VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/NEMR3Native-linux.cpp@ 92521

最後變更 在這個檔案從92521是 92520,由 vboxsync 提交於 3 年 前

VMM/NEM-linux,EM: The interrupt injection code in emR3ForcedActions is ASSUMING that no interrupt state is external when it's considering calling TRPMR3InjectEvent. So, make sure the NEM-linux code import this state when returning to the EM loop and make sure we don't try inject more than one interrupt at a time. bugref:9044

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Author Date Id Revision
檔案大小: 104.9 KB
 
1/* $Id: NEMR3Native-linux.cpp 92520 2021-11-20 02:19:53Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-3 Linux backend.
4 */
5
6/*
7 * Copyright (C) 2021 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_NEM
23#define VMCPU_INCL_CPUM_GST_CTX
24#include <VBox/vmm/nem.h>
25#include <VBox/vmm/iem.h>
26#include <VBox/vmm/em.h>
27#include <VBox/vmm/apic.h>
28#include <VBox/vmm/pdm.h>
29#include <VBox/vmm/trpm.h>
30#include "NEMInternal.h"
31#include <VBox/vmm/vmcc.h>
32
33#include <iprt/alloca.h>
34#include <iprt/string.h>
35#include <iprt/system.h>
36
37#include <errno.h>
38#include <unistd.h>
39#include <sys/ioctl.h>
40#include <sys/fcntl.h>
41#include <sys/mman.h>
42#include <linux/kvm.h>
43
44/*
45 * Supply stuff missing from the kvm.h on the build box.
46 */
47#ifndef KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON /* since 5.4 */
48# define KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON 4
49#endif
50
51
52
53/**
54 * Worker for nemR3NativeInit that gets the hypervisor capabilities.
55 *
56 * @returns VBox status code.
57 * @param pVM The cross context VM structure.
58 * @param pErrInfo Where to always return error info.
59 */
60static int nemR3LnxInitCheckCapabilities(PVM pVM, PRTERRINFO pErrInfo)
61{
62 AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
63
64 /*
65 * Capabilities.
66 */
67 static const struct
68 {
69 const char *pszName;
70 int iCap;
71 uint32_t offNem : 24;
72 uint32_t cbNem : 3;
73 uint32_t fReqNonZero : 1;
74 uint32_t uReserved : 4;
75 } s_aCaps[] =
76 {
77#define CAP_ENTRY__L(a_Define) { #a_Define, a_Define, UINT32_C(0x00ffffff), 0, 0, 0 }
78#define CAP_ENTRY__S(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 0, 0 }
79#define CAP_ENTRY_MS(a_Define, a_Member) { #a_Define, a_Define, RT_UOFFSETOF(NEM, a_Member), RT_SIZEOFMEMB(NEM, a_Member), 1, 0 }
80#define CAP_ENTRY__U(a_Number) { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 0, 0 }
81#define CAP_ENTRY_ML(a_Number) { "KVM_CAP_" #a_Number, a_Number, UINT32_C(0x00ffffff), 0, 1, 0 }
82
83 CAP_ENTRY__L(KVM_CAP_IRQCHIP), /* 0 */
84 CAP_ENTRY_ML(KVM_CAP_HLT),
85 CAP_ENTRY__L(KVM_CAP_MMU_SHADOW_CACHE_CONTROL),
86 CAP_ENTRY_ML(KVM_CAP_USER_MEMORY),
87 CAP_ENTRY__L(KVM_CAP_SET_TSS_ADDR),
88 CAP_ENTRY__U(5),
89 CAP_ENTRY__L(KVM_CAP_VAPIC),
90 CAP_ENTRY__L(KVM_CAP_EXT_CPUID),
91 CAP_ENTRY__L(KVM_CAP_CLOCKSOURCE),
92 CAP_ENTRY__L(KVM_CAP_NR_VCPUS),
93 CAP_ENTRY_MS(KVM_CAP_NR_MEMSLOTS, cMaxMemSlots), /* 10 */
94 CAP_ENTRY__L(KVM_CAP_PIT),
95 CAP_ENTRY__L(KVM_CAP_NOP_IO_DELAY),
96 CAP_ENTRY__L(KVM_CAP_PV_MMU),
97 CAP_ENTRY__L(KVM_CAP_MP_STATE),
98 CAP_ENTRY__L(KVM_CAP_COALESCED_MMIO),
99 CAP_ENTRY__L(KVM_CAP_SYNC_MMU),
100 CAP_ENTRY__U(17),
101 CAP_ENTRY__L(KVM_CAP_IOMMU),
102 CAP_ENTRY__U(19), /* Buggy KVM_CAP_JOIN_MEMORY_REGIONS? */
103 CAP_ENTRY__U(20), /* Mon-working KVM_CAP_DESTROY_MEMORY_REGION? */
104 CAP_ENTRY__L(KVM_CAP_DESTROY_MEMORY_REGION_WORKS), /* 21 */
105 CAP_ENTRY__L(KVM_CAP_USER_NMI),
106#ifdef __KVM_HAVE_GUEST_DEBUG
107 CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG),
108#endif
109#ifdef __KVM_HAVE_PIT
110 CAP_ENTRY__L(KVM_CAP_REINJECT_CONTROL),
111#endif
112 CAP_ENTRY__L(KVM_CAP_IRQ_ROUTING),
113 CAP_ENTRY__L(KVM_CAP_IRQ_INJECT_STATUS),
114 CAP_ENTRY__U(27),
115 CAP_ENTRY__U(28),
116 CAP_ENTRY__L(KVM_CAP_ASSIGN_DEV_IRQ),
117 CAP_ENTRY__L(KVM_CAP_JOIN_MEMORY_REGIONS_WORKS), /* 30 */
118#ifdef __KVM_HAVE_MCE
119 CAP_ENTRY__L(KVM_CAP_MCE),
120#endif
121 CAP_ENTRY__L(KVM_CAP_IRQFD),
122#ifdef __KVM_HAVE_PIT
123 CAP_ENTRY__L(KVM_CAP_PIT2),
124#endif
125 CAP_ENTRY__L(KVM_CAP_SET_BOOT_CPU_ID),
126#ifdef __KVM_HAVE_PIT_STATE2
127 CAP_ENTRY__L(KVM_CAP_PIT_STATE2),
128#endif
129 CAP_ENTRY__L(KVM_CAP_IOEVENTFD),
130 CAP_ENTRY__L(KVM_CAP_SET_IDENTITY_MAP_ADDR),
131#ifdef __KVM_HAVE_XEN_HVM
132 CAP_ENTRY__L(KVM_CAP_XEN_HVM),
133#endif
134 CAP_ENTRY_ML(KVM_CAP_ADJUST_CLOCK),
135 CAP_ENTRY__L(KVM_CAP_INTERNAL_ERROR_DATA), /* 40 */
136#ifdef __KVM_HAVE_VCPU_EVENTS
137 CAP_ENTRY_ML(KVM_CAP_VCPU_EVENTS),
138#else
139 CAP_ENTRY_MU(41),
140#endif
141 CAP_ENTRY__L(KVM_CAP_S390_PSW),
142 CAP_ENTRY__L(KVM_CAP_PPC_SEGSTATE),
143 CAP_ENTRY__L(KVM_CAP_HYPERV),
144 CAP_ENTRY__L(KVM_CAP_HYPERV_VAPIC),
145 CAP_ENTRY__L(KVM_CAP_HYPERV_SPIN),
146 CAP_ENTRY__L(KVM_CAP_PCI_SEGMENT),
147 CAP_ENTRY__L(KVM_CAP_PPC_PAIRED_SINGLES),
148 CAP_ENTRY__L(KVM_CAP_INTR_SHADOW),
149#ifdef __KVM_HAVE_DEBUGREGS
150 CAP_ENTRY__L(KVM_CAP_DEBUGREGS), /* 50 */
151#endif
152 CAP_ENTRY__S(KVM_CAP_X86_ROBUST_SINGLESTEP, fRobustSingleStep),
153 CAP_ENTRY__L(KVM_CAP_PPC_OSI),
154 CAP_ENTRY__L(KVM_CAP_PPC_UNSET_IRQ),
155 CAP_ENTRY__L(KVM_CAP_ENABLE_CAP),
156#ifdef __KVM_HAVE_XSAVE
157 CAP_ENTRY_ML(KVM_CAP_XSAVE),
158#else
159 CAP_ENTRY_MU(55),
160#endif
161#ifdef __KVM_HAVE_XCRS
162 CAP_ENTRY_ML(KVM_CAP_XCRS),
163#else
164 CAP_ENTRY_MU(56),
165#endif
166 CAP_ENTRY__L(KVM_CAP_PPC_GET_PVINFO),
167 CAP_ENTRY__L(KVM_CAP_PPC_IRQ_LEVEL),
168 CAP_ENTRY__L(KVM_CAP_ASYNC_PF),
169 CAP_ENTRY__L(KVM_CAP_TSC_CONTROL), /* 60 */
170 CAP_ENTRY__L(KVM_CAP_GET_TSC_KHZ),
171 CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_SREGS),
172 CAP_ENTRY__L(KVM_CAP_SPAPR_TCE),
173 CAP_ENTRY__L(KVM_CAP_PPC_SMT),
174 CAP_ENTRY__L(KVM_CAP_PPC_RMA),
175 CAP_ENTRY__L(KVM_CAP_MAX_VCPUS),
176 CAP_ENTRY__L(KVM_CAP_PPC_HIOR),
177 CAP_ENTRY__L(KVM_CAP_PPC_PAPR),
178 CAP_ENTRY__L(KVM_CAP_SW_TLB),
179 CAP_ENTRY__L(KVM_CAP_ONE_REG), /* 70 */
180 CAP_ENTRY__L(KVM_CAP_S390_GMAP),
181 CAP_ENTRY__L(KVM_CAP_TSC_DEADLINE_TIMER),
182 CAP_ENTRY__L(KVM_CAP_S390_UCONTROL),
183 CAP_ENTRY__L(KVM_CAP_SYNC_REGS),
184 CAP_ENTRY__L(KVM_CAP_PCI_2_3),
185 CAP_ENTRY__L(KVM_CAP_KVMCLOCK_CTRL),
186 CAP_ENTRY__L(KVM_CAP_SIGNAL_MSI),
187 CAP_ENTRY__L(KVM_CAP_PPC_GET_SMMU_INFO),
188 CAP_ENTRY__L(KVM_CAP_S390_COW),
189 CAP_ENTRY__L(KVM_CAP_PPC_ALLOC_HTAB), /* 80 */
190 CAP_ENTRY__L(KVM_CAP_READONLY_MEM),
191 CAP_ENTRY__L(KVM_CAP_IRQFD_RESAMPLE),
192 CAP_ENTRY__L(KVM_CAP_PPC_BOOKE_WATCHDOG),
193 CAP_ENTRY__L(KVM_CAP_PPC_HTAB_FD),
194 CAP_ENTRY__L(KVM_CAP_S390_CSS_SUPPORT),
195 CAP_ENTRY__L(KVM_CAP_PPC_EPR),
196 CAP_ENTRY__L(KVM_CAP_ARM_PSCI),
197 CAP_ENTRY__L(KVM_CAP_ARM_SET_DEVICE_ADDR),
198 CAP_ENTRY__L(KVM_CAP_DEVICE_CTRL),
199 CAP_ENTRY__L(KVM_CAP_IRQ_MPIC), /* 90 */
200 CAP_ENTRY__L(KVM_CAP_PPC_RTAS),
201 CAP_ENTRY__L(KVM_CAP_IRQ_XICS),
202 CAP_ENTRY__L(KVM_CAP_ARM_EL1_32BIT),
203 CAP_ENTRY__L(KVM_CAP_SPAPR_MULTITCE),
204 CAP_ENTRY__L(KVM_CAP_EXT_EMUL_CPUID),
205 CAP_ENTRY__L(KVM_CAP_HYPERV_TIME),
206 CAP_ENTRY__L(KVM_CAP_IOAPIC_POLARITY_IGNORED),
207 CAP_ENTRY__L(KVM_CAP_ENABLE_CAP_VM),
208 CAP_ENTRY__L(KVM_CAP_S390_IRQCHIP),
209 CAP_ENTRY__L(KVM_CAP_IOEVENTFD_NO_LENGTH), /* 100 */
210 CAP_ENTRY__L(KVM_CAP_VM_ATTRIBUTES),
211 CAP_ENTRY__L(KVM_CAP_ARM_PSCI_0_2),
212 CAP_ENTRY__L(KVM_CAP_PPC_FIXUP_HCALL),
213 CAP_ENTRY__L(KVM_CAP_PPC_ENABLE_HCALL),
214 CAP_ENTRY__L(KVM_CAP_CHECK_EXTENSION_VM),
215 CAP_ENTRY__L(KVM_CAP_S390_USER_SIGP),
216 CAP_ENTRY__L(KVM_CAP_S390_VECTOR_REGISTERS),
217 CAP_ENTRY__L(KVM_CAP_S390_MEM_OP),
218 CAP_ENTRY__L(KVM_CAP_S390_USER_STSI),
219 CAP_ENTRY__L(KVM_CAP_S390_SKEYS), /* 110 */
220 CAP_ENTRY__L(KVM_CAP_MIPS_FPU),
221 CAP_ENTRY__L(KVM_CAP_MIPS_MSA),
222 CAP_ENTRY__L(KVM_CAP_S390_INJECT_IRQ),
223 CAP_ENTRY__L(KVM_CAP_S390_IRQ_STATE),
224 CAP_ENTRY__L(KVM_CAP_PPC_HWRNG),
225 CAP_ENTRY__L(KVM_CAP_DISABLE_QUIRKS),
226 CAP_ENTRY__L(KVM_CAP_X86_SMM),
227 CAP_ENTRY__L(KVM_CAP_MULTI_ADDRESS_SPACE),
228 CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_BPS),
229 CAP_ENTRY__L(KVM_CAP_GUEST_DEBUG_HW_WPS), /* 120 */
230 CAP_ENTRY__L(KVM_CAP_SPLIT_IRQCHIP),
231 CAP_ENTRY__L(KVM_CAP_IOEVENTFD_ANY_LENGTH),
232 CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC),
233 CAP_ENTRY__L(KVM_CAP_S390_RI),
234 CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_64),
235 CAP_ENTRY__L(KVM_CAP_ARM_PMU_V3),
236 CAP_ENTRY__L(KVM_CAP_VCPU_ATTRIBUTES),
237 CAP_ENTRY__L(KVM_CAP_MAX_VCPU_ID),
238 CAP_ENTRY__L(KVM_CAP_X2APIC_API),
239 CAP_ENTRY__L(KVM_CAP_S390_USER_INSTR0), /* 130 */
240 CAP_ENTRY__L(KVM_CAP_MSI_DEVID),
241 CAP_ENTRY__L(KVM_CAP_PPC_HTM),
242 CAP_ENTRY__L(KVM_CAP_SPAPR_RESIZE_HPT),
243 CAP_ENTRY__L(KVM_CAP_PPC_MMU_RADIX),
244 CAP_ENTRY__L(KVM_CAP_PPC_MMU_HASH_V3),
245 CAP_ENTRY__L(KVM_CAP_IMMEDIATE_EXIT),
246 CAP_ENTRY__L(KVM_CAP_MIPS_VZ),
247 CAP_ENTRY__L(KVM_CAP_MIPS_TE),
248 CAP_ENTRY__L(KVM_CAP_MIPS_64BIT),
249 CAP_ENTRY__L(KVM_CAP_S390_GS), /* 140 */
250 CAP_ENTRY__L(KVM_CAP_S390_AIS),
251 CAP_ENTRY__L(KVM_CAP_SPAPR_TCE_VFIO),
252 CAP_ENTRY__L(KVM_CAP_X86_DISABLE_EXITS),
253 CAP_ENTRY__L(KVM_CAP_ARM_USER_IRQ),
254 CAP_ENTRY__L(KVM_CAP_S390_CMMA_MIGRATION),
255 CAP_ENTRY__L(KVM_CAP_PPC_FWNMI),
256 CAP_ENTRY__L(KVM_CAP_PPC_SMT_POSSIBLE),
257 CAP_ENTRY__L(KVM_CAP_HYPERV_SYNIC2),
258 CAP_ENTRY__L(KVM_CAP_HYPERV_VP_INDEX),
259 CAP_ENTRY__L(KVM_CAP_S390_AIS_MIGRATION), /* 150 */
260 CAP_ENTRY__L(KVM_CAP_PPC_GET_CPU_CHAR),
261 CAP_ENTRY__L(KVM_CAP_S390_BPB),
262 CAP_ENTRY__L(KVM_CAP_GET_MSR_FEATURES),
263 CAP_ENTRY__L(KVM_CAP_HYPERV_EVENTFD),
264 CAP_ENTRY__L(KVM_CAP_HYPERV_TLBFLUSH),
265 CAP_ENTRY__L(KVM_CAP_S390_HPAGE_1M),
266 CAP_ENTRY__L(KVM_CAP_NESTED_STATE),
267 CAP_ENTRY__L(KVM_CAP_ARM_INJECT_SERROR_ESR),
268 CAP_ENTRY__L(KVM_CAP_MSR_PLATFORM_INFO),
269 CAP_ENTRY__L(KVM_CAP_PPC_NESTED_HV), /* 160 */
270 CAP_ENTRY__L(KVM_CAP_HYPERV_SEND_IPI),
271 CAP_ENTRY__L(KVM_CAP_COALESCED_PIO),
272 CAP_ENTRY__L(KVM_CAP_HYPERV_ENLIGHTENED_VMCS),
273 CAP_ENTRY__L(KVM_CAP_EXCEPTION_PAYLOAD),
274 CAP_ENTRY__L(KVM_CAP_ARM_VM_IPA_SIZE),
275 CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT),
276 CAP_ENTRY__L(KVM_CAP_HYPERV_CPUID),
277 CAP_ENTRY__L(KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2),
278 CAP_ENTRY__L(KVM_CAP_PPC_IRQ_XIVE),
279 CAP_ENTRY__L(KVM_CAP_ARM_SVE), /* 170 */
280 CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_ADDRESS),
281 CAP_ENTRY__L(KVM_CAP_ARM_PTRAUTH_GENERIC),
282 CAP_ENTRY__L(KVM_CAP_PMU_EVENT_FILTER),
283 CAP_ENTRY__L(KVM_CAP_ARM_IRQ_LINE_LAYOUT_2),
284 CAP_ENTRY__L(KVM_CAP_HYPERV_DIRECT_TLBFLUSH),
285 CAP_ENTRY__L(KVM_CAP_PPC_GUEST_DEBUG_SSTEP),
286 CAP_ENTRY__L(KVM_CAP_ARM_NISV_TO_USER),
287 CAP_ENTRY__L(KVM_CAP_ARM_INJECT_EXT_DABT),
288 CAP_ENTRY__L(KVM_CAP_S390_VCPU_RESETS),
289 CAP_ENTRY__L(KVM_CAP_S390_PROTECTED), /* 180 */
290 CAP_ENTRY__L(KVM_CAP_PPC_SECURE_GUEST),
291 CAP_ENTRY__L(KVM_CAP_HALT_POLL),
292 CAP_ENTRY__L(KVM_CAP_ASYNC_PF_INT),
293 CAP_ENTRY__L(KVM_CAP_LAST_CPU),
294 CAP_ENTRY__L(KVM_CAP_SMALLER_MAXPHYADDR),
295 CAP_ENTRY__L(KVM_CAP_S390_DIAG318),
296 CAP_ENTRY__L(KVM_CAP_STEAL_TIME),
297 CAP_ENTRY_ML(KVM_CAP_X86_USER_SPACE_MSR), /* (since 5.10) */
298 CAP_ENTRY_ML(KVM_CAP_X86_MSR_FILTER),
299 CAP_ENTRY__L(KVM_CAP_ENFORCE_PV_FEATURE_CPUID), /* 190 */
300 CAP_ENTRY__L(KVM_CAP_SYS_HYPERV_CPUID),
301 CAP_ENTRY__L(KVM_CAP_DIRTY_LOG_RING),
302 CAP_ENTRY__L(KVM_CAP_X86_BUS_LOCK_EXIT),
303 CAP_ENTRY__L(KVM_CAP_PPC_DAWR1),
304 CAP_ENTRY__L(KVM_CAP_SET_GUEST_DEBUG2),
305 CAP_ENTRY__L(KVM_CAP_SGX_ATTRIBUTE),
306 CAP_ENTRY__L(KVM_CAP_VM_COPY_ENC_CONTEXT_FROM),
307 CAP_ENTRY__L(KVM_CAP_PTP_KVM),
308 CAP_ENTRY__U(199),
309 CAP_ENTRY__U(200),
310 CAP_ENTRY__U(201),
311 CAP_ENTRY__U(202),
312 CAP_ENTRY__U(203),
313 CAP_ENTRY__U(204),
314 CAP_ENTRY__U(205),
315 CAP_ENTRY__U(206),
316 CAP_ENTRY__U(207),
317 CAP_ENTRY__U(208),
318 CAP_ENTRY__U(209),
319 CAP_ENTRY__U(210),
320 CAP_ENTRY__U(211),
321 CAP_ENTRY__U(212),
322 CAP_ENTRY__U(213),
323 CAP_ENTRY__U(214),
324 CAP_ENTRY__U(215),
325 CAP_ENTRY__U(216),
326 };
327
328 LogRel(("NEM: KVM capabilities (system):\n"));
329 int rcRet = VINF_SUCCESS;
330 for (unsigned i = 0; i < RT_ELEMENTS(s_aCaps); i++)
331 {
332 int rc = ioctl(pVM->nem.s.fdVm, KVM_CHECK_EXTENSION, s_aCaps[i].iCap);
333 if (rc >= 10)
334 LogRel(("NEM: %36s: %#x (%d)\n", s_aCaps[i].pszName, rc, rc));
335 else if (rc >= 0)
336 LogRel(("NEM: %36s: %d\n", s_aCaps[i].pszName, rc));
337 else
338 LogRel(("NEM: %s failed: %d/%d\n", s_aCaps[i].pszName, rc, errno));
339 switch (s_aCaps[i].cbNem)
340 {
341 case 0:
342 break;
343 case 1:
344 {
345 uint8_t *puValue = (uint8_t *)&pVM->nem.padding[s_aCaps[i].offNem];
346 AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
347 *puValue = (uint8_t)rc;
348 AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
349 break;
350 }
351 case 2:
352 {
353 uint16_t *puValue = (uint16_t *)&pVM->nem.padding[s_aCaps[i].offNem];
354 AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
355 *puValue = (uint16_t)rc;
356 AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
357 break;
358 }
359 case 4:
360 {
361 uint32_t *puValue = (uint32_t *)&pVM->nem.padding[s_aCaps[i].offNem];
362 AssertReturn(s_aCaps[i].offNem <= sizeof(NEM) - sizeof(*puValue), VERR_NEM_IPE_0);
363 *puValue = (uint32_t)rc;
364 AssertLogRelMsg((int)*puValue == rc, ("%s: %#x\n", s_aCaps[i].pszName, rc));
365 break;
366 }
367 default:
368 rcRet = RTErrInfoSetF(pErrInfo, VERR_NEM_IPE_0, "s_aCaps[%u] is bad: cbNem=%#x - %s",
369 i, s_aCaps[i].pszName, s_aCaps[i].cbNem);
370 AssertFailedReturn(rcRet);
371 }
372
373 /*
374 * Is a require non-zero entry zero or failing?
375 */
376 if (s_aCaps[i].fReqNonZero && rc <= 0)
377 rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE,
378 "Required capability '%s' is missing!", s_aCaps[i].pszName);
379 }
380
381 /*
382 * Get per VCpu KVM_RUN MMAP area size.
383 */
384 int rc = ioctl(pVM->nem.s.fdKvm, KVM_GET_VCPU_MMAP_SIZE, 0UL);
385 if ((unsigned)rc < _64M)
386 {
387 pVM->nem.s.cbVCpuMmap = (uint32_t)rc;
388 LogRel(("NEM: %36s: %#x (%d)\n", "KVM_GET_VCPU_MMAP_SIZE", rc, rc));
389 }
390 else if (rc < 0)
391 rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_MISSING_FEATURE, "KVM_GET_VCPU_MMAP_SIZE failed: %d", errno);
392 else
393 rcRet = RTERRINFO_LOG_REL_ADD_F(pErrInfo, VERR_NEM_INIT_FAILED, "Odd KVM_GET_VCPU_MMAP_SIZE value: %#x (%d)", rc, rc);
394
395 /*
396 * Init the slot ID bitmap.
397 */
398 ASMBitSet(&pVM->nem.s.bmSlotIds[0], 0); /* don't use slot 0 */
399 if (pVM->nem.s.cMaxMemSlots < _32K)
400 ASMBitSetRange(&pVM->nem.s.bmSlotIds[0], pVM->nem.s.cMaxMemSlots, _32K);
401 ASMBitSet(&pVM->nem.s.bmSlotIds[0], _32K - 1); /* don't use the last slot */
402
403 return rcRet;
404}
405
406
407/**
408 * Does the early setup of a KVM VM.
409 *
410 * @returns VBox status code.
411 * @param pVM The cross context VM structure.
412 * @param pErrInfo Where to always return error info.
413 */
414static int nemR3LnxInitSetupVm(PVM pVM, PRTERRINFO pErrInfo)
415{
416 AssertReturn(pVM->nem.s.fdVm != -1, RTErrInfoSet(pErrInfo, VERR_WRONG_ORDER, "Wrong initalization order"));
417
418 /*
419 * Create the VCpus.
420 */
421 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
422 {
423 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
424
425 /* Create it. */
426 pVCpu->nem.s.fdVCpu = ioctl(pVM->nem.s.fdVm, KVM_CREATE_VCPU, (unsigned long)idCpu);
427 if (pVCpu->nem.s.fdVCpu < 0)
428 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
429 "KVM_CREATE_VCPU failed for VCpu #%u: %d", idCpu, errno);
430
431 /* Map the KVM_RUN area. */
432 pVCpu->nem.s.pRun = (struct kvm_run *)mmap(NULL, pVM->nem.s.cbVCpuMmap, PROT_READ | PROT_WRITE, MAP_SHARED,
433 pVCpu->nem.s.fdVCpu, 0 /*offset*/);
434 if ((void *)pVCpu->nem.s.pRun == MAP_FAILED)
435 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "mmap failed for VCpu #%u: %d", idCpu, errno);
436
437 /* We want all x86 registers and events on each exit. */
438 pVCpu->nem.s.pRun->kvm_valid_regs = KVM_SYNC_X86_REGS | KVM_SYNC_X86_SREGS | KVM_SYNC_X86_EVENTS;
439 }
440 return VINF_SUCCESS;
441}
442
443
444/** @callback_method_impl{FNVMMEMTRENDEZVOUS} */
445static DECLCALLBACK(VBOXSTRICTRC) nemR3LnxFixThreadPoke(PVM pVM, PVMCPU pVCpu, void *pvUser)
446{
447 RT_NOREF(pVM, pvUser);
448 int rc = RTThreadControlPokeSignal(pVCpu->hThread, true /*fEnable*/);
449 AssertLogRelRC(rc);
450 return VINF_SUCCESS;
451}
452
453
454/**
455 * Try initialize the native API.
456 *
457 * This may only do part of the job, more can be done in
458 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
459 *
460 * @returns VBox status code.
461 * @param pVM The cross context VM structure.
462 * @param fFallback Whether we're in fallback mode or use-NEM mode. In
463 * the latter we'll fail if we cannot initialize.
464 * @param fForced Whether the HMForced flag is set and we should
465 * fail if we cannot initialize.
466 */
467int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
468{
469 RT_NOREF(pVM, fFallback, fForced);
470 /*
471 * Some state init.
472 */
473 pVM->nem.s.fdKvm = -1;
474 pVM->nem.s.fdVm = -1;
475 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
476 {
477 PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
478 pNemCpu->fdVCpu = -1;
479 }
480
481 /*
482 * Error state.
483 * The error message will be non-empty on failure and 'rc' will be set too.
484 */
485 RTERRINFOSTATIC ErrInfo;
486 PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
487
488 /*
489 * Open kvm subsystem so we can issue system ioctls.
490 */
491 int rc;
492 int fdKvm = open("/dev/kvm", O_RDWR | O_CLOEXEC);
493 if (fdKvm >= 0)
494 {
495 pVM->nem.s.fdKvm = fdKvm;
496
497 /*
498 * Create an empty VM since it is recommended we check capabilities on
499 * the VM rather than the system descriptor.
500 */
501 int fdVm = ioctl(fdKvm, KVM_CREATE_VM, 0UL /* Type must be zero on x86 */);
502 if (fdVm >= 0)
503 {
504 pVM->nem.s.fdVm = fdVm;
505
506 /*
507 * Check capabilities.
508 */
509 rc = nemR3LnxInitCheckCapabilities(pVM, pErrInfo);
510 if (RT_SUCCESS(rc))
511 {
512 /*
513 * Set up the VM (more on this later).
514 */
515 rc = nemR3LnxInitSetupVm(pVM, pErrInfo);
516 if (RT_SUCCESS(rc))
517 {
518 /*
519 * Set ourselves as the execution engine and make config adjustments.
520 */
521 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
522 Log(("NEM: Marked active!\n"));
523 PGMR3EnableNemMode(pVM);
524
525 /*
526 * Register release statistics
527 */
528 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
529 {
530 PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
531 STAMR3RegisterF(pVM, &pNemCpu->StatImportOnDemand, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of on-demand state imports", "/NEM/CPU%u/ImportOnDemand", idCpu);
532 STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturn, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of state imports on loop return", "/NEM/CPU%u/ImportOnReturn", idCpu);
533 STAMR3RegisterF(pVM, &pNemCpu->StatImportOnReturnSkipped, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of skipped state imports on loop return", "/NEM/CPU%u/ImportOnReturnSkipped", idCpu);
534 STAMR3RegisterF(pVM, &pNemCpu->StatImportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when importing from KVM", "/NEM/CPU%u/ImportPendingInterrupt", idCpu);
535 STAMR3RegisterF(pVM, &pNemCpu->StatExportPendingInterrupt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of times an interrupt was pending when exporting to KVM", "/NEM/CPU%u/ExportPendingInterrupt", idCpu);
536 STAMR3RegisterF(pVM, &pNemCpu->StatQueryCpuTick, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Number of TSC queries", "/NEM/CPU%u/QueryCpuTick", idCpu);
537 STAMR3RegisterF(pVM, &pNemCpu->StatExitTotal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "All exits", "/NEM/CPU%u/Exit", idCpu);
538 STAMR3RegisterF(pVM, &pNemCpu->StatExitIo, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_IO", "/NEM/CPU%u/Exit/Io", idCpu);
539 STAMR3RegisterF(pVM, &pNemCpu->StatExitMmio, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_MMIO", "/NEM/CPU%u/Exit/Mmio", idCpu);
540 STAMR3RegisterF(pVM, &pNemCpu->StatExitSetTpr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_SET_TRP", "/NEM/CPU%u/Exit/SetTpr", idCpu);
541 STAMR3RegisterF(pVM, &pNemCpu->StatExitTprAccess, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_TPR_ACCESS", "/NEM/CPU%u/Exit/TprAccess", idCpu);
542 STAMR3RegisterF(pVM, &pNemCpu->StatExitRdMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_RDMSR", "/NEM/CPU%u/Exit/RdMsr", idCpu);
543 STAMR3RegisterF(pVM, &pNemCpu->StatExitWrMsr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_WRMSR", "/NEM/CPU%u/Exit/WrMsr", idCpu);
544 STAMR3RegisterF(pVM, &pNemCpu->StatExitIrqWindowOpen, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_IRQ_WINDOWS_OPEN", "/NEM/CPU%u/Exit/IrqWindowOpen", idCpu);
545 STAMR3RegisterF(pVM, &pNemCpu->StatExitHalt, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_HLT", "/NEM/CPU%u/Exit/Hlt", idCpu);
546 STAMR3RegisterF(pVM, &pNemCpu->StatExitIntr, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTR", "/NEM/CPU%u/Exit/Intr", idCpu);
547 STAMR3RegisterF(pVM, &pNemCpu->StatExitHypercall, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_HYPERCALL", "/NEM/CPU%u/Exit/Hypercall", idCpu);
548 STAMR3RegisterF(pVM, &pNemCpu->StatExitDebug, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_DEBUG", "/NEM/CPU%u/Exit/Debug", idCpu);
549 STAMR3RegisterF(pVM, &pNemCpu->StatExitBusLock, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_BUS_LOCK", "/NEM/CPU%u/Exit/BusLock", idCpu);
550 STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorEmulation, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/EMULATION", "/NEM/CPU%u/Exit/InternalErrorEmulation", idCpu);
551 STAMR3RegisterF(pVM, &pNemCpu->StatExitInternalErrorFatal, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "KVM_EXIT_INTERNAL_ERROR/*", "/NEM/CPU%u/Exit/InternalErrorFatal", idCpu);
552 }
553
554 /*
555 * Make RTThreadPoke work again (disabled for avoiding unnecessary
556 * critical section issues in ring-0).
557 */
558 VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ALL_AT_ONCE, nemR3LnxFixThreadPoke, NULL);
559
560 /*
561 * Success.
562 */
563 return VINF_SUCCESS;
564 }
565
566 /*
567 * Bail out.
568 */
569 }
570 close(fdVm);
571 pVM->nem.s.fdVm = -1;
572 }
573 else
574 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_VM_CREATE_FAILED, "KVM_CREATE_VM failed: %u", errno);
575 close(fdKvm);
576 pVM->nem.s.fdKvm = -1;
577 }
578 else if (errno == EACCES)
579 rc = RTErrInfoSet(pErrInfo, VERR_ACCESS_DENIED, "Do not have access to open /dev/kvm for reading & writing.");
580 else if (errno == ENOENT)
581 rc = RTErrInfoSet(pErrInfo, VERR_NOT_SUPPORTED, "KVM is not availble (/dev/kvm does not exist)");
582 else
583 rc = RTErrInfoSetF(pErrInfo, RTErrConvertFromErrno(errno), "Failed to open '/dev/kvm': %u", errno);
584
585 /*
586 * We only fail if in forced mode, otherwise just log the complaint and return.
587 */
588 Assert(RTErrInfoIsSet(pErrInfo));
589 if ( (fForced || !fFallback)
590 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
591 return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
592 LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
593 return VINF_SUCCESS;
594}
595
596
597/**
598 * This is called after CPUMR3Init is done.
599 *
600 * @returns VBox status code.
601 * @param pVM The VM handle..
602 */
603int nemR3NativeInitAfterCPUM(PVM pVM)
604{
605 /*
606 * Validate sanity.
607 */
608 AssertReturn(pVM->nem.s.fdKvm >= 0, VERR_WRONG_ORDER);
609 AssertReturn(pVM->nem.s.fdVm >= 0, VERR_WRONG_ORDER);
610 AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
611
612 /** @todo */
613
614 return VINF_SUCCESS;
615}
616
617
618/**
619 * Update the CPUID leaves for a VCPU.
620 *
621 * The KVM_SET_CPUID2 call replaces any previous leaves, so we have to redo
622 * everything when there really just are single bit changes.
623 */
624static int nemR3LnxUpdateCpuIdsLeaves(PVM pVM, PVMCPU pVCpu)
625{
626 uint32_t cLeaves = 0;
627 PCCPUMCPUIDLEAF const paLeaves = CPUMR3CpuIdGetPtr(pVM, &cLeaves);
628 struct kvm_cpuid2 *pReq = (struct kvm_cpuid2 *)alloca(RT_UOFFSETOF_DYN(struct kvm_cpuid2, entries[cLeaves + 2]));
629
630 pReq->nent = cLeaves;
631 pReq->padding = 0;
632
633 for (uint32_t i = 0; i < cLeaves; i++)
634 {
635 CPUMGetGuestCpuId(pVCpu, paLeaves[i].uLeaf, paLeaves[i].uSubLeaf,
636 &pReq->entries[i].eax,
637 &pReq->entries[i].ebx,
638 &pReq->entries[i].ecx,
639 &pReq->entries[i].edx);
640 pReq->entries[i].function = paLeaves[i].uLeaf;
641 pReq->entries[i].index = paLeaves[i].uSubLeaf;
642 pReq->entries[i].flags = !paLeaves[i].fSubLeafMask ? 0 : KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
643 pReq->entries[i].padding[0] = 0;
644 pReq->entries[i].padding[1] = 0;
645 pReq->entries[i].padding[2] = 0;
646 }
647
648 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_CPUID2, pReq);
649 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d cLeaves=%#x\n", rcLnx, errno, cLeaves), RTErrConvertFromErrno(errno));
650
651 return VINF_SUCCESS;
652}
653
654
655int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
656{
657 /*
658 * Configure CPUIDs after ring-3 init has been done.
659 */
660 if (enmWhat == VMINITCOMPLETED_RING3)
661 {
662 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
663 {
664 int rc = nemR3LnxUpdateCpuIdsLeaves(pVM, pVM->apCpusR3[idCpu]);
665 AssertRCReturn(rc, rc);
666 }
667 }
668
669 return VINF_SUCCESS;
670}
671
672
673int nemR3NativeTerm(PVM pVM)
674{
675 /*
676 * Per-cpu data
677 */
678 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
679 {
680 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
681
682 if (pVCpu->nem.s.fdVCpu != -1)
683 {
684 close(pVCpu->nem.s.fdVCpu);
685 pVCpu->nem.s.fdVCpu = -1;
686 }
687 if (pVCpu->nem.s.pRun)
688 {
689 munmap(pVCpu->nem.s.pRun, pVM->nem.s.cbVCpuMmap);
690 pVCpu->nem.s.pRun = NULL;
691 }
692 }
693
694 /*
695 * Global data.
696 */
697 if (pVM->nem.s.fdVm != -1)
698 {
699 close(pVM->nem.s.fdVm);
700 pVM->nem.s.fdVm = -1;
701 }
702
703 if (pVM->nem.s.fdKvm != -1)
704 {
705 close(pVM->nem.s.fdKvm);
706 pVM->nem.s.fdKvm = -1;
707 }
708 return VINF_SUCCESS;
709}
710
711
712/**
713 * VM reset notification.
714 *
715 * @param pVM The cross context VM structure.
716 */
717void nemR3NativeReset(PVM pVM)
718{
719 RT_NOREF(pVM);
720}
721
722
723/**
724 * Reset CPU due to INIT IPI or hot (un)plugging.
725 *
726 * @param pVCpu The cross context virtual CPU structure of the CPU being
727 * reset.
728 * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
729 */
730void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
731{
732 RT_NOREF(pVCpu, fInitIpi);
733}
734
735
736/*********************************************************************************************************************************
737* Memory management *
738*********************************************************************************************************************************/
739
740
741/**
742 * Allocates a memory slot ID.
743 *
744 * @returns Slot ID on success, UINT16_MAX on failure.
745 */
746static uint16_t nemR3LnxMemSlotIdAlloc(PVM pVM)
747{
748 /* Use the hint first. */
749 uint16_t idHint = pVM->nem.s.idPrevSlot;
750 if (idHint < _32K - 1)
751 {
752 int32_t idx = ASMBitNextClear(&pVM->nem.s.bmSlotIds, _32K, idHint);
753 Assert(idx < _32K);
754 if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx))
755 return pVM->nem.s.idPrevSlot = (uint16_t)idx;
756 }
757
758 /*
759 * Search the whole map from the start.
760 */
761 int32_t idx = ASMBitFirstClear(&pVM->nem.s.bmSlotIds, _32K);
762 Assert(idx < _32K);
763 if (idx > 0 && !ASMAtomicBitTestAndSet(&pVM->nem.s.bmSlotIds, idx))
764 return pVM->nem.s.idPrevSlot = (uint16_t)idx;
765
766 Assert(idx < 0 /*shouldn't trigger unless there is a race */);
767 return UINT16_MAX; /* caller is expected to assert. */
768}
769
770
771/**
772 * Frees a memory slot ID
773 */
774static void nemR3LnxMemSlotIdFree(PVM pVM, uint16_t idSlot)
775{
776 if (RT_LIKELY(idSlot < _32K && ASMAtomicBitTestAndClear(&pVM->nem.s.bmSlotIds, idSlot)))
777 { /*likely*/ }
778 else
779 AssertMsgFailed(("idSlot=%u (%#x)\n", idSlot, idSlot));
780}
781
782
783
784VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
785 uint8_t *pu2State, uint32_t *puNemRange)
786{
787 uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
788 AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
789
790 Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p pu2State=%p (%d) puNemRange=%p (%d) - idSlot=%#x\n",
791 GCPhys, cb, pvR3, pu2State, pu2State, puNemRange, *puNemRange, idSlot));
792
793 struct kvm_userspace_memory_region Region;
794 Region.slot = idSlot;
795 Region.flags = 0;
796 Region.guest_phys_addr = GCPhys;
797 Region.memory_size = cb;
798 Region.userspace_addr = (uintptr_t)pvR3;
799
800 int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
801 if (rc == 0)
802 {
803 *pu2State = 0;
804 *puNemRange = idSlot;
805 return VINF_SUCCESS;
806 }
807
808 LogRel(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p, idSlot=%#x failed: %u/%u\n", GCPhys, cb, pvR3, idSlot, rc, errno));
809 nemR3LnxMemSlotIdFree(pVM, idSlot);
810 return VERR_NEM_MAP_PAGES_FAILED;
811}
812
813
814VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
815{
816 RT_NOREF(pVM);
817 return true;
818}
819
820
821VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
822 void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
823{
824 Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d) puNemRange=%p (%#x)\n",
825 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State, puNemRange, puNemRange ? *puNemRange : UINT32_MAX));
826 RT_NOREF(pvRam);
827
828 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
829 {
830 /** @todo implement splitting and whatnot of ranges if we want to be 100%
831 * conforming (just modify RAM registrations in MM.cpp to test). */
832 AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2),
833 VERR_NEM_MAP_PAGES_FAILED);
834 }
835
836 /*
837 * Register MMIO2.
838 */
839 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
840 {
841 AssertReturn(pvMmio2, VERR_NEM_MAP_PAGES_FAILED);
842 AssertReturn(puNemRange, VERR_NEM_MAP_PAGES_FAILED);
843
844 uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
845 AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
846
847 struct kvm_userspace_memory_region Region;
848 Region.slot = idSlot;
849 Region.flags = fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_TRACK_DIRTY_PAGES ? KVM_MEM_LOG_DIRTY_PAGES : 0;
850 Region.guest_phys_addr = GCPhys;
851 Region.memory_size = cb;
852 Region.userspace_addr = (uintptr_t)pvMmio2;
853
854 int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
855 if (rc == 0)
856 {
857 *pu2State = 0;
858 *puNemRange = idSlot;
859 Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvMmio2=%p - idSlot=%#x\n",
860 GCPhys, cb, fFlags, pvMmio2, idSlot));
861 return VINF_SUCCESS;
862 }
863
864 nemR3LnxMemSlotIdFree(pVM, idSlot);
865 AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n",
866 GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc),
867 VERR_NEM_MAP_PAGES_FAILED);
868 }
869
870 /* MMIO, don't care. */
871 *pu2State = 0;
872 *puNemRange = UINT32_MAX;
873 return VINF_SUCCESS;
874}
875
876
877VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
878 void *pvRam, void *pvMmio2, uint32_t *puNemRange)
879{
880 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
881 return VINF_SUCCESS;
882}
883
884
885VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
886 void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
887{
888 Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p puNemRange=%p (%#x)\n",
889 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));
890 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
891
892 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
893 {
894 /** @todo implement splitting and whatnot of ranges if we want to be 100%
895 * conforming (just modify RAM registrations in MM.cpp to test). */
896 AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p\n", GCPhys, cb, fFlags, pvRam, pvMmio2),
897 VERR_NEM_UNMAP_PAGES_FAILED);
898 }
899
900 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
901 {
902 uint32_t const idSlot = *puNemRange;
903 AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4);
904 AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4);
905
906 struct kvm_userspace_memory_region Region;
907 Region.slot = idSlot;
908 Region.flags = 0;
909 Region.guest_phys_addr = GCPhys;
910 Region.memory_size = 0; /* this deregisters it. */
911 Region.userspace_addr = (uintptr_t)pvMmio2;
912
913 int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
914 if (rc == 0)
915 {
916 if (pu2State)
917 *pu2State = 0;
918 *puNemRange = UINT32_MAX;
919 nemR3LnxMemSlotIdFree(pVM, idSlot);
920 return VINF_SUCCESS;
921 }
922
923 AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvMmio2=%p, idSlot=%#x failed: %u/%u\n",
924 GCPhys, cb, fFlags, pvMmio2, idSlot, errno, rc),
925 VERR_NEM_UNMAP_PAGES_FAILED);
926 }
927
928 if (pu2State)
929 *pu2State = UINT8_MAX;
930 return VINF_SUCCESS;
931}
932
933
934VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
935 void *pvBitmap, size_t cbBitmap)
936{
937 AssertReturn(uNemRange > 0 && uNemRange < _32K, VERR_NEM_IPE_4);
938 AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, uNemRange), VERR_NEM_IPE_4);
939
940 RT_NOREF(GCPhys, cbBitmap);
941
942 struct kvm_dirty_log DirtyLog;
943 DirtyLog.slot = uNemRange;
944 DirtyLog.padding1 = 0;
945 DirtyLog.dirty_bitmap = pvBitmap;
946
947 int rc = ioctl(pVM->nem.s.fdVm, KVM_GET_DIRTY_LOG, &DirtyLog);
948 AssertLogRelMsgReturn(rc == 0, ("%RGp LB %RGp idSlot=%#x failed: %u/%u\n", GCPhys, cb, uNemRange, errno, rc),
949 VERR_NEM_QUERY_DIRTY_BITMAP_FAILED);
950
951 return VINF_SUCCESS;
952}
953
954
955VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
956 uint8_t *pu2State, uint32_t *puNemRange)
957{
958 Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags));
959 *pu2State = UINT8_MAX;
960
961 /* Don't support puttint ROM where there is already RAM. For
962 now just shuffle the registrations till it works... */
963 AssertLogRelMsgReturn(!(fFlags & NEM_NOTIFY_PHYS_ROM_F_REPLACE), ("%RGp LB %RGp fFlags=%#x\n", GCPhys, cb, fFlags),
964 VERR_NEM_MAP_PAGES_FAILED);
965
966 /** @todo figure out how to do shadow ROMs. */
967
968 /*
969 * We only allocate a slot number here in case we need to use it to
970 * fend of physical handler fun.
971 */
972 uint16_t idSlot = nemR3LnxMemSlotIdAlloc(pVM);
973 AssertLogRelReturn(idSlot < _32K, VERR_NEM_MAP_PAGES_FAILED);
974
975 *pu2State = 0;
976 *puNemRange = idSlot;
977 Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n",
978 GCPhys, cb, fFlags, pvPages, idSlot));
979 RT_NOREF(GCPhys, cb, fFlags, pvPages);
980 return VINF_SUCCESS;
981}
982
983
984VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
985 uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
986{
987 Log5(("NEMR3NotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
988 GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
989
990 AssertPtrReturn(pvPages, VERR_NEM_IPE_5);
991
992 uint32_t const idSlot = *puNemRange;
993 AssertReturn(idSlot > 0 && idSlot < _32K, VERR_NEM_IPE_4);
994 AssertReturn(ASMBitTest(pVM->nem.s.bmSlotIds, idSlot), VERR_NEM_IPE_4);
995
996 *pu2State = UINT8_MAX;
997
998 /*
999 * Do the actual setting of the user pages here now that we've
1000 * got a valid pvPages (typically isn't available during the early
1001 * notification, unless we're replacing RAM).
1002 */
1003 struct kvm_userspace_memory_region Region;
1004 Region.slot = idSlot;
1005 Region.flags = 0;
1006 Region.guest_phys_addr = GCPhys;
1007 Region.memory_size = cb;
1008 Region.userspace_addr = (uintptr_t)pvPages;
1009
1010 int rc = ioctl(pVM->nem.s.fdVm, KVM_SET_USER_MEMORY_REGION, &Region);
1011 if (rc == 0)
1012 {
1013 *pu2State = 0;
1014 Log5(("NEMR3NotifyPhysRomRegisterEarly: %RGp LB %RGp fFlags=%#x pvPages=%p - idSlot=%#x\n",
1015 GCPhys, cb, fFlags, pvPages, idSlot));
1016 return VINF_SUCCESS;
1017 }
1018 AssertLogRelMsgFailedReturn(("%RGp LB %RGp fFlags=%#x, pvPages=%p, idSlot=%#x failed: %u/%u\n",
1019 GCPhys, cb, fFlags, pvPages, idSlot, errno, rc),
1020 VERR_NEM_MAP_PAGES_FAILED);
1021}
1022
1023
1024/**
1025 * Called when the A20 state changes.
1026 *
1027 * @param pVCpu The CPU the A20 state changed on.
1028 * @param fEnabled Whether it was enabled (true) or disabled.
1029 */
1030VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
1031{
1032 Log(("nemR3NativeNotifySetA20: fEnabled=%RTbool\n", fEnabled));
1033 Assert(VM_IS_NEM_ENABLED(pVCpu->CTX_SUFF(pVM)));
1034 RT_NOREF(pVCpu, fEnabled);
1035}
1036
1037
1038VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
1039 RTR3PTR pvMemR3, uint8_t *pu2State)
1040{
1041 Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
1042 GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
1043
1044 *pu2State = UINT8_MAX;
1045 RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
1046}
1047
1048
1049void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
1050{
1051 Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
1052 RT_NOREF(pVM, enmKind, GCPhys, cb);
1053}
1054
1055
1056void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
1057 RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
1058{
1059 Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
1060 GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
1061 RT_NOREF(pVM, enmKind, GCPhysOld, GCPhysNew, cb, fRestoreAsRAM);
1062}
1063
1064
1065int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
1066 PGMPAGETYPE enmType, uint8_t *pu2State)
1067{
1068 Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
1069 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
1070 RT_NOREF(pVM, GCPhys, HCPhys, fPageProt, enmType, pu2State);
1071 return VINF_SUCCESS;
1072}
1073
1074
1075VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
1076 PGMPAGETYPE enmType, uint8_t *pu2State)
1077{
1078 Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
1079 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
1080 Assert(VM_IS_NEM_ENABLED(pVM));
1081 RT_NOREF(pVM, GCPhys, HCPhys, pvR3, fPageProt, enmType, pu2State);
1082
1083}
1084
1085
1086VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
1087 RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
1088{
1089 Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp pvNewR3=%p fPageProt=%#x enmType=%d *pu2State=%d\n",
1090 GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, *pu2State));
1091 Assert(VM_IS_NEM_ENABLED(pVM));
1092 RT_NOREF(pVM, GCPhys, HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType, pu2State);
1093}
1094
1095
1096/*********************************************************************************************************************************
1097* CPU State *
1098*********************************************************************************************************************************/
1099
1100/**
1101 * Worker that imports selected state from KVM.
1102 */
1103static int nemHCLnxImportState(PVMCPUCC pVCpu, uint64_t fWhat, PCPUMCTX pCtx, struct kvm_run *pRun)
1104{
1105 fWhat &= pVCpu->cpum.GstCtx.fExtrn;
1106 if (!fWhat)
1107 return VINF_SUCCESS;
1108
1109 /*
1110 * Stuff that goes into kvm_run::s.regs.regs:
1111 */
1112 if (fWhat & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK))
1113 {
1114 if (fWhat & CPUMCTX_EXTRN_RIP)
1115 pCtx->rip = pRun->s.regs.regs.rip;
1116 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
1117 pCtx->rflags.u = pRun->s.regs.regs.rflags;
1118
1119 if (fWhat & CPUMCTX_EXTRN_RAX)
1120 pCtx->rax = pRun->s.regs.regs.rax;
1121 if (fWhat & CPUMCTX_EXTRN_RCX)
1122 pCtx->rcx = pRun->s.regs.regs.rcx;
1123 if (fWhat & CPUMCTX_EXTRN_RDX)
1124 pCtx->rdx = pRun->s.regs.regs.rdx;
1125 if (fWhat & CPUMCTX_EXTRN_RBX)
1126 pCtx->rbx = pRun->s.regs.regs.rbx;
1127 if (fWhat & CPUMCTX_EXTRN_RSP)
1128 pCtx->rsp = pRun->s.regs.regs.rsp;
1129 if (fWhat & CPUMCTX_EXTRN_RBP)
1130 pCtx->rbp = pRun->s.regs.regs.rbp;
1131 if (fWhat & CPUMCTX_EXTRN_RSI)
1132 pCtx->rsi = pRun->s.regs.regs.rsi;
1133 if (fWhat & CPUMCTX_EXTRN_RDI)
1134 pCtx->rdi = pRun->s.regs.regs.rdi;
1135 if (fWhat & CPUMCTX_EXTRN_R8_R15)
1136 {
1137 pCtx->r8 = pRun->s.regs.regs.r8;
1138 pCtx->r9 = pRun->s.regs.regs.r9;
1139 pCtx->r10 = pRun->s.regs.regs.r10;
1140 pCtx->r11 = pRun->s.regs.regs.r11;
1141 pCtx->r12 = pRun->s.regs.regs.r12;
1142 pCtx->r13 = pRun->s.regs.regs.r13;
1143 pCtx->r14 = pRun->s.regs.regs.r14;
1144 pCtx->r15 = pRun->s.regs.regs.r15;
1145 }
1146 }
1147
1148 /*
1149 * Stuff that goes into kvm_run::s.regs.sregs:
1150 */
1151 /** @todo apic_base */
1152
1153 bool fMaybeChangedMode = false;
1154 bool fUpdateCr3 = false;
1155 if (fWhat & ( CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK
1156 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_APIC_TPR))
1157 {
1158 /** @todo what about Attr.n.u4LimitHigh? */
1159#define NEM_LNX_IMPORT_SEG(a_CtxSeg, a_KvmSeg) do { \
1160 (a_CtxSeg).u64Base = (a_KvmSeg).base; \
1161 (a_CtxSeg).u32Limit = (a_KvmSeg).limit; \
1162 (a_CtxSeg).ValidSel = (a_CtxSeg).Sel = (a_KvmSeg).selector; \
1163 (a_CtxSeg).Attr.n.u4Type = (a_KvmSeg).type; \
1164 (a_CtxSeg).Attr.n.u1DescType = (a_KvmSeg).s; \
1165 (a_CtxSeg).Attr.n.u2Dpl = (a_KvmSeg).dpl; \
1166 (a_CtxSeg).Attr.n.u1Present = (a_KvmSeg).present; \
1167 (a_CtxSeg).Attr.n.u1Available = (a_KvmSeg).avl; \
1168 (a_CtxSeg).Attr.n.u1Long = (a_KvmSeg).l; \
1169 (a_CtxSeg).Attr.n.u1DefBig = (a_KvmSeg).db; \
1170 (a_CtxSeg).Attr.n.u1Granularity = (a_KvmSeg).g; \
1171 (a_CtxSeg).Attr.n.u1Unusable = (a_KvmSeg).unusable; \
1172 (a_CtxSeg).fFlags = CPUMSELREG_FLAGS_VALID; \
1173 CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &(a_CtxSeg)); \
1174 } while (0)
1175
1176 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
1177 {
1178 if (fWhat & CPUMCTX_EXTRN_ES)
1179 NEM_LNX_IMPORT_SEG(pCtx->es, pRun->s.regs.sregs.es);
1180 if (fWhat & CPUMCTX_EXTRN_CS)
1181 NEM_LNX_IMPORT_SEG(pCtx->cs, pRun->s.regs.sregs.cs);
1182 if (fWhat & CPUMCTX_EXTRN_SS)
1183 NEM_LNX_IMPORT_SEG(pCtx->ss, pRun->s.regs.sregs.ss);
1184 if (fWhat & CPUMCTX_EXTRN_DS)
1185 NEM_LNX_IMPORT_SEG(pCtx->ds, pRun->s.regs.sregs.ds);
1186 if (fWhat & CPUMCTX_EXTRN_FS)
1187 NEM_LNX_IMPORT_SEG(pCtx->fs, pRun->s.regs.sregs.fs);
1188 if (fWhat & CPUMCTX_EXTRN_GS)
1189 NEM_LNX_IMPORT_SEG(pCtx->gs, pRun->s.regs.sregs.gs);
1190 }
1191 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
1192 {
1193 if (fWhat & CPUMCTX_EXTRN_GDTR)
1194 {
1195 pCtx->gdtr.pGdt = pRun->s.regs.sregs.gdt.base;
1196 pCtx->gdtr.cbGdt = pRun->s.regs.sregs.gdt.limit;
1197 }
1198 if (fWhat & CPUMCTX_EXTRN_IDTR)
1199 {
1200 pCtx->idtr.pIdt = pRun->s.regs.sregs.idt.base;
1201 pCtx->idtr.cbIdt = pRun->s.regs.sregs.idt.limit;
1202 }
1203 if (fWhat & CPUMCTX_EXTRN_LDTR)
1204 NEM_LNX_IMPORT_SEG(pCtx->ldtr, pRun->s.regs.sregs.ldt);
1205 if (fWhat & CPUMCTX_EXTRN_TR)
1206 NEM_LNX_IMPORT_SEG(pCtx->tr, pRun->s.regs.sregs.tr);
1207 }
1208 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
1209 {
1210 if (fWhat & CPUMCTX_EXTRN_CR0)
1211 {
1212 if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0)
1213 {
1214 CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0);
1215 fMaybeChangedMode = true;
1216 }
1217 }
1218 if (fWhat & CPUMCTX_EXTRN_CR2)
1219 pCtx->cr2 = pRun->s.regs.sregs.cr2;
1220 if (fWhat & CPUMCTX_EXTRN_CR3)
1221 {
1222 if (pCtx->cr3 != pRun->s.regs.sregs.cr3)
1223 {
1224 CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3);
1225 fUpdateCr3 = true;
1226 }
1227 }
1228 if (fWhat & CPUMCTX_EXTRN_CR4)
1229 {
1230 if (pCtx->cr4 != pRun->s.regs.sregs.cr4)
1231 {
1232 CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4);
1233 fMaybeChangedMode = true;
1234 }
1235 }
1236 }
1237 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
1238 APICSetTpr(pVCpu, (uint8_t)pRun->s.regs.sregs.cr8 << 4);
1239 if (fWhat & CPUMCTX_EXTRN_EFER)
1240 {
1241 if (pCtx->msrEFER != pRun->s.regs.sregs.efer)
1242 {
1243 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer));
1244 if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
1245 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE));
1246 pCtx->msrEFER = pRun->s.regs.sregs.efer;
1247 fMaybeChangedMode = true;
1248 }
1249 }
1250
1251 /** @todo apic_base */
1252#undef NEM_LNX_IMPORT_SEG
1253 }
1254
1255 /*
1256 * Debug registers.
1257 */
1258 if (fWhat & CPUMCTX_EXTRN_DR_MASK)
1259 {
1260 struct kvm_debugregs DbgRegs = {{0}};
1261 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs);
1262 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1263
1264 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
1265 {
1266 pCtx->dr[0] = DbgRegs.db[0];
1267 pCtx->dr[1] = DbgRegs.db[1];
1268 pCtx->dr[2] = DbgRegs.db[2];
1269 pCtx->dr[3] = DbgRegs.db[3];
1270 }
1271 if (fWhat & CPUMCTX_EXTRN_DR6)
1272 pCtx->dr[6] = DbgRegs.dr6;
1273 if (fWhat & CPUMCTX_EXTRN_DR7)
1274 pCtx->dr[7] = DbgRegs.dr7;
1275 }
1276
1277 /*
1278 * FPU, SSE, AVX, ++.
1279 */
1280 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx))
1281 {
1282 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
1283 {
1284 fWhat |= CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE; /* we do all or nothing at all */
1285
1286 AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave));
1287 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XSAVE, &pCtx->XState);
1288 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1289 }
1290
1291 if (fWhat & CPUMCTX_EXTRN_XCRx)
1292 {
1293 struct kvm_xcrs Xcrs =
1294 { /*.nr_xcrs = */ 2,
1295 /*.flags = */ 0,
1296 /*.xcrs= */ {
1297 { /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] },
1298 { /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] },
1299 }
1300 };
1301
1302 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_XCRS, &Xcrs);
1303 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1304
1305 pCtx->aXcr[0] = Xcrs.xcrs[0].value;
1306 pCtx->aXcr[1] = Xcrs.xcrs[1].value;
1307 }
1308 }
1309
1310 /*
1311 * MSRs.
1312 */
1313 if (fWhat & ( CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS
1314 | CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
1315 {
1316 union
1317 {
1318 struct kvm_msrs Core;
1319 uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32];
1320 } uBuf;
1321 uint64_t *pauDsts[32];
1322 uint32_t iMsr = 0;
1323 PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1324
1325#define ADD_MSR(a_Msr, a_uValue) do { \
1326 Assert(iMsr < 32); \
1327 uBuf.Core.entries[iMsr].index = (a_Msr); \
1328 uBuf.Core.entries[iMsr].reserved = 0; \
1329 uBuf.Core.entries[iMsr].data = UINT64_MAX; \
1330 pauDsts[iMsr] = &(a_uValue); \
1331 iMsr += 1; \
1332 } while (0)
1333
1334 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1335 ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1336 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1337 {
1338 ADD_MSR(MSR_K6_STAR, pCtx->msrSTAR);
1339 ADD_MSR(MSR_K8_LSTAR, pCtx->msrLSTAR);
1340 ADD_MSR(MSR_K8_CSTAR, pCtx->msrCSTAR);
1341 ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK);
1342 }
1343 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1344 {
1345 ADD_MSR(MSR_IA32_SYSENTER_CS, pCtx->SysEnter.cs);
1346 ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip);
1347 ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp);
1348 }
1349 if (fWhat & CPUMCTX_EXTRN_TSC_AUX)
1350 ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
1351 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1352 {
1353 ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT);
1354 /** @todo What do we _have_ to add here?
1355 * We also have: Mttr*, MiscEnable, FeatureControl. */
1356 }
1357
1358 uBuf.Core.pad = 0;
1359 uBuf.Core.nmsrs = iMsr;
1360 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MSRS, &uBuf);
1361 AssertMsgReturn(rc == (int)iMsr,
1362 ("rc=%d iMsr=%d (->%#x) errno=%d\n",
1363 rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno),
1364 VERR_NEM_IPE_3);
1365
1366 while (iMsr-- > 0)
1367 *pauDsts[iMsr] = uBuf.Core.entries[iMsr].data;
1368#undef ADD_MSR
1369 }
1370
1371 /*
1372 * Interruptibility state and pending interrupts.
1373 */
1374 if (fWhat & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
1375 {
1376 fWhat |= CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI; /* always do both, see export and interrupt FF handling */
1377
1378 struct kvm_vcpu_events KvmEvents = {0};
1379 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents);
1380 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3);
1381
1382 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP)
1383 pVCpu->cpum.GstCtx.rip = pRun->s.regs.regs.rip;
1384
1385 if (KvmEvents.interrupt.shadow)
1386 EMSetInhibitInterruptsPC(pVCpu, pVCpu->cpum.GstCtx.rip);
1387 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1388 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1389
1390 if (KvmEvents.nmi.masked)
1391 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
1392 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
1393 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
1394
1395 if (KvmEvents.interrupt.injected)
1396 {
1397 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportPendingInterrupt);
1398 TRPMAssertTrap(pVCpu, KvmEvents.interrupt.nr, !KvmEvents.interrupt.soft ? TRPM_HARDWARE_INT : TRPM_SOFTWARE_INT);
1399 }
1400
1401 Assert(KvmEvents.nmi.injected == 0);
1402 Assert(KvmEvents.nmi.pending == 0);
1403 }
1404
1405 /*
1406 * Update the external mask.
1407 */
1408 pCtx->fExtrn &= ~fWhat;
1409 pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
1410 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
1411 pVCpu->cpum.GstCtx.fExtrn = 0;
1412
1413 /*
1414 * We sometimes need to update PGM on the guest status.
1415 */
1416 if (!fMaybeChangedMode && !fUpdateCr3)
1417 { /* likely */ }
1418 else
1419 {
1420 /*
1421 * Make sure we got all the state PGM might need.
1422 */
1423 Log7(("nemHCLnxImportState: fMaybeChangedMode=%d fUpdateCr3=%d fExtrnNeeded=%#RX64\n", fMaybeChangedMode, fUpdateCr3,
1424 pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER) ));
1425 if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER))
1426 {
1427 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR0)
1428 {
1429 if (pVCpu->cpum.GstCtx.cr0 != pRun->s.regs.sregs.cr0)
1430 {
1431 CPUMSetGuestCR0(pVCpu, pRun->s.regs.sregs.cr0);
1432 fMaybeChangedMode = true;
1433 }
1434 }
1435 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR3)
1436 {
1437 if (pCtx->cr3 != pRun->s.regs.sregs.cr3)
1438 {
1439 CPUMSetGuestCR3(pVCpu, pRun->s.regs.sregs.cr3);
1440 fUpdateCr3 = true;
1441 }
1442 }
1443 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_CR4)
1444 {
1445 if (pCtx->cr4 != pRun->s.regs.sregs.cr4)
1446 {
1447 CPUMSetGuestCR4(pVCpu, pRun->s.regs.sregs.cr4);
1448 fMaybeChangedMode = true;
1449 }
1450 }
1451 if (fWhat & CPUMCTX_EXTRN_EFER)
1452 {
1453 if (pCtx->msrEFER != pRun->s.regs.sregs.efer)
1454 {
1455 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, pRun->s.regs.sregs.efer));
1456 if ((pRun->s.regs.sregs.efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
1457 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pRun->s.regs.sregs.efer & MSR_K6_EFER_NXE));
1458 pCtx->msrEFER = pRun->s.regs.sregs.efer;
1459 fMaybeChangedMode = true;
1460 }
1461 }
1462
1463 pVCpu->cpum.GstCtx.fExtrn &= ~(CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR3 | CPUMCTX_EXTRN_EFER);
1464 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
1465 pVCpu->cpum.GstCtx.fExtrn = 0;
1466 }
1467
1468 /*
1469 * Notify PGM about the changes.
1470 */
1471 if (fMaybeChangedMode)
1472 {
1473 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
1474 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
1475 }
1476
1477 if (fUpdateCr3)
1478 {
1479 int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3, false /*fPdpesMapped*/);
1480 if (rc == VINF_SUCCESS)
1481 { /* likely */ }
1482 else
1483 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
1484 }
1485 }
1486
1487 return VINF_SUCCESS;
1488}
1489
1490
1491/**
1492 * Interface for importing state on demand (used by IEM).
1493 *
1494 * @returns VBox status code.
1495 * @param pVCpu The cross context CPU structure.
1496 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
1497 */
1498VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
1499{
1500 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
1501 return nemHCLnxImportState(pVCpu, fWhat, &pVCpu->cpum.GstCtx, pVCpu->nem.s.pRun);
1502}
1503
1504
1505/**
1506 * Exports state to KVM.
1507 */
1508static int nemHCLnxExportState(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, struct kvm_run *pRun)
1509{
1510 uint64_t const fExtrn = ~pCtx->fExtrn & CPUMCTX_EXTRN_ALL;
1511 Assert((~fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL);
1512
1513 /*
1514 * Stuff that goes into kvm_run::s.regs.regs:
1515 */
1516 if (fExtrn & (CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_GPRS_MASK))
1517 {
1518 if (fExtrn & CPUMCTX_EXTRN_RIP)
1519 pRun->s.regs.regs.rip = pCtx->rip;
1520 if (fExtrn & CPUMCTX_EXTRN_RFLAGS)
1521 pRun->s.regs.regs.rflags = pCtx->rflags.u;
1522
1523 if (fExtrn & CPUMCTX_EXTRN_RAX)
1524 pRun->s.regs.regs.rax = pCtx->rax;
1525 if (fExtrn & CPUMCTX_EXTRN_RCX)
1526 pRun->s.regs.regs.rcx = pCtx->rcx;
1527 if (fExtrn & CPUMCTX_EXTRN_RDX)
1528 pRun->s.regs.regs.rdx = pCtx->rdx;
1529 if (fExtrn & CPUMCTX_EXTRN_RBX)
1530 pRun->s.regs.regs.rbx = pCtx->rbx;
1531 if (fExtrn & CPUMCTX_EXTRN_RSP)
1532 pRun->s.regs.regs.rsp = pCtx->rsp;
1533 if (fExtrn & CPUMCTX_EXTRN_RBP)
1534 pRun->s.regs.regs.rbp = pCtx->rbp;
1535 if (fExtrn & CPUMCTX_EXTRN_RSI)
1536 pRun->s.regs.regs.rsi = pCtx->rsi;
1537 if (fExtrn & CPUMCTX_EXTRN_RDI)
1538 pRun->s.regs.regs.rdi = pCtx->rdi;
1539 if (fExtrn & CPUMCTX_EXTRN_R8_R15)
1540 {
1541 pRun->s.regs.regs.r8 = pCtx->r8;
1542 pRun->s.regs.regs.r9 = pCtx->r9;
1543 pRun->s.regs.regs.r10 = pCtx->r10;
1544 pRun->s.regs.regs.r11 = pCtx->r11;
1545 pRun->s.regs.regs.r12 = pCtx->r12;
1546 pRun->s.regs.regs.r13 = pCtx->r13;
1547 pRun->s.regs.regs.r14 = pCtx->r14;
1548 pRun->s.regs.regs.r15 = pCtx->r15;
1549 }
1550 pRun->kvm_dirty_regs |= KVM_SYNC_X86_REGS;
1551 }
1552
1553 /*
1554 * Stuff that goes into kvm_run::s.regs.sregs:
1555 */
1556 /** @todo apic_base */
1557 if (fExtrn & ( CPUMCTX_EXTRN_SREG_MASK | CPUMCTX_EXTRN_TABLE_MASK | CPUMCTX_EXTRN_CR_MASK
1558 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_APIC_TPR))
1559 {
1560#define NEM_LNX_EXPORT_SEG(a_KvmSeg, a_CtxSeg) do { \
1561 (a_KvmSeg).base = (a_CtxSeg).u64Base; \
1562 (a_KvmSeg).limit = (a_CtxSeg).u32Limit; \
1563 (a_KvmSeg).selector = (a_CtxSeg).Sel; \
1564 (a_KvmSeg).type = (a_CtxSeg).Attr.n.u4Type; \
1565 (a_KvmSeg).s = (a_CtxSeg).Attr.n.u1DescType; \
1566 (a_KvmSeg).dpl = (a_CtxSeg).Attr.n.u2Dpl; \
1567 (a_KvmSeg).present = (a_CtxSeg).Attr.n.u1Present; \
1568 (a_KvmSeg).avl = (a_CtxSeg).Attr.n.u1Available; \
1569 (a_KvmSeg).l = (a_CtxSeg).Attr.n.u1Long; \
1570 (a_KvmSeg).db = (a_CtxSeg).Attr.n.u1DefBig; \
1571 (a_KvmSeg).g = (a_CtxSeg).Attr.n.u1Granularity; \
1572 (a_KvmSeg).unusable = (a_CtxSeg).Attr.n.u1Unusable; \
1573 (a_KvmSeg).padding = 0; \
1574 } while (0)
1575
1576 if (fExtrn & CPUMCTX_EXTRN_SREG_MASK)
1577 {
1578 if (fExtrn & CPUMCTX_EXTRN_ES)
1579 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.es, pCtx->es);
1580 if (fExtrn & CPUMCTX_EXTRN_CS)
1581 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.cs, pCtx->cs);
1582 if (fExtrn & CPUMCTX_EXTRN_SS)
1583 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ss, pCtx->ss);
1584 if (fExtrn & CPUMCTX_EXTRN_DS)
1585 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ds, pCtx->ds);
1586 if (fExtrn & CPUMCTX_EXTRN_FS)
1587 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.fs, pCtx->fs);
1588 if (fExtrn & CPUMCTX_EXTRN_GS)
1589 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.gs, pCtx->gs);
1590 }
1591 if (fExtrn & CPUMCTX_EXTRN_TABLE_MASK)
1592 {
1593 if (fExtrn & CPUMCTX_EXTRN_GDTR)
1594 {
1595 pRun->s.regs.sregs.gdt.base = pCtx->gdtr.pGdt;
1596 pRun->s.regs.sregs.gdt.limit = pCtx->gdtr.cbGdt;
1597 pRun->s.regs.sregs.gdt.padding[0] = 0;
1598 pRun->s.regs.sregs.gdt.padding[1] = 0;
1599 pRun->s.regs.sregs.gdt.padding[2] = 0;
1600 }
1601 if (fExtrn & CPUMCTX_EXTRN_IDTR)
1602 {
1603 pRun->s.regs.sregs.idt.base = pCtx->idtr.pIdt;
1604 pRun->s.regs.sregs.idt.limit = pCtx->idtr.cbIdt;
1605 pRun->s.regs.sregs.idt.padding[0] = 0;
1606 pRun->s.regs.sregs.idt.padding[1] = 0;
1607 pRun->s.regs.sregs.idt.padding[2] = 0;
1608 }
1609 if (fExtrn & CPUMCTX_EXTRN_LDTR)
1610 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.ldt, pCtx->ldtr);
1611 if (fExtrn & CPUMCTX_EXTRN_TR)
1612 NEM_LNX_EXPORT_SEG(pRun->s.regs.sregs.tr, pCtx->tr);
1613 }
1614 if (fExtrn & CPUMCTX_EXTRN_CR_MASK)
1615 {
1616 if (fExtrn & CPUMCTX_EXTRN_CR0)
1617 pRun->s.regs.sregs.cr0 = pCtx->cr0;
1618 if (fExtrn & CPUMCTX_EXTRN_CR2)
1619 pRun->s.regs.sregs.cr2 = pCtx->cr2;
1620 if (fExtrn & CPUMCTX_EXTRN_CR3)
1621 pRun->s.regs.sregs.cr3 = pCtx->cr3;
1622 if (fExtrn & CPUMCTX_EXTRN_CR4)
1623 pRun->s.regs.sregs.cr4 = pCtx->cr4;
1624 }
1625 if (fExtrn & CPUMCTX_EXTRN_APIC_TPR)
1626 pRun->s.regs.sregs.cr8 = CPUMGetGuestCR8(pVCpu);
1627 if (fExtrn & CPUMCTX_EXTRN_EFER)
1628 pRun->s.regs.sregs.efer = pCtx->msrEFER;
1629
1630 /** @todo apic_base */
1631
1632 RT_ZERO(pRun->s.regs.sregs.interrupt_bitmap); /* this is an alternative interrupt injection interface */
1633
1634 pRun->kvm_dirty_regs |= KVM_SYNC_X86_SREGS;
1635 }
1636
1637 /*
1638 * Debug registers.
1639 */
1640 if (fExtrn & CPUMCTX_EXTRN_DR_MASK)
1641 {
1642 struct kvm_debugregs DbgRegs = {{0}};
1643
1644 if ((fExtrn & CPUMCTX_EXTRN_DR_MASK) != CPUMCTX_EXTRN_DR_MASK)
1645 {
1646 /* Partial debug state, we must get DbgRegs first so we can merge: */
1647 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_DEBUGREGS, &DbgRegs);
1648 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1649 }
1650
1651 if (fExtrn & CPUMCTX_EXTRN_DR0_DR3)
1652 {
1653 DbgRegs.db[0] = pCtx->dr[0];
1654 DbgRegs.db[1] = pCtx->dr[1];
1655 DbgRegs.db[2] = pCtx->dr[2];
1656 DbgRegs.db[3] = pCtx->dr[3];
1657 }
1658 if (fExtrn & CPUMCTX_EXTRN_DR6)
1659 DbgRegs.dr6 = pCtx->dr[6];
1660 if (fExtrn & CPUMCTX_EXTRN_DR7)
1661 DbgRegs.dr7 = pCtx->dr[7];
1662
1663 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_DEBUGREGS, &DbgRegs);
1664 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1665 }
1666
1667 /*
1668 * FPU, SSE, AVX, ++.
1669 */
1670 if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE | CPUMCTX_EXTRN_XCRx))
1671 {
1672 if (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
1673 {
1674 /** @todo could IEM just grab state partial control in some situations? */
1675 Assert( (fExtrn & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
1676 == (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE)); /* no partial states */
1677
1678 AssertCompile(sizeof(pCtx->XState) >= sizeof(struct kvm_xsave));
1679 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XSAVE, &pCtx->XState);
1680 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1681 }
1682
1683 if (fExtrn & CPUMCTX_EXTRN_XCRx)
1684 {
1685 struct kvm_xcrs Xcrs =
1686 { /*.nr_xcrs = */ 2,
1687 /*.flags = */ 0,
1688 /*.xcrs= */ {
1689 { /*.xcr =*/ 0, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[0] },
1690 { /*.xcr =*/ 1, /*.reserved=*/ 0, /*.value=*/ pCtx->aXcr[1] },
1691 }
1692 };
1693
1694 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_XCRS, &Xcrs);
1695 AssertMsgReturn(rc == 0, ("rc=%d errno=%d\n", rc, errno), VERR_NEM_IPE_3);
1696 }
1697 }
1698
1699 /*
1700 * MSRs.
1701 */
1702 if (fExtrn & ( CPUMCTX_EXTRN_KERNEL_GS_BASE | CPUMCTX_EXTRN_SYSCALL_MSRS | CPUMCTX_EXTRN_SYSENTER_MSRS
1703 | CPUMCTX_EXTRN_TSC_AUX | CPUMCTX_EXTRN_OTHER_MSRS))
1704 {
1705 union
1706 {
1707 struct kvm_msrs Core;
1708 uint64_t padding[2 + sizeof(struct kvm_msr_entry) * 32];
1709 } uBuf;
1710 uint32_t iMsr = 0;
1711 PCPUMCTXMSRS const pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1712
1713#define ADD_MSR(a_Msr, a_uValue) do { \
1714 Assert(iMsr < 32); \
1715 uBuf.Core.entries[iMsr].index = (a_Msr); \
1716 uBuf.Core.entries[iMsr].reserved = 0; \
1717 uBuf.Core.entries[iMsr].data = (a_uValue); \
1718 iMsr += 1; \
1719 } while (0)
1720
1721 if (fExtrn & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1722 ADD_MSR(MSR_K8_KERNEL_GS_BASE, pCtx->msrKERNELGSBASE);
1723 if (fExtrn & CPUMCTX_EXTRN_SYSCALL_MSRS)
1724 {
1725 ADD_MSR(MSR_K6_STAR, pCtx->msrSTAR);
1726 ADD_MSR(MSR_K8_LSTAR, pCtx->msrLSTAR);
1727 ADD_MSR(MSR_K8_CSTAR, pCtx->msrCSTAR);
1728 ADD_MSR(MSR_K8_SF_MASK, pCtx->msrSFMASK);
1729 }
1730 if (fExtrn & CPUMCTX_EXTRN_SYSENTER_MSRS)
1731 {
1732 ADD_MSR(MSR_IA32_SYSENTER_CS, pCtx->SysEnter.cs);
1733 ADD_MSR(MSR_IA32_SYSENTER_EIP, pCtx->SysEnter.eip);
1734 ADD_MSR(MSR_IA32_SYSENTER_ESP, pCtx->SysEnter.esp);
1735 }
1736 if (fExtrn & CPUMCTX_EXTRN_TSC_AUX)
1737 ADD_MSR(MSR_K8_TSC_AUX, pCtxMsrs->msr.TscAux);
1738 if (fExtrn & CPUMCTX_EXTRN_OTHER_MSRS)
1739 {
1740 ADD_MSR(MSR_IA32_CR_PAT, pCtx->msrPAT);
1741 /** @todo What do we _have_ to add here?
1742 * We also have: Mttr*, MiscEnable, FeatureControl. */
1743 }
1744
1745 uBuf.Core.pad = 0;
1746 uBuf.Core.nmsrs = iMsr;
1747 int rc = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_MSRS, &uBuf);
1748 AssertMsgReturn(rc == (int)iMsr,
1749 ("rc=%d iMsr=%d (->%#x) errno=%d\n",
1750 rc, iMsr, (uint32_t)rc < iMsr ? uBuf.Core.entries[rc].index : 0, errno),
1751 VERR_NEM_IPE_3);
1752 }
1753
1754 /*
1755 * Interruptibility state.
1756 *
1757 * Note! This I/O control function sets most fields passed in, so when
1758 * raising an interrupt, NMI, SMI or exception, this must be done
1759 * by the code doing the rasing or we'll overwrite it here.
1760 */
1761 if (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
1762 {
1763 Assert( (fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI))
1764 == (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI));
1765
1766 struct kvm_vcpu_events KvmEvents = {0};
1767
1768 KvmEvents.flags = KVM_VCPUEVENT_VALID_SHADOW;
1769 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1770 {
1771 if (pRun->s.regs.regs.rip == EMGetInhibitInterruptsPC(pVCpu))
1772 KvmEvents.interrupt.shadow = KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI;
1773 else
1774 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1775 }
1776
1777 /* No flag - this is updated unconditionally. */
1778 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
1779 KvmEvents.nmi.masked = 1;
1780
1781 if (TRPMHasTrap(pVCpu))
1782 {
1783 TRPMEVENT enmType = TRPM_32BIT_HACK;
1784 uint8_t bTrapNo = 0;
1785 TRPMQueryTrap(pVCpu, &bTrapNo, &enmType);
1786 Log(("nemHCLnxExportState: Pending trap: bTrapNo=%#x enmType=%d\n", bTrapNo, enmType));
1787 if ( enmType == TRPM_HARDWARE_INT
1788 || enmType == TRPM_SOFTWARE_INT)
1789 {
1790 KvmEvents.interrupt.soft = enmType == TRPM_SOFTWARE_INT;
1791 KvmEvents.interrupt.nr = bTrapNo;
1792 KvmEvents.interrupt.injected = 1;
1793 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExportPendingInterrupt);
1794 TRPMResetTrap(pVCpu);
1795 }
1796 else
1797 AssertFailed();
1798 }
1799
1800 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents);
1801 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_3);
1802 }
1803
1804 /*
1805 * KVM now owns all the state.
1806 */
1807 pCtx->fExtrn = CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_ALL;
1808
1809 RT_NOREF(pVM);
1810 return VINF_SUCCESS;
1811}
1812
1813
1814/**
1815 * Query the CPU tick counter and optionally the TSC_AUX MSR value.
1816 *
1817 * @returns VBox status code.
1818 * @param pVCpu The cross context CPU structure.
1819 * @param pcTicks Where to return the CPU tick count.
1820 * @param puAux Where to return the TSC_AUX register value.
1821 */
1822VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
1823{
1824 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
1825 // KVM_GET_CLOCK?
1826 RT_NOREF(pVCpu, pcTicks, puAux);
1827 return VINF_SUCCESS;
1828}
1829
1830
1831/**
1832 * Resumes CPU clock (TSC) on all virtual CPUs.
1833 *
1834 * This is called by TM when the VM is started, restored, resumed or similar.
1835 *
1836 * @returns VBox status code.
1837 * @param pVM The cross context VM structure.
1838 * @param pVCpu The cross context CPU structure of the calling EMT.
1839 * @param uPausedTscValue The TSC value at the time of pausing.
1840 */
1841VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
1842{
1843 // KVM_SET_CLOCK?
1844 RT_NOREF(pVM, pVCpu, uPausedTscValue);
1845 return VINF_SUCCESS;
1846}
1847
1848
1849VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
1850{
1851 RT_NOREF(pVM);
1852 return NEM_FEAT_F_NESTED_PAGING
1853 | NEM_FEAT_F_FULL_GST_EXEC
1854 | NEM_FEAT_F_XSAVE_XRSTOR;
1855}
1856
1857
1858
1859/*********************************************************************************************************************************
1860* Execution *
1861*********************************************************************************************************************************/
1862
1863
1864VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
1865{
1866 /*
1867 * Only execute when the A20 gate is enabled as I cannot immediately
1868 * spot any A20 support in KVM.
1869 */
1870 RT_NOREF(pVM);
1871 Assert(VM_IS_NEM_ENABLED(pVM));
1872 return PGMPhysIsA20Enabled(pVCpu);
1873}
1874
1875
1876bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
1877{
1878 NOREF(pVM); NOREF(pVCpu); NOREF(fEnable);
1879 return false;
1880}
1881
1882
1883/**
1884 * Forced flag notification call from VMEmt.cpp.
1885 *
1886 * This is only called when pVCpu is in the VMCPUSTATE_STARTED_EXEC_NEM state.
1887 *
1888 * @param pVM The cross context VM structure.
1889 * @param pVCpu The cross context virtual CPU structure of the CPU
1890 * to be notified.
1891 * @param fFlags Notification flags, VMNOTIFYFF_FLAGS_XXX.
1892 */
1893void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
1894{
1895 int rc = RTThreadPoke(pVCpu->hThread);
1896 LogFlow(("nemR3NativeNotifyFF: #%u -> %Rrc\n", pVCpu->idCpu, rc));
1897 AssertRC(rc);
1898 RT_NOREF(pVM, fFlags);
1899}
1900
1901
1902/**
1903 * Deals with pending interrupt FFs prior to executing guest code.
1904 */
1905static VBOXSTRICTRC nemHCLnxHandleInterruptFF(PVM pVM, PVMCPU pVCpu, struct kvm_run *pRun)
1906{
1907 RT_NOREF_PV(pVM);
1908
1909 /*
1910 * Do not doing anything if TRPM has something pending already as we can
1911 * only inject one event per KVM_RUN call. This can only happend if we
1912 * can directly from the loop in EM, so the inhibit bits must be internal.
1913 */
1914 if (!TRPMHasTrap(pVCpu))
1915 { /* semi likely */ }
1916 else
1917 {
1918 Assert(!(pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI)));
1919 Log8(("nemHCLnxHandleInterruptFF: TRPM has an pending event already\n"));
1920 return VINF_SUCCESS;
1921 }
1922
1923 /*
1924 * First update APIC. We ASSUME this won't need TPR/CR8.
1925 */
1926 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UPDATE_APIC))
1927 {
1928 APICUpdatePendingInterrupts(pVCpu);
1929 if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC
1930 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
1931 return VINF_SUCCESS;
1932 }
1933
1934 /*
1935 * We don't currently implement SMIs.
1936 */
1937 AssertReturn(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI), VERR_NEM_IPE_0);
1938
1939 /*
1940 * In KVM the CPUMCTX_EXTRN_INHIBIT_INT and CPUMCTX_EXTRN_INHIBIT_NMI states
1941 * are tied together with interrupt and NMI delivery, so we must get and
1942 * synchronize these all in one go and set both CPUMCTX_EXTRN_INHIBIT_XXX flags.
1943 * If we don't we may lose the interrupt/NMI we marked pending here when the
1944 * state is exported again before execution.
1945 */
1946 struct kvm_vcpu_events KvmEvents = {0};
1947 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_VCPU_EVENTS, &KvmEvents);
1948 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
1949
1950 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_RIP))
1951 pRun->s.regs.regs.rip = pVCpu->cpum.GstCtx.rip;
1952
1953 KvmEvents.flags |= KVM_VCPUEVENT_VALID_SHADOW;
1954 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_INT))
1955 {
1956 if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1957 KvmEvents.interrupt.shadow = 0;
1958 else if (EMGetInhibitInterruptsPC(pVCpu) == pRun->s.regs.regs.rip)
1959 KvmEvents.interrupt.shadow = KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI;
1960 else
1961 {
1962 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1963 KvmEvents.interrupt.shadow = 0;
1964 }
1965 }
1966 else if (KvmEvents.interrupt.shadow)
1967 EMSetInhibitInterruptsPC(pVCpu, pRun->s.regs.regs.rip);
1968 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
1969 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
1970
1971 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_INHIBIT_NMI))
1972 KvmEvents.nmi.masked = VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS) ? 1 : 0;
1973 else if (KvmEvents.nmi.masked)
1974 VMCPU_FF_SET(pVCpu, VMCPU_FF_BLOCK_NMIS);
1975 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
1976 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_BLOCK_NMIS);
1977
1978 /* KVM will own the INT + NMI inhibit state soon: */
1979 pVCpu->cpum.GstCtx.fExtrn = (pVCpu->cpum.GstCtx.fExtrn & ~CPUMCTX_EXTRN_KEEPER_MASK)
1980 | CPUMCTX_EXTRN_KEEPER_NEM | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI;
1981
1982 /*
1983 * NMI? Try deliver it first.
1984 */
1985 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
1986 {
1987#if 0
1988 int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_NMI, 0UL);
1989 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
1990#else
1991 KvmEvents.flags |= KVM_VCPUEVENT_VALID_NMI_PENDING;
1992 KvmEvents.nmi.pending = 1;
1993#endif
1994 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INTERRUPT_NMI);
1995 Log8(("Queuing NMI on %u\n", pVCpu->idCpu));
1996 }
1997
1998 /*
1999 * APIC or PIC interrupt?
2000 */
2001 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC))
2002 {
2003 if (pRun->s.regs.regs.rflags & X86_EFL_IF)
2004 {
2005 if (KvmEvents.interrupt.shadow == 0)
2006 {
2007 /*
2008 * If CR8 is in KVM, update the VBox copy so PDMGetInterrupt will
2009 * work correctly.
2010 */
2011 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_APIC_TPR)
2012 APICSetTpr(pVCpu, (uint8_t)pRun->cr8 << 4);
2013
2014 uint8_t bInterrupt;
2015 int rc = PDMGetInterrupt(pVCpu, &bInterrupt);
2016 if (RT_SUCCESS(rc))
2017 {
2018 Assert(KvmEvents.interrupt.injected == false);
2019#if 0
2020 int rcLnx = ioctl(pVCpu->nem.s.fdVm, KVM_INTERRUPT, (unsigned long)bInterrupt);
2021 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
2022#else
2023 KvmEvents.interrupt.nr = bInterrupt;
2024 KvmEvents.interrupt.soft = false;
2025 KvmEvents.interrupt.injected = true;
2026#endif
2027 Log8(("Queuing interrupt %#x on %u: %04x:%08RX64 efl=%#x\n", bInterrupt, pVCpu->idCpu,
2028 pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.eflags));
2029 }
2030 else if (rc == VERR_APIC_INTR_MASKED_BY_TPR) /** @todo this isn't extremely efficient if we get a lot of exits... */
2031 Log8(("VERR_APIC_INTR_MASKED_BY_TPR\n")); /* We'll get a TRP exit - no interrupt window needed. */
2032 else
2033 Log8(("PDMGetInterrupt failed -> %Rrc\n", rc));
2034 }
2035 else
2036 {
2037 pRun->request_interrupt_window = 1;
2038 Log8(("Interrupt window pending on %u (#2)\n", pVCpu->idCpu));
2039 }
2040 }
2041 else
2042 {
2043 pRun->request_interrupt_window = 1;
2044 Log8(("Interrupt window pending on %u (#1)\n", pVCpu->idCpu));
2045 }
2046 }
2047
2048 /*
2049 * Now, update the state.
2050 */
2051 /** @todo skip when possible... */
2052 rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_SET_VCPU_EVENTS, &KvmEvents);
2053 AssertLogRelMsgReturn(rcLnx == 0, ("rcLnx=%d errno=%d\n", rcLnx, errno), VERR_NEM_IPE_5);
2054
2055 return VINF_SUCCESS;
2056}
2057
2058
2059/**
2060 * Handles KVM_EXIT_INTERNAL_ERROR.
2061 */
2062static VBOXSTRICTRC nemR3LnxHandleInternalError(PVMCPU pVCpu, struct kvm_run *pRun)
2063{
2064 Log(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%d) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror,
2065 pRun->internal.suberror, pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0]));
2066
2067 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, KVM_EXIT_INTERNAL_ERROR),
2068 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2069
2070 /*
2071 * Deal with each suberror, returning if we don't want IEM to handle it.
2072 */
2073 switch (pRun->internal.suberror)
2074 {
2075 case KVM_INTERNAL_ERROR_EMULATION:
2076 {
2077 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorEmulation);
2078 break;
2079 }
2080
2081 case KVM_INTERNAL_ERROR_SIMUL_EX:
2082 case KVM_INTERNAL_ERROR_DELIVERY_EV:
2083 case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON:
2084 default:
2085 {
2086 const char *pszName;
2087 switch (pRun->internal.suberror)
2088 {
2089 case KVM_INTERNAL_ERROR_EMULATION: pszName = "KVM_INTERNAL_ERROR_EMULATION"; break;
2090 case KVM_INTERNAL_ERROR_SIMUL_EX: pszName = "KVM_INTERNAL_ERROR_SIMUL_EX"; break;
2091 case KVM_INTERNAL_ERROR_DELIVERY_EV: pszName = "KVM_INTERNAL_ERROR_DELIVERY_EV"; break;
2092 case KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON: pszName = "KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON"; break;
2093 default: pszName = "unknown"; break;
2094 }
2095 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitInternalErrorFatal);
2096 LogRel(("NEM: KVM_EXIT_INTERNAL_ERROR! suberror=%#x (%s) ndata=%u data=%.*Rhxs\n", pRun->internal.suberror, pszName,
2097 pRun->internal.ndata, sizeof(pRun->internal.data), &pRun->internal.data[0]));
2098 return VERR_NEM_IPE_0;
2099 }
2100 }
2101
2102 /*
2103 * Execute instruction in IEM and try get on with it.
2104 */
2105 Log2(("nemR3LnxHandleInternalError: Executing instruction at %04x:%08RX64 in IEM\n",
2106 pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip));
2107 VBOXSTRICTRC rcStrict = nemHCLnxImportState(pVCpu,
2108 IEM_CPUMCTX_EXTRN_MUST_MASK | CPUMCTX_EXTRN_INHIBIT_INT
2109 | CPUMCTX_EXTRN_INHIBIT_NMI,
2110 &pVCpu->cpum.GstCtx, pRun);
2111 if (RT_SUCCESS(rcStrict))
2112 rcStrict = IEMExecOne(pVCpu);
2113 return rcStrict;
2114}
2115
2116
2117/**
2118 * Handles KVM_EXIT_IO.
2119 */
2120static VBOXSTRICTRC nemHCLnxHandleExitIo(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun)
2121{
2122 /*
2123 * Input validation.
2124 */
2125 Assert(pRun->io.count > 0);
2126 Assert(pRun->io.size == 1 || pRun->io.size == 2 || pRun->io.size == 4);
2127 Assert(pRun->io.direction == KVM_EXIT_IO_IN || pRun->io.direction == KVM_EXIT_IO_OUT);
2128 Assert(pRun->io.data_offset < pVM->nem.s.cbVCpuMmap);
2129 Assert(pRun->io.data_offset + pRun->io.size * pRun->io.count <= pVM->nem.s.cbVCpuMmap);
2130
2131 /*
2132 * We cannot actually act on the exit history here, because the I/O port
2133 * exit is stateful and the instruction will be completed in the next
2134 * KVM_RUN call. There seems no way to avoid this.
2135 */
2136 EMHistoryAddExit(pVCpu,
2137 pRun->io.count == 1
2138 ? ( pRun->io.direction == KVM_EXIT_IO_IN
2139 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_READ)
2140 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_WRITE))
2141 : ( pRun->io.direction == KVM_EXIT_IO_IN
2142 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_READ)
2143 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_IO_PORT_STR_WRITE)),
2144 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2145
2146 /*
2147 * Do the requested job.
2148 */
2149 VBOXSTRICTRC rcStrict;
2150 RTPTRUNION uPtrData;
2151 uPtrData.pu8 = (uint8_t *)pRun + pRun->io.data_offset;
2152 if (pRun->io.count == 1)
2153 {
2154 if (pRun->io.direction == KVM_EXIT_IO_IN)
2155 {
2156 uint32_t uValue = 0;
2157 rcStrict = IOMIOPortRead(pVM, pVCpu, pRun->io.port, &uValue, pRun->io.size);
2158 Log4(("IOExit/%u: %04x:%08RX64: IN %#x LB %u -> %#x, rcStrict=%Rrc\n",
2159 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2160 pRun->io.port, pRun->io.size, uValue, VBOXSTRICTRC_VAL(rcStrict) ));
2161 if (IOM_SUCCESS(rcStrict))
2162 {
2163 if (pRun->io.size == 4)
2164 *uPtrData.pu32 = uValue;
2165 else if (pRun->io.size == 2)
2166 *uPtrData.pu16 = (uint16_t)uValue;
2167 else
2168 *uPtrData.pu8 = (uint8_t)uValue;
2169 }
2170 }
2171 else
2172 {
2173 uint32_t const uValue = pRun->io.size == 4 ? *uPtrData.pu32
2174 : pRun->io.size == 2 ? *uPtrData.pu16
2175 : *uPtrData.pu8;
2176 rcStrict = IOMIOPortWrite(pVM, pVCpu, pRun->io.port, uValue, pRun->io.size);
2177 Log4(("IOExit/%u: %04x:%08RX64: OUT %#x, %#x LB %u rcStrict=%Rrc\n",
2178 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2179 pRun->io.port, uValue, pRun->io.size, VBOXSTRICTRC_VAL(rcStrict) ));
2180 }
2181 }
2182 else
2183 {
2184 uint32_t cTransfers = pRun->io.count;
2185 if (pRun->io.direction == KVM_EXIT_IO_IN)
2186 {
2187 rcStrict = IOMIOPortReadString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size);
2188 Log4(("IOExit/%u: %04x:%08RX64: REP INS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n",
2189 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2190 pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers ));
2191 }
2192 else
2193 {
2194 rcStrict = IOMIOPortWriteString(pVM, pVCpu, pRun->io.port, uPtrData.pv, &cTransfers, pRun->io.size);
2195 Log4(("IOExit/%u: %04x:%08RX64: REP OUTS %#x LB %u * %#x times -> rcStrict=%Rrc cTransfers=%d\n",
2196 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2197 pRun->io.port, pRun->io.size, pRun->io.count, VBOXSTRICTRC_VAL(rcStrict), cTransfers ));
2198 }
2199 Assert(cTransfers == 0);
2200 }
2201 return rcStrict;
2202}
2203
2204
2205/**
2206 * Handles KVM_EXIT_MMIO.
2207 */
2208static VBOXSTRICTRC nemHCLnxHandleExitMmio(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun)
2209{
2210 /*
2211 * Input validation.
2212 */
2213 Assert(pRun->mmio.len <= sizeof(pRun->mmio.data));
2214 Assert(pRun->mmio.is_write <= 1);
2215
2216 /*
2217 * We cannot actually act on the exit history here, because the MMIO port
2218 * exit is stateful and the instruction will be completed in the next
2219 * KVM_RUN call. There seems no way to circumvent this.
2220 */
2221 EMHistoryAddExit(pVCpu,
2222 pRun->mmio.is_write
2223 ? EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_WRITE)
2224 : EMEXIT_MAKE_FT(EMEXIT_F_KIND_EM, EMEXITTYPE_MMIO_READ),
2225 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2226
2227 /*
2228 * Do the requested job.
2229 */
2230 VBOXSTRICTRC rcStrict;
2231 if (pRun->mmio.is_write)
2232 {
2233 rcStrict = PGMPhysWrite(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM);
2234 Log4(("MmioExit/%u: %04x:%08RX64: WRITE %#x LB %u, %.*Rhxs -> rcStrict=%Rrc\n",
2235 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2236 pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) ));
2237 }
2238 else
2239 {
2240 rcStrict = PGMPhysRead(pVM, pRun->mmio.phys_addr, pRun->mmio.data, pRun->mmio.len, PGMACCESSORIGIN_HM);
2241 Log4(("MmioExit/%u: %04x:%08RX64: READ %#x LB %u -> %.*Rhxs rcStrict=%Rrc\n",
2242 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2243 pRun->mmio.phys_addr, pRun->mmio.len, pRun->mmio.len, pRun->mmio.data, VBOXSTRICTRC_VAL(rcStrict) ));
2244 }
2245 return rcStrict;
2246}
2247
2248
2249static VBOXSTRICTRC nemHCLnxHandleExit(PVMCC pVM, PVMCPUCC pVCpu, struct kvm_run *pRun)
2250{
2251 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTotal);
2252 switch (pRun->exit_reason)
2253 {
2254 case KVM_EXIT_EXCEPTION:
2255 AssertFailed();
2256 break;
2257
2258 case KVM_EXIT_IO:
2259 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIo);
2260 return nemHCLnxHandleExitIo(pVM, pVCpu, pRun);
2261
2262 case KVM_EXIT_MMIO:
2263 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitMmio);
2264 return nemHCLnxHandleExitMmio(pVM, pVCpu, pRun);
2265
2266 case KVM_EXIT_IRQ_WINDOW_OPEN:
2267 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, KVM_EXIT_IRQ_WINDOW_OPEN),
2268 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2269 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIrqWindowOpen);
2270 Log5(("IrqWinOpen/%u: %d\n", pVCpu->idCpu, pRun->request_interrupt_window));
2271 pRun->request_interrupt_window = 0;
2272 return VINF_SUCCESS;
2273
2274 case KVM_EXIT_SET_TPR:
2275 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitSetTpr);
2276 AssertFailed();
2277 break;
2278
2279 case KVM_EXIT_TPR_ACCESS:
2280 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitTprAccess);
2281 AssertFailed();
2282 break;
2283
2284 case KVM_EXIT_X86_RDMSR:
2285 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitRdMsr);
2286 AssertFailed();
2287 break;
2288
2289 case KVM_EXIT_X86_WRMSR:
2290 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitWrMsr);
2291 AssertFailed();
2292 break;
2293
2294 case KVM_EXIT_HLT:
2295 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, KVM_EXIT_HLT),
2296 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2297 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHalt);
2298 Log5(("Halt/%u\n", pVCpu->idCpu));
2299 return VINF_EM_HALT;
2300
2301 case KVM_EXIT_INTR: /* EINTR */
2302 EMHistoryAddExit(pVCpu, EMEXIT_MAKE_FT(EMEXIT_F_KIND_NEM, KVM_EXIT_INTR),
2303 pRun->s.regs.regs.rip + pRun->s.regs.sregs.cs.base, ASMReadTSC());
2304 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitIntr);
2305 Log5(("Intr/%u\n", pVCpu->idCpu));
2306 return VINF_SUCCESS;
2307
2308 case KVM_EXIT_HYPERCALL:
2309 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitHypercall);
2310 AssertFailed();
2311 break;
2312
2313 case KVM_EXIT_DEBUG:
2314 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitDebug);
2315 AssertFailed();
2316 break;
2317
2318 case KVM_EXIT_SYSTEM_EVENT:
2319 AssertFailed();
2320 break;
2321 case KVM_EXIT_IOAPIC_EOI:
2322 AssertFailed();
2323 break;
2324 case KVM_EXIT_HYPERV:
2325 AssertFailed();
2326 break;
2327
2328 case KVM_EXIT_DIRTY_RING_FULL:
2329 AssertFailed();
2330 break;
2331 case KVM_EXIT_AP_RESET_HOLD:
2332 AssertFailed();
2333 break;
2334 case KVM_EXIT_X86_BUS_LOCK:
2335 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatExitBusLock);
2336 AssertFailed();
2337 break;
2338
2339
2340 case KVM_EXIT_SHUTDOWN:
2341 AssertFailed();
2342 break;
2343
2344 case KVM_EXIT_FAIL_ENTRY:
2345 LogRel(("NEM: KVM_EXIT_FAIL_ENTRY! hardware_entry_failure_reason=%#x cpu=%#x\n",
2346 pRun->fail_entry.hardware_entry_failure_reason, pRun->fail_entry.cpu));
2347 return VERR_NEM_IPE_1;
2348
2349 case KVM_EXIT_INTERNAL_ERROR:
2350 /* we're counting sub-reasons inside the function. */
2351 return nemR3LnxHandleInternalError(pVCpu, pRun);
2352
2353 /*
2354 * Foreign and unknowns.
2355 */
2356 case KVM_EXIT_NMI:
2357 AssertLogRelMsgFailedReturn(("KVM_EXIT_NMI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2358 case KVM_EXIT_EPR:
2359 AssertLogRelMsgFailedReturn(("KVM_EXIT_EPR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2360 case KVM_EXIT_WATCHDOG:
2361 AssertLogRelMsgFailedReturn(("KVM_EXIT_WATCHDOG on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2362 case KVM_EXIT_ARM_NISV:
2363 AssertLogRelMsgFailedReturn(("KVM_EXIT_ARM_NISV on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2364 case KVM_EXIT_S390_STSI:
2365 AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_STSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2366 case KVM_EXIT_S390_TSCH:
2367 AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_TSCH on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2368 case KVM_EXIT_OSI:
2369 AssertLogRelMsgFailedReturn(("KVM_EXIT_OSI on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2370 case KVM_EXIT_PAPR_HCALL:
2371 AssertLogRelMsgFailedReturn(("KVM_EXIT_PAPR_HCALL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2372 case KVM_EXIT_S390_UCONTROL:
2373 AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_UCONTROL on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2374 case KVM_EXIT_DCR:
2375 AssertLogRelMsgFailedReturn(("KVM_EXIT_DCR on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2376 case KVM_EXIT_S390_SIEIC:
2377 AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_SIEIC on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2378 case KVM_EXIT_S390_RESET:
2379 AssertLogRelMsgFailedReturn(("KVM_EXIT_S390_RESET on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2380 case KVM_EXIT_UNKNOWN:
2381 AssertLogRelMsgFailedReturn(("KVM_EXIT_UNKNOWN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2382 case KVM_EXIT_XEN:
2383 AssertLogRelMsgFailedReturn(("KVM_EXIT_XEN on VCpu #%u at %04x:%RX64!\n", pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2384 default:
2385 AssertLogRelMsgFailedReturn(("Unknown exit reason %u on VCpu #%u at %04x:%RX64!\n", pRun->exit_reason, pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip), VERR_NEM_IPE_1);
2386 }
2387
2388 RT_NOREF(pVM, pVCpu, pRun);
2389 return VERR_NOT_IMPLEMENTED;
2390}
2391
2392
2393VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
2394{
2395 /*
2396 * Try switch to NEM runloop state.
2397 */
2398 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
2399 { /* likely */ }
2400 else
2401 {
2402 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2403 LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
2404 return VINF_SUCCESS;
2405 }
2406
2407 /*
2408 * The run loop.
2409 */
2410 struct kvm_run * const pRun = pVCpu->nem.s.pRun;
2411 const bool fSingleStepping = DBGFIsStepping(pVCpu);
2412 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2413 for (unsigned iLoop = 0;; iLoop++)
2414 {
2415 /*
2416 * Pending interrupts or such? Need to check and deal with this prior
2417 * to the state syncing.
2418 */
2419 if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_UPDATE_APIC | VMCPU_FF_INTERRUPT_PIC
2420 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
2421 {
2422 /* Try inject interrupt. */
2423 rcStrict = nemHCLnxHandleInterruptFF(pVM, pVCpu, pRun);
2424 if (rcStrict == VINF_SUCCESS)
2425 { /* likely */ }
2426 else
2427 {
2428 LogFlow(("NEM/%u: breaking: nemHCLnxHandleInterruptFF -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
2429 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
2430 break;
2431 }
2432 }
2433
2434 /*
2435 * Do not execute in KVM if the A20 isn't enabled.
2436 */
2437 if (PGMPhysIsA20Enabled(pVCpu))
2438 { /* likely */ }
2439 else
2440 {
2441 rcStrict = VINF_EM_RESCHEDULE_REM;
2442 LogFlow(("NEM/%u: breaking: A20 disabled\n", pVCpu->idCpu));
2443 break;
2444 }
2445
2446 /*
2447 * Ensure KVM has the whole state.
2448 */
2449 if ((pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL) != CPUMCTX_EXTRN_ALL)
2450 {
2451 int rc2 = nemHCLnxExportState(pVM, pVCpu, &pVCpu->cpum.GstCtx, pRun);
2452 AssertRCReturn(rc2, rc2);
2453 }
2454
2455 /*
2456 * Poll timers and run for a bit.
2457 *
2458 * With the VID approach (ring-0 or ring-3) we can specify a timeout here,
2459 * so we take the time of the next timer event and uses that as a deadline.
2460 * The rounding heuristics are "tuned" so that rhel5 (1K timer) will boot fine.
2461 */
2462 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
2463 * the whole polling job when timers have changed... */
2464 uint64_t offDeltaIgnored;
2465 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
2466 if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
2467 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2468 {
2469 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM))
2470 {
2471 LogFlow(("NEM/%u: Entry @ %04x:%08RX64 IF=%d EFL=%#RX64 SS:RSP=%04x:%08RX64 cr0=%RX64\n",
2472 pVCpu->idCpu, pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip,
2473 !!(pRun->s.regs.regs.rflags & X86_EFL_IF), pRun->s.regs.regs.rflags,
2474 pRun->s.regs.sregs.ss.selector, pRun->s.regs.regs.rsp, pRun->s.regs.sregs.cr0));
2475 TMNotifyStartOfExecution(pVM, pVCpu);
2476
2477 int rcLnx = ioctl(pVCpu->nem.s.fdVCpu, KVM_RUN, 0UL);
2478
2479 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
2480 TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());
2481
2482#ifdef LOG_ENABLED
2483 if (LogIsFlowEnabled())
2484 {
2485 struct kvm_mp_state MpState = {UINT32_MAX};
2486 ioctl(pVCpu->nem.s.fdVCpu, KVM_GET_MP_STATE, &MpState);
2487 LogFlow(("NEM/%u: Exit @ %04x:%08RX64 IF=%d EFL=%#RX64 CR8=%#x Reason=%#x IrqReady=%d Flags=%#x %#lx\n", pVCpu->idCpu,
2488 pRun->s.regs.sregs.cs.selector, pRun->s.regs.regs.rip, pRun->if_flag,
2489 pRun->s.regs.regs.rflags, pRun->s.regs.sregs.cr8, pRun->exit_reason,
2490 pRun->ready_for_interrupt_injection, pRun->flags, MpState.mp_state));
2491 }
2492#endif
2493 if (RT_LIKELY(rcLnx == 0 || errno == EINTR))
2494 {
2495 /*
2496 * Deal with the message.
2497 */
2498 rcStrict = nemHCLnxHandleExit(pVM, pVCpu, pRun);
2499 if (rcStrict == VINF_SUCCESS)
2500 { /* hopefully likely */ }
2501 else
2502 {
2503 LogFlow(("NEM/%u: breaking: nemHCLnxHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
2504 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
2505 break;
2506 }
2507 }
2508 else
2509 {
2510 int rc2 = RTErrConvertFromErrno(errno);
2511 AssertLogRelMsgFailedReturn(("KVM_RUN failed: rcLnx=%d errno=%u rc=%Rrc\n", rcLnx, errno, rc2), rc2);
2512 }
2513
2514 /*
2515 * If no relevant FFs are pending, loop.
2516 */
2517 if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2518 && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2519 continue;
2520
2521 /** @todo Try handle pending flags, not just return to EM loops. Take care
2522 * not to set important RCs here unless we've handled an exit. */
2523 LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n",
2524 pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions));
2525 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
2526 }
2527 else
2528 {
2529 LogFlow(("NEM/%u: breaking: canceled %d (pre exec)\n", pVCpu->idCpu, VMCPU_GET_STATE(pVCpu) ));
2530 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnCancel);
2531 }
2532 }
2533 else
2534 {
2535 LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
2536 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
2537 }
2538 break;
2539 } /* the run loop */
2540
2541
2542 /*
2543 * If the CPU is running, make sure to stop it before we try sync back the
2544 * state and return to EM. We don't sync back the whole state if we can help it.
2545 */
2546 if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
2547 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2548
2549 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL)
2550 {
2551 /* Try anticipate what we might need. */
2552 uint64_t fImport = CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI /* Required for processing APIC,PIC,NMI & SMI FFs. */
2553 | IEM_CPUMCTX_EXTRN_MUST_MASK /*?*/;
2554 if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
2555 || RT_FAILURE(rcStrict))
2556 fImport = CPUMCTX_EXTRN_ALL;
2557# ifdef IN_RING0 /* Ring-3 I/O port access optimizations: */
2558 else if ( rcStrict == VINF_IOM_R3_IOPORT_COMMIT_WRITE
2559 || rcStrict == VINF_EM_PENDING_R3_IOPORT_WRITE)
2560 fImport = CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS;
2561 else if (rcStrict == VINF_EM_PENDING_R3_IOPORT_READ)
2562 fImport = CPUMCTX_EXTRN_RAX | CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_RFLAGS;
2563# endif
2564 else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
2565 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
2566 fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
2567
2568 if (pVCpu->cpum.GstCtx.fExtrn & fImport)
2569 {
2570 int rc2 = nemHCLnxImportState(pVCpu, fImport, &pVCpu->cpum.GstCtx, pRun);
2571 if (RT_SUCCESS(rc2))
2572 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
2573 else if (RT_SUCCESS(rcStrict))
2574 rcStrict = rc2;
2575 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
2576 pVCpu->cpum.GstCtx.fExtrn = 0;
2577 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
2578 }
2579 else
2580 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2581 }
2582 else
2583 {
2584 pVCpu->cpum.GstCtx.fExtrn = 0;
2585 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2586 }
2587
2588 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip,
2589 pVCpu->cpum.GstCtx.rflags, VBOXSTRICTRC_VAL(rcStrict) ));
2590 return rcStrict;
2591}
2592
2593
2594/** @page pg_nem_linux NEM/linux - Native Execution Manager, Linux.
2595 *
2596 * This is using KVM.
2597 *
2598 */
2599
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette