VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGMSavedState.cpp@ 38838

最後變更 在這個檔案從38838是 38707,由 vboxsync 提交於 14 年 前

VMM/VT-x: Fix for PAE guests running on 32-bit hosts or 64-bit hosts where VBoxInternal/PGM/MaxRing3Chunks is used.

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id
檔案大小: 124.0 KB
 
1/* $Id: PGMSavedState.cpp 38707 2011-09-09 14:10:18Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor, The Saved State Part.
4 */
5
6/*
7 * Copyright (C) 2006-2009 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*******************************************************************************
20* Header Files *
21*******************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM
23#include <VBox/vmm/pgm.h>
24#include <VBox/vmm/stam.h>
25#include <VBox/vmm/ssm.h>
26#include <VBox/vmm/pdmdrv.h>
27#include <VBox/vmm/pdmdev.h>
28#include "PGMInternal.h"
29#include <VBox/vmm/vm.h>
30#include "PGMInline.h"
31
32#include <VBox/param.h>
33#include <VBox/err.h>
34#include <VBox/vmm/ftm.h>
35
36#include <iprt/asm.h>
37#include <iprt/assert.h>
38#include <iprt/crc.h>
39#include <iprt/mem.h>
40#include <iprt/sha.h>
41#include <iprt/string.h>
42#include <iprt/thread.h>
43
44
45/*******************************************************************************
46* Defined Constants And Macros *
47*******************************************************************************/
48/** Saved state data unit version. */
49#define PGM_SAVED_STATE_VERSION 14
50/** Saved state data unit version before the PAE PDPE registers. */
51#define PGM_SAVED_STATE_VERSION_PRE_PAE 13
52/** Saved state data unit version after this includes ballooned page flags in
53 * the state (see #5515). */
54#define PGM_SAVED_STATE_VERSION_BALLOON_BROKEN 12
55/** Saved state before the balloon change. */
56#define PGM_SAVED_STATE_VERSION_PRE_BALLOON 11
57/** Saved state data unit version used during 3.1 development, misses the RAM
58 * config. */
59#define PGM_SAVED_STATE_VERSION_NO_RAM_CFG 10
60/** Saved state data unit version for 3.0 (pre teleportation). */
61#define PGM_SAVED_STATE_VERSION_3_0_0 9
62/** Saved state data unit version for 2.2.2 and later. */
63#define PGM_SAVED_STATE_VERSION_2_2_2 8
64/** Saved state data unit version for 2.2.0. */
65#define PGM_SAVED_STATE_VERSION_RR_DESC 7
66/** Saved state data unit version. */
67#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
68
69
70/** @name Sparse state record types
71 * @{ */
72/** Zero page. No data. */
73#define PGM_STATE_REC_RAM_ZERO UINT8_C(0x00)
74/** Raw page. */
75#define PGM_STATE_REC_RAM_RAW UINT8_C(0x01)
76/** Raw MMIO2 page. */
77#define PGM_STATE_REC_MMIO2_RAW UINT8_C(0x02)
78/** Zero MMIO2 page. */
79#define PGM_STATE_REC_MMIO2_ZERO UINT8_C(0x03)
80/** Virgin ROM page. Followed by protection (8-bit) and the raw bits. */
81#define PGM_STATE_REC_ROM_VIRGIN UINT8_C(0x04)
82/** Raw shadowed ROM page. The protection (8-bit) precedes the raw bits. */
83#define PGM_STATE_REC_ROM_SHW_RAW UINT8_C(0x05)
84/** Zero shadowed ROM page. The protection (8-bit) is the only payload. */
85#define PGM_STATE_REC_ROM_SHW_ZERO UINT8_C(0x06)
86/** ROM protection (8-bit). */
87#define PGM_STATE_REC_ROM_PROT UINT8_C(0x07)
88/** Ballooned page. No data. */
89#define PGM_STATE_REC_RAM_BALLOONED UINT8_C(0x08)
90/** The last record type. */
91#define PGM_STATE_REC_LAST PGM_STATE_REC_RAM_BALLOONED
92/** End marker. */
93#define PGM_STATE_REC_END UINT8_C(0xff)
94/** Flag indicating that the data is preceded by the page address.
95 * For RAW pages this is a RTGCPHYS. For MMIO2 and ROM pages this is a 8-bit
96 * range ID and a 32-bit page index.
97 */
98#define PGM_STATE_REC_FLAG_ADDR UINT8_C(0x80)
99/** @} */
100
101/** The CRC-32 for a zero page. */
102#define PGM_STATE_CRC32_ZERO_PAGE UINT32_C(0xc71c0011)
103/** The CRC-32 for a zero half page. */
104#define PGM_STATE_CRC32_ZERO_HALF_PAGE UINT32_C(0xf1e8ba9e)
105
106
107/*******************************************************************************
108* Structures and Typedefs *
109*******************************************************************************/
110/** For loading old saved states. (pre-smp) */
111typedef struct
112{
113 /** If set no conflict checks are required. (boolean) */
114 bool fMappingsFixed;
115 /** Size of fixed mapping */
116 uint32_t cbMappingFixed;
117 /** Base address (GC) of fixed mapping */
118 RTGCPTR GCPtrMappingFixed;
119 /** A20 gate mask.
120 * Our current approach to A20 emulation is to let REM do it and don't bother
121 * anywhere else. The interesting guests will be operating with it enabled anyway.
122 * But should the need arise, we'll subject physical addresses to this mask. */
123 RTGCPHYS GCPhysA20Mask;
124 /** A20 gate state - boolean! */
125 bool fA20Enabled;
126 /** The guest paging mode. */
127 PGMMODE enmGuestMode;
128} PGMOLD;
129
130
131/*******************************************************************************
132* Global Variables *
133*******************************************************************************/
134/** PGM fields to save/load. */
135
136static const SSMFIELD s_aPGMFields[] =
137{
138 SSMFIELD_ENTRY( PGM, fMappingsFixed),
139 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
140 SSMFIELD_ENTRY( PGM, cbMappingFixed),
141 SSMFIELD_ENTRY( PGM, cBalloonedPages),
142 SSMFIELD_ENTRY_TERM()
143};
144
145static const SSMFIELD s_aPGMFieldsPreBalloon[] =
146{
147 SSMFIELD_ENTRY( PGM, fMappingsFixed),
148 SSMFIELD_ENTRY_GCPTR( PGM, GCPtrMappingFixed),
149 SSMFIELD_ENTRY( PGM, cbMappingFixed),
150 SSMFIELD_ENTRY_TERM()
151};
152
153static const SSMFIELD s_aPGMCpuFields[] =
154{
155 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
156 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
157 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
158 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[0]),
159 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[1]),
160 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[2]),
161 SSMFIELD_ENTRY( PGMCPU, aGCPhysGstPaePDs[3]),
162 SSMFIELD_ENTRY_TERM()
163};
164
165static const SSMFIELD s_aPGMCpuFieldsPrePae[] =
166{
167 SSMFIELD_ENTRY( PGMCPU, fA20Enabled),
168 SSMFIELD_ENTRY_GCPHYS( PGMCPU, GCPhysA20Mask),
169 SSMFIELD_ENTRY( PGMCPU, enmGuestMode),
170 SSMFIELD_ENTRY_TERM()
171};
172
173static const SSMFIELD s_aPGMFields_Old[] =
174{
175 SSMFIELD_ENTRY( PGMOLD, fMappingsFixed),
176 SSMFIELD_ENTRY_GCPTR( PGMOLD, GCPtrMappingFixed),
177 SSMFIELD_ENTRY( PGMOLD, cbMappingFixed),
178 SSMFIELD_ENTRY( PGMOLD, fA20Enabled),
179 SSMFIELD_ENTRY_GCPHYS( PGMOLD, GCPhysA20Mask),
180 SSMFIELD_ENTRY( PGMOLD, enmGuestMode),
181 SSMFIELD_ENTRY_TERM()
182};
183
184
185/**
186 * Find the ROM tracking structure for the given page.
187 *
188 * @returns Pointer to the ROM page structure. NULL if the caller didn't check
189 * that it's a ROM page.
190 * @param pVM The VM handle.
191 * @param GCPhys The address of the ROM page.
192 */
193static PPGMROMPAGE pgmR3GetRomPage(PVM pVM, RTGCPHYS GCPhys) /** @todo change this to take a hint. */
194{
195 for (PPGMROMRANGE pRomRange = pVM->pgm.s.CTX_SUFF(pRomRanges);
196 pRomRange;
197 pRomRange = pRomRange->CTX_SUFF(pNext))
198 {
199 RTGCPHYS off = GCPhys - pRomRange->GCPhys;
200 if (GCPhys - pRomRange->GCPhys < pRomRange->cb)
201 return &pRomRange->aPages[off >> PAGE_SHIFT];
202 }
203 return NULL;
204}
205
206
207/**
208 * Prepares the ROM pages for a live save.
209 *
210 * @returns VBox status code.
211 * @param pVM The VM handle.
212 */
213static int pgmR3PrepRomPages(PVM pVM)
214{
215 /*
216 * Initialize the live save tracking in the ROM page descriptors.
217 */
218 pgmLock(pVM);
219 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
220 {
221 PPGMRAMRANGE pRamHint = NULL;;
222 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
223
224 for (uint32_t iPage = 0; iPage < cPages; iPage++)
225 {
226 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)PGMROMPROT_INVALID;
227 pRom->aPages[iPage].LiveSave.fWrittenTo = false;
228 pRom->aPages[iPage].LiveSave.fDirty = true;
229 pRom->aPages[iPage].LiveSave.fDirtiedRecently = true;
230 if (!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED))
231 {
232 if (PGMROMPROT_IS_ROM(pRom->aPages[iPage].enmProt))
233 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
234 else
235 {
236 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
237 PPGMPAGE pPage;
238 int rc = pgmPhysGetPageWithHintEx(pVM, GCPhys, &pPage, &pRamHint);
239 AssertLogRelMsgRC(rc, ("%Rrc GCPhys=%RGp\n", rc, GCPhys));
240 if (RT_SUCCESS(rc))
241 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(pPage) && !PGM_PAGE_IS_BALLOONED(pPage);
242 else
243 pRom->aPages[iPage].LiveSave.fWrittenTo = !PGM_PAGE_IS_ZERO(&pRom->aPages[iPage].Shadow) && !PGM_PAGE_IS_BALLOONED(&pRom->aPages[iPage].Shadow);
244 }
245 }
246 }
247
248 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
249 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
250 pVM->pgm.s.LiveSave.Rom.cDirtyPages += cPages;
251 }
252 pgmUnlock(pVM);
253
254 return VINF_SUCCESS;
255}
256
257
258/**
259 * Assigns IDs to the ROM ranges and saves them.
260 *
261 * @returns VBox status code.
262 * @param pVM The VM handle.
263 * @param pSSM Saved state handle.
264 */
265static int pgmR3SaveRomRanges(PVM pVM, PSSMHANDLE pSSM)
266{
267 pgmLock(pVM);
268 uint8_t id = 1;
269 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3, id++)
270 {
271 pRom->idSavedState = id;
272 SSMR3PutU8(pSSM, id);
273 SSMR3PutStrZ(pSSM, ""); /* device name */
274 SSMR3PutU32(pSSM, 0); /* device instance */
275 SSMR3PutU8(pSSM, 0); /* region */
276 SSMR3PutStrZ(pSSM, pRom->pszDesc);
277 SSMR3PutGCPhys(pSSM, pRom->GCPhys);
278 int rc = SSMR3PutGCPhys(pSSM, pRom->cb);
279 if (RT_FAILURE(rc))
280 break;
281 }
282 pgmUnlock(pVM);
283 return SSMR3PutU8(pSSM, UINT8_MAX);
284}
285
286
287/**
288 * Loads the ROM range ID assignments.
289 *
290 * @returns VBox status code.
291 *
292 * @param pVM The VM handle.
293 * @param pSSM The saved state handle.
294 */
295static int pgmR3LoadRomRanges(PVM pVM, PSSMHANDLE pSSM)
296{
297 PGM_LOCK_ASSERT_OWNER(pVM);
298
299 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
300 pRom->idSavedState = UINT8_MAX;
301
302 for (;;)
303 {
304 /*
305 * Read the data.
306 */
307 uint8_t id;
308 int rc = SSMR3GetU8(pSSM, &id);
309 if (RT_FAILURE(rc))
310 return rc;
311 if (id == UINT8_MAX)
312 {
313 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
314 AssertLogRelMsg(pRom->idSavedState != UINT8_MAX,
315 ("The \"%s\" ROM was not found in the saved state. Probably due to some misconfiguration\n",
316 pRom->pszDesc));
317 return VINF_SUCCESS; /* the end */
318 }
319 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
320
321 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
322 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
323 AssertLogRelRCReturn(rc, rc);
324
325 uint32_t uInstance;
326 SSMR3GetU32(pSSM, &uInstance);
327 uint8_t iRegion;
328 SSMR3GetU8(pSSM, &iRegion);
329
330 char szDesc[64];
331 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
332 AssertLogRelRCReturn(rc, rc);
333
334 RTGCPHYS GCPhys;
335 SSMR3GetGCPhys(pSSM, &GCPhys);
336 RTGCPHYS cb;
337 rc = SSMR3GetGCPhys(pSSM, &cb);
338 if (RT_FAILURE(rc))
339 return rc;
340 AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("GCPhys=%RGp %s\n", GCPhys, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
341 AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
342
343 /*
344 * Locate a matching ROM range.
345 */
346 AssertLogRelMsgReturn( uInstance == 0
347 && iRegion == 0
348 && szDevName[0] == '\0',
349 ("GCPhys=%RGp %s\n", GCPhys, szDesc),
350 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
351 PPGMROMRANGE pRom;
352 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
353 {
354 if ( pRom->idSavedState == UINT8_MAX
355 && !strcmp(pRom->pszDesc, szDesc))
356 {
357 pRom->idSavedState = id;
358 break;
359 }
360 }
361 if (!pRom)
362 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("ROM at %RGp by the name '%s' was not found"), GCPhys, szDesc);
363 } /* forever */
364}
365
366
367/**
368 * Scan ROM pages.
369 *
370 * @param pVM The VM handle.
371 */
372static void pgmR3ScanRomPages(PVM pVM)
373{
374 /*
375 * The shadow ROMs.
376 */
377 pgmLock(pVM);
378 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
379 {
380 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
381 {
382 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
383 for (uint32_t iPage = 0; iPage < cPages; iPage++)
384 {
385 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
386 if (pRomPage->LiveSave.fWrittenTo)
387 {
388 pRomPage->LiveSave.fWrittenTo = false;
389 if (!pRomPage->LiveSave.fDirty)
390 {
391 pRomPage->LiveSave.fDirty = true;
392 pVM->pgm.s.LiveSave.Rom.cReadyPages--;
393 pVM->pgm.s.LiveSave.Rom.cDirtyPages++;
394 }
395 pRomPage->LiveSave.fDirtiedRecently = true;
396 }
397 else
398 pRomPage->LiveSave.fDirtiedRecently = false;
399 }
400 }
401 }
402 pgmUnlock(pVM);
403}
404
405
406/**
407 * Takes care of the virgin ROM pages in the first pass.
408 *
409 * This is an attempt at simplifying the handling of ROM pages a little bit.
410 * This ASSUMES that no new ROM ranges will be added and that they won't be
411 * relinked in any way.
412 *
413 * @param pVM The VM handle.
414 * @param pSSM The SSM handle.
415 * @param fLiveSave Whether we're in a live save or not.
416 */
417static int pgmR3SaveRomVirginPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave)
418{
419 if (FTMIsDeltaLoadSaveActive(pVM))
420 return VINF_SUCCESS; /* nothing to do as nothing has changed here */
421
422 pgmLock(pVM);
423 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
424 {
425 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
426 for (uint32_t iPage = 0; iPage < cPages; iPage++)
427 {
428 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
429 PGMROMPROT enmProt = pRom->aPages[iPage].enmProt;
430
431 /* Get the virgin page descriptor. */
432 PPGMPAGE pPage;
433 if (PGMROMPROT_IS_ROM(enmProt))
434 pPage = pgmPhysGetPage(pVM, GCPhys);
435 else
436 pPage = &pRom->aPages[iPage].Virgin;
437
438 /* Get the page bits. (Cannot use pgmPhysGCPhys2CCPtrInternalReadOnly here!) */
439 int rc = VINF_SUCCESS;
440 char abPage[PAGE_SIZE];
441 if ( !PGM_PAGE_IS_ZERO(pPage)
442 && !PGM_PAGE_IS_BALLOONED(pPage))
443 {
444 void const *pvPage;
445 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
446 if (RT_SUCCESS(rc))
447 memcpy(abPage, pvPage, PAGE_SIZE);
448 }
449 else
450 ASMMemZeroPage(abPage);
451 pgmUnlock(pVM);
452 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
453
454 /* Save it. */
455 if (iPage > 0)
456 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN);
457 else
458 {
459 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_VIRGIN | PGM_STATE_REC_FLAG_ADDR);
460 SSMR3PutU8(pSSM, pRom->idSavedState);
461 SSMR3PutU32(pSSM, iPage);
462 }
463 SSMR3PutU8(pSSM, (uint8_t)enmProt);
464 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
465 if (RT_FAILURE(rc))
466 return rc;
467
468 /* Update state. */
469 pgmLock(pVM);
470 pRom->aPages[iPage].LiveSave.u8Prot = (uint8_t)enmProt;
471 if (fLiveSave)
472 {
473 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
474 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
475 pVM->pgm.s.LiveSave.cSavedPages++;
476 }
477 }
478 }
479 pgmUnlock(pVM);
480 return VINF_SUCCESS;
481}
482
483
484/**
485 * Saves dirty pages in the shadowed ROM ranges.
486 *
487 * Used by pgmR3LiveExecPart2 and pgmR3SaveExecMemory.
488 *
489 * @returns VBox status code.
490 * @param pVM The VM handle.
491 * @param pSSM The SSM handle.
492 * @param fLiveSave Whether it's a live save or not.
493 * @param fFinalPass Whether this is the final pass or not.
494 */
495static int pgmR3SaveShadowedRomPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, bool fFinalPass)
496{
497 if (FTMIsDeltaLoadSaveActive(pVM))
498 return VINF_SUCCESS; /* nothing to do as we deal with those pages separately */
499
500 /*
501 * The Shadowed ROMs.
502 *
503 * ASSUMES that the ROM ranges are fixed.
504 * ASSUMES that all the ROM ranges are mapped.
505 */
506 pgmLock(pVM);
507 for (PPGMROMRANGE pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
508 {
509 if (pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)
510 {
511 uint32_t const cPages = pRom->cb >> PAGE_SHIFT;
512 uint32_t iPrevPage = cPages;
513 for (uint32_t iPage = 0; iPage < cPages; iPage++)
514 {
515 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
516 if ( !fLiveSave
517 || ( pRomPage->LiveSave.fDirty
518 && ( ( !pRomPage->LiveSave.fDirtiedRecently
519 && !pRomPage->LiveSave.fWrittenTo)
520 || fFinalPass
521 )
522 )
523 )
524 {
525 uint8_t abPage[PAGE_SIZE];
526 PGMROMPROT enmProt = pRomPage->enmProt;
527 RTGCPHYS GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
528 PPGMPAGE pPage = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : pgmPhysGetPage(pVM, GCPhys);
529 bool fZero = PGM_PAGE_IS_ZERO(pPage) || PGM_PAGE_IS_BALLOONED(pPage); Assert(!PGM_PAGE_IS_BALLOONED(pPage)); /* Shouldn't be ballooned. */
530 int rc = VINF_SUCCESS;
531 if (!fZero)
532 {
533 void const *pvPage;
534 rc = pgmPhysPageMapReadOnly(pVM, pPage, GCPhys, &pvPage);
535 if (RT_SUCCESS(rc))
536 memcpy(abPage, pvPage, PAGE_SIZE);
537 }
538 if (fLiveSave && RT_SUCCESS(rc))
539 {
540 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
541 pRomPage->LiveSave.fDirty = false;
542 pVM->pgm.s.LiveSave.Rom.cReadyPages++;
543 pVM->pgm.s.LiveSave.Rom.cDirtyPages--;
544 pVM->pgm.s.LiveSave.cSavedPages++;
545 }
546 pgmUnlock(pVM);
547 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
548
549 if (iPage - 1U == iPrevPage && iPage > 0)
550 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW));
551 else
552 {
553 SSMR3PutU8(pSSM, (fZero ? PGM_STATE_REC_ROM_SHW_ZERO : PGM_STATE_REC_ROM_SHW_RAW) | PGM_STATE_REC_FLAG_ADDR);
554 SSMR3PutU8(pSSM, pRom->idSavedState);
555 SSMR3PutU32(pSSM, iPage);
556 }
557 rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
558 if (!fZero)
559 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
560 if (RT_FAILURE(rc))
561 return rc;
562
563 pgmLock(pVM);
564 iPrevPage = iPage;
565 }
566 /*
567 * In the final pass, make sure the protection is in sync.
568 */
569 else if ( fFinalPass
570 && pRomPage->LiveSave.u8Prot != pRomPage->enmProt)
571 {
572 PGMROMPROT enmProt = pRomPage->enmProt;
573 pRomPage->LiveSave.u8Prot = (uint8_t)enmProt;
574 pgmUnlock(pVM);
575
576 if (iPage - 1U == iPrevPage && iPage > 0)
577 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT);
578 else
579 {
580 SSMR3PutU8(pSSM, PGM_STATE_REC_ROM_PROT | PGM_STATE_REC_FLAG_ADDR);
581 SSMR3PutU8(pSSM, pRom->idSavedState);
582 SSMR3PutU32(pSSM, iPage);
583 }
584 int rc = SSMR3PutU8(pSSM, (uint8_t)enmProt);
585 if (RT_FAILURE(rc))
586 return rc;
587
588 pgmLock(pVM);
589 iPrevPage = iPage;
590 }
591 }
592 }
593 }
594 pgmUnlock(pVM);
595 return VINF_SUCCESS;
596}
597
598
599/**
600 * Cleans up ROM pages after a live save.
601 *
602 * @param pVM The VM handle.
603 */
604static void pgmR3DoneRomPages(PVM pVM)
605{
606 NOREF(pVM);
607}
608
609
610/**
611 * Prepares the MMIO2 pages for a live save.
612 *
613 * @returns VBox status code.
614 * @param pVM The VM handle.
615 */
616static int pgmR3PrepMmio2Pages(PVM pVM)
617{
618 /*
619 * Initialize the live save tracking in the MMIO2 ranges.
620 * ASSUME nothing changes here.
621 */
622 pgmLock(pVM);
623 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
624 {
625 uint32_t const cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
626 pgmUnlock(pVM);
627
628 PPGMLIVESAVEMMIO2PAGE paLSPages = (PPGMLIVESAVEMMIO2PAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMLIVESAVEMMIO2PAGE) * cPages);
629 if (!paLSPages)
630 return VERR_NO_MEMORY;
631 for (uint32_t iPage = 0; iPage < cPages; iPage++)
632 {
633 /* Initialize it as a dirty zero page. */
634 paLSPages[iPage].fDirty = true;
635 paLSPages[iPage].cUnchangedScans = 0;
636 paLSPages[iPage].fZero = true;
637 paLSPages[iPage].u32CrcH1 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
638 paLSPages[iPage].u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
639 }
640
641 pgmLock(pVM);
642 pMmio2->paLSPages = paLSPages;
643 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages += cPages;
644 }
645 pgmUnlock(pVM);
646 return VINF_SUCCESS;
647}
648
649
650/**
651 * Assigns IDs to the MMIO2 ranges and saves them.
652 *
653 * @returns VBox status code.
654 * @param pVM The VM handle.
655 * @param pSSM Saved state handle.
656 */
657static int pgmR3SaveMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
658{
659 pgmLock(pVM);
660 uint8_t id = 1;
661 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3, id++)
662 {
663 pMmio2->idSavedState = id;
664 SSMR3PutU8(pSSM, id);
665 SSMR3PutStrZ(pSSM, pMmio2->pDevInsR3->pReg->szName);
666 SSMR3PutU32(pSSM, pMmio2->pDevInsR3->iInstance);
667 SSMR3PutU8(pSSM, pMmio2->iRegion);
668 SSMR3PutStrZ(pSSM, pMmio2->RamRange.pszDesc);
669 int rc = SSMR3PutGCPhys(pSSM, pMmio2->RamRange.cb);
670 if (RT_FAILURE(rc))
671 break;
672 }
673 pgmUnlock(pVM);
674 return SSMR3PutU8(pSSM, UINT8_MAX);
675}
676
677
678/**
679 * Loads the MMIO2 range ID assignments.
680 *
681 * @returns VBox status code.
682 *
683 * @param pVM The VM handle.
684 * @param pSSM The saved state handle.
685 */
686static int pgmR3LoadMmio2Ranges(PVM pVM, PSSMHANDLE pSSM)
687{
688 PGM_LOCK_ASSERT_OWNER(pVM);
689
690 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
691 pMmio2->idSavedState = UINT8_MAX;
692
693 for (;;)
694 {
695 /*
696 * Read the data.
697 */
698 uint8_t id;
699 int rc = SSMR3GetU8(pSSM, &id);
700 if (RT_FAILURE(rc))
701 return rc;
702 if (id == UINT8_MAX)
703 {
704 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
705 AssertLogRelMsg(pMmio2->idSavedState != UINT8_MAX, ("%s\n", pMmio2->RamRange.pszDesc));
706 return VINF_SUCCESS; /* the end */
707 }
708 AssertLogRelReturn(id != 0, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
709
710 char szDevName[RT_SIZEOFMEMB(PDMDEVREG, szName)];
711 rc = SSMR3GetStrZ(pSSM, szDevName, sizeof(szDevName));
712 AssertLogRelRCReturn(rc, rc);
713
714 uint32_t uInstance;
715 SSMR3GetU32(pSSM, &uInstance);
716 uint8_t iRegion;
717 SSMR3GetU8(pSSM, &iRegion);
718
719 char szDesc[64];
720 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
721 AssertLogRelRCReturn(rc, rc);
722
723 RTGCPHYS cb;
724 rc = SSMR3GetGCPhys(pSSM, &cb);
725 AssertLogRelMsgReturn(!(cb & PAGE_OFFSET_MASK), ("cb=%RGp %s\n", cb, szDesc), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
726
727 /*
728 * Locate a matching MMIO2 range.
729 */
730 PPGMMMIO2RANGE pMmio2;
731 for (pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
732 {
733 if ( pMmio2->idSavedState == UINT8_MAX
734 && pMmio2->iRegion == iRegion
735 && pMmio2->pDevInsR3->iInstance == uInstance
736 && !strcmp(pMmio2->pDevInsR3->pReg->szName, szDevName))
737 {
738 pMmio2->idSavedState = id;
739 break;
740 }
741 }
742 if (!pMmio2)
743 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Failed to locate a MMIO2 range called '%s' owned by %s/%u, region %d"),
744 szDesc, szDevName, uInstance, iRegion);
745
746 /*
747 * Validate the configuration, the size of the MMIO2 region should be
748 * the same.
749 */
750 if (cb != pMmio2->RamRange.cb)
751 {
752 LogRel(("PGM: MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp\n",
753 pMmio2->RamRange.pszDesc, cb, pMmio2->RamRange.cb));
754 if (cb > pMmio2->RamRange.cb) /* bad idea? */
755 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("MMIO2 region \"%s\" size mismatch: saved=%RGp config=%RGp"),
756 pMmio2->RamRange.pszDesc, cb, pMmio2->RamRange.cb);
757 }
758 } /* forever */
759}
760
761
762/**
763 * Scans one MMIO2 page.
764 *
765 * @returns True if changed, false if unchanged.
766 *
767 * @param pVM The VM handle
768 * @param pbPage The page bits.
769 * @param pLSPage The live save tracking structure for the page.
770 *
771 */
772DECLINLINE(bool) pgmR3ScanMmio2Page(PVM pVM, uint8_t const *pbPage, PPGMLIVESAVEMMIO2PAGE pLSPage)
773{
774 /*
775 * Special handling of zero pages.
776 */
777 bool const fZero = pLSPage->fZero;
778 if (fZero)
779 {
780 if (ASMMemIsZeroPage(pbPage))
781 {
782 /* Not modified. */
783 if (pLSPage->fDirty)
784 pLSPage->cUnchangedScans++;
785 return false;
786 }
787
788 pLSPage->fZero = false;
789 pLSPage->u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
790 }
791 else
792 {
793 /*
794 * CRC the first half, if it doesn't match the page is dirty and
795 * we won't check the 2nd half (we'll do that next time).
796 */
797 uint32_t u32CrcH1 = RTCrc32(pbPage, PAGE_SIZE / 2);
798 if (u32CrcH1 == pLSPage->u32CrcH1)
799 {
800 uint32_t u32CrcH2 = RTCrc32(pbPage + PAGE_SIZE / 2, PAGE_SIZE / 2);
801 if (u32CrcH2 == pLSPage->u32CrcH2)
802 {
803 /* Probably not modified. */
804 if (pLSPage->fDirty)
805 pLSPage->cUnchangedScans++;
806 return false;
807 }
808
809 pLSPage->u32CrcH2 = u32CrcH2;
810 }
811 else
812 {
813 pLSPage->u32CrcH1 = u32CrcH1;
814 if ( u32CrcH1 == PGM_STATE_CRC32_ZERO_HALF_PAGE
815 && ASMMemIsZeroPage(pbPage))
816 {
817 pLSPage->u32CrcH2 = PGM_STATE_CRC32_ZERO_HALF_PAGE;
818 pLSPage->fZero = true;
819 }
820 }
821 }
822
823 /* dirty page path */
824 pLSPage->cUnchangedScans = 0;
825 if (!pLSPage->fDirty)
826 {
827 pLSPage->fDirty = true;
828 pVM->pgm.s.LiveSave.Mmio2.cReadyPages--;
829 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages++;
830 if (fZero)
831 pVM->pgm.s.LiveSave.Mmio2.cZeroPages--;
832 }
833 return true;
834}
835
836
837/**
838 * Scan for MMIO2 page modifications.
839 *
840 * @param pVM The VM handle.
841 * @param uPass The pass number.
842 */
843static void pgmR3ScanMmio2Pages(PVM pVM, uint32_t uPass)
844{
845 /*
846 * Since this is a bit expensive we lower the scan rate after a little while.
847 */
848 if ( ( (uPass & 3) != 0
849 && uPass > 10)
850 || uPass == SSM_PASS_FINAL)
851 return;
852
853 pgmLock(pVM); /* paranoia */
854 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
855 {
856 PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
857 uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
858 pgmUnlock(pVM);
859
860 for (uint32_t iPage = 0; iPage < cPages; iPage++)
861 {
862 uint8_t const *pbPage = (uint8_t const *)pMmio2->pvR3 + iPage * PAGE_SIZE;
863 pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]);
864 }
865
866 pgmLock(pVM);
867 }
868 pgmUnlock(pVM);
869
870}
871
872
873/**
874 * Save quiescent MMIO2 pages.
875 *
876 * @returns VBox status code.
877 * @param pVM The VM handle.
878 * @param pSSM The SSM handle.
879 * @param fLiveSave Whether it's a live save or not.
880 * @param uPass The pass number.
881 */
882static int pgmR3SaveMmio2Pages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
883{
884 /** @todo implement live saving of MMIO2 pages. (Need some way of telling the
885 * device that we wish to know about changes.) */
886
887 int rc = VINF_SUCCESS;
888 if (uPass == SSM_PASS_FINAL)
889 {
890 /*
891 * The mop up round.
892 */
893 pgmLock(pVM);
894 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3;
895 pMmio2 && RT_SUCCESS(rc);
896 pMmio2 = pMmio2->pNextR3)
897 {
898 PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
899 uint8_t const *pbPage = (uint8_t const *)pMmio2->RamRange.pvR3;
900 uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
901 uint32_t iPageLast = cPages;
902 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
903 {
904 uint8_t u8Type;
905 if (!fLiveSave)
906 u8Type = ASMMemIsZeroPage(pbPage) ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
907 else
908 {
909 /* Try figure if it's a clean page, compare the SHA-1 to be really sure. */
910 if ( !paLSPages[iPage].fDirty
911 && !pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
912 {
913 if (paLSPages[iPage].fZero)
914 continue;
915
916 uint8_t abSha1Hash[RTSHA1_HASH_SIZE];
917 RTSha1(pbPage, PAGE_SIZE, abSha1Hash);
918 if (!memcmp(abSha1Hash, paLSPages[iPage].abSha1Saved, sizeof(abSha1Hash)))
919 continue;
920 }
921 u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
922 pVM->pgm.s.LiveSave.cSavedPages++;
923 }
924
925 if (iPage != 0 && iPage == iPageLast + 1)
926 rc = SSMR3PutU8(pSSM, u8Type);
927 else
928 {
929 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
930 SSMR3PutU8(pSSM, pMmio2->idSavedState);
931 rc = SSMR3PutU32(pSSM, iPage);
932 }
933 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
934 rc = SSMR3PutMem(pSSM, pbPage, PAGE_SIZE);
935 if (RT_FAILURE(rc))
936 break;
937 iPageLast = iPage;
938 }
939 }
940 pgmUnlock(pVM);
941 }
942 /*
943 * Reduce the rate after a little while since the current MMIO2 approach is
944 * a bit expensive.
945 * We position it two passes after the scan pass to avoid saving busy pages.
946 */
947 else if ( uPass <= 10
948 || (uPass & 3) == 2)
949 {
950 pgmLock(pVM);
951 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3;
952 pMmio2 && RT_SUCCESS(rc);
953 pMmio2 = pMmio2->pNextR3)
954 {
955 PPGMLIVESAVEMMIO2PAGE paLSPages = pMmio2->paLSPages;
956 uint8_t const *pbPage = (uint8_t const *)pMmio2->RamRange.pvR3;
957 uint32_t cPages = pMmio2->RamRange.cb >> PAGE_SHIFT;
958 uint32_t iPageLast = cPages;
959 pgmUnlock(pVM);
960
961 for (uint32_t iPage = 0; iPage < cPages; iPage++, pbPage += PAGE_SIZE)
962 {
963 /* Skip clean pages and pages which hasn't quiesced. */
964 if (!paLSPages[iPage].fDirty)
965 continue;
966 if (paLSPages[iPage].cUnchangedScans < 3)
967 continue;
968 if (pgmR3ScanMmio2Page(pVM, pbPage, &paLSPages[iPage]))
969 continue;
970
971 /* Save it. */
972 bool const fZero = paLSPages[iPage].fZero;
973 uint8_t abPage[PAGE_SIZE];
974 if (!fZero)
975 {
976 memcpy(abPage, pbPage, PAGE_SIZE);
977 RTSha1(abPage, PAGE_SIZE, paLSPages[iPage].abSha1Saved);
978 }
979
980 uint8_t u8Type = paLSPages[iPage].fZero ? PGM_STATE_REC_MMIO2_ZERO : PGM_STATE_REC_MMIO2_RAW;
981 if (iPage != 0 && iPage == iPageLast + 1)
982 rc = SSMR3PutU8(pSSM, u8Type);
983 else
984 {
985 SSMR3PutU8(pSSM, u8Type | PGM_STATE_REC_FLAG_ADDR);
986 SSMR3PutU8(pSSM, pMmio2->idSavedState);
987 rc = SSMR3PutU32(pSSM, iPage);
988 }
989 if (u8Type == PGM_STATE_REC_MMIO2_RAW)
990 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
991 if (RT_FAILURE(rc))
992 break;
993
994 /* Housekeeping. */
995 paLSPages[iPage].fDirty = false;
996 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages--;
997 pVM->pgm.s.LiveSave.Mmio2.cReadyPages++;
998 if (u8Type == PGM_STATE_REC_MMIO2_ZERO)
999 pVM->pgm.s.LiveSave.Mmio2.cZeroPages++;
1000 pVM->pgm.s.LiveSave.cSavedPages++;
1001 iPageLast = iPage;
1002 }
1003
1004 pgmLock(pVM);
1005 }
1006 pgmUnlock(pVM);
1007 }
1008
1009 return rc;
1010}
1011
1012
1013/**
1014 * Cleans up MMIO2 pages after a live save.
1015 *
1016 * @param pVM The VM handle.
1017 */
1018static void pgmR3DoneMmio2Pages(PVM pVM)
1019{
1020 /*
1021 * Free the tracking structures for the MMIO2 pages.
1022 * We do the freeing outside the lock in case the VM is running.
1023 */
1024 pgmLock(pVM);
1025 for (PPGMMMIO2RANGE pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
1026 {
1027 void *pvMmio2ToFree = pMmio2->paLSPages;
1028 if (pvMmio2ToFree)
1029 {
1030 pMmio2->paLSPages = NULL;
1031 pgmUnlock(pVM);
1032 MMR3HeapFree(pvMmio2ToFree);
1033 pgmLock(pVM);
1034 }
1035 }
1036 pgmUnlock(pVM);
1037}
1038
1039
1040/**
1041 * Prepares the RAM pages for a live save.
1042 *
1043 * @returns VBox status code.
1044 * @param pVM The VM handle.
1045 */
1046static int pgmR3PrepRamPages(PVM pVM)
1047{
1048
1049 /*
1050 * Try allocating tracking structures for the ram ranges.
1051 *
1052 * To avoid lock contention, we leave the lock every time we're allocating
1053 * a new array. This means we'll have to ditch the allocation and start
1054 * all over again if the RAM range list changes in-between.
1055 *
1056 * Note! pgmR3SaveDone will always be called and it is therefore responsible
1057 * for cleaning up.
1058 */
1059 PPGMRAMRANGE pCur;
1060 pgmLock(pVM);
1061 do
1062 {
1063 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1064 {
1065 if ( !pCur->paLSPages
1066 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1067 {
1068 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1069 uint32_t const cPages = pCur->cb >> PAGE_SHIFT;
1070 pgmUnlock(pVM);
1071 PPGMLIVESAVERAMPAGE paLSPages = (PPGMLIVESAVERAMPAGE)MMR3HeapAllocZ(pVM, MM_TAG_PGM, cPages * sizeof(PGMLIVESAVERAMPAGE));
1072 if (!paLSPages)
1073 return VERR_NO_MEMORY;
1074 pgmLock(pVM);
1075 if (pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1076 {
1077 pgmUnlock(pVM);
1078 MMR3HeapFree(paLSPages);
1079 pgmLock(pVM);
1080 break; /* try again */
1081 }
1082 pCur->paLSPages = paLSPages;
1083
1084 /*
1085 * Initialize the array.
1086 */
1087 uint32_t iPage = cPages;
1088 while (iPage-- > 0)
1089 {
1090 /** @todo yield critsect! (after moving this away from EMT0) */
1091 PCPGMPAGE pPage = &pCur->aPages[iPage];
1092 paLSPages[iPage].cDirtied = 0;
1093 paLSPages[iPage].fDirty = 1; /* everything is dirty at this time */
1094 paLSPages[iPage].fWriteMonitored = 0;
1095 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1096 paLSPages[iPage].u2Reserved = 0;
1097 switch (PGM_PAGE_GET_TYPE(pPage))
1098 {
1099 case PGMPAGETYPE_RAM:
1100 if ( PGM_PAGE_IS_ZERO(pPage)
1101 || PGM_PAGE_IS_BALLOONED(pPage))
1102 {
1103 paLSPages[iPage].fZero = 1;
1104 paLSPages[iPage].fShared = 0;
1105#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1106 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1107#endif
1108 }
1109 else if (PGM_PAGE_IS_SHARED(pPage))
1110 {
1111 paLSPages[iPage].fZero = 0;
1112 paLSPages[iPage].fShared = 1;
1113#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1114 paLSPages[iPage].u32Crc = UINT32_MAX;
1115#endif
1116 }
1117 else
1118 {
1119 paLSPages[iPage].fZero = 0;
1120 paLSPages[iPage].fShared = 0;
1121#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1122 paLSPages[iPage].u32Crc = UINT32_MAX;
1123#endif
1124 }
1125 paLSPages[iPage].fIgnore = 0;
1126 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1127 break;
1128
1129 case PGMPAGETYPE_ROM_SHADOW:
1130 case PGMPAGETYPE_ROM:
1131 {
1132 paLSPages[iPage].fZero = 0;
1133 paLSPages[iPage].fShared = 0;
1134 paLSPages[iPage].fDirty = 0;
1135 paLSPages[iPage].fIgnore = 1;
1136#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1137 paLSPages[iPage].u32Crc = UINT32_MAX;
1138#endif
1139 pVM->pgm.s.LiveSave.cIgnoredPages++;
1140 break;
1141 }
1142
1143 default:
1144 AssertMsgFailed(("%R[pgmpage]", pPage));
1145 case PGMPAGETYPE_MMIO2:
1146 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
1147 paLSPages[iPage].fZero = 0;
1148 paLSPages[iPage].fShared = 0;
1149 paLSPages[iPage].fDirty = 0;
1150 paLSPages[iPage].fIgnore = 1;
1151#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1152 paLSPages[iPage].u32Crc = UINT32_MAX;
1153#endif
1154 pVM->pgm.s.LiveSave.cIgnoredPages++;
1155 break;
1156
1157 case PGMPAGETYPE_MMIO:
1158 paLSPages[iPage].fZero = 0;
1159 paLSPages[iPage].fShared = 0;
1160 paLSPages[iPage].fDirty = 0;
1161 paLSPages[iPage].fIgnore = 1;
1162#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1163 paLSPages[iPage].u32Crc = UINT32_MAX;
1164#endif
1165 pVM->pgm.s.LiveSave.cIgnoredPages++;
1166 break;
1167 }
1168 }
1169 }
1170 }
1171 } while (pCur);
1172 pgmUnlock(pVM);
1173
1174 return VINF_SUCCESS;
1175}
1176
1177
1178/**
1179 * Saves the RAM configuration.
1180 *
1181 * @returns VBox status code.
1182 * @param pVM The VM handle.
1183 * @param pSSM The saved state handle.
1184 */
1185static int pgmR3SaveRamConfig(PVM pVM, PSSMHANDLE pSSM)
1186{
1187 uint32_t cbRamHole = 0;
1188 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
1189 AssertRCReturn(rc, rc);
1190
1191 uint64_t cbRam = 0;
1192 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
1193 AssertRCReturn(rc, rc);
1194
1195 SSMR3PutU32(pSSM, cbRamHole);
1196 return SSMR3PutU64(pSSM, cbRam);
1197}
1198
1199
1200/**
1201 * Loads and verifies the RAM configuration.
1202 *
1203 * @returns VBox status code.
1204 * @param pVM The VM handle.
1205 * @param pSSM The saved state handle.
1206 */
1207static int pgmR3LoadRamConfig(PVM pVM, PSSMHANDLE pSSM)
1208{
1209 uint32_t cbRamHoleCfg = 0;
1210 int rc = CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHoleCfg, MM_RAM_HOLE_SIZE_DEFAULT);
1211 AssertRCReturn(rc, rc);
1212
1213 uint64_t cbRamCfg = 0;
1214 rc = CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRamCfg, 0);
1215 AssertRCReturn(rc, rc);
1216
1217 uint32_t cbRamHoleSaved;
1218 SSMR3GetU32(pSSM, &cbRamHoleSaved);
1219
1220 uint64_t cbRamSaved;
1221 rc = SSMR3GetU64(pSSM, &cbRamSaved);
1222 AssertRCReturn(rc, rc);
1223
1224 if ( cbRamHoleCfg != cbRamHoleSaved
1225 || cbRamCfg != cbRamSaved)
1226 return SSMR3SetCfgError(pSSM, RT_SRC_POS, N_("Ram config mismatch: saved=%RX64/%RX32 config=%RX64/%RX32 (RAM/Hole)"),
1227 cbRamSaved, cbRamHoleSaved, cbRamCfg, cbRamHoleCfg);
1228 return VINF_SUCCESS;
1229}
1230
1231#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1232
1233/**
1234 * Calculates the CRC-32 for a RAM page and updates the live save page tracking
1235 * info with it.
1236 *
1237 * @param pVM The VM handle.
1238 * @param pCur The current RAM range.
1239 * @param paLSPages The current array of live save page tracking
1240 * structures.
1241 * @param iPage The page index.
1242 */
1243static void pgmR3StateCalcCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage)
1244{
1245 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1246 void const *pvPage;
1247 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage);
1248 if (RT_SUCCESS(rc))
1249 paLSPages[iPage].u32Crc = RTCrc32(pvPage, PAGE_SIZE);
1250 else
1251 paLSPages[iPage].u32Crc = UINT32_MAX; /* Invalid */
1252}
1253
1254
1255/**
1256 * Verifies the CRC-32 for a page given it's raw bits.
1257 *
1258 * @param pvPage The page bits.
1259 * @param pCur The current RAM range.
1260 * @param paLSPages The current array of live save page tracking
1261 * structures.
1262 * @param iPage The page index.
1263 */
1264static void pgmR3StateVerifyCrc32ForPage(void const *pvPage, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage, const char *pszWhere)
1265{
1266 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1267 {
1268 uint32_t u32Crc = RTCrc32(pvPage, PAGE_SIZE);
1269 Assert( ( !PGM_PAGE_IS_ZERO(&pCur->aPages[iPage])
1270 && !PGM_PAGE_IS_BALLOONED(&pCur->aPages[iPage]))
1271 || u32Crc == PGM_STATE_CRC32_ZERO_PAGE);
1272 AssertMsg(paLSPages[iPage].u32Crc == u32Crc,
1273 ("%08x != %08x for %RGp %R[pgmpage] %s\n", paLSPages[iPage].u32Crc, u32Crc,
1274 pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT), &pCur->aPages[iPage], pszWhere));
1275 }
1276}
1277
1278
1279/**
1280 * Verifies the CRC-32 for a RAM page.
1281 *
1282 * @param pVM The VM handle.
1283 * @param pCur The current RAM range.
1284 * @param paLSPages The current array of live save page tracking
1285 * structures.
1286 * @param iPage The page index.
1287 */
1288static void pgmR3StateVerifyCrc32ForRamPage(PVM pVM, PPGMRAMRANGE pCur, PPGMLIVESAVERAMPAGE paLSPages, uint32_t iPage, const char *pszWhere)
1289{
1290 if (paLSPages[iPage].u32Crc != UINT32_MAX)
1291 {
1292 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1293 void const *pvPage;
1294 int rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, &pCur->aPages[iPage], GCPhys, &pvPage);
1295 if (RT_SUCCESS(rc))
1296 pgmR3StateVerifyCrc32ForPage(pvPage, pCur, paLSPages, iPage, pszWhere);
1297 }
1298}
1299
1300#endif /* PGMLIVESAVERAMPAGE_WITH_CRC32 */
1301
1302/**
1303 * Scan for RAM page modifications and reprotect them.
1304 *
1305 * @param pVM The VM handle.
1306 * @param fFinalPass Whether this is the final pass or not.
1307 */
1308static void pgmR3ScanRamPages(PVM pVM, bool fFinalPass)
1309{
1310 /*
1311 * The RAM.
1312 */
1313 RTGCPHYS GCPhysCur = 0;
1314 PPGMRAMRANGE pCur;
1315 pgmLock(pVM);
1316 do
1317 {
1318 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1319 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1320 {
1321 if ( pCur->GCPhysLast > GCPhysCur
1322 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1323 {
1324 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1325 uint32_t cPages = pCur->cb >> PAGE_SHIFT;
1326 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
1327 GCPhysCur = 0;
1328 for (; iPage < cPages; iPage++)
1329 {
1330 /* Do yield first. */
1331 if ( !fFinalPass
1332#ifndef PGMLIVESAVERAMPAGE_WITH_CRC32
1333 && (iPage & 0x7ff) == 0x100
1334#endif
1335 && PDMR3CritSectYield(&pVM->pgm.s.CritSect)
1336 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1337 {
1338 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1339 break; /* restart */
1340 }
1341
1342 /* Skip already ignored pages. */
1343 if (paLSPages[iPage].fIgnore)
1344 continue;
1345
1346 if (RT_LIKELY(PGM_PAGE_GET_TYPE(&pCur->aPages[iPage]) == PGMPAGETYPE_RAM))
1347 {
1348 /*
1349 * A RAM page.
1350 */
1351 switch (PGM_PAGE_GET_STATE(&pCur->aPages[iPage]))
1352 {
1353 case PGM_PAGE_STATE_ALLOCATED:
1354 /** @todo Optimize this: Don't always re-enable write
1355 * monitoring if the page is known to be very busy. */
1356 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1357 {
1358 Assert(paLSPages[iPage].fWriteMonitored);
1359 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, &pCur->aPages[iPage]);
1360 Assert(pVM->pgm.s.cWrittenToPages > 0);
1361 pVM->pgm.s.cWrittenToPages--;
1362 }
1363 else
1364 {
1365 Assert(!paLSPages[iPage].fWriteMonitored);
1366 pVM->pgm.s.LiveSave.Ram.cMonitoredPages++;
1367 }
1368
1369 if (!paLSPages[iPage].fDirty)
1370 {
1371 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1372 if (paLSPages[iPage].fZero)
1373 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1374 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1375 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1376 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1377 }
1378
1379 pgmPhysPageWriteMonitor(pVM, &pCur->aPages[iPage],
1380 pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT));
1381 paLSPages[iPage].fWriteMonitored = 1;
1382 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1383 paLSPages[iPage].fDirty = 1;
1384 paLSPages[iPage].fZero = 0;
1385 paLSPages[iPage].fShared = 0;
1386#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1387 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1388#endif
1389 break;
1390
1391 case PGM_PAGE_STATE_WRITE_MONITORED:
1392 Assert(paLSPages[iPage].fWriteMonitored);
1393 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) == 0)
1394 {
1395#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1396 if (paLSPages[iPage].fWriteMonitoredJustNow)
1397 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1398 else
1399 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "scan");
1400#endif
1401 paLSPages[iPage].fWriteMonitoredJustNow = 0;
1402 }
1403 else
1404 {
1405 paLSPages[iPage].fWriteMonitoredJustNow = 1;
1406#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1407 paLSPages[iPage].u32Crc = UINT32_MAX; /* invalid */
1408#endif
1409 if (!paLSPages[iPage].fDirty)
1410 {
1411 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1412 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1413 if (++paLSPages[iPage].cDirtied > PGMLIVSAVEPAGE_MAX_DIRTIED)
1414 paLSPages[iPage].cDirtied = PGMLIVSAVEPAGE_MAX_DIRTIED;
1415 }
1416 }
1417 break;
1418
1419 case PGM_PAGE_STATE_ZERO:
1420 if (!paLSPages[iPage].fZero)
1421 {
1422 if (!paLSPages[iPage].fDirty)
1423 {
1424 paLSPages[iPage].fDirty = 1;
1425 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1426 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1427 }
1428 paLSPages[iPage].fZero = 1;
1429 paLSPages[iPage].fShared = 0;
1430#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1431 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1432#endif
1433 }
1434 break;
1435
1436 case PGM_PAGE_STATE_BALLOONED:
1437 if (!paLSPages[iPage].fZero)
1438 {
1439 if (!paLSPages[iPage].fDirty)
1440 {
1441 paLSPages[iPage].fDirty = 1;
1442 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1443 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1444 }
1445 paLSPages[iPage].fZero = 1;
1446 paLSPages[iPage].fShared = 0;
1447#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1448 paLSPages[iPage].u32Crc = PGM_STATE_CRC32_ZERO_PAGE;
1449#endif
1450 }
1451 break;
1452
1453 case PGM_PAGE_STATE_SHARED:
1454 if (!paLSPages[iPage].fShared)
1455 {
1456 if (!paLSPages[iPage].fDirty)
1457 {
1458 paLSPages[iPage].fDirty = 1;
1459 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1460 if (paLSPages[iPage].fZero)
1461 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1462 pVM->pgm.s.LiveSave.Ram.cDirtyPages++;
1463 }
1464 paLSPages[iPage].fZero = 0;
1465 paLSPages[iPage].fShared = 1;
1466#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1467 pgmR3StateCalcCrc32ForRamPage(pVM, pCur, paLSPages, iPage);
1468#endif
1469 }
1470 break;
1471 }
1472 }
1473 else
1474 {
1475 /*
1476 * All other types => Ignore the page.
1477 */
1478 Assert(!paLSPages[iPage].fIgnore); /* skipped before switch */
1479 paLSPages[iPage].fIgnore = 1;
1480 if (paLSPages[iPage].fWriteMonitored)
1481 {
1482 /** @todo this doesn't hold water when we start monitoring MMIO2 and ROM shadow
1483 * pages! */
1484 if (RT_UNLIKELY(PGM_PAGE_GET_STATE(&pCur->aPages[iPage]) == PGM_PAGE_STATE_WRITE_MONITORED))
1485 {
1486 AssertMsgFailed(("%R[pgmpage]", &pCur->aPages[iPage])); /* shouldn't happen. */
1487 PGM_PAGE_SET_STATE(pVM, &pCur->aPages[iPage], PGM_PAGE_STATE_ALLOCATED);
1488 Assert(pVM->pgm.s.cMonitoredPages > 0);
1489 pVM->pgm.s.cMonitoredPages--;
1490 }
1491 if (PGM_PAGE_IS_WRITTEN_TO(&pCur->aPages[iPage]))
1492 {
1493 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, &pCur->aPages[iPage]);
1494 Assert(pVM->pgm.s.cWrittenToPages > 0);
1495 pVM->pgm.s.cWrittenToPages--;
1496 }
1497 pVM->pgm.s.LiveSave.Ram.cMonitoredPages--;
1498 }
1499
1500 /** @todo the counting doesn't quite work out here. fix later? */
1501 if (paLSPages[iPage].fDirty)
1502 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1503 else
1504 {
1505 pVM->pgm.s.LiveSave.Ram.cReadyPages--;
1506 if (paLSPages[iPage].fZero)
1507 pVM->pgm.s.LiveSave.Ram.cZeroPages--;
1508 }
1509 pVM->pgm.s.LiveSave.cIgnoredPages++;
1510 }
1511 } /* for each page in range */
1512
1513 if (GCPhysCur != 0)
1514 break; /* Yield + ramrange change */
1515 GCPhysCur = pCur->GCPhysLast;
1516 }
1517 } /* for each range */
1518 } while (pCur);
1519 pgmUnlock(pVM);
1520}
1521
1522
1523/**
1524 * Save quiescent RAM pages.
1525 *
1526 * @returns VBox status code.
1527 * @param pVM The VM handle.
1528 * @param pSSM The SSM handle.
1529 * @param fLiveSave Whether it's a live save or not.
1530 * @param uPass The pass number.
1531 */
1532static int pgmR3SaveRamPages(PVM pVM, PSSMHANDLE pSSM, bool fLiveSave, uint32_t uPass)
1533{
1534 /*
1535 * The RAM.
1536 */
1537 RTGCPHYS GCPhysLast = NIL_RTGCPHYS;
1538 RTGCPHYS GCPhysCur = 0;
1539 PPGMRAMRANGE pCur;
1540 bool fFTMDeltaSaveActive = FTMIsDeltaLoadSaveActive(pVM);
1541
1542 pgmLock(pVM);
1543 do
1544 {
1545 uint32_t const idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1546 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1547 {
1548 if ( pCur->GCPhysLast > GCPhysCur
1549 && !PGM_RAM_RANGE_IS_AD_HOC(pCur))
1550 {
1551 PPGMLIVESAVERAMPAGE paLSPages = pCur->paLSPages;
1552 uint32_t cPages = pCur->cb >> PAGE_SHIFT;
1553 uint32_t iPage = GCPhysCur <= pCur->GCPhys ? 0 : (GCPhysCur - pCur->GCPhys) >> PAGE_SHIFT;
1554 GCPhysCur = 0;
1555 for (; iPage < cPages; iPage++)
1556 {
1557 /* Do yield first. */
1558 if ( uPass != SSM_PASS_FINAL
1559 && (iPage & 0x7ff) == 0x100
1560 && PDMR3CritSectYield(&pVM->pgm.s.CritSect)
1561 && pVM->pgm.s.idRamRangesGen != idRamRangesGen)
1562 {
1563 GCPhysCur = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1564 break; /* restart */
1565 }
1566
1567 PPGMPAGE pCurPage = &pCur->aPages[iPage];
1568
1569 /*
1570 * Only save pages that haven't changed since last scan and are dirty.
1571 */
1572 if ( uPass != SSM_PASS_FINAL
1573 && paLSPages)
1574 {
1575 if (!paLSPages[iPage].fDirty)
1576 continue;
1577 if (paLSPages[iPage].fWriteMonitoredJustNow)
1578 continue;
1579 if (paLSPages[iPage].fIgnore)
1580 continue;
1581 if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM) /* in case of recent remappings */
1582 continue;
1583 if ( PGM_PAGE_GET_STATE(pCurPage)
1584 != ( paLSPages[iPage].fZero
1585 ? PGM_PAGE_STATE_ZERO
1586 : paLSPages[iPage].fShared
1587 ? PGM_PAGE_STATE_SHARED
1588 : PGM_PAGE_STATE_WRITE_MONITORED))
1589 continue;
1590 if (PGM_PAGE_GET_WRITE_LOCKS(&pCur->aPages[iPage]) > 0)
1591 continue;
1592 }
1593 else
1594 {
1595 if ( paLSPages
1596 && !paLSPages[iPage].fDirty
1597 && !paLSPages[iPage].fIgnore)
1598 {
1599#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1600 if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM)
1601 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "save#1");
1602#endif
1603 continue;
1604 }
1605 if (PGM_PAGE_GET_TYPE(pCurPage) != PGMPAGETYPE_RAM)
1606 continue;
1607 }
1608
1609 /*
1610 * Do the saving outside the PGM critsect since SSM may block on I/O.
1611 */
1612 int rc;
1613 RTGCPHYS GCPhys = pCur->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
1614 bool fZero = PGM_PAGE_IS_ZERO(pCurPage);
1615 bool fBallooned = PGM_PAGE_IS_BALLOONED(pCurPage);
1616 bool fSkipped = false;
1617
1618 if (!fZero && !fBallooned)
1619 {
1620 /*
1621 * Copy the page and then save it outside the lock (since any
1622 * SSM call may block).
1623 */
1624 uint8_t abPage[PAGE_SIZE];
1625 void const *pvPage;
1626 rc = pgmPhysGCPhys2CCPtrInternalReadOnly(pVM, pCurPage, GCPhys, &pvPage);
1627 if (RT_SUCCESS(rc))
1628 {
1629 memcpy(abPage, pvPage, PAGE_SIZE);
1630#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1631 if (paLSPages)
1632 pgmR3StateVerifyCrc32ForPage(abPage, pCur, paLSPages, iPage, "save#3");
1633#endif
1634 }
1635 pgmUnlock(pVM);
1636 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc GCPhys=%RGp\n", rc, GCPhys), rc);
1637
1638 /* Try save some memory when restoring. */
1639 if (!ASMMemIsZeroPage(pvPage))
1640 {
1641 if (fFTMDeltaSaveActive)
1642 {
1643 if ( PGM_PAGE_IS_WRITTEN_TO(pCurPage)
1644 || PGM_PAGE_IS_FT_DIRTY(pCurPage))
1645 {
1646 if (GCPhys == GCPhysLast + PAGE_SIZE)
1647 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW);
1648 else
1649 {
1650 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW | PGM_STATE_REC_FLAG_ADDR);
1651 SSMR3PutGCPhys(pSSM, GCPhys);
1652 }
1653 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
1654 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pCurPage);
1655 PGM_PAGE_CLEAR_FT_DIRTY(pCurPage);
1656 }
1657 /* else nothing changed, so skip it. */
1658 else
1659 fSkipped = true;
1660 }
1661 else
1662 {
1663 if (GCPhys == GCPhysLast + PAGE_SIZE)
1664 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW);
1665 else
1666 {
1667 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_RAW | PGM_STATE_REC_FLAG_ADDR);
1668 SSMR3PutGCPhys(pSSM, GCPhys);
1669 }
1670 rc = SSMR3PutMem(pSSM, abPage, PAGE_SIZE);
1671 }
1672 }
1673 else
1674 {
1675 if (GCPhys == GCPhysLast + PAGE_SIZE)
1676 rc = SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO);
1677 else
1678 {
1679 SSMR3PutU8(pSSM, PGM_STATE_REC_RAM_ZERO | PGM_STATE_REC_FLAG_ADDR);
1680 rc = SSMR3PutGCPhys(pSSM, GCPhys);
1681 }
1682 }
1683 }
1684 else
1685 {
1686 /*
1687 * Dirty zero or ballooned page.
1688 */
1689#ifdef PGMLIVESAVERAMPAGE_WITH_CRC32
1690 if (paLSPages)
1691 pgmR3StateVerifyCrc32ForRamPage(pVM, pCur, paLSPages, iPage, "save#2");
1692#endif
1693 pgmUnlock(pVM);
1694
1695 uint8_t u8RecType = fBallooned ? PGM_STATE_REC_RAM_BALLOONED : PGM_STATE_REC_RAM_ZERO;
1696 if (GCPhys == GCPhysLast + PAGE_SIZE)
1697 rc = SSMR3PutU8(pSSM, u8RecType);
1698 else
1699 {
1700 SSMR3PutU8(pSSM, u8RecType | PGM_STATE_REC_FLAG_ADDR);
1701 rc = SSMR3PutGCPhys(pSSM, GCPhys);
1702 }
1703 }
1704 if (RT_FAILURE(rc))
1705 return rc;
1706
1707 pgmLock(pVM);
1708 if (!fSkipped)
1709 GCPhysLast = GCPhys;
1710 if (paLSPages)
1711 {
1712 paLSPages[iPage].fDirty = 0;
1713 pVM->pgm.s.LiveSave.Ram.cReadyPages++;
1714 if (fZero)
1715 pVM->pgm.s.LiveSave.Ram.cZeroPages++;
1716 pVM->pgm.s.LiveSave.Ram.cDirtyPages--;
1717 pVM->pgm.s.LiveSave.cSavedPages++;
1718 }
1719 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1720 {
1721 GCPhysCur = GCPhys | PAGE_OFFSET_MASK;
1722 break; /* restart */
1723 }
1724
1725 } /* for each page in range */
1726
1727 if (GCPhysCur != 0)
1728 break; /* Yield + ramrange change */
1729 GCPhysCur = pCur->GCPhysLast;
1730 }
1731 } /* for each range */
1732 } while (pCur);
1733
1734 pgmUnlock(pVM);
1735
1736 return VINF_SUCCESS;
1737}
1738
1739
1740/**
1741 * Cleans up RAM pages after a live save.
1742 *
1743 * @param pVM The VM handle.
1744 */
1745static void pgmR3DoneRamPages(PVM pVM)
1746{
1747 /*
1748 * Free the tracking arrays and disable write monitoring.
1749 *
1750 * Play nice with the PGM lock in case we're called while the VM is still
1751 * running. This means we have to delay the freeing since we wish to use
1752 * paLSPages as an indicator of which RAM ranges which we need to scan for
1753 * write monitored pages.
1754 */
1755 void *pvToFree = NULL;
1756 PPGMRAMRANGE pCur;
1757 uint32_t cMonitoredPages = 0;
1758 pgmLock(pVM);
1759 do
1760 {
1761 for (pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
1762 {
1763 if (pCur->paLSPages)
1764 {
1765 if (pvToFree)
1766 {
1767 uint32_t idRamRangesGen = pVM->pgm.s.idRamRangesGen;
1768 pgmUnlock(pVM);
1769 MMR3HeapFree(pvToFree);
1770 pvToFree = NULL;
1771 pgmLock(pVM);
1772 if (idRamRangesGen != pVM->pgm.s.idRamRangesGen)
1773 break; /* start over again. */
1774 }
1775
1776 pvToFree = pCur->paLSPages;
1777 pCur->paLSPages = NULL;
1778
1779 uint32_t iPage = pCur->cb >> PAGE_SHIFT;
1780 while (iPage--)
1781 {
1782 PPGMPAGE pPage = &pCur->aPages[iPage];
1783 PGM_PAGE_CLEAR_WRITTEN_TO(pVM, pPage);
1784 if (PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_WRITE_MONITORED)
1785 {
1786 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ALLOCATED);
1787 cMonitoredPages++;
1788 }
1789 }
1790 }
1791 }
1792 } while (pCur);
1793
1794 Assert(pVM->pgm.s.cMonitoredPages >= cMonitoredPages);
1795 if (pVM->pgm.s.cMonitoredPages < cMonitoredPages)
1796 pVM->pgm.s.cMonitoredPages = 0;
1797 else
1798 pVM->pgm.s.cMonitoredPages -= cMonitoredPages;
1799
1800 pgmUnlock(pVM);
1801
1802 MMR3HeapFree(pvToFree);
1803 pvToFree = NULL;
1804}
1805
1806
1807/**
1808 * Execute a live save pass.
1809 *
1810 * @returns VBox status code.
1811 *
1812 * @param pVM The VM handle.
1813 * @param pSSM The SSM handle.
1814 */
1815static DECLCALLBACK(int) pgmR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1816{
1817 int rc;
1818
1819 /*
1820 * Save the MMIO2 and ROM range IDs in pass 0.
1821 */
1822 if (uPass == 0)
1823 {
1824 rc = pgmR3SaveRamConfig(pVM, pSSM);
1825 if (RT_FAILURE(rc))
1826 return rc;
1827 rc = pgmR3SaveRomRanges(pVM, pSSM);
1828 if (RT_FAILURE(rc))
1829 return rc;
1830 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
1831 if (RT_FAILURE(rc))
1832 return rc;
1833 }
1834 /*
1835 * Reset the page-per-second estimate to avoid inflation by the initial
1836 * load of zero pages. pgmR3LiveVote ASSUMES this is done at pass 7.
1837 */
1838 else if (uPass == 7)
1839 {
1840 pVM->pgm.s.LiveSave.cSavedPages = 0;
1841 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
1842 }
1843
1844 /*
1845 * Do the scanning.
1846 */
1847 pgmR3ScanRomPages(pVM);
1848 pgmR3ScanMmio2Pages(pVM, uPass);
1849 pgmR3ScanRamPages(pVM, false /*fFinalPass*/);
1850 pgmR3PoolClearAll(pVM, true /*fFlushRemTlb*/); /** @todo this could perhaps be optimized a bit. */
1851
1852 /*
1853 * Save the pages.
1854 */
1855 if (uPass == 0)
1856 rc = pgmR3SaveRomVirginPages( pVM, pSSM, true /*fLiveSave*/);
1857 else
1858 rc = VINF_SUCCESS;
1859 if (RT_SUCCESS(rc))
1860 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, true /*fLiveSave*/, false /*fFinalPass*/);
1861 if (RT_SUCCESS(rc))
1862 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, uPass);
1863 if (RT_SUCCESS(rc))
1864 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, uPass);
1865 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes care of it.) */
1866
1867 return rc;
1868}
1869
1870
1871/**
1872 * Votes on whether the live save phase is done or not.
1873 *
1874 * @returns VBox status code.
1875 *
1876 * @param pVM The VM handle.
1877 * @param pSSM The SSM handle.
1878 * @param uPass The data pass.
1879 */
1880static DECLCALLBACK(int) pgmR3LiveVote(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1881{
1882 /*
1883 * Update and calculate parameters used in the decision making.
1884 */
1885 const uint32_t cHistoryEntries = RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory);
1886
1887 /* update history. */
1888 pgmLock(pVM);
1889 uint32_t const cWrittenToPages = pVM->pgm.s.cWrittenToPages;
1890 pgmUnlock(pVM);
1891 uint32_t const cDirtyNow = pVM->pgm.s.LiveSave.Rom.cDirtyPages
1892 + pVM->pgm.s.LiveSave.Mmio2.cDirtyPages
1893 + pVM->pgm.s.LiveSave.Ram.cDirtyPages
1894 + cWrittenToPages;
1895 uint32_t i = pVM->pgm.s.LiveSave.iDirtyPagesHistory;
1896 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = cDirtyNow;
1897 pVM->pgm.s.LiveSave.iDirtyPagesHistory = (i + 1) % cHistoryEntries;
1898
1899 /* calc shortterm average (4 passes). */
1900 AssertCompile(RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory) > 4);
1901 uint64_t cTotal = pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1902 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 1) % cHistoryEntries];
1903 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 2) % cHistoryEntries];
1904 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[(i + cHistoryEntries - 3) % cHistoryEntries];
1905 uint32_t const cDirtyPagesShort = cTotal / 4;
1906 pVM->pgm.s.LiveSave.cDirtyPagesShort = cDirtyPagesShort;
1907
1908 /* calc longterm average. */
1909 cTotal = 0;
1910 if (uPass < cHistoryEntries)
1911 for (i = 0; i < cHistoryEntries && i <= uPass; i++)
1912 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1913 else
1914 for (i = 0; i < cHistoryEntries; i++)
1915 cTotal += pVM->pgm.s.LiveSave.acDirtyPagesHistory[i];
1916 uint32_t const cDirtyPagesLong = cTotal / cHistoryEntries;
1917 pVM->pgm.s.LiveSave.cDirtyPagesLong = cDirtyPagesLong;
1918
1919 /* estimate the speed */
1920 uint64_t cNsElapsed = RTTimeNanoTS() - pVM->pgm.s.LiveSave.uSaveStartNS;
1921 uint32_t cPagesPerSecond = (uint32_t)( pVM->pgm.s.LiveSave.cSavedPages
1922 / ((long double)cNsElapsed / 1000000000.0) );
1923 pVM->pgm.s.LiveSave.cPagesPerSecond = cPagesPerSecond;
1924
1925 /*
1926 * Try make a decision.
1927 */
1928 if ( cDirtyPagesShort <= cDirtyPagesLong
1929 && ( cDirtyNow <= cDirtyPagesShort
1930 || cDirtyNow - cDirtyPagesShort < RT_MIN(cDirtyPagesShort / 8, 16)
1931 )
1932 )
1933 {
1934 if (uPass > 10)
1935 {
1936 uint32_t cMsLeftShort = (uint32_t)(cDirtyPagesShort / (long double)cPagesPerSecond * 1000.0);
1937 uint32_t cMsLeftLong = (uint32_t)(cDirtyPagesLong / (long double)cPagesPerSecond * 1000.0);
1938 uint32_t cMsMaxDowntime = SSMR3HandleMaxDowntime(pSSM);
1939 if (cMsMaxDowntime < 32)
1940 cMsMaxDowntime = 32;
1941 if ( ( cMsLeftLong <= cMsMaxDowntime
1942 && cMsLeftShort < cMsMaxDowntime)
1943 || cMsLeftShort < cMsMaxDowntime / 2
1944 )
1945 {
1946 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u|%ums cDirtyPagesLong=%u|%ums cMsMaxDowntime=%u\n",
1947 uPass, cDirtyPagesShort, cMsLeftShort, cDirtyPagesLong, cMsLeftLong, cMsMaxDowntime));
1948 return VINF_SUCCESS;
1949 }
1950 }
1951 else
1952 {
1953 if ( ( cDirtyPagesShort <= 128
1954 && cDirtyPagesLong <= 1024)
1955 || cDirtyPagesLong <= 256
1956 )
1957 {
1958 Log(("pgmR3LiveVote: VINF_SUCCESS - pass=%d cDirtyPagesShort=%u cDirtyPagesLong=%u\n", uPass, cDirtyPagesShort, cDirtyPagesLong));
1959 return VINF_SUCCESS;
1960 }
1961 }
1962 }
1963
1964 /*
1965 * Come up with a completion percentage. Currently this is a simple
1966 * dirty page (long term) vs. total pages ratio + some pass trickery.
1967 */
1968 unsigned uPctDirty = (unsigned)( (long double)cDirtyPagesLong
1969 / (pVM->pgm.s.cAllPages - pVM->pgm.s.LiveSave.cIgnoredPages - pVM->pgm.s.cZeroPages) );
1970 if (uPctDirty <= 100)
1971 SSMR3HandleReportLivePercent(pSSM, RT_MIN(100 - uPctDirty, uPass * 2));
1972 else
1973 AssertMsgFailed(("uPctDirty=%u cDirtyPagesLong=%#x cAllPages=%#x cIgnoredPages=%#x cZeroPages=%#x\n",
1974 uPctDirty, cDirtyPagesLong, pVM->pgm.s.cAllPages, pVM->pgm.s.LiveSave.cIgnoredPages, pVM->pgm.s.cZeroPages));
1975
1976 return VINF_SSM_VOTE_FOR_ANOTHER_PASS;
1977}
1978
1979
1980/**
1981 * Prepare for a live save operation.
1982 *
1983 * This will attempt to allocate and initialize the tracking structures. It
1984 * will also prepare for write monitoring of pages and initialize PGM::LiveSave.
1985 * pgmR3SaveDone will do the cleanups.
1986 *
1987 * @returns VBox status code.
1988 *
1989 * @param pVM The VM handle.
1990 * @param pSSM The SSM handle.
1991 */
1992static DECLCALLBACK(int) pgmR3LivePrep(PVM pVM, PSSMHANDLE pSSM)
1993{
1994 /*
1995 * Indicate that we will be using the write monitoring.
1996 */
1997 pgmLock(pVM);
1998 /** @todo find a way of mediating this when more users are added. */
1999 if (pVM->pgm.s.fPhysWriteMonitoringEngaged)
2000 {
2001 pgmUnlock(pVM);
2002 AssertLogRelFailedReturn(VERR_INTERNAL_ERROR_2);
2003 }
2004 pVM->pgm.s.fPhysWriteMonitoringEngaged = true;
2005 pgmUnlock(pVM);
2006
2007 /*
2008 * Initialize the statistics.
2009 */
2010 pVM->pgm.s.LiveSave.Rom.cReadyPages = 0;
2011 pVM->pgm.s.LiveSave.Rom.cDirtyPages = 0;
2012 pVM->pgm.s.LiveSave.Mmio2.cReadyPages = 0;
2013 pVM->pgm.s.LiveSave.Mmio2.cDirtyPages = 0;
2014 pVM->pgm.s.LiveSave.Ram.cReadyPages = 0;
2015 pVM->pgm.s.LiveSave.Ram.cDirtyPages = 0;
2016 pVM->pgm.s.LiveSave.cIgnoredPages = 0;
2017 pVM->pgm.s.LiveSave.fActive = true;
2018 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.LiveSave.acDirtyPagesHistory); i++)
2019 pVM->pgm.s.LiveSave.acDirtyPagesHistory[i] = UINT32_MAX / 2;
2020 pVM->pgm.s.LiveSave.iDirtyPagesHistory = 0;
2021 pVM->pgm.s.LiveSave.cSavedPages = 0;
2022 pVM->pgm.s.LiveSave.uSaveStartNS = RTTimeNanoTS();
2023 pVM->pgm.s.LiveSave.cPagesPerSecond = 8192;
2024
2025 /*
2026 * Per page type.
2027 */
2028 int rc = pgmR3PrepRomPages(pVM);
2029 if (RT_SUCCESS(rc))
2030 rc = pgmR3PrepMmio2Pages(pVM);
2031 if (RT_SUCCESS(rc))
2032 rc = pgmR3PrepRamPages(pVM);
2033 return rc;
2034}
2035
2036
2037/**
2038 * Execute state save operation.
2039 *
2040 * @returns VBox status code.
2041 * @param pVM VM Handle.
2042 * @param pSSM SSM operation handle.
2043 */
2044static DECLCALLBACK(int) pgmR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2045{
2046 int rc = VINF_SUCCESS;
2047 PPGM pPGM = &pVM->pgm.s;
2048
2049 /*
2050 * Lock PGM and set the no-more-writes indicator.
2051 */
2052 pgmLock(pVM);
2053 pVM->pgm.s.fNoMorePhysWrites = true;
2054
2055 /*
2056 * Save basic data (required / unaffected by relocation).
2057 */
2058 bool const fMappingsFixed = pVM->pgm.s.fMappingsFixed;
2059 pVM->pgm.s.fMappingsFixed |= pVM->pgm.s.fMappingsFixedRestored;
2060 SSMR3PutStruct(pSSM, pPGM, &s_aPGMFields[0]);
2061 pVM->pgm.s.fMappingsFixed = fMappingsFixed;
2062
2063 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2064 rc = SSMR3PutStruct(pSSM, &pVM->aCpus[idCpu].pgm.s, &s_aPGMCpuFields[0]);
2065
2066 /*
2067 * Save the (remainder of the) memory.
2068 */
2069 if (RT_SUCCESS(rc))
2070 {
2071 if (pVM->pgm.s.LiveSave.fActive)
2072 {
2073 pgmR3ScanRomPages(pVM);
2074 pgmR3ScanMmio2Pages(pVM, SSM_PASS_FINAL);
2075 pgmR3ScanRamPages(pVM, true /*fFinalPass*/);
2076
2077 rc = pgmR3SaveShadowedRomPages( pVM, pSSM, true /*fLiveSave*/, true /*fFinalPass*/);
2078 if (RT_SUCCESS(rc))
2079 rc = pgmR3SaveMmio2Pages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
2080 if (RT_SUCCESS(rc))
2081 rc = pgmR3SaveRamPages( pVM, pSSM, true /*fLiveSave*/, SSM_PASS_FINAL);
2082 }
2083 else
2084 {
2085 rc = pgmR3SaveRamConfig(pVM, pSSM);
2086 if (RT_SUCCESS(rc))
2087 rc = pgmR3SaveRomRanges(pVM, pSSM);
2088 if (RT_SUCCESS(rc))
2089 rc = pgmR3SaveMmio2Ranges(pVM, pSSM);
2090 if (RT_SUCCESS(rc))
2091 rc = pgmR3SaveRomVirginPages( pVM, pSSM, false /*fLiveSave*/);
2092 if (RT_SUCCESS(rc))
2093 rc = pgmR3SaveShadowedRomPages(pVM, pSSM, false /*fLiveSave*/, true /*fFinalPass*/);
2094 if (RT_SUCCESS(rc))
2095 rc = pgmR3SaveMmio2Pages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
2096 if (RT_SUCCESS(rc))
2097 rc = pgmR3SaveRamPages( pVM, pSSM, false /*fLiveSave*/, SSM_PASS_FINAL);
2098 }
2099 SSMR3PutU8(pSSM, PGM_STATE_REC_END); /* (Ignore the rc, SSM takes of it.) */
2100 }
2101
2102 pgmUnlock(pVM);
2103 return rc;
2104}
2105
2106
2107/**
2108 * Cleans up after an save state operation.
2109 *
2110 * @returns VBox status code.
2111 * @param pVM VM Handle.
2112 * @param pSSM SSM operation handle.
2113 */
2114static DECLCALLBACK(int) pgmR3SaveDone(PVM pVM, PSSMHANDLE pSSM)
2115{
2116 /*
2117 * Do per page type cleanups first.
2118 */
2119 if (pVM->pgm.s.LiveSave.fActive)
2120 {
2121 pgmR3DoneRomPages(pVM);
2122 pgmR3DoneMmio2Pages(pVM);
2123 pgmR3DoneRamPages(pVM);
2124 }
2125
2126 /*
2127 * Clear the live save indicator and disengage write monitoring.
2128 */
2129 pgmLock(pVM);
2130 pVM->pgm.s.LiveSave.fActive = false;
2131 /** @todo this is blindly assuming that we're the only user of write
2132 * monitoring. Fix this when more users are added. */
2133 pVM->pgm.s.fPhysWriteMonitoringEngaged = false;
2134 pgmUnlock(pVM);
2135
2136 return VINF_SUCCESS;
2137}
2138
2139
2140/**
2141 * Prepare state load operation.
2142 *
2143 * @returns VBox status code.
2144 * @param pVM VM Handle.
2145 * @param pSSM SSM operation handle.
2146 */
2147static DECLCALLBACK(int) pgmR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2148{
2149 /*
2150 * Call the reset function to make sure all the memory is cleared.
2151 */
2152 PGMR3Reset(pVM);
2153 pVM->pgm.s.LiveSave.fActive = false;
2154 NOREF(pSSM);
2155 return VINF_SUCCESS;
2156}
2157
2158
2159/**
2160 * Load an ignored page.
2161 *
2162 * @returns VBox status code.
2163 * @param pSSM The saved state handle.
2164 */
2165static int pgmR3LoadPageToDevNullOld(PSSMHANDLE pSSM)
2166{
2167 uint8_t abPage[PAGE_SIZE];
2168 return SSMR3GetMem(pSSM, &abPage[0], sizeof(abPage));
2169}
2170
2171
2172/**
2173 * Loads a page without any bits in the saved state, i.e. making sure it's
2174 * really zero.
2175 *
2176 * @returns VBox status code.
2177 * @param pVM The VM handle.
2178 * @param uType The page type or PGMPAGETYPE_INVALID (old saved
2179 * state).
2180 * @param pPage The guest page tracking structure.
2181 * @param GCPhys The page address.
2182 * @param pRam The ram range (logging).
2183 */
2184static int pgmR3LoadPageZeroOld(PVM pVM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2185{
2186 if ( PGM_PAGE_GET_TYPE(pPage) != uType
2187 && uType != PGMPAGETYPE_INVALID)
2188 return VERR_SSM_UNEXPECTED_DATA;
2189
2190 /* I think this should be sufficient. */
2191 if ( !PGM_PAGE_IS_ZERO(pPage)
2192 && !PGM_PAGE_IS_BALLOONED(pPage))
2193 return VERR_SSM_UNEXPECTED_DATA;
2194
2195 NOREF(pVM);
2196 NOREF(GCPhys);
2197 NOREF(pRam);
2198 return VINF_SUCCESS;
2199}
2200
2201
2202/**
2203 * Loads a page from the saved state.
2204 *
2205 * @returns VBox status code.
2206 * @param pVM The VM handle.
2207 * @param pSSM The SSM handle.
2208 * @param uType The page type or PGMPAGETYEP_INVALID (old saved
2209 * state).
2210 * @param pPage The guest page tracking structure.
2211 * @param GCPhys The page address.
2212 * @param pRam The ram range (logging).
2213 */
2214static int pgmR3LoadPageBitsOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2215{
2216 /*
2217 * Match up the type, dealing with MMIO2 aliases (dropped).
2218 */
2219 AssertLogRelMsgReturn( PGM_PAGE_GET_TYPE(pPage) == uType
2220 || uType == PGMPAGETYPE_INVALID
2221 /* kudge for the expanded PXE bios (r67885) - #5687: */
2222 || ( uType == PGMPAGETYPE_RAM
2223 && GCPhys >= 0xed000
2224 && GCPhys <= 0xeffff
2225 && PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM)
2226 ,
2227 ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc),
2228 VERR_SSM_UNEXPECTED_DATA);
2229
2230 /*
2231 * Load the page.
2232 */
2233 void *pvPage;
2234 int rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvPage);
2235 if (RT_SUCCESS(rc))
2236 rc = SSMR3GetMem(pSSM, pvPage, PAGE_SIZE);
2237
2238 return rc;
2239}
2240
2241
2242/**
2243 * Loads a page (counter part to pgmR3SavePage).
2244 *
2245 * @returns VBox status code, fully bitched errors.
2246 * @param pVM The VM handle.
2247 * @param pSSM The SSM handle.
2248 * @param uType The page type.
2249 * @param pPage The page.
2250 * @param GCPhys The page address.
2251 * @param pRam The RAM range (for error messages).
2252 */
2253static int pgmR3LoadPageOld(PVM pVM, PSSMHANDLE pSSM, uint8_t uType, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2254{
2255 uint8_t uState;
2256 int rc = SSMR3GetU8(pSSM, &uState);
2257 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s rc=%Rrc\n", pPage, GCPhys, pRam->pszDesc, rc), rc);
2258 if (uState == 0 /* zero */)
2259 rc = pgmR3LoadPageZeroOld(pVM, uType, pPage, GCPhys, pRam);
2260 else if (uState == 1)
2261 rc = pgmR3LoadPageBitsOld(pVM, pSSM, uType, pPage, GCPhys, pRam);
2262 else
2263 rc = VERR_INTERNAL_ERROR;
2264 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] uState=%d uType=%d GCPhys=%RGp %s rc=%Rrc\n",
2265 pPage, uState, uType, GCPhys, pRam->pszDesc, rc),
2266 rc);
2267 return VINF_SUCCESS;
2268}
2269
2270
2271/**
2272 * Loads a shadowed ROM page.
2273 *
2274 * @returns VBox status code, errors are fully bitched.
2275 * @param pVM The VM handle.
2276 * @param pSSM The saved state handle.
2277 * @param pPage The page.
2278 * @param GCPhys The page address.
2279 * @param pRam The RAM range (for error messages).
2280 */
2281static int pgmR3LoadShadowedRomPageOld(PVM pVM, PSSMHANDLE pSSM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPGMRAMRANGE pRam)
2282{
2283 /*
2284 * Load and set the protection first, then load the two pages, the first
2285 * one is the active the other is the passive.
2286 */
2287 PPGMROMPAGE pRomPage = pgmR3GetRomPage(pVM, GCPhys);
2288 AssertLogRelMsgReturn(pRomPage, ("GCPhys=%RGp %s\n", GCPhys, pRam->pszDesc), VERR_INTERNAL_ERROR);
2289
2290 uint8_t uProt;
2291 int rc = SSMR3GetU8(pSSM, &uProt);
2292 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] GCPhys=%#x %s\n", pPage, GCPhys, pRam->pszDesc), rc);
2293 PGMROMPROT enmProt = (PGMROMPROT)uProt;
2294 AssertLogRelMsgReturn( enmProt >= PGMROMPROT_INVALID
2295 && enmProt < PGMROMPROT_END,
2296 ("enmProt=%d pPage=%R[pgmpage] GCPhys=%#x %s\n", enmProt, pPage, GCPhys, pRam->pszDesc),
2297 VERR_SSM_UNEXPECTED_DATA);
2298
2299 if (pRomPage->enmProt != enmProt)
2300 {
2301 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2302 AssertLogRelRCReturn(rc, rc);
2303 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2304 }
2305
2306 PPGMPAGE pPageActive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Virgin : &pRomPage->Shadow;
2307 PPGMPAGE pPagePassive = PGMROMPROT_IS_ROM(enmProt) ? &pRomPage->Shadow : &pRomPage->Virgin;
2308 uint8_t u8ActiveType = PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM : PGMPAGETYPE_ROM_SHADOW;
2309 uint8_t u8PassiveType= PGMROMPROT_IS_ROM(enmProt) ? PGMPAGETYPE_ROM_SHADOW : PGMPAGETYPE_ROM;
2310
2311 /** @todo this isn't entirely correct as long as pgmPhysGCPhys2CCPtrInternal is
2312 * used down the line (will the 2nd page will be written to the first
2313 * one because of a false TLB hit since the TLB is using GCPhys and
2314 * doesn't check the HCPhys of the desired page). */
2315 rc = pgmR3LoadPageOld(pVM, pSSM, u8ActiveType, pPage, GCPhys, pRam);
2316 if (RT_SUCCESS(rc))
2317 {
2318 *pPageActive = *pPage;
2319 rc = pgmR3LoadPageOld(pVM, pSSM, u8PassiveType, pPagePassive, GCPhys, pRam);
2320 }
2321 return rc;
2322}
2323
2324/**
2325 * Ram range flags and bits for older versions of the saved state.
2326 *
2327 * @returns VBox status code.
2328 *
2329 * @param pVM The VM handle
2330 * @param pSSM The SSM handle.
2331 * @param uVersion The saved state version.
2332 */
2333static int pgmR3LoadMemoryOld(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2334{
2335 PPGM pPGM = &pVM->pgm.s;
2336
2337 /*
2338 * Ram range flags and bits.
2339 */
2340 uint32_t i = 0;
2341 for (PPGMRAMRANGE pRam = pPGM->pRamRangesXR3; ; pRam = pRam->pNextR3, i++)
2342 {
2343 /* Check the sequence number / separator. */
2344 uint32_t u32Sep;
2345 int rc = SSMR3GetU32(pSSM, &u32Sep);
2346 if (RT_FAILURE(rc))
2347 return rc;
2348 if (u32Sep == ~0U)
2349 break;
2350 if (u32Sep != i)
2351 {
2352 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2353 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2354 }
2355 AssertLogRelReturn(pRam, VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2356
2357 /* Get the range details. */
2358 RTGCPHYS GCPhys;
2359 SSMR3GetGCPhys(pSSM, &GCPhys);
2360 RTGCPHYS GCPhysLast;
2361 SSMR3GetGCPhys(pSSM, &GCPhysLast);
2362 RTGCPHYS cb;
2363 SSMR3GetGCPhys(pSSM, &cb);
2364 uint8_t fHaveBits;
2365 rc = SSMR3GetU8(pSSM, &fHaveBits);
2366 if (RT_FAILURE(rc))
2367 return rc;
2368 if (fHaveBits & ~1)
2369 {
2370 AssertMsgFailed(("u32Sep=%#x (last)\n", u32Sep));
2371 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2372 }
2373 size_t cchDesc = 0;
2374 char szDesc[256];
2375 szDesc[0] = '\0';
2376 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2377 {
2378 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
2379 if (RT_FAILURE(rc))
2380 return rc;
2381 /* Since we've modified the description strings in r45878, only compare
2382 them if the saved state is more recent. */
2383 if (uVersion != PGM_SAVED_STATE_VERSION_RR_DESC)
2384 cchDesc = strlen(szDesc);
2385 }
2386
2387 /*
2388 * Match it up with the current range.
2389 *
2390 * Note there is a hack for dealing with the high BIOS mapping
2391 * in the old saved state format, this means we might not have
2392 * a 1:1 match on success.
2393 */
2394 if ( ( GCPhys != pRam->GCPhys
2395 || GCPhysLast != pRam->GCPhysLast
2396 || cb != pRam->cb
2397 || ( cchDesc
2398 && strcmp(szDesc, pRam->pszDesc)) )
2399 /* Hack for PDMDevHlpPhysReserve(pDevIns, 0xfff80000, 0x80000, "High ROM Region"); */
2400 && ( uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE
2401 || GCPhys != UINT32_C(0xfff80000)
2402 || GCPhysLast != UINT32_C(0xffffffff)
2403 || pRam->GCPhysLast != GCPhysLast
2404 || pRam->GCPhys < GCPhys
2405 || !fHaveBits)
2406 )
2407 {
2408 LogRel(("Ram range: %RGp-%RGp %RGp bytes %s %s\n"
2409 "State : %RGp-%RGp %RGp bytes %s %s\n",
2410 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc,
2411 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc));
2412 /*
2413 * If we're loading a state for debugging purpose, don't make a fuss if
2414 * the MMIO and ROM stuff isn't 100% right, just skip the mismatches.
2415 */
2416 if ( SSMR3HandleGetAfter(pSSM) != SSMAFTER_DEBUG_IT
2417 || GCPhys < 8 * _1M)
2418 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2419 N_("RAM range mismatch; saved={%RGp-%RGp %RGp bytes %s %s} config={%RGp-%RGp %RGp bytes %s %s}"),
2420 GCPhys, GCPhysLast, cb, fHaveBits ? "bits" : "nobits", szDesc,
2421 pRam->GCPhys, pRam->GCPhysLast, pRam->cb, pRam->pvR3 ? "bits" : "nobits", pRam->pszDesc);
2422
2423 AssertMsgFailed(("debug skipping not implemented, sorry\n"));
2424 continue;
2425 }
2426
2427 uint32_t cPages = (GCPhysLast - GCPhys + 1) >> PAGE_SHIFT;
2428 if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2429 {
2430 /*
2431 * Load the pages one by one.
2432 */
2433 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2434 {
2435 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2436 PPGMPAGE pPage = &pRam->aPages[iPage];
2437 uint8_t uType;
2438 rc = SSMR3GetU8(pSSM, &uType);
2439 AssertLogRelMsgRCReturn(rc, ("pPage=%R[pgmpage] iPage=%#x GCPhysPage=%#x %s\n", pPage, iPage, GCPhysPage, pRam->pszDesc), rc);
2440 if (uType == PGMPAGETYPE_ROM_SHADOW)
2441 rc = pgmR3LoadShadowedRomPageOld(pVM, pSSM, pPage, GCPhysPage, pRam);
2442 else
2443 rc = pgmR3LoadPageOld(pVM, pSSM, uType, pPage, GCPhysPage, pRam);
2444 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2445 }
2446 }
2447 else
2448 {
2449 /*
2450 * Old format.
2451 */
2452
2453 /* Of the page flags, pick up MMIO2 and ROM/RESERVED for the !fHaveBits case.
2454 The rest is generally irrelevant and wrong since the stuff have to match registrations. */
2455 uint32_t fFlags = 0;
2456 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2457 {
2458 uint16_t u16Flags;
2459 rc = SSMR3GetU16(pSSM, &u16Flags);
2460 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2461 fFlags |= u16Flags;
2462 }
2463
2464 /* Load the bits */
2465 if ( !fHaveBits
2466 && GCPhysLast < UINT32_C(0xe0000000))
2467 {
2468 /*
2469 * Dynamic chunks.
2470 */
2471 const uint32_t cPagesInChunk = (1*1024*1024) >> PAGE_SHIFT;
2472 AssertLogRelMsgReturn(cPages % cPagesInChunk == 0,
2473 ("cPages=%#x cPagesInChunk=%#x\n", cPages, cPagesInChunk, pRam->GCPhys, pRam->pszDesc),
2474 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2475
2476 for (uint32_t iPage = 0; iPage < cPages; /* incremented by inner loop */ )
2477 {
2478 uint8_t fPresent;
2479 rc = SSMR3GetU8(pSSM, &fPresent);
2480 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2481 AssertLogRelMsgReturn(fPresent == (uint8_t)true || fPresent == (uint8_t)false,
2482 ("fPresent=%#x iPage=%#x GCPhys=%#x %s\n", fPresent, iPage, pRam->GCPhys, pRam->pszDesc),
2483 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2484
2485 for (uint32_t iChunkPage = 0; iChunkPage < cPagesInChunk; iChunkPage++, iPage++)
2486 {
2487 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2488 PPGMPAGE pPage = &pRam->aPages[iPage];
2489 if (fPresent)
2490 {
2491 if (PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_MMIO)
2492 rc = pgmR3LoadPageToDevNullOld(pSSM);
2493 else
2494 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2495 }
2496 else
2497 rc = pgmR3LoadPageZeroOld(pVM, PGMPAGETYPE_INVALID, pPage, GCPhysPage, pRam);
2498 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhysPage=%#x %s\n", rc, iPage, GCPhysPage, pRam->pszDesc), rc);
2499 }
2500 }
2501 }
2502 else if (pRam->pvR3)
2503 {
2504 /*
2505 * MMIO2.
2506 */
2507 AssertLogRelMsgReturn((fFlags & 0x0f) == RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/,
2508 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2509 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2510 AssertLogRelMsgReturn(pRam->pvR3,
2511 ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc),
2512 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2513
2514 rc = SSMR3GetMem(pSSM, pRam->pvR3, pRam->cb);
2515 AssertLogRelMsgRCReturn(rc, ("GCPhys=%#x %s\n", pRam->GCPhys, pRam->pszDesc), rc);
2516 }
2517 else if (GCPhysLast < UINT32_C(0xfff80000))
2518 {
2519 /*
2520 * PCI MMIO, no pages saved.
2521 */
2522 }
2523 else
2524 {
2525 /*
2526 * Load the 0xfff80000..0xffffffff BIOS range.
2527 * It starts with X reserved pages that we have to skip over since
2528 * the RAMRANGE create by the new code won't include those.
2529 */
2530 AssertLogRelMsgReturn( !(fFlags & RT_BIT(3) /*MM_RAM_FLAGS_MMIO2*/)
2531 && (fFlags & RT_BIT(0) /*MM_RAM_FLAGS_RESERVED*/),
2532 ("fFlags=%#x GCPhys=%#x %s\n", fFlags, pRam->GCPhys, pRam->pszDesc),
2533 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2534 AssertLogRelMsgReturn(GCPhys == UINT32_C(0xfff80000),
2535 ("GCPhys=%RGp pRamRange{GCPhys=%#x %s}\n", GCPhys, pRam->GCPhys, pRam->pszDesc),
2536 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2537
2538 /* Skip wasted reserved pages before the ROM. */
2539 while (GCPhys < pRam->GCPhys)
2540 {
2541 rc = pgmR3LoadPageToDevNullOld(pSSM);
2542 GCPhys += PAGE_SIZE;
2543 }
2544
2545 /* Load the bios pages. */
2546 cPages = pRam->cb >> PAGE_SHIFT;
2547 for (uint32_t iPage = 0; iPage < cPages; iPage++)
2548 {
2549 RTGCPHYS const GCPhysPage = ((RTGCPHYS)iPage << PAGE_SHIFT) + pRam->GCPhys;
2550 PPGMPAGE pPage = &pRam->aPages[iPage];
2551
2552 AssertLogRelMsgReturn(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM,
2553 ("GCPhys=%RGp pPage=%R[pgmpage]\n", GCPhys, GCPhys),
2554 VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2555 rc = pgmR3LoadPageBitsOld(pVM, pSSM, PGMPAGETYPE_ROM, pPage, GCPhysPage, pRam);
2556 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc iPage=%#x GCPhys=%#x %s\n", rc, iPage, pRam->GCPhys, pRam->pszDesc), rc);
2557 }
2558 }
2559 }
2560 }
2561
2562 return VINF_SUCCESS;
2563}
2564
2565
2566/**
2567 * Worker for pgmR3Load and pgmR3LoadLocked.
2568 *
2569 * @returns VBox status code.
2570 *
2571 * @param pVM The VM handle.
2572 * @param pSSM The SSM handle.
2573 * @param uVersion The PGM saved state unit version.
2574 * @param uPass The pass number.
2575 *
2576 * @todo This needs splitting up if more record types or code twists are
2577 * added...
2578 */
2579static int pgmR3LoadMemory(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2580{
2581 /*
2582 * Process page records until we hit the terminator.
2583 */
2584 RTGCPHYS GCPhys = NIL_RTGCPHYS;
2585 PPGMRAMRANGE pRamHint = NULL;
2586 uint8_t id = UINT8_MAX;
2587 uint32_t iPage = UINT32_MAX - 10;
2588 PPGMROMRANGE pRom = NULL;
2589 PPGMMMIO2RANGE pMmio2 = NULL;
2590
2591 /*
2592 * We batch up pages that should be freed instead of calling GMM for
2593 * each and every one of them. Note that we'll lose the pages in most
2594 * failure paths - this should probably be addressed one day.
2595 */
2596 uint32_t cPendingPages = 0;
2597 PGMMFREEPAGESREQ pReq;
2598 int rc = GMMR3FreePagesPrepare(pVM, &pReq, 128 /* batch size */, GMMACCOUNT_BASE);
2599 AssertLogRelRCReturn(rc, rc);
2600
2601 for (;;)
2602 {
2603 /*
2604 * Get the record type and flags.
2605 */
2606 uint8_t u8;
2607 rc = SSMR3GetU8(pSSM, &u8);
2608 if (RT_FAILURE(rc))
2609 return rc;
2610 if (u8 == PGM_STATE_REC_END)
2611 {
2612 /*
2613 * Finish off any pages pending freeing.
2614 */
2615 if (cPendingPages)
2616 {
2617 Log(("pgmR3LoadMemory: GMMR3FreePagesPerform pVM=%p cPendingPages=%u\n", pVM, cPendingPages));
2618 rc = GMMR3FreePagesPerform(pVM, pReq, cPendingPages);
2619 AssertLogRelRCReturn(rc, rc);
2620 }
2621 GMMR3FreePagesCleanup(pReq);
2622 return VINF_SUCCESS;
2623 }
2624 AssertLogRelMsgReturn((u8 & ~PGM_STATE_REC_FLAG_ADDR) <= PGM_STATE_REC_LAST, ("%#x\n", u8), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2625 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2626 {
2627 /*
2628 * RAM page.
2629 */
2630 case PGM_STATE_REC_RAM_ZERO:
2631 case PGM_STATE_REC_RAM_RAW:
2632 case PGM_STATE_REC_RAM_BALLOONED:
2633 {
2634 /*
2635 * Get the address and resolve it into a page descriptor.
2636 */
2637 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2638 GCPhys += PAGE_SIZE;
2639 else
2640 {
2641 rc = SSMR3GetGCPhys(pSSM, &GCPhys);
2642 if (RT_FAILURE(rc))
2643 return rc;
2644 }
2645 AssertLogRelMsgReturn(!(GCPhys & PAGE_OFFSET_MASK), ("%RGp\n", GCPhys), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2646
2647 PPGMPAGE pPage;
2648 rc = pgmPhysGetPageWithHintEx(pVM, GCPhys, &pPage, &pRamHint);
2649 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2650
2651 /*
2652 * Take action according to the record type.
2653 */
2654 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2655 {
2656 case PGM_STATE_REC_RAM_ZERO:
2657 {
2658 if (PGM_PAGE_IS_ZERO(pPage))
2659 break;
2660
2661 /* Ballooned pages must be unmarked (live snapshot and
2662 teleportation scenarios). */
2663 if (PGM_PAGE_IS_BALLOONED(pPage))
2664 {
2665 Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
2666 if (uVersion == PGM_SAVED_STATE_VERSION_BALLOON_BROKEN)
2667 break;
2668 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_ZERO);
2669 break;
2670 }
2671
2672 AssertLogRelMsgReturn(PGM_PAGE_GET_STATE(pPage) == PGM_PAGE_STATE_ALLOCATED, ("GCPhys=%RGp %R[pgmpage]\n", GCPhys, pPage), VERR_INTERNAL_ERROR_5);
2673
2674 /* If this is a ROM page, we must clear it and not try
2675 free it... */
2676 if ( PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM
2677 || PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_ROM_SHADOW)
2678 {
2679 void *pvDstPage;
2680 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage);
2681 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
2682 ASMMemZeroPage(pvDstPage);
2683 }
2684 /* Free it only if it's not part of a previously
2685 allocated large page (no need to clear the page). */
2686 else if ( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
2687 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED)
2688 {
2689 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, GCPhys);
2690 AssertRCReturn(rc, rc);
2691 }
2692 /** @todo handle large pages (see #5545) */
2693 break;
2694 }
2695
2696 case PGM_STATE_REC_RAM_BALLOONED:
2697 {
2698 Assert(PGM_PAGE_GET_TYPE(pPage) == PGMPAGETYPE_RAM);
2699 if (PGM_PAGE_IS_BALLOONED(pPage))
2700 break;
2701
2702 /* We don't map ballooned pages in our shadow page tables, let's
2703 just free it if allocated and mark as ballooned. See #5515. */
2704 if (PGM_PAGE_IS_ALLOCATED(pPage))
2705 {
2706 /** @todo handle large pages + ballooning when it works. (see #5515, #5545). */
2707 AssertLogRelMsgReturn( PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE
2708 && PGM_PAGE_GET_PDE_TYPE(pPage) != PGM_PAGE_PDE_TYPE_PDE_DISABLED,
2709 ("GCPhys=%RGp %R[pgmpage]\n", GCPhys, pPage), VERR_INTERNAL_ERROR_5);
2710
2711 rc = pgmPhysFreePage(pVM, pReq, &cPendingPages, pPage, GCPhys);
2712 AssertRCReturn(rc, rc);
2713 }
2714 Assert(PGM_PAGE_IS_ZERO(pPage));
2715 PGM_PAGE_SET_STATE(pVM, pPage, PGM_PAGE_STATE_BALLOONED);
2716 break;
2717 }
2718
2719 case PGM_STATE_REC_RAM_RAW:
2720 {
2721 void *pvDstPage;
2722 rc = pgmPhysGCPhys2CCPtrInternal(pVM, pPage, GCPhys, &pvDstPage);
2723 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp %R[pgmpage] rc=%Rrc\n", GCPhys, pPage, rc), rc);
2724 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2725 if (RT_FAILURE(rc))
2726 return rc;
2727 break;
2728 }
2729
2730 default:
2731 AssertMsgFailedReturn(("%#x\n", u8), VERR_INTERNAL_ERROR);
2732 }
2733 id = UINT8_MAX;
2734 break;
2735 }
2736
2737 /*
2738 * MMIO2 page.
2739 */
2740 case PGM_STATE_REC_MMIO2_RAW:
2741 case PGM_STATE_REC_MMIO2_ZERO:
2742 {
2743 /*
2744 * Get the ID + page number and resolved that into a MMIO2 page.
2745 */
2746 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2747 iPage++;
2748 else
2749 {
2750 SSMR3GetU8(pSSM, &id);
2751 rc = SSMR3GetU32(pSSM, &iPage);
2752 if (RT_FAILURE(rc))
2753 return rc;
2754 }
2755 if ( !pMmio2
2756 || pMmio2->idSavedState != id)
2757 {
2758 for (pMmio2 = pVM->pgm.s.pMmio2RangesR3; pMmio2; pMmio2 = pMmio2->pNextR3)
2759 if (pMmio2->idSavedState == id)
2760 break;
2761 AssertLogRelMsgReturn(pMmio2, ("id=%#u iPage=%#x\n", id, iPage), VERR_INTERNAL_ERROR);
2762 }
2763 AssertLogRelMsgReturn(iPage < (pMmio2->RamRange.cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pMmio2->RamRange.cb, pMmio2->RamRange.pszDesc), VERR_INTERNAL_ERROR);
2764 void *pvDstPage = (uint8_t *)pMmio2->RamRange.pvR3 + ((size_t)iPage << PAGE_SHIFT);
2765
2766 /*
2767 * Load the page bits.
2768 */
2769 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_MMIO2_ZERO)
2770 ASMMemZeroPage(pvDstPage);
2771 else
2772 {
2773 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2774 if (RT_FAILURE(rc))
2775 return rc;
2776 }
2777 GCPhys = NIL_RTGCPHYS;
2778 break;
2779 }
2780
2781 /*
2782 * ROM pages.
2783 */
2784 case PGM_STATE_REC_ROM_VIRGIN:
2785 case PGM_STATE_REC_ROM_SHW_RAW:
2786 case PGM_STATE_REC_ROM_SHW_ZERO:
2787 case PGM_STATE_REC_ROM_PROT:
2788 {
2789 /*
2790 * Get the ID + page number and resolved that into a ROM page descriptor.
2791 */
2792 if (!(u8 & PGM_STATE_REC_FLAG_ADDR))
2793 iPage++;
2794 else
2795 {
2796 SSMR3GetU8(pSSM, &id);
2797 rc = SSMR3GetU32(pSSM, &iPage);
2798 if (RT_FAILURE(rc))
2799 return rc;
2800 }
2801 if ( !pRom
2802 || pRom->idSavedState != id)
2803 {
2804 for (pRom = pVM->pgm.s.pRomRangesR3; pRom; pRom = pRom->pNextR3)
2805 if (pRom->idSavedState == id)
2806 break;
2807 AssertLogRelMsgReturn(pRom, ("id=%#u iPage=%#x\n", id, iPage), VERR_INTERNAL_ERROR);
2808 }
2809 AssertLogRelMsgReturn(iPage < (pRom->cb >> PAGE_SHIFT), ("iPage=%#x cb=%RGp %s\n", iPage, pRom->cb, pRom->pszDesc), VERR_INTERNAL_ERROR);
2810 PPGMROMPAGE pRomPage = &pRom->aPages[iPage];
2811 GCPhys = pRom->GCPhys + ((RTGCPHYS)iPage << PAGE_SHIFT);
2812
2813 /*
2814 * Get and set the protection.
2815 */
2816 uint8_t u8Prot;
2817 rc = SSMR3GetU8(pSSM, &u8Prot);
2818 if (RT_FAILURE(rc))
2819 return rc;
2820 PGMROMPROT enmProt = (PGMROMPROT)u8Prot;
2821 AssertLogRelMsgReturn(enmProt > PGMROMPROT_INVALID && enmProt < PGMROMPROT_END, ("GCPhys=%RGp enmProt=%d\n", GCPhys, enmProt), VERR_INTERNAL_ERROR);
2822
2823 if (enmProt != pRomPage->enmProt)
2824 {
2825 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2826 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2827 N_("Protection change of unshadowed ROM page: GCPhys=%RGp enmProt=%d %s"),
2828 GCPhys, enmProt, pRom->pszDesc);
2829 rc = PGMR3PhysRomProtect(pVM, GCPhys, PAGE_SIZE, enmProt);
2830 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2831 AssertLogRelReturn(pRomPage->enmProt == enmProt, VERR_INTERNAL_ERROR);
2832 }
2833 if ((u8 & ~PGM_STATE_REC_FLAG_ADDR) == PGM_STATE_REC_ROM_PROT)
2834 break; /* done */
2835
2836 /*
2837 * Get the right page descriptor.
2838 */
2839 PPGMPAGE pRealPage;
2840 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2841 {
2842 case PGM_STATE_REC_ROM_VIRGIN:
2843 if (!PGMROMPROT_IS_ROM(enmProt))
2844 pRealPage = &pRomPage->Virgin;
2845 else
2846 pRealPage = NULL;
2847 break;
2848
2849 case PGM_STATE_REC_ROM_SHW_RAW:
2850 case PGM_STATE_REC_ROM_SHW_ZERO:
2851 if (RT_UNLIKELY(!(pRom->fFlags & PGMPHYS_ROM_FLAGS_SHADOWED)))
2852 return SSMR3SetCfgError(pSSM, RT_SRC_POS,
2853 N_("Shadowed / non-shadowed page type mismatch: GCPhys=%RGp enmProt=%d %s"),
2854 GCPhys, enmProt, pRom->pszDesc);
2855 if (PGMROMPROT_IS_ROM(enmProt))
2856 pRealPage = &pRomPage->Shadow;
2857 else
2858 pRealPage = NULL;
2859 break;
2860
2861 default: AssertLogRelFailedReturn(VERR_INTERNAL_ERROR); /* shut up gcc */
2862 }
2863 if (!pRealPage)
2864 {
2865 rc = pgmPhysGetPageWithHintEx(pVM, GCPhys, &pRealPage, &pRamHint);
2866 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc %RGp\n", rc, GCPhys), rc);
2867 }
2868
2869 /*
2870 * Make it writable and map it (if necessary).
2871 */
2872 void *pvDstPage = NULL;
2873 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2874 {
2875 case PGM_STATE_REC_ROM_SHW_ZERO:
2876 if ( PGM_PAGE_IS_ZERO(pRealPage)
2877 || PGM_PAGE_IS_BALLOONED(pRealPage))
2878 break;
2879 /** @todo implement zero page replacing. */
2880 /* fall thru */
2881 case PGM_STATE_REC_ROM_VIRGIN:
2882 case PGM_STATE_REC_ROM_SHW_RAW:
2883 {
2884 rc = pgmPhysPageMakeWritableAndMap(pVM, pRealPage, GCPhys, &pvDstPage);
2885 AssertLogRelMsgRCReturn(rc, ("GCPhys=%RGp rc=%Rrc\n", GCPhys, rc), rc);
2886 break;
2887 }
2888 }
2889
2890 /*
2891 * Load the bits.
2892 */
2893 switch (u8 & ~PGM_STATE_REC_FLAG_ADDR)
2894 {
2895 case PGM_STATE_REC_ROM_SHW_ZERO:
2896 if (pvDstPage)
2897 ASMMemZeroPage(pvDstPage);
2898 break;
2899
2900 case PGM_STATE_REC_ROM_VIRGIN:
2901 case PGM_STATE_REC_ROM_SHW_RAW:
2902 rc = SSMR3GetMem(pSSM, pvDstPage, PAGE_SIZE);
2903 if (RT_FAILURE(rc))
2904 return rc;
2905 break;
2906 }
2907 GCPhys = NIL_RTGCPHYS;
2908 break;
2909 }
2910
2911 /*
2912 * Unknown type.
2913 */
2914 default:
2915 AssertLogRelMsgFailedReturn(("%#x\n", u8), VERR_INTERNAL_ERROR);
2916 }
2917 } /* forever */
2918}
2919
2920
2921/**
2922 * Worker for pgmR3Load.
2923 *
2924 * @returns VBox status code.
2925 *
2926 * @param pVM The VM handle.
2927 * @param pSSM The SSM handle.
2928 * @param uVersion The saved state version.
2929 */
2930static int pgmR3LoadFinalLocked(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
2931{
2932 PPGM pPGM = &pVM->pgm.s;
2933 int rc;
2934 uint32_t u32Sep;
2935
2936 /*
2937 * Load basic data (required / unaffected by relocation).
2938 */
2939 if (uVersion >= PGM_SAVED_STATE_VERSION_3_0_0)
2940 {
2941 if (uVersion > PGM_SAVED_STATE_VERSION_PRE_BALLOON)
2942 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFields[0]);
2943 else
2944 rc = SSMR3GetStruct(pSSM, pPGM, &s_aPGMFieldsPreBalloon[0]);
2945
2946 AssertLogRelRCReturn(rc, rc);
2947
2948 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2949 {
2950 if (uVersion <= PGM_SAVED_STATE_VERSION_PRE_PAE)
2951 rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFieldsPrePae[0]);
2952 else
2953 rc = SSMR3GetStruct(pSSM, &pVM->aCpus[i].pgm.s, &s_aPGMCpuFields[0]);
2954 AssertLogRelRCReturn(rc, rc);
2955 }
2956 }
2957 else if (uVersion >= PGM_SAVED_STATE_VERSION_RR_DESC)
2958 {
2959 AssertRelease(pVM->cCpus == 1);
2960
2961 PGMOLD pgmOld;
2962 rc = SSMR3GetStruct(pSSM, &pgmOld, &s_aPGMFields_Old[0]);
2963 AssertLogRelRCReturn(rc, rc);
2964
2965 pPGM->fMappingsFixed = pgmOld.fMappingsFixed;
2966 pPGM->GCPtrMappingFixed = pgmOld.GCPtrMappingFixed;
2967 pPGM->cbMappingFixed = pgmOld.cbMappingFixed;
2968
2969 pVM->aCpus[0].pgm.s.fA20Enabled = pgmOld.fA20Enabled;
2970 pVM->aCpus[0].pgm.s.GCPhysA20Mask = pgmOld.GCPhysA20Mask;
2971 pVM->aCpus[0].pgm.s.enmGuestMode = pgmOld.enmGuestMode;
2972 }
2973 else
2974 {
2975 AssertRelease(pVM->cCpus == 1);
2976
2977 SSMR3GetBool(pSSM, &pPGM->fMappingsFixed);
2978 SSMR3GetGCPtr(pSSM, &pPGM->GCPtrMappingFixed);
2979 SSMR3GetU32(pSSM, &pPGM->cbMappingFixed);
2980
2981 uint32_t cbRamSizeIgnored;
2982 rc = SSMR3GetU32(pSSM, &cbRamSizeIgnored);
2983 if (RT_FAILURE(rc))
2984 return rc;
2985 SSMR3GetGCPhys(pSSM, &pVM->aCpus[0].pgm.s.GCPhysA20Mask);
2986
2987 uint32_t u32 = 0;
2988 SSMR3GetUInt(pSSM, &u32);
2989 pVM->aCpus[0].pgm.s.fA20Enabled = !!u32;
2990 SSMR3GetUInt(pSSM, &pVM->aCpus[0].pgm.s.fSyncFlags);
2991 RTUINT uGuestMode;
2992 SSMR3GetUInt(pSSM, &uGuestMode);
2993 pVM->aCpus[0].pgm.s.enmGuestMode = (PGMMODE)uGuestMode;
2994
2995 /* check separator. */
2996 SSMR3GetU32(pSSM, &u32Sep);
2997 if (RT_FAILURE(rc))
2998 return rc;
2999 if (u32Sep != (uint32_t)~0)
3000 {
3001 AssertMsgFailed(("u32Sep=%#x (first)\n", u32Sep));
3002 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
3003 }
3004 }
3005
3006 /*
3007 * The guest mappings - skipped now, see re-fixation in the caller.
3008 */
3009 if (uVersion <= PGM_SAVED_STATE_VERSION_PRE_PAE)
3010 {
3011 for (uint32_t i = 0; ; i++)
3012 {
3013 rc = SSMR3GetU32(pSSM, &u32Sep); /* sequence number */
3014 if (RT_FAILURE(rc))
3015 return rc;
3016 if (u32Sep == ~0U)
3017 break;
3018 AssertMsgReturn(u32Sep == i, ("u32Sep=%#x i=%#x\n", u32Sep, i), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
3019
3020 char szDesc[256];
3021 rc = SSMR3GetStrZ(pSSM, szDesc, sizeof(szDesc));
3022 if (RT_FAILURE(rc))
3023 return rc;
3024 RTGCPTR GCPtrIgnore;
3025 SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* GCPtr */
3026 rc = SSMR3GetGCPtr(pSSM, &GCPtrIgnore); /* cPTs */
3027 if (RT_FAILURE(rc))
3028 return rc;
3029 }
3030 }
3031
3032 /*
3033 * Load the RAM contents.
3034 */
3035 if (uVersion > PGM_SAVED_STATE_VERSION_3_0_0)
3036 {
3037 if (!pVM->pgm.s.LiveSave.fActive)
3038 {
3039 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3040 {
3041 rc = pgmR3LoadRamConfig(pVM, pSSM);
3042 if (RT_FAILURE(rc))
3043 return rc;
3044 }
3045 rc = pgmR3LoadRomRanges(pVM, pSSM);
3046 if (RT_FAILURE(rc))
3047 return rc;
3048 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
3049 if (RT_FAILURE(rc))
3050 return rc;
3051 }
3052
3053 rc = pgmR3LoadMemory(pVM, pSSM, uVersion, SSM_PASS_FINAL);
3054 }
3055 else
3056 rc = pgmR3LoadMemoryOld(pVM, pSSM, uVersion);
3057
3058 /* Refresh balloon accounting. */
3059 if (pVM->pgm.s.cBalloonedPages)
3060 {
3061 Log(("pgmR3LoadFinalLocked: pVM=%p cBalloonedPages=%#x\n", pVM, pVM->pgm.s.cBalloonedPages));
3062 rc = GMMR3BalloonedPages(pVM, GMMBALLOONACTION_INFLATE, pVM->pgm.s.cBalloonedPages);
3063 AssertRCReturn(rc, rc);
3064 }
3065 return rc;
3066}
3067
3068
3069/**
3070 * Execute state load operation.
3071 *
3072 * @returns VBox status code.
3073 * @param pVM VM Handle.
3074 * @param pSSM SSM operation handle.
3075 * @param uVersion Data layout version.
3076 * @param uPass The data pass.
3077 */
3078static DECLCALLBACK(int) pgmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3079{
3080 int rc;
3081 PPGM pPGM = &pVM->pgm.s;
3082
3083 /*
3084 * Validate version.
3085 */
3086 if ( ( uPass != SSM_PASS_FINAL
3087 && uVersion != PGM_SAVED_STATE_VERSION
3088 && uVersion != PGM_SAVED_STATE_VERSION_PRE_PAE
3089 && uVersion != PGM_SAVED_STATE_VERSION_BALLOON_BROKEN
3090 && uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
3091 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3092 || ( uVersion != PGM_SAVED_STATE_VERSION
3093 && uVersion != PGM_SAVED_STATE_VERSION_PRE_PAE
3094 && uVersion != PGM_SAVED_STATE_VERSION_BALLOON_BROKEN
3095 && uVersion != PGM_SAVED_STATE_VERSION_PRE_BALLOON
3096 && uVersion != PGM_SAVED_STATE_VERSION_NO_RAM_CFG
3097 && uVersion != PGM_SAVED_STATE_VERSION_3_0_0
3098 && uVersion != PGM_SAVED_STATE_VERSION_2_2_2
3099 && uVersion != PGM_SAVED_STATE_VERSION_RR_DESC
3100 && uVersion != PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE)
3101 )
3102 {
3103 AssertMsgFailed(("pgmR3Load: Invalid version uVersion=%d (current %d)!\n", uVersion, PGM_SAVED_STATE_VERSION));
3104 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3105 }
3106
3107 /*
3108 * Do the loading while owning the lock because a bunch of the functions
3109 * we're using requires this.
3110 */
3111 if (uPass != SSM_PASS_FINAL)
3112 {
3113 pgmLock(pVM);
3114 if (uPass != 0)
3115 rc = pgmR3LoadMemory(pVM, pSSM, uVersion, uPass);
3116 else
3117 {
3118 pVM->pgm.s.LiveSave.fActive = true;
3119 if (uVersion > PGM_SAVED_STATE_VERSION_NO_RAM_CFG)
3120 rc = pgmR3LoadRamConfig(pVM, pSSM);
3121 else
3122 rc = VINF_SUCCESS;
3123 if (RT_SUCCESS(rc))
3124 rc = pgmR3LoadRomRanges(pVM, pSSM);
3125 if (RT_SUCCESS(rc))
3126 rc = pgmR3LoadMmio2Ranges(pVM, pSSM);
3127 if (RT_SUCCESS(rc))
3128 rc = pgmR3LoadMemory(pVM, pSSM, uVersion, uPass);
3129 }
3130 pgmUnlock(pVM);
3131 }
3132 else
3133 {
3134 pgmLock(pVM);
3135 rc = pgmR3LoadFinalLocked(pVM, pSSM, uVersion);
3136 pVM->pgm.s.LiveSave.fActive = false;
3137 pgmUnlock(pVM);
3138 if (RT_SUCCESS(rc))
3139 {
3140 /*
3141 * We require a full resync now.
3142 */
3143 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3144 {
3145 PVMCPU pVCpu = &pVM->aCpus[i];
3146 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3147 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3148 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3149 /** @todo For guest PAE, we might get the wrong
3150 * aGCPhysGstPaePDs values now. We should used the
3151 * saved ones... Postponing this since it nothing new
3152 * and PAE/PDPTR needs some general readjusting, see
3153 * @bugref{#5880}. */
3154 }
3155
3156 pgmR3HandlerPhysicalUpdateAll(pVM);
3157
3158 /*
3159 * Change the paging mode and restore PGMCPU::GCPhysCR3.
3160 * (The latter requires the CPUM state to be restored already.)
3161 */
3162 if (CPUMR3IsStateRestorePending(pVM))
3163 return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
3164 N_("PGM was unexpectedly restored before CPUM"));
3165
3166 for (VMCPUID i = 0; i < pVM->cCpus; i++)
3167 {
3168 PVMCPU pVCpu = &pVM->aCpus[i];
3169
3170 rc = PGMR3ChangeMode(pVM, pVCpu, pVCpu->pgm.s.enmGuestMode);
3171 AssertLogRelRCReturn(rc, rc);
3172
3173 /* Update pVM->pgm.s.GCPhysCR3. */
3174 Assert(pVCpu->pgm.s.GCPhysCR3 == NIL_RTGCPHYS || FTMIsDeltaLoadSaveActive(pVM));
3175 RTGCPHYS GCPhysCR3 = CPUMGetGuestCR3(pVCpu);
3176 if ( pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE
3177 || pVCpu->pgm.s.enmGuestMode == PGMMODE_PAE_NX
3178 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64
3179 || pVCpu->pgm.s.enmGuestMode == PGMMODE_AMD64_NX)
3180 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAE_PAGE_MASK);
3181 else
3182 GCPhysCR3 = (GCPhysCR3 & X86_CR3_PAGE_MASK);
3183 pVCpu->pgm.s.GCPhysCR3 = GCPhysCR3;
3184
3185 /* Update the PSE, NX flags and validity masks. */
3186 pVCpu->pgm.s.fGst32BitPageSizeExtension = CPUMIsGuestPageSizeExtEnabled(pVCpu);
3187 PGMNotifyNxeChanged(pVCpu, CPUMIsGuestNXEnabled(pVCpu));
3188 }
3189
3190 /*
3191 * Try re-fixate the guest mappings.
3192 */
3193 pVM->pgm.s.fMappingsFixedRestored = false;
3194 if ( pVM->pgm.s.fMappingsFixed
3195 && pgmMapAreMappingsEnabled(pVM))
3196 {
3197 RTGCPTR GCPtrFixed = pVM->pgm.s.GCPtrMappingFixed;
3198 uint32_t cbFixed = pVM->pgm.s.cbMappingFixed;
3199 pVM->pgm.s.fMappingsFixed = false;
3200
3201 uint32_t cbRequired;
3202 int rc2 = PGMR3MappingsSize(pVM, &cbRequired); AssertRC(rc2);
3203 if ( RT_SUCCESS(rc2)
3204 && cbRequired > cbFixed)
3205 rc2 = VERR_OUT_OF_RANGE;
3206 if (RT_SUCCESS(rc2))
3207 rc2 = pgmR3MappingsFixInternal(pVM, GCPtrFixed, cbFixed);
3208 if (RT_FAILURE(rc2))
3209 {
3210 LogRel(("PGM: Unable to re-fixate the guest mappings at %RGv-%RGv: rc=%Rrc (cbRequired=%#x)\n",
3211 GCPtrFixed, GCPtrFixed + cbFixed, rc2, cbRequired));
3212 pVM->pgm.s.fMappingsFixed = false;
3213 pVM->pgm.s.fMappingsFixedRestored = true;
3214 pVM->pgm.s.GCPtrMappingFixed = GCPtrFixed;
3215 pVM->pgm.s.cbMappingFixed = cbFixed;
3216 }
3217 }
3218 else
3219 {
3220 /* We used to set fixed + disabled while we only use disabled now,
3221 so wipe the state to avoid any confusion. */
3222 pVM->pgm.s.fMappingsFixed = false;
3223 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
3224 pVM->pgm.s.cbMappingFixed = 0;
3225 }
3226
3227 /*
3228 * If we have floating mappings, do a CR3 sync now to make sure the HMA
3229 * doesn't conflict with guest code / data and thereby cause trouble
3230 * when restoring other components like PATM.
3231 */
3232 if (pgmMapAreMappingsFloating(pVM))
3233 {
3234 PVMCPU pVCpu = &pVM->aCpus[0];
3235 rc = PGMSyncCR3(pVCpu, CPUMGetGuestCR0(pVCpu), CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu), true);
3236 if (RT_FAILURE(rc))
3237 return SSMR3SetLoadError(pSSM, VERR_WRONG_ORDER, RT_SRC_POS,
3238 N_("PGMSyncCR3 failed unexpectedly with rc=%Rrc"), rc);
3239
3240 /* Make sure to re-sync before executing code. */
3241 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
3242 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3243 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
3244 }
3245 }
3246 }
3247
3248 return rc;
3249}
3250
3251
3252/**
3253 * Registers the saved state callbacks with SSM.
3254 *
3255 * @returns VBox status code.
3256 * @param pVM Pointer to VM structure.
3257 * @param cbRam The RAM size.
3258 */
3259int pgmR3InitSavedState(PVM pVM, uint64_t cbRam)
3260{
3261 return SSMR3RegisterInternal(pVM, "pgm", 1, PGM_SAVED_STATE_VERSION, (size_t)cbRam + sizeof(PGM),
3262 pgmR3LivePrep, pgmR3LiveExec, pgmR3LiveVote,
3263 NULL, pgmR3SaveExec, pgmR3SaveDone,
3264 pgmR3LoadPrep, pgmR3Load, NULL);
3265}
3266
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette