padding));
212
213 /*
214 * Init basic VM VMM members.
215 */
216 pVM->vmm.s.pahEvtRendezvousEnterOrdered = NULL;
217 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
218 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
219 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
220 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
221 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
222 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
223 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
224 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
225 pVM->vmm.s.nsProgramStart = RTTimeProgramStartNanoTS();
226
227#if 0 /* pointless when timers doesn't run on EMT */
228 /** @cfgm{/YieldEMTInterval, uint32_t, 1, UINT32_MAX, 23, ms}
229 * The EMT yield interval. The EMT yielding is a hack we employ to play a
230 * bit nicer with the rest of the system (like for instance the GUI).
231 */
232 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "YieldEMTInterval", &pVM->vmm.s.cYieldEveryMillies,
233 23 /* Value arrived at after experimenting with the grub boot prompt. */);
234 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"YieldEMTInterval\", rc=%Rrc\n", rc), rc);
235#endif
236
237 /** @cfgm{/VMM/UsePeriodicPreemptionTimers, boolean, true}
238 * Controls whether we employ per-cpu preemption timers to limit the time
239 * spent executing guest code. This option is not available on all
240 * platforms and we will silently ignore this setting then. If we are
241 * running in VT-x mode, we will use the VMX-preemption timer instead of
242 * this one when possible.
243 */
244 PCFGMNODE pCfgVMM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "VMM");
245 int rc = CFGMR3QueryBoolDef(pCfgVMM, "UsePeriodicPreemptionTimers", &pVM->vmm.s.fUsePeriodicPreemptionTimers, true);
246 AssertMsgRCReturn(rc, ("Configuration error. Failed to query \"VMM/UsePeriodicPreemptionTimers\", rc=%Rrc\n", rc), rc);
247
248 /*
249 * Initialize the VMM rendezvous semaphores.
250 */
251 pVM->vmm.s.pahEvtRendezvousEnterOrdered = (PRTSEMEVENT)MMR3HeapAlloc(pVM, MM_TAG_VMM, sizeof(RTSEMEVENT) * pVM->cCpus);
252 if (!pVM->vmm.s.pahEvtRendezvousEnterOrdered)
253 return VERR_NO_MEMORY;
254 for (VMCPUID i = 0; i < pVM->cCpus; i++)
255 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
256 for (VMCPUID i = 0; i < pVM->cCpus; i++)
257 {
258 rc = RTSemEventCreate(&pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
259 AssertRCReturn(rc, rc);
260 }
261 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousEnterOneByOne);
262 AssertRCReturn(rc, rc);
263 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
264 AssertRCReturn(rc, rc);
265 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousDone);
266 AssertRCReturn(rc, rc);
267 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousDoneCaller);
268 AssertRCReturn(rc, rc);
269 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPush);
270 AssertRCReturn(rc, rc);
271 rc = RTSemEventMultiCreate(&pVM->vmm.s.hEvtMulRendezvousRecursionPop);
272 AssertRCReturn(rc, rc);
273 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
274 AssertRCReturn(rc, rc);
275 rc = RTSemEventCreate(&pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
276 AssertRCReturn(rc, rc);
277
278 /*
279 * Register the saved state data unit.
280 */
281 rc = SSMR3RegisterInternal(pVM, "vmm", 1, VMM_SAVED_STATE_VERSION, VMM_STACK_SIZE + sizeof(RTGCPTR),
282 NULL, NULL, NULL,
283 NULL, vmmR3Save, NULL,
284 NULL, vmmR3Load, NULL);
285 if (RT_FAILURE(rc))
286 return rc;
287
288 /*
289 * Register the Ring-0 VM handle with the session for fast ioctl calls.
290 */
291 bool const fDriverless = SUPR3IsDriverless();
292 if (!fDriverless)
293 {
294 rc = SUPR3SetVMForFastIOCtl(VMCC_GET_VMR0_FOR_CALL(pVM));
295 if (RT_FAILURE(rc))
296 return rc;
297 }
298
299#ifdef VBOX_WITH_NMI
300 /*
301 * Allocate mapping for the host APIC.
302 */
303 rc = MMR3HyperReserve(pVM, HOST_PAGE_SIZE, "Host APIC", &pVM->vmm.s.GCPtrApicBase);
304 AssertRC(rc);
305#endif
306 if (RT_SUCCESS(rc))
307 {
308 /*
309 * Start the log flusher thread.
310 */
311 if (!fDriverless)
312 rc = RTThreadCreate(&pVM->vmm.s.hLogFlusherThread, vmmR3LogFlusher, pVM, 0 /*cbStack*/,
313 RTTHREADTYPE_IO, RTTHREADFLAGS_WAITABLE, "R0LogWrk");
314 if (RT_SUCCESS(rc))
315 {
316
317 /*
318 * Debug info and statistics.
319 */
320 DBGFR3InfoRegisterInternal(pVM, "fflags", "Displays the current Forced actions Flags.", vmmR3InfoFF);
321 vmmR3InitRegisterStats(pVM);
322 vmmInitFormatTypes();
323
324 return VINF_SUCCESS;
325 }
326 }
327 /** @todo Need failure cleanup? */
328
329 return rc;
330}
331
332
333/**
334 * VMMR3Init worker that register the statistics with STAM.
335 *
336 * @param pVM The cross context VM structure.
337 */
338static void vmmR3InitRegisterStats(PVM pVM)
339{
340 RT_NOREF_PV(pVM);
341
342 /* Nothing to do here in driverless mode. */
343 if (SUPR3IsDriverless())
344 return;
345
346 /*
347 * Statistics.
348 */
349 STAM_REG(pVM, &pVM->vmm.s.StatRunGC, STAMTYPE_COUNTER, "/VMM/RunGC", STAMUNIT_OCCURENCES, "Number of context switches.");
350 STAM_REG(pVM, &pVM->vmm.s.StatRZRetNormal, STAMTYPE_COUNTER, "/VMM/RZRet/Normal", STAMUNIT_OCCURENCES, "Number of VINF_SUCCESS returns.");
351 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterrupt, STAMTYPE_COUNTER, "/VMM/RZRet/Interrupt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT returns.");
352 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptHyper, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptHyper", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_HYPER returns.");
353 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGuestTrap, STAMTYPE_COUNTER, "/VMM/RZRet/GuestTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_GUEST_TRAP returns.");
354 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitch, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitch", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH returns.");
355 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRingSwitchInt, STAMTYPE_COUNTER, "/VMM/RZRet/RingSwitchInt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_RING_SWITCH_INT returns.");
356 STAM_REG(pVM, &pVM->vmm.s.StatRZRetStaleSelector, STAMTYPE_COUNTER, "/VMM/RZRet/StaleSelector", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_STALE_SELECTOR returns.");
357 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIRETTrap, STAMTYPE_COUNTER, "/VMM/RZRet/IRETTrap", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_IRET_TRAP returns.");
358 STAM_REG(pVM, &pVM->vmm.s.StatRZRetEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/Emulate", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION returns.");
359 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchEmulate, STAMTYPE_COUNTER, "/VMM/RZRet/PatchEmulate", STAMUNIT_OCCURENCES, "Number of VINF_PATCH_EMULATE_INSTR returns.");
360 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIORead, STAMTYPE_COUNTER, "/VMM/RZRet/IORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_READ returns.");
361 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_WRITE returns.");
362 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/IOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_IOPORT_COMMIT_WRITE returns.");
363 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIORead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIORead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ returns.");
364 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_WRITE returns.");
365 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOCommitWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOCommitWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_COMMIT_WRITE returns.");
366 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOReadWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOReadWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_R3_MMIO_READ_WRITE returns.");
367 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchRead, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchRead", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_READ returns.");
368 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMMIOPatchWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MMIOPatchWrite", STAMUNIT_OCCURENCES, "Number of VINF_IOM_HC_MMIO_PATCH_WRITE returns.");
369 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRRead, STAMTYPE_COUNTER, "/VMM/RZRet/MSRRead", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_READ returns.");
370 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMSRWrite, STAMTYPE_COUNTER, "/VMM/RZRet/MSRWrite", STAMUNIT_OCCURENCES, "Number of VINF_CPUM_R3_MSR_WRITE returns.");
371 STAM_REG(pVM, &pVM->vmm.s.StatRZRetLDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/LDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_GDT_FAULT returns.");
372 STAM_REG(pVM, &pVM->vmm.s.StatRZRetGDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/GDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_LDT_FAULT returns.");
373 STAM_REG(pVM, &pVM->vmm.s.StatRZRetIDTFault, STAMTYPE_COUNTER, "/VMM/RZRet/IDTFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_IDT_FAULT returns.");
374 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTSSFault, STAMTYPE_COUNTER, "/VMM/RZRet/TSSFault", STAMUNIT_OCCURENCES, "Number of VINF_EM_EXECUTE_INSTRUCTION_TSS_FAULT returns.");
375 STAM_REG(pVM, &pVM->vmm.s.StatRZRetCSAMTask, STAMTYPE_COUNTER, "/VMM/RZRet/CSAMTask", STAMUNIT_OCCURENCES, "Number of VINF_CSAM_PENDING_ACTION returns.");
376 STAM_REG(pVM, &pVM->vmm.s.StatRZRetSyncCR3, STAMTYPE_COUNTER, "/VMM/RZRet/SyncCR", STAMUNIT_OCCURENCES, "Number of VINF_PGM_SYNC_CR3 returns.");
377 STAM_REG(pVM, &pVM->vmm.s.StatRZRetMisc, STAMTYPE_COUNTER, "/VMM/RZRet/Misc", STAMUNIT_OCCURENCES, "Number of misc returns.");
378 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchInt3, STAMTYPE_COUNTER, "/VMM/RZRet/PatchInt3", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_INT3 returns.");
379 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchPF, STAMTYPE_COUNTER, "/VMM/RZRet/PatchPF", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_PF returns.");
380 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchGP, STAMTYPE_COUNTER, "/VMM/RZRet/PatchGP", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PATCH_TRAP_GP returns.");
381 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchIretIRQ, STAMTYPE_COUNTER, "/VMM/RZRet/PatchIret", STAMUNIT_OCCURENCES, "Number of VINF_PATM_PENDING_IRQ_AFTER_IRET returns.");
382 STAM_REG(pVM, &pVM->vmm.s.StatRZRetRescheduleREM, STAMTYPE_COUNTER, "/VMM/RZRet/ScheduleREM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RESCHEDULE_REM returns.");
383 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Total, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns.");
384 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Unknown, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Unknown", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns without responsible force flag.");
385 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3FF, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/ToR3", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TO_R3.");
386 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3TMVirt, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/TMVirt", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_TM_VIRTUAL_SYNC.");
387 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3HandyPages, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Handy", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PGM_NEED_HANDY_PAGES.");
388 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3PDMQueues, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/PDMQueue", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_QUEUES.");
389 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Rendezvous, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Rendezvous", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_EMT_RENDEZVOUS.");
390 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Timer, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/Timer", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_TIMER.");
391 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3DMA, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/DMA", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VM_FF_PDM_DMA.");
392 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3CritSect, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/CritSect", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_PDM_CRITSECT.");
393 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iem, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IEM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IEM.");
394 STAM_REG(pVM, &pVM->vmm.s.StatRZRetToR3Iom, STAMTYPE_COUNTER, "/VMM/RZRet/ToR3/IOM", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TO_R3 returns with VMCPU_FF_IOM.");
395 STAM_REG(pVM, &pVM->vmm.s.StatRZRetTimerPending, STAMTYPE_COUNTER, "/VMM/RZRet/TimerPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_TIMER_PENDING returns.");
396 STAM_REG(pVM, &pVM->vmm.s.StatRZRetInterruptPending, STAMTYPE_COUNTER, "/VMM/RZRet/InterruptPending", STAMUNIT_OCCURENCES, "Number of VINF_EM_RAW_INTERRUPT_PENDING returns.");
397 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPATMDuplicateFn, STAMTYPE_COUNTER, "/VMM/RZRet/PATMDuplicateFn", STAMUNIT_OCCURENCES, "Number of VINF_PATM_DUPLICATE_FUNCTION returns.");
398 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPGMFlushPending, STAMTYPE_COUNTER, "/VMM/RZRet/PGMFlushPending", STAMUNIT_OCCURENCES, "Number of VINF_PGM_POOL_FLUSH_PENDING returns.");
399 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPendingRequest, STAMTYPE_COUNTER, "/VMM/RZRet/PendingRequest", STAMUNIT_OCCURENCES, "Number of VINF_EM_PENDING_REQUEST returns.");
400 STAM_REG(pVM, &pVM->vmm.s.StatRZRetPatchTPR, STAMTYPE_COUNTER, "/VMM/RZRet/PatchTPR", STAMUNIT_OCCURENCES, "Number of VINF_EM_HM_PATCH_TPR_INSTR returns.");
401
402 STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-Flushes", STAMUNIT_OCCURENCES, "Total number of buffer flushes");
403 STAMR3Register(pVM, &pVM->vmm.s.StatLogFlusherNoWakeUp, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, "/VMM/LogFlush/00-NoWakups", STAMUNIT_OCCURENCES, "Times the flusher thread didn't need waking up.");
404
405 for (VMCPUID i = 0; i < pVM->cCpus; i++)
406 {
407 PVMCPU pVCpu = pVM->apCpusR3[i];
408 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlock, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlock", i);
409 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOnTime, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOnTime", i);
410 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockOverslept, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockOverslept", i);
411 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltBlockInsomnia, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_NS_PER_CALL, "", "/PROF/CPU%u/VM/Halt/R0HaltBlockInsomnia", i);
412 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExec, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec", i);
413 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromSpin", i);
414 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltExecFromBlock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltExec/FromBlock", i);
415 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3", i);
416 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3FromSpin, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/FromSpin", i);
417 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3Other, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/Other", i);
418 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PendingFF, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PendingFF", i);
419 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3SmallDelta, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/SmallDelta", i);
420 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostNoInt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitNoInt", i);
421 STAMR3RegisterF(pVM, &pVCpu->vmm.s.StatR0HaltToR3PostPendingFF,STAMTYPE_COUNTER,STAMVISIBILITY_ALWAYS,STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltToR3/PostWaitPendingFF", i);
422 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0Halts, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryCounter", i);
423 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsSucceeded, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistorySucceeded", i);
424 STAMR3RegisterF(pVM, &pVCpu->vmm.s.cR0HaltsToRing3, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/PROF/CPU%u/VM/Halt/R0HaltHistoryToRing3", i);
425
426 STAMR3RegisterF(pVM, &pVCpu->cEmtHashCollisions, STAMTYPE_U8, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "", "/VMM/EmtHashCollisions/Emt%02u", i);
427
428 PVMMR3CPULOGGER pShared = &pVCpu->vmm.s.u.s.Logger;
429 STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg", i);
430 STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/CannotBlock", i);
431 STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Wait", i);
432 STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Reg/Races", i);
433 STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Reg/RacesToR0", i);
434 STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbDropped", i);
435 STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/cbBuf", i);
436 STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Reg/idxBuf", i);
437
438 pShared = &pVCpu->vmm.s.u.s.RelLogger;
439 STAMR3RegisterF(pVM, &pShared->StatFlushes, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel", i);
440 STAMR3RegisterF(pVM, &pShared->StatCannotBlock, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/CannotBlock", i);
441 STAMR3RegisterF(pVM, &pShared->StatWait, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Wait", i);
442 STAMR3RegisterF(pVM, &pShared->StatRaces, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, "", "/VMM/LogFlush/CPU%u/Rel/Races", i);
443 STAMR3RegisterF(pVM, &pShared->StatRacesToR0, STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES, "", "/VMM/LogFlush/CPU%u/Rel/RacesToR0", i);
444 STAMR3RegisterF(pVM, &pShared->cbDropped, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbDropped", i);
445 STAMR3RegisterF(pVM, &pShared->cbBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/cbBuf", i);
446 STAMR3RegisterF(pVM, &pShared->idxBuf, STAMTYPE_U32, STAMVISIBILITY_USED, STAMUNIT_BYTES, "", "/VMM/LogFlush/CPU%u/Rel/idxBuf", i);
447 }
448}
449
450
451/**
452 * Worker for VMMR3InitR0 that calls ring-0 to do EMT specific initialization.
453 *
454 * @returns VBox status code.
455 * @param pVM The cross context VM structure.
456 * @param pVCpu The cross context per CPU structure.
457 * @thread EMT(pVCpu)
458 */
459static DECLCALLBACK(int) vmmR3InitR0Emt(PVM pVM, PVMCPU pVCpu)
460{
461 return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_INIT_EMT, 0, NULL);
462}
463
464
465/**
466 * Initializes the R0 VMM.
467 *
468 * @returns VBox status code.
469 * @param pVM The cross context VM structure.
470 */
471VMMR3_INT_DECL(int) VMMR3InitR0(PVM pVM)
472{
473 int rc;
474 PVMCPU pVCpu = VMMGetCpu(pVM);
475 Assert(pVCpu && pVCpu->idCpu == 0);
476
477 /*
478 * Nothing to do here in driverless mode.
479 */
480 if (SUPR3IsDriverless())
481 return VINF_SUCCESS;
482
483 /*
484 * Make sure the ring-0 loggers are up to date.
485 */
486 rc = VMMR3UpdateLoggers(pVM);
487 if (RT_FAILURE(rc))
488 return rc;
489
490 /*
491 * Call Ring-0 entry with init code.
492 */
493#ifdef NO_SUPCALLR0VMM
494 //rc = VERR_GENERAL_FAILURE;
495 rc = VINF_SUCCESS;
496#else
497 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_INIT, RT_MAKE_U64(VMMGetSvnRev(), vmmGetBuildType()), NULL);
498#endif
499
500 /*
501 * Flush the logs & deal with assertions.
502 */
503#ifdef LOG_ENABLED
504 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
505#endif
506 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
507 if (rc == VERR_VMM_RING0_ASSERTION)
508 rc = vmmR3HandleRing0Assert(pVM, pVCpu);
509 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
510 {
511 LogRel(("VMM: R0 init failed, rc=%Rra\n", rc));
512 if (RT_SUCCESS(rc))
513 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
514 }
515
516 /*
517 * Log stuff we learned in ring-0.
518 */
519 /* Log whether thread-context hooks are used (on Linux this can depend on how the kernel is configured). */
520 if (pVM->vmm.s.fIsUsingContextHooks)
521 LogRel(("VMM: Enabled thread-context hooks\n"));
522 else
523 LogRel(("VMM: Thread-context hooks unavailable\n"));
524
525 /* Log RTThreadPreemptIsPendingTrusty() and RTThreadPreemptIsPossible() results. */
526 if (pVM->vmm.s.fIsPreemptPendingApiTrusty)
527 LogRel(("VMM: RTThreadPreemptIsPending() can be trusted\n"));
528 else
529 LogRel(("VMM: Warning! RTThreadPreemptIsPending() cannot be trusted! Need to update kernel info?\n"));
530 if (pVM->vmm.s.fIsPreemptPossible)
531 LogRel(("VMM: Kernel preemption is possible\n"));
532 else
533 LogRel(("VMM: Kernel preemption is not possible it seems\n"));
534
535 /*
536 * Send all EMTs to ring-0 to get their logger initialized.
537 */
538 for (VMCPUID idCpu = 0; RT_SUCCESS(rc) && idCpu < pVM->cCpus; idCpu++)
539 rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)vmmR3InitR0Emt, 2, pVM, pVM->apCpusR3[idCpu]);
540
541 return rc;
542}
543
544
545/**
546 * Called when an init phase completes.
547 *
548 * @returns VBox status code.
549 * @param pVM The cross context VM structure.
550 * @param enmWhat Which init phase.
551 */
552VMMR3_INT_DECL(int) VMMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
553{
554 int rc = VINF_SUCCESS;
555
556 switch (enmWhat)
557 {
558 case VMINITCOMPLETED_RING3:
559 {
560#if 0 /* pointless when timers doesn't run on EMT */
561 /*
562 * Create the EMT yield timer.
563 */
564 rc = TMR3TimerCreate(pVM, TMCLOCK_REAL, vmmR3YieldEMT, NULL, TMTIMER_FLAGS_NO_RING0,
565 "EMT Yielder", &pVM->vmm.s.hYieldTimer);
566 AssertRCReturn(rc, rc);
567
568 rc = TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldEveryMillies);
569 AssertRCReturn(rc, rc);
570#endif
571 break;
572 }
573
574 case VMINITCOMPLETED_HM:
575 {
576#if !defined(VBOX_VMM_TARGET_ARMV8)
577 /*
578 * Disable the periodic preemption timers if we can use the
579 * VMX-preemption timer instead.
580 */
581 if ( pVM->vmm.s.fUsePeriodicPreemptionTimers
582 && HMR3IsVmxPreemptionTimerUsed(pVM))
583 pVM->vmm.s.fUsePeriodicPreemptionTimers = false;
584 LogRel(("VMM: fUsePeriodicPreemptionTimers=%RTbool\n", pVM->vmm.s.fUsePeriodicPreemptionTimers));
585#endif
586
587 /*
588 * Last chance for GIM to update its CPUID leaves if it requires
589 * knowledge/information from HM initialization.
590 */
591/** @todo r=bird: This shouldn't be done from here, but rather from VM.cpp. There is no dependency on VMM here. */
592 rc = GIMR3InitCompleted(pVM);
593 AssertRCReturn(rc, rc);
594
595 /*
596 * CPUM's post-initialization (print CPUIDs).
597 */
598 CPUMR3LogCpuIdAndMsrFeatures(pVM);
599 break;
600 }
601
602 default: /* shuts up gcc */
603 break;
604 }
605
606 return rc;
607}
608
609
610/**
611 * Terminate the VMM bits.
612 *
613 * @returns VBox status code.
614 * @param pVM The cross context VM structure.
615 */
616VMMR3_INT_DECL(int) VMMR3Term(PVM pVM)
617{
618 PVMCPU pVCpu = VMMGetCpu(pVM);
619 Assert(pVCpu && pVCpu->idCpu == 0);
620
621 /*
622 * Call Ring-0 entry with termination code.
623 */
624 int rc = VINF_SUCCESS;
625 if (!SUPR3IsDriverless())
626 {
627#ifndef NO_SUPCALLR0VMM
628 rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), 0 /*idCpu*/, VMMR0_DO_VMMR0_TERM, 0, NULL);
629#endif
630 }
631
632 /*
633 * Flush the logs & deal with assertions.
634 */
635#ifdef LOG_ENABLED
636 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
637#endif
638 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
639 if (rc == VERR_VMM_RING0_ASSERTION)
640 rc = vmmR3HandleRing0Assert(pVM, pVCpu);
641 if (RT_FAILURE(rc) || (rc >= VINF_EM_FIRST && rc <= VINF_EM_LAST))
642 {
643 LogRel(("VMM: VMMR3Term: R0 term failed, rc=%Rra. (warning)\n", rc));
644 if (RT_SUCCESS(rc))
645 rc = VERR_IPE_UNEXPECTED_INFO_STATUS;
646 }
647
648 /*
649 * Do clean ups.
650 */
651 for (VMCPUID i = 0; i < pVM->cCpus; i++)
652 {
653 RTSemEventDestroy(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
654 pVM->vmm.s.pahEvtRendezvousEnterOrdered[i] = NIL_RTSEMEVENT;
655 }
656 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
657 pVM->vmm.s.hEvtRendezvousEnterOneByOne = NIL_RTSEMEVENT;
658 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
659 pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce = NIL_RTSEMEVENTMULTI;
660 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousDone);
661 pVM->vmm.s.hEvtMulRendezvousDone = NIL_RTSEMEVENTMULTI;
662 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousDoneCaller);
663 pVM->vmm.s.hEvtRendezvousDoneCaller = NIL_RTSEMEVENT;
664 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
665 pVM->vmm.s.hEvtMulRendezvousRecursionPush = NIL_RTSEMEVENTMULTI;
666 RTSemEventMultiDestroy(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
667 pVM->vmm.s.hEvtMulRendezvousRecursionPop = NIL_RTSEMEVENTMULTI;
668 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
669 pVM->vmm.s.hEvtRendezvousRecursionPushCaller = NIL_RTSEMEVENT;
670 RTSemEventDestroy(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
671 pVM->vmm.s.hEvtRendezvousRecursionPopCaller = NIL_RTSEMEVENT;
672
673 vmmTermFormatTypes();
674
675 /*
676 * Wait for the log flusher thread to complete.
677 */
678 if (pVM->vmm.s.hLogFlusherThread != NIL_RTTHREAD)
679 {
680 int rc2 = RTThreadWait(pVM->vmm.s.hLogFlusherThread, RT_MS_30SEC, NULL);
681 AssertLogRelRC(rc2);
682 if (RT_SUCCESS(rc2))
683 pVM->vmm.s.hLogFlusherThread = NIL_RTTHREAD;
684 }
685
686 return rc;
687}
688
689
690/**
691 * Applies relocations to data and code managed by this
692 * component. This function will be called at init and
693 * whenever the VMM need to relocate it self inside the GC.
694 *
695 * The VMM will need to apply relocations to the core code.
696 *
697 * @param pVM The cross context VM structure.
698 * @param offDelta The relocation delta.
699 */
700VMMR3_INT_DECL(void) VMMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
701{
702 LogFlow(("VMMR3Relocate: offDelta=%RGv\n", offDelta));
703 RT_NOREF(offDelta);
704
705 /*
706 * Update the logger.
707 */
708 VMMR3UpdateLoggers(pVM);
709}
710
711
712/**
713 * Worker for VMMR3UpdateLoggers.
714 */
715static int vmmR3UpdateLoggersWorker(PVM pVM, PVMCPU pVCpu, PRTLOGGER pSrcLogger, bool fReleaseLogger)
716{
717 /*
718 * Get the group count.
719 */
720 uint32_t uGroupsCrc32 = 0;
721 uint32_t cGroups = 0;
722 uint64_t fFlags = 0;
723 int rc = RTLogQueryBulk(pSrcLogger, &fFlags, &uGroupsCrc32, &cGroups, NULL);
724 Assert(rc == VERR_BUFFER_OVERFLOW);
725
726 /*
727 * Allocate the request of the right size.
728 */
729 uint32_t const cbReq = RT_UOFFSETOF_DYN(VMMR0UPDATELOGGERSREQ, afGroups[cGroups]);
730 PVMMR0UPDATELOGGERSREQ pReq = (PVMMR0UPDATELOGGERSREQ)RTMemAllocZVar(cbReq);
731 if (pReq)
732 {
733 pReq->Hdr.u32Magic = SUPVMMR0REQHDR_MAGIC;
734 pReq->Hdr.cbReq = cbReq;
735 pReq->cGroups = cGroups;
736 rc = RTLogQueryBulk(pSrcLogger, &pReq->fFlags, &pReq->uGroupCrc32, &pReq->cGroups, pReq->afGroups);
737 AssertRC(rc);
738 if (RT_SUCCESS(rc))
739 {
740 /*
741 * The 64-bit value argument.
742 */
743 uint64_t fExtraArg = fReleaseLogger;
744
745 /* Only outputting to the parent VMM's logs? Enable ring-0 to flush directly. */
746 uint32_t fDst = RTLogGetDestinations(pSrcLogger);
747 fDst &= ~(RTLOGDEST_DUMMY | RTLOGDEST_F_NO_DENY | RTLOGDEST_F_DELAY_FILE | RTLOGDEST_FIXED_FILE | RTLOGDEST_FIXED_DIR);
748 if ( (fDst & (RTLOGDEST_VMM | RTLOGDEST_VMM_REL))
749 && !(fDst & ~(RTLOGDEST_VMM | RTLOGDEST_VMM_REL)))
750 fExtraArg |= (fDst & RTLOGDEST_VMM ? VMMR0UPDATELOGGER_F_TO_PARENT_VMM_DBG : 0)
751 | (fDst & RTLOGDEST_VMM_REL ? VMMR0UPDATELOGGER_F_TO_PARENT_VMM_REL : 0);
752
753 rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_VMMR0_UPDATE_LOGGERS, fExtraArg, &pReq->Hdr);
754 }
755
756 RTMemFree(pReq);
757 }
758 else
759 rc = VERR_NO_MEMORY;
760 return rc;
761}
762
763
764/**
765 * Updates the settings for the RC and R0 loggers.
766 *
767 * @returns VBox status code.
768 * @param pVM The cross context VM structure.
769 * @thread EMT
770 */
771VMMR3_INT_DECL(int) VMMR3UpdateLoggers(PVM pVM)
772{
773 /* Nothing to do here if we're in driverless mode: */
774 if (SUPR3IsDriverless())
775 return VINF_SUCCESS;
776
777 PVMCPU pVCpu = VMMGetCpu(pVM);
778 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
779
780 /*
781 * Each EMT has each own logger instance.
782 */
783 /* Debug logging.*/
784 int rcDebug = VINF_SUCCESS;
785#ifdef LOG_ENABLED
786 PRTLOGGER const pDefault = RTLogDefaultInstance();
787 if (pDefault)
788 rcDebug = vmmR3UpdateLoggersWorker(pVM, pVCpu, pDefault, false /*fReleaseLogger*/);
789#else
790 RT_NOREF(pVM);
791#endif
792
793 /* Release logging. */
794 int rcRelease = VINF_SUCCESS;
795 PRTLOGGER const pRelease = RTLogRelGetDefaultInstance();
796 if (pRelease)
797 rcRelease = vmmR3UpdateLoggersWorker(pVM, pVCpu, pRelease, true /*fReleaseLogger*/);
798
799 return RT_SUCCESS(rcDebug) ? rcRelease : rcDebug;
800}
801
802
803/**
804 * @callback_method_impl{FNRTTHREAD, Ring-0 log flusher thread.}
805 */
806static DECLCALLBACK(int) vmmR3LogFlusher(RTTHREAD hThreadSelf, void *pvUser)
807{
808 PVM const pVM = (PVM)pvUser;
809 RT_NOREF(hThreadSelf);
810
811 /* Reset the flusher state before we start: */
812 pVM->vmm.s.LogFlusherItem.u32 = UINT32_MAX;
813
814 /*
815 * The work loop.
816 */
817 for (;;)
818 {
819 /*
820 * Wait for work.
821 */
822 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), NIL_VMCPUID, VMMR0_DO_VMMR0_LOG_FLUSHER, 0, NULL);
823 if (RT_SUCCESS(rc))
824 {
825 /* Paranoia: Make another copy of the request, to make sure the validated data can't be changed. */
826 VMMLOGFLUSHERENTRY Item;
827 Item.u32 = pVM->vmm.s.LogFlusherItem.u32;
828 if ( Item.s.idCpu < pVM->cCpus
829 && Item.s.idxLogger < VMMLOGGER_IDX_MAX
830 && Item.s.idxBuffer < VMMLOGGER_BUFFER_COUNT)
831 {
832 /*
833 * Verify the request.
834 */
835 PVMCPU const pVCpu = pVM->apCpusR3[Item.s.idCpu];
836 PVMMR3CPULOGGER const pShared = &pVCpu->vmm.s.u.aLoggers[Item.s.idxLogger];
837 uint32_t const cbToFlush = pShared->aBufs[Item.s.idxBuffer].AuxDesc.offBuf;
838 if (cbToFlush > 0)
839 {
840 if (cbToFlush <= pShared->cbBuf)
841 {
842 char * const pchBufR3 = pShared->aBufs[Item.s.idxBuffer].pchBufR3;
843 if (pchBufR3)
844 {
845 /*
846 * Do the flushing.
847 */
848 PRTLOGGER const pLogger = Item.s.idxLogger == VMMLOGGER_IDX_REGULAR
849 ? RTLogGetDefaultInstance() : RTLogRelGetDefaultInstance();
850 if (pLogger)
851 {
852 char szBefore[128];
853 RTStrPrintf(szBefore, sizeof(szBefore),
854 "*FLUSH* idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x fFlushed=%RTbool cbDropped=%#x\n",
855 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush,
856 pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator, pShared->cbDropped);
857 RTLogBulkWrite(pLogger, szBefore, pchBufR3, cbToFlush, "*FLUSH DONE*\n");
858 }
859 }
860 else
861 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! No ring-3 buffer pointer!\n",
862 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush));
863 }
864 else
865 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Exceeds %#x bytes buffer size!\n",
866 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush, pShared->cbBuf));
867 }
868 else
869 Log(("vmmR3LogFlusher: idCpu=%u idxLogger=%u idxBuffer=%u cbToFlush=%#x: Warning! Zero bytes to flush!\n",
870 Item.s.idCpu, Item.s.idxLogger, Item.s.idxBuffer, cbToFlush));
871
872 /*
873 * Mark the descriptor as flushed and set the request flag for same.
874 */
875 pShared->aBufs[Item.s.idxBuffer].AuxDesc.fFlushedIndicator = true;
876 }
877 else
878 {
879 Assert(Item.s.idCpu == UINT16_MAX);
880 Assert(Item.s.idxLogger == UINT8_MAX);
881 Assert(Item.s.idxBuffer == UINT8_MAX);
882 }
883 }
884 /*
885 * Interrupted can happen, just ignore it.
886 */
887 else if (rc == VERR_INTERRUPTED)
888 { /* ignore*/ }
889 /*
890 * The ring-0 termination code will set the shutdown flag and wake us
891 * up, and we should return with object destroyed. In case there is
892 * some kind of race, we might also get sempahore destroyed.
893 */
894 else if ( rc == VERR_OBJECT_DESTROYED
895 || rc == VERR_SEM_DESTROYED
896 || rc == VERR_INVALID_HANDLE)
897 {
898 LogRel(("vmmR3LogFlusher: Terminating (%Rrc)\n", rc));
899 return VINF_SUCCESS;
900 }
901 /*
902 * There shouldn't be any other errors...
903 */
904 else
905 {
906 LogRelMax(64, ("vmmR3LogFlusher: VMMR0_DO_VMMR0_LOG_FLUSHER -> %Rrc\n", rc));
907 AssertRC(rc);
908 RTThreadSleep(1);
909 }
910 }
911}
912
913
914/**
915 * Helper for VMM_FLUSH_R0_LOG that does the flushing.
916 *
917 * @param pVM The cross context VM structure.
918 * @param pVCpu The cross context virtual CPU structure of the calling
919 * EMT.
920 * @param pShared The shared logger data.
921 * @param idxBuf The buffer to flush.
922 * @param pDstLogger The destination IPRT logger.
923 */
924static void vmmR3LogReturnFlush(PVM pVM, PVMCPU pVCpu, PVMMR3CPULOGGER pShared, size_t idxBuf, PRTLOGGER pDstLogger)
925{
926 uint32_t const cbToFlush = pShared->aBufs[idxBuf].AuxDesc.offBuf;
927 const char *pszBefore = cbToFlush < 256 ? NULL : "*FLUSH*\n";
928 const char *pszAfter = cbToFlush < 256 ? NULL : "*END*\n";
929
930#if VMMLOGGER_BUFFER_COUNT > 1
931 /*
932 * When we have more than one log buffer, the flusher thread may still be
933 * working on the previous buffer when we get here.
934 */
935 char szBefore[64];
936 if (pShared->cFlushing > 0)
937 {
938 STAM_REL_PROFILE_START(&pShared->StatRaces, a);
939 uint64_t const nsStart = RTTimeNanoTS();
940
941 /* A no-op, but it takes the lock and the hope is that we end up waiting
942 on the flusher to finish up. */
943 RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL);
944 if (pShared->cFlushing != 0)
945 {
946 RTLogBulkWrite(pDstLogger, NULL, "", 0, NULL);
947
948 /* If no luck, go to ring-0 and to proper waiting. */
949 if (pShared->cFlushing != 0)
950 {
951 STAM_REL_COUNTER_INC(&pShared->StatRacesToR0);
952 SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, VMMR0_DO_VMMR0_LOG_WAIT_FLUSHED, 0, NULL);
953 }
954 }
955
956 RTStrPrintf(szBefore, sizeof(szBefore), "*%sFLUSH* waited %'RU64 ns\n",
957 pShared->cFlushing == 0 ? "" : " MISORDERED", RTTimeNanoTS() - nsStart);
958 pszBefore = szBefore;
959 STAM_REL_PROFILE_STOP(&pShared->StatRaces, a);
960 }
961#else
962 RT_NOREF(pVM, pVCpu);
963#endif
964
965 RTLogBulkWrite(pDstLogger, pszBefore, pShared->aBufs[idxBuf].pchBufR3, cbToFlush, pszAfter);
966 pShared->aBufs[idxBuf].AuxDesc.fFlushedIndicator = true;
967}
968
969
970/**
971 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg1Weak output.
972 *
973 * @returns Pointer to the buffer.
974 * @param pVM The cross context VM structure.
975 */
976VMMR3DECL(const char *) VMMR3GetRZAssertMsg1(PVM pVM)
977{
978 return pVM->vmm.s.szRing0AssertMsg1;
979}
980
981
982/**
983 * Returns the VMCPU of the specified virtual CPU.
984 *
985 * @returns The VMCPU pointer. NULL if @a idCpu or @a pUVM is invalid.
986 *
987 * @param pUVM The user mode VM handle.
988 * @param idCpu The ID of the virtual CPU.
989 */
990VMMR3DECL(PVMCPU) VMMR3GetCpuByIdU(PUVM pUVM, RTCPUID idCpu)
991{
992 UVM_ASSERT_VALID_EXT_RETURN(pUVM, NULL);
993 AssertReturn(idCpu < pUVM->cCpus, NULL);
994 VM_ASSERT_VALID_EXT_RETURN(pUVM->pVM, NULL);
995 return pUVM->pVM->apCpusR3[idCpu];
996}
997
998
999/**
1000 * Gets the pointer to a buffer containing the R0/RC RTAssertMsg2Weak output.
1001 *
1002 * @returns Pointer to the buffer.
1003 * @param pVM The cross context VM structure.
1004 */
1005VMMR3DECL(const char *) VMMR3GetRZAssertMsg2(PVM pVM)
1006{
1007 return pVM->vmm.s.szRing0AssertMsg2;
1008}
1009
1010
1011/**
1012 * Execute state save operation.
1013 *
1014 * @returns VBox status code.
1015 * @param pVM The cross context VM structure.
1016 * @param pSSM SSM operation handle.
1017 */
1018static DECLCALLBACK(int) vmmR3Save(PVM pVM, PSSMHANDLE pSSM)
1019{
1020 LogFlow(("vmmR3Save:\n"));
1021
1022 /*
1023 * Save the started/stopped state of all CPUs except 0 as it will always
1024 * be running. This avoids breaking the saved state version. :-)
1025 */
1026 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1027 SSMR3PutBool(pSSM, VMCPUSTATE_IS_STARTED(VMCPU_GET_STATE(pVM->apCpusR3[i])));
1028
1029 return SSMR3PutU32(pSSM, UINT32_MAX); /* terminator */
1030}
1031
1032
1033/**
1034 * Execute state load operation.
1035 *
1036 * @returns VBox status code.
1037 * @param pVM The cross context VM structure.
1038 * @param pSSM SSM operation handle.
1039 * @param uVersion Data layout version.
1040 * @param uPass The data pass.
1041 */
1042static DECLCALLBACK(int) vmmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
1043{
1044 LogFlow(("vmmR3Load:\n"));
1045 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
1046
1047 /*
1048 * Validate version.
1049 */
1050 if ( uVersion != VMM_SAVED_STATE_VERSION
1051 && uVersion != VMM_SAVED_STATE_VERSION_3_0)
1052 {
1053 AssertMsgFailed(("vmmR3Load: Invalid version uVersion=%u!\n", uVersion));
1054 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1055 }
1056
1057 if (uVersion <= VMM_SAVED_STATE_VERSION_3_0)
1058 {
1059 /* Ignore the stack bottom, stack pointer and stack bits. */
1060 RTRCPTR RCPtrIgnored;
1061 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1062 SSMR3GetRCPtr(pSSM, &RCPtrIgnored);
1063#ifdef RT_OS_DARWIN
1064 if ( SSMR3HandleVersion(pSSM) >= VBOX_FULL_VERSION_MAKE(3,0,0)
1065 && SSMR3HandleVersion(pSSM) < VBOX_FULL_VERSION_MAKE(3,1,0)
1066 && SSMR3HandleRevision(pSSM) >= 48858
1067 && ( !strcmp(SSMR3HandleHostOSAndArch(pSSM), "darwin.x86")
1068 || !strcmp(SSMR3HandleHostOSAndArch(pSSM), "") )
1069 )
1070 SSMR3Skip(pSSM, 16384);
1071 else
1072 SSMR3Skip(pSSM, 8192);
1073#else
1074 SSMR3Skip(pSSM, 8192);
1075#endif
1076 }
1077
1078 /*
1079 * Restore the VMCPU states. VCPU 0 is always started.
1080 */
1081 VMCPU_SET_STATE(pVM->apCpusR3[0], VMCPUSTATE_STARTED);
1082 for (VMCPUID i = 1; i < pVM->cCpus; i++)
1083 {
1084 bool fStarted;
1085 int rc = SSMR3GetBool(pSSM, &fStarted);
1086 if (RT_FAILURE(rc))
1087 return rc;
1088 VMCPU_SET_STATE(pVM->apCpusR3[i], fStarted ? VMCPUSTATE_STARTED : VMCPUSTATE_STOPPED);
1089 }
1090
1091 /* terminator */
1092 uint32_t u32;
1093 int rc = SSMR3GetU32(pSSM, &u32);
1094 if (RT_FAILURE(rc))
1095 return rc;
1096 if (u32 != UINT32_MAX)
1097 {
1098 AssertMsgFailed(("u32=%#x\n", u32));
1099 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1100 }
1101 return VINF_SUCCESS;
1102}
1103
1104
1105/**
1106 * Suspends the CPU yielder.
1107 *
1108 * @param pVM The cross context VM structure.
1109 */
1110VMMR3_INT_DECL(void) VMMR3YieldSuspend(PVM pVM)
1111{
1112#if 0 /* pointless when timers doesn't run on EMT */
1113 VMCPU_ASSERT_EMT(pVM->apCpusR3[0]);
1114 if (!pVM->vmm.s.cYieldResumeMillies)
1115 {
1116 uint64_t u64Now = TMTimerGet(pVM, pVM->vmm.s.hYieldTimer);
1117 uint64_t u64Expire = TMTimerGetExpire(pVM, pVM->vmm.s.hYieldTimer);
1118 if (u64Now >= u64Expire || u64Expire == ~(uint64_t)0)
1119 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1120 else
1121 pVM->vmm.s.cYieldResumeMillies = TMTimerToMilli(pVM, pVM->vmm.s.hYieldTimer, u64Expire - u64Now);
1122 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1123 }
1124 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1125#else
1126 RT_NOREF(pVM);
1127#endif
1128}
1129
1130
1131/**
1132 * Stops the CPU yielder.
1133 *
1134 * @param pVM The cross context VM structure.
1135 */
1136VMMR3_INT_DECL(void) VMMR3YieldStop(PVM pVM)
1137{
1138#if 0 /* pointless when timers doesn't run on EMT */
1139 if (!pVM->vmm.s.cYieldResumeMillies)
1140 TMTimerStop(pVM, pVM->vmm.s.hYieldTimer);
1141 pVM->vmm.s.cYieldResumeMillies = pVM->vmm.s.cYieldEveryMillies;
1142 pVM->vmm.s.u64LastYield = RTTimeNanoTS();
1143#else
1144 RT_NOREF(pVM);
1145#endif
1146}
1147
1148
1149/**
1150 * Resumes the CPU yielder when it has been a suspended or stopped.
1151 *
1152 * @param pVM The cross context VM structure.
1153 */
1154VMMR3_INT_DECL(void) VMMR3YieldResume(PVM pVM)
1155{
1156#if 0 /* pointless when timers doesn't run on EMT */
1157 if (pVM->vmm.s.cYieldResumeMillies)
1158 {
1159 TMTimerSetMillies(pVM, pVM->vmm.s.hYieldTimer, pVM->vmm.s.cYieldResumeMillies);
1160 pVM->vmm.s.cYieldResumeMillies = 0;
1161 }
1162#else
1163 RT_NOREF(pVM);
1164#endif
1165}
1166
1167
1168#if 0 /* pointless when timers doesn't run on EMT */
1169/**
1170 * @callback_method_impl{FNTMTIMERINT, EMT yielder}
1171 *
1172 * @todo This is a UNI core/thread thing, really... Should be reconsidered.
1173 */
1174static DECLCALLBACK(void) vmmR3YieldEMT(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
1175{
1176 NOREF(pvUser);
1177
1178 /*
1179 * This really needs some careful tuning. While we shouldn't be too greedy since
1180 * that'll cause the rest of the system to stop up, we shouldn't be too nice either
1181 * because that'll cause us to stop up.
1182 *
1183 * The current logic is to use the default interval when there is no lag worth
1184 * mentioning, but when we start accumulating lag we don't bother yielding at all.
1185 *
1186 * (This depends on the TMCLOCK_VIRTUAL_SYNC to be scheduled before TMCLOCK_REAL
1187 * so the lag is up to date.)
1188 */
1189 const uint64_t u64Lag = TMVirtualSyncGetLag(pVM);
1190 if ( u64Lag < 50000000 /* 50ms */
1191 || ( u64Lag < 1000000000 /* 1s */
1192 && RTTimeNanoTS() - pVM->vmm.s.u64LastYield < 500000000 /* 500 ms */)
1193 )
1194 {
1195 uint64_t u64Elapsed = RTTimeNanoTS();
1196 pVM->vmm.s.u64LastYield = u64Elapsed;
1197
1198 RTThreadYield();
1199
1200#ifdef LOG_ENABLED
1201 u64Elapsed = RTTimeNanoTS() - u64Elapsed;
1202 Log(("vmmR3YieldEMT: %RI64 ns\n", u64Elapsed));
1203#endif
1204 }
1205 TMTimerSetMillies(pVM, hTimer, pVM->vmm.s.cYieldEveryMillies);
1206}
1207#endif
1208
1209
1210/**
1211 * Executes guest code (Intel VT-x and AMD-V).
1212 *
1213 * @param pVM The cross context VM structure.
1214 * @param pVCpu The cross context virtual CPU structure.
1215 */
1216VMMR3_INT_DECL(int) VMMR3HmRunGC(PVM pVM, PVMCPU pVCpu)
1217{
1218#if defined(VBOX_VMM_TARGET_ARMV8)
1219 /* We should actually never get here as the only execution engine is NEM. */
1220 RT_NOREF(pVM, pVCpu);
1221 AssertReleaseFailed();
1222 return VERR_NOT_SUPPORTED;
1223#else
1224 Log2(("VMMR3HmRunGC: (cs:rip=%04x:%RX64)\n", CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1225
1226 int rc;
1227 do
1228 {
1229# ifdef NO_SUPCALLR0VMM
1230 rc = VERR_GENERAL_FAILURE;
1231# else
1232 rc = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), VMMR0_DO_HM_RUN, pVCpu->idCpu);
1233 if (RT_LIKELY(rc == VINF_SUCCESS))
1234 rc = pVCpu->vmm.s.iLastGZRc;
1235# endif
1236 } while (rc == VINF_EM_RAW_INTERRUPT_HYPER);
1237
1238# if 0 /** @todo triggers too often */
1239 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3));
1240# endif
1241
1242 /*
1243 * Flush the logs
1244 */
1245# ifdef LOG_ENABLED
1246 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
1247# endif
1248 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
1249 if (rc != VERR_VMM_RING0_ASSERTION)
1250 {
1251 Log2(("VMMR3HmRunGC: returns %Rrc (cs:rip=%04x:%RX64)\n", rc, CPUMGetGuestCS(pVCpu), CPUMGetGuestRIP(pVCpu)));
1252 return rc;
1253 }
1254 return vmmR3HandleRing0Assert(pVM, pVCpu);
1255#endif
1256}
1257
1258
1259/**
1260 * Perform one of the fast I/O control VMMR0 operation.
1261 *
1262 * @returns VBox strict status code.
1263 * @param pVM The cross context VM structure.
1264 * @param pVCpu The cross context virtual CPU structure.
1265 * @param enmOperation The operation to perform.
1266 */
1267VMMR3_INT_DECL(VBOXSTRICTRC) VMMR3CallR0EmtFast(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation)
1268{
1269 VBOXSTRICTRC rcStrict;
1270 do
1271 {
1272#ifdef NO_SUPCALLR0VMM
1273 rcStrict = VERR_GENERAL_FAILURE;
1274#else
1275 rcStrict = SUPR3CallVMMR0Fast(VMCC_GET_VMR0_FOR_CALL(pVM), enmOperation, pVCpu->idCpu);
1276 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
1277 rcStrict = pVCpu->vmm.s.iLastGZRc;
1278#endif
1279 } while (rcStrict == VINF_EM_RAW_INTERRUPT_HYPER);
1280
1281 /*
1282 * Flush the logs
1283 */
1284#ifdef LOG_ENABLED
1285 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
1286#endif
1287 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
1288 if (rcStrict != VERR_VMM_RING0_ASSERTION)
1289 return rcStrict;
1290 return vmmR3HandleRing0Assert(pVM, pVCpu);
1291}
1292
1293
1294/**
1295 * VCPU worker for VMMR3SendStartupIpi.
1296 *
1297 * @param pVM The cross context VM structure.
1298 * @param idCpu Virtual CPU to perform SIPI on.
1299 * @param uVector The SIPI vector.
1300 */
1301static DECLCALLBACK(int) vmmR3SendStarupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1302{
1303 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1304 VMCPU_ASSERT_EMT(pVCpu);
1305
1306 /*
1307 * In the INIT state, the target CPU is only responsive to an SIPI.
1308 * This is also true for when when the CPU is in VMX non-root mode.
1309 *
1310 * See AMD spec. 16.5 "Interprocessor Interrupts (IPI)".
1311 * See Intel spec. 26.6.2 "Activity State".
1312 */
1313 if (EMGetState(pVCpu) != EMSTATE_WAIT_SIPI)
1314 return VINF_SUCCESS;
1315
1316#if defined(VBOX_VMM_TARGET_ARMV8)
1317 AssertReleaseFailed(); /** @todo */
1318#else
1319 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1320# ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1321 if (CPUMIsGuestInVmxRootMode(pCtx))
1322 {
1323 /* If the CPU is in VMX non-root mode we must cause a VM-exit. */
1324 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1325 return VBOXSTRICTRC_TODO(IEMExecVmxVmexitStartupIpi(pVCpu, uVector));
1326
1327 /* If the CPU is in VMX root mode (and not in VMX non-root mode) SIPIs are blocked. */
1328 return VINF_SUCCESS;
1329 }
1330# endif
1331
1332 pCtx->cs.Sel = uVector << 8;
1333 pCtx->cs.ValidSel = uVector << 8;
1334 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1335 pCtx->cs.u64Base = uVector << 12;
1336 pCtx->cs.u32Limit = UINT32_C(0x0000ffff);
1337 pCtx->rip = 0;
1338#endif
1339
1340 Log(("vmmR3SendSipi for VCPU %d with vector %x\n", idCpu, uVector));
1341
1342# if 1 /* If we keep the EMSTATE_WAIT_SIPI method, then move this to EM.cpp. */
1343 EMSetState(pVCpu, EMSTATE_HALTED);
1344 return VINF_EM_RESCHEDULE;
1345# else /* And if we go the VMCPU::enmState way it can stay here. */
1346 VMCPU_ASSERT_STATE(pVCpu, VMCPUSTATE_STOPPED);
1347 VMCPU_SET_STATE(pVCpu, VMCPUSTATE_STARTED);
1348 return VINF_SUCCESS;
1349# endif
1350}
1351
1352
1353/**
1354 * VCPU worker for VMMR3SendInitIpi.
1355 *
1356 * @returns VBox status code.
1357 * @param pVM The cross context VM structure.
1358 * @param idCpu Virtual CPU to perform SIPI on.
1359 */
1360static DECLCALLBACK(int) vmmR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1361{
1362 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
1363 VMCPU_ASSERT_EMT(pVCpu);
1364
1365 Log(("vmmR3SendInitIpi for VCPU %d\n", idCpu));
1366
1367 /** @todo r=ramshankar: We should probably block INIT signal when the CPU is in
1368 * wait-for-SIPI state. Verify. */
1369
1370 /* If the CPU is in VMX non-root mode, INIT signals cause VM-exits. */
1371#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
1372 PCCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1373 if (CPUMIsGuestInVmxNonRootMode(pCtx))
1374 return VBOXSTRICTRC_TODO(IEMExecVmxVmexit(pVCpu, VMX_EXIT_INIT_SIGNAL, 0 /* uExitQual */));
1375#endif
1376
1377 /** @todo Figure out how to handle a SVM nested-guest intercepts here for INIT
1378 * IPI (e.g. SVM_EXIT_INIT). */
1379
1380 PGMR3ResetCpu(pVM, pVCpu);
1381 PDMR3ResetCpu(pVCpu); /* Only clears pending interrupts force flags */
1382#if !defined(VBOX_VMM_TARGET_ARMV8)
1383 APICR3InitIpi(pVCpu);
1384#endif
1385 TRPMR3ResetCpu(pVCpu);
1386 CPUMR3ResetCpu(pVM, pVCpu);
1387 EMR3ResetCpu(pVCpu);
1388 HMR3ResetCpu(pVCpu);
1389 NEMR3ResetCpu(pVCpu, true /*fInitIpi*/);
1390
1391 /* This will trickle up on the target EMT. */
1392 return VINF_EM_WAIT_SIPI;
1393}
1394
1395
1396/**
1397 * Sends a Startup IPI to the virtual CPU by setting CS:EIP into
1398 * vector-dependent state and unhalting processor.
1399 *
1400 * @param pVM The cross context VM structure.
1401 * @param idCpu Virtual CPU to perform SIPI on.
1402 * @param uVector SIPI vector.
1403 */
1404VMMR3_INT_DECL(void) VMMR3SendStartupIpi(PVM pVM, VMCPUID idCpu, uint32_t uVector)
1405{
1406 AssertReturnVoid(idCpu < pVM->cCpus);
1407
1408 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendStarupIpi, 3, pVM, idCpu, uVector);
1409 AssertRC(rc);
1410}
1411
1412
1413/**
1414 * Sends init IPI to the virtual CPU.
1415 *
1416 * @param pVM The cross context VM structure.
1417 * @param idCpu Virtual CPU to perform int IPI on.
1418 */
1419VMMR3_INT_DECL(void) VMMR3SendInitIpi(PVM pVM, VMCPUID idCpu)
1420{
1421 AssertReturnVoid(idCpu < pVM->cCpus);
1422
1423 int rc = VMR3ReqCallNoWait(pVM, idCpu, (PFNRT)vmmR3SendInitIpi, 2, pVM, idCpu);
1424 AssertRC(rc);
1425}
1426
1427
1428/**
1429 * Registers the guest memory range that can be used for patching.
1430 *
1431 * @returns VBox status code.
1432 * @param pVM The cross context VM structure.
1433 * @param pPatchMem Patch memory range.
1434 * @param cbPatchMem Size of the memory range.
1435 */
1436VMMR3DECL(int) VMMR3RegisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1437{
1438 VM_ASSERT_EMT(pVM);
1439 if (HMIsEnabled(pVM))
1440 return HMR3EnablePatching(pVM, pPatchMem, cbPatchMem);
1441
1442 return VERR_NOT_SUPPORTED;
1443}
1444
1445
1446/**
1447 * Deregisters the guest memory range that can be used for patching.
1448 *
1449 * @returns VBox status code.
1450 * @param pVM The cross context VM structure.
1451 * @param pPatchMem Patch memory range.
1452 * @param cbPatchMem Size of the memory range.
1453 */
1454VMMR3DECL(int) VMMR3DeregisterPatchMemory(PVM pVM, RTGCPTR pPatchMem, unsigned cbPatchMem)
1455{
1456 if (HMIsEnabled(pVM))
1457 return HMR3DisablePatching(pVM, pPatchMem, cbPatchMem);
1458
1459 return VINF_SUCCESS;
1460}
1461
1462
1463/**
1464 * Common recursion handler for the other EMTs.
1465 *
1466 * @returns Strict VBox status code.
1467 * @param pVM The cross context VM structure.
1468 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1469 * @param rcStrict Current status code to be combined with the one
1470 * from this recursion and returned.
1471 */
1472static VBOXSTRICTRC vmmR3EmtRendezvousCommonRecursion(PVM pVM, PVMCPU pVCpu, VBOXSTRICTRC rcStrict)
1473{
1474 int rc2;
1475
1476 /*
1477 * We wait here while the initiator of this recursion reconfigures
1478 * everything. The last EMT to get in signals the initiator.
1479 */
1480 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) == pVM->cCpus)
1481 {
1482 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1483 AssertLogRelRC(rc2);
1484 }
1485
1486 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPush, RT_INDEFINITE_WAIT);
1487 AssertLogRelRC(rc2);
1488
1489 /*
1490 * Do the normal rendezvous processing.
1491 */
1492 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1493 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1494
1495 /*
1496 * Wait for the initiator to restore everything.
1497 */
1498 rc2 = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousRecursionPop, RT_INDEFINITE_WAIT);
1499 AssertLogRelRC(rc2);
1500
1501 /*
1502 * Last thread out of here signals the initiator.
1503 */
1504 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) == pVM->cCpus)
1505 {
1506 rc2 = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1507 AssertLogRelRC(rc2);
1508 }
1509
1510 /*
1511 * Merge status codes and return.
1512 */
1513 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
1514 if ( rcStrict2 != VINF_SUCCESS
1515 && ( rcStrict == VINF_SUCCESS
1516 || rcStrict > rcStrict2))
1517 rcStrict = rcStrict2;
1518 return rcStrict;
1519}
1520
1521
1522/**
1523 * Count returns and have the last non-caller EMT wake up the caller.
1524 *
1525 * @returns VBox strict informational status code for EM scheduling. No failures
1526 * will be returned here, those are for the caller only.
1527 *
1528 * @param pVM The cross context VM structure.
1529 * @param rcStrict The current accumulated recursive status code,
1530 * to be merged with i32RendezvousStatus and
1531 * returned.
1532 */
1533DECL_FORCE_INLINE(VBOXSTRICTRC) vmmR3EmtRendezvousNonCallerReturn(PVM pVM, VBOXSTRICTRC rcStrict)
1534{
1535 VBOXSTRICTRC rcStrict2 = ASMAtomicReadS32(&pVM->vmm.s.i32RendezvousStatus);
1536
1537 uint32_t cReturned = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsReturned);
1538 if (cReturned == pVM->cCpus - 1U)
1539 {
1540 int rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1541 AssertLogRelRC(rc);
1542 }
1543
1544 /*
1545 * Merge the status codes, ignoring error statuses in this code path.
1546 */
1547 AssertLogRelMsgReturn( rcStrict2 <= VINF_SUCCESS
1548 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1549 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)),
1550 VERR_IPE_UNEXPECTED_INFO_STATUS);
1551
1552 if (RT_SUCCESS(rcStrict2))
1553 {
1554 if ( rcStrict2 != VINF_SUCCESS
1555 && ( rcStrict == VINF_SUCCESS
1556 || rcStrict > rcStrict2))
1557 rcStrict = rcStrict2;
1558 }
1559 return rcStrict;
1560}
1561
1562
1563/**
1564 * Common worker for VMMR3EmtRendezvous and VMMR3EmtRendezvousFF.
1565 *
1566 * @returns VBox strict informational status code for EM scheduling. No failures
1567 * will be returned here, those are for the caller only. When
1568 * fIsCaller is set, VINF_SUCCESS is always returned.
1569 *
1570 * @param pVM The cross context VM structure.
1571 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1572 * @param fIsCaller Whether we're the VMMR3EmtRendezvous caller or
1573 * not.
1574 * @param fFlags The flags.
1575 * @param pfnRendezvous The callback.
1576 * @param pvUser The user argument for the callback.
1577 */
1578static VBOXSTRICTRC vmmR3EmtRendezvousCommon(PVM pVM, PVMCPU pVCpu, bool fIsCaller,
1579 uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1580{
1581 int rc;
1582 VBOXSTRICTRC rcStrictRecursion = VINF_SUCCESS;
1583
1584 /*
1585 * Enter, the last EMT triggers the next callback phase.
1586 */
1587 uint32_t cEntered = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsEntered);
1588 if (cEntered != pVM->cCpus)
1589 {
1590 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1591 {
1592 /* Wait for our turn. */
1593 for (;;)
1594 {
1595 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, RT_INDEFINITE_WAIT);
1596 AssertLogRelRC(rc);
1597 if (!pVM->vmm.s.fRendezvousRecursion)
1598 break;
1599 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1600 }
1601 }
1602 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1603 {
1604 /* Wait for the last EMT to arrive and wake everyone up. */
1605 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce, RT_INDEFINITE_WAIT);
1606 AssertLogRelRC(rc);
1607 Assert(!pVM->vmm.s.fRendezvousRecursion);
1608 }
1609 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1610 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1611 {
1612 /* Wait for our turn. */
1613 for (;;)
1614 {
1615 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1616 AssertLogRelRC(rc);
1617 if (!pVM->vmm.s.fRendezvousRecursion)
1618 break;
1619 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1620 }
1621 }
1622 else
1623 {
1624 Assert((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE);
1625
1626 /*
1627 * The execute once is handled specially to optimize the code flow.
1628 *
1629 * The last EMT to arrive will perform the callback and the other
1630 * EMTs will wait on the Done/DoneCaller semaphores (instead of
1631 * the EnterOneByOne/AllAtOnce) in the meanwhile. When the callback
1632 * returns, that EMT will initiate the normal return sequence.
1633 */
1634 if (!fIsCaller)
1635 {
1636 for (;;)
1637 {
1638 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1639 AssertLogRelRC(rc);
1640 if (!pVM->vmm.s.fRendezvousRecursion)
1641 break;
1642 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1643 }
1644
1645 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1646 }
1647 return VINF_SUCCESS;
1648 }
1649 }
1650 else
1651 {
1652 /*
1653 * All EMTs are waiting, clear the FF and take action according to the
1654 * execution method.
1655 */
1656 VM_FF_CLEAR(pVM, VM_FF_EMT_RENDEZVOUS);
1657
1658 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE)
1659 {
1660 /* Wake up everyone. */
1661 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce);
1662 AssertLogRelRC(rc);
1663 }
1664 else if ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1665 || (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1666 {
1667 /* Figure out who to wake up and wake it up. If it's ourself, then
1668 it's easy otherwise wait for our turn. */
1669 VMCPUID iFirst = (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1670 ? 0
1671 : pVM->cCpus - 1U;
1672 if (pVCpu->idCpu != iFirst)
1673 {
1674 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iFirst]);
1675 AssertLogRelRC(rc);
1676 for (;;)
1677 {
1678 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu], RT_INDEFINITE_WAIT);
1679 AssertLogRelRC(rc);
1680 if (!pVM->vmm.s.fRendezvousRecursion)
1681 break;
1682 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1683 }
1684 }
1685 }
1686 /* else: execute the handler on the current EMT and wake up one or more threads afterwards. */
1687 }
1688
1689
1690 /*
1691 * Do the callback and update the status if necessary.
1692 */
1693 if ( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
1694 || RT_SUCCESS(ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus)) )
1695 {
1696 VBOXSTRICTRC rcStrict2 = pfnRendezvous(pVM, pVCpu, pvUser);
1697 if (rcStrict2 != VINF_SUCCESS)
1698 {
1699 AssertLogRelMsg( rcStrict2 <= VINF_SUCCESS
1700 || (rcStrict2 >= VINF_EM_FIRST && rcStrict2 <= VINF_EM_LAST),
1701 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict2)));
1702 int32_t i32RendezvousStatus;
1703 do
1704 {
1705 i32RendezvousStatus = ASMAtomicUoReadS32(&pVM->vmm.s.i32RendezvousStatus);
1706 if ( rcStrict2 == i32RendezvousStatus
1707 || RT_FAILURE(i32RendezvousStatus)
1708 || ( i32RendezvousStatus != VINF_SUCCESS
1709 && rcStrict2 > i32RendezvousStatus))
1710 break;
1711 } while (!ASMAtomicCmpXchgS32(&pVM->vmm.s.i32RendezvousStatus, VBOXSTRICTRC_VAL(rcStrict2), i32RendezvousStatus));
1712 }
1713 }
1714
1715 /*
1716 * Increment the done counter and take action depending on whether we're
1717 * the last to finish callback execution.
1718 */
1719 uint32_t cDone = ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsDone);
1720 if ( cDone != pVM->cCpus
1721 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE)
1722 {
1723 /* Signal the next EMT? */
1724 if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1725 {
1726 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1727 AssertLogRelRC(rc);
1728 }
1729 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1730 {
1731 Assert(cDone == pVCpu->idCpu + 1U);
1732 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVCpu->idCpu + 1U]);
1733 AssertLogRelRC(rc);
1734 }
1735 else if ((fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1736 {
1737 Assert(pVM->cCpus - cDone == pVCpu->idCpu);
1738 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[pVM->cCpus - cDone - 1U]);
1739 AssertLogRelRC(rc);
1740 }
1741
1742 /* Wait for the rest to finish (the caller waits on hEvtRendezvousDoneCaller). */
1743 if (!fIsCaller)
1744 {
1745 for (;;)
1746 {
1747 rc = RTSemEventMultiWait(pVM->vmm.s.hEvtMulRendezvousDone, RT_INDEFINITE_WAIT);
1748 AssertLogRelRC(rc);
1749 if (!pVM->vmm.s.fRendezvousRecursion)
1750 break;
1751 rcStrictRecursion = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrictRecursion);
1752 }
1753 }
1754 }
1755 else
1756 {
1757 /* Callback execution is all done, tell the rest to return. */
1758 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1759 AssertLogRelRC(rc);
1760 }
1761
1762 if (!fIsCaller)
1763 return vmmR3EmtRendezvousNonCallerReturn(pVM, rcStrictRecursion);
1764 return rcStrictRecursion;
1765}
1766
1767
1768/**
1769 * Called in response to VM_FF_EMT_RENDEZVOUS.
1770 *
1771 * @returns VBox strict status code - EM scheduling. No errors will be returned
1772 * here, nor will any non-EM scheduling status codes be returned.
1773 *
1774 * @param pVM The cross context VM structure.
1775 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
1776 *
1777 * @thread EMT
1778 */
1779VMMR3_INT_DECL(int) VMMR3EmtRendezvousFF(PVM pVM, PVMCPU pVCpu)
1780{
1781 Assert(!pVCpu->vmm.s.fInRendezvous);
1782 Log(("VMMR3EmtRendezvousFF: EMT%#u\n", pVCpu->idCpu));
1783 pVCpu->vmm.s.fInRendezvous = true;
1784 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, false /* fIsCaller */, pVM->vmm.s.fRendezvousFlags,
1785 pVM->vmm.s.pfnRendezvous, pVM->vmm.s.pvRendezvousUser);
1786 pVCpu->vmm.s.fInRendezvous = false;
1787 Log(("VMMR3EmtRendezvousFF: EMT%#u returns %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
1788 return VBOXSTRICTRC_TODO(rcStrict);
1789}
1790
1791
1792/**
1793 * Helper for resetting an single wakeup event sempahore.
1794 *
1795 * @returns VERR_TIMEOUT on success, RTSemEventWait status otherwise.
1796 * @param hEvt The event semaphore to reset.
1797 */
1798static int vmmR3HlpResetEvent(RTSEMEVENT hEvt)
1799{
1800 for (uint32_t cLoops = 0; ; cLoops++)
1801 {
1802 int rc = RTSemEventWait(hEvt, 0 /*cMsTimeout*/);
1803 if (rc != VINF_SUCCESS || cLoops > _4K)
1804 return rc;
1805 }
1806}
1807
1808
1809/**
1810 * Worker for VMMR3EmtRendezvous that handles recursion.
1811 *
1812 * @returns VBox strict status code. This will be the first error,
1813 * VINF_SUCCESS, or an EM scheduling status code.
1814 *
1815 * @param pVM The cross context VM structure.
1816 * @param pVCpu The cross context virtual CPU structure of the
1817 * calling EMT.
1818 * @param fFlags Flags indicating execution methods. See
1819 * grp_VMMR3EmtRendezvous_fFlags.
1820 * @param pfnRendezvous The callback.
1821 * @param pvUser User argument for the callback.
1822 *
1823 * @thread EMT(pVCpu)
1824 */
1825static VBOXSTRICTRC vmmR3EmtRendezvousRecursive(PVM pVM, PVMCPU pVCpu, uint32_t fFlags,
1826 PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
1827{
1828 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d\n", fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions));
1829 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
1830 Assert(pVCpu->vmm.s.fInRendezvous);
1831
1832 /*
1833 * Save the current state.
1834 */
1835 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
1836 uint32_t const cParentDone = pVM->vmm.s.cRendezvousEmtsDone;
1837 int32_t const iParentStatus = pVM->vmm.s.i32RendezvousStatus;
1838 PFNVMMEMTRENDEZVOUS const pfnParent = pVM->vmm.s.pfnRendezvous;
1839 void * const pvParentUser = pVM->vmm.s.pvRendezvousUser;
1840
1841 /*
1842 * Check preconditions and save the current state.
1843 */
1844 AssertReturn( (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
1845 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
1846 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
1847 || (fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1848 VERR_INTERNAL_ERROR);
1849 AssertReturn(pVM->vmm.s.cRendezvousEmtsEntered == pVM->cCpus, VERR_INTERNAL_ERROR_2);
1850 AssertReturn(pVM->vmm.s.cRendezvousEmtsReturned == 0, VERR_INTERNAL_ERROR_3);
1851
1852 /*
1853 * Reset the recursion prep and pop semaphores.
1854 */
1855 int rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1856 AssertLogRelRCReturn(rc, rc);
1857 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1858 AssertLogRelRCReturn(rc, rc);
1859 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPushCaller);
1860 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1861 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller);
1862 AssertLogRelMsgReturn(rc == VERR_TIMEOUT, ("%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_IPE_UNEXPECTED_INFO_STATUS);
1863
1864 /*
1865 * Usher the other thread into the recursion routine.
1866 */
1867 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush, 0);
1868 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, true);
1869
1870 uint32_t cLeft = pVM->cCpus - (cParentDone + 1U);
1871 if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE)
1872 while (cLeft-- > 0)
1873 {
1874 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousEnterOneByOne);
1875 AssertLogRelRC(rc);
1876 }
1877 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING)
1878 {
1879 Assert(cLeft == pVM->cCpus - (pVCpu->idCpu + 1U));
1880 for (VMCPUID iCpu = pVCpu->idCpu + 1U; iCpu < pVM->cCpus; iCpu++)
1881 {
1882 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu]);
1883 AssertLogRelRC(rc);
1884 }
1885 }
1886 else if ((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING)
1887 {
1888 Assert(cLeft == pVCpu->idCpu);
1889 for (VMCPUID iCpu = pVCpu->idCpu; iCpu > 0; iCpu--)
1890 {
1891 rc = RTSemEventSignal(pVM->vmm.s.pahEvtRendezvousEnterOrdered[iCpu - 1U]);
1892 AssertLogRelRC(rc);
1893 }
1894 }
1895 else
1896 AssertLogRelReturn((fParentFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE,
1897 VERR_INTERNAL_ERROR_4);
1898
1899 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousDone);
1900 AssertLogRelRC(rc);
1901 rc = RTSemEventSignal(pVM->vmm.s.hEvtRendezvousDoneCaller);
1902 AssertLogRelRC(rc);
1903
1904
1905 /*
1906 * Wait for the EMTs to wake up and get out of the parent rendezvous code.
1907 */
1908 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPush) != pVM->cCpus)
1909 {
1910 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPushCaller, RT_INDEFINITE_WAIT);
1911 AssertLogRelRC(rc);
1912 }
1913
1914 ASMAtomicWriteBool(&pVM->vmm.s.fRendezvousRecursion, false);
1915
1916 /*
1917 * Clear the slate and setup the new rendezvous.
1918 */
1919 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1920 {
1921 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1922 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1923 }
1924 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1925 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1926 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1927 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1928
1929 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
1930 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
1931 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1932 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
1933 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
1934 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
1935 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
1936 ASMAtomicIncU32(&pVM->vmm.s.cRendezvousRecursions);
1937
1938 /*
1939 * We're ready to go now, do normal rendezvous processing.
1940 */
1941 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPush);
1942 AssertLogRelRC(rc);
1943
1944 VBOXSTRICTRC rcStrict = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /*fIsCaller*/, fFlags, pfnRendezvous, pvUser);
1945
1946 /*
1947 * The caller waits for the other EMTs to be done, return and waiting on the
1948 * pop semaphore.
1949 */
1950 for (;;)
1951 {
1952 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
1953 AssertLogRelRC(rc);
1954 if (!pVM->vmm.s.fRendezvousRecursion)
1955 break;
1956 rcStrict = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict);
1957 }
1958
1959 /*
1960 * Get the return code and merge it with the above recursion status.
1961 */
1962 VBOXSTRICTRC rcStrict2 = pVM->vmm.s.i32RendezvousStatus;
1963 if ( rcStrict2 != VINF_SUCCESS
1964 && ( rcStrict == VINF_SUCCESS
1965 || rcStrict > rcStrict2))
1966 rcStrict = rcStrict2;
1967
1968 /*
1969 * Restore the parent rendezvous state.
1970 */
1971 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1972 {
1973 rc = vmmR3HlpResetEvent(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i]);
1974 AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1975 }
1976 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousEnterOneByOne); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1977 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
1978 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
1979 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousDoneCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
1980
1981 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, pVM->cCpus);
1982 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
1983 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, cParentDone);
1984 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, iParentStatus);
1985 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fParentFlags);
1986 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvParentUser);
1987 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnParent);
1988
1989 /*
1990 * Usher the other EMTs back to their parent recursion routine, waiting
1991 * for them to all get there before we return (makes sure they've been
1992 * scheduled and are past the pop event sem, see below).
1993 */
1994 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop, 0);
1995 rc = RTSemEventMultiSignal(pVM->vmm.s.hEvtMulRendezvousRecursionPop);
1996 AssertLogRelRC(rc);
1997
1998 if (ASMAtomicIncU32(&pVM->vmm.s.cRendezvousEmtsRecursingPop) != pVM->cCpus)
1999 {
2000 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousRecursionPopCaller, RT_INDEFINITE_WAIT);
2001 AssertLogRelRC(rc);
2002 }
2003
2004 /*
2005 * We must reset the pop semaphore on the way out (doing the pop caller too,
2006 * just in case). The parent may be another recursion.
2007 */
2008 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousRecursionPop); AssertLogRelRC(rc);
2009 rc = vmmR3HlpResetEvent(pVM->vmm.s.hEvtRendezvousRecursionPopCaller); AssertLogRelMsg(rc == VERR_TIMEOUT, ("%Rrc\n", rc));
2010
2011 ASMAtomicDecU32(&pVM->vmm.s.cRendezvousRecursions);
2012
2013 Log(("vmmR3EmtRendezvousRecursive: %#x EMT#%u depth=%d returns %Rrc\n",
2014 fFlags, pVCpu->idCpu, pVM->vmm.s.cRendezvousRecursions, VBOXSTRICTRC_VAL(rcStrict)));
2015 return rcStrict;
2016}
2017
2018
2019/**
2020 * EMT rendezvous.
2021 *
2022 * Gathers all the EMTs and execute some code on each of them, either in a one
2023 * by one fashion or all at once.
2024 *
2025 * @returns VBox strict status code. This will be the first error,
2026 * VINF_SUCCESS, or an EM scheduling status code.
2027 *
2028 * @retval VERR_DEADLOCK if recursion is attempted using a rendezvous type that
2029 * doesn't support it or if the recursion is too deep.
2030 *
2031 * @param pVM The cross context VM structure.
2032 * @param fFlags Flags indicating execution methods. See
2033 * grp_VMMR3EmtRendezvous_fFlags. The one-by-one,
2034 * descending and ascending rendezvous types support
2035 * recursion from inside @a pfnRendezvous.
2036 * @param pfnRendezvous The callback.
2037 * @param pvUser User argument for the callback.
2038 *
2039 * @thread Any.
2040 */
2041VMMR3DECL(int) VMMR3EmtRendezvous(PVM pVM, uint32_t fFlags, PFNVMMEMTRENDEZVOUS pfnRendezvous, void *pvUser)
2042{
2043 /*
2044 * Validate input.
2045 */
2046 AssertReturn(pVM, VERR_INVALID_VM_HANDLE);
2047 AssertMsg( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_INVALID
2048 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) <= VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2049 && !(fFlags & ~VMMEMTRENDEZVOUS_FLAGS_VALID_MASK), ("%#x\n", fFlags));
2050 AssertMsg( !(fFlags & VMMEMTRENDEZVOUS_FLAGS_STOP_ON_ERROR)
2051 || ( (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE
2052 && (fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) != VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE),
2053 ("type %u\n", fFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK));
2054
2055 VBOXSTRICTRC rcStrict;
2056 PVMCPU pVCpu = VMMGetCpu(pVM);
2057 if (!pVCpu)
2058 {
2059 /*
2060 * Forward the request to an EMT thread.
2061 */
2062 Log(("VMMR3EmtRendezvous: %#x non-EMT\n", fFlags));
2063 if (!(fFlags & VMMEMTRENDEZVOUS_FLAGS_PRIORITY))
2064 rcStrict = VMR3ReqCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2065 else
2066 rcStrict = VMR3ReqPriorityCallWait(pVM, VMCPUID_ANY, (PFNRT)VMMR3EmtRendezvous, 4, pVM, fFlags, pfnRendezvous, pvUser);
2067 Log(("VMMR3EmtRendezvous: %#x non-EMT returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2068 }
2069 else if ( pVM->cCpus == 1
2070 || ( pVM->enmVMState == VMSTATE_DESTROYING
2071 && VMR3GetActiveEmts(pVM->pUVM) < pVM->cCpus ) )
2072 {
2073 /*
2074 * Shortcut for the single EMT case.
2075 *
2076 * We also ends up here if EMT(0) (or others) tries to issue a rendezvous
2077 * during vmR3Destroy after other emulation threads have started terminating.
2078 */
2079 if (!pVCpu->vmm.s.fInRendezvous)
2080 {
2081 Log(("VMMR3EmtRendezvous: %#x EMT (uni)\n", fFlags));
2082 pVCpu->vmm.s.fInRendezvous = true;
2083 pVM->vmm.s.fRendezvousFlags = fFlags;
2084 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2085 pVCpu->vmm.s.fInRendezvous = false;
2086 }
2087 else
2088 {
2089 /* Recursion. Do the same checks as in the SMP case. */
2090 Log(("VMMR3EmtRendezvous: %#x EMT (uni), recursion depth=%d\n", fFlags, pVM->vmm.s.cRendezvousRecursions));
2091 uint32_t fType = pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK;
2092 AssertLogRelReturn( !pVCpu->vmm.s.fInRendezvous
2093 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2094 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2095 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2096 || fType == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2097 , VERR_DEADLOCK);
2098
2099 AssertLogRelReturn(pVM->vmm.s.cRendezvousRecursions < 3, VERR_DEADLOCK);
2100 pVM->vmm.s.cRendezvousRecursions++;
2101 uint32_t const fParentFlags = pVM->vmm.s.fRendezvousFlags;
2102 pVM->vmm.s.fRendezvousFlags = fFlags;
2103
2104 rcStrict = pfnRendezvous(pVM, pVCpu, pvUser);
2105
2106 pVM->vmm.s.fRendezvousFlags = fParentFlags;
2107 pVM->vmm.s.cRendezvousRecursions--;
2108 }
2109 Log(("VMMR3EmtRendezvous: %#x EMT (uni) returns %Rrc\n", fFlags, VBOXSTRICTRC_VAL(rcStrict)));
2110 }
2111 else
2112 {
2113 /*
2114 * Spin lock. If busy, check for recursion, if not recursing wait for
2115 * the other EMT to finish while keeping a lookout for the RENDEZVOUS FF.
2116 */
2117 int rc;
2118 rcStrict = VINF_SUCCESS;
2119 if (RT_UNLIKELY(!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0)))
2120 {
2121 /* Allow recursion in some cases. */
2122 if ( pVCpu->vmm.s.fInRendezvous
2123 && ( (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ASCENDING
2124 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_DESCENDING
2125 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONE_BY_ONE
2126 || (pVM->vmm.s.fRendezvousFlags & VMMEMTRENDEZVOUS_FLAGS_TYPE_MASK) == VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE
2127 ))
2128 return VBOXSTRICTRC_TODO(vmmR3EmtRendezvousRecursive(pVM, pVCpu, fFlags, pfnRendezvous, pvUser));
2129
2130 AssertLogRelMsgReturn(!pVCpu->vmm.s.fInRendezvous, ("fRendezvousFlags=%#x\n", pVM->vmm.s.fRendezvousFlags),
2131 VERR_DEADLOCK);
2132
2133 Log(("VMMR3EmtRendezvous: %#x EMT#%u, waiting for lock...\n", fFlags, pVCpu->idCpu));
2134 while (!ASMAtomicCmpXchgU32(&pVM->vmm.s.u32RendezvousLock, 0x77778888, 0))
2135 {
2136 if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
2137 {
2138 rc = VMMR3EmtRendezvousFF(pVM, pVCpu);
2139 if ( rc != VINF_SUCCESS
2140 && ( rcStrict == VINF_SUCCESS
2141 || rcStrict > rc))
2142 rcStrict = rc;
2143 /** @todo Perhaps deal with termination here? */
2144 }
2145 ASMNopPause();
2146 }
2147 }
2148
2149 Log(("VMMR3EmtRendezvous: %#x EMT#%u\n", fFlags, pVCpu->idCpu));
2150 Assert(!VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS));
2151 Assert(!pVCpu->vmm.s.fInRendezvous);
2152 pVCpu->vmm.s.fInRendezvous = true;
2153
2154 /*
2155 * Clear the slate and setup the rendezvous. This is a semaphore ping-pong orgy. :-)
2156 */
2157 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2158 {
2159 rc = RTSemEventWait(pVM->vmm.s.pahEvtRendezvousEnterOrdered[i], 0);
2160 AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2161 }
2162 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousEnterOneByOne, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2163 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousEnterAllAtOnce); AssertLogRelRC(rc);
2164 rc = RTSemEventMultiReset(pVM->vmm.s.hEvtMulRendezvousDone); AssertLogRelRC(rc);
2165 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, 0); AssertLogRelMsg(rc == VERR_TIMEOUT || rc == VINF_SUCCESS, ("%Rrc\n", rc));
2166 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsEntered, 0);
2167 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsDone, 0);
2168 ASMAtomicWriteU32(&pVM->vmm.s.cRendezvousEmtsReturned, 0);
2169 ASMAtomicWriteS32(&pVM->vmm.s.i32RendezvousStatus, VINF_SUCCESS);
2170 ASMAtomicWritePtr((void * volatile *)&pVM->vmm.s.pfnRendezvous, (void *)(uintptr_t)pfnRendezvous);
2171 ASMAtomicWritePtr(&pVM->vmm.s.pvRendezvousUser, pvUser);
2172 ASMAtomicWriteU32(&pVM->vmm.s.fRendezvousFlags, fFlags);
2173
2174 /*
2175 * Set the FF and poke the other EMTs.
2176 */
2177 VM_FF_SET(pVM, VM_FF_EMT_RENDEZVOUS);
2178 VMR3NotifyGlobalFFU(pVM->pUVM, VMNOTIFYFF_FLAGS_POKE);
2179
2180 /*
2181 * Do the same ourselves.
2182 */
2183 VBOXSTRICTRC rcStrict2 = vmmR3EmtRendezvousCommon(pVM, pVCpu, true /* fIsCaller */, fFlags, pfnRendezvous, pvUser);
2184
2185 /*
2186 * The caller waits for the other EMTs to be done and return before doing
2187 * the cleanup. This makes away with wakeup / reset races we would otherwise
2188 * risk in the multiple release event semaphore code (hEvtRendezvousDoneCaller).
2189 */
2190 for (;;)
2191 {
2192 rc = RTSemEventWait(pVM->vmm.s.hEvtRendezvousDoneCaller, RT_INDEFINITE_WAIT);
2193 AssertLogRelRC(rc);
2194 if (!pVM->vmm.s.fRendezvousRecursion)
2195 break;
2196 rcStrict2 = vmmR3EmtRendezvousCommonRecursion(pVM, pVCpu, rcStrict2);
2197 }
2198
2199 /*
2200 * Get the return code and clean up a little bit.
2201 */
2202 VBOXSTRICTRC rcStrict3 = pVM->vmm.s.i32RendezvousStatus;
2203 ASMAtomicWriteNullPtr((void * volatile *)&pVM->vmm.s.pfnRendezvous);
2204
2205 ASMAtomicWriteU32(&pVM->vmm.s.u32RendezvousLock, 0);
2206 pVCpu->vmm.s.fInRendezvous = false;
2207
2208 /*
2209 * Merge rcStrict, rcStrict2 and rcStrict3.
2210 */
2211 AssertRC(VBOXSTRICTRC_VAL(rcStrict));
2212 AssertRC(VBOXSTRICTRC_VAL(rcStrict2));
2213 if ( rcStrict2 != VINF_SUCCESS
2214 && ( rcStrict == VINF_SUCCESS
2215 || rcStrict > rcStrict2))
2216 rcStrict = rcStrict2;
2217 if ( rcStrict3 != VINF_SUCCESS
2218 && ( rcStrict == VINF_SUCCESS
2219 || rcStrict > rcStrict3))
2220 rcStrict = rcStrict3;
2221 Log(("VMMR3EmtRendezvous: %#x EMT#%u returns %Rrc\n", fFlags, pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict)));
2222 }
2223
2224 AssertLogRelMsgReturn( rcStrict <= VINF_SUCCESS
2225 || (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST),
2226 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)),
2227 VERR_IPE_UNEXPECTED_INFO_STATUS);
2228 return VBOXSTRICTRC_VAL(rcStrict);
2229}
2230
2231
2232/**
2233 * Interface for vmR3SetHaltMethodU.
2234 *
2235 * @param pVCpu The cross context virtual CPU structure of the
2236 * calling EMT.
2237 * @param fMayHaltInRing0 The new state.
2238 * @param cNsSpinBlockThreshold The spin-vs-blocking threashold.
2239 * @thread EMT(pVCpu)
2240 *
2241 * @todo Move the EMT handling to VMM (or EM). I soooooo regret that VM
2242 * component.
2243 */
2244VMMR3_INT_DECL(void) VMMR3SetMayHaltInRing0(PVMCPU pVCpu, bool fMayHaltInRing0, uint32_t cNsSpinBlockThreshold)
2245{
2246 LogFlow(("VMMR3SetMayHaltInRing0(#%u, %d, %u)\n", pVCpu->idCpu, fMayHaltInRing0, cNsSpinBlockThreshold));
2247 pVCpu->vmm.s.fMayHaltInRing0 = fMayHaltInRing0;
2248 pVCpu->vmm.s.cNsSpinBlockThreshold = cNsSpinBlockThreshold;
2249}
2250
2251
2252/**
2253 * Read from the ring 0 jump buffer stack.
2254 *
2255 * @returns VBox status code.
2256 *
2257 * @param pVM The cross context VM structure.
2258 * @param idCpu The ID of the source CPU context (for the address).
2259 * @param R0Addr Where to start reading.
2260 * @param pvBuf Where to store the data we've read.
2261 * @param cbRead The number of bytes to read.
2262 */
2263VMMR3_INT_DECL(int) VMMR3ReadR0Stack(PVM pVM, VMCPUID idCpu, RTHCUINTPTR R0Addr, void *pvBuf, size_t cbRead)
2264{
2265 PVMCPU pVCpu = VMMGetCpuById(pVM, idCpu);
2266 AssertReturn(pVCpu, VERR_INVALID_PARAMETER);
2267 AssertReturn(cbRead < ~(size_t)0 / 2, VERR_INVALID_PARAMETER);
2268
2269 /*
2270 * Hopefully we've got all the requested bits. If not supply what we
2271 * can and zero the remaining stuff.
2272 */
2273 RTHCUINTPTR off = R0Addr - pVCpu->vmm.s.AssertJmpBuf.UnwindSp;
2274 if (off < pVCpu->vmm.s.AssertJmpBuf.cbStackValid)
2275 {
2276 size_t const cbValid = pVCpu->vmm.s.AssertJmpBuf.cbStackValid - off;
2277 if (cbRead <= cbValid)
2278 {
2279 memcpy(pvBuf, &pVCpu->vmm.s.abAssertStack[off], cbRead);
2280 return VINF_SUCCESS;
2281 }
2282
2283 memcpy(pvBuf, &pVCpu->vmm.s.abAssertStack[off], cbValid);
2284 RT_BZERO((uint8_t *)pvBuf + cbValid, cbRead - cbValid);
2285 }
2286 else
2287 RT_BZERO(pvBuf, cbRead);
2288
2289 /*
2290 * Supply the setjmp return RIP/EIP if requested.
2291 */
2292 if ( pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation + sizeof(RTR0UINTPTR) > R0Addr
2293 && pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation < R0Addr + cbRead)
2294 {
2295 uint8_t const *pbSrc = (uint8_t const *)&pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcValue;
2296 size_t cbSrc = sizeof(pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcValue);
2297 size_t offDst = 0;
2298 if (R0Addr < pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation)
2299 offDst = pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation - R0Addr;
2300 else if (R0Addr > pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation)
2301 {
2302 size_t offSrc = R0Addr - pVCpu->vmm.s.AssertJmpBuf.UnwindRetPcLocation;
2303 Assert(offSrc < cbSrc);
2304 pbSrc -= offSrc;
2305 cbSrc -= offSrc;
2306 }
2307 if (cbSrc > cbRead - offDst)
2308 cbSrc = cbRead - offDst;
2309 memcpy((uint8_t *)pvBuf + offDst, pbSrc, cbSrc);
2310
2311 //if (cbSrc == cbRead)
2312 // rc = VINF_SUCCESS;
2313 }
2314
2315 return VINF_SUCCESS;
2316}
2317
2318
2319/**
2320 * Used by the DBGF stack unwinder to initialize the register state.
2321 *
2322 * @param pUVM The user mode VM handle.
2323 * @param idCpu The ID of the CPU being unwound.
2324 * @param pState The unwind state to initialize.
2325 */
2326VMMR3_INT_DECL(void) VMMR3InitR0StackUnwindState(PUVM pUVM, VMCPUID idCpu, struct RTDBGUNWINDSTATE *pState)
2327{
2328 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, idCpu);
2329 AssertReturnVoid(pVCpu);
2330
2331 /*
2332 * This is all we really need here if we had proper unwind info (win64 only)...
2333 */
2334 pState->u.x86.auRegs[X86_GREG_xBP] = pVCpu->vmm.s.AssertJmpBuf.UnwindBp;
2335 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.AssertJmpBuf.UnwindSp;
2336 pState->uPc = pVCpu->vmm.s.AssertJmpBuf.UnwindPc;
2337
2338 /*
2339 * Locate the resume point on the stack.
2340 */
2341#ifdef RT_ARCH_AMD64
2342 /* This code must match the vmmR0CallRing3LongJmp stack frame setup in VMMR0JmpA-amd64.asm exactly. */
2343 uintptr_t off = 0;
2344# ifdef RT_OS_WINDOWS
2345 off += 0xa0; /* XMM6 thru XMM15 */
2346# endif
2347 pState->u.x86.uRFlags = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2348 off += 8;
2349 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2350 off += 8;
2351# ifdef RT_OS_WINDOWS
2352 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2353 off += 8;
2354 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2355 off += 8;
2356# endif
2357 pState->u.x86.auRegs[X86_GREG_x12] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2358 off += 8;
2359 pState->u.x86.auRegs[X86_GREG_x13] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2360 off += 8;
2361 pState->u.x86.auRegs[X86_GREG_x14] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2362 off += 8;
2363 pState->u.x86.auRegs[X86_GREG_x15] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2364 off += 8;
2365 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2366 off += 8;
2367 pState->uPc = *(uint64_t const *)&pVCpu->vmm.s.abAssertStack[off];
2368 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.AssertJmpBuf.UnwindRetSp;
2369
2370#elif defined(RT_ARCH_X86)
2371 /* This code must match the vmmR0CallRing3LongJmp stack frame setup in VMMR0JmpA-x86.asm exactly. */
2372 uintptr_t off = 0;
2373 pState->u.x86.uRFlags = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2374 off += 4;
2375 pState->u.x86.auRegs[X86_GREG_xBX] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2376 off += 4;
2377 pState->u.x86.auRegs[X86_GREG_xSI] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2378 off += 4;
2379 pState->u.x86.auRegs[X86_GREG_xDI] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2380 off += 4;
2381 pState->u.x86.auRegs[X86_GREG_xBP] = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2382 off += 4;
2383 pState->uPc = *(uint32_t const *)&pVCpu->vmm.s.abAssertStack[off];
2384 pState->u.x86.auRegs[X86_GREG_xSP] = pVCpu->vmm.s.AssertJmpBuf.UnwindRetSp;
2385
2386#elif defined(RT_ARCH_ARM64)
2387 /** @todo PORTME: arm ring-0 */
2388
2389#else
2390# error "Port me"
2391#endif
2392}
2393
2394
2395/**
2396 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2397 *
2398 * @returns VBox status code.
2399 * @param pVM The cross context VM structure.
2400 * @param uOperation Operation to execute.
2401 * @param u64Arg Constant argument.
2402 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2403 * details.
2404 */
2405VMMR3DECL(int) VMMR3CallR0(PVM pVM, uint32_t uOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2406{
2407 PVMCPU pVCpu = VMMGetCpu(pVM);
2408 AssertReturn(pVCpu, VERR_VM_THREAD_NOT_EMT);
2409 return VMMR3CallR0Emt(pVM, pVCpu, (VMMR0OPERATION)uOperation, u64Arg, pReqHdr);
2410}
2411
2412
2413/**
2414 * Wrapper for SUPR3CallVMMR0Ex which will deal with VINF_VMM_CALL_HOST returns.
2415 *
2416 * @returns VBox status code.
2417 * @param pVM The cross context VM structure.
2418 * @param pVCpu The cross context VM structure.
2419 * @param enmOperation Operation to execute.
2420 * @param u64Arg Constant argument.
2421 * @param pReqHdr Pointer to a request header. See SUPR3CallVMMR0Ex for
2422 * details.
2423 */
2424VMMR3_INT_DECL(int) VMMR3CallR0Emt(PVM pVM, PVMCPU pVCpu, VMMR0OPERATION enmOperation, uint64_t u64Arg, PSUPVMMR0REQHDR pReqHdr)
2425{
2426 /*
2427 * Call ring-0.
2428 */
2429#ifdef NO_SUPCALLR0VMM
2430 int rc = VERR_GENERAL_FAILURE;
2431#else
2432 int rc = SUPR3CallVMMR0Ex(VMCC_GET_VMR0_FOR_CALL(pVM), pVCpu->idCpu, enmOperation, u64Arg, pReqHdr);
2433#endif
2434
2435 /*
2436 * Flush the logs and deal with ring-0 assertions.
2437 */
2438#ifdef LOG_ENABLED
2439 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.Logger, NULL);
2440#endif
2441 VMM_FLUSH_R0_LOG(pVM, pVCpu, &pVCpu->vmm.s.u.s.RelLogger, RTLogRelGetDefaultInstance());
2442 if (rc != VERR_VMM_RING0_ASSERTION)
2443 {
2444 AssertLogRelMsgReturn(rc == VINF_SUCCESS || RT_FAILURE(rc),
2445 ("enmOperation=%u rc=%Rrc\n", enmOperation, rc),
2446 VERR_IPE_UNEXPECTED_INFO_STATUS);
2447 return rc;
2448 }
2449 return vmmR3HandleRing0Assert(pVM, pVCpu);
2450}
2451
2452
2453/**
2454 * Logs a ring-0 assertion ASAP after returning to ring-3.
2455 *
2456 * @returns VBox status code.
2457 * @param pVM The cross context VM structure.
2458 * @param pVCpu The cross context virtual CPU structure.
2459 */
2460static int vmmR3HandleRing0Assert(PVM pVM, PVMCPU pVCpu)
2461{
2462 RT_NOREF(pVCpu);
2463 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg1));
2464 LogRel(("%s", pVM->vmm.s.szRing0AssertMsg2));
2465 return VERR_VMM_RING0_ASSERTION;
2466}
2467
2468
2469/**
2470 * Displays the Force action Flags.
2471 *
2472 * @param pVM The cross context VM structure.
2473 * @param pHlp The output helpers.
2474 * @param pszArgs The additional arguments (ignored).
2475 */
2476static DECLCALLBACK(void) vmmR3InfoFF(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2477{
2478 int c;
2479 uint32_t f;
2480 NOREF(pszArgs);
2481
2482#define PRINT_FLAG(prf,flag) do { \
2483 if (f & (prf##flag)) \
2484 { \
2485 static const char *s_psz = #flag; \
2486 if (!(c % 6)) \
2487 pHlp->pfnPrintf(pHlp, "%s\n %s", c ? "," : "", s_psz); \
2488 else \
2489 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2490 c++; \
2491 f &= ~(prf##flag); \
2492 } \
2493 } while (0)
2494
2495#define PRINT_GROUP(prf,grp,sfx) do { \
2496 if (f & (prf##grp##sfx)) \
2497 { \
2498 static const char *s_psz = #grp; \
2499 if (!(c % 5)) \
2500 pHlp->pfnPrintf(pHlp, "%s %s", c ? ",\n" : " Groups:\n", s_psz); \
2501 else \
2502 pHlp->pfnPrintf(pHlp, ", %s", s_psz); \
2503 c++; \
2504 } \
2505 } while (0)
2506
2507 /*
2508 * The global flags.
2509 */
2510 const uint32_t fGlobalForcedActions = pVM->fGlobalForcedActions;
2511 pHlp->pfnPrintf(pHlp, "Global FFs: %#RX32", fGlobalForcedActions);
2512
2513 /* show the flag mnemonics */
2514 c = 0;
2515 f = fGlobalForcedActions;
2516 PRINT_FLAG(VM_FF_,TM_VIRTUAL_SYNC);
2517 PRINT_FLAG(VM_FF_,PDM_QUEUES);
2518 PRINT_FLAG(VM_FF_,PDM_DMA);
2519 PRINT_FLAG(VM_FF_,DBGF);
2520 PRINT_FLAG(VM_FF_,REQUEST);
2521 PRINT_FLAG(VM_FF_,CHECK_VM_STATE);
2522 PRINT_FLAG(VM_FF_,RESET);
2523 PRINT_FLAG(VM_FF_,EMT_RENDEZVOUS);
2524 PRINT_FLAG(VM_FF_,PGM_NEED_HANDY_PAGES);
2525 PRINT_FLAG(VM_FF_,PGM_NO_MEMORY);
2526 PRINT_FLAG(VM_FF_,PGM_POOL_FLUSH_PENDING);
2527 PRINT_FLAG(VM_FF_,DEBUG_SUSPEND);
2528 if (f)
2529 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX32\n", c ? "," : "", f);
2530 else
2531 pHlp->pfnPrintf(pHlp, "\n");
2532
2533 /* the groups */
2534 c = 0;
2535 f = fGlobalForcedActions;
2536 PRINT_GROUP(VM_FF_,EXTERNAL_SUSPENDED,_MASK);
2537 PRINT_GROUP(VM_FF_,EXTERNAL_HALTED,_MASK);
2538 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE,_MASK);
2539 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2540 PRINT_GROUP(VM_FF_,HIGH_PRIORITY_POST,_MASK);
2541 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY_POST,_MASK);
2542 PRINT_GROUP(VM_FF_,NORMAL_PRIORITY,_MASK);
2543 PRINT_GROUP(VM_FF_,ALL_REM,_MASK);
2544 if (c)
2545 pHlp->pfnPrintf(pHlp, "\n");
2546
2547 /*
2548 * Per CPU flags.
2549 */
2550 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2551 {
2552 PVMCPU pVCpu = pVM->apCpusR3[i];
2553 const uint64_t fLocalForcedActions = pVCpu->fLocalForcedActions;
2554 pHlp->pfnPrintf(pHlp, "CPU %u FFs: %#RX64", i, fLocalForcedActions);
2555
2556 /* show the flag mnemonics */
2557 c = 0;
2558 f = fLocalForcedActions;
2559 PRINT_FLAG(VMCPU_FF_,INTERRUPT_APIC);
2560 PRINT_FLAG(VMCPU_FF_,INTERRUPT_PIC);
2561 PRINT_FLAG(VMCPU_FF_,TIMER);
2562 PRINT_FLAG(VMCPU_FF_,INTERRUPT_NMI);
2563 PRINT_FLAG(VMCPU_FF_,INTERRUPT_SMI);
2564 PRINT_FLAG(VMCPU_FF_,PDM_CRITSECT);
2565 PRINT_FLAG(VMCPU_FF_,UNHALT);
2566 PRINT_FLAG(VMCPU_FF_,IEM);
2567 PRINT_FLAG(VMCPU_FF_,UPDATE_APIC);
2568 PRINT_FLAG(VMCPU_FF_,DBGF);
2569 PRINT_FLAG(VMCPU_FF_,REQUEST);
2570 PRINT_FLAG(VMCPU_FF_,HM_UPDATE_CR3);
2571 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3);
2572 PRINT_FLAG(VMCPU_FF_,PGM_SYNC_CR3_NON_GLOBAL);
2573 PRINT_FLAG(VMCPU_FF_,TLB_FLUSH);
2574 PRINT_FLAG(VMCPU_FF_,TO_R3);
2575 PRINT_FLAG(VMCPU_FF_,IOM);
2576 if (f)
2577 pHlp->pfnPrintf(pHlp, "%s\n Unknown bits: %#RX64\n", c ? "," : "", f);
2578 else
2579 pHlp->pfnPrintf(pHlp, "\n");
2580
2581 /* the groups */
2582 c = 0;
2583 f = fLocalForcedActions;
2584 PRINT_GROUP(VMCPU_FF_,EXTERNAL_SUSPENDED,_MASK);
2585 PRINT_GROUP(VMCPU_FF_,EXTERNAL_HALTED,_MASK);
2586 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE,_MASK);
2587 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_PRE_RAW,_MASK);
2588 PRINT_GROUP(VMCPU_FF_,HIGH_PRIORITY_POST,_MASK);
2589 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY_POST,_MASK);
2590 PRINT_GROUP(VMCPU_FF_,NORMAL_PRIORITY,_MASK);
2591 PRINT_GROUP(VMCPU_FF_,RESUME_GUEST,_MASK);
2592 PRINT_GROUP(VMCPU_FF_,HM_TO_R3,_MASK);
2593 PRINT_GROUP(VMCPU_FF_,ALL_REM,_MASK);
2594 if (c)
2595 pHlp->pfnPrintf(pHlp, "\n");
2596 }
2597
2598#undef PRINT_FLAG
2599#undef PRINT_GROUP
2600}
2601
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette