VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/PGM.cpp@ 45752

最後變更 在這個檔案從45752是 45745,由 vboxsync 提交於 12 年 前

Doc updates regarding guest 64-bit on 32-bit host.

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id Revision
檔案大小: 202.8 KB
 
1/* $Id: PGM.cpp 45745 2013-04-25 20:36:55Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2013 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/** @page pg_pgm PGM - The Page Manager and Monitor
20 *
21 * @see grp_pgm,
22 * @ref pg_pgm_pool,
23 * @ref pg_pgm_phys.
24 *
25 *
26 * @section sec_pgm_modes Paging Modes
27 *
28 * There are three memory contexts: Host Context (HC), Guest Context (GC)
29 * and intermediate context. When talking about paging HC can also be referred
30 * to as "host paging", and GC referred to as "shadow paging".
31 *
32 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
33 * is defined by the host operating system. The mode used in the shadow paging mode
34 * depends on the host paging mode and what the mode the guest is currently in. The
35 * following relation between the two is defined:
36 *
37 * @verbatim
38 Host > 32-bit | PAE | AMD64 |
39 Guest | | | |
40 ==v================================
41 32-bit 32-bit PAE PAE
42 -------|--------|--------|--------|
43 PAE PAE PAE PAE
44 -------|--------|--------|--------|
45 AMD64 AMD64 AMD64 AMD64
46 -------|--------|--------|--------| @endverbatim
47 *
48 * All configuration except those in the diagonal (upper left) are expected to
49 * require special effort from the switcher (i.e. a bit slower).
50 *
51 *
52 *
53 *
54 * @section sec_pgm_shw The Shadow Memory Context
55 *
56 *
57 * [..]
58 *
59 * Because of guest context mappings requires PDPT and PML4 entries to allow
60 * writing on AMD64, the two upper levels will have fixed flags whatever the
61 * guest is thinking of using there. So, when shadowing the PD level we will
62 * calculate the effective flags of PD and all the higher levels. In legacy
63 * PAE mode this only applies to the PWT and PCD bits (the rest are
64 * ignored/reserved/MBZ). We will ignore those bits for the present.
65 *
66 *
67 *
68 * @section sec_pgm_int The Intermediate Memory Context
69 *
70 * The world switch goes thru an intermediate memory context which purpose it is
71 * to provide different mappings of the switcher code. All guest mappings are also
72 * present in this context.
73 *
74 * The switcher code is mapped at the same location as on the host, at an
75 * identity mapped location (physical equals virtual address), and at the
76 * hypervisor location. The identity mapped location is for when the world
77 * switches that involves disabling paging.
78 *
79 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
80 * simplifies switching guest CPU mode and consistency at the cost of more
81 * code to do the work. All memory use for those page tables is located below
82 * 4GB (this includes page tables for guest context mappings).
83 *
84 * Note! The intermediate memory context is also used for 64-bit guest
85 * execution on 32-bit hosts. Because we need to load 64-bit registers
86 * prior to switching to guest context, we need to be in 64-bit mode
87 * first. So, HM has some 64-bit worker routines in VMMRC.rc that get
88 * invoked via the special world switcher code in LegacyToAMD64.asm.
89 *
90 *
91 * @subsection subsec_pgm_int_gc Guest Context Mappings
92 *
93 * During assignment and relocation of a guest context mapping the intermediate
94 * memory context is used to verify the new location.
95 *
96 * Guest context mappings are currently restricted to below 4GB, for reasons
97 * of simplicity. This may change when we implement AMD64 support.
98 *
99 *
100 *
101 *
102 * @section sec_pgm_misc Misc
103 *
104 *
105 * @subsection sec_pgm_misc_A20 The A20 Gate
106 *
107 * PGM implements the A20 gate masking when translating a virtual guest address
108 * into a physical address for CPU access, i.e. PGMGstGetPage (and friends) and
109 * the code reading the guest page table entries during shadowing. The masking
110 * is done consistenly for all CPU modes, paged ones included. Large pages are
111 * also masked correctly. (On current CPUs, experiments indicates that AMD does
112 * not apply A20M in paged modes and intel only does it for the 2nd MB of
113 * memory.)
114 *
115 * The A20 gate implementation is per CPU core. It can be configured on a per
116 * core basis via the keyboard device and PC architecture device. This is
117 * probably not exactly how real CPUs do it, but SMP and A20 isn't a place where
118 * guest OSes try pushing things anyway, so who cares. (On current real systems
119 * the A20M signal is probably only sent to the boot CPU and it affects all
120 * thread and probably all cores in that package.)
121 *
122 * The keyboard device and the PC architecture device doesn't OR their A20
123 * config bits together, rather they are currently implemented such that they
124 * mirror the CPU state. So, flipping the bit in either of them will change the
125 * A20 state. (On real hardware the bits of the two devices should probably be
126 * ORed together to indicate enabled, i.e. both needs to be cleared to disable
127 * A20 masking.)
128 *
129 * The A20 state will change immediately, transmeta fashion. There is no delays
130 * due to buses, wiring or other physical stuff. (On real hardware there are
131 * normally delays, the delays differs between the two devices and probably also
132 * between chipsets and CPU generations. Note that it's said that transmeta CPUs
133 * does the change immediately like us, they apparently intercept/handles the
134 * port accesses in microcode. Neat.)
135 *
136 * @sa http://en.wikipedia.org/wiki/A20_line#The_80286_and_the_high_memory_area
137 *
138 *
139 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
140 *
141 * The differences between legacy PAE and long mode PAE are:
142 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
143 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
144 * usual meanings while 6 is ignored (AMD). This means that upon switching to
145 * legacy PAE mode we'll have to clear these bits and when going to long mode
146 * they must be set. This applies to both intermediate and shadow contexts,
147 * however we don't need to do it for the intermediate one since we're
148 * executing with CR0.WP at that time.
149 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
150 * a page aligned one is required.
151 *
152 *
153 * @section sec_pgm_handlers Access Handlers
154 *
155 * Placeholder.
156 *
157 *
158 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
159 *
160 * Placeholder.
161 *
162 *
163 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
164 *
165 * We currently implement three types of virtual access handlers: ALL, WRITE
166 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
167 *
168 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
169 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
170 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
171 * rest of this section is going to be about these handlers.
172 *
173 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
174 * how successful this is gonna be...
175 *
176 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
177 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
178 * and create a new node that is inserted into the AVL tree (range key). Then
179 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
180 *
181 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
182 *
183 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
184 * via the current guest CR3 and update the physical page -> virtual handler
185 * translation. Needless to say, this doesn't exactly scale very well. If any changes
186 * are detected, it will flag a virtual bit update just like we did on registration.
187 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
188 *
189 * 2b. The virtual bit update process will iterate all the pages covered by all the
190 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
191 * virtual handlers on that page.
192 *
193 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
194 * we don't miss any alias mappings of the monitored pages.
195 *
196 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
197 *
198 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
199 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
200 * will call the handlers like in the next step. If the physical mapping has
201 * changed we will - some time in the future - perform a handler callback
202 * (optional) and update the physical -> virtual handler cache.
203 *
204 * 4. \#PF(,write) on a page in the range. This will cause the handler to
205 * be invoked.
206 *
207 * 5. The guest invalidates the page and changes the physical backing or
208 * unmaps it. This should cause the invalidation callback to be invoked
209 * (it might not yet be 100% perfect). Exactly what happens next... is
210 * this where we mess up and end up out of sync for a while?
211 *
212 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
213 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
214 * this handler to NONE and trigger a full PGM resync (basically the same
215 * as int step 1). Which means 2 is executed again.
216 *
217 *
218 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
219 *
220 * There is a bunch of things that needs to be done to make the virtual handlers
221 * work 100% correctly and work more efficiently.
222 *
223 * The first bit hasn't been implemented yet because it's going to slow the
224 * whole mess down even more, and besides it seems to be working reliably for
225 * our current uses. OTOH, some of the optimizations might end up more or less
226 * implementing the missing bits, so we'll see.
227 *
228 * On the optimization side, the first thing to do is to try avoid unnecessary
229 * cache flushing. Then try team up with the shadowing code to track changes
230 * in mappings by means of access to them (shadow in), updates to shadows pages,
231 * invlpg, and shadow PT discarding (perhaps).
232 *
233 * Some idea that have popped up for optimization for current and new features:
234 * - bitmap indicating where there are virtual handlers installed.
235 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
236 * - Further optimize this by min/max (needs min/max avl getters).
237 * - Shadow page table entry bit (if any left)?
238 *
239 */
240
241
242/** @page pg_pgm_phys PGM Physical Guest Memory Management
243 *
244 *
245 * Objectives:
246 * - Guest RAM over-commitment using memory ballooning,
247 * zero pages and general page sharing.
248 * - Moving or mirroring a VM onto a different physical machine.
249 *
250 *
251 * @subsection subsec_pgmPhys_Definitions Definitions
252 *
253 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
254 * machinery associated with it.
255 *
256 *
257 *
258 *
259 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
260 *
261 * Initially we map *all* guest memory to the (per VM) zero page, which
262 * means that none of the read functions will cause pages to be allocated.
263 *
264 * Exception, access bit in page tables that have been shared. This must
265 * be handled, but we must also make sure PGMGst*Modify doesn't make
266 * unnecessary modifications.
267 *
268 * Allocation points:
269 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
270 * - Replacing a zero page mapping at \#PF.
271 * - Replacing a shared page mapping at \#PF.
272 * - ROM registration (currently MMR3RomRegister).
273 * - VM restore (pgmR3Load).
274 *
275 * For the first three it would make sense to keep a few pages handy
276 * until we've reached the max memory commitment for the VM.
277 *
278 * For the ROM registration, we know exactly how many pages we need
279 * and will request these from ring-0. For restore, we will save
280 * the number of non-zero pages in the saved state and allocate
281 * them up front. This would allow the ring-0 component to refuse
282 * the request if the isn't sufficient memory available for VM use.
283 *
284 * Btw. for both ROM and restore allocations we won't be requiring
285 * zeroed pages as they are going to be filled instantly.
286 *
287 *
288 * @subsection subsec_pgmPhys_FreePage Freeing a page
289 *
290 * There are a few points where a page can be freed:
291 * - After being replaced by the zero page.
292 * - After being replaced by a shared page.
293 * - After being ballooned by the guest additions.
294 * - At reset.
295 * - At restore.
296 *
297 * When freeing one or more pages they will be returned to the ring-0
298 * component and replaced by the zero page.
299 *
300 * The reasoning for clearing out all the pages on reset is that it will
301 * return us to the exact same state as on power on, and may thereby help
302 * us reduce the memory load on the system. Further it might have a
303 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
304 *
305 * On restore, as mention under the allocation topic, pages should be
306 * freed / allocated depending on how many is actually required by the
307 * new VM state. The simplest approach is to do like on reset, and free
308 * all non-ROM pages and then allocate what we need.
309 *
310 * A measure to prevent some fragmentation, would be to let each allocation
311 * chunk have some affinity towards the VM having allocated the most pages
312 * from it. Also, try make sure to allocate from allocation chunks that
313 * are almost full. Admittedly, both these measures might work counter to
314 * our intentions and its probably not worth putting a lot of effort,
315 * cpu time or memory into this.
316 *
317 *
318 * @subsection subsec_pgmPhys_SharePage Sharing a page
319 *
320 * The basic idea is that there there will be a idle priority kernel
321 * thread walking the non-shared VM pages hashing them and looking for
322 * pages with the same checksum. If such pages are found, it will compare
323 * them byte-by-byte to see if they actually are identical. If found to be
324 * identical it will allocate a shared page, copy the content, check that
325 * the page didn't change while doing this, and finally request both the
326 * VMs to use the shared page instead. If the page is all zeros (special
327 * checksum and byte-by-byte check) it will request the VM that owns it
328 * to replace it with the zero page.
329 *
330 * To make this efficient, we will have to make sure not to try share a page
331 * that will change its contents soon. This part requires the most work.
332 * A simple idea would be to request the VM to write monitor the page for
333 * a while to make sure it isn't modified any time soon. Also, it may
334 * make sense to skip pages that are being write monitored since this
335 * information is readily available to the thread if it works on the
336 * per-VM guest memory structures (presently called PGMRAMRANGE).
337 *
338 *
339 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
340 *
341 * The pages are organized in allocation chunks in ring-0, this is a necessity
342 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
343 * could easily work on a page-by-page basis if we liked. Whether this is possible
344 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
345 * become a problem as part of the idea here is that we wish to return memory to
346 * the host system.
347 *
348 * For instance, starting two VMs at the same time, they will both allocate the
349 * guest memory on-demand and if permitted their page allocations will be
350 * intermixed. Shut down one of the two VMs and it will be difficult to return
351 * any memory to the host system because the page allocation for the two VMs are
352 * mixed up in the same allocation chunks.
353 *
354 * To further complicate matters, when pages are freed because they have been
355 * ballooned or become shared/zero the whole idea is that the page is supposed
356 * to be reused by another VM or returned to the host system. This will cause
357 * allocation chunks to contain pages belonging to different VMs and prevent
358 * returning memory to the host when one of those VM shuts down.
359 *
360 * The only way to really deal with this problem is to move pages. This can
361 * either be done at VM shutdown and or by the idle priority worker thread
362 * that will be responsible for finding sharable/zero pages. The mechanisms
363 * involved for coercing a VM to move a page (or to do it for it) will be
364 * the same as when telling it to share/zero a page.
365 *
366 *
367 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
368 *
369 * There's a difficult balance between keeping the per-page tracking structures
370 * (global and guest page) easy to use and keeping them from eating too much
371 * memory. We have limited virtual memory resources available when operating in
372 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
373 * tracking structures will be attempted designed such that we can deal with up
374 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
375 *
376 *
377 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
378 *
379 * @see pg_GMM
380 *
381 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
382 *
383 * Fixed info is the physical address of the page (HCPhys) and the page id
384 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
385 * Today we've restricting ourselves to 40(-12) bits because this is the current
386 * restrictions of all AMD64 implementations (I think Barcelona will up this
387 * to 48(-12) bits, not that it really matters) and I needed the bits for
388 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
389 * decent range for the page id: 2^(28+12) = 1024TB.
390 *
391 * In additions to these, we'll have to keep maintaining the page flags as we
392 * currently do. Although it wouldn't harm to optimize these quite a bit, like
393 * for instance the ROM shouldn't depend on having a write handler installed
394 * in order for it to become read-only. A RO/RW bit should be considered so
395 * that the page syncing code doesn't have to mess about checking multiple
396 * flag combinations (ROM || RW handler || write monitored) in order to
397 * figure out how to setup a shadow PTE. But this of course, is second
398 * priority at present. Current this requires 12 bits, but could probably
399 * be optimized to ~8.
400 *
401 * Then there's the 24 bits used to track which shadow page tables are
402 * currently mapping a page for the purpose of speeding up physical
403 * access handlers, and thereby the page pool cache. More bit for this
404 * purpose wouldn't hurt IIRC.
405 *
406 * Then there is a new bit in which we need to record what kind of page
407 * this is, shared, zero, normal or write-monitored-normal. This'll
408 * require 2 bits. One bit might be needed for indicating whether a
409 * write monitored page has been written to. And yet another one or
410 * two for tracking migration status. 3-4 bits total then.
411 *
412 * Whatever is left will can be used to record the sharabilitiy of a
413 * page. The page checksum will not be stored in the per-VM table as
414 * the idle thread will not be permitted to do modifications to it.
415 * It will instead have to keep its own working set of potentially
416 * shareable pages and their check sums and stuff.
417 *
418 * For the present we'll keep the current packing of the
419 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
420 * we'll have to change it to a struct with a total of 128-bits at
421 * our disposal.
422 *
423 * The initial layout will be like this:
424 * @verbatim
425 RTHCPHYS HCPhys; The current stuff.
426 63:40 Current shadow PT tracking stuff.
427 39:12 The physical page frame number.
428 11:0 The current flags.
429 uint32_t u28PageId : 28; The page id.
430 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
431 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
432 uint32_t u1Reserved : 1; Reserved for later.
433 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
434 @endverbatim
435 *
436 * The final layout will be something like this:
437 * @verbatim
438 RTHCPHYS HCPhys; The current stuff.
439 63:48 High page id (12+).
440 47:12 The physical page frame number.
441 11:0 Low page id.
442 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
443 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
444 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
445 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
446 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
447 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
448 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
449 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
450 @endverbatim
451 *
452 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
453 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
454 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
455 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
456 *
457 * A couple of cost examples for the total cost per-VM + kernel.
458 * 32-bit Windows and 32-bit linux:
459 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
460 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
461 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
462 * 64-bit Windows and 64-bit linux:
463 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
464 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
465 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
466 *
467 * UPDATE - 2007-09-27:
468 * Will need a ballooned flag/state too because we cannot
469 * trust the guest 100% and reporting the same page as ballooned more
470 * than once will put the GMM off balance.
471 *
472 *
473 * @subsection subsec_pgmPhys_Serializing Serializing Access
474 *
475 * Initially, we'll try a simple scheme:
476 *
477 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
478 * by the EMT thread of that VM while in the pgm critsect.
479 * - Other threads in the VM process that needs to make reliable use of
480 * the per-VM RAM tracking structures will enter the critsect.
481 * - No process external thread or kernel thread will ever try enter
482 * the pgm critical section, as that just won't work.
483 * - The idle thread (and similar threads) doesn't not need 100% reliable
484 * data when performing it tasks as the EMT thread will be the one to
485 * do the actual changes later anyway. So, as long as it only accesses
486 * the main ram range, it can do so by somehow preventing the VM from
487 * being destroyed while it works on it...
488 *
489 * - The over-commitment management, including the allocating/freeing
490 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
491 * more mundane mutex implementation is broken on Linux).
492 * - A separate mutex is protecting the set of allocation chunks so
493 * that pages can be shared or/and freed up while some other VM is
494 * allocating more chunks. This mutex can be take from under the other
495 * one, but not the other way around.
496 *
497 *
498 * @subsection subsec_pgmPhys_Request VM Request interface
499 *
500 * When in ring-0 it will become necessary to send requests to a VM so it can
501 * for instance move a page while defragmenting during VM destroy. The idle
502 * thread will make use of this interface to request VMs to setup shared
503 * pages and to perform write monitoring of pages.
504 *
505 * I would propose an interface similar to the current VMReq interface, similar
506 * in that it doesn't require locking and that the one sending the request may
507 * wait for completion if it wishes to. This shouldn't be very difficult to
508 * realize.
509 *
510 * The requests themselves are also pretty simple. They are basically:
511 * -# Check that some precondition is still true.
512 * -# Do the update.
513 * -# Update all shadow page tables involved with the page.
514 *
515 * The 3rd step is identical to what we're already doing when updating a
516 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
517 *
518 *
519 *
520 * @section sec_pgmPhys_MappingCaches Mapping Caches
521 *
522 * In order to be able to map in and out memory and to be able to support
523 * guest with more RAM than we've got virtual address space, we'll employing
524 * a mapping cache. Normally ring-0 and ring-3 can share the same cache,
525 * however on 32-bit darwin the ring-0 code is running in a different memory
526 * context and therefore needs a separate cache. In raw-mode context we also
527 * need a separate cache. The 32-bit darwin mapping cache and the one for
528 * raw-mode context share a lot of code, see PGMRZDYNMAP.
529 *
530 *
531 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
532 *
533 * We've considered implementing the ring-3 mapping cache page based but found
534 * that this was bother some when one had to take into account TLBs+SMP and
535 * portability (missing the necessary APIs on several platforms). There were
536 * also some performance concerns with this approach which hadn't quite been
537 * worked out.
538 *
539 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
540 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
541 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
542 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
543 * costly than a single page, although how much more costly is uncertain. We'll
544 * try address this by using a very big cache, preferably bigger than the actual
545 * VM RAM size if possible. The current VM RAM sizes should give some idea for
546 * 32-bit boxes, while on 64-bit we can probably get away with employing an
547 * unlimited cache.
548 *
549 * The cache have to parts, as already indicated, the ring-3 side and the
550 * ring-0 side.
551 *
552 * The ring-0 will be tied to the page allocator since it will operate on the
553 * memory objects it contains. It will therefore require the first ring-0 mutex
554 * discussed in @ref subsec_pgmPhys_Serializing. We
555 * some double house keeping wrt to who has mapped what I think, since both
556 * VMMR0.r0 and RTR0MemObj will keep track of mapping relations
557 *
558 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
559 * require anyone that desires to do changes to the mapping cache to do that
560 * from within this critsect. Alternatively, we could employ a separate critsect
561 * for serializing changes to the mapping cache as this would reduce potential
562 * contention with other threads accessing mappings unrelated to the changes
563 * that are in process. We can see about this later, contention will show
564 * up in the statistics anyway, so it'll be simple to tell.
565 *
566 * The organization of the ring-3 part will be very much like how the allocation
567 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
568 * having to walk the tree all the time, we'll have a couple of lookaside entries
569 * like in we do for I/O ports and MMIO in IOM.
570 *
571 * The simplified flow of a PGMPhysRead/Write function:
572 * -# Enter the PGM critsect.
573 * -# Lookup GCPhys in the ram ranges and get the Page ID.
574 * -# Calc the Allocation Chunk ID from the Page ID.
575 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
576 * If not found in cache:
577 * -# Call ring-0 and request it to be mapped and supply
578 * a chunk to be unmapped if the cache is maxed out already.
579 * -# Insert the new mapping into the AVL tree (id + R3 address).
580 * -# Update the relevant lookaside entry and return the mapping address.
581 * -# Do the read/write according to monitoring flags and everything.
582 * -# Leave the critsect.
583 *
584 *
585 * @section sec_pgmPhys_Fallback Fallback
586 *
587 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
588 * API and thus require a fallback.
589 *
590 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
591 * will return to the ring-3 caller (and later ring-0) and asking it to seed
592 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
593 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
594 * "SeededAllocPages" call to ring-0.
595 *
596 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
597 * all page sharing (zero page detection will continue). It will also force
598 * all allocations to come from the VM which seeded the page. Both these
599 * measures are taken to make sure that there will never be any need for
600 * mapping anything into ring-3 - everything will be mapped already.
601 *
602 * Whether we'll continue to use the current MM locked memory management
603 * for this I don't quite know (I'd prefer not to and just ditch that all
604 * together), we'll see what's simplest to do.
605 *
606 *
607 *
608 * @section sec_pgmPhys_Changes Changes
609 *
610 * Breakdown of the changes involved?
611 */
612
613/*******************************************************************************
614* Header Files *
615*******************************************************************************/
616#define LOG_GROUP LOG_GROUP_PGM
617#include <VBox/vmm/dbgf.h>
618#include <VBox/vmm/pgm.h>
619#include <VBox/vmm/cpum.h>
620#include <VBox/vmm/iom.h>
621#include <VBox/sup.h>
622#include <VBox/vmm/mm.h>
623#include <VBox/vmm/em.h>
624#include <VBox/vmm/stam.h>
625#ifdef VBOX_WITH_REM
626# include <VBox/vmm/rem.h>
627#endif
628#include <VBox/vmm/selm.h>
629#include <VBox/vmm/ssm.h>
630#include <VBox/vmm/hm.h>
631#include "PGMInternal.h"
632#include <VBox/vmm/vm.h>
633#include <VBox/vmm/uvm.h>
634#include "PGMInline.h"
635
636#include <VBox/dbg.h>
637#include <VBox/param.h>
638#include <VBox/err.h>
639
640#include <iprt/asm.h>
641#include <iprt/asm-amd64-x86.h>
642#include <iprt/assert.h>
643#include <iprt/env.h>
644#include <iprt/mem.h>
645#include <iprt/file.h>
646#include <iprt/string.h>
647#include <iprt/thread.h>
648
649
650/*******************************************************************************
651* Internal Functions *
652*******************************************************************************/
653static int pgmR3InitPaging(PVM pVM);
654static int pgmR3InitStats(PVM pVM);
655static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
656static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
657static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
658static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
659static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
660static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
661#ifdef VBOX_STRICT
662static FNVMATSTATE pgmR3ResetNoMorePhysWritesFlag;
663#endif
664static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
665static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
666static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
667
668#ifdef VBOX_WITH_DEBUGGER
669static FNDBGCCMD pgmR3CmdError;
670static FNDBGCCMD pgmR3CmdSync;
671static FNDBGCCMD pgmR3CmdSyncAlways;
672# ifdef VBOX_STRICT
673static FNDBGCCMD pgmR3CmdAssertCR3;
674# endif
675static FNDBGCCMD pgmR3CmdPhysToFile;
676#endif
677
678
679/*******************************************************************************
680* Global Variables *
681*******************************************************************************/
682#ifdef VBOX_WITH_DEBUGGER
683/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
684static const DBGCVARDESC g_aPgmErrorArgs[] =
685{
686 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
687 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
688};
689
690static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
691{
692 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
693 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
694 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
695};
696
697# ifdef DEBUG_sandervl
698static const DBGCVARDESC g_aPgmCountPhysWritesArgs[] =
699{
700 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
701 { 1, 1, DBGCVAR_CAT_STRING, 0, "enabled", "on/off." },
702 { 1, 1, DBGCVAR_CAT_NUMBER_NO_RANGE, 0, "interval", "Interval in ms." },
703};
704# endif
705
706/** Command descriptors. */
707static const DBGCCMD g_aCmds[] =
708{
709 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, fFlags, pfnHandler pszSyntax, ....pszDescription */
710 { "pgmsync", 0, 0, NULL, 0, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
711 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
712 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
713# ifdef VBOX_STRICT
714 { "pgmassertcr3", 0, 0, NULL, 0, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
715# ifdef VBOX_WITH_PAGE_SHARING
716 { "pgmcheckduppages", 0, 0, NULL, 0, 0, pgmR3CmdCheckDuplicatePages, "", "Check for duplicate pages in all running VMs." },
717 { "pgmsharedmodules", 0, 0, NULL, 0, 0, pgmR3CmdShowSharedModules, "", "Print shared modules info." },
718# endif
719# endif
720 { "pgmsyncalways", 0, 0, NULL, 0, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
721 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
722};
723#endif
724
725
726
727
728/*
729 * Shadow - 32-bit mode
730 */
731#define PGM_SHW_TYPE PGM_TYPE_32BIT
732#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
733#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
734#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
735#include "PGMShw.h"
736
737/* Guest - real mode */
738#define PGM_GST_TYPE PGM_TYPE_REAL
739#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
740#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
741#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
742#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
743#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
744#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
745#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
746#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
747#include "PGMBth.h"
748#include "PGMGstDefs.h"
749#include "PGMGst.h"
750#undef BTH_PGMPOOLKIND_PT_FOR_PT
751#undef BTH_PGMPOOLKIND_ROOT
752#undef PGM_BTH_NAME
753#undef PGM_BTH_NAME_RC_STR
754#undef PGM_BTH_NAME_R0_STR
755#undef PGM_GST_TYPE
756#undef PGM_GST_NAME
757#undef PGM_GST_NAME_RC_STR
758#undef PGM_GST_NAME_R0_STR
759
760/* Guest - protected mode */
761#define PGM_GST_TYPE PGM_TYPE_PROT
762#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
763#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
764#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
765#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
766#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
767#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
768#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
769#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
770#include "PGMBth.h"
771#include "PGMGstDefs.h"
772#include "PGMGst.h"
773#undef BTH_PGMPOOLKIND_PT_FOR_PT
774#undef BTH_PGMPOOLKIND_ROOT
775#undef PGM_BTH_NAME
776#undef PGM_BTH_NAME_RC_STR
777#undef PGM_BTH_NAME_R0_STR
778#undef PGM_GST_TYPE
779#undef PGM_GST_NAME
780#undef PGM_GST_NAME_RC_STR
781#undef PGM_GST_NAME_R0_STR
782
783/* Guest - 32-bit mode */
784#define PGM_GST_TYPE PGM_TYPE_32BIT
785#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
786#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
787#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
788#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
789#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
790#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
791#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
792#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
793#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
794#include "PGMBth.h"
795#include "PGMGstDefs.h"
796#include "PGMGst.h"
797#undef BTH_PGMPOOLKIND_PT_FOR_BIG
798#undef BTH_PGMPOOLKIND_PT_FOR_PT
799#undef BTH_PGMPOOLKIND_ROOT
800#undef PGM_BTH_NAME
801#undef PGM_BTH_NAME_RC_STR
802#undef PGM_BTH_NAME_R0_STR
803#undef PGM_GST_TYPE
804#undef PGM_GST_NAME
805#undef PGM_GST_NAME_RC_STR
806#undef PGM_GST_NAME_R0_STR
807
808#undef PGM_SHW_TYPE
809#undef PGM_SHW_NAME
810#undef PGM_SHW_NAME_RC_STR
811#undef PGM_SHW_NAME_R0_STR
812
813
814/*
815 * Shadow - PAE mode
816 */
817#define PGM_SHW_TYPE PGM_TYPE_PAE
818#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
819#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
820#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
821#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
822#include "PGMShw.h"
823
824/* Guest - real mode */
825#define PGM_GST_TYPE PGM_TYPE_REAL
826#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
827#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
828#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
829#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
830#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
831#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
832#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
833#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
834#include "PGMGstDefs.h"
835#include "PGMBth.h"
836#undef BTH_PGMPOOLKIND_PT_FOR_PT
837#undef BTH_PGMPOOLKIND_ROOT
838#undef PGM_BTH_NAME
839#undef PGM_BTH_NAME_RC_STR
840#undef PGM_BTH_NAME_R0_STR
841#undef PGM_GST_TYPE
842#undef PGM_GST_NAME
843#undef PGM_GST_NAME_RC_STR
844#undef PGM_GST_NAME_R0_STR
845
846/* Guest - protected mode */
847#define PGM_GST_TYPE PGM_TYPE_PROT
848#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
849#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
850#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
851#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
852#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
853#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
854#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
855#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
856#include "PGMGstDefs.h"
857#include "PGMBth.h"
858#undef BTH_PGMPOOLKIND_PT_FOR_PT
859#undef BTH_PGMPOOLKIND_ROOT
860#undef PGM_BTH_NAME
861#undef PGM_BTH_NAME_RC_STR
862#undef PGM_BTH_NAME_R0_STR
863#undef PGM_GST_TYPE
864#undef PGM_GST_NAME
865#undef PGM_GST_NAME_RC_STR
866#undef PGM_GST_NAME_R0_STR
867
868/* Guest - 32-bit mode */
869#define PGM_GST_TYPE PGM_TYPE_32BIT
870#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
871#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
872#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
873#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
874#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
875#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
876#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
877#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
878#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
879#include "PGMGstDefs.h"
880#include "PGMBth.h"
881#undef BTH_PGMPOOLKIND_PT_FOR_BIG
882#undef BTH_PGMPOOLKIND_PT_FOR_PT
883#undef BTH_PGMPOOLKIND_ROOT
884#undef PGM_BTH_NAME
885#undef PGM_BTH_NAME_RC_STR
886#undef PGM_BTH_NAME_R0_STR
887#undef PGM_GST_TYPE
888#undef PGM_GST_NAME
889#undef PGM_GST_NAME_RC_STR
890#undef PGM_GST_NAME_R0_STR
891
892/* Guest - PAE mode */
893#define PGM_GST_TYPE PGM_TYPE_PAE
894#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
895#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
896#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
897#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
898#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
899#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
900#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
901#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
902#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
903#include "PGMBth.h"
904#include "PGMGstDefs.h"
905#include "PGMGst.h"
906#undef BTH_PGMPOOLKIND_PT_FOR_BIG
907#undef BTH_PGMPOOLKIND_PT_FOR_PT
908#undef BTH_PGMPOOLKIND_ROOT
909#undef PGM_BTH_NAME
910#undef PGM_BTH_NAME_RC_STR
911#undef PGM_BTH_NAME_R0_STR
912#undef PGM_GST_TYPE
913#undef PGM_GST_NAME
914#undef PGM_GST_NAME_RC_STR
915#undef PGM_GST_NAME_R0_STR
916
917#undef PGM_SHW_TYPE
918#undef PGM_SHW_NAME
919#undef PGM_SHW_NAME_RC_STR
920#undef PGM_SHW_NAME_R0_STR
921
922
923/*
924 * Shadow - AMD64 mode
925 */
926#define PGM_SHW_TYPE PGM_TYPE_AMD64
927#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
928#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
929#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
930#include "PGMShw.h"
931
932#ifdef VBOX_WITH_64_BITS_GUESTS
933/* Guest - AMD64 mode */
934# define PGM_GST_TYPE PGM_TYPE_AMD64
935# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
936# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
937# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
938# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
939# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
940# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
941# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
942# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
943# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
944# include "PGMBth.h"
945# include "PGMGstDefs.h"
946# include "PGMGst.h"
947# undef BTH_PGMPOOLKIND_PT_FOR_BIG
948# undef BTH_PGMPOOLKIND_PT_FOR_PT
949# undef BTH_PGMPOOLKIND_ROOT
950# undef PGM_BTH_NAME
951# undef PGM_BTH_NAME_RC_STR
952# undef PGM_BTH_NAME_R0_STR
953# undef PGM_GST_TYPE
954# undef PGM_GST_NAME
955# undef PGM_GST_NAME_RC_STR
956# undef PGM_GST_NAME_R0_STR
957#endif /* VBOX_WITH_64_BITS_GUESTS */
958
959#undef PGM_SHW_TYPE
960#undef PGM_SHW_NAME
961#undef PGM_SHW_NAME_RC_STR
962#undef PGM_SHW_NAME_R0_STR
963
964
965/*
966 * Shadow - Nested paging mode
967 */
968#define PGM_SHW_TYPE PGM_TYPE_NESTED
969#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
970#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
971#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
972#include "PGMShw.h"
973
974/* Guest - real mode */
975#define PGM_GST_TYPE PGM_TYPE_REAL
976#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
977#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
978#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
979#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
980#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
981#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
982#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
983#include "PGMGstDefs.h"
984#include "PGMBth.h"
985#undef BTH_PGMPOOLKIND_PT_FOR_PT
986#undef PGM_BTH_NAME
987#undef PGM_BTH_NAME_RC_STR
988#undef PGM_BTH_NAME_R0_STR
989#undef PGM_GST_TYPE
990#undef PGM_GST_NAME
991#undef PGM_GST_NAME_RC_STR
992#undef PGM_GST_NAME_R0_STR
993
994/* Guest - protected mode */
995#define PGM_GST_TYPE PGM_TYPE_PROT
996#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
997#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
998#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
999#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
1000#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
1001#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
1002#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1003#include "PGMGstDefs.h"
1004#include "PGMBth.h"
1005#undef BTH_PGMPOOLKIND_PT_FOR_PT
1006#undef PGM_BTH_NAME
1007#undef PGM_BTH_NAME_RC_STR
1008#undef PGM_BTH_NAME_R0_STR
1009#undef PGM_GST_TYPE
1010#undef PGM_GST_NAME
1011#undef PGM_GST_NAME_RC_STR
1012#undef PGM_GST_NAME_R0_STR
1013
1014/* Guest - 32-bit mode */
1015#define PGM_GST_TYPE PGM_TYPE_32BIT
1016#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1017#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1018#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1019#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
1020#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
1021#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
1022#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1023#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1024#include "PGMGstDefs.h"
1025#include "PGMBth.h"
1026#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1027#undef BTH_PGMPOOLKIND_PT_FOR_PT
1028#undef PGM_BTH_NAME
1029#undef PGM_BTH_NAME_RC_STR
1030#undef PGM_BTH_NAME_R0_STR
1031#undef PGM_GST_TYPE
1032#undef PGM_GST_NAME
1033#undef PGM_GST_NAME_RC_STR
1034#undef PGM_GST_NAME_R0_STR
1035
1036/* Guest - PAE mode */
1037#define PGM_GST_TYPE PGM_TYPE_PAE
1038#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1039#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1040#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1041#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1042#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1043#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1044#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1045#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1046#include "PGMGstDefs.h"
1047#include "PGMBth.h"
1048#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1049#undef BTH_PGMPOOLKIND_PT_FOR_PT
1050#undef PGM_BTH_NAME
1051#undef PGM_BTH_NAME_RC_STR
1052#undef PGM_BTH_NAME_R0_STR
1053#undef PGM_GST_TYPE
1054#undef PGM_GST_NAME
1055#undef PGM_GST_NAME_RC_STR
1056#undef PGM_GST_NAME_R0_STR
1057
1058#ifdef VBOX_WITH_64_BITS_GUESTS
1059/* Guest - AMD64 mode */
1060# define PGM_GST_TYPE PGM_TYPE_AMD64
1061# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1062# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1063# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1064# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1065# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1066# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1067# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1068# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1069# include "PGMGstDefs.h"
1070# include "PGMBth.h"
1071# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1072# undef BTH_PGMPOOLKIND_PT_FOR_PT
1073# undef PGM_BTH_NAME
1074# undef PGM_BTH_NAME_RC_STR
1075# undef PGM_BTH_NAME_R0_STR
1076# undef PGM_GST_TYPE
1077# undef PGM_GST_NAME
1078# undef PGM_GST_NAME_RC_STR
1079# undef PGM_GST_NAME_R0_STR
1080#endif /* VBOX_WITH_64_BITS_GUESTS */
1081
1082#undef PGM_SHW_TYPE
1083#undef PGM_SHW_NAME
1084#undef PGM_SHW_NAME_RC_STR
1085#undef PGM_SHW_NAME_R0_STR
1086
1087
1088/*
1089 * Shadow - EPT
1090 */
1091#define PGM_SHW_TYPE PGM_TYPE_EPT
1092#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1093#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1094#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1095#include "PGMShw.h"
1096
1097/* Guest - real mode */
1098#define PGM_GST_TYPE PGM_TYPE_REAL
1099#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1100#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1101#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1102#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1103#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1104#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1105#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1106#include "PGMGstDefs.h"
1107#include "PGMBth.h"
1108#undef BTH_PGMPOOLKIND_PT_FOR_PT
1109#undef PGM_BTH_NAME
1110#undef PGM_BTH_NAME_RC_STR
1111#undef PGM_BTH_NAME_R0_STR
1112#undef PGM_GST_TYPE
1113#undef PGM_GST_NAME
1114#undef PGM_GST_NAME_RC_STR
1115#undef PGM_GST_NAME_R0_STR
1116
1117/* Guest - protected mode */
1118#define PGM_GST_TYPE PGM_TYPE_PROT
1119#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1120#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1121#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1122#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1123#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1124#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1125#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1126#include "PGMGstDefs.h"
1127#include "PGMBth.h"
1128#undef BTH_PGMPOOLKIND_PT_FOR_PT
1129#undef PGM_BTH_NAME
1130#undef PGM_BTH_NAME_RC_STR
1131#undef PGM_BTH_NAME_R0_STR
1132#undef PGM_GST_TYPE
1133#undef PGM_GST_NAME
1134#undef PGM_GST_NAME_RC_STR
1135#undef PGM_GST_NAME_R0_STR
1136
1137/* Guest - 32-bit mode */
1138#define PGM_GST_TYPE PGM_TYPE_32BIT
1139#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1140#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1141#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1142#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1143#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1144#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1145#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1146#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1147#include "PGMGstDefs.h"
1148#include "PGMBth.h"
1149#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1150#undef BTH_PGMPOOLKIND_PT_FOR_PT
1151#undef PGM_BTH_NAME
1152#undef PGM_BTH_NAME_RC_STR
1153#undef PGM_BTH_NAME_R0_STR
1154#undef PGM_GST_TYPE
1155#undef PGM_GST_NAME
1156#undef PGM_GST_NAME_RC_STR
1157#undef PGM_GST_NAME_R0_STR
1158
1159/* Guest - PAE mode */
1160#define PGM_GST_TYPE PGM_TYPE_PAE
1161#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1162#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1163#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1164#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1165#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1166#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1167#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1168#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1169#include "PGMGstDefs.h"
1170#include "PGMBth.h"
1171#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1172#undef BTH_PGMPOOLKIND_PT_FOR_PT
1173#undef PGM_BTH_NAME
1174#undef PGM_BTH_NAME_RC_STR
1175#undef PGM_BTH_NAME_R0_STR
1176#undef PGM_GST_TYPE
1177#undef PGM_GST_NAME
1178#undef PGM_GST_NAME_RC_STR
1179#undef PGM_GST_NAME_R0_STR
1180
1181#ifdef VBOX_WITH_64_BITS_GUESTS
1182/* Guest - AMD64 mode */
1183# define PGM_GST_TYPE PGM_TYPE_AMD64
1184# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1185# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1186# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1187# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1188# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1189# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1190# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1191# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1192# include "PGMGstDefs.h"
1193# include "PGMBth.h"
1194# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1195# undef BTH_PGMPOOLKIND_PT_FOR_PT
1196# undef PGM_BTH_NAME
1197# undef PGM_BTH_NAME_RC_STR
1198# undef PGM_BTH_NAME_R0_STR
1199# undef PGM_GST_TYPE
1200# undef PGM_GST_NAME
1201# undef PGM_GST_NAME_RC_STR
1202# undef PGM_GST_NAME_R0_STR
1203#endif /* VBOX_WITH_64_BITS_GUESTS */
1204
1205#undef PGM_SHW_TYPE
1206#undef PGM_SHW_NAME
1207#undef PGM_SHW_NAME_RC_STR
1208#undef PGM_SHW_NAME_R0_STR
1209
1210
1211
1212/**
1213 * Initiates the paging of VM.
1214 *
1215 * @returns VBox status code.
1216 * @param pVM Pointer to VM structure.
1217 */
1218VMMR3DECL(int) PGMR3Init(PVM pVM)
1219{
1220 LogFlow(("PGMR3Init:\n"));
1221 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1222 int rc;
1223
1224 /*
1225 * Assert alignment and sizes.
1226 */
1227 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1228 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1229 AssertCompileMemberAlignment(PGM, CritSectX, sizeof(uintptr_t));
1230
1231 /*
1232 * Init the structure.
1233 */
1234 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1235 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1236
1237 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHandyPages); i++)
1238 {
1239 pVM->pgm.s.aHandyPages[i].HCPhysGCPhys = NIL_RTHCPHYS;
1240 pVM->pgm.s.aHandyPages[i].idPage = NIL_GMM_PAGEID;
1241 pVM->pgm.s.aHandyPages[i].idSharedPage = NIL_GMM_PAGEID;
1242 }
1243
1244 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aLargeHandyPage); i++)
1245 {
1246 pVM->pgm.s.aLargeHandyPage[i].HCPhysGCPhys = NIL_RTHCPHYS;
1247 pVM->pgm.s.aLargeHandyPage[i].idPage = NIL_GMM_PAGEID;
1248 pVM->pgm.s.aLargeHandyPage[i].idSharedPage = NIL_GMM_PAGEID;
1249 }
1250
1251 /* Init the per-CPU part. */
1252 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1253 {
1254 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1255 PPGMCPU pPGM = &pVCpu->pgm.s;
1256
1257 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1258 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1259 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1260
1261 pPGM->enmShadowMode = PGMMODE_INVALID;
1262 pPGM->enmGuestMode = PGMMODE_INVALID;
1263
1264 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1265
1266 pPGM->pGst32BitPdR3 = NULL;
1267 pPGM->pGstPaePdptR3 = NULL;
1268 pPGM->pGstAmd64Pml4R3 = NULL;
1269#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1270 pPGM->pGst32BitPdR0 = NIL_RTR0PTR;
1271 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1272 pPGM->pGstAmd64Pml4R0 = NIL_RTR0PTR;
1273#endif
1274 pPGM->pGst32BitPdRC = NIL_RTRCPTR;
1275 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1276 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1277 {
1278 pPGM->apGstPaePDsR3[i] = NULL;
1279#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1280 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1281#endif
1282 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1283 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1284 pPGM->aGstPaePdpeRegs[i].u = UINT64_MAX;
1285 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1286 }
1287
1288 pPGM->fA20Enabled = true;
1289 pPGM->GCPhysA20Mask = ~((RTGCPHYS)!pPGM->fA20Enabled << 20);
1290 }
1291
1292 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1293 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1294 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1295
1296 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1297#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1298 true
1299#else
1300 false
1301#endif
1302 );
1303 AssertLogRelRCReturn(rc, rc);
1304
1305#if HC_ARCH_BITS == 32
1306# ifdef RT_OS_DARWIN
1307 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE * 3);
1308# else
1309 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1310# endif
1311#else
1312 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1313#endif
1314 AssertLogRelRCReturn(rc, rc);
1315 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1316 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1317
1318 /*
1319 * Get the configured RAM size - to estimate saved state size.
1320 */
1321 uint64_t cbRam;
1322 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1323 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1324 cbRam = 0;
1325 else if (RT_SUCCESS(rc))
1326 {
1327 if (cbRam < PAGE_SIZE)
1328 cbRam = 0;
1329 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1330 }
1331 else
1332 {
1333 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1334 return rc;
1335 }
1336
1337 /*
1338 * Check for PCI pass-through.
1339 */
1340 rc = CFGMR3QueryBoolDef(pCfgPGM, "PciPassThrough", &pVM->pgm.s.fPciPassthrough, false);
1341 AssertMsgRCReturn(rc, ("Configuration error: Failed to query integer \"PciPassThrough\", rc=%Rrc.\n", rc), rc);
1342 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough || pVM->pgm.s.fRamPreAlloc, VERR_INVALID_PARAMETER);
1343
1344#ifdef VBOX_WITH_STATISTICS
1345 /*
1346 * Allocate memory for the statistics before someone tries to use them.
1347 */
1348 size_t cbTotalStats = RT_ALIGN_Z(sizeof(PGMSTATS), 64) + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64) * pVM->cCpus;
1349 void *pv;
1350 rc = MMHyperAlloc(pVM, RT_ALIGN_Z(cbTotalStats, PAGE_SIZE), PAGE_SIZE, MM_TAG_PGM, &pv);
1351 AssertRCReturn(rc, rc);
1352
1353 pVM->pgm.s.pStatsR3 = (PGMSTATS *)pv;
1354 pVM->pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1355 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1356 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMSTATS), 64);
1357
1358 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
1359 {
1360 pVM->aCpus[iCpu].pgm.s.pStatsR3 = (PGMCPUSTATS *)pv;
1361 pVM->aCpus[iCpu].pgm.s.pStatsR0 = MMHyperCCToR0(pVM, pv);
1362 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pv);
1363
1364 pv = (uint8_t *)pv + RT_ALIGN_Z(sizeof(PGMCPUSTATS), 64);
1365 }
1366#endif /* VBOX_WITH_STATISTICS */
1367
1368 /*
1369 * Register callbacks, string formatters and the saved state data unit.
1370 */
1371#ifdef VBOX_STRICT
1372 VMR3AtStateRegister(pVM->pUVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1373#endif
1374 PGMRegisterStringFormatTypes();
1375
1376 rc = pgmR3InitSavedState(pVM, cbRam);
1377 if (RT_FAILURE(rc))
1378 return rc;
1379
1380 /*
1381 * Initialize the PGM critical section and flush the phys TLBs
1382 */
1383 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSectX, RT_SRC_POS, "PGM");
1384 AssertRCReturn(rc, rc);
1385
1386 PGMR3PhysChunkInvalidateTLB(pVM);
1387 pgmPhysInvalidatePageMapTLB(pVM);
1388
1389 /*
1390 * For the time being we sport a full set of handy pages in addition to the base
1391 * memory to simplify things.
1392 */
1393 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1394 AssertRCReturn(rc, rc);
1395
1396 /*
1397 * Trees
1398 */
1399 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1400 if (RT_SUCCESS(rc))
1401 {
1402 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1403 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1404
1405 /*
1406 * Allocate the zero page.
1407 */
1408 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1409 }
1410 if (RT_SUCCESS(rc))
1411 {
1412 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1413 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1414 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1415 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1416
1417 /*
1418 * Allocate the invalid MMIO page.
1419 * (The invalid bits in HCPhysInvMmioPg are set later on init complete.)
1420 */
1421 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvMmioPgR3);
1422 }
1423 if (RT_SUCCESS(rc))
1424 {
1425 ASMMemFill32(pVM->pgm.s.pvMmioPgR3, PAGE_SIZE, 0xfeedface);
1426 pVM->pgm.s.HCPhysMmioPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvMmioPgR3);
1427 AssertRelease(pVM->pgm.s.HCPhysMmioPg != NIL_RTHCPHYS);
1428 pVM->pgm.s.HCPhysInvMmioPg = pVM->pgm.s.HCPhysMmioPg;
1429
1430 /*
1431 * Init the paging.
1432 */
1433 rc = pgmR3InitPaging(pVM);
1434 }
1435 if (RT_SUCCESS(rc))
1436 {
1437 /*
1438 * Init the page pool.
1439 */
1440 rc = pgmR3PoolInit(pVM);
1441 }
1442 if (RT_SUCCESS(rc))
1443 {
1444 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1445 {
1446 PVMCPU pVCpu = &pVM->aCpus[i];
1447 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1448 if (RT_FAILURE(rc))
1449 break;
1450 }
1451 }
1452
1453 if (RT_SUCCESS(rc))
1454 {
1455 /*
1456 * Info & statistics
1457 */
1458 DBGFR3InfoRegisterInternal(pVM, "mode",
1459 "Shows the current paging mode. "
1460 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing is given.",
1461 pgmR3InfoMode);
1462 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1463 "Dumps all the entries in the top level paging table. No arguments.",
1464 pgmR3InfoCr3);
1465 DBGFR3InfoRegisterInternal(pVM, "phys",
1466 "Dumps all the physical address ranges. No arguments.",
1467 pgmR3PhysInfo);
1468 DBGFR3InfoRegisterInternal(pVM, "handlers",
1469 "Dumps physical, virtual and hyper virtual handlers. "
1470 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1471 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1472 pgmR3InfoHandlers);
1473 DBGFR3InfoRegisterInternal(pVM, "mappings",
1474 "Dumps guest mappings.",
1475 pgmR3MapInfo);
1476
1477 pgmR3InitStats(pVM);
1478
1479#ifdef VBOX_WITH_DEBUGGER
1480 /*
1481 * Debugger commands.
1482 */
1483 static bool s_fRegisteredCmds = false;
1484 if (!s_fRegisteredCmds)
1485 {
1486 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1487 if (RT_SUCCESS(rc2))
1488 s_fRegisteredCmds = true;
1489 }
1490#endif
1491 return VINF_SUCCESS;
1492 }
1493
1494 /* Almost no cleanup necessary, MM frees all memory. */
1495 PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
1496
1497 return rc;
1498}
1499
1500
1501/**
1502 * Init paging.
1503 *
1504 * Since we need to check what mode the host is operating in before we can choose
1505 * the right paging functions for the host we have to delay this until R0 has
1506 * been initialized.
1507 *
1508 * @returns VBox status code.
1509 * @param pVM Pointer to the VM.
1510 */
1511static int pgmR3InitPaging(PVM pVM)
1512{
1513 /*
1514 * Force a recalculation of modes and switcher so everyone gets notified.
1515 */
1516 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1517 {
1518 PVMCPU pVCpu = &pVM->aCpus[i];
1519
1520 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1521 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1522 }
1523
1524 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1525
1526 /*
1527 * Allocate static mapping space for whatever the cr3 register
1528 * points to and in the case of PAE mode to the 4 PDs.
1529 */
1530 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1531 if (RT_FAILURE(rc))
1532 {
1533 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1534 return rc;
1535 }
1536 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1537
1538 /*
1539 * Allocate pages for the three possible intermediate contexts
1540 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1541 * for the sake of simplicity. The AMD64 uses the PAE for the
1542 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1543 *
1544 * We assume that two page tables will be enought for the core code
1545 * mappings (HC virtual and identity).
1546 */
1547 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1548 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1549 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1550 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1551 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1552 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1553 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1554 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1555 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1556 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1557 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1558 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1559
1560 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1561 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1562 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1563 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1564 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1565 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1566
1567 /*
1568 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1569 */
1570 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1571 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1572 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1573
1574 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1575 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1576
1577 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1578 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1579 {
1580 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1581 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1582 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1583 }
1584
1585 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1586 {
1587 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1588 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1589 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1590 }
1591
1592 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1593 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1594 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1595 | HCPhysInterPaePDPT64;
1596
1597 /*
1598 * Initialize paging workers and mode from current host mode
1599 * and the guest running in real mode.
1600 */
1601 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1602 switch (pVM->pgm.s.enmHostMode)
1603 {
1604 case SUPPAGINGMODE_32_BIT:
1605 case SUPPAGINGMODE_32_BIT_GLOBAL:
1606 case SUPPAGINGMODE_PAE:
1607 case SUPPAGINGMODE_PAE_GLOBAL:
1608 case SUPPAGINGMODE_PAE_NX:
1609 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1610 break;
1611
1612 case SUPPAGINGMODE_AMD64:
1613 case SUPPAGINGMODE_AMD64_GLOBAL:
1614 case SUPPAGINGMODE_AMD64_NX:
1615 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1616#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1617 if (ARCH_BITS != 64)
1618 {
1619 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1620 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1621 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1622 }
1623#endif
1624 break;
1625 default:
1626 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1627 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1628 }
1629 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1630 if (RT_SUCCESS(rc))
1631 {
1632 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1633#if HC_ARCH_BITS == 64
1634 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1635 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1636 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1637 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1638 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1639 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1640 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1641#endif
1642
1643 /*
1644 * Log the host paging mode. It may come in handy.
1645 */
1646 const char *pszHostMode;
1647 switch (pVM->pgm.s.enmHostMode)
1648 {
1649 case SUPPAGINGMODE_32_BIT: pszHostMode = "32-bit"; break;
1650 case SUPPAGINGMODE_32_BIT_GLOBAL: pszHostMode = "32-bit+PGE"; break;
1651 case SUPPAGINGMODE_PAE: pszHostMode = "PAE"; break;
1652 case SUPPAGINGMODE_PAE_GLOBAL: pszHostMode = "PAE+PGE"; break;
1653 case SUPPAGINGMODE_PAE_NX: pszHostMode = "PAE+NXE"; break;
1654 case SUPPAGINGMODE_PAE_GLOBAL_NX: pszHostMode = "PAE+PGE+NXE"; break;
1655 case SUPPAGINGMODE_AMD64: pszHostMode = "AMD64"; break;
1656 case SUPPAGINGMODE_AMD64_GLOBAL: pszHostMode = "AMD64+PGE"; break;
1657 case SUPPAGINGMODE_AMD64_NX: pszHostMode = "AMD64+NX"; break;
1658 case SUPPAGINGMODE_AMD64_GLOBAL_NX: pszHostMode = "AMD64+PGE+NX"; break;
1659 default: pszHostMode = "???"; break;
1660 }
1661 LogRel(("Host paging mode: %s\n", pszHostMode));
1662
1663 return VINF_SUCCESS;
1664 }
1665
1666 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1667 return rc;
1668}
1669
1670
1671/**
1672 * Init statistics
1673 * @returns VBox status code.
1674 */
1675static int pgmR3InitStats(PVM pVM)
1676{
1677 PPGM pPGM = &pVM->pgm.s;
1678 int rc;
1679
1680 /*
1681 * Release statistics.
1682 */
1683 /* Common - misc variables */
1684 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1685 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1686 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1687 STAM_REL_REG(pVM, &pPGM->cReusedSharedPages, STAMTYPE_U32, "/PGM/Page/cReusedSharedPages", STAMUNIT_COUNT, "The number of reused shared pages.");
1688 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1689 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1690 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1691 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1692 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1693 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1694 STAM_REL_REG(pVM, &pPGM->cBalloonedPages, STAMTYPE_U32, "/PGM/Page/cBalloonedPages", STAMUNIT_COUNT, "The number of ballooned pages.");
1695 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1696 STAM_REL_REG(pVM, &pPGM->cLargePages, STAMTYPE_U32, "/PGM/Page/cLargePages", STAMUNIT_COUNT, "The number of large pages allocated (includes disabled).");
1697 STAM_REL_REG(pVM, &pPGM->cLargePagesDisabled, STAMTYPE_U32, "/PGM/Page/cLargePagesDisabled", STAMUNIT_COUNT, "The number of disabled large pages.");
1698 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1699 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1700 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1701 STAM_REL_REG(pVM, &pPGM->cMappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Mapped", STAMUNIT_COUNT, "Number of times we mapped a chunk.");
1702 STAM_REL_REG(pVM, &pPGM->cUnmappedChunks, STAMTYPE_U32, "/PGM/ChunkR3Map/Unmapped", STAMUNIT_COUNT, "Number of times we unmapped a chunk.");
1703
1704 STAM_REL_REG(pVM, &pPGM->StatLargePageReused, STAMTYPE_COUNTER, "/PGM/LargePage/Reused", STAMUNIT_OCCURENCES, "The number of times we've reused a large page.");
1705 STAM_REL_REG(pVM, &pPGM->StatLargePageRefused, STAMTYPE_COUNTER, "/PGM/LargePage/Refused", STAMUNIT_OCCURENCES, "The number of times we couldn't use a large page.");
1706 STAM_REL_REG(pVM, &pPGM->StatLargePageRecheck, STAMTYPE_COUNTER, "/PGM/LargePage/Recheck", STAMUNIT_OCCURENCES, "The number of times we've rechecked a disabled large page.");
1707
1708 STAM_REL_REG(pVM, &pPGM->StatShModCheck, STAMTYPE_PROFILE, "/PGM/ShMod/Check", STAMUNIT_TICKS_PER_CALL, "Profiles the shared module checking.");
1709
1710 /* Live save */
1711 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1712 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1713 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1714 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1715 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1716 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1717 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1718 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1719 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1720 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1721 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1722 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1723 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1724 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1725 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1726 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1727 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1728 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1729
1730#ifdef VBOX_WITH_STATISTICS
1731
1732# define PGM_REG_COUNTER(a, b, c) \
1733 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1734 AssertRC(rc);
1735
1736# define PGM_REG_COUNTER_BYTES(a, b, c) \
1737 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1738 AssertRC(rc);
1739
1740# define PGM_REG_PROFILE(a, b, c) \
1741 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1742 AssertRC(rc);
1743
1744 PGMSTATS *pStats = pVM->pgm.s.pStatsR3;
1745
1746 PGM_REG_PROFILE(&pStats->StatAllocLargePage, "/PGM/LargePage/Prof/Alloc", "Time spent by the host OS for large page allocation.");
1747 PGM_REG_PROFILE(&pStats->StatClearLargePage, "/PGM/LargePage/Prof/Clear", "Time spent clearing the newly allocated large pages.");
1748 PGM_REG_COUNTER(&pStats->StatLargePageOverflow, "/PGM/LargePage/Overflow", "The number of times allocating a large page took too long.");
1749 PGM_REG_PROFILE(&pStats->StatR3IsValidLargePage, "/PGM/LargePage/Prof/R3/IsValid", "pgmPhysIsValidLargePage profiling - R3.");
1750 PGM_REG_PROFILE(&pStats->StatRZIsValidLargePage, "/PGM/LargePage/Prof/RZ/IsValid", "pgmPhysIsValidLargePage profiling - RZ.");
1751
1752 PGM_REG_COUNTER(&pStats->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1753 PGM_REG_PROFILE(&pStats->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1754 PGM_REG_COUNTER(&pStats->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1755 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1756 PGM_REG_COUNTER(&pStats->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1757 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1758 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1759 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1760 PGM_REG_COUNTER(&pStats->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1761 PGM_REG_COUNTER_BYTES(&pStats->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1762
1763 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1764 PGM_REG_COUNTER(&pStats->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1765 PGM_REG_PROFILE(&pStats->StatChunkAging, "/PGM/ChunkR3Map/Map/Aging", "Chunk aging profiling.");
1766 PGM_REG_PROFILE(&pStats->StatChunkFindCandidate, "/PGM/ChunkR3Map/Map/Find", "Chunk unmap find profiling.");
1767 PGM_REG_PROFILE(&pStats->StatChunkUnmap, "/PGM/ChunkR3Map/Map/Unmap", "Chunk unmap of address space profiling.");
1768 PGM_REG_PROFILE(&pStats->StatChunkMap, "/PGM/ChunkR3Map/Map/Map", "Chunk map of address space profiling.");
1769
1770 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1771 PGM_REG_COUNTER(&pStats->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1772 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1773 PGM_REG_COUNTER(&pStats->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1774 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1775 PGM_REG_COUNTER(&pStats->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1776 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1777 PGM_REG_COUNTER(&pStats->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1778
1779 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbHits, "/PGM/RZ/RamRange/TlbHits", "TLB hits.");
1780 PGM_REG_COUNTER(&pStats->StatRZRamRangeTlbMisses, "/PGM/RZ/RamRange/TlbMisses", "TLB misses.");
1781 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbHits, "/PGM/R3/RamRange/TlbHits", "TLB hits.");
1782 PGM_REG_COUNTER(&pStats->StatR3RamRangeTlbMisses, "/PGM/R3/RamRange/TlbMisses", "TLB misses.");
1783
1784 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1785 PGM_REG_PROFILE(&pStats->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1786 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1787 PGM_REG_PROFILE(&pStats->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1788
1789 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1790 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1791 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupHits, "/PGM/RZ/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1792 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupHits, "/PGM/R3/PhysHandlerLookupHits", "The number of cache hits when looking up physical handlers.");
1793 PGM_REG_COUNTER(&pStats->StatRZPhysHandlerLookupMisses, "/PGM/RZ/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1794 PGM_REG_COUNTER(&pStats->StatR3PhysHandlerLookupMisses, "/PGM/R3/PhysHandlerLookupMisses", "The number of cache misses when looking up physical handlers.");
1795 PGM_REG_PROFILE(&pStats->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1796 PGM_REG_PROFILE(&pStats->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1797
1798 PGM_REG_COUNTER(&pStats->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1799 PGM_REG_COUNTER(&pStats->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1800/// @todo PGM_REG_COUNTER(&pStats->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1801 PGM_REG_COUNTER(&pStats->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1802 PGM_REG_COUNTER(&pStats->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1803/// @todo PGM_REG_COUNTER(&pStats->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1804
1805 PGM_REG_COUNTER(&pStats->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1806 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1807 PGM_REG_COUNTER(&pStats->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1808 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1809 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1810 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1811 PGM_REG_COUNTER(&pStats->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1812 PGM_REG_COUNTER_BYTES(&pStats->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1813
1814 /* GC only: */
1815 PGM_REG_COUNTER(&pStats->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1816 PGM_REG_COUNTER(&pStats->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1817
1818 PGM_REG_COUNTER(&pStats->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1819 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1820 PGM_REG_COUNTER(&pStats->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1821 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1822 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1823 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1824 PGM_REG_COUNTER(&pStats->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1825 PGM_REG_COUNTER_BYTES(&pStats->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1826
1827 PGM_REG_COUNTER(&pStats->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1828 PGM_REG_COUNTER(&pStats->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1829 PGM_REG_COUNTER(&pStats->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1830 PGM_REG_COUNTER(&pStats->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1831 PGM_REG_COUNTER(&pStats->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1832 PGM_REG_COUNTER(&pStats->StatTrackNoExtentsLeft, "/PGM/Track/NoExtentLeft", "The number of times the extent list was exhausted.");
1833 PGM_REG_PROFILE(&pStats->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1834
1835# undef PGM_REG_COUNTER
1836# undef PGM_REG_PROFILE
1837#endif
1838
1839 /*
1840 * Note! The layout below matches the member layout exactly!
1841 */
1842
1843 /*
1844 * Common - stats
1845 */
1846 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1847 {
1848 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1849
1850#define PGM_REG_COUNTER(a, b, c) \
1851 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1852 AssertRC(rc);
1853#define PGM_REG_PROFILE(a, b, c) \
1854 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1855 AssertRC(rc);
1856
1857 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1858 PGM_REG_COUNTER(&pPgmCpu->cA20Changes, "/PGM/CPU%u/cA20Changes", "Number of A20 gate changes.");
1859
1860#ifdef VBOX_WITH_STATISTICS
1861 PGMCPUSTATS *pCpuStats = pVM->aCpus[idCpu].pgm.s.pStatsR3;
1862
1863# if 0 /* rarely useful; leave for debugging. */
1864 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1865 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1866 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1867 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatSyncPagePD); j++)
1868 STAMR3RegisterF(pVM, &pCpuStats->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1869 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1870# endif
1871 /* R0 only: */
1872 PGM_REG_PROFILE(&pCpuStats->StatR0NpMiscfg, "/PGM/CPU%u/R0/NpMiscfg", "PGMR0Trap0eHandlerNPMisconfig() profiling.");
1873 PGM_REG_COUNTER(&pCpuStats->StatR0NpMiscfgSyncPage, "/PGM/CPU%u/R0/NpMiscfgSyncPage", "SyncPage calls from PGMR0Trap0eHandlerNPMisconfig().");
1874
1875 /* RZ only: */
1876 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1877 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Ballooned, "/PGM/CPU%u/RZ/Trap0e/Time2/Ballooned", "Profiling of the Trap0eHandler body when the cause is read access to a ballooned page.");
1878 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1879 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1880 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1881 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1882 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1883 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1884 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2InvalidPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/InvalidPhys", "Profiling of the Trap0eHandler body when the cause is access to an invalid physical guest address.");
1885 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2MakeWritable, "/PGM/CPU%u/RZ/Trap0e/Time2/MakeWritable", "Profiling of the Trap0eHandler body when the cause is that a page needed to be made writeable.");
1886 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Mapping, "/PGM/CPU%u/RZ/Trap0e/Time2/Mapping", "Profiling of the Trap0eHandler body when the cause is related to the guest mappings.");
1887 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1888 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1889 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1890 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1891 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1892 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1893 PGM_REG_PROFILE(&pCpuStats->StatRZTrap0eTime2WPEmulation, "/PGM/CPU%u/RZ/Trap0e/Time2/WPEmulation", "Profiling of the Trap0eHandler body when the cause is CR0.WP emulation.");
1894 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1895 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1896 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1897 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAll, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAll", "Number of traps due to physical all-access handlers.");
1898 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysAllOpt, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysAllOpt", "Number of the physical all-access handler traps using the optimization.");
1899 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersPhysWrite, "/PGM/CPU%u/RZ/Trap0e/Handlers/PhysWrite", "Number of traps due to physical write-access handlers.");
1900 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1901 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1902 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1903 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1904 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1905 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1906 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1907 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1908 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1909 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1910 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1911 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1912 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1913 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1914 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1915 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1916 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1917 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1918 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1919 PGM_REG_COUNTER(&pCpuStats->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1920#if 0 /* rarely useful; leave for debugging. */
1921 for (unsigned j = 0; j < RT_ELEMENTS(pCpuStats->StatRZTrap0ePD); j++)
1922 STAMR3RegisterF(pVM, &pCpuStats->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1923 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1924#endif
1925 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1926 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1927 PGM_REG_COUNTER(&pCpuStats->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1928 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1929 PGM_REG_COUNTER(&pCpuStats->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1930
1931 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapMigrateInvlPg, "/PGM/CPU%u/RZ/DynMap/MigrateInvlPg", "invlpg count in PGMR0DynMapMigrateAutoSet.");
1932 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapGCPageInl, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1933 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Hits", "Hash table lookup hits.");
1934 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/Misses", "Misses that falls back to the code common.");
1935 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamHits, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamHits", "1st ram range hits.");
1936 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapGCPageInlRamMisses, "/PGM/CPU%u/RZ/DynMap/PageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1937 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPageInl, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl", "Calls to pgmRZDynMapHCPageInlined.");
1938 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlHits, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Hits", "Hash table lookup hits.");
1939 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapHCPageInlMisses, "/PGM/CPU%u/RZ/DynMap/PageHCPageInl/Misses", "Misses that falls back to the code common.");
1940 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPage, "/PGM/CPU%u/RZ/DynMap/Page", "Calls to pgmR0DynMapPage");
1941 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetOptimize, "/PGM/CPU%u/RZ/DynMap/Page/SetOptimize", "Calls to pgmRZDynMapOptimizeAutoSet.");
1942 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchFlushes, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchFlushes", "Set search restoring to subset flushes.");
1943 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchHits, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchHits", "Set search hits.");
1944 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSetSearchMisses, "/PGM/CPU%u/RZ/DynMap/Page/SetSearchMisses", "Set search misses.");
1945 PGM_REG_PROFILE(&pCpuStats->StatRZDynMapHCPage, "/PGM/CPU%u/RZ/DynMap/Page/HCPage", "Calls to pgmRZDynMapHCPageCommon (ring-0).");
1946 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits0, "/PGM/CPU%u/RZ/DynMap/Page/Hits0", "Hits at iPage+0");
1947 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits1, "/PGM/CPU%u/RZ/DynMap/Page/Hits1", "Hits at iPage+1");
1948 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageHits2, "/PGM/CPU%u/RZ/DynMap/Page/Hits2", "Hits at iPage+2");
1949 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageInvlPg, "/PGM/CPU%u/RZ/DynMap/Page/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1950 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlow, "/PGM/CPU%u/RZ/DynMap/Page/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1951 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopHits, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopHits" , "Hits in the loop path.");
1952 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLoopMisses, "/PGM/CPU%u/RZ/DynMap/Page/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1953 //PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMap/Page/SlowLostHits", "Lost hits.");
1954 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapSubsets, "/PGM/CPU%u/RZ/DynMap/Subsets", "Times PGMRZDynMapPushAutoSubset was called.");
1955 PGM_REG_COUNTER(&pCpuStats->StatRZDynMapPopFlushes, "/PGM/CPU%u/RZ/DynMap/SubsetPopFlushes", "Times PGMRZDynMapPopAutoSubset flushes the subset.");
1956 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[0], "/PGM/CPU%u/RZ/DynMap/SetFilledPct000..09", "00-09% filled (RC: min(set-size, dynmap-size))");
1957 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[1], "/PGM/CPU%u/RZ/DynMap/SetFilledPct010..19", "10-19% filled (RC: min(set-size, dynmap-size))");
1958 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[2], "/PGM/CPU%u/RZ/DynMap/SetFilledPct020..29", "20-29% filled (RC: min(set-size, dynmap-size))");
1959 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[3], "/PGM/CPU%u/RZ/DynMap/SetFilledPct030..39", "30-39% filled (RC: min(set-size, dynmap-size))");
1960 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[4], "/PGM/CPU%u/RZ/DynMap/SetFilledPct040..49", "40-49% filled (RC: min(set-size, dynmap-size))");
1961 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[5], "/PGM/CPU%u/RZ/DynMap/SetFilledPct050..59", "50-59% filled (RC: min(set-size, dynmap-size))");
1962 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[6], "/PGM/CPU%u/RZ/DynMap/SetFilledPct060..69", "60-69% filled (RC: min(set-size, dynmap-size))");
1963 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[7], "/PGM/CPU%u/RZ/DynMap/SetFilledPct070..79", "70-79% filled (RC: min(set-size, dynmap-size))");
1964 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[8], "/PGM/CPU%u/RZ/DynMap/SetFilledPct080..89", "80-89% filled (RC: min(set-size, dynmap-size))");
1965 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[9], "/PGM/CPU%u/RZ/DynMap/SetFilledPct090..99", "90-99% filled (RC: min(set-size, dynmap-size))");
1966 PGM_REG_COUNTER(&pCpuStats->aStatRZDynMapSetFilledPct[10], "/PGM/CPU%u/RZ/DynMap/SetFilledPct100", "100% filled (RC: min(set-size, dynmap-size))");
1967
1968 /* HC only: */
1969
1970 /* RZ & R3: */
1971 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1972 PGM_REG_PROFILE(&pCpuStats->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1973 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1974 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1975 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1976 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1977 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1978 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1979 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1980 PGM_REG_COUNTER(&pCpuStats->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1981 PGM_REG_PROFILE(&pCpuStats->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1982 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1983 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1984 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1985 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1986 PGM_REG_COUNTER(&pCpuStats->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1987 PGM_REG_COUNTER(&pCpuStats->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1988 PGM_REG_PROFILE(&pCpuStats->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1989 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1990 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1991 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1992 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1993 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1994 PGM_REG_COUNTER(&pCpuStats->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1995 PGM_REG_COUNTER(&pCpuStats->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1996 PGM_REG_COUNTER(&pCpuStats->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1997 PGM_REG_PROFILE(&pCpuStats->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1998 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1999 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2000 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2001 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2002 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2003 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2004 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2005 PGM_REG_COUNTER(&pCpuStats->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2006 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2007 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
2008 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2009 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
2010 PGM_REG_COUNTER(&pCpuStats->StatRZPageOutOfSyncBallloon, "/PGM/CPU%u/RZ/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2011 PGM_REG_PROFILE(&pCpuStats->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
2012 PGM_REG_PROFILE(&pCpuStats->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2013 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2014 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2015 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2016 PGM_REG_COUNTER(&pCpuStats->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2017 PGM_REG_PROFILE(&pCpuStats->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2018
2019 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
2020 PGM_REG_PROFILE(&pCpuStats->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
2021 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
2022 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
2023 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
2024 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
2025 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
2026 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
2027 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
2028 PGM_REG_COUNTER(&pCpuStats->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
2029 PGM_REG_PROFILE(&pCpuStats->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
2030 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
2031 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
2032 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
2033 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
2034 PGM_REG_COUNTER(&pCpuStats->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
2035 PGM_REG_COUNTER(&pCpuStats->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
2036 PGM_REG_PROFILE(&pCpuStats->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
2037 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
2038 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
2039 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
2040 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
2041 PGM_REG_COUNTER(&pCpuStats->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
2042 PGM_REG_COUNTER(&pCpuStats->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
2043 PGM_REG_COUNTER(&pCpuStats->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
2044 PGM_REG_PROFILE(&pCpuStats->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
2045 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
2046 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
2047 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
2048 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
2049 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
2050 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
2051 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
2052 PGM_REG_COUNTER(&pCpuStats->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
2053 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2054 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
2055 PGM_REG_COUNTER(&pCpuStats->StatR3PageOutOfSyncBallloon, "/PGM/CPU%u/R3/OutOfSync/Balloon", "The number of times a ballooned page was accessed (read).");
2056 PGM_REG_PROFILE(&pCpuStats->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
2057 PGM_REG_PROFILE(&pCpuStats->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
2058 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
2059 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
2060 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
2061 PGM_REG_COUNTER(&pCpuStats->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
2062 PGM_REG_PROFILE(&pCpuStats->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
2063#endif /* VBOX_WITH_STATISTICS */
2064
2065#undef PGM_REG_PROFILE
2066#undef PGM_REG_COUNTER
2067
2068 }
2069
2070 return VINF_SUCCESS;
2071}
2072
2073
2074/**
2075 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
2076 *
2077 * The dynamic mapping area will also be allocated and initialized at this
2078 * time. We could allocate it during PGMR3Init of course, but the mapping
2079 * wouldn't be allocated at that time preventing us from setting up the
2080 * page table entries with the dummy page.
2081 *
2082 * @returns VBox status code.
2083 * @param pVM Pointer to the VM.
2084 */
2085VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
2086{
2087 RTGCPTR GCPtr;
2088 int rc;
2089
2090 /*
2091 * Reserve space for the dynamic mappings.
2092 */
2093 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
2094 if (RT_SUCCESS(rc))
2095 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2096
2097 if ( RT_SUCCESS(rc)
2098 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
2099 {
2100 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
2101 if (RT_SUCCESS(rc))
2102 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
2103 }
2104 if (RT_SUCCESS(rc))
2105 {
2106 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
2107 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
2108 }
2109 return rc;
2110}
2111
2112
2113/**
2114 * Ring-3 init finalizing.
2115 *
2116 * @returns VBox status code.
2117 * @param pVM Pointer to the VM.
2118 */
2119VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
2120{
2121 int rc;
2122
2123 /*
2124 * Reserve space for the dynamic mappings.
2125 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
2126 */
2127 /* get the pointer to the page table entries. */
2128 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
2129 AssertRelease(pMapping);
2130 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
2131 const unsigned iPT = off >> X86_PD_SHIFT;
2132 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
2133 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
2134 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
2135
2136 /* init cache area */
2137 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
2138 for (uint32_t offDynMap = 0; offDynMap < MM_HYPER_DYNAMIC_SIZE; offDynMap += PAGE_SIZE)
2139 {
2140 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + offDynMap, HCPhysDummy, PAGE_SIZE, 0);
2141 AssertRCReturn(rc, rc);
2142 }
2143
2144 /*
2145 * Determine the max physical address width (MAXPHYADDR) and apply it to
2146 * all the mask members and stuff.
2147 */
2148 uint32_t cMaxPhysAddrWidth;
2149 uint32_t uMaxExtLeaf = ASMCpuId_EAX(0x80000000);
2150 if ( uMaxExtLeaf >= 0x80000008
2151 && uMaxExtLeaf <= 0x80000fff)
2152 {
2153 cMaxPhysAddrWidth = ASMCpuId_EAX(0x80000008) & 0xff;
2154 LogRel(("PGM: The CPU physical address width is %u bits\n", cMaxPhysAddrWidth));
2155 cMaxPhysAddrWidth = RT_MIN(52, cMaxPhysAddrWidth);
2156 pVM->pgm.s.fLessThan52PhysicalAddressBits = cMaxPhysAddrWidth < 52;
2157 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 52; iBit++)
2158 pVM->pgm.s.HCPhysInvMmioPg |= RT_BIT_64(iBit);
2159 }
2160 else
2161 {
2162 LogRel(("PGM: ASSUMING CPU physical address width of 48 bits (uMaxExtLeaf=%#x)\n", uMaxExtLeaf));
2163 cMaxPhysAddrWidth = 48;
2164 pVM->pgm.s.fLessThan52PhysicalAddressBits = true;
2165 pVM->pgm.s.HCPhysInvMmioPg |= UINT64_C(0x000f0000000000);
2166 }
2167
2168 pVM->pgm.s.GCPhysInvAddrMask = 0;
2169 for (uint32_t iBit = cMaxPhysAddrWidth; iBit < 64; iBit++)
2170 pVM->pgm.s.GCPhysInvAddrMask |= RT_BIT_64(iBit);
2171
2172 /*
2173 * Initialize the invalid paging entry masks, assuming NX is disabled.
2174 */
2175 uint64_t fMbzPageFrameMask = pVM->pgm.s.GCPhysInvAddrMask & UINT64_C(0x000ffffffffff000);
2176 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2177 {
2178 PVMCPU pVCpu = &pVM->aCpus[iCpu];
2179
2180 /** @todo The manuals are not entirely clear whether the physical
2181 * address width is relevant. See table 5-9 in the intel
2182 * manual vs the PDE4M descriptions. Write testcase (NP). */
2183 pVCpu->pgm.s.fGst32BitMbzBigPdeMask = ((uint32_t)(fMbzPageFrameMask >> (32 - 13)) & X86_PDE4M_PG_HIGH_MASK)
2184 | X86_PDE4M_MBZ_MASK;
2185
2186 pVCpu->pgm.s.fGstPaeMbzPteMask = fMbzPageFrameMask | X86_PTE_PAE_MBZ_MASK_NO_NX;
2187 pVCpu->pgm.s.fGstPaeMbzPdeMask = fMbzPageFrameMask | X86_PDE_PAE_MBZ_MASK_NO_NX;
2188 pVCpu->pgm.s.fGstPaeMbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_PAE_MBZ_MASK_NO_NX;
2189 pVCpu->pgm.s.fGstPaeMbzPdpeMask = fMbzPageFrameMask | X86_PDPE_PAE_MBZ_MASK;
2190
2191 pVCpu->pgm.s.fGstAmd64MbzPteMask = fMbzPageFrameMask | X86_PTE_LM_MBZ_MASK_NO_NX;
2192 pVCpu->pgm.s.fGstAmd64MbzPdeMask = fMbzPageFrameMask | X86_PDE_LM_MBZ_MASK_NX;
2193 pVCpu->pgm.s.fGstAmd64MbzBigPdeMask = fMbzPageFrameMask | X86_PDE2M_LM_MBZ_MASK_NX;
2194 pVCpu->pgm.s.fGstAmd64MbzPdpeMask = fMbzPageFrameMask | X86_PDPE_LM_MBZ_MASK_NO_NX;
2195 pVCpu->pgm.s.fGstAmd64MbzBigPdpeMask = fMbzPageFrameMask | X86_PDPE1G_LM_MBZ_MASK_NO_NX;
2196 pVCpu->pgm.s.fGstAmd64MbzPml4eMask = fMbzPageFrameMask | X86_PML4E_MBZ_MASK_NO_NX;
2197
2198 pVCpu->pgm.s.fGst64ShadowedPteMask = X86_PTE_P | X86_PTE_RW | X86_PTE_US | X86_PTE_G | X86_PTE_A | X86_PTE_D;
2199 pVCpu->pgm.s.fGst64ShadowedPdeMask = X86_PDE_P | X86_PDE_RW | X86_PDE_US | X86_PDE_A;
2200 pVCpu->pgm.s.fGst64ShadowedBigPdeMask = X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_A;
2201 pVCpu->pgm.s.fGst64ShadowedBigPde4PteMask =
2202 X86_PDE4M_P | X86_PDE4M_RW | X86_PDE4M_US | X86_PDE4M_G | X86_PDE4M_A | X86_PDE4M_D;
2203 pVCpu->pgm.s.fGstAmd64ShadowedPdpeMask = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A;
2204 pVCpu->pgm.s.fGstAmd64ShadowedPml4eMask = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A;
2205 }
2206
2207 /*
2208 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
2209 * Intel only goes up to 36 bits, so we stick to 36 as well.
2210 * Update: More recent intel manuals specifies 40 bits just like AMD.
2211 */
2212 uint32_t u32Dummy, u32Features;
2213 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
2214 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
2215 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(RT_MAX(36, cMaxPhysAddrWidth)) - 1;
2216 else
2217 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
2218
2219 /*
2220 * Allocate memory if we're supposed to do that.
2221 */
2222 if (pVM->pgm.s.fRamPreAlloc)
2223 rc = pgmR3PhysRamPreAllocate(pVM);
2224
2225 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2226 return rc;
2227}
2228
2229
2230/**
2231 * Init phase completed callback.
2232 *
2233 * @returns VBox status code.
2234 * @param pVM Pointer to the VM.
2235 * @param enmWhat What has been completed.
2236 * @thread EMT(0)
2237 */
2238VMMR3_INT_DECL(int) PGMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2239{
2240 switch (enmWhat)
2241 {
2242 case VMINITCOMPLETED_HM:
2243#ifdef VBOX_WITH_PCI_PASSTHROUGH
2244 if (pVM->pgm.s.fPciPassthrough)
2245 {
2246 AssertLogRelReturn(pVM->pgm.s.fRamPreAlloc, VERR_PCI_PASSTHROUGH_NO_RAM_PREALLOC);
2247 AssertLogRelReturn(HMIsEnabled(pVM), VERR_PCI_PASSTHROUGH_NO_HM);
2248 AssertLogRelReturn(HMIsNestedPagingActive(pVM), VERR_PCI_PASSTHROUGH_NO_NESTED_PAGING);
2249
2250 /*
2251 * Report assignments to the IOMMU (hope that's good enough for now).
2252 */
2253 if (pVM->pgm.s.fPciPassthrough)
2254 {
2255 int rc = VMMR3CallR0(pVM, VMMR0_DO_PGM_PHYS_SETUP_IOMMU, 0, NULL);
2256 AssertRCReturn(rc, rc);
2257 }
2258 }
2259#else
2260 AssertLogRelReturn(!pVM->pgm.s.fPciPassthrough, VERR_PGM_PCI_PASSTHRU_MISCONFIG);
2261#endif
2262 break;
2263
2264 default:
2265 /* shut up gcc */
2266 break;
2267 }
2268
2269 return VINF_SUCCESS;
2270}
2271
2272
2273/**
2274 * Applies relocations to data and code managed by this component.
2275 *
2276 * This function will be called at init and whenever the VMM need to relocate it
2277 * self inside the GC.
2278 *
2279 * @param pVM The VM.
2280 * @param offDelta Relocation delta relative to old location.
2281 */
2282VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2283{
2284 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2285
2286 /*
2287 * Paging stuff.
2288 */
2289 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2290
2291 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2292
2293 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2294 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2295 {
2296 PVMCPU pVCpu = &pVM->aCpus[i];
2297
2298 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2299
2300 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2301 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2302 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2303 }
2304
2305 /*
2306 * Trees.
2307 */
2308 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2309
2310 /*
2311 * Ram ranges.
2312 */
2313 if (pVM->pgm.s.pRamRangesXR3)
2314 {
2315 /* Update the pSelfRC pointers and relink them. */
2316 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2317 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2318 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2319 pgmR3PhysRelinkRamRanges(pVM);
2320
2321 /* Flush the RC TLB. */
2322 for (unsigned i = 0; i < PGM_RAMRANGE_TLB_ENTRIES; i++)
2323 pVM->pgm.s.apRamRangesTlbRC[i] = NIL_RTRCPTR;
2324 }
2325
2326 /*
2327 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2328 * be mapped and thus not included in the above exercise.
2329 */
2330 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2331 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2332 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2333
2334 /*
2335 * Update the two page directories with all page table mappings.
2336 * (One or more of them have changed, that's why we're here.)
2337 */
2338 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2339 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2340 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2341
2342 /* Relocate GC addresses of Page Tables. */
2343 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2344 {
2345 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2346 {
2347 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2348 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2349 }
2350 }
2351
2352 /*
2353 * Dynamic page mapping area.
2354 */
2355 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2356 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2357 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2358
2359 if (pVM->pgm.s.pRCDynMap)
2360 {
2361 pVM->pgm.s.pRCDynMap += offDelta;
2362 PPGMRCDYNMAP pDynMap = (PPGMRCDYNMAP)MMHyperRCToCC(pVM, pVM->pgm.s.pRCDynMap);
2363
2364 pDynMap->paPages += offDelta;
2365 PPGMRCDYNMAPENTRY paPages = (PPGMRCDYNMAPENTRY)MMHyperRCToCC(pVM, pDynMap->paPages);
2366
2367 for (uint32_t iPage = 0; iPage < pDynMap->cPages; iPage++)
2368 {
2369 paPages[iPage].pvPage += offDelta;
2370 paPages[iPage].uPte.pLegacy += offDelta;
2371 paPages[iPage].uPte.pPae += offDelta;
2372 }
2373 }
2374
2375 /*
2376 * The Zero page.
2377 */
2378 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2379#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2380 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !HMIsEnabled(pVM));
2381#else
2382 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2383#endif
2384
2385 /*
2386 * Physical and virtual handlers.
2387 */
2388 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2389 pVM->pgm.s.pLastPhysHandlerRC = NIL_RTRCPTR;
2390 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2391 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2392
2393 /*
2394 * The page pool.
2395 */
2396 pgmR3PoolRelocate(pVM);
2397
2398#ifdef VBOX_WITH_STATISTICS
2399 /*
2400 * Statistics.
2401 */
2402 pVM->pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->pgm.s.pStatsR3);
2403 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2404 pVM->aCpus[iCpu].pgm.s.pStatsRC = MMHyperCCToRC(pVM, pVM->aCpus[iCpu].pgm.s.pStatsR3);
2405#endif
2406}
2407
2408
2409/**
2410 * Callback function for relocating a physical access handler.
2411 *
2412 * @returns 0 (continue enum)
2413 * @param pNode Pointer to a PGMPHYSHANDLER node.
2414 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2415 * not certain the delta will fit in a void pointer for all possible configs.
2416 */
2417static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2418{
2419 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2420 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2421 if (pHandler->pfnHandlerRC)
2422 pHandler->pfnHandlerRC += offDelta;
2423 if (pHandler->pvUserRC >= 0x10000)
2424 pHandler->pvUserRC += offDelta;
2425 return 0;
2426}
2427
2428
2429/**
2430 * Callback function for relocating a virtual access handler.
2431 *
2432 * @returns 0 (continue enum)
2433 * @param pNode Pointer to a PGMVIRTHANDLER node.
2434 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2435 * not certain the delta will fit in a void pointer for all possible configs.
2436 */
2437static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2438{
2439 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2440 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2441 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2442 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2443 Assert(pHandler->pfnHandlerRC);
2444 pHandler->pfnHandlerRC += offDelta;
2445 return 0;
2446}
2447
2448
2449/**
2450 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2451 *
2452 * @returns 0 (continue enum)
2453 * @param pNode Pointer to a PGMVIRTHANDLER node.
2454 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2455 * not certain the delta will fit in a void pointer for all possible configs.
2456 */
2457static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2458{
2459 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2460 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2461 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2462 Assert(pHandler->pfnHandlerRC);
2463 pHandler->pfnHandlerRC += offDelta;
2464 return 0;
2465}
2466
2467
2468/**
2469 * Resets a virtual CPU when unplugged.
2470 *
2471 * @param pVM Pointer to the VM.
2472 * @param pVCpu Pointer to the VMCPU.
2473 */
2474VMMR3DECL(void) PGMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2475{
2476 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2477 AssertRC(rc);
2478
2479 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2480 AssertRC(rc);
2481
2482 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2483
2484 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2485
2486 /*
2487 * Re-init other members.
2488 */
2489 pVCpu->pgm.s.fA20Enabled = true;
2490 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2491
2492 /*
2493 * Clear the FFs PGM owns.
2494 */
2495 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2496 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2497}
2498
2499
2500/**
2501 * The VM is being reset.
2502 *
2503 * For the PGM component this means that any PD write monitors
2504 * needs to be removed.
2505 *
2506 * @param pVM Pointer to the VM.
2507 */
2508VMMR3_INT_DECL(void) PGMR3Reset(PVM pVM)
2509{
2510 LogFlow(("PGMR3Reset:\n"));
2511 VM_ASSERT_EMT(pVM);
2512
2513 pgmLock(pVM);
2514
2515 /*
2516 * Unfix any fixed mappings and disable CR3 monitoring.
2517 */
2518 pVM->pgm.s.fMappingsFixed = false;
2519 pVM->pgm.s.fMappingsFixedRestored = false;
2520 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2521 pVM->pgm.s.cbMappingFixed = 0;
2522
2523 /*
2524 * Exit the guest paging mode before the pgm pool gets reset.
2525 * Important to clean up the amd64 case.
2526 */
2527 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2528 {
2529 PVMCPU pVCpu = &pVM->aCpus[i];
2530 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2531 AssertReleaseRC(rc);
2532 }
2533
2534#ifdef DEBUG
2535 DBGFR3_INFO_LOG(pVM, "mappings", NULL);
2536 DBGFR3_INFO_LOG(pVM, "handlers", "all nostat");
2537#endif
2538
2539 /*
2540 * Switch mode back to real mode. (before resetting the pgm pool!)
2541 */
2542 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2543 {
2544 PVMCPU pVCpu = &pVM->aCpus[i];
2545
2546 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2547 AssertReleaseRC(rc);
2548
2549 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2550 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cA20Changes);
2551 }
2552
2553 /*
2554 * Reset the shadow page pool.
2555 */
2556 pgmR3PoolReset(pVM);
2557
2558 /*
2559 * Re-init various other members and clear the FFs that PGM owns.
2560 */
2561 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2562 {
2563 PVMCPU pVCpu = &pVM->aCpus[i];
2564
2565 pVCpu->pgm.s.fGst32BitPageSizeExtension = false;
2566 PGMNotifyNxeChanged(pVCpu, false);
2567
2568 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2569 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2570
2571 if (!pVCpu->pgm.s.fA20Enabled)
2572 {
2573 pVCpu->pgm.s.fA20Enabled = true;
2574 pVCpu->pgm.s.GCPhysA20Mask = ~((RTGCPHYS)!pVCpu->pgm.s.fA20Enabled << 20);
2575#ifdef PGM_WITH_A20
2576 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL;
2577 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2578 pgmR3RefreshShadowModeAfterA20Change(pVCpu);
2579 HMFlushTLB(pVCpu);
2580#endif
2581 }
2582 }
2583
2584 pgmUnlock(pVM);
2585}
2586
2587
2588/**
2589 * Memory setup after VM construction or reset.
2590 *
2591 * @param pVM Pointer to the VM.
2592 * @param fAtReset Indicates the context, after reset if @c true or after
2593 * construction if @c false.
2594 */
2595VMMR3_INT_DECL(void) PGMR3MemSetup(PVM pVM, bool fAtReset)
2596{
2597 if (fAtReset)
2598 {
2599 pgmLock(pVM);
2600
2601 int rc = pgmR3PhysRamZeroAll(pVM);
2602 AssertReleaseRC(rc);
2603
2604 rc = pgmR3PhysRomReset(pVM);
2605 AssertReleaseRC(rc);
2606
2607 pgmUnlock(pVM);
2608 }
2609}
2610
2611
2612#ifdef VBOX_STRICT
2613/**
2614 * VM state change callback for clearing fNoMorePhysWrites after
2615 * a snapshot has been created.
2616 */
2617static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PUVM pUVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2618{
2619 if ( enmState == VMSTATE_RUNNING
2620 || enmState == VMSTATE_RESUMING)
2621 pUVM->pVM->pgm.s.fNoMorePhysWrites = false;
2622 NOREF(enmOldState); NOREF(pvUser);
2623}
2624#endif
2625
2626/**
2627 * Private API to reset fNoMorePhysWrites.
2628 */
2629VMMR3DECL(void) PGMR3ResetNoMorePhysWritesFlag(PVM pVM)
2630{
2631 pVM->pgm.s.fNoMorePhysWrites = false;
2632}
2633
2634/**
2635 * Terminates the PGM.
2636 *
2637 * @returns VBox status code.
2638 * @param pVM Pointer to VM structure.
2639 */
2640VMMR3DECL(int) PGMR3Term(PVM pVM)
2641{
2642 /* Must free shared pages here. */
2643 pgmLock(pVM);
2644 pgmR3PhysRamTerm(pVM);
2645 pgmR3PhysRomTerm(pVM);
2646 pgmUnlock(pVM);
2647
2648 PGMDeregisterStringFormatTypes();
2649 return PDMR3CritSectDelete(&pVM->pgm.s.CritSectX);
2650}
2651
2652
2653/**
2654 * Show paging mode.
2655 *
2656 * @param pVM Pointer to the VM.
2657 * @param pHlp The info helpers.
2658 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2659 */
2660static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2661{
2662 /* digest argument. */
2663 bool fGuest, fShadow, fHost;
2664 if (pszArgs)
2665 pszArgs = RTStrStripL(pszArgs);
2666 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2667 fShadow = fHost = fGuest = true;
2668 else
2669 {
2670 fShadow = fHost = fGuest = false;
2671 if (strstr(pszArgs, "guest"))
2672 fGuest = true;
2673 if (strstr(pszArgs, "shadow"))
2674 fShadow = true;
2675 if (strstr(pszArgs, "host"))
2676 fHost = true;
2677 }
2678
2679 /** @todo SMP support! */
2680 /* print info. */
2681 if (fGuest)
2682 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s (changed %RU64 times), A20 %s (changed %RU64 times)\n",
2683 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2684 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled", pVM->aCpus[0].pgm.s.cA20Changes.c);
2685 if (fShadow)
2686 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2687 if (fHost)
2688 {
2689 const char *psz;
2690 switch (pVM->pgm.s.enmHostMode)
2691 {
2692 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2693 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2694 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2695 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2696 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2697 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2698 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2699 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2700 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2701 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2702 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2703 default: psz = "unknown"; break;
2704 }
2705 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2706 }
2707}
2708
2709
2710/**
2711 * Dump registered MMIO ranges to the log.
2712 *
2713 * @param pVM Pointer to the VM.
2714 * @param pHlp The info helpers.
2715 * @param pszArgs Arguments, ignored.
2716 */
2717static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2718{
2719 NOREF(pszArgs);
2720 pHlp->pfnPrintf(pHlp,
2721 "RAM ranges (pVM=%p)\n"
2722 "%.*s %.*s\n",
2723 pVM,
2724 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2725 sizeof(RTHCPTR) * 2, "pvHC ");
2726
2727 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesXR3; pCur; pCur = pCur->pNextR3)
2728 pHlp->pfnPrintf(pHlp,
2729 "%RGp-%RGp %RHv %s\n",
2730 pCur->GCPhys,
2731 pCur->GCPhysLast,
2732 pCur->pvR3,
2733 pCur->pszDesc);
2734}
2735
2736
2737/**
2738 * Dump the page directory to the log.
2739 *
2740 * @param pVM Pointer to the VM.
2741 * @param pHlp The info helpers.
2742 * @param pszArgs Arguments, ignored.
2743 */
2744static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2745{
2746 /** @todo SMP support!! */
2747 PVMCPU pVCpu = &pVM->aCpus[0];
2748
2749/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2750 /* Big pages supported? */
2751 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2752
2753 /* Global pages supported? */
2754 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2755
2756 NOREF(pszArgs);
2757
2758 /*
2759 * Get page directory addresses.
2760 */
2761 pgmLock(pVM);
2762 PX86PD pPDSrc = pgmGstGet32bitPDPtr(pVCpu);
2763 Assert(pPDSrc);
2764
2765 /*
2766 * Iterate the page directory.
2767 */
2768 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2769 {
2770 X86PDE PdeSrc = pPDSrc->a[iPD];
2771 if (PdeSrc.n.u1Present)
2772 {
2773 if (PdeSrc.b.u1Size && fPSE)
2774 pHlp->pfnPrintf(pHlp,
2775 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2776 iPD,
2777 pgmGstGet4MBPhysPage(pVM, PdeSrc),
2778 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2779 else
2780 pHlp->pfnPrintf(pHlp,
2781 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2782 iPD,
2783 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2784 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2785 }
2786 }
2787 pgmUnlock(pVM);
2788}
2789
2790
2791/**
2792 * Service a VMMCALLRING3_PGM_LOCK call.
2793 *
2794 * @returns VBox status code.
2795 * @param pVM Pointer to the VM.
2796 */
2797VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2798{
2799 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSectX, true /* fHostCall */);
2800 AssertRC(rc);
2801 return rc;
2802}
2803
2804
2805/**
2806 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2807 *
2808 * @returns PGM_TYPE_*.
2809 * @param pgmMode The mode value to convert.
2810 */
2811DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2812{
2813 switch (pgmMode)
2814 {
2815 case PGMMODE_REAL: return PGM_TYPE_REAL;
2816 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2817 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2818 case PGMMODE_PAE:
2819 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2820 case PGMMODE_AMD64:
2821 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2822 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2823 case PGMMODE_EPT: return PGM_TYPE_EPT;
2824 default:
2825 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2826 }
2827}
2828
2829
2830/**
2831 * Gets the index into the paging mode data array of a SHW+GST mode.
2832 *
2833 * @returns PGM::paPagingData index.
2834 * @param uShwType The shadow paging mode type.
2835 * @param uGstType The guest paging mode type.
2836 */
2837DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2838{
2839 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2840 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2841 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2842 + (uGstType - PGM_TYPE_REAL);
2843}
2844
2845
2846/**
2847 * Gets the index into the paging mode data array of a SHW+GST mode.
2848 *
2849 * @returns PGM::paPagingData index.
2850 * @param enmShw The shadow paging mode.
2851 * @param enmGst The guest paging mode.
2852 */
2853DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2854{
2855 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2856 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2857 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2858}
2859
2860
2861/**
2862 * Calculates the max data index.
2863 * @returns The number of entries in the paging data array.
2864 */
2865DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2866{
2867 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2868}
2869
2870
2871/**
2872 * Initializes the paging mode data kept in PGM::paModeData.
2873 *
2874 * @param pVM Pointer to the VM.
2875 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2876 * This is used early in the init process to avoid trouble with PDM
2877 * not being initialized yet.
2878 */
2879static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2880{
2881 PPGMMODEDATA pModeData;
2882 int rc;
2883
2884 /*
2885 * Allocate the array on the first call.
2886 */
2887 if (!pVM->pgm.s.paModeData)
2888 {
2889 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2890 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2891 }
2892
2893 /*
2894 * Initialize the array entries.
2895 */
2896 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2897 pModeData->uShwType = PGM_TYPE_32BIT;
2898 pModeData->uGstType = PGM_TYPE_REAL;
2899 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2900 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2901 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2902
2903 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2904 pModeData->uShwType = PGM_TYPE_32BIT;
2905 pModeData->uGstType = PGM_TYPE_PROT;
2906 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2907 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2908 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2909
2910 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2911 pModeData->uShwType = PGM_TYPE_32BIT;
2912 pModeData->uGstType = PGM_TYPE_32BIT;
2913 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2914 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2915 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2916
2917 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2918 pModeData->uShwType = PGM_TYPE_PAE;
2919 pModeData->uGstType = PGM_TYPE_REAL;
2920 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2921 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2922 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2923
2924 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2925 pModeData->uShwType = PGM_TYPE_PAE;
2926 pModeData->uGstType = PGM_TYPE_PROT;
2927 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2928 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2929 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2930
2931 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2932 pModeData->uShwType = PGM_TYPE_PAE;
2933 pModeData->uGstType = PGM_TYPE_32BIT;
2934 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2935 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2936 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2937
2938 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2939 pModeData->uShwType = PGM_TYPE_PAE;
2940 pModeData->uGstType = PGM_TYPE_PAE;
2941 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2942 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2943 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2944
2945#ifdef VBOX_WITH_64_BITS_GUESTS
2946 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2947 pModeData->uShwType = PGM_TYPE_AMD64;
2948 pModeData->uGstType = PGM_TYPE_AMD64;
2949 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2950 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2951 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2952#endif
2953
2954 /* The nested paging mode. */
2955 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2956 pModeData->uShwType = PGM_TYPE_NESTED;
2957 pModeData->uGstType = PGM_TYPE_REAL;
2958 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2959 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2960
2961 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2962 pModeData->uShwType = PGM_TYPE_NESTED;
2963 pModeData->uGstType = PGM_TYPE_PROT;
2964 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2965 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2966
2967 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2968 pModeData->uShwType = PGM_TYPE_NESTED;
2969 pModeData->uGstType = PGM_TYPE_32BIT;
2970 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2971 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2972
2973 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2974 pModeData->uShwType = PGM_TYPE_NESTED;
2975 pModeData->uGstType = PGM_TYPE_PAE;
2976 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2977 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2978
2979#ifdef VBOX_WITH_64_BITS_GUESTS
2980 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2981 pModeData->uShwType = PGM_TYPE_NESTED;
2982 pModeData->uGstType = PGM_TYPE_AMD64;
2983 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2984 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2985#endif
2986
2987 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2988 switch (pVM->pgm.s.enmHostMode)
2989 {
2990#if HC_ARCH_BITS == 32
2991 case SUPPAGINGMODE_32_BIT:
2992 case SUPPAGINGMODE_32_BIT_GLOBAL:
2993 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2994 {
2995 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2996 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2997 }
2998# ifdef VBOX_WITH_64_BITS_GUESTS
2999 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3000 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3001# endif
3002 break;
3003
3004 case SUPPAGINGMODE_PAE:
3005 case SUPPAGINGMODE_PAE_NX:
3006 case SUPPAGINGMODE_PAE_GLOBAL:
3007 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3008 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3009 {
3010 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3011 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3012 }
3013# ifdef VBOX_WITH_64_BITS_GUESTS
3014 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
3015 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3016# endif
3017 break;
3018#endif /* HC_ARCH_BITS == 32 */
3019
3020#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
3021 case SUPPAGINGMODE_AMD64:
3022 case SUPPAGINGMODE_AMD64_GLOBAL:
3023 case SUPPAGINGMODE_AMD64_NX:
3024 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3025# ifdef VBOX_WITH_64_BITS_GUESTS
3026 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
3027# else
3028 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
3029# endif
3030 {
3031 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
3032 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3033 }
3034 break;
3035#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
3036
3037 default:
3038 AssertFailed();
3039 break;
3040 }
3041
3042 /* Extended paging (EPT) / Intel VT-x */
3043 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
3044 pModeData->uShwType = PGM_TYPE_EPT;
3045 pModeData->uGstType = PGM_TYPE_REAL;
3046 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3047 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3048 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3049
3050 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
3051 pModeData->uShwType = PGM_TYPE_EPT;
3052 pModeData->uGstType = PGM_TYPE_PROT;
3053 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3054 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3055 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3056
3057 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
3058 pModeData->uShwType = PGM_TYPE_EPT;
3059 pModeData->uGstType = PGM_TYPE_32BIT;
3060 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3061 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3062 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3063
3064 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
3065 pModeData->uShwType = PGM_TYPE_EPT;
3066 pModeData->uGstType = PGM_TYPE_PAE;
3067 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3068 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3069 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3070
3071#ifdef VBOX_WITH_64_BITS_GUESTS
3072 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
3073 pModeData->uShwType = PGM_TYPE_EPT;
3074 pModeData->uGstType = PGM_TYPE_AMD64;
3075 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3076 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3077 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
3078#endif
3079 return VINF_SUCCESS;
3080}
3081
3082
3083/**
3084 * Switch to different (or relocated in the relocate case) mode data.
3085 *
3086 * @param pVM Pointer to the VM.
3087 * @param pVCpu Pointer to the VMCPU.
3088 * @param enmShw The shadow paging mode.
3089 * @param enmGst The guest paging mode.
3090 */
3091static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
3092{
3093 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
3094
3095 Assert(pModeData->uGstType == pgmModeToType(enmGst));
3096 Assert(pModeData->uShwType == pgmModeToType(enmShw));
3097
3098 /* shadow */
3099 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
3100 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
3101 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
3102 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
3103 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
3104
3105 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
3106 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
3107
3108 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
3109 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
3110
3111
3112 /* guest */
3113 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
3114 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
3115 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
3116 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
3117 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
3118 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
3119 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
3120 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
3121 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
3122 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
3123 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
3124 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
3125
3126 /* both */
3127 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
3128 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
3129 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
3130 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
3131 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
3132 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
3133#ifdef VBOX_STRICT
3134 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
3135#endif
3136 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
3137 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
3138
3139 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
3140 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
3141 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
3142 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
3143 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
3144#ifdef VBOX_STRICT
3145 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
3146#endif
3147 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
3148 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
3149
3150 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
3151 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
3152 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
3153 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
3154 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
3155#ifdef VBOX_STRICT
3156 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
3157#endif
3158 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
3159 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
3160}
3161
3162
3163/**
3164 * Calculates the shadow paging mode.
3165 *
3166 * @returns The shadow paging mode.
3167 * @param pVM Pointer to the VM.
3168 * @param enmGuestMode The guest mode.
3169 * @param enmHostMode The host mode.
3170 * @param enmShadowMode The current shadow mode.
3171 * @param penmSwitcher Where to store the switcher to use.
3172 * VMMSWITCHER_INVALID means no change.
3173 */
3174static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
3175{
3176 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
3177 switch (enmGuestMode)
3178 {
3179 /*
3180 * When switching to real or protected mode we don't change
3181 * anything since it's likely that we'll switch back pretty soon.
3182 *
3183 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
3184 * and is supposed to determine which shadow paging and switcher to
3185 * use during init.
3186 */
3187 case PGMMODE_REAL:
3188 case PGMMODE_PROTECTED:
3189 if ( enmShadowMode != PGMMODE_INVALID
3190 && !HMIsEnabled(pVM) /* always switch in hm mode! */)
3191 break; /* (no change) */
3192
3193 switch (enmHostMode)
3194 {
3195 case SUPPAGINGMODE_32_BIT:
3196 case SUPPAGINGMODE_32_BIT_GLOBAL:
3197 enmShadowMode = PGMMODE_32_BIT;
3198 enmSwitcher = VMMSWITCHER_32_TO_32;
3199 break;
3200
3201 case SUPPAGINGMODE_PAE:
3202 case SUPPAGINGMODE_PAE_NX:
3203 case SUPPAGINGMODE_PAE_GLOBAL:
3204 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3205 enmShadowMode = PGMMODE_PAE;
3206 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3207#ifdef DEBUG_bird
3208 if (RTEnvExist("VBOX_32BIT"))
3209 {
3210 enmShadowMode = PGMMODE_32_BIT;
3211 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3212 }
3213#endif
3214 break;
3215
3216 case SUPPAGINGMODE_AMD64:
3217 case SUPPAGINGMODE_AMD64_GLOBAL:
3218 case SUPPAGINGMODE_AMD64_NX:
3219 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3220 enmShadowMode = PGMMODE_PAE;
3221 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3222#ifdef DEBUG_bird
3223 if (RTEnvExist("VBOX_32BIT"))
3224 {
3225 enmShadowMode = PGMMODE_32_BIT;
3226 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3227 }
3228#endif
3229 break;
3230
3231 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3232 }
3233 break;
3234
3235 case PGMMODE_32_BIT:
3236 switch (enmHostMode)
3237 {
3238 case SUPPAGINGMODE_32_BIT:
3239 case SUPPAGINGMODE_32_BIT_GLOBAL:
3240 enmShadowMode = PGMMODE_32_BIT;
3241 enmSwitcher = VMMSWITCHER_32_TO_32;
3242 break;
3243
3244 case SUPPAGINGMODE_PAE:
3245 case SUPPAGINGMODE_PAE_NX:
3246 case SUPPAGINGMODE_PAE_GLOBAL:
3247 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3248 enmShadowMode = PGMMODE_PAE;
3249 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3250#ifdef DEBUG_bird
3251 if (RTEnvExist("VBOX_32BIT"))
3252 {
3253 enmShadowMode = PGMMODE_32_BIT;
3254 enmSwitcher = VMMSWITCHER_PAE_TO_32;
3255 }
3256#endif
3257 break;
3258
3259 case SUPPAGINGMODE_AMD64:
3260 case SUPPAGINGMODE_AMD64_GLOBAL:
3261 case SUPPAGINGMODE_AMD64_NX:
3262 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3263 enmShadowMode = PGMMODE_PAE;
3264 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3265#ifdef DEBUG_bird
3266 if (RTEnvExist("VBOX_32BIT"))
3267 {
3268 enmShadowMode = PGMMODE_32_BIT;
3269 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
3270 }
3271#endif
3272 break;
3273
3274 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3275 }
3276 break;
3277
3278 case PGMMODE_PAE:
3279 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
3280 switch (enmHostMode)
3281 {
3282 case SUPPAGINGMODE_32_BIT:
3283 case SUPPAGINGMODE_32_BIT_GLOBAL:
3284 enmShadowMode = PGMMODE_PAE;
3285 enmSwitcher = VMMSWITCHER_32_TO_PAE;
3286 break;
3287
3288 case SUPPAGINGMODE_PAE:
3289 case SUPPAGINGMODE_PAE_NX:
3290 case SUPPAGINGMODE_PAE_GLOBAL:
3291 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3292 enmShadowMode = PGMMODE_PAE;
3293 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
3294 break;
3295
3296 case SUPPAGINGMODE_AMD64:
3297 case SUPPAGINGMODE_AMD64_GLOBAL:
3298 case SUPPAGINGMODE_AMD64_NX:
3299 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3300 enmShadowMode = PGMMODE_PAE;
3301 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
3302 break;
3303
3304 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3305 }
3306 break;
3307
3308 case PGMMODE_AMD64:
3309 case PGMMODE_AMD64_NX:
3310 switch (enmHostMode)
3311 {
3312 case SUPPAGINGMODE_32_BIT:
3313 case SUPPAGINGMODE_32_BIT_GLOBAL:
3314 enmShadowMode = PGMMODE_AMD64;
3315 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3316 break;
3317
3318 case SUPPAGINGMODE_PAE:
3319 case SUPPAGINGMODE_PAE_NX:
3320 case SUPPAGINGMODE_PAE_GLOBAL:
3321 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3322 enmShadowMode = PGMMODE_AMD64;
3323 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3324 break;
3325
3326 case SUPPAGINGMODE_AMD64:
3327 case SUPPAGINGMODE_AMD64_GLOBAL:
3328 case SUPPAGINGMODE_AMD64_NX:
3329 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3330 enmShadowMode = PGMMODE_AMD64;
3331 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3332 break;
3333
3334 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3335 }
3336 break;
3337
3338
3339 default:
3340 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3341 *penmSwitcher = VMMSWITCHER_INVALID;
3342 return PGMMODE_INVALID;
3343 }
3344 /* Override the shadow mode is nested paging is active. */
3345 pVM->pgm.s.fNestedPaging = HMIsNestedPagingActive(pVM);
3346 if (pVM->pgm.s.fNestedPaging)
3347 enmShadowMode = HMGetShwPagingMode(pVM);
3348
3349 *penmSwitcher = enmSwitcher;
3350 return enmShadowMode;
3351}
3352
3353
3354/**
3355 * Performs the actual mode change.
3356 * This is called by PGMChangeMode and pgmR3InitPaging().
3357 *
3358 * @returns VBox status code. May suspend or power off the VM on error, but this
3359 * will trigger using FFs and not status codes.
3360 *
3361 * @param pVM Pointer to the VM.
3362 * @param pVCpu Pointer to the VMCPU.
3363 * @param enmGuestMode The new guest mode. This is assumed to be different from
3364 * the current mode.
3365 */
3366VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3367{
3368#if HC_ARCH_BITS == 32
3369 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3370#endif
3371 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3372
3373 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3374 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3375
3376 /*
3377 * Calc the shadow mode and switcher.
3378 */
3379 VMMSWITCHER enmSwitcher;
3380 PGMMODE enmShadowMode;
3381 enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3382
3383#ifdef VBOX_WITH_RAW_MODE
3384 if ( enmSwitcher != VMMSWITCHER_INVALID
3385 && !HMIsEnabled(pVM))
3386 {
3387 /*
3388 * Select new switcher.
3389 */
3390 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3391 if (RT_FAILURE(rc))
3392 {
3393 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3394 return rc;
3395 }
3396 }
3397#endif
3398
3399 /*
3400 * Exit old mode(s).
3401 */
3402#if HC_ARCH_BITS == 32
3403 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3404 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3405 && enmShadowMode == PGMMODE_NESTED);
3406#else
3407 const bool fForceShwEnterExit = false;
3408#endif
3409 /* shadow */
3410 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3411 || fForceShwEnterExit)
3412 {
3413 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3414 if (PGM_SHW_PFN(Exit, pVCpu))
3415 {
3416 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3417 if (RT_FAILURE(rc))
3418 {
3419 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3420 return rc;
3421 }
3422 }
3423
3424 }
3425 else
3426 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3427
3428 /* guest */
3429 if (PGM_GST_PFN(Exit, pVCpu))
3430 {
3431 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3432 if (RT_FAILURE(rc))
3433 {
3434 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3435 return rc;
3436 }
3437 }
3438
3439 /*
3440 * Load new paging mode data.
3441 */
3442 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3443
3444 /*
3445 * Enter new shadow mode (if changed).
3446 */
3447 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3448 || fForceShwEnterExit)
3449 {
3450 int rc;
3451 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3452 switch (enmShadowMode)
3453 {
3454 case PGMMODE_32_BIT:
3455 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3456 break;
3457 case PGMMODE_PAE:
3458 case PGMMODE_PAE_NX:
3459 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3460 break;
3461 case PGMMODE_AMD64:
3462 case PGMMODE_AMD64_NX:
3463 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3464 break;
3465 case PGMMODE_NESTED:
3466 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3467 break;
3468 case PGMMODE_EPT:
3469 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3470 break;
3471 case PGMMODE_REAL:
3472 case PGMMODE_PROTECTED:
3473 default:
3474 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3475 return VERR_INTERNAL_ERROR;
3476 }
3477 if (RT_FAILURE(rc))
3478 {
3479 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3480 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3481 return rc;
3482 }
3483 }
3484
3485 /*
3486 * Always flag the necessary updates
3487 */
3488 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3489
3490 /*
3491 * Enter the new guest and shadow+guest modes.
3492 */
3493 int rc = -1;
3494 int rc2 = -1;
3495 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3496 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3497 switch (enmGuestMode)
3498 {
3499 case PGMMODE_REAL:
3500 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3501 switch (pVCpu->pgm.s.enmShadowMode)
3502 {
3503 case PGMMODE_32_BIT:
3504 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3505 break;
3506 case PGMMODE_PAE:
3507 case PGMMODE_PAE_NX:
3508 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3509 break;
3510 case PGMMODE_NESTED:
3511 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3512 break;
3513 case PGMMODE_EPT:
3514 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3515 break;
3516 case PGMMODE_AMD64:
3517 case PGMMODE_AMD64_NX:
3518 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3519 default: AssertFailed(); break;
3520 }
3521 break;
3522
3523 case PGMMODE_PROTECTED:
3524 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3525 switch (pVCpu->pgm.s.enmShadowMode)
3526 {
3527 case PGMMODE_32_BIT:
3528 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3529 break;
3530 case PGMMODE_PAE:
3531 case PGMMODE_PAE_NX:
3532 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3533 break;
3534 case PGMMODE_NESTED:
3535 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3536 break;
3537 case PGMMODE_EPT:
3538 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3539 break;
3540 case PGMMODE_AMD64:
3541 case PGMMODE_AMD64_NX:
3542 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3543 default: AssertFailed(); break;
3544 }
3545 break;
3546
3547 case PGMMODE_32_BIT:
3548 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3549 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3550 switch (pVCpu->pgm.s.enmShadowMode)
3551 {
3552 case PGMMODE_32_BIT:
3553 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3554 break;
3555 case PGMMODE_PAE:
3556 case PGMMODE_PAE_NX:
3557 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3558 break;
3559 case PGMMODE_NESTED:
3560 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3561 break;
3562 case PGMMODE_EPT:
3563 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3564 break;
3565 case PGMMODE_AMD64:
3566 case PGMMODE_AMD64_NX:
3567 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3568 default: AssertFailed(); break;
3569 }
3570 break;
3571
3572 case PGMMODE_PAE_NX:
3573 case PGMMODE_PAE:
3574 {
3575 uint32_t u32Dummy, u32Features;
3576
3577 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3578 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3579 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3580 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3581
3582 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3583 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3584 switch (pVCpu->pgm.s.enmShadowMode)
3585 {
3586 case PGMMODE_PAE:
3587 case PGMMODE_PAE_NX:
3588 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3589 break;
3590 case PGMMODE_NESTED:
3591 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3592 break;
3593 case PGMMODE_EPT:
3594 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3595 break;
3596 case PGMMODE_32_BIT:
3597 case PGMMODE_AMD64:
3598 case PGMMODE_AMD64_NX:
3599 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3600 default: AssertFailed(); break;
3601 }
3602 break;
3603 }
3604
3605#ifdef VBOX_WITH_64_BITS_GUESTS
3606 case PGMMODE_AMD64_NX:
3607 case PGMMODE_AMD64:
3608 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3609 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3610 switch (pVCpu->pgm.s.enmShadowMode)
3611 {
3612 case PGMMODE_AMD64:
3613 case PGMMODE_AMD64_NX:
3614 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3615 break;
3616 case PGMMODE_NESTED:
3617 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3618 break;
3619 case PGMMODE_EPT:
3620 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3621 break;
3622 case PGMMODE_32_BIT:
3623 case PGMMODE_PAE:
3624 case PGMMODE_PAE_NX:
3625 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3626 default: AssertFailed(); break;
3627 }
3628 break;
3629#endif
3630
3631 default:
3632 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3633 rc = VERR_NOT_IMPLEMENTED;
3634 break;
3635 }
3636
3637 /* status codes. */
3638 AssertRC(rc);
3639 AssertRC(rc2);
3640 if (RT_SUCCESS(rc))
3641 {
3642 rc = rc2;
3643 if (RT_SUCCESS(rc)) /* no informational status codes. */
3644 rc = VINF_SUCCESS;
3645 }
3646
3647 /* Notify HM as well. */
3648 HMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3649 return rc;
3650}
3651
3652
3653/**
3654 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3655 *
3656 * @returns VBox status code, fully asserted.
3657 * @param pVCpu Pointer to the VMCPU.
3658 */
3659int pgmR3ExitShadowModeBeforePoolFlush(PVMCPU pVCpu)
3660{
3661 /* Unmap the old CR3 value before flushing everything. */
3662 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3663 AssertRC(rc);
3664
3665 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3666 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3667 AssertRC(rc);
3668 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3669 return rc;
3670}
3671
3672
3673/**
3674 * Called by pgmPoolFlushAllInt after flushing the pool.
3675 *
3676 * @returns VBox status code, fully asserted.
3677 * @param pVM Pointer to the VM.
3678 * @param pVCpu Pointer to the VMCPU.
3679 */
3680int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3681{
3682 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3683 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3684 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3685 AssertRCReturn(rc, rc);
3686 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3687
3688 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3689 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3690 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3691 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3692 return rc;
3693}
3694
3695
3696/**
3697 * Called by PGMR3PhysSetA20 after changing the A20 state.
3698 *
3699 * @param pVCpu Pointer to the VMCPU.
3700 */
3701void pgmR3RefreshShadowModeAfterA20Change(PVMCPU pVCpu)
3702{
3703 /** @todo Probably doing a bit too much here. */
3704 int rc = pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
3705 AssertReleaseRC(rc);
3706 rc = pgmR3ReEnterShadowModeAfterPoolFlush(pVCpu->CTX_SUFF(pVM), pVCpu);
3707 AssertReleaseRC(rc);
3708}
3709
3710
3711#ifdef VBOX_WITH_DEBUGGER
3712
3713/**
3714 * @callback_method_impl{FNDBGCCMD, The '.pgmerror' and '.pgmerroroff' commands.}
3715 */
3716static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3717{
3718 /*
3719 * Validate input.
3720 */
3721 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3722 PVM pVM = pUVM->pVM;
3723 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING));
3724
3725 if (!cArgs)
3726 {
3727 /*
3728 * Print the list of error injection locations with status.
3729 */
3730 DBGCCmdHlpPrintf(pCmdHlp, "PGM error inject locations:\n");
3731 DBGCCmdHlpPrintf(pCmdHlp, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
3732 }
3733 else
3734 {
3735 /*
3736 * String switch on where to inject the error.
3737 */
3738 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
3739 const char *pszWhere = paArgs[0].u.pszString;
3740 if (!strcmp(pszWhere, "handy"))
3741 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
3742 else
3743 return DBGCCmdHlpPrintf(pCmdHlp, "error: Invalid 'where' value: %s.\n", pszWhere);
3744 DBGCCmdHlpPrintf(pCmdHlp, "done\n");
3745 }
3746 return VINF_SUCCESS;
3747}
3748
3749
3750/**
3751 * @callback_method_impl{FNDBGCCMD, The '.pgmsync' command.}
3752 */
3753static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3754{
3755 /*
3756 * Validate input.
3757 */
3758 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3759 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3760 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
3761 if (!pVCpu)
3762 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
3763
3764 /*
3765 * Force page directory sync.
3766 */
3767 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3768
3769 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Forcing page directory sync.\n");
3770 if (RT_FAILURE(rc))
3771 return rc;
3772
3773 return VINF_SUCCESS;
3774}
3775
3776#ifdef VBOX_STRICT
3777
3778/**
3779 * EMT callback for pgmR3CmdAssertCR3.
3780 *
3781 * @returns VBox status code.
3782 * @param pUVM The user mode VM handle.
3783 * @param pcErrors Where to return the error count.
3784 */
3785static DECLCALLBACK(int) pgmR3CmdAssertCR3EmtWorker(PUVM pUVM, unsigned *pcErrors)
3786{
3787 PVM pVM = pUVM->pVM;
3788 VM_ASSERT_VALID_EXT_RETURN(pVM, VERR_INVALID_VM_HANDLE);
3789 PVMCPU pVCpu = VMMGetCpu(pVM);
3790
3791 *pcErrors = PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
3792
3793 return VINF_SUCCESS;
3794}
3795
3796
3797/**
3798 * @callback_method_impl{FNDBGCCMD, The '.pgmassertcr3' command.}
3799 */
3800static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3801{
3802 /*
3803 * Validate input.
3804 */
3805 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3806 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3807
3808 int rc = DBGCCmdHlpPrintf(pCmdHlp, "Checking shadow CR3 page tables for consistency.\n");
3809 if (RT_FAILURE(rc))
3810 return rc;
3811
3812 unsigned cErrors = 0;
3813 rc = VMR3ReqCallWaitU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp), (PFNRT)pgmR3CmdAssertCR3EmtWorker, 2, pUVM, &cErrors);
3814 if (RT_FAILURE(rc))
3815 return DBGCCmdHlpFail(pCmdHlp, pCmd, "VMR3ReqCallWaitU failed: %Rrc", rc);
3816 if (cErrors > 0)
3817 return DBGCCmdHlpFail(pCmdHlp, pCmd, "PGMAssertCR3: %u error(s)", cErrors);
3818 return DBGCCmdHlpPrintf(pCmdHlp, "PGMAssertCR3: OK\n");
3819}
3820
3821#endif /* VBOX_STRICT */
3822
3823/**
3824 * @callback_method_impl{FNDBGCCMD, The '.pgmsyncalways' command.}
3825 */
3826static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3827{
3828 /*
3829 * Validate input.
3830 */
3831 NOREF(pCmd); NOREF(paArgs); NOREF(cArgs);
3832 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3833 PVMCPU pVCpu = VMMR3GetCpuByIdU(pUVM, DBGCCmdHlpGetCurrentCpu(pCmdHlp));
3834 if (!pVCpu)
3835 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid CPU ID");
3836
3837 /*
3838 * Force page directory sync.
3839 */
3840 int rc;
3841 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
3842 {
3843 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
3844 rc = DBGCCmdHlpPrintf(pCmdHlp, "Disabled permanent forced page directory syncing.\n");
3845 }
3846 else
3847 {
3848 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
3849 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3850 rc = DBGCCmdHlpPrintf(pCmdHlp, "Enabled permanent forced page directory syncing.\n");
3851 }
3852 return rc;
3853}
3854
3855
3856/**
3857 * @callback_method_impl{FNDBGCCMD, The '.pgmphystofile' command.}
3858 */
3859static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PUVM pUVM, PCDBGCVAR paArgs, unsigned cArgs)
3860{
3861 /*
3862 * Validate input.
3863 */
3864 NOREF(pCmd);
3865 DBGC_CMDHLP_REQ_UVM_RET(pCmdHlp, pCmd, pUVM);
3866 PVM pVM = pUVM->pVM;
3867 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, cArgs == 1 || cArgs == 2);
3868 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 0, paArgs[0].enmType != DBGCVAR_TYPE_STRING);
3869 if (cArgs == 2)
3870 {
3871 DBGC_CMDHLP_ASSERT_PARSER_RET(pCmdHlp, pCmd, 1, paArgs[2].enmType != DBGCVAR_TYPE_STRING);
3872 if (strcmp(paArgs[1].u.pszString, "nozero"))
3873 return DBGCCmdHlpFail(pCmdHlp, pCmd, "Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
3874 }
3875 bool fIncZeroPgs = cArgs < 2;
3876
3877 /*
3878 * Open the output file and get the ram parameters.
3879 */
3880 RTFILE hFile;
3881 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
3882 if (RT_FAILURE(rc))
3883 return DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
3884
3885 uint32_t cbRamHole = 0;
3886 CFGMR3QueryU32Def(CFGMR3GetRootU(pUVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
3887 uint64_t cbRam = 0;
3888 CFGMR3QueryU64Def(CFGMR3GetRootU(pUVM), "RamSize", &cbRam, 0);
3889 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
3890
3891 /*
3892 * Dump the physical memory, page by page.
3893 */
3894 RTGCPHYS GCPhys = 0;
3895 char abZeroPg[PAGE_SIZE];
3896 RT_ZERO(abZeroPg);
3897
3898 pgmLock(pVM);
3899 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesXR3;
3900 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
3901 pRam = pRam->pNextR3)
3902 {
3903 /* fill the gap */
3904 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
3905 {
3906 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
3907 {
3908 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3909 GCPhys += PAGE_SIZE;
3910 }
3911 }
3912
3913 PCPGMPAGE pPage = &pRam->aPages[0];
3914 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
3915 {
3916 if ( PGM_PAGE_IS_ZERO(pPage)
3917 || PGM_PAGE_IS_BALLOONED(pPage))
3918 {
3919 if (fIncZeroPgs)
3920 {
3921 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3922 if (RT_FAILURE(rc))
3923 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3924 }
3925 }
3926 else
3927 {
3928 switch (PGM_PAGE_GET_TYPE(pPage))
3929 {
3930 case PGMPAGETYPE_RAM:
3931 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
3932 case PGMPAGETYPE_ROM:
3933 case PGMPAGETYPE_MMIO2:
3934 {
3935 void const *pvPage;
3936 PGMPAGEMAPLOCK Lock;
3937 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
3938 if (RT_SUCCESS(rc))
3939 {
3940 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
3941 PGMPhysReleasePageMappingLock(pVM, &Lock);
3942 if (RT_FAILURE(rc))
3943 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3944 }
3945 else
3946 DBGCCmdHlpPrintf(pCmdHlp, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3947 break;
3948 }
3949
3950 default:
3951 AssertFailed();
3952 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
3953 case PGMPAGETYPE_MMIO:
3954 if (fIncZeroPgs)
3955 {
3956 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
3957 if (RT_FAILURE(rc))
3958 DBGCCmdHlpPrintf(pCmdHlp, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
3959 }
3960 break;
3961 }
3962 }
3963
3964
3965 /* advance */
3966 GCPhys += PAGE_SIZE;
3967 pPage++;
3968 }
3969 }
3970 pgmUnlock(pVM);
3971
3972 RTFileClose(hFile);
3973 if (RT_SUCCESS(rc))
3974 return DBGCCmdHlpPrintf(pCmdHlp, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
3975 return VINF_SUCCESS;
3976}
3977
3978#endif /* VBOX_WITH_DEBUGGER */
3979
3980/**
3981 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
3982 */
3983typedef struct PGMCHECKINTARGS
3984{
3985 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
3986 PPGMPHYSHANDLER pPrevPhys;
3987 PPGMVIRTHANDLER pPrevVirt;
3988 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
3989 PVM pVM;
3990} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
3991
3992/**
3993 * Validate a node in the physical handler tree.
3994 *
3995 * @returns 0 on if ok, other wise 1.
3996 * @param pNode The handler node.
3997 * @param pvUser pVM.
3998 */
3999static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4000{
4001 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4002 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4003 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4004 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4005 AssertReleaseMsg( !pArgs->pPrevPhys
4006 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4007 ("pPrevPhys=%p %RGp-%RGp %s\n"
4008 " pCur=%p %RGp-%RGp %s\n",
4009 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4010 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4011 pArgs->pPrevPhys = pCur;
4012 return 0;
4013}
4014
4015
4016/**
4017 * Validate a node in the virtual handler tree.
4018 *
4019 * @returns 0 on if ok, other wise 1.
4020 * @param pNode The handler node.
4021 * @param pvUser pVM.
4022 */
4023static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4024{
4025 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4026 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4027 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4028 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4029 AssertReleaseMsg( !pArgs->pPrevVirt
4030 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4031 ("pPrevVirt=%p %RGv-%RGv %s\n"
4032 " pCur=%p %RGv-%RGv %s\n",
4033 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4034 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4035 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4036 {
4037 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4038 ("pCur=%p %RGv-%RGv %s\n"
4039 "iPage=%d offVirtHandle=%#x expected %#x\n",
4040 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4041 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4042 }
4043 pArgs->pPrevVirt = pCur;
4044 return 0;
4045}
4046
4047
4048/**
4049 * Validate a node in the virtual handler tree.
4050 *
4051 * @returns 0 on if ok, other wise 1.
4052 * @param pNode The handler node.
4053 * @param pvUser pVM.
4054 */
4055static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4056{
4057 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4058 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4059 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4060 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4061 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4062 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4063 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4064 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4065 " pCur=%p %RGp-%RGp\n",
4066 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4067 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4068 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4069 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4070 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4071 " pCur=%p %RGp-%RGp\n",
4072 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4073 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4074 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4075 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4076 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4077 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4078 {
4079 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4080 for (;;)
4081 {
4082 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4083 AssertReleaseMsg(pCur2 != pCur,
4084 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4085 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4086 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4087 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4088 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4089 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4090 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4091 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4092 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4093 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4094 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4095 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4096 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4097 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4098 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4099 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4100 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4101 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4102 break;
4103 }
4104 }
4105
4106 pArgs->pPrevPhys2Virt = pCur;
4107 return 0;
4108}
4109
4110
4111/**
4112 * Perform an integrity check on the PGM component.
4113 *
4114 * @returns VINF_SUCCESS if everything is fine.
4115 * @returns VBox error status after asserting on integrity breach.
4116 * @param pVM Pointer to the VM.
4117 */
4118VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4119{
4120 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4121
4122 /*
4123 * Check the trees.
4124 */
4125 int cErrors = 0;
4126 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4127 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4128 PGMCHECKINTARGS Args = s_LeftToRight;
4129 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4130 Args = s_RightToLeft;
4131 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4132 Args = s_LeftToRight;
4133 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4134 Args = s_RightToLeft;
4135 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4136 Args = s_LeftToRight;
4137 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4138 Args = s_RightToLeft;
4139 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4140 Args = s_LeftToRight;
4141 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4142 Args = s_RightToLeft;
4143 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4144
4145 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4146}
4147
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette