VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/SELM.cpp@ 45705

最後變更 在這個檔案從45705是 45705,由 vboxsync 提交於 12 年 前

Retired SELMR3DisableMonitoring.

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id Revision
檔案大小: 106.7 KB
 
1/* $Id: SELM.cpp 45705 2013-04-24 14:37:42Z vboxsync $ */
2/** @file
3 * SELM - The Selector Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_selm SELM - The Selector Manager
19 *
20 * SELM takes care of GDT, LDT and TSS shadowing in raw-mode, and the injection
21 * of a few hyper selector for the raw-mode context. In the hardware assisted
22 * virtualization mode its only task is to decode entries in the guest GDT or
23 * LDT once in a while.
24 *
25 * @see grp_selm
26 *
27 *
28 * @section seg_selm_shadowing Shadowing
29 *
30 * SELMR3UpdateFromCPUM() and SELMR3SyncTSS() does the bulk synchronization
31 * work. The three structures (GDT, LDT, TSS) are all shadowed wholesale atm.
32 * The idea is to do it in a more on-demand fashion when we get time. There
33 * also a whole bunch of issues with the current synchronization of all three
34 * tables, see notes and todos in the code.
35 *
36 * When the guest makes changes to the GDT we will try update the shadow copy
37 * without involving SELMR3UpdateFromCPUM(), see selmGCSyncGDTEntry().
38 *
39 * When the guest make LDT changes we'll trigger a full resync of the LDT
40 * (SELMR3UpdateFromCPUM()), which, needless to say, isn't optimal.
41 *
42 * The TSS shadowing is limited to the fields we need to care about, namely SS0
43 * and ESP0. The Patch Manager makes use of these. We monitor updates to the
44 * guest TSS and will try keep our SS0 and ESP0 copies up to date this way
45 * rather than go the SELMR3SyncTSS() route.
46 *
47 * When in raw-mode SELM also injects a few extra GDT selectors which are used
48 * by the raw-mode (hyper) context. These start their life at the high end of
49 * the table and will be relocated when the guest tries to make use of them...
50 * Well, that was that idea at least, only the code isn't quite there yet which
51 * is why we have trouble with guests which actually have a full sized GDT.
52 *
53 * So, the summary of the current GDT, LDT and TSS shadowing is that there is a
54 * lot of relatively simple and enjoyable work to be done, see @bugref{3267}.
55 *
56 */
57
58/*******************************************************************************
59* Header Files *
60*******************************************************************************/
61#define LOG_GROUP LOG_GROUP_SELM
62#include <VBox/vmm/selm.h>
63#include <VBox/vmm/cpum.h>
64#include <VBox/vmm/stam.h>
65#include <VBox/vmm/em.h>
66#include <VBox/vmm/hm.h>
67#include <VBox/vmm/mm.h>
68#include <VBox/vmm/ssm.h>
69#include <VBox/vmm/pgm.h>
70#include <VBox/vmm/trpm.h>
71#include <VBox/vmm/dbgf.h>
72#include "SELMInternal.h"
73#include <VBox/vmm/vm.h>
74#include <VBox/err.h>
75#include <VBox/param.h>
76
77#include <iprt/assert.h>
78#include <VBox/log.h>
79#include <iprt/asm.h>
80#include <iprt/string.h>
81#include <iprt/thread.h>
82#include <iprt/string.h>
83
84#include "SELMInline.h"
85
86
87/** SELM saved state version. */
88#define SELM_SAVED_STATE_VERSION 5
89
90
91/*******************************************************************************
92* Internal Functions *
93*******************************************************************************/
94static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM);
95static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
96static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
97static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
98static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
99static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPhys, void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType, void *pvUser);
100static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
101static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
102static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
103static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
104//static DECLCALLBACK(void) selmR3InfoTss(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
105//static DECLCALLBACK(void) selmR3InfoTssGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
106
107
108/*******************************************************************************
109* Global Variables *
110*******************************************************************************/
111#ifdef LOG_ENABLED
112/** Segment register names. */
113static char const g_aszSRegNms[X86_SREG_COUNT][4] = { "ES", "CS", "SS", "DS", "FS", "GS" };
114#endif
115
116
117/**
118 * Initializes the SELM.
119 *
120 * @returns VBox status code.
121 * @param pVM Pointer to the VM.
122 */
123VMMR3DECL(int) SELMR3Init(PVM pVM)
124{
125 int rc;
126 LogFlow(("SELMR3Init\n"));
127
128 /*
129 * Assert alignment and sizes.
130 * (The TSS block requires contiguous back.)
131 */
132 AssertCompile(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding)); AssertRelease(sizeof(pVM->selm.s) <= sizeof(pVM->selm.padding));
133 AssertCompileMemberAlignment(VM, selm.s, 32); AssertRelease(!(RT_OFFSETOF(VM, selm.s) & 31));
134#if 0 /* doesn't work */
135 AssertCompile((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
136 AssertCompile((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
137#endif
138 AssertRelease((RT_OFFSETOF(VM, selm.s.Tss) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.Tss));
139 AssertRelease((RT_OFFSETOF(VM, selm.s.TssTrap08) & PAGE_OFFSET_MASK) <= PAGE_SIZE - sizeof(pVM->selm.s.TssTrap08));
140 AssertRelease(sizeof(pVM->selm.s.Tss.IntRedirBitmap) == 0x20);
141
142 /*
143 * Init the structure.
144 */
145 pVM->selm.s.offVM = RT_OFFSETOF(VM, selm);
146 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = (SELM_GDT_ELEMENTS - 0x1) << 3;
147 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = (SELM_GDT_ELEMENTS - 0x2) << 3;
148 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = (SELM_GDT_ELEMENTS - 0x3) << 3;
149 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = (SELM_GDT_ELEMENTS - 0x4) << 3;
150 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = (SELM_GDT_ELEMENTS - 0x5) << 3;
151
152 if (HMIsRawModeCtxNeeded(pVM))
153 {
154 /*
155 * Allocate GDT table.
156 */
157 rc = MMR3HyperAllocOnceNoRel(pVM, sizeof(pVM->selm.s.paGdtR3[0]) * SELM_GDT_ELEMENTS,
158 PAGE_SIZE, MM_TAG_SELM, (void **)&pVM->selm.s.paGdtR3);
159 AssertRCReturn(rc, rc);
160
161 /*
162 * Allocate LDT area.
163 */
164 rc = MMR3HyperAllocOnceNoRel(pVM, _64K + PAGE_SIZE, PAGE_SIZE, MM_TAG_SELM, &pVM->selm.s.pvLdtR3);
165 AssertRCReturn(rc, rc);
166 }
167
168 /*
169 * Init Guest's and Shadow GDT, LDT, TSS changes control variables.
170 */
171 pVM->selm.s.cbEffGuestGdtLimit = 0;
172 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
173 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
174 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
175
176 pVM->selm.s.paGdtRC = NIL_RTRCPTR; /* Must be set in SELMR3Relocate because of monitoring. */
177 pVM->selm.s.pvLdtRC = RTRCPTR_MAX;
178 pVM->selm.s.pvMonShwTssRC = RTRCPTR_MAX;
179 pVM->selm.s.GCSelTss = RTSEL_MAX;
180
181 pVM->selm.s.fSyncTSSRing0Stack = false;
182
183 /* The I/O bitmap starts right after the virtual interrupt redirection
184 bitmap. Outside the TSS on purpose; the CPU will not check it for
185 I/O operations. */
186 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
187 /* bit set to 1 means no redirection */
188 memset(pVM->selm.s.Tss.IntRedirBitmap, 0xff, sizeof(pVM->selm.s.Tss.IntRedirBitmap));
189
190 /*
191 * Register the saved state data unit.
192 */
193 rc = SSMR3RegisterInternal(pVM, "selm", 1, SELM_SAVED_STATE_VERSION, sizeof(SELM),
194 NULL, NULL, NULL,
195 NULL, selmR3Save, NULL,
196 NULL, selmR3Load, selmR3LoadDone);
197 if (RT_FAILURE(rc))
198 return rc;
199
200 /*
201 * Statistics.
202 */
203 if (!HMIsEnabled(pVM))
204 {
205 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest GDT.");
206 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestGDTUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/GDTEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest GDT.");
207 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestLDT, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/LDT", STAMUNIT_OCCURENCES, "The number of writes to the Guest LDT was detected.");
208 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSInt", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS.");
209 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSRedir, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSRedir",STAMUNIT_OCCURENCES, "The number of handled redir bitmap writes to the Guest TSS.");
210 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSHandledChanged,STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSIntChg", STAMUNIT_OCCURENCES, "The number of handled writes to the Guest TSS where the R0 stack changed.");
211 STAM_REG(pVM, &pVM->selm.s.StatRCWriteGuestTSSUnhandled, STAMTYPE_COUNTER, "/SELM/GC/Write/Guest/TSSEmu", STAMUNIT_OCCURENCES, "The number of unhandled writes to the Guest TSS.");
212 STAM_REG(pVM, &pVM->selm.s.StatTSSSync, STAMTYPE_PROFILE, "/PROF/SELM/TSSSync", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3SyncTSS() body.");
213 STAM_REG(pVM, &pVM->selm.s.StatUpdateFromCPUM, STAMTYPE_PROFILE, "/PROF/SELM/UpdateFromCPUM", STAMUNIT_TICKS_PER_CALL, "Profiling of the SELMR3UpdateFromCPUM() body.");
214
215 STAM_REL_REG(pVM, &pVM->selm.s.StatHyperSelsChanged, STAMTYPE_COUNTER, "/SELM/HyperSels/Changed", STAMUNIT_OCCURENCES, "The number of times we had to relocate our hypervisor selectors.");
216 STAM_REL_REG(pVM, &pVM->selm.s.StatScanForHyperSels, STAMTYPE_COUNTER, "/SELM/HyperSels/Scan", STAMUNIT_OCCURENCES, "The number of times we had find free hypervisor selectors.");
217
218 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleES", STAMUNIT_OCCURENCES, "Stale ES was detected in UpdateFromCPUM.");
219 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleCS", STAMUNIT_OCCURENCES, "Stale CS was detected in UpdateFromCPUM.");
220 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleSS", STAMUNIT_OCCURENCES, "Stale SS was detected in UpdateFromCPUM.");
221 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleDS", STAMUNIT_OCCURENCES, "Stale DS was detected in UpdateFromCPUM.");
222 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleFS", STAMUNIT_OCCURENCES, "Stale FS was detected in UpdateFromCPUM.");
223 STAM_REL_REG(pVM, &pVM->selm.s.aStatDetectedStaleSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/DetectedStaleGS", STAMUNIT_OCCURENCES, "Stale GS was detected in UpdateFromCPUM.");
224
225 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleES", STAMUNIT_OCCURENCES, "Already stale ES in UpdateFromCPUM.");
226 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleCS", STAMUNIT_OCCURENCES, "Already stale CS in UpdateFromCPUM.");
227 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleSS", STAMUNIT_OCCURENCES, "Already stale SS in UpdateFromCPUM.");
228 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleDS", STAMUNIT_OCCURENCES, "Already stale DS in UpdateFromCPUM.");
229 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleFS", STAMUNIT_OCCURENCES, "Already stale FS in UpdateFromCPUM.");
230 STAM_REL_REG(pVM, &pVM->selm.s.aStatAlreadyStaleSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/AlreadyStaleGS", STAMUNIT_OCCURENCES, "Already stale GS in UpdateFromCPUM.");
231
232 STAM_REL_REG(pVM, &pVM->selm.s.StatStaleToUnstaleSReg, STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/StaleToUnstale", STAMUNIT_OCCURENCES, "Transitions from stale to unstale UpdateFromCPUM.");
233
234 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_ES], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedES", STAMUNIT_OCCURENCES, "Updated hidden ES values in UpdateFromCPUM.");
235 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_CS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedCS", STAMUNIT_OCCURENCES, "Updated hidden CS values in UpdateFromCPUM.");
236 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_SS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedSS", STAMUNIT_OCCURENCES, "Updated hidden SS values in UpdateFromCPUM.");
237 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_DS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedDS", STAMUNIT_OCCURENCES, "Updated hidden DS values in UpdateFromCPUM.");
238 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_FS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedFS", STAMUNIT_OCCURENCES, "Updated hidden FS values in UpdateFromCPUM.");
239 STAM_REG( pVM, &pVM->selm.s.aStatUpdatedSReg[X86_SREG_GS], STAMTYPE_COUNTER, "/SELM/UpdateFromCPUM/UpdatedGS", STAMUNIT_OCCURENCES, "Updated hidden GS values in UpdateFromCPUM.");
240 }
241
242 STAM_REG( pVM, &pVM->selm.s.StatLoadHidSelGst, STAMTYPE_COUNTER, "/SELM/LoadHidSel/LoadedGuest", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Loaded from guest tables.");
243 STAM_REG( pVM, &pVM->selm.s.StatLoadHidSelShw, STAMTYPE_COUNTER, "/SELM/LoadHidSel/LoadedShadow", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Loaded from shadow tables.");
244 STAM_REL_REG(pVM, &pVM->selm.s.StatLoadHidSelReadErrors, STAMTYPE_COUNTER, "/SELM/LoadHidSel/GstReadErrors", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: Guest table read errors.");
245 STAM_REL_REG(pVM, &pVM->selm.s.StatLoadHidSelGstNoGood, STAMTYPE_COUNTER, "/SELM/LoadHidSel/NoGoodGuest", STAMUNIT_OCCURENCES, "SELMLoadHiddenSelectorReg: No good guest table entry.");
246
247#ifdef VBOX_WITH_RAW_MODE
248 /*
249 * Default action when entering raw mode for the first time
250 */
251 if (!HMIsEnabled(pVM))
252 {
253 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
254 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
255 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
256 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
257 }
258#endif
259
260 /*
261 * Register info handlers.
262 */
263 if (HMIsRawModeCtxNeeded(pVM))
264 {
265 DBGFR3InfoRegisterInternal(pVM, "gdt", "Displays the shadow GDT. No arguments.", &selmR3InfoGdt);
266 DBGFR3InfoRegisterInternal(pVM, "ldt", "Displays the shadow LDT. No arguments.", &selmR3InfoLdt);
267 //DBGFR3InfoRegisterInternal(pVM, "tss", "Displays the shadow TSS. No arguments.", &selmR3InfoTss);
268 }
269 DBGFR3InfoRegisterInternal(pVM, "gdtguest", "Displays the guest GDT. No arguments.", &selmR3InfoGdtGuest);
270 DBGFR3InfoRegisterInternal(pVM, "ldtguest", "Displays the guest LDT. No arguments.", &selmR3InfoLdtGuest);
271 //DBGFR3InfoRegisterInternal(pVM, "tssguest", "Displays the guest TSS. No arguments.", &selmR3InfoTssGuest);
272
273 return rc;
274}
275
276
277/**
278 * Finalizes HMA page attributes.
279 *
280 * @returns VBox status code.
281 * @param pVM Pointer to the VM.
282 */
283VMMR3DECL(int) SELMR3InitFinalize(PVM pVM)
284{
285#ifdef VBOX_WITH_RAW_MODE
286 /** @cfgm{/DoubleFault,bool,false}
287 * Enables catching of double faults in the raw-mode context VMM code. This can
288 * be used when the triple faults or hangs occur and one suspect an unhandled
289 * double fault. This is not enabled by default because it means making the
290 * hyper selectors writeable for all supervisor code, including the guest's.
291 * The double fault is a task switch and thus requires write access to the GDT
292 * of the TSS (to set it busy), to the old TSS (to store state), and to the Trap
293 * 8 TSS for the back link.
294 */
295 bool f;
296# if defined(DEBUG_bird)
297 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, true);
298# else
299 int rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "DoubleFault", &f, false);
300# endif
301 AssertLogRelRCReturn(rc, rc);
302 if (f && HMIsRawModeCtxNeeded(pVM))
303 {
304 PX86DESC paGdt = pVM->selm.s.paGdtR3;
305 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3]), sizeof(paGdt[0]),
306 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
307 AssertRC(rc);
308 rc = PGMMapSetPage(pVM, MMHyperR3ToRC(pVM, &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3]), sizeof(paGdt[0]),
309 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
310 AssertRC(rc);
311 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]),
312 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
313 AssertRC(rc);
314 rc = PGMMapSetPage(pVM, VM_RC_ADDR(pVM, &pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]), sizeof(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]),
315 X86_PTE_RW | X86_PTE_P | X86_PTE_A | X86_PTE_D);
316 AssertRC(rc);
317 }
318#endif /* VBOX_WITH_RAW_MODE */
319 return VINF_SUCCESS;
320}
321
322
323/**
324 * Setup the hypervisor GDT selectors in our shadow table
325 *
326 * @param pVM Pointer to the VM.
327 */
328static void selmR3SetupHyperGDTSelectors(PVM pVM)
329{
330 PX86DESC paGdt = pVM->selm.s.paGdtR3;
331
332 /*
333 * Set up global code and data descriptors for use in the guest context.
334 * Both are wide open (base 0, limit 4GB)
335 */
336 PX86DESC pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> 3];
337 pDesc->Gen.u16LimitLow = 0xffff;
338 pDesc->Gen.u4LimitHigh = 0xf;
339 pDesc->Gen.u16BaseLow = 0;
340 pDesc->Gen.u8BaseHigh1 = 0;
341 pDesc->Gen.u8BaseHigh2 = 0;
342 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
343 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
344 pDesc->Gen.u2Dpl = 0; /* supervisor */
345 pDesc->Gen.u1Present = 1;
346 pDesc->Gen.u1Available = 0;
347 pDesc->Gen.u1Long = 0;
348 pDesc->Gen.u1DefBig = 1; /* def 32 bit */
349 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
350
351 /* data */
352 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> 3];
353 pDesc->Gen.u16LimitLow = 0xffff;
354 pDesc->Gen.u4LimitHigh = 0xf;
355 pDesc->Gen.u16BaseLow = 0;
356 pDesc->Gen.u8BaseHigh1 = 0;
357 pDesc->Gen.u8BaseHigh2 = 0;
358 pDesc->Gen.u4Type = X86_SEL_TYPE_RW_ACC;
359 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
360 pDesc->Gen.u2Dpl = 0; /* supervisor */
361 pDesc->Gen.u1Present = 1;
362 pDesc->Gen.u1Available = 0;
363 pDesc->Gen.u1Long = 0;
364 pDesc->Gen.u1DefBig = 1; /* big */
365 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
366
367 /* 64-bit mode code (& data?) */
368 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> 3];
369 pDesc->Gen.u16LimitLow = 0xffff;
370 pDesc->Gen.u4LimitHigh = 0xf;
371 pDesc->Gen.u16BaseLow = 0;
372 pDesc->Gen.u8BaseHigh1 = 0;
373 pDesc->Gen.u8BaseHigh2 = 0;
374 pDesc->Gen.u4Type = X86_SEL_TYPE_ER_ACC;
375 pDesc->Gen.u1DescType = 1; /* not system, but code/data */
376 pDesc->Gen.u2Dpl = 0; /* supervisor */
377 pDesc->Gen.u1Present = 1;
378 pDesc->Gen.u1Available = 0;
379 pDesc->Gen.u1Long = 1; /* The Long (L) attribute bit. */
380 pDesc->Gen.u1DefBig = 0; /* With L=1 this must be 0. */
381 pDesc->Gen.u1Granularity = 1; /* 4KB limit */
382
383 /*
384 * TSS descriptor
385 */
386 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3];
387 RTRCPTR RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
388 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
389 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
390 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
391 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
392 pDesc->Gen.u4LimitHigh = 0;
393 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
394 pDesc->Gen.u1DescType = 0; /* system */
395 pDesc->Gen.u2Dpl = 0; /* supervisor */
396 pDesc->Gen.u1Present = 1;
397 pDesc->Gen.u1Available = 0;
398 pDesc->Gen.u1Long = 0;
399 pDesc->Gen.u1DefBig = 0;
400 pDesc->Gen.u1Granularity = 0; /* byte limit */
401
402 /*
403 * TSS descriptor for trap 08
404 */
405 pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> 3];
406 pDesc->Gen.u16LimitLow = sizeof(VBOXTSS) - 1;
407 pDesc->Gen.u4LimitHigh = 0;
408 RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.TssTrap08);
409 pDesc->Gen.u16BaseLow = RT_LOWORD(RCPtrTSS);
410 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(RCPtrTSS);
411 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(RCPtrTSS);
412 pDesc->Gen.u4Type = X86_SEL_TYPE_SYS_386_TSS_AVAIL;
413 pDesc->Gen.u1DescType = 0; /* system */
414 pDesc->Gen.u2Dpl = 0; /* supervisor */
415 pDesc->Gen.u1Present = 1;
416 pDesc->Gen.u1Available = 0;
417 pDesc->Gen.u1Long = 0;
418 pDesc->Gen.u1DefBig = 0;
419 pDesc->Gen.u1Granularity = 0; /* byte limit */
420}
421
422/**
423 * Applies relocations to data and code managed by this
424 * component. This function will be called at init and
425 * whenever the VMM need to relocate it self inside the GC.
426 *
427 * @param pVM The VM.
428 */
429VMMR3DECL(void) SELMR3Relocate(PVM pVM)
430{
431 PX86DESC paGdt = pVM->selm.s.paGdtR3;
432 LogFlow(("SELMR3Relocate\n"));
433
434 if (HMIsRawModeCtxNeeded(pVM))
435 {
436 for (VMCPUID i = 0; i < pVM->cCpus; i++)
437 {
438 PVMCPU pVCpu = &pVM->aCpus[i];
439
440 /*
441 * Update GDTR and selector.
442 */
443 CPUMSetHyperGDTR(pVCpu, MMHyperR3ToRC(pVM, paGdt), SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1);
444
445 /** @todo selector relocations should be a separate operation? */
446 CPUMSetHyperCS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]);
447 CPUMSetHyperDS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
448 CPUMSetHyperES(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
449 CPUMSetHyperSS(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]);
450 CPUMSetHyperTR(pVCpu, pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]);
451 }
452
453 selmR3SetupHyperGDTSelectors(pVM);
454
455/** @todo SELM must be called when any of the CR3s changes during a cpu mode change. */
456/** @todo PGM knows the proper CR3 values these days, not CPUM. */
457 /*
458 * Update the TSSes.
459 */
460 /* Only applies to raw mode which supports only 1 VCPU */
461 PVMCPU pVCpu = &pVM->aCpus[0];
462
463 /* Current TSS */
464 pVM->selm.s.Tss.cr3 = PGMGetHyperCR3(pVCpu);
465 pVM->selm.s.Tss.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
466 pVM->selm.s.Tss.esp0 = VMMGetStackRC(pVCpu);
467 pVM->selm.s.Tss.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
468 pVM->selm.s.Tss.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
469 pVM->selm.s.Tss.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
470 pVM->selm.s.Tss.offIoBitmap = sizeof(VBOXTSS);
471
472 /* trap 08 */
473 pVM->selm.s.TssTrap08.cr3 = PGMGetInterRCCR3(pVM, pVCpu); /* this should give use better survival chances. */
474 pVM->selm.s.TssTrap08.ss0 = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
475 pVM->selm.s.TssTrap08.ss = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
476 pVM->selm.s.TssTrap08.esp0 = VMMGetStackRC(pVCpu) - PAGE_SIZE / 2; /* upper half can be analysed this way. */
477 pVM->selm.s.TssTrap08.esp = pVM->selm.s.TssTrap08.esp0;
478 pVM->selm.s.TssTrap08.ebp = pVM->selm.s.TssTrap08.esp0;
479 pVM->selm.s.TssTrap08.cs = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS];
480 pVM->selm.s.TssTrap08.ds = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
481 pVM->selm.s.TssTrap08.es = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS];
482 pVM->selm.s.TssTrap08.fs = 0;
483 pVM->selm.s.TssTrap08.gs = 0;
484 pVM->selm.s.TssTrap08.selLdt = 0;
485 pVM->selm.s.TssTrap08.eflags = 0x2; /* all cleared */
486 pVM->selm.s.TssTrap08.ecx = VM_RC_ADDR(pVM, &pVM->selm.s.Tss); /* setup ecx to normal Hypervisor TSS address. */
487 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.ecx;
488 pVM->selm.s.TssTrap08.eax = pVM->selm.s.TssTrap08.ecx;
489 pVM->selm.s.TssTrap08.edx = VM_RC_ADDR(pVM, pVM); /* setup edx VM address. */
490 pVM->selm.s.TssTrap08.edi = pVM->selm.s.TssTrap08.edx;
491 pVM->selm.s.TssTrap08.ebx = pVM->selm.s.TssTrap08.edx;
492 pVM->selm.s.TssTrap08.offIoBitmap = sizeof(VBOXTSS);
493 /* TRPM will be updating the eip */
494 }
495
496 if (!HMIsEnabled(pVM))
497 {
498 /*
499 * Update shadow GDT/LDT/TSS write access handlers.
500 */
501 int rc; NOREF(rc);
502#ifdef SELM_TRACK_SHADOW_GDT_CHANGES
503 if (pVM->selm.s.paGdtRC != NIL_RTRCPTR)
504 {
505 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.paGdtRC);
506 AssertRC(rc);
507 }
508 pVM->selm.s.paGdtRC = MMHyperR3ToRC(pVM, paGdt);
509 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.paGdtRC,
510 pVM->selm.s.paGdtRC + SELM_GDT_ELEMENTS * sizeof(paGdt[0]) - 1,
511 0, 0, "selmRCShadowGDTWriteHandler", 0, "Shadow GDT write access handler");
512 AssertRC(rc);
513#endif
514#ifdef SELM_TRACK_SHADOW_TSS_CHANGES
515 if (pVM->selm.s.pvMonShwTssRC != RTRCPTR_MAX)
516 {
517 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvMonShwTssRC);
518 AssertRC(rc);
519 }
520 pVM->selm.s.pvMonShwTssRC = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
521 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvMonShwTssRC,
522 pVM->selm.s.pvMonShwTssRC + sizeof(pVM->selm.s.Tss) - 1,
523 0, 0, "selmRCShadowTSSWriteHandler", 0, "Shadow TSS write access handler");
524 AssertRC(rc);
525#endif
526
527 /*
528 * Update the GC LDT region handler and address.
529 */
530#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
531 if (pVM->selm.s.pvLdtRC != RTRCPTR_MAX)
532 {
533 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.pvLdtRC);
534 AssertRC(rc);
535 }
536#endif
537 pVM->selm.s.pvLdtRC = MMHyperR3ToRC(pVM, pVM->selm.s.pvLdtR3);
538#ifdef SELM_TRACK_SHADOW_LDT_CHANGES
539 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_HYPERVISOR, pVM->selm.s.pvLdtRC,
540 pVM->selm.s.pvLdtRC + _64K + PAGE_SIZE - 1,
541 0, 0, "selmRCShadowLDTWriteHandler", 0, "Shadow LDT write access handler");
542 AssertRC(rc);
543#endif
544 }
545}
546
547
548/**
549 * Terminates the SELM.
550 *
551 * Termination means cleaning up and freeing all resources,
552 * the VM it self is at this point powered off or suspended.
553 *
554 * @returns VBox status code.
555 * @param pVM Pointer to the VM.
556 */
557VMMR3DECL(int) SELMR3Term(PVM pVM)
558{
559 NOREF(pVM);
560 return VINF_SUCCESS;
561}
562
563
564/**
565 * The VM is being reset.
566 *
567 * For the SELM component this means that any GDT/LDT/TSS monitors
568 * needs to be removed.
569 *
570 * @param pVM Pointer to the VM.
571 */
572VMMR3DECL(void) SELMR3Reset(PVM pVM)
573{
574 LogFlow(("SELMR3Reset:\n"));
575 VM_ASSERT_EMT(pVM);
576
577 /*
578 * Uninstall guest GDT/LDT/TSS write access handlers.
579 */
580 int rc = VINF_SUCCESS;
581 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
582 {
583#ifdef SELM_TRACK_GUEST_GDT_CHANGES
584 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
585 AssertRC(rc);
586#endif
587 pVM->selm.s.GuestGdtr.pGdt = RTRCPTR_MAX;
588 pVM->selm.s.GuestGdtr.cbGdt = 0;
589 }
590 pVM->selm.s.fGDTRangeRegistered = false;
591 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
592 {
593#ifdef SELM_TRACK_GUEST_LDT_CHANGES
594 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
595 AssertRC(rc);
596#endif
597 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
598 }
599 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
600 {
601#ifdef SELM_TRACK_GUEST_TSS_CHANGES
602 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
603 AssertRC(rc);
604#endif
605 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
606 pVM->selm.s.GCSelTss = RTSEL_MAX;
607 }
608
609 /*
610 * Re-initialize other members.
611 */
612 pVM->selm.s.cbLdtLimit = 0;
613 pVM->selm.s.offLdtHyper = 0;
614 pVM->selm.s.cbMonitoredGuestTss = 0;
615
616 pVM->selm.s.fSyncTSSRing0Stack = false;
617
618#ifdef VBOX_WITH_RAW_MODE
619 if (!HMIsEnabled(pVM))
620 {
621 /*
622 * Default action when entering raw mode for the first time
623 */
624 PVMCPU pVCpu = &pVM->aCpus[0]; /* raw mode implies on VCPU */
625 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
626 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
627 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
628 }
629#endif
630}
631
632
633/**
634 * Execute state save operation.
635 *
636 * @returns VBox status code.
637 * @param pVM Pointer to the VM.
638 * @param pSSM SSM operation handle.
639 */
640static DECLCALLBACK(int) selmR3Save(PVM pVM, PSSMHANDLE pSSM)
641{
642 LogFlow(("selmR3Save:\n"));
643
644 /*
645 * Save the basic bits - fortunately all the other things can be resynced on load.
646 */
647 PSELM pSelm = &pVM->selm.s;
648
649 SSMR3PutBool(pSSM, HMIsEnabled(pVM));
650 SSMR3PutBool(pSSM, pSelm->fSyncTSSRing0Stack);
651 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS]);
652 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_DS]);
653 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]);
654 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_CS64]); /* reserved for DS64. */
655 SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS]);
656 return SSMR3PutSel(pSSM, pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08]);
657}
658
659
660/**
661 * Execute state load operation.
662 *
663 * @returns VBox status code.
664 * @param pVM Pointer to the VM.
665 * @param pSSM SSM operation handle.
666 * @param uVersion Data layout version.
667 * @param uPass The data pass.
668 */
669static DECLCALLBACK(int) selmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
670{
671 LogFlow(("selmR3Load:\n"));
672 Assert(uPass == SSM_PASS_FINAL); NOREF(uPass);
673
674 /*
675 * Validate version.
676 */
677 if (uVersion != SELM_SAVED_STATE_VERSION)
678 {
679 AssertMsgFailed(("selmR3Load: Invalid version uVersion=%d!\n", uVersion));
680 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
681 }
682
683 /*
684 * Do a reset.
685 */
686 SELMR3Reset(pVM);
687
688 /* Get the monitoring flag. */
689 bool fIgnored;
690 SSMR3GetBool(pSSM, &fIgnored);
691
692 /* Get the TSS state flag. */
693 SSMR3GetBool(pSSM, &pVM->selm.s.fSyncTSSRing0Stack);
694
695 /*
696 * Get the selectors.
697 */
698 RTSEL SelCS;
699 SSMR3GetSel(pSSM, &SelCS);
700 RTSEL SelDS;
701 SSMR3GetSel(pSSM, &SelDS);
702 RTSEL SelCS64;
703 SSMR3GetSel(pSSM, &SelCS64);
704 RTSEL SelDS64;
705 SSMR3GetSel(pSSM, &SelDS64);
706 RTSEL SelTSS;
707 SSMR3GetSel(pSSM, &SelTSS);
708 RTSEL SelTSSTrap08;
709 SSMR3GetSel(pSSM, &SelTSSTrap08);
710
711 /* Copy the selectors; they will be checked during relocation. */
712 PSELM pSelm = &pVM->selm.s;
713 pSelm->aHyperSel[SELM_HYPER_SEL_CS] = SelCS;
714 pSelm->aHyperSel[SELM_HYPER_SEL_DS] = SelDS;
715 pSelm->aHyperSel[SELM_HYPER_SEL_CS64] = SelCS64;
716 pSelm->aHyperSel[SELM_HYPER_SEL_TSS] = SelTSS;
717 pSelm->aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SelTSSTrap08;
718
719 return VINF_SUCCESS;
720}
721
722
723/**
724 * Sync the GDT, LDT and TSS after loading the state.
725 *
726 * Just to play save, we set the FFs to force syncing before
727 * executing GC code.
728 *
729 * @returns VBox status code.
730 * @param pVM Pointer to the VM.
731 * @param pSSM SSM operation handle.
732 */
733static DECLCALLBACK(int) selmR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
734{
735#ifdef VBOX_WITH_RAW_MODE
736 if (!HMIsEnabled(pVM))
737 {
738 PVMCPU pVCpu = VMMGetCpu(pVM);
739
740 LogFlow(("selmR3LoadDone:\n"));
741
742 /*
743 * Don't do anything if it's a load failure.
744 */
745 int rc = SSMR3HandleGetStatus(pSSM);
746 if (RT_FAILURE(rc))
747 return VINF_SUCCESS;
748
749 /*
750 * Do the syncing if we're in protected mode and using raw-mode.
751 */
752 if (PGMGetGuestMode(pVCpu) != PGMMODE_REAL)
753 {
754 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
755 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
756 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
757 SELMR3UpdateFromCPUM(pVM, pVCpu);
758 }
759
760 /*
761 * Flag everything for resync on next raw mode entry.
762 */
763 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
764 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
765 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
766 }
767#endif /*VBOX_WITH_RAW_MODE*/
768 return VINF_SUCCESS;
769}
770
771#ifdef VBOX_WITH_RAW_MODE
772
773/**
774 * Updates (syncs) the shadow GDT.
775 *
776 * @returns VBox status code.
777 * @param pVM The VM handle.
778 * @param pVCpu The current virtual CPU.
779 */
780static int selmR3UpdateShadowGdt(PVM pVM, PVMCPU pVCpu)
781{
782 Assert(!HMIsEnabled(pVM));
783
784 /*
785 * Always assume the best...
786 */
787 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_GDT);
788
789 /* If the GDT was changed, then make sure the LDT is checked too */
790 /** @todo only do this if the actual ldtr selector was changed; this is a bit excessive */
791 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
792 /* Same goes for the TSS selector */
793 VMCPU_FF_SET(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
794
795 /*
796 * Get the GDTR and check if there is anything to do (there usually is).
797 */
798 VBOXGDTR GDTR;
799 CPUMGetGuestGDTR(pVCpu, &GDTR);
800 if (GDTR.cbGdt < sizeof(X86DESC))
801 {
802 Log(("No GDT entries...\n"));
803 return VINF_SUCCESS;
804 }
805
806 /*
807 * Read the Guest GDT.
808 * ASSUMES that the entire GDT is in memory.
809 */
810 RTUINT cbEffLimit = GDTR.cbGdt;
811 PX86DESC pGDTE = &pVM->selm.s.paGdtR3[1];
812 int rc = PGMPhysSimpleReadGCPtr(pVCpu, pGDTE, GDTR.pGdt + sizeof(X86DESC), cbEffLimit + 1 - sizeof(X86DESC));
813 if (RT_FAILURE(rc))
814 {
815 /*
816 * Read it page by page.
817 *
818 * Keep track of the last valid page and delay memsets and
819 * adjust cbEffLimit to reflect the effective size. The latter
820 * is something we do in the belief that the guest will probably
821 * never actually commit the last page, thus allowing us to keep
822 * our selectors in the high end of the GDT.
823 */
824 RTUINT cbLeft = cbEffLimit + 1 - sizeof(X86DESC);
825 RTGCPTR GCPtrSrc = (RTGCPTR)GDTR.pGdt + sizeof(X86DESC);
826 uint8_t *pu8Dst = (uint8_t *)&pVM->selm.s.paGdtR3[1];
827 uint8_t *pu8DstInvalid = pu8Dst;
828
829 while (cbLeft)
830 {
831 RTUINT cb = PAGE_SIZE - (GCPtrSrc & PAGE_OFFSET_MASK);
832 cb = RT_MIN(cb, cbLeft);
833 rc = PGMPhysSimpleReadGCPtr(pVCpu, pu8Dst, GCPtrSrc, cb);
834 if (RT_SUCCESS(rc))
835 {
836 if (pu8DstInvalid != pu8Dst)
837 RT_BZERO(pu8DstInvalid, pu8Dst - pu8DstInvalid);
838 GCPtrSrc += cb;
839 pu8Dst += cb;
840 pu8DstInvalid = pu8Dst;
841 }
842 else if ( rc == VERR_PAGE_NOT_PRESENT
843 || rc == VERR_PAGE_TABLE_NOT_PRESENT)
844 {
845 GCPtrSrc += cb;
846 pu8Dst += cb;
847 }
848 else
849 {
850 AssertLogRelMsgFailed(("Couldn't read GDT at %016RX64, rc=%Rrc!\n", GDTR.pGdt, rc));
851 return VERR_SELM_GDT_READ_ERROR;
852 }
853 cbLeft -= cb;
854 }
855
856 /* any invalid pages at the end? */
857 if (pu8DstInvalid != pu8Dst)
858 {
859 cbEffLimit = pu8DstInvalid - (uint8_t *)pVM->selm.s.paGdtR3 - 1;
860 /* If any GDTEs was invalidated, zero them. */
861 if (cbEffLimit < pVM->selm.s.cbEffGuestGdtLimit)
862 RT_BZERO(pu8DstInvalid + cbEffLimit + 1, pVM->selm.s.cbEffGuestGdtLimit - cbEffLimit);
863 }
864
865 /* keep track of the effective limit. */
866 if (cbEffLimit != pVM->selm.s.cbEffGuestGdtLimit)
867 {
868 Log(("SELMR3UpdateFromCPUM: cbEffGuestGdtLimit=%#x -> %#x (actual %#x)\n",
869 pVM->selm.s.cbEffGuestGdtLimit, cbEffLimit, GDTR.cbGdt));
870 pVM->selm.s.cbEffGuestGdtLimit = cbEffLimit;
871 }
872 }
873
874 /*
875 * Check if the Guest GDT intrudes on our GDT entries.
876 */
877 /** @todo we should try to minimize relocations by making sure our current selectors can be reused. */
878 RTSEL aHyperSel[SELM_HYPER_SEL_MAX];
879 if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
880 {
881 PX86DESC pGDTEStart = pVM->selm.s.paGdtR3;
882 PX86DESC pGDTECur = (PX86DESC)((char *)pGDTEStart + GDTR.cbGdt + 1 - sizeof(X86DESC));
883 int iGDT = 0;
884
885 Log(("Internal SELM GDT conflict: use non-present entries\n"));
886 STAM_REL_COUNTER_INC(&pVM->selm.s.StatScanForHyperSels);
887 while (pGDTECur > pGDTEStart)
888 {
889 /* We can reuse non-present entries */
890 if (!pGDTECur->Gen.u1Present)
891 {
892 aHyperSel[iGDT] = ((uintptr_t)pGDTECur - (uintptr_t)pVM->selm.s.paGdtR3) / sizeof(X86DESC);
893 aHyperSel[iGDT] = aHyperSel[iGDT] << X86_SEL_SHIFT;
894 Log(("SELM: Found unused GDT %04X\n", aHyperSel[iGDT]));
895 iGDT++;
896 if (iGDT >= SELM_HYPER_SEL_MAX)
897 break;
898 }
899
900 pGDTECur--;
901 }
902 if (iGDT != SELM_HYPER_SEL_MAX)
903 {
904 AssertLogRelMsgFailed(("Internal SELM GDT conflict.\n"));
905 return VERR_SELM_GDT_TOO_FULL;
906 }
907 }
908 else
909 {
910 aHyperSel[SELM_HYPER_SEL_CS] = SELM_HYPER_DEFAULT_SEL_CS;
911 aHyperSel[SELM_HYPER_SEL_DS] = SELM_HYPER_DEFAULT_SEL_DS;
912 aHyperSel[SELM_HYPER_SEL_CS64] = SELM_HYPER_DEFAULT_SEL_CS64;
913 aHyperSel[SELM_HYPER_SEL_TSS] = SELM_HYPER_DEFAULT_SEL_TSS;
914 aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = SELM_HYPER_DEFAULT_SEL_TSS_TRAP08;
915 }
916
917#ifdef VBOX_WITH_SAFE_STR
918 /* Use the guest's TR selector to plug the str virtualization hole. */
919 if (CPUMGetGuestTR(pVCpu, NULL) != 0)
920 {
921 Log(("SELM: Use guest TSS selector %x\n", CPUMGetGuestTR(pVCpu, NULL)));
922 aHyperSel[SELM_HYPER_SEL_TSS] = CPUMGetGuestTR(pVCpu, NULL);
923 }
924#endif
925
926 /*
927 * Work thru the copied GDT entries adjusting them for correct virtualization.
928 */
929 PX86DESC pGDTEEnd = (PX86DESC)((char *)pGDTE + cbEffLimit + 1 - sizeof(X86DESC));
930 while (pGDTE < pGDTEEnd)
931 {
932 if (pGDTE->Gen.u1Present)
933 selmGuestToShadowDesc(pVM, pGDTE);
934
935 /* Next GDT entry. */
936 pGDTE++;
937 }
938
939 /*
940 * Check if our hypervisor selectors were changed.
941 */
942 if ( aHyperSel[SELM_HYPER_SEL_CS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS]
943 || aHyperSel[SELM_HYPER_SEL_DS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS]
944 || aHyperSel[SELM_HYPER_SEL_CS64] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64]
945 || aHyperSel[SELM_HYPER_SEL_TSS] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS]
946 || aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] != pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08])
947 {
948 /* Reinitialize our hypervisor GDTs */
949 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] = aHyperSel[SELM_HYPER_SEL_CS];
950 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] = aHyperSel[SELM_HYPER_SEL_DS];
951 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] = aHyperSel[SELM_HYPER_SEL_CS64];
952 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] = aHyperSel[SELM_HYPER_SEL_TSS];
953 pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] = aHyperSel[SELM_HYPER_SEL_TSS_TRAP08];
954
955 STAM_REL_COUNTER_INC(&pVM->selm.s.StatHyperSelsChanged);
956
957 /*
958 * Do the relocation callbacks to let everyone update their hyper selector dependencies.
959 * (SELMR3Relocate will call selmR3SetupHyperGDTSelectors() for us.)
960 */
961 VMR3Relocate(pVM, 0);
962 }
963 else
964#ifdef VBOX_WITH_SAFE_STR
965 if ( cbEffLimit >= SELM_HYPER_DEFAULT_BASE
966 || CPUMGetGuestTR(pVCpu, NULL) != 0) /* Our shadow TR entry was overwritten when we synced the guest's GDT. */
967#else
968 if (cbEffLimit >= SELM_HYPER_DEFAULT_BASE)
969#endif
970 /* We overwrote all entries above, so we have to save them again. */
971 selmR3SetupHyperGDTSelectors(pVM);
972
973 /*
974 * Adjust the cached GDT limit.
975 * Any GDT entries which have been removed must be cleared.
976 */
977 if (pVM->selm.s.GuestGdtr.cbGdt != GDTR.cbGdt)
978 {
979 if (pVM->selm.s.GuestGdtr.cbGdt > GDTR.cbGdt)
980 RT_BZERO(pGDTE, pVM->selm.s.GuestGdtr.cbGdt - GDTR.cbGdt);
981 }
982
983 /*
984 * Check if Guest's GDTR is changed.
985 */
986 if ( GDTR.pGdt != pVM->selm.s.GuestGdtr.pGdt
987 || GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
988 {
989 Log(("SELMR3UpdateFromCPUM: Guest's GDT is changed to pGdt=%016RX64 cbGdt=%08X\n", GDTR.pGdt, GDTR.cbGdt));
990
991#ifdef SELM_TRACK_GUEST_GDT_CHANGES
992 /*
993 * [Re]Register write virtual handler for guest's GDT.
994 */
995 if (pVM->selm.s.GuestGdtr.pGdt != RTRCPTR_MAX && pVM->selm.s.fGDTRangeRegistered)
996 {
997 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GuestGdtr.pGdt);
998 AssertRC(rc);
999 }
1000
1001 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE,
1002 GDTR.pGdt, GDTR.pGdt + GDTR.cbGdt /* already inclusive */,
1003 0, selmR3GuestGDTWriteHandler, "selmRCGuestGDTWriteHandler", 0,
1004 "Guest GDT write access handler");
1005# ifdef VBOX_WITH_RAW_RING1
1006 /** @todo !HACK ALERT!
1007 * Some guest OSes (QNX) share code and the GDT on the same page;
1008 * PGMR3HandlerVirtualRegister doesn't support more than one handler,
1009 * so we kick out the PATM handler as this one is more important.
1010 * Fix this properly in PGMR3HandlerVirtualRegister?
1011 */
1012 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1013 {
1014 LogRel(("selmR3UpdateShadowGdt: Virtual handler conflict %RGv -> kick out PATM handler for the higher priority GDT page monitor\n", GDTR.pGdt));
1015 rc = PGMHandlerVirtualDeregister(pVM, GDTR.pGdt & PAGE_BASE_GC_MASK);
1016 AssertRC(rc);
1017
1018 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE,
1019 GDTR.pGdt, GDTR.pGdt + GDTR.cbGdt /* already inclusive */,
1020 0, selmR3GuestGDTWriteHandler, "selmRCGuestGDTWriteHandler", 0,
1021 "Guest GDT write access handler");
1022 }
1023# endif
1024 if (RT_FAILURE(rc))
1025 return rc;
1026#endif /* SELM_TRACK_GUEST_GDT_CHANGES */
1027
1028 /* Update saved Guest GDTR. */
1029 pVM->selm.s.GuestGdtr = GDTR;
1030 pVM->selm.s.fGDTRangeRegistered = true;
1031 }
1032
1033 return VINF_SUCCESS;
1034}
1035
1036
1037/**
1038 * Updates (syncs) the shadow LDT.
1039 *
1040 * @returns VBox status code.
1041 * @param pVM The VM handle.
1042 * @param pVCpu The current virtual CPU.
1043 */
1044static int selmR3UpdateShadowLdt(PVM pVM, PVMCPU pVCpu)
1045{
1046 int rc = VINF_SUCCESS;
1047 Assert(!HMIsEnabled(pVM));
1048
1049 /*
1050 * Always assume the best...
1051 */
1052 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_LDT);
1053
1054 /*
1055 * LDT handling is done similarly to the GDT handling with a shadow
1056 * array. However, since the LDT is expected to be swappable (at least
1057 * some ancient OSes makes it swappable) it must be floating and
1058 * synced on a per-page basis.
1059 *
1060 * Eventually we will change this to be fully on demand. Meaning that
1061 * we will only sync pages containing LDT selectors actually used and
1062 * let the #PF handler lazily sync pages as they are used.
1063 * (This applies to GDT too, when we start making OS/2 fast.)
1064 */
1065
1066 /*
1067 * First, determine the current LDT selector.
1068 */
1069 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
1070 if (!(SelLdt & X86_SEL_MASK_OFF_RPL))
1071 {
1072 /* ldtr = 0 - update hyper LDTR and deregister any active handler. */
1073 CPUMSetHyperLDTR(pVCpu, 0);
1074 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1075 {
1076 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1077 AssertRC(rc);
1078 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1079 }
1080 pVM->selm.s.cbLdtLimit = 0;
1081 return VINF_SUCCESS;
1082 }
1083
1084 /*
1085 * Get the LDT selector.
1086 */
1087/** @todo this is wrong, use CPUMGetGuestLdtrEx */
1088 PX86DESC pDesc = &pVM->selm.s.paGdtR3[SelLdt >> X86_SEL_SHIFT];
1089 RTGCPTR GCPtrLdt = X86DESC_BASE(pDesc);
1090 uint32_t cbLdt = X86DESC_LIMIT_G(pDesc);
1091
1092 /*
1093 * Validate it.
1094 */
1095 if ( !cbLdt
1096 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt
1097 || pDesc->Gen.u1DescType
1098 || pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1099 {
1100 AssertMsg(!cbLdt, ("Invalid LDT %04x!\n", SelLdt));
1101
1102 /* cbLdt > 0:
1103 * This is quite impossible, so we do as most people do when faced with
1104 * the impossible, we simply ignore it.
1105 */
1106 CPUMSetHyperLDTR(pVCpu, 0);
1107 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1108 {
1109 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1110 AssertRC(rc);
1111 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1112 }
1113 return VINF_SUCCESS;
1114 }
1115 /** @todo check what intel does about odd limits. */
1116 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1117
1118 /*
1119 * Use the cached guest ldt address if the descriptor has already been modified (see below)
1120 * (this is necessary due to redundant LDT updates; see todo above at GDT sync)
1121 */
1122 if (MMHyperIsInsideArea(pVM, GCPtrLdt))
1123 GCPtrLdt = pVM->selm.s.GCPtrGuestLdt; /* use the old one */
1124
1125
1126 /** @todo Handle only present LDT segments. */
1127// if (pDesc->Gen.u1Present)
1128 {
1129 /*
1130 * Check if Guest's LDT address/limit is changed.
1131 */
1132 if ( GCPtrLdt != pVM->selm.s.GCPtrGuestLdt
1133 || cbLdt != pVM->selm.s.cbLdtLimit)
1134 {
1135 Log(("SELMR3UpdateFromCPUM: Guest LDT changed to from %RGv:%04x to %RGv:%04x. (GDTR=%016RX64:%04x)\n",
1136 pVM->selm.s.GCPtrGuestLdt, pVM->selm.s.cbLdtLimit, GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1137
1138#ifdef SELM_TRACK_GUEST_LDT_CHANGES
1139 /*
1140 * [Re]Register write virtual handler for guest's GDT.
1141 * In the event of LDT overlapping something, don't install it just assume it's being updated.
1142 */
1143 if (pVM->selm.s.GCPtrGuestLdt != RTRCPTR_MAX)
1144 {
1145 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestLdt);
1146 AssertRC(rc);
1147 }
1148# ifdef DEBUG
1149 if (pDesc->Gen.u1Present)
1150 Log(("LDT selector marked not present!!\n"));
1151# endif
1152 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrLdt, GCPtrLdt + cbLdt /* already inclusive */,
1153 0, selmR3GuestLDTWriteHandler, "selmRCGuestLDTWriteHandler", 0, "Guest LDT write access handler");
1154 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1155 {
1156 /** @todo investigate the various cases where conflicts happen and try avoid them by enh. the instruction emulation. */
1157 pVM->selm.s.GCPtrGuestLdt = RTRCPTR_MAX;
1158 Log(("WARNING: Guest LDT (%RGv:%04x) conflicted with existing access range!! Assumes LDT is begin updated. (GDTR=%016RX64:%04x)\n",
1159 GCPtrLdt, cbLdt, pVM->selm.s.GuestGdtr.pGdt, pVM->selm.s.GuestGdtr.cbGdt));
1160 }
1161 else if (RT_SUCCESS(rc))
1162 pVM->selm.s.GCPtrGuestLdt = GCPtrLdt;
1163 else
1164 {
1165 CPUMSetHyperLDTR(pVCpu, 0);
1166 return rc;
1167 }
1168#else
1169 pVM->selm.s.GCPtrGuestLdt = GCPtrLdt;
1170#endif
1171 pVM->selm.s.cbLdtLimit = cbLdt;
1172 }
1173 }
1174
1175 /*
1176 * Calc Shadow LDT base.
1177 */
1178 unsigned off;
1179 pVM->selm.s.offLdtHyper = off = (GCPtrLdt & PAGE_OFFSET_MASK);
1180 RTGCPTR GCPtrShadowLDT = (RTGCPTR)((RTGCUINTPTR)pVM->selm.s.pvLdtRC + off);
1181 PX86DESC pShadowLDT = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1182
1183 /*
1184 * Enable the LDT selector in the shadow GDT.
1185 */
1186 pDesc->Gen.u1Present = 1;
1187 pDesc->Gen.u16BaseLow = RT_LOWORD(GCPtrShadowLDT);
1188 pDesc->Gen.u8BaseHigh1 = RT_BYTE3(GCPtrShadowLDT);
1189 pDesc->Gen.u8BaseHigh2 = RT_BYTE4(GCPtrShadowLDT);
1190 pDesc->Gen.u1Available = 0;
1191 pDesc->Gen.u1Long = 0;
1192 if (cbLdt > 0xffff)
1193 {
1194 cbLdt = 0xffff;
1195 pDesc->Gen.u4LimitHigh = 0;
1196 pDesc->Gen.u16LimitLow = pDesc->Gen.u1Granularity ? 0xf : 0xffff;
1197 }
1198
1199 /*
1200 * Set Hyper LDTR and notify TRPM.
1201 */
1202 CPUMSetHyperLDTR(pVCpu, SelLdt);
1203
1204 /*
1205 * Loop synchronising the LDT page by page.
1206 */
1207 /** @todo investigate how intel handle various operations on half present cross page entries. */
1208 off = GCPtrLdt & (sizeof(X86DESC) - 1);
1209 AssertMsg(!off, ("LDT is not aligned on entry size! GCPtrLdt=%08x\n", GCPtrLdt));
1210
1211 /* Note: Do not skip the first selector; unlike the GDT, a zero LDT selector is perfectly valid. */
1212 unsigned cbLeft = cbLdt + 1;
1213 PX86DESC pLDTE = pShadowLDT;
1214 while (cbLeft)
1215 {
1216 /*
1217 * Read a chunk.
1218 */
1219 unsigned cbChunk = PAGE_SIZE - ((RTGCUINTPTR)GCPtrLdt & PAGE_OFFSET_MASK);
1220 if (cbChunk > cbLeft)
1221 cbChunk = cbLeft;
1222 rc = PGMPhysSimpleReadGCPtr(pVCpu, pShadowLDT, GCPtrLdt, cbChunk);
1223 if (RT_SUCCESS(rc))
1224 {
1225 /*
1226 * Mark page
1227 */
1228 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, X86_PTE_P | X86_PTE_A | X86_PTE_D);
1229 AssertRC(rc);
1230
1231 /*
1232 * Loop thru the available LDT entries.
1233 * Figure out where to start and end and the potential cross pageness of
1234 * things adds a little complexity. pLDTE is updated there and not in the
1235 * 'next' part of the loop. The pLDTEEnd is inclusive.
1236 */
1237 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pShadowLDT + cbChunk) - 1;
1238 if (pLDTE + 1 < pShadowLDT)
1239 pLDTE = (PX86DESC)((uintptr_t)pShadowLDT + off);
1240 while (pLDTE <= pLDTEEnd)
1241 {
1242 if (pLDTE->Gen.u1Present)
1243 selmGuestToShadowDesc(pVM, pLDTE);
1244
1245 /* Next LDT entry. */
1246 pLDTE++;
1247 }
1248 }
1249 else
1250 {
1251 RT_BZERO(pShadowLDT, cbChunk);
1252 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("rc=%Rrc\n", rc));
1253 rc = PGMMapSetPage(pVM, GCPtrShadowLDT & PAGE_BASE_GC_MASK, PAGE_SIZE, 0);
1254 AssertRC(rc);
1255 }
1256
1257 /*
1258 * Advance to the next page.
1259 */
1260 cbLeft -= cbChunk;
1261 GCPtrShadowLDT += cbChunk;
1262 pShadowLDT = (PX86DESC)((char *)pShadowLDT + cbChunk);
1263 GCPtrLdt += cbChunk;
1264 }
1265
1266 return VINF_SUCCESS;
1267}
1268
1269
1270/**
1271 * Checks and updates segment selector registers.
1272 *
1273 * @returns VBox strict status code.
1274 * @retval VINF_EM_RESCHEDULE_REM if a stale register was found.
1275 *
1276 * @param pVM The VM handle.
1277 * @param pVCpu The current virtual CPU.
1278 */
1279static VBOXSTRICTRC selmR3UpdateSegmentRegisters(PVM pVM, PVMCPU pVCpu)
1280{
1281 Assert(CPUMIsGuestInProtectedMode(pVCpu));
1282 Assert(!HMIsEnabled(pVM));
1283
1284 /*
1285 * No stale selectors in V8086 mode.
1286 */
1287 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1288 if (pCtx->eflags.Bits.u1VM)
1289 return VINF_SUCCESS;
1290
1291 /*
1292 * Check for stale selectors and load hidden register bits where they
1293 * are missing.
1294 */
1295 uint32_t uCpl = CPUMGetGuestCPL(pVCpu);
1296 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
1297 PCPUMSELREG paSReg = CPUMCTX_FIRST_SREG(pCtx);
1298 for (uint32_t iSReg = 0; iSReg < X86_SREG_COUNT; iSReg++)
1299 {
1300 RTSEL const Sel = paSReg[iSReg].Sel;
1301 if (Sel & X86_SEL_MASK_OFF_RPL)
1302 {
1303 /* Get the shadow descriptor entry corresponding to this. */
1304 static X86DESC const s_NotPresentDesc = { { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 } };
1305 PCX86DESC pDesc;
1306 if (!(Sel & X86_SEL_LDT))
1307 {
1308 if ((Sel | (sizeof(*pDesc) - 1)) <= pCtx->gdtr.cbGdt)
1309 pDesc = &pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
1310 else
1311 pDesc = &s_NotPresentDesc;
1312 }
1313 else
1314 {
1315 if ((Sel | (sizeof(*pDesc) - 1)) <= pVM->selm.s.cbLdtLimit)
1316 pDesc = &((PCX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper))[Sel >> X86_SEL_SHIFT];
1317 else
1318 pDesc = &s_NotPresentDesc;
1319 }
1320
1321 /* Check the segment register. */
1322 if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &paSReg[iSReg]))
1323 {
1324 if (!(paSReg[iSReg].fFlags & CPUMSELREG_FLAGS_STALE))
1325 {
1326 /* Did it go stale? */
1327 if (selmIsSRegStale32(&paSReg[iSReg], pDesc, iSReg))
1328 {
1329 Log2(("SELM: Detected stale %s=%#x (was valid)\n", g_aszSRegNms[iSReg], Sel));
1330 STAM_REL_COUNTER_INC(&pVM->selm.s.aStatDetectedStaleSReg[iSReg]);
1331 paSReg[iSReg].fFlags |= CPUMSELREG_FLAGS_STALE;
1332 rcStrict = VINF_EM_RESCHEDULE_REM;
1333 }
1334 }
1335 else
1336 {
1337 /* Did it stop being stale? I.e. did the guest change it things
1338 back to the way they were? */
1339 if (!selmIsSRegStale32(&paSReg[iSReg], pDesc, iSReg))
1340 {
1341 STAM_REL_COUNTER_INC(&pVM->selm.s.StatStaleToUnstaleSReg);
1342 paSReg[iSReg].fFlags &= CPUMSELREG_FLAGS_STALE;
1343 }
1344 else
1345 {
1346 Log2(("SELM: Already stale %s=%#x\n", g_aszSRegNms[iSReg], Sel));
1347 STAM_REL_COUNTER_INC(&pVM->selm.s.aStatAlreadyStaleSReg[iSReg]);
1348 rcStrict = VINF_EM_RESCHEDULE_REM;
1349 }
1350 }
1351 }
1352 /* Load the hidden registers if it's a valid descriptor for the
1353 current segment register. */
1354 else if (selmIsShwDescGoodForSReg(&paSReg[iSReg], pDesc, iSReg, uCpl))
1355 {
1356 selmLoadHiddenSRegFromShadowDesc(&paSReg[iSReg], pDesc);
1357 STAM_COUNTER_INC(&pVM->selm.s.aStatUpdatedSReg[iSReg]);
1358 }
1359 /* It's stale. */
1360 else
1361 {
1362 Log2(("SELM: Detected stale %s=%#x (wasn't valid)\n", g_aszSRegNms[iSReg], Sel));
1363 STAM_REL_COUNTER_INC(&pVM->selm.s.aStatDetectedStaleSReg[iSReg]);
1364 paSReg[iSReg].fFlags = CPUMSELREG_FLAGS_STALE;
1365 rcStrict = VINF_EM_RESCHEDULE_REM;
1366 }
1367 }
1368 /* else: 0 selector, ignore. */
1369 }
1370
1371 return rcStrict;
1372}
1373
1374
1375/**
1376 * Updates the Guest GDT & LDT virtualization based on current CPU state.
1377 *
1378 * @returns VBox status code.
1379 * @param pVM Pointer to the VM.
1380 * @param pVCpu Pointer to the VMCPU.
1381 */
1382VMMR3DECL(VBOXSTRICTRC) SELMR3UpdateFromCPUM(PVM pVM, PVMCPU pVCpu)
1383{
1384 STAM_PROFILE_START(&pVM->selm.s.StatUpdateFromCPUM, a);
1385 AssertReturn(!HMIsEnabled(pVM), VERR_SELM_HM_IPE);
1386
1387 /*
1388 * GDT sync
1389 */
1390 int rc;
1391 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_GDT))
1392 {
1393 rc = selmR3UpdateShadowGdt(pVM, pVCpu);
1394 if (RT_FAILURE(rc))
1395 return rc; /* We're toast, so forget the profiling. */
1396 AssertRCSuccess(rc);
1397 }
1398
1399 /*
1400 * TSS sync
1401 */
1402 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
1403 {
1404 rc = SELMR3SyncTSS(pVM, pVCpu);
1405 if (RT_FAILURE(rc))
1406 return rc;
1407 AssertRCSuccess(rc);
1408 }
1409
1410 /*
1411 * LDT sync
1412 */
1413 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_LDT))
1414 {
1415 rc = selmR3UpdateShadowLdt(pVM, pVCpu);
1416 if (RT_FAILURE(rc))
1417 return rc;
1418 AssertRCSuccess(rc);
1419 }
1420
1421 /*
1422 * Check selector registers.
1423 */
1424 VBOXSTRICTRC rcStrict = selmR3UpdateSegmentRegisters(pVM, pVCpu);
1425
1426 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1427 return rcStrict;
1428}
1429
1430#endif /*VBOX_WITH_RAW_MODE*/
1431
1432#ifdef SELM_TRACK_GUEST_GDT_CHANGES
1433/**
1434 * \#PF Handler callback for virtual access handler ranges.
1435 *
1436 * Important to realize that a physical page in a range can have aliases, and
1437 * for ALL and WRITE handlers these will also trigger.
1438 *
1439 * @returns VINF_SUCCESS if the handler have carried out the operation.
1440 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1441 * @param pVM Pointer to the VM.
1442 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1443 * @param pvPtr The HC mapping of that address.
1444 * @param pvBuf What the guest is reading/writing.
1445 * @param cbBuf How much it's reading/writing.
1446 * @param enmAccessType The access type.
1447 * @param pvUser User argument.
1448 */
1449static DECLCALLBACK(int) selmR3GuestGDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
1450 PGMACCESSTYPE enmAccessType, void *pvUser)
1451{
1452 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
1453 Log(("selmR3GuestGDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf)); NOREF(GCPtr); NOREF(cbBuf);
1454 NOREF(pvPtr); NOREF(pvBuf); NOREF(pvUser);
1455
1456 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_GDT);
1457 return VINF_PGM_HANDLER_DO_DEFAULT;
1458}
1459#endif
1460
1461#ifdef SELM_TRACK_GUEST_LDT_CHANGES
1462/**
1463 * \#PF Handler callback for virtual access handler ranges.
1464 *
1465 * Important to realize that a physical page in a range can have aliases, and
1466 * for ALL and WRITE handlers these will also trigger.
1467 *
1468 * @returns VINF_SUCCESS if the handler have carried out the operation.
1469 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1470 * @param pVM Pointer to the VM.
1471 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1472 * @param pvPtr The HC mapping of that address.
1473 * @param pvBuf What the guest is reading/writing.
1474 * @param cbBuf How much it's reading/writing.
1475 * @param enmAccessType The access type.
1476 * @param pvUser User argument.
1477 */
1478static DECLCALLBACK(int) selmR3GuestLDTWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
1479 PGMACCESSTYPE enmAccessType, void *pvUser)
1480{
1481 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
1482 Log(("selmR3GuestLDTWriteHandler: write to %RGv size %d\n", GCPtr, cbBuf)); NOREF(GCPtr); NOREF(cbBuf);
1483 NOREF(pvPtr); NOREF(pvBuf); NOREF(pvUser);
1484
1485 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_LDT);
1486 return VINF_PGM_HANDLER_DO_DEFAULT;
1487}
1488#endif
1489
1490
1491#ifdef SELM_TRACK_GUEST_TSS_CHANGES
1492/**
1493 * \#PF Handler callback for virtual access handler ranges.
1494 *
1495 * Important to realize that a physical page in a range can have aliases, and
1496 * for ALL and WRITE handlers these will also trigger.
1497 *
1498 * @returns VINF_SUCCESS if the handler have carried out the operation.
1499 * @returns VINF_PGM_HANDLER_DO_DEFAULT if the caller should carry out the access operation.
1500 * @param pVM Pointer to the VM.
1501 * @param GCPtr The virtual address the guest is writing to. (not correct if it's an alias!)
1502 * @param pvPtr The HC mapping of that address.
1503 * @param pvBuf What the guest is reading/writing.
1504 * @param cbBuf How much it's reading/writing.
1505 * @param enmAccessType The access type.
1506 * @param pvUser User argument.
1507 */
1508static DECLCALLBACK(int) selmR3GuestTSSWriteHandler(PVM pVM, RTGCPTR GCPtr, void *pvPtr, void *pvBuf, size_t cbBuf,
1509 PGMACCESSTYPE enmAccessType, void *pvUser)
1510{
1511 Assert(enmAccessType == PGMACCESSTYPE_WRITE); NOREF(enmAccessType);
1512 Log(("selmR3GuestTSSWriteHandler: write %.*Rhxs to %RGv size %d\n", RT_MIN(8, cbBuf), pvBuf, GCPtr, cbBuf));
1513 NOREF(pvBuf); NOREF(GCPtr); NOREF(cbBuf); NOREF(pvUser);NOREF(pvPtr);
1514
1515 /** @todo This can be optimized by checking for the ESP0 offset and tracking TR
1516 * reloads in REM (setting VM_FF_SELM_SYNC_TSS if TR is reloaded). We
1517 * should probably also deregister the virtual handler if TR.base/size
1518 * changes while we're in REM. */
1519
1520 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_SELM_SYNC_TSS);
1521 return VINF_PGM_HANDLER_DO_DEFAULT;
1522}
1523#endif
1524
1525#ifdef VBOX_WITH_RAW_MODE
1526
1527/**
1528 * Synchronize the shadowed fields in the TSS.
1529 *
1530 * At present we're shadowing the ring-0 stack selector & pointer, and the
1531 * interrupt redirection bitmap (if present). We take the lazy approach wrt to
1532 * REM and this function is called both if REM made any changes to the TSS or
1533 * loaded TR.
1534 *
1535 * @returns VBox status code.
1536 * @param pVM Pointer to the VM.
1537 * @param pVCpu Pointer to the VMCPU.
1538 */
1539VMMR3DECL(int) SELMR3SyncTSS(PVM pVM, PVMCPU pVCpu)
1540{
1541 int rc;
1542 AssertReturnStmt(!HMIsEnabled(pVM), VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS), VINF_SUCCESS);
1543
1544 STAM_PROFILE_START(&pVM->selm.s.StatTSSSync, a);
1545 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_TSS));
1546
1547 /*
1548 * Get TR and extract and store the basic info.
1549 *
1550 * Note! The TSS limit is not checked by the LTR code, so we
1551 * have to be a bit careful with it. We make sure cbTss
1552 * won't be zero if TR is valid and if it's NULL we'll
1553 * make sure cbTss is 0.
1554 */
1555/** @todo use the hidden bits, not shadow GDT. */
1556 CPUMSELREGHID trHid;
1557 RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
1558 RTGCPTR GCPtrTss = trHid.u64Base;
1559 uint32_t cbTss = trHid.u32Limit;
1560 Assert( (SelTss & X86_SEL_MASK_OFF_RPL)
1561 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1562 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1563 if (SelTss & X86_SEL_MASK_OFF_RPL)
1564 {
1565 Assert(!(SelTss & X86_SEL_LDT));
1566 Assert(trHid.Attr.n.u1DescType == 0);
1567 Assert( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1568 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY);
1569 if (!++cbTss)
1570 cbTss = UINT32_MAX;
1571 }
1572 else
1573 {
1574 Assert( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1575 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1576 cbTss = 0; /* the reset case. */
1577 }
1578 pVM->selm.s.cbGuestTss = cbTss;
1579 pVM->selm.s.fGuestTss32Bit = trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1580 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY;
1581
1582 /*
1583 * Figure out the size of what need to monitor.
1584 */
1585 /* We're not interested in any 16-bit TSSes. */
1586 uint32_t cbMonitoredTss = cbTss;
1587 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
1588 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1589 cbMonitoredTss = 0;
1590
1591 pVM->selm.s.offGuestIoBitmap = 0;
1592 bool fNoRing1Stack = true;
1593 if (cbMonitoredTss)
1594 {
1595 /*
1596 * 32-bit TSS. What we're really keen on is the SS0 and ESP0 fields.
1597 * If VME is enabled we also want to keep an eye on the interrupt
1598 * redirection bitmap.
1599 */
1600 VBOXTSS Tss;
1601 uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
1602 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
1603 if ( !(cr4 & X86_CR4_VME)
1604 || ( RT_SUCCESS(rc)
1605 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
1606 && Tss.offIoBitmap > cbTss) /* beyond the end */ /** @todo not sure how the partial case is handled; probably not allowed. */
1607 )
1608 /* No interrupt redirection bitmap, just ESP0 and SS0. */
1609 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
1610 else if (RT_SUCCESS(rc))
1611 {
1612 /*
1613 * Everything up to and including the interrupt redirection bitmap. Unfortunately
1614 * this can be quite a large chunk. We use to skip it earlier and just hope it
1615 * was kind of static...
1616 *
1617 * Update the virtual interrupt redirection bitmap while we're here.
1618 * (It is located in the 32 bytes before TR:offIoBitmap.)
1619 */
1620 cbMonitoredTss = Tss.offIoBitmap;
1621 pVM->selm.s.offGuestIoBitmap = Tss.offIoBitmap;
1622
1623 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
1624 rc = PGMPhysSimpleReadGCPtr(pVCpu, &pVM->selm.s.Tss.IntRedirBitmap,
1625 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
1626 AssertRC(rc);
1627 /** @todo memset the bitmap on failure? */
1628 Log2(("Redirection bitmap:\n"));
1629 Log2(("%.*Rhxd\n", sizeof(Tss.IntRedirBitmap), &pVM->selm.s.Tss.IntRedirBitmap));
1630 }
1631 else
1632 {
1633 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
1634 pVM->selm.s.offGuestIoBitmap = 0;
1635 /** @todo memset the bitmap? */
1636 }
1637
1638 /*
1639 * Update the ring 0 stack selector and base address.
1640 */
1641 if (RT_SUCCESS(rc))
1642 {
1643# ifdef LOG_ENABLED
1644 if (LogIsEnabled())
1645 {
1646 uint32_t ssr0, espr0;
1647 SELMGetRing1Stack(pVM, &ssr0, &espr0);
1648 if ((ssr0 & ~1) != Tss.ss0 || espr0 != Tss.esp0)
1649 {
1650 RTGCPHYS GCPhys = NIL_RTGCPHYS;
1651 rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
1652 Log(("SELMR3SyncTSS: Updating TSS ring 0 stack to %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
1653 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1654 AssertMsg(ssr0 != Tss.ss0,
1655 ("ring-1 leak into TSS.SS0! %04X:%08X from %04X:%08X; TSS Phys=%RGp)\n",
1656 Tss.ss0, Tss.esp0, (ssr0 & ~1), espr0, GCPhys));
1657 }
1658 Log(("offIoBitmap=%#x\n", Tss.offIoBitmap));
1659 }
1660# endif /* LOG_ENABLED */
1661 AssertMsg(!(Tss.ss0 & 3), ("ring-1 leak into TSS.SS0? %04X:%08X\n", Tss.ss0, Tss.esp0));
1662
1663 /* Update our TSS structure for the guest's ring 1 stack */
1664 selmSetRing1Stack(pVM, Tss.ss0 | 1, Tss.esp0);
1665 pVM->selm.s.fSyncTSSRing0Stack = fNoRing1Stack = false;
1666
1667# ifdef VBOX_WITH_RAW_RING1
1668 /* Update our TSS structure for the guest's ring 2 stack */
1669 if (EMIsRawRing1Enabled(pVM))
1670 {
1671 if ( (pVM->selm.s.Tss.ss2 != ((Tss.ss1 & ~2) | 1))
1672 || pVM->selm.s.Tss.esp2 != Tss.esp1)
1673 Log(("SELMR3SyncTSS: Updating TSS ring 1 stack to %04X:%08X from %04X:%08X\n", Tss.ss1, Tss.esp1, (pVM->selm.s.Tss.ss2 & ~2) | 1, pVM->selm.s.Tss.esp2));
1674 selmSetRing2Stack(pVM, (Tss.ss1 & ~1) | 2, Tss.esp1);
1675 }
1676# endif
1677 }
1678 }
1679
1680 /*
1681 * Flush the ring-1 stack and the direct syscall dispatching if we
1682 * cannot obtain SS0:ESP0.
1683 */
1684 if (fNoRing1Stack)
1685 {
1686 selmSetRing1Stack(pVM, 0 /* invalid SS */, 0);
1687 pVM->selm.s.fSyncTSSRing0Stack = cbMonitoredTss != 0;
1688
1689 /** @todo handle these dependencies better! */
1690 TRPMR3SetGuestTrapHandler(pVM, 0x2E, TRPM_INVALID_HANDLER);
1691 TRPMR3SetGuestTrapHandler(pVM, 0x80, TRPM_INVALID_HANDLER);
1692 }
1693
1694 /*
1695 * Check for monitor changes and apply them.
1696 */
1697 if ( GCPtrTss != pVM->selm.s.GCPtrGuestTss
1698 || cbMonitoredTss != pVM->selm.s.cbMonitoredGuestTss)
1699 {
1700 Log(("SELMR3SyncTSS: Guest's TSS is changed to pTss=%RGv cbMonitoredTss=%08X cbGuestTss=%#08x\n",
1701 GCPtrTss, cbMonitoredTss, pVM->selm.s.cbGuestTss));
1702
1703 /* Release the old range first. */
1704 if (pVM->selm.s.GCPtrGuestTss != RTRCPTR_MAX)
1705 {
1706 rc = PGMHandlerVirtualDeregister(pVM, pVM->selm.s.GCPtrGuestTss);
1707 AssertRC(rc);
1708 }
1709
1710 /* Register the write handler if TS != 0. */
1711 if (cbMonitoredTss != 0)
1712 {
1713# ifdef SELM_TRACK_GUEST_TSS_CHANGES
1714 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrTss, GCPtrTss + cbMonitoredTss - 1,
1715 0, selmR3GuestTSSWriteHandler,
1716 "selmRCGuestTSSWriteHandler", 0, "Guest TSS write access handler");
1717 if (RT_FAILURE(rc))
1718 {
1719# ifdef VBOX_WITH_RAW_RING1
1720 /** @todo !HACK ALERT!
1721 * Some guest OSes (QNX) share code and the TSS on the same page;
1722 * PGMR3HandlerVirtualRegister doesn't support more than one
1723 * handler, so we kick out the PATM handler as this one is more
1724 * important. Fix this properly in PGMR3HandlerVirtualRegister?
1725 */
1726 if (rc == VERR_PGM_HANDLER_VIRTUAL_CONFLICT)
1727 {
1728 LogRel(("SELMR3SyncTSS: Virtual handler conflict %RGv -> kick out PATM handler for the higher priority TSS page monitor\n", GCPtrTss));
1729 rc = PGMHandlerVirtualDeregister(pVM, GCPtrTss & PAGE_BASE_GC_MASK);
1730 AssertRC(rc);
1731
1732 rc = PGMR3HandlerVirtualRegister(pVM, PGMVIRTHANDLERTYPE_WRITE, GCPtrTss, GCPtrTss + cbMonitoredTss - 1,
1733 0, selmR3GuestTSSWriteHandler,
1734 "selmRCGuestTSSWriteHandler", 0, "Guest TSS write access handler");
1735 if (RT_FAILURE(rc))
1736 {
1737 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1738 return rc;
1739 }
1740 }
1741# else
1742 STAM_PROFILE_STOP(&pVM->selm.s.StatUpdateFromCPUM, a);
1743 return rc;
1744# endif
1745 }
1746# endif /* SELM_TRACK_GUEST_TSS_CHANGES */
1747
1748 /* Update saved Guest TSS info. */
1749 pVM->selm.s.GCPtrGuestTss = GCPtrTss;
1750 pVM->selm.s.cbMonitoredGuestTss = cbMonitoredTss;
1751 pVM->selm.s.GCSelTss = SelTss;
1752 }
1753 else
1754 {
1755 pVM->selm.s.GCPtrGuestTss = RTRCPTR_MAX;
1756 pVM->selm.s.cbMonitoredGuestTss = 0;
1757 pVM->selm.s.GCSelTss = 0;
1758 }
1759 }
1760
1761 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_SELM_SYNC_TSS);
1762
1763 STAM_PROFILE_STOP(&pVM->selm.s.StatTSSSync, a);
1764 return VINF_SUCCESS;
1765}
1766
1767
1768/**
1769 * Compares the Guest GDT and LDT with the shadow tables.
1770 * This is a VBOX_STRICT only function.
1771 *
1772 * @returns VBox status code.
1773 * @param pVM Pointer to the VM.
1774 */
1775VMMR3DECL(int) SELMR3DebugCheck(PVM pVM)
1776{
1777#ifdef VBOX_STRICT
1778 PVMCPU pVCpu = VMMGetCpu(pVM);
1779 AssertReturn(!HMIsEnabled(pVM), VERR_SELM_HM_IPE);
1780
1781 /*
1782 * Get GDTR and check for conflict.
1783 */
1784 VBOXGDTR GDTR;
1785 CPUMGetGuestGDTR(pVCpu, &GDTR);
1786 if (GDTR.cbGdt == 0)
1787 return VINF_SUCCESS;
1788
1789 if (GDTR.cbGdt >= (unsigned)(pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
1790 Log(("SELMR3DebugCheck: guest GDT size forced us to look for unused selectors.\n"));
1791
1792 if (GDTR.cbGdt != pVM->selm.s.GuestGdtr.cbGdt)
1793 Log(("SELMR3DebugCheck: limits have changed! new=%d old=%d\n", GDTR.cbGdt, pVM->selm.s.GuestGdtr.cbGdt));
1794
1795 /*
1796 * Loop thru the GDT checking each entry.
1797 */
1798 RTGCPTR GCPtrGDTEGuest = GDTR.pGdt;
1799 PX86DESC pGDTE = pVM->selm.s.paGdtR3;
1800 PX86DESC pGDTEEnd = (PX86DESC)((uintptr_t)pGDTE + GDTR.cbGdt);
1801 while (pGDTE < pGDTEEnd)
1802 {
1803 X86DESC GDTEGuest;
1804 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTEGuest, GCPtrGDTEGuest, sizeof(GDTEGuest));
1805 if (RT_SUCCESS(rc))
1806 {
1807 if (pGDTE->Gen.u1DescType || pGDTE->Gen.u4Type != X86_SEL_TYPE_SYS_LDT)
1808 {
1809 if ( pGDTE->Gen.u16LimitLow != GDTEGuest.Gen.u16LimitLow
1810 || pGDTE->Gen.u4LimitHigh != GDTEGuest.Gen.u4LimitHigh
1811 || pGDTE->Gen.u16BaseLow != GDTEGuest.Gen.u16BaseLow
1812 || pGDTE->Gen.u8BaseHigh1 != GDTEGuest.Gen.u8BaseHigh1
1813 || pGDTE->Gen.u8BaseHigh2 != GDTEGuest.Gen.u8BaseHigh2
1814 || pGDTE->Gen.u1DefBig != GDTEGuest.Gen.u1DefBig
1815 || pGDTE->Gen.u1DescType != GDTEGuest.Gen.u1DescType)
1816 {
1817 unsigned iGDT = pGDTE - pVM->selm.s.paGdtR3;
1818 SELMR3DumpDescriptor(*pGDTE, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, shadow");
1819 SELMR3DumpDescriptor(GDTEGuest, iGDT << 3, "SELMR3DebugCheck: GDT mismatch, guest");
1820 }
1821 }
1822 }
1823
1824 /* Advance to the next descriptor. */
1825 GCPtrGDTEGuest += sizeof(X86DESC);
1826 pGDTE++;
1827 }
1828
1829
1830 /*
1831 * LDT?
1832 */
1833 RTSEL SelLdt = CPUMGetGuestLDTR(pVCpu);
1834 if ((SelLdt & X86_SEL_MASK_OFF_RPL) == 0)
1835 return VINF_SUCCESS;
1836 Assert(!(SelLdt & X86_SEL_LDT));
1837 if (SelLdt > GDTR.cbGdt)
1838 {
1839 Log(("SELMR3DebugCheck: ldt is out of bound SelLdt=%#x\n", SelLdt));
1840 return VERR_SELM_LDT_OUT_OF_BOUNDS;
1841 }
1842 X86DESC LDTDesc;
1843 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTDesc, GDTR.pGdt + (SelLdt & X86_SEL_MASK), sizeof(LDTDesc));
1844 if (RT_FAILURE(rc))
1845 {
1846 Log(("SELMR3DebugCheck: Failed to read LDT descriptor. rc=%d\n", rc));
1847 return rc;
1848 }
1849 RTGCPTR GCPtrLDTEGuest = X86DESC_BASE(&LDTDesc);
1850 uint32_t cbLdt = X86DESC_LIMIT_G(&LDTDesc);
1851
1852 /*
1853 * Validate it.
1854 */
1855 if (!cbLdt)
1856 return VINF_SUCCESS;
1857 /** @todo check what intel does about odd limits. */
1858 AssertMsg(RT_ALIGN(cbLdt + 1, sizeof(X86DESC)) == cbLdt + 1 && cbLdt <= 0xffff, ("cbLdt=%d\n", cbLdt));
1859 if ( LDTDesc.Gen.u1DescType
1860 || LDTDesc.Gen.u4Type != X86_SEL_TYPE_SYS_LDT
1861 || SelLdt >= pVM->selm.s.GuestGdtr.cbGdt)
1862 {
1863 Log(("SELmR3DebugCheck: Invalid LDT %04x!\n", SelLdt));
1864 return VERR_SELM_INVALID_LDT;
1865 }
1866
1867 /*
1868 * Loop thru the LDT checking each entry.
1869 */
1870 unsigned off = (GCPtrLDTEGuest & PAGE_OFFSET_MASK);
1871 PX86DESC pLDTE = (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1872 PX86DESC pLDTEEnd = (PX86DESC)((uintptr_t)pGDTE + cbLdt);
1873 while (pLDTE < pLDTEEnd)
1874 {
1875 X86DESC LDTEGuest;
1876 rc = PGMPhysSimpleReadGCPtr(pVCpu, &LDTEGuest, GCPtrLDTEGuest, sizeof(LDTEGuest));
1877 if (RT_SUCCESS(rc))
1878 {
1879 if ( pLDTE->Gen.u16LimitLow != LDTEGuest.Gen.u16LimitLow
1880 || pLDTE->Gen.u4LimitHigh != LDTEGuest.Gen.u4LimitHigh
1881 || pLDTE->Gen.u16BaseLow != LDTEGuest.Gen.u16BaseLow
1882 || pLDTE->Gen.u8BaseHigh1 != LDTEGuest.Gen.u8BaseHigh1
1883 || pLDTE->Gen.u8BaseHigh2 != LDTEGuest.Gen.u8BaseHigh2
1884 || pLDTE->Gen.u1DefBig != LDTEGuest.Gen.u1DefBig
1885 || pLDTE->Gen.u1DescType != LDTEGuest.Gen.u1DescType)
1886 {
1887 unsigned iLDT = pLDTE - (PX86DESC)((uintptr_t)pVM->selm.s.pvLdtR3 + off);
1888 SELMR3DumpDescriptor(*pLDTE, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, shadow");
1889 SELMR3DumpDescriptor(LDTEGuest, iLDT << 3, "SELMR3DebugCheck: LDT mismatch, guest");
1890 }
1891 }
1892
1893 /* Advance to the next descriptor. */
1894 GCPtrLDTEGuest += sizeof(X86DESC);
1895 pLDTE++;
1896 }
1897
1898#else /* !VBOX_STRICT */
1899 NOREF(pVM);
1900#endif /* !VBOX_STRICT */
1901
1902 return VINF_SUCCESS;
1903}
1904
1905
1906/**
1907 * Validates the RawR0 TSS values against the one in the Guest TSS.
1908 *
1909 * @returns true if it matches.
1910 * @returns false and assertions on mismatch..
1911 * @param pVM Pointer to the VM.
1912 */
1913VMMR3DECL(bool) SELMR3CheckTSS(PVM pVM)
1914{
1915#if defined(VBOX_STRICT) && defined(SELM_TRACK_GUEST_TSS_CHANGES)
1916 PVMCPU pVCpu = VMMGetCpu(pVM);
1917
1918 if (VMCPU_FF_ISSET(pVCpu, VMCPU_FF_SELM_SYNC_TSS))
1919 return true;
1920
1921 /*
1922 * Get TR and extract the basic info.
1923 */
1924 CPUMSELREGHID trHid;
1925 RTSEL SelTss = CPUMGetGuestTR(pVCpu, &trHid);
1926 RTGCPTR GCPtrTss = trHid.u64Base;
1927 uint32_t cbTss = trHid.u32Limit;
1928 Assert( (SelTss & X86_SEL_MASK_OFF_RPL)
1929 || (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1930 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */));
1931 if (SelTss & X86_SEL_MASK_OFF_RPL)
1932 {
1933 AssertReturn(!(SelTss & X86_SEL_LDT), false);
1934 AssertReturn(trHid.Attr.n.u1DescType == 0, false);
1935 AssertReturn( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY
1936 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY,
1937 false);
1938 if (!++cbTss)
1939 cbTss = UINT32_MAX;
1940 }
1941 else
1942 {
1943 AssertReturn( (cbTss == 0 && GCPtrTss == 0 && trHid.Attr.u == 0 /* TR=0 */)
1944 || (cbTss == 0xffff && GCPtrTss == 0 && trHid.Attr.n.u1Present && trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY /* RESET */),
1945 false);
1946 cbTss = 0; /* the reset case. */
1947 }
1948 AssertMsgReturn(pVM->selm.s.cbGuestTss == cbTss, ("%#x %#x\n", pVM->selm.s.cbGuestTss, cbTss), false);
1949 AssertMsgReturn(pVM->selm.s.fGuestTss32Bit == ( trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_AVAIL
1950 || trHid.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY),
1951 ("%RTbool u4Type=%d\n", pVM->selm.s.fGuestTss32Bit, trHid.Attr.n.u4Type),
1952 false);
1953 AssertMsgReturn( pVM->selm.s.GCSelTss == SelTss
1954 || (!pVM->selm.s.GCSelTss && !(SelTss & X86_SEL_LDT)),
1955 ("%#x %#x\n", pVM->selm.s.GCSelTss, SelTss),
1956 false);
1957 AssertMsgReturn( pVM->selm.s.GCPtrGuestTss == GCPtrTss
1958 || (pVM->selm.s.GCPtrGuestTss == RTRCPTR_MAX && !GCPtrTss),
1959 ("%#RGv %#RGv\n", pVM->selm.s.GCPtrGuestTss, GCPtrTss),
1960 false);
1961
1962
1963 /*
1964 * Figure out the size of what need to monitor.
1965 */
1966 /* We're not interested in any 16-bit TSSes. */
1967 uint32_t cbMonitoredTss = cbTss;
1968 if ( trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL
1969 && trHid.Attr.n.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
1970 cbMonitoredTss = 0;
1971 if (cbMonitoredTss)
1972 {
1973 VBOXTSS Tss;
1974 uint32_t cr4 = CPUMGetGuestCR4(pVCpu);
1975 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss, GCPtrTss, RT_OFFSETOF(VBOXTSS, IntRedirBitmap));
1976 AssertReturn( rc == VINF_SUCCESS
1977 /* Happens early in XP boot during page table switching. */
1978 || ( (rc == VERR_PAGE_TABLE_NOT_PRESENT || rc == VERR_PAGE_NOT_PRESENT)
1979 && !(CPUMGetGuestEFlags(pVCpu) & X86_EFL_IF)),
1980 false);
1981 if ( !(cr4 & X86_CR4_VME)
1982 || ( RT_SUCCESS(rc)
1983 && Tss.offIoBitmap < sizeof(VBOXTSS) /* too small */
1984 && Tss.offIoBitmap > cbTss)
1985 )
1986 cbMonitoredTss = RT_UOFFSETOF(VBOXTSS, padding_ss0);
1987 else if (RT_SUCCESS(rc))
1988 {
1989 cbMonitoredTss = Tss.offIoBitmap;
1990 AssertMsgReturn(pVM->selm.s.offGuestIoBitmap == Tss.offIoBitmap,
1991 ("#x %#x\n", pVM->selm.s.offGuestIoBitmap, Tss.offIoBitmap),
1992 false);
1993
1994 /* check the bitmap */
1995 uint32_t offRedirBitmap = Tss.offIoBitmap - sizeof(Tss.IntRedirBitmap);
1996 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Tss.IntRedirBitmap,
1997 GCPtrTss + offRedirBitmap, sizeof(Tss.IntRedirBitmap));
1998 AssertRCReturn(rc, false);
1999 AssertMsgReturn(!memcmp(&Tss.IntRedirBitmap[0], &pVM->selm.s.Tss.IntRedirBitmap[0], sizeof(Tss.IntRedirBitmap)),
2000 ("offIoBitmap=%#x cbTss=%#x\n"
2001 " Guest: %.32Rhxs\n"
2002 "Shadow: %.32Rhxs\n",
2003 Tss.offIoBitmap, cbTss,
2004 &Tss.IntRedirBitmap[0],
2005 &pVM->selm.s.Tss.IntRedirBitmap[0]),
2006 false);
2007 }
2008 else
2009 cbMonitoredTss = RT_OFFSETOF(VBOXTSS, IntRedirBitmap);
2010
2011 /*
2012 * Check SS0 and ESP0.
2013 */
2014 if ( !pVM->selm.s.fSyncTSSRing0Stack
2015 && RT_SUCCESS(rc))
2016 {
2017 if ( Tss.esp0 != pVM->selm.s.Tss.esp1
2018 || Tss.ss0 != (pVM->selm.s.Tss.ss1 & ~1))
2019 {
2020 RTGCPHYS GCPhys;
2021 rc = PGMGstGetPage(pVCpu, GCPtrTss, NULL, &GCPhys); AssertRC(rc);
2022 AssertMsgFailed(("TSS out of sync!! (%04X:%08X vs %04X:%08X (guest)) Tss=%RGv Phys=%RGp\n",
2023 (pVM->selm.s.Tss.ss1 & ~1), pVM->selm.s.Tss.esp1,
2024 Tss.ss1, Tss.esp1, GCPtrTss, GCPhys));
2025 return false;
2026 }
2027 }
2028 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
2029 }
2030 else
2031 {
2032 AssertMsgReturn(pVM->selm.s.Tss.ss1 == 0 && pVM->selm.s.Tss.esp1 == 0, ("%04x:%08x\n", pVM->selm.s.Tss.ss1, pVM->selm.s.Tss.esp1), false);
2033 AssertReturn(!pVM->selm.s.fSyncTSSRing0Stack, false);
2034 AssertMsgReturn(pVM->selm.s.cbMonitoredGuestTss == cbMonitoredTss, ("%#x %#x\n", pVM->selm.s.cbMonitoredGuestTss, cbMonitoredTss), false);
2035 }
2036
2037
2038
2039 return true;
2040
2041#else /* !VBOX_STRICT */
2042 NOREF(pVM);
2043 return true;
2044#endif /* !VBOX_STRICT */
2045}
2046
2047
2048# ifdef VBOX_WITH_SAFE_STR
2049/**
2050 * Validates the RawR0 TR shadow GDT entry.
2051 *
2052 * @returns true if it matches.
2053 * @returns false and assertions on mismatch..
2054 * @param pVM Pointer to the VM.
2055 */
2056VMMR3DECL(bool) SELMR3CheckShadowTR(PVM pVM)
2057{
2058# ifdef VBOX_STRICT
2059 PX86DESC paGdt = pVM->selm.s.paGdtR3;
2060
2061 /*
2062 * TSS descriptor
2063 */
2064 PX86DESC pDesc = &paGdt[pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> 3];
2065 RTRCPTR RCPtrTSS = VM_RC_ADDR(pVM, &pVM->selm.s.Tss);
2066
2067 if ( pDesc->Gen.u16BaseLow != RT_LOWORD(RCPtrTSS)
2068 || pDesc->Gen.u8BaseHigh1 != RT_BYTE3(RCPtrTSS)
2069 || pDesc->Gen.u8BaseHigh2 != RT_BYTE4(RCPtrTSS)
2070 || pDesc->Gen.u16LimitLow != sizeof(VBOXTSS) - 1
2071 || pDesc->Gen.u4LimitHigh != 0
2072 || (pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_AVAIL && pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_386_TSS_BUSY)
2073 || pDesc->Gen.u1DescType != 0 /* system */
2074 || pDesc->Gen.u2Dpl != 0 /* supervisor */
2075 || pDesc->Gen.u1Present != 1
2076 || pDesc->Gen.u1Available != 0
2077 || pDesc->Gen.u1Long != 0
2078 || pDesc->Gen.u1DefBig != 0
2079 || pDesc->Gen.u1Granularity != 0 /* byte limit */
2080 )
2081 {
2082 AssertFailed();
2083 return false;
2084 }
2085# endif
2086 return true;
2087}
2088# endif /* VBOX_WITH_SAFE_STR */
2089
2090#endif /* VBOX_WITH_RAW_MODE */
2091
2092/**
2093 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
2094 *
2095 * See SELMR3GetSelectorInfo for details.
2096 *
2097 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
2098 *
2099 * @param pVCpu Pointer to the VMCPU.
2100 * @param Sel The selector to get info about.
2101 * @param pSelInfo Where to store the information.
2102 */
2103static int selmR3GetSelectorInfo64(PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2104{
2105 /*
2106 * Read it from the guest descriptor table.
2107 */
2108/** @todo this is bogus wrt the LDT/GDT limit on long selectors. */
2109 X86DESC64 Desc;
2110 RTGCPTR GCPtrDesc;
2111 if (!(Sel & X86_SEL_LDT))
2112 {
2113 /* GDT */
2114 VBOXGDTR Gdtr;
2115 CPUMGetGuestGDTR(pVCpu, &Gdtr);
2116 if ((Sel | X86_SEL_RPL_LDT) > Gdtr.cbGdt)
2117 return VERR_INVALID_SELECTOR;
2118 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
2119 }
2120 else
2121 {
2122 /* LDT */
2123 uint64_t GCPtrBase;
2124 uint32_t cbLimit;
2125 CPUMGetGuestLdtrEx(pVCpu, &GCPtrBase, &cbLimit);
2126 if ((Sel | X86_SEL_RPL_LDT) > cbLimit)
2127 return VERR_INVALID_SELECTOR;
2128
2129 /* calc the descriptor location. */
2130 GCPtrDesc = GCPtrBase + (Sel & X86_SEL_MASK);
2131 }
2132
2133 /* read the descriptor. */
2134 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2135 if (RT_FAILURE(rc))
2136 {
2137 rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(X86DESC));
2138 if (RT_FAILURE(rc))
2139 return rc;
2140 Desc.au64[1] = 0;
2141 }
2142
2143 /*
2144 * Extract the base and limit
2145 * (We ignore the present bit here, which is probably a bit silly...)
2146 */
2147 pSelInfo->Sel = Sel;
2148 pSelInfo->fFlags = DBGFSELINFO_FLAGS_LONG_MODE;
2149 pSelInfo->u.Raw64 = Desc;
2150 if (Desc.Gen.u1DescType)
2151 {
2152 /*
2153 * 64-bit code selectors are wide open, it's not possible to detect
2154 * 64-bit data or stack selectors without also dragging in assumptions
2155 * about current CS (i.e. that's we're executing in 64-bit mode). So,
2156 * the selinfo user needs to deal with this in the context the info is
2157 * used unfortunately.
2158 */
2159 if ( Desc.Gen.u1Long
2160 && !Desc.Gen.u1DefBig
2161 && (Desc.Gen.u4Type & X86_SEL_TYPE_CODE))
2162 {
2163 /* Note! We ignore the segment limit hacks that was added by AMD. */
2164 pSelInfo->GCPtrBase = 0;
2165 pSelInfo->cbLimit = ~(RTGCUINTPTR)0;
2166 }
2167 else
2168 {
2169 pSelInfo->cbLimit = X86DESC_LIMIT_G(&Desc);
2170 pSelInfo->GCPtrBase = X86DESC_BASE(&Desc);
2171 }
2172 pSelInfo->SelGate = 0;
2173 }
2174 else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_LDT
2175 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_AVAIL
2176 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TSS_BUSY)
2177 {
2178 /* Note. LDT descriptors are weird in long mode, we ignore the footnote
2179 in the AMD manual here as a simplification. */
2180 pSelInfo->GCPtrBase = X86DESC64_BASE(&Desc);
2181 pSelInfo->cbLimit = X86DESC_LIMIT_G(&Desc);
2182 pSelInfo->SelGate = 0;
2183 }
2184 else if ( Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_CALL_GATE
2185 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_TRAP_GATE
2186 || Desc.Gen.u4Type == AMD64_SEL_TYPE_SYS_INT_GATE)
2187 {
2188 pSelInfo->cbLimit = X86DESC64_BASE(&Desc);
2189 pSelInfo->GCPtrBase = Desc.Gate.u16OffsetLow
2190 | ((uint32_t)Desc.Gate.u16OffsetHigh << 16)
2191 | ((uint64_t)Desc.Gate.u32OffsetTop << 32);
2192 pSelInfo->SelGate = Desc.Gate.u16Sel;
2193 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
2194 }
2195 else
2196 {
2197 pSelInfo->cbLimit = 0;
2198 pSelInfo->GCPtrBase = 0;
2199 pSelInfo->SelGate = 0;
2200 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
2201 }
2202 if (!Desc.Gen.u1Present)
2203 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
2204
2205 return VINF_SUCCESS;
2206}
2207
2208
2209/**
2210 * Worker for selmR3GetSelectorInfo32 and SELMR3GetShadowSelectorInfo that
2211 * interprets a legacy descriptor table entry and fills in the selector info
2212 * structure from it.
2213 *
2214 * @param pSelInfo Where to store the selector info. Only the fFlags and
2215 * Sel members have been initialized.
2216 * @param pDesc The legacy descriptor to parse.
2217 */
2218DECLINLINE(void) selmR3SelInfoFromDesc32(PDBGFSELINFO pSelInfo, PCX86DESC pDesc)
2219{
2220 pSelInfo->u.Raw64.au64[1] = 0;
2221 pSelInfo->u.Raw = *pDesc;
2222 if ( pDesc->Gen.u1DescType
2223 || !(pDesc->Gen.u4Type & 4))
2224 {
2225 pSelInfo->cbLimit = X86DESC_LIMIT_G(pDesc);
2226 pSelInfo->GCPtrBase = X86DESC_BASE(pDesc);
2227 pSelInfo->SelGate = 0;
2228 }
2229 else if (pDesc->Gen.u4Type != X86_SEL_TYPE_SYS_UNDEFINED4)
2230 {
2231 pSelInfo->cbLimit = 0;
2232 if (pDesc->Gen.u4Type == X86_SEL_TYPE_SYS_TASK_GATE)
2233 pSelInfo->GCPtrBase = 0;
2234 else
2235 pSelInfo->GCPtrBase = pDesc->Gate.u16OffsetLow
2236 | (uint32_t)pDesc->Gate.u16OffsetHigh << 16;
2237 pSelInfo->SelGate = pDesc->Gate.u16Sel;
2238 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_GATE;
2239 }
2240 else
2241 {
2242 pSelInfo->cbLimit = 0;
2243 pSelInfo->GCPtrBase = 0;
2244 pSelInfo->SelGate = 0;
2245 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_INVALID;
2246 }
2247 if (!pDesc->Gen.u1Present)
2248 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_NOT_PRESENT;
2249}
2250
2251
2252/**
2253 * Gets information about a 64-bit selector, SELMR3GetSelectorInfo helper.
2254 *
2255 * See SELMR3GetSelectorInfo for details.
2256 *
2257 * @returns VBox status code, see SELMR3GetSelectorInfo for details.
2258 *
2259 * @param pVM Pointer to the VM.
2260 * @param pVCpu Pointer to the VMCPU.
2261 * @param Sel The selector to get info about.
2262 * @param pSelInfo Where to store the information.
2263 */
2264static int selmR3GetSelectorInfo32(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2265{
2266 /*
2267 * Read the descriptor entry
2268 */
2269 pSelInfo->fFlags = 0;
2270 X86DESC Desc;
2271 if ( !(Sel & X86_SEL_LDT)
2272 && ( pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_RPL_LDT)
2273 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_RPL_LDT)
2274 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_RPL_LDT)
2275 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_RPL_LDT)
2276 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_RPL_LDT))
2277 )
2278 {
2279 /*
2280 * Hypervisor descriptor.
2281 */
2282 pSelInfo->fFlags = DBGFSELINFO_FLAGS_HYPER;
2283 if (CPUMIsGuestInProtectedMode(pVCpu))
2284 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
2285 else
2286 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
2287
2288 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2289 }
2290 else if (CPUMIsGuestInProtectedMode(pVCpu))
2291 {
2292 /*
2293 * Read it from the guest descriptor table.
2294 */
2295 pSelInfo->fFlags = DBGFSELINFO_FLAGS_PROT_MODE;
2296
2297 RTGCPTR GCPtrDesc;
2298 if (!(Sel & X86_SEL_LDT))
2299 {
2300 /* GDT */
2301 VBOXGDTR Gdtr;
2302 CPUMGetGuestGDTR(pVCpu, &Gdtr);
2303 if ((Sel | X86_SEL_RPL_LDT) > Gdtr.cbGdt)
2304 return VERR_INVALID_SELECTOR;
2305 GCPtrDesc = Gdtr.pGdt + (Sel & X86_SEL_MASK);
2306 }
2307 else
2308 {
2309 /* LDT */
2310 uint64_t GCPtrBase;
2311 uint32_t cbLimit;
2312 CPUMGetGuestLdtrEx(pVCpu, &GCPtrBase, &cbLimit);
2313 if ((Sel | X86_SEL_RPL_LDT) > cbLimit)
2314 return VERR_INVALID_SELECTOR;
2315
2316 /* calc the descriptor location. */
2317 GCPtrDesc = GCPtrBase + (Sel & X86_SEL_MASK);
2318 }
2319
2320 /* read the descriptor. */
2321 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &Desc, GCPtrDesc, sizeof(Desc));
2322 if (RT_FAILURE(rc))
2323 return rc;
2324 }
2325 else
2326 {
2327 /*
2328 * We're in real mode.
2329 */
2330 pSelInfo->Sel = Sel;
2331 pSelInfo->GCPtrBase = Sel << 4;
2332 pSelInfo->cbLimit = 0xffff;
2333 pSelInfo->fFlags = DBGFSELINFO_FLAGS_REAL_MODE;
2334 pSelInfo->u.Raw64.au64[0] = 0;
2335 pSelInfo->u.Raw64.au64[1] = 0;
2336 pSelInfo->SelGate = 0;
2337 return VINF_SUCCESS;
2338 }
2339
2340 /*
2341 * Extract the base and limit or sel:offset for gates.
2342 */
2343 pSelInfo->Sel = Sel;
2344 selmR3SelInfoFromDesc32(pSelInfo, &Desc);
2345
2346 return VINF_SUCCESS;
2347}
2348
2349
2350/**
2351 * Gets information about a selector.
2352 *
2353 * Intended for the debugger mostly and will prefer the guest descriptor tables
2354 * over the shadow ones.
2355 *
2356 * @retval VINF_SUCCESS on success.
2357 * @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
2358 * descriptor table.
2359 * @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
2360 * is not returned if the selector itself isn't present, you have to
2361 * check that for yourself (see DBGFSELINFO::fFlags).
2362 * @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
2363 * pagetable or page backing the selector table wasn't present.
2364 * @returns Other VBox status code on other errors.
2365 *
2366 * @param pVM Pointer to the VM.
2367 * @param pVCpu Pointer to the VMCPU.
2368 * @param Sel The selector to get info about.
2369 * @param pSelInfo Where to store the information.
2370 */
2371VMMR3DECL(int) SELMR3GetSelectorInfo(PVM pVM, PVMCPU pVCpu, RTSEL Sel, PDBGFSELINFO pSelInfo)
2372{
2373 AssertPtr(pSelInfo);
2374 if (CPUMIsGuestInLongMode(pVCpu))
2375 return selmR3GetSelectorInfo64(pVCpu, Sel, pSelInfo);
2376 return selmR3GetSelectorInfo32(pVM, pVCpu, Sel, pSelInfo);
2377}
2378
2379
2380/**
2381 * Gets information about a selector from the shadow tables.
2382 *
2383 * This is intended to be faster than the SELMR3GetSelectorInfo() method, but
2384 * requires that the caller ensures that the shadow tables are up to date.
2385 *
2386 * @retval VINF_SUCCESS on success.
2387 * @retval VERR_INVALID_SELECTOR if the selector isn't fully inside the
2388 * descriptor table.
2389 * @retval VERR_SELECTOR_NOT_PRESENT if the LDT is invalid or not present. This
2390 * is not returned if the selector itself isn't present, you have to
2391 * check that for yourself (see DBGFSELINFO::fFlags).
2392 * @retval VERR_PAGE_TABLE_NOT_PRESENT or VERR_PAGE_NOT_PRESENT if the
2393 * pagetable or page backing the selector table wasn't present.
2394 * @returns Other VBox status code on other errors.
2395 *
2396 * @param pVM Pointer to the VM.
2397 * @param Sel The selector to get info about.
2398 * @param pSelInfo Where to store the information.
2399 *
2400 * @remarks Don't use this when in hardware assisted virtualization mode.
2401 */
2402VMMR3DECL(int) SELMR3GetShadowSelectorInfo(PVM pVM, RTSEL Sel, PDBGFSELINFO pSelInfo)
2403{
2404 Assert(pSelInfo);
2405
2406 /*
2407 * Read the descriptor entry
2408 */
2409 X86DESC Desc;
2410 if (!(Sel & X86_SEL_LDT))
2411 {
2412 /*
2413 * Global descriptor.
2414 */
2415 Desc = pVM->selm.s.paGdtR3[Sel >> X86_SEL_SHIFT];
2416 pSelInfo->fFlags = pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] == (Sel & X86_SEL_MASK_OFF_RPL)
2417 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] == (Sel & X86_SEL_MASK_OFF_RPL)
2418 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] == (Sel & X86_SEL_MASK_OFF_RPL)
2419 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] == (Sel & X86_SEL_MASK_OFF_RPL)
2420 || pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] == (Sel & X86_SEL_MASK_OFF_RPL)
2421 ? DBGFSELINFO_FLAGS_HYPER
2422 : 0;
2423 /** @todo check that the GDT offset is valid. */
2424 }
2425 else
2426 {
2427 /*
2428 * Local Descriptor.
2429 */
2430 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2431 Desc = paLDT[Sel >> X86_SEL_SHIFT];
2432 /** @todo check if the LDT page is actually available. */
2433 /** @todo check that the LDT offset is valid. */
2434 pSelInfo->fFlags = 0;
2435 }
2436 if (CPUMIsGuestInProtectedMode(VMMGetCpu0(pVM)))
2437 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_PROT_MODE;
2438 else
2439 pSelInfo->fFlags |= DBGFSELINFO_FLAGS_REAL_MODE;
2440
2441 /*
2442 * Extract the base and limit or sel:offset for gates.
2443 */
2444 pSelInfo->Sel = Sel;
2445 selmR3SelInfoFromDesc32(pSelInfo, &Desc);
2446
2447 return VINF_SUCCESS;
2448}
2449
2450
2451/**
2452 * Formats a descriptor.
2453 *
2454 * @param Desc Descriptor to format.
2455 * @param Sel Selector number.
2456 * @param pszOutput Output buffer.
2457 * @param cchOutput Size of output buffer.
2458 */
2459static void selmR3FormatDescriptor(X86DESC Desc, RTSEL Sel, char *pszOutput, size_t cchOutput)
2460{
2461 /*
2462 * Make variable description string.
2463 */
2464 static struct
2465 {
2466 unsigned cch;
2467 const char *psz;
2468 } const aTypes[32] =
2469 {
2470#define STRENTRY(str) { sizeof(str) - 1, str }
2471 /* system */
2472 STRENTRY("Reserved0 "), /* 0x00 */
2473 STRENTRY("TSS16Avail "), /* 0x01 */
2474 STRENTRY("LDT "), /* 0x02 */
2475 STRENTRY("TSS16Busy "), /* 0x03 */
2476 STRENTRY("Call16 "), /* 0x04 */
2477 STRENTRY("Task "), /* 0x05 */
2478 STRENTRY("Int16 "), /* 0x06 */
2479 STRENTRY("Trap16 "), /* 0x07 */
2480 STRENTRY("Reserved8 "), /* 0x08 */
2481 STRENTRY("TSS32Avail "), /* 0x09 */
2482 STRENTRY("ReservedA "), /* 0x0a */
2483 STRENTRY("TSS32Busy "), /* 0x0b */
2484 STRENTRY("Call32 "), /* 0x0c */
2485 STRENTRY("ReservedD "), /* 0x0d */
2486 STRENTRY("Int32 "), /* 0x0e */
2487 STRENTRY("Trap32 "), /* 0x0f */
2488 /* non system */
2489 STRENTRY("DataRO "), /* 0x10 */
2490 STRENTRY("DataRO Accessed "), /* 0x11 */
2491 STRENTRY("DataRW "), /* 0x12 */
2492 STRENTRY("DataRW Accessed "), /* 0x13 */
2493 STRENTRY("DataDownRO "), /* 0x14 */
2494 STRENTRY("DataDownRO Accessed "), /* 0x15 */
2495 STRENTRY("DataDownRW "), /* 0x16 */
2496 STRENTRY("DataDownRW Accessed "), /* 0x17 */
2497 STRENTRY("CodeEO "), /* 0x18 */
2498 STRENTRY("CodeEO Accessed "), /* 0x19 */
2499 STRENTRY("CodeER "), /* 0x1a */
2500 STRENTRY("CodeER Accessed "), /* 0x1b */
2501 STRENTRY("CodeConfEO "), /* 0x1c */
2502 STRENTRY("CodeConfEO Accessed "), /* 0x1d */
2503 STRENTRY("CodeConfER "), /* 0x1e */
2504 STRENTRY("CodeConfER Accessed ") /* 0x1f */
2505#undef SYSENTRY
2506 };
2507#define ADD_STR(psz, pszAdd) do { strcpy(psz, pszAdd); psz += strlen(pszAdd); } while (0)
2508 char szMsg[128];
2509 char *psz = &szMsg[0];
2510 unsigned i = Desc.Gen.u1DescType << 4 | Desc.Gen.u4Type;
2511 memcpy(psz, aTypes[i].psz, aTypes[i].cch);
2512 psz += aTypes[i].cch;
2513
2514 if (Desc.Gen.u1Present)
2515 ADD_STR(psz, "Present ");
2516 else
2517 ADD_STR(psz, "Not-Present ");
2518 if (Desc.Gen.u1Granularity)
2519 ADD_STR(psz, "Page ");
2520 if (Desc.Gen.u1DefBig)
2521 ADD_STR(psz, "32-bit ");
2522 else
2523 ADD_STR(psz, "16-bit ");
2524#undef ADD_STR
2525 *psz = '\0';
2526
2527 /*
2528 * Limit and Base and format the output.
2529 */
2530 uint32_t u32Limit = X86DESC_LIMIT_G(&Desc);
2531 uint32_t u32Base = X86DESC_BASE(&Desc);
2532
2533 RTStrPrintf(pszOutput, cchOutput, "%04x - %08x %08x - base=%08x limit=%08x dpl=%d %s",
2534 Sel, Desc.au32[0], Desc.au32[1], u32Base, u32Limit, Desc.Gen.u2Dpl, szMsg);
2535}
2536
2537
2538/**
2539 * Dumps a descriptor.
2540 *
2541 * @param Desc Descriptor to dump.
2542 * @param Sel Selector number.
2543 * @param pszMsg Message to prepend the log entry with.
2544 */
2545VMMR3DECL(void) SELMR3DumpDescriptor(X86DESC Desc, RTSEL Sel, const char *pszMsg)
2546{
2547 char szOutput[128];
2548 selmR3FormatDescriptor(Desc, Sel, &szOutput[0], sizeof(szOutput));
2549 Log(("%s: %s\n", pszMsg, szOutput));
2550 NOREF(szOutput[0]);
2551}
2552
2553
2554/**
2555 * Display the shadow gdt.
2556 *
2557 * @param pVM Pointer to the VM.
2558 * @param pHlp The info helpers.
2559 * @param pszArgs Arguments, ignored.
2560 */
2561static DECLCALLBACK(void) selmR3InfoGdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2562{
2563 NOREF(pszArgs);
2564 pHlp->pfnPrintf(pHlp, "Shadow GDT (GCAddr=%RRv):\n", MMHyperR3ToRC(pVM, pVM->selm.s.paGdtR3));
2565 for (unsigned iGDT = 0; iGDT < SELM_GDT_ELEMENTS; iGDT++)
2566 {
2567 if (pVM->selm.s.paGdtR3[iGDT].Gen.u1Present)
2568 {
2569 char szOutput[128];
2570 selmR3FormatDescriptor(pVM->selm.s.paGdtR3[iGDT], iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2571 const char *psz = "";
2572 if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS] >> X86_SEL_SHIFT))
2573 psz = " HyperCS";
2574 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_DS] >> X86_SEL_SHIFT))
2575 psz = " HyperDS";
2576 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_CS64] >> X86_SEL_SHIFT))
2577 psz = " HyperCS64";
2578 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS] >> X86_SEL_SHIFT))
2579 psz = " HyperTSS";
2580 else if (iGDT == ((unsigned)pVM->selm.s.aHyperSel[SELM_HYPER_SEL_TSS_TRAP08] >> X86_SEL_SHIFT))
2581 psz = " HyperTSSTrap08";
2582 pHlp->pfnPrintf(pHlp, "%s%s\n", szOutput, psz);
2583 }
2584 }
2585}
2586
2587
2588/**
2589 * Display the guest gdt.
2590 *
2591 * @param pVM Pointer to the VM.
2592 * @param pHlp The info helpers.
2593 * @param pszArgs Arguments, ignored.
2594 */
2595static DECLCALLBACK(void) selmR3InfoGdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2596{
2597 /** @todo SMP support! */
2598 PVMCPU pVCpu = &pVM->aCpus[0];
2599
2600 VBOXGDTR GDTR;
2601 CPUMGetGuestGDTR(pVCpu, &GDTR);
2602 RTGCPTR GCPtrGDT = GDTR.pGdt;
2603 unsigned cGDTs = ((unsigned)GDTR.cbGdt + 1) / sizeof(X86DESC);
2604
2605 pHlp->pfnPrintf(pHlp, "Guest GDT (GCAddr=%RGv limit=%x):\n", GCPtrGDT, GDTR.cbGdt);
2606 for (unsigned iGDT = 0; iGDT < cGDTs; iGDT++, GCPtrGDT += sizeof(X86DESC))
2607 {
2608 X86DESC GDTE;
2609 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &GDTE, GCPtrGDT, sizeof(GDTE));
2610 if (RT_SUCCESS(rc))
2611 {
2612 if (GDTE.Gen.u1Present)
2613 {
2614 char szOutput[128];
2615 selmR3FormatDescriptor(GDTE, iGDT << X86_SEL_SHIFT, &szOutput[0], sizeof(szOutput));
2616 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2617 }
2618 }
2619 else if (rc == VERR_PAGE_NOT_PRESENT)
2620 {
2621 if ((GCPtrGDT & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2622 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", iGDT << X86_SEL_SHIFT, GCPtrGDT);
2623 }
2624 else
2625 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", iGDT << X86_SEL_SHIFT, rc, GCPtrGDT);
2626 }
2627 NOREF(pszArgs);
2628}
2629
2630
2631/**
2632 * Display the shadow ldt.
2633 *
2634 * @param pVM Pointer to the VM.
2635 * @param pHlp The info helpers.
2636 * @param pszArgs Arguments, ignored.
2637 */
2638static DECLCALLBACK(void) selmR3InfoLdt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2639{
2640 unsigned cLDTs = ((unsigned)pVM->selm.s.cbLdtLimit + 1) >> X86_SEL_SHIFT;
2641 PX86DESC paLDT = (PX86DESC)((char *)pVM->selm.s.pvLdtR3 + pVM->selm.s.offLdtHyper);
2642 pHlp->pfnPrintf(pHlp, "Shadow LDT (GCAddr=%RRv limit=%#x):\n", pVM->selm.s.pvLdtRC + pVM->selm.s.offLdtHyper, pVM->selm.s.cbLdtLimit);
2643 for (unsigned iLDT = 0; iLDT < cLDTs; iLDT++)
2644 {
2645 if (paLDT[iLDT].Gen.u1Present)
2646 {
2647 char szOutput[128];
2648 selmR3FormatDescriptor(paLDT[iLDT], (iLDT << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2649 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2650 }
2651 }
2652 NOREF(pszArgs);
2653}
2654
2655
2656/**
2657 * Display the guest ldt.
2658 *
2659 * @param pVM Pointer to the VM.
2660 * @param pHlp The info helpers.
2661 * @param pszArgs Arguments, ignored.
2662 */
2663static DECLCALLBACK(void) selmR3InfoLdtGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2664{
2665 /** @todo SMP support! */
2666 PVMCPU pVCpu = &pVM->aCpus[0];
2667
2668 uint64_t GCPtrLdt;
2669 uint32_t cbLdt;
2670 RTSEL SelLdt = CPUMGetGuestLdtrEx(pVCpu, &GCPtrLdt, &cbLdt);
2671 if (!(SelLdt & X86_SEL_MASK_OFF_RPL))
2672 {
2673 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x): Null-Selector\n", SelLdt);
2674 return;
2675 }
2676
2677 pHlp->pfnPrintf(pHlp, "Guest LDT (Sel=%x GCAddr=%RX64 limit=%x):\n", SelLdt, GCPtrLdt, cbLdt);
2678 unsigned cLdts = (cbLdt + 1) >> X86_SEL_SHIFT;
2679 for (unsigned iLdt = 0; iLdt < cLdts; iLdt++, GCPtrLdt += sizeof(X86DESC))
2680 {
2681 X86DESC LdtE;
2682 int rc = PGMPhysSimpleReadGCPtr(pVCpu, &LdtE, GCPtrLdt, sizeof(LdtE));
2683 if (RT_SUCCESS(rc))
2684 {
2685 if (LdtE.Gen.u1Present)
2686 {
2687 char szOutput[128];
2688 selmR3FormatDescriptor(LdtE, (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, &szOutput[0], sizeof(szOutput));
2689 pHlp->pfnPrintf(pHlp, "%s\n", szOutput);
2690 }
2691 }
2692 else if (rc == VERR_PAGE_NOT_PRESENT)
2693 {
2694 if ((GCPtrLdt & PAGE_OFFSET_MASK) + sizeof(X86DESC) - 1 < sizeof(X86DESC))
2695 pHlp->pfnPrintf(pHlp, "%04x - page not present (GCAddr=%RGv)\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, GCPtrLdt);
2696 }
2697 else
2698 pHlp->pfnPrintf(pHlp, "%04x - read error rc=%Rrc GCAddr=%RGv\n", (iLdt << X86_SEL_SHIFT) | X86_SEL_LDT, rc, GCPtrLdt);
2699 }
2700 NOREF(pszArgs);
2701}
2702
2703
2704/**
2705 * Dumps the hypervisor GDT
2706 *
2707 * @param pVM Pointer to the VM.
2708 */
2709VMMR3DECL(void) SELMR3DumpHyperGDT(PVM pVM)
2710{
2711 DBGFR3Info(pVM->pUVM, "gdt", NULL, NULL);
2712}
2713
2714
2715/**
2716 * Dumps the hypervisor LDT
2717 *
2718 * @param pVM Pointer to the VM.
2719 */
2720VMMR3DECL(void) SELMR3DumpHyperLDT(PVM pVM)
2721{
2722 DBGFR3Info(pVM->pUVM, "ldt", NULL, NULL);
2723}
2724
2725
2726/**
2727 * Dumps the guest GDT
2728 *
2729 * @param pVM Pointer to the VM.
2730 */
2731VMMR3DECL(void) SELMR3DumpGuestGDT(PVM pVM)
2732{
2733 DBGFR3Info(pVM->pUVM, "gdtguest", NULL, NULL);
2734}
2735
2736
2737/**
2738 * Dumps the guest LDT
2739 *
2740 * @param pVM Pointer to the VM.
2741 */
2742VMMR3DECL(void) SELMR3DumpGuestLDT(PVM pVM)
2743{
2744 DBGFR3Info(pVM->pUVM, "ldtguest", NULL, NULL);
2745}
2746
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette