VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/NEMR3Native-darwin.cpp@ 92521

最後變更 在這個檔案從92521是 92499,由 vboxsync 提交於 3 年 前

VMM/NEMR3Native-darwin.cpp: Fix TPR shadowing configuration (huge speedup for Windows 10 guests) and add some statistics, bugref:9044

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Author Date Id Revision
檔案大小: 128.9 KB
 
1/* $Id: NEMR3Native-darwin.cpp 92499 2021-11-18 16:07:42Z vboxsync $ */
2/** @file
3 * NEM - Native execution manager, native ring-3 macOS backend using Hypervisor.framework.
4 *
5 * Log group 2: Exit logging.
6 * Log group 3: Log context on exit.
7 * Log group 5: Ring-3 memory management
8 */
9
10/*
11 * Copyright (C) 2020 Oracle Corporation
12 *
13 * This file is part of VirtualBox Open Source Edition (OSE), as
14 * available from http://www.alldomusa.eu.org. This file is free software;
15 * you can redistribute it and/or modify it under the terms of the GNU
16 * General Public License (GPL) as published by the Free Software
17 * Foundation, in version 2 as it comes in the "COPYING" file of the
18 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
19 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
20 */
21
22
23/*********************************************************************************************************************************
24* Header Files *
25*********************************************************************************************************************************/
26#define LOG_GROUP LOG_GROUP_NEM
27#define VMCPU_INCL_CPUM_GST_CTX
28#include <VBox/vmm/nem.h>
29#include <VBox/vmm/iem.h>
30#include <VBox/vmm/em.h>
31#include <VBox/vmm/apic.h>
32#include <VBox/vmm/pdm.h>
33#include <VBox/vmm/hm.h>
34#include <VBox/vmm/hm_vmx.h>
35#include <VBox/vmm/dbgftrace.h>
36#include "VMXInternal.h"
37#include "NEMInternal.h"
38#include <VBox/vmm/vmcc.h>
39#include "dtrace/VBoxVMM.h"
40
41#include <iprt/asm.h>
42#include <iprt/ldr.h>
43#include <iprt/mem.h>
44#include <iprt/path.h>
45#include <iprt/string.h>
46#include <iprt/system.h>
47#include <iprt/utf16.h>
48
49
50/*********************************************************************************************************************************
51* Defined Constants And Macros *
52*********************************************************************************************************************************/
53/* No nested hwvirt (for now). */
54#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
55# undef VBOX_WITH_NESTED_HWVIRT_VMX
56#endif
57
58
59/** @name HV return codes.
60 * @{ */
61/** Operation was successful. */
62#define HV_SUCCESS 0
63/** An error occurred during operation. */
64#define HV_ERROR 0xfae94001
65/** The operation could not be completed right now, try again. */
66#define HV_BUSY 0xfae94002
67/** One of the parameters passed wis invalid. */
68#define HV_BAD_ARGUMENT 0xfae94003
69/** Not enough resources left to fulfill the operation. */
70#define HV_NO_RESOURCES 0xfae94005
71/** The device could not be found. */
72#define HV_NO_DEVICE 0xfae94006
73/** The operation is not supportd on this platform with this configuration. */
74#define HV_UNSUPPORTED 0xfae94007
75/** @} */
76
77
78/** @name HV memory protection flags.
79 * @{ */
80/** Memory is readable. */
81#define HV_MEMORY_READ RT_BIT_64(0)
82/** Memory is writeable. */
83#define HV_MEMORY_WRITE RT_BIT_64(1)
84/** Memory is executable. */
85#define HV_MEMORY_EXEC RT_BIT_64(2)
86/** @} */
87
88
89/** @name HV shadow VMCS protection flags.
90 * @{ */
91/** Shadow VMCS field is not accessible. */
92#define HV_SHADOW_VMCS_NONE 0
93/** Shadow VMCS fild is readable. */
94#define HV_SHADOW_VMCS_READ RT_BIT_64(0)
95/** Shadow VMCS field is writeable. */
96#define HV_SHADOW_VMCS_WRITE RT_BIT_64(1)
97/** @} */
98
99
100/** Default VM creation flags. */
101#define HV_VM_DEFAULT 0
102/** Default guest address space creation flags. */
103#define HV_VM_SPACE_DEFAULT 0
104/** Default vCPU creation flags. */
105#define HV_VCPU_DEFAULT 0
106
107#define HV_DEADLINE_FOREVER UINT64_MAX
108
109
110/*********************************************************************************************************************************
111* Structures and Typedefs *
112*********************************************************************************************************************************/
113
114/** HV return code type. */
115typedef uint32_t hv_return_t;
116/** HV capability bitmask. */
117typedef uint64_t hv_capability_t;
118/** Option bitmask type when creating a VM. */
119typedef uint64_t hv_vm_options_t;
120/** Option bitmask when creating a vCPU. */
121typedef uint64_t hv_vcpu_options_t;
122/** HV memory protection flags type. */
123typedef uint64_t hv_memory_flags_t;
124/** Shadow VMCS protection flags. */
125typedef uint64_t hv_shadow_flags_t;
126/** Guest physical address type. */
127typedef uint64_t hv_gpaddr_t;
128
129
130/**
131 * VMX Capability enumeration.
132 */
133typedef enum
134{
135 HV_VMX_CAP_PINBASED = 0,
136 HV_VMX_CAP_PROCBASED,
137 HV_VMX_CAP_PROCBASED2,
138 HV_VMX_CAP_ENTRY,
139 HV_VMX_CAP_EXIT,
140 HV_VMX_CAP_BASIC, /* Since 11.0 */
141 HV_VMX_CAP_TRUE_PINBASED, /* Since 11.0 */
142 HV_VMX_CAP_TRUE_PROCBASED, /* Since 11.0 */
143 HV_VMX_CAP_TRUE_ENTRY, /* Since 11.0 */
144 HV_VMX_CAP_TRUE_EXIT, /* Since 11.0 */
145 HV_VMX_CAP_MISC, /* Since 11.0 */
146 HV_VMX_CAP_CR0_FIXED0, /* Since 11.0 */
147 HV_VMX_CAP_CR0_FIXED1, /* Since 11.0 */
148 HV_VMX_CAP_CR4_FIXED0, /* Since 11.0 */
149 HV_VMX_CAP_CR4_FIXED1, /* Since 11.0 */
150 HV_VMX_CAP_VMCS_ENUM, /* Since 11.0 */
151 HV_VMX_CAP_EPT_VPID_CAP, /* Since 11.0 */
152 HV_VMX_CAP_PREEMPTION_TIMER = 32
153} hv_vmx_capability_t;
154
155
156/**
157 * HV x86 register enumeration.
158 */
159typedef enum
160{
161 HV_X86_RIP = 0,
162 HV_X86_RFLAGS,
163 HV_X86_RAX,
164 HV_X86_RCX,
165 HV_X86_RDX,
166 HV_X86_RBX,
167 HV_X86_RSI,
168 HV_X86_RDI,
169 HV_X86_RSP,
170 HV_X86_RBP,
171 HV_X86_R8,
172 HV_X86_R9,
173 HV_X86_R10,
174 HV_X86_R11,
175 HV_X86_R12,
176 HV_X86_R13,
177 HV_X86_R14,
178 HV_X86_R15,
179 HV_X86_CS,
180 HV_X86_SS,
181 HV_X86_DS,
182 HV_X86_ES,
183 HV_X86_FS,
184 HV_X86_GS,
185 HV_X86_IDT_BASE,
186 HV_X86_IDT_LIMIT,
187 HV_X86_GDT_BASE,
188 HV_X86_GDT_LIMIT,
189 HV_X86_LDTR,
190 HV_X86_LDT_BASE,
191 HV_X86_LDT_LIMIT,
192 HV_X86_LDT_AR,
193 HV_X86_TR,
194 HV_X86_TSS_BASE,
195 HV_X86_TSS_LIMIT,
196 HV_X86_TSS_AR,
197 HV_X86_CR0,
198 HV_X86_CR1,
199 HV_X86_CR2,
200 HV_X86_CR3,
201 HV_X86_CR4,
202 HV_X86_DR0,
203 HV_X86_DR1,
204 HV_X86_DR2,
205 HV_X86_DR3,
206 HV_X86_DR4,
207 HV_X86_DR5,
208 HV_X86_DR6,
209 HV_X86_DR7,
210 HV_X86_TPR,
211 HV_X86_XCR0,
212 HV_X86_REGISTERS_MAX
213} hv_x86_reg_t;
214
215
216typedef hv_return_t FN_HV_CAPABILITY(hv_capability_t capability, uint64_t *valu);
217typedef hv_return_t FN_HV_VM_CREATE(hv_vm_options_t flags);
218typedef hv_return_t FN_HV_VM_DESTROY(void);
219typedef hv_return_t FN_HV_VM_SPACE_CREATE(hv_vm_space_t *asid);
220typedef hv_return_t FN_HV_VM_SPACE_DESTROY(hv_vm_space_t asid);
221typedef hv_return_t FN_HV_VM_MAP(const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
222typedef hv_return_t FN_HV_VM_UNMAP(hv_gpaddr_t gpa, size_t size);
223typedef hv_return_t FN_HV_VM_PROTECT(hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
224typedef hv_return_t FN_HV_VM_MAP_SPACE(hv_vm_space_t asid, const void *uva, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
225typedef hv_return_t FN_HV_VM_UNMAP_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size);
226typedef hv_return_t FN_HV_VM_PROTECT_SPACE(hv_vm_space_t asid, hv_gpaddr_t gpa, size_t size, hv_memory_flags_t flags);
227typedef hv_return_t FN_HV_VM_SYNC_TSC(uint64_t tsc);
228
229typedef hv_return_t FN_HV_VCPU_CREATE(hv_vcpuid_t *vcpu, hv_vcpu_options_t flags);
230typedef hv_return_t FN_HV_VCPU_DESTROY(hv_vcpuid_t vcpu);
231typedef hv_return_t FN_HV_VCPU_SET_SPACE(hv_vcpuid_t vcpu, hv_vm_space_t asid);
232typedef hv_return_t FN_HV_VCPU_READ_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t *value);
233typedef hv_return_t FN_HV_VCPU_WRITE_REGISTER(hv_vcpuid_t vcpu, hv_x86_reg_t reg, uint64_t value);
234typedef hv_return_t FN_HV_VCPU_READ_FPSTATE(hv_vcpuid_t vcpu, void *buffer, size_t size);
235typedef hv_return_t FN_HV_VCPU_WRITE_FPSTATE(hv_vcpuid_t vcpu, const void *buffer, size_t size);
236typedef hv_return_t FN_HV_VCPU_ENABLE_NATIVE_MSR(hv_vcpuid_t vcpu, uint32_t msr, bool enable);
237typedef hv_return_t FN_HV_VCPU_READ_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t *value);
238typedef hv_return_t FN_HV_VCPU_WRITE_MSR(hv_vcpuid_t vcpu, uint32_t msr, uint64_t value);
239typedef hv_return_t FN_HV_VCPU_FLUSH(hv_vcpuid_t vcpu);
240typedef hv_return_t FN_HV_VCPU_INVALIDATE_TLB(hv_vcpuid_t vcpu);
241typedef hv_return_t FN_HV_VCPU_RUN(hv_vcpuid_t vcpu);
242typedef hv_return_t FN_HV_VCPU_RUN_UNTIL(hv_vcpuid_t vcpu, uint64_t deadline);
243typedef hv_return_t FN_HV_VCPU_INTERRUPT(hv_vcpuid_t *vcpus, unsigned int vcpu_count);
244typedef hv_return_t FN_HV_VCPU_GET_EXEC_TIME(hv_vcpuid_t *vcpus, uint64_t *time);
245
246typedef hv_return_t FN_HV_VMX_VCPU_READ_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
247typedef hv_return_t FN_HV_VMX_VCPU_WRITE_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
248
249typedef hv_return_t FN_HV_VMX_VCPU_READ_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t *value);
250typedef hv_return_t FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS(hv_vcpuid_t vcpu, uint32_t field, uint64_t value);
251typedef hv_return_t FN_HV_VMX_VCPU_SET_SHADOW_ACCESS(hv_vcpuid_t vcpu, uint32_t field, hv_shadow_flags_t flags);
252
253typedef hv_return_t FN_HV_VMX_READ_CAPABILITY(hv_vmx_capability_t field, uint64_t *value);
254typedef hv_return_t FN_HV_VMX_VCPU_SET_APIC_ADDRESS(hv_vcpuid_t vcpu, hv_gpaddr_t gpa);
255
256
257/*********************************************************************************************************************************
258* Global Variables *
259*********************************************************************************************************************************/
260/** NEM_DARWIN_PAGE_STATE_XXX names. */
261NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
262/** MSRs. */
263static SUPHWVIRTMSRS g_HmMsrs;
264/** VMX: Set if swapping EFER is supported. */
265static bool g_fHmVmxSupportsVmcsEfer = false;
266/** @name APIs imported from Hypervisor.framework.
267 * @{ */
268static FN_HV_CAPABILITY *g_pfnHvCapability = NULL; /* Since 10.15 */
269static FN_HV_VM_CREATE *g_pfnHvVmCreate = NULL; /* Since 10.10 */
270static FN_HV_VM_DESTROY *g_pfnHvVmDestroy = NULL; /* Since 10.10 */
271static FN_HV_VM_SPACE_CREATE *g_pfnHvVmSpaceCreate = NULL; /* Since 10.15 */
272static FN_HV_VM_SPACE_DESTROY *g_pfnHvVmSpaceDestroy = NULL; /* Since 10.15 */
273static FN_HV_VM_MAP *g_pfnHvVmMap = NULL; /* Since 10.10 */
274static FN_HV_VM_UNMAP *g_pfnHvVmUnmap = NULL; /* Since 10.10 */
275static FN_HV_VM_PROTECT *g_pfnHvVmProtect = NULL; /* Since 10.10 */
276static FN_HV_VM_MAP_SPACE *g_pfnHvVmMapSpace = NULL; /* Since 10.15 */
277static FN_HV_VM_UNMAP_SPACE *g_pfnHvVmUnmapSpace = NULL; /* Since 10.15 */
278static FN_HV_VM_PROTECT_SPACE *g_pfnHvVmProtectSpace = NULL; /* Since 10.15 */
279static FN_HV_VM_SYNC_TSC *g_pfnHvVmSyncTsc = NULL; /* Since 10.10 */
280
281static FN_HV_VCPU_CREATE *g_pfnHvVCpuCreate = NULL; /* Since 10.10 */
282static FN_HV_VCPU_DESTROY *g_pfnHvVCpuDestroy = NULL; /* Since 10.10 */
283static FN_HV_VCPU_SET_SPACE *g_pfnHvVCpuSetSpace = NULL; /* Since 10.15 */
284static FN_HV_VCPU_READ_REGISTER *g_pfnHvVCpuReadRegister = NULL; /* Since 10.10 */
285static FN_HV_VCPU_WRITE_REGISTER *g_pfnHvVCpuWriteRegister = NULL; /* Since 10.10 */
286static FN_HV_VCPU_READ_FPSTATE *g_pfnHvVCpuReadFpState = NULL; /* Since 10.10 */
287static FN_HV_VCPU_WRITE_FPSTATE *g_pfnHvVCpuWriteFpState = NULL; /* Since 10.10 */
288static FN_HV_VCPU_ENABLE_NATIVE_MSR *g_pfnHvVCpuEnableNativeMsr = NULL; /* Since 10.10 */
289static FN_HV_VCPU_READ_MSR *g_pfnHvVCpuReadMsr = NULL; /* Since 10.10 */
290static FN_HV_VCPU_WRITE_MSR *g_pfnHvVCpuWriteMsr = NULL; /* Since 10.10 */
291static FN_HV_VCPU_FLUSH *g_pfnHvVCpuFlush = NULL; /* Since 10.10 */
292static FN_HV_VCPU_INVALIDATE_TLB *g_pfnHvVCpuInvalidateTlb = NULL; /* Since 10.10 */
293static FN_HV_VCPU_RUN *g_pfnHvVCpuRun = NULL; /* Since 10.10 */
294static FN_HV_VCPU_RUN_UNTIL *g_pfnHvVCpuRunUntil = NULL; /* Since 10.15 */
295static FN_HV_VCPU_INTERRUPT *g_pfnHvVCpuInterrupt = NULL; /* Since 10.10 */
296static FN_HV_VCPU_GET_EXEC_TIME *g_pfnHvVCpuGetExecTime = NULL; /* Since 10.10 */
297
298static FN_HV_VMX_READ_CAPABILITY *g_pfnHvVmxReadCapability = NULL; /* Since 10.10 */
299static FN_HV_VMX_VCPU_READ_VMCS *g_pfnHvVmxVCpuReadVmcs = NULL; /* Since 10.10 */
300static FN_HV_VMX_VCPU_WRITE_VMCS *g_pfnHvVmxVCpuWriteVmcs = NULL; /* Since 10.10 */
301static FN_HV_VMX_VCPU_READ_SHADOW_VMCS *g_pfnHvVmxVCpuReadShadowVmcs = NULL; /* Since 10.15 */
302static FN_HV_VMX_VCPU_WRITE_SHADOW_VMCS *g_pfnHvVmxVCpuWriteShadowVmcs = NULL; /* Since 10.15 */
303static FN_HV_VMX_VCPU_SET_SHADOW_ACCESS *g_pfnHvVmxVCpuSetShadowAccess = NULL; /* Since 10.15 */
304static FN_HV_VMX_VCPU_SET_APIC_ADDRESS *g_pfnHvVmxVCpuSetApicAddress = NULL; /* Since 10.10 */
305/** @} */
306
307
308/**
309 * Import instructions.
310 */
311static const struct
312{
313 bool fOptional; /**< Set if import is optional. */
314 void **ppfn; /**< The function pointer variable. */
315 const char *pszName; /**< The function name. */
316} g_aImports[] =
317{
318#define NEM_DARWIN_IMPORT(a_fOptional, a_Pfn, a_Name) { (a_fOptional), (void **)&(a_Pfn), #a_Name }
319 NEM_DARWIN_IMPORT(true, g_pfnHvCapability, hv_capability),
320 NEM_DARWIN_IMPORT(false, g_pfnHvVmCreate, hv_vm_create),
321 NEM_DARWIN_IMPORT(false, g_pfnHvVmDestroy, hv_vm_destroy),
322 NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceCreate, hv_vm_space_create),
323 NEM_DARWIN_IMPORT(true, g_pfnHvVmSpaceDestroy, hv_vm_space_destroy),
324 NEM_DARWIN_IMPORT(false, g_pfnHvVmMap, hv_vm_map),
325 NEM_DARWIN_IMPORT(false, g_pfnHvVmUnmap, hv_vm_unmap),
326 NEM_DARWIN_IMPORT(false, g_pfnHvVmProtect, hv_vm_protect),
327 NEM_DARWIN_IMPORT(true, g_pfnHvVmMapSpace, hv_vm_map_space),
328 NEM_DARWIN_IMPORT(true, g_pfnHvVmUnmapSpace, hv_vm_unmap_space),
329 NEM_DARWIN_IMPORT(true, g_pfnHvVmProtectSpace, hv_vm_protect_space),
330 NEM_DARWIN_IMPORT(false, g_pfnHvVmSyncTsc, hv_vm_sync_tsc),
331
332 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuCreate, hv_vcpu_create),
333 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuDestroy, hv_vcpu_destroy),
334 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuSetSpace, hv_vcpu_set_space),
335 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadRegister, hv_vcpu_read_register),
336 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteRegister, hv_vcpu_write_register),
337 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadFpState, hv_vcpu_read_fpstate),
338 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteFpState, hv_vcpu_write_fpstate),
339 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuEnableNativeMsr, hv_vcpu_enable_native_msr),
340 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuReadMsr, hv_vcpu_read_msr),
341 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuWriteMsr, hv_vcpu_write_msr),
342 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuFlush, hv_vcpu_flush),
343 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInvalidateTlb, hv_vcpu_invalidate_tlb),
344 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuRun, hv_vcpu_run),
345 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuRunUntil, hv_vcpu_run_until),
346 NEM_DARWIN_IMPORT(false, g_pfnHvVCpuInterrupt, hv_vcpu_interrupt),
347 NEM_DARWIN_IMPORT(true, g_pfnHvVCpuGetExecTime, hv_vcpu_get_exec_time),
348 NEM_DARWIN_IMPORT(false, g_pfnHvVmxReadCapability, hv_vmx_read_capability),
349 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuReadVmcs, hv_vmx_vcpu_read_vmcs),
350 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuWriteVmcs, hv_vmx_vcpu_write_vmcs),
351 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuReadShadowVmcs, hv_vmx_vcpu_read_shadow_vmcs),
352 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuWriteShadowVmcs, hv_vmx_vcpu_write_shadow_vmcs),
353 NEM_DARWIN_IMPORT(true, g_pfnHvVmxVCpuSetShadowAccess, hv_vmx_vcpu_set_shadow_access),
354 NEM_DARWIN_IMPORT(false, g_pfnHvVmxVCpuSetApicAddress, hv_vmx_vcpu_set_apic_address),
355#undef NEM_DARWIN_IMPORT
356};
357
358
359/*
360 * Let the preprocessor alias the APIs to import variables for better autocompletion.
361 */
362#ifndef IN_SLICKEDIT
363# define hv_capability g_pfnHvCapability
364# define hv_vm_create g_pfnHvVmCreate
365# define hv_vm_destroy g_pfnHvVmDestroy
366# define hv_vm_space_create g_pfnHvVmSpaceCreate
367# define hv_vm_space_destroy g_pfnHvVmSpaceDestroy
368# define hv_vm_map g_pfnHvVmMap
369# define hv_vm_unmap g_pfnHvVmUnmap
370# define hv_vm_protect g_pfnHvVmProtect
371# define hv_vm_map_space g_pfnHvVmMapSpace
372# define hv_vm_unmap_space g_pfnHvVmUnmapSpace
373# define hv_vm_protect_space g_pfnHvVmProtectSpace
374# define hv_vm_sync_tsc g_pfnHvVmSyncTsc
375
376# define hv_vcpu_create g_pfnHvVCpuCreate
377# define hv_vcpu_destroy g_pfnHvVCpuDestroy
378# define hv_vcpu_set_space g_pfnHvVCpuSetSpace
379# define hv_vcpu_read_register g_pfnHvVCpuReadRegister
380# define hv_vcpu_write_register g_pfnHvVCpuWriteRegister
381# define hv_vcpu_read_fpstate g_pfnHvVCpuReadFpState
382# define hv_vcpu_write_fpstate g_pfnHvVCpuWriteFpState
383# define hv_vcpu_enable_native_msr g_pfnHvVCpuEnableNativeMsr
384# define hv_vcpu_read_msr g_pfnHvVCpuReadMsr
385# define hv_vcpu_write_msr g_pfnHvVCpuWriteMsr
386# define hv_vcpu_flush g_pfnHvVCpuFlush
387# define hv_vcpu_invalidate_tlb g_pfnHvVCpuInvalidateTlb
388# define hv_vcpu_run g_pfnHvVCpuRun
389# define hv_vcpu_run_until g_pfnHvVCpuRunUntil
390# define hv_vcpu_interrupt g_pfnHvVCpuInterrupt
391# define hv_vcpu_get_exec_time g_pfnHvVCpuGetExecTime
392
393# define hv_vmx_read_capability g_pfnHvVmxReadCapability
394# define hv_vmx_vcpu_read_vmcs g_pfnHvVmxVCpuReadVmcs
395# define hv_vmx_vcpu_write_vmcs g_pfnHvVmxVCpuWriteVmcs
396# define hv_vmx_vcpu_read_shadow_vmcs g_pfnHvVmxVCpuReadShadowVmcs
397# define hv_vmx_vcpu_write_shadow_vmcs g_pfnHvVmxVCpuWriteShadowVmcs
398# define hv_vmx_vcpu_set_shadow_access g_pfnHvVmxVCpuSetShadowAccess
399# define hv_vmx_vcpu_set_apic_address g_pfnHvVmxVCpuSetApicAddress
400#endif
401
402
403/*********************************************************************************************************************************
404* Internal Functions *
405*********************************************************************************************************************************/
406
407/**
408 * Converts a HV return code to a VBox status code.
409 *
410 * @returns VBox status code.
411 * @param hrc The HV return code to convert.
412 */
413DECLINLINE(int) nemR3DarwinHvSts2Rc(hv_return_t hrc)
414{
415 if (hrc == HV_SUCCESS)
416 return VINF_SUCCESS;
417
418 switch (hrc)
419 {
420 case HV_ERROR: return VERR_INVALID_STATE;
421 case HV_BUSY: return VERR_RESOURCE_BUSY;
422 case HV_BAD_ARGUMENT: return VERR_INVALID_PARAMETER;
423 case HV_NO_RESOURCES: return VERR_OUT_OF_RESOURCES;
424 case HV_NO_DEVICE: return VERR_NOT_FOUND;
425 case HV_UNSUPPORTED: return VERR_NOT_SUPPORTED;
426 }
427
428 return VERR_IPE_UNEXPECTED_STATUS;
429}
430
431
432/**
433 * Unmaps the given guest physical address range (page aligned).
434 *
435 * @returns VBox status code.
436 * @param pVM The cross context VM structure.
437 * @param GCPhys The guest physical address to start unmapping at.
438 * @param cb The size of the range to unmap in bytes.
439 */
440DECLINLINE(int) nemR3DarwinUnmap(PVM pVM, RTGCPHYS GCPhys, size_t cb)
441{
442 LogFlowFunc(("Unmapping %RGp LB %zu\n", GCPhys, cb));
443 hv_return_t hrc;
444 if (pVM->nem.s.fCreatedAsid)
445 hrc = hv_vm_unmap_space(pVM->nem.s.uVmAsid, GCPhys, cb);
446 else
447 hrc = hv_vm_unmap(GCPhys, cb);
448 return nemR3DarwinHvSts2Rc(hrc);
449}
450
451
452/**
453 * Maps a given guest physical address range backed by the given memory with the given
454 * protection flags.
455 *
456 * @returns VBox status code.
457 * @param pVM The cross context VM structure.
458 * @param GCPhys The guest physical address to start mapping.
459 * @param pvRam The R3 pointer of the memory to back the range with.
460 * @param cb The size of the range, page aligned.
461 * @param fPageProt The page protection flags to use for this range, combination of NEM_PAGE_PROT_XXX
462 */
463DECLINLINE(int) nemR3DarwinMap(PVM pVM, RTGCPHYS GCPhys, void *pvRam, size_t cb, uint32_t fPageProt)
464{
465 LogFlowFunc(("Mapping %RGp LB %zu fProt=%#x\n", GCPhys, cb, fPageProt));
466
467 hv_memory_flags_t fHvMemProt = 0;
468 if (fPageProt & NEM_PAGE_PROT_READ)
469 fHvMemProt |= HV_MEMORY_READ;
470 if (fPageProt & NEM_PAGE_PROT_WRITE)
471 fHvMemProt |= HV_MEMORY_WRITE;
472 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
473 fHvMemProt |= HV_MEMORY_EXEC;
474
475 hv_return_t hrc;
476 if (pVM->nem.s.fCreatedAsid)
477 hrc = hv_vm_map_space(pVM->nem.s.uVmAsid, pvRam, GCPhys, cb, fHvMemProt);
478 else
479 hrc = hv_vm_map(pvRam, GCPhys, cb, fHvMemProt);
480 return nemR3DarwinHvSts2Rc(hrc);
481}
482
483
484#if 0 /* unused */
485DECLINLINE(int) nemR3DarwinProtectPage(PVM pVM, RTGCPHYS GCPhys, size_t cb, uint32_t fPageProt)
486{
487 hv_memory_flags_t fHvMemProt = 0;
488 if (fPageProt & NEM_PAGE_PROT_READ)
489 fHvMemProt |= HV_MEMORY_READ;
490 if (fPageProt & NEM_PAGE_PROT_WRITE)
491 fHvMemProt |= HV_MEMORY_WRITE;
492 if (fPageProt & NEM_PAGE_PROT_EXECUTE)
493 fHvMemProt |= HV_MEMORY_EXEC;
494
495 if (pVM->nem.s.fCreatedAsid)
496 hrc = hv_vm_protect_space(pVM->nem.s.uVmAsid, GCPhys, cb, fHvMemProt);
497 else
498 hrc = hv_vm_protect(GCPhys, cb, fHvMemProt);
499
500 return nemR3DarwinHvSts2Rc(hrc);
501}
502#endif
503
504
505DECLINLINE(int) nemR3NativeGCPhys2R3PtrReadOnly(PVM pVM, RTGCPHYS GCPhys, const void **ppv)
506{
507 PGMPAGEMAPLOCK Lock;
508 int rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, ppv, &Lock);
509 if (RT_SUCCESS(rc))
510 PGMPhysReleasePageMappingLock(pVM, &Lock);
511 return rc;
512}
513
514
515DECLINLINE(int) nemR3NativeGCPhys2R3PtrWriteable(PVM pVM, RTGCPHYS GCPhys, void **ppv)
516{
517 PGMPAGEMAPLOCK Lock;
518 int rc = PGMPhysGCPhys2CCPtr(pVM, GCPhys, ppv, &Lock);
519 if (RT_SUCCESS(rc))
520 PGMPhysReleasePageMappingLock(pVM, &Lock);
521 return rc;
522}
523
524
525/**
526 * Worker that maps pages into Hyper-V.
527 *
528 * This is used by the PGM physical page notifications as well as the memory
529 * access VMEXIT handlers.
530 *
531 * @returns VBox status code.
532 * @param pVM The cross context VM structure.
533 * @param pVCpu The cross context virtual CPU structure of the
534 * calling EMT.
535 * @param GCPhysSrc The source page address.
536 * @param GCPhysDst The hyper-V destination page. This may differ from
537 * GCPhysSrc when A20 is disabled.
538 * @param fPageProt NEM_PAGE_PROT_XXX.
539 * @param pu2State Our page state (input/output).
540 * @param fBackingChanged Set if the page backing is being changed.
541 * @thread EMT(pVCpu)
542 */
543NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
544 uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged)
545{
546 /*
547 * Looks like we need to unmap a page before we can change the backing
548 * or even modify the protection. This is going to be *REALLY* efficient.
549 * PGM lends us two bits to keep track of the state here.
550 */
551 RT_NOREF(pVCpu);
552 uint8_t const u2OldState = *pu2State;
553 uint8_t const u2NewState = fPageProt & NEM_PAGE_PROT_WRITE ? NEM_DARWIN_PAGE_STATE_WRITABLE
554 : fPageProt & NEM_PAGE_PROT_READ ? NEM_DARWIN_PAGE_STATE_READABLE : NEM_DARWIN_PAGE_STATE_UNMAPPED;
555 if ( fBackingChanged
556 || u2NewState != u2OldState)
557 {
558 if (u2OldState > NEM_DARWIN_PAGE_STATE_UNMAPPED)
559 {
560 int rc = nemR3DarwinUnmap(pVM, GCPhysDst, X86_PAGE_SIZE);
561 if (RT_SUCCESS(rc))
562 {
563 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
564 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
565 if (u2NewState == NEM_DARWIN_PAGE_STATE_UNMAPPED)
566 {
567 Log5(("NEM GPA unmapped/set: %RGp (was %s)\n", GCPhysDst, g_apszPageStates[u2OldState]));
568 return VINF_SUCCESS;
569 }
570 }
571 else
572 {
573 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
574 LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
575 return VERR_NEM_INIT_FAILED;
576 }
577 }
578 }
579
580 /*
581 * Writeable mapping?
582 */
583 if (fPageProt & NEM_PAGE_PROT_WRITE)
584 {
585 void *pvPage;
586 int rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhysSrc, &pvPage);
587 if (RT_SUCCESS(rc))
588 {
589 rc = nemR3DarwinMap(pVM, GCPhysDst, pvPage, X86_PAGE_SIZE, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
590 if (RT_SUCCESS(rc))
591 {
592 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
593 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPage);
594 Log5(("NEM GPA mapped/set: %RGp %s (was %s)\n", GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState]));
595 return VINF_SUCCESS;
596 }
597 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed);
598 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst));
599 return VERR_NEM_INIT_FAILED;
600 }
601 LogRel(("nemHCNativeSetPhysPage/writable: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
602 return rc;
603 }
604
605 if (fPageProt & NEM_PAGE_PROT_READ)
606 {
607 const void *pvPage;
608 int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhysSrc, &pvPage);
609 if (RT_SUCCESS(rc))
610 {
611 rc = nemR3DarwinMap(pVM, GCPhysDst, (void *)pvPage, X86_PAGE_SIZE, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE);
612 if (RT_SUCCESS(rc))
613 {
614 *pu2State = NEM_DARWIN_PAGE_STATE_READABLE;
615 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPage);
616 Log5(("NEM GPA mapped/set: %RGp %s (was %s)\n", GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState]));
617 return VINF_SUCCESS;
618 }
619 STAM_REL_COUNTER_INC(&pVM->nem.s.StatMapPageFailed);
620 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
621 return VERR_NEM_INIT_FAILED;
622 }
623 LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
624 return rc;
625 }
626
627 /* We already unmapped it above. */
628 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
629 return VINF_SUCCESS;
630}
631
632
633#ifdef LOG_ENABLED
634/**
635 * Logs the current CPU state.
636 */
637static void nemR3DarwinLogState(PVMCC pVM, PVMCPUCC pVCpu)
638{
639 if (LogIs3Enabled())
640 {
641#if 0
642 char szRegs[4096];
643 DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
644 "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
645 "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
646 "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
647 "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
648 "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
649 "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
650 "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
651 "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
652 "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
653 "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
654 "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
655 "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
656 "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
657 "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
658 "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
659 "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
660 " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
661 " efer=%016VR{efer}\n"
662 " pat=%016VR{pat}\n"
663 " sf_mask=%016VR{sf_mask}\n"
664 "krnl_gs_base=%016VR{krnl_gs_base}\n"
665 " lstar=%016VR{lstar}\n"
666 " star=%016VR{star} cstar=%016VR{cstar}\n"
667 "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
668 );
669
670 char szInstr[256];
671 DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
672 DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
673 szInstr, sizeof(szInstr), NULL);
674 Log3(("%s%s\n", szRegs, szInstr));
675#else
676 RT_NOREF(pVM, pVCpu);
677#endif
678 }
679}
680#endif /* LOG_ENABLED */
681
682
683DECLINLINE(int) nemR3DarwinReadVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t *pData)
684{
685 uint64_t u64Data;
686 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
687 if (RT_LIKELY(hrc == HV_SUCCESS))
688 {
689 *pData = (uint16_t)u64Data;
690 return VINF_SUCCESS;
691 }
692
693 return nemR3DarwinHvSts2Rc(hrc);
694}
695
696
697DECLINLINE(int) nemR3DarwinReadVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t *pData)
698{
699 uint64_t u64Data;
700 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, &u64Data);
701 if (RT_LIKELY(hrc == HV_SUCCESS))
702 {
703 *pData = (uint32_t)u64Data;
704 return VINF_SUCCESS;
705 }
706
707 return nemR3DarwinHvSts2Rc(hrc);
708}
709
710
711DECLINLINE(int) nemR3DarwinReadVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t *pData)
712{
713 hv_return_t hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, pData);
714 if (RT_LIKELY(hrc == HV_SUCCESS))
715 return VINF_SUCCESS;
716
717 return nemR3DarwinHvSts2Rc(hrc);
718}
719
720
721DECLINLINE(int) nemR3DarwinWriteVmcs16(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint16_t u16Val)
722{
723 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u16Val);
724 if (RT_LIKELY(hrc == HV_SUCCESS))
725 return VINF_SUCCESS;
726
727 return nemR3DarwinHvSts2Rc(hrc);
728}
729
730
731DECLINLINE(int) nemR3DarwinWriteVmcs32(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint32_t u32Val)
732{
733 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u32Val);
734 if (RT_LIKELY(hrc == HV_SUCCESS))
735 return VINF_SUCCESS;
736
737 return nemR3DarwinHvSts2Rc(hrc);
738}
739
740
741DECLINLINE(int) nemR3DarwinWriteVmcs64(PVMCPUCC pVCpu, uint32_t uFieldEnc, uint64_t u64Val)
742{
743 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, uFieldEnc, u64Val);
744 if (RT_LIKELY(hrc == HV_SUCCESS))
745 return VINF_SUCCESS;
746
747 return nemR3DarwinHvSts2Rc(hrc);
748}
749
750DECLINLINE(int) nemR3DarwinMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Val)
751{
752 hv_return_t hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, idMsr, pu64Val);
753 if (RT_LIKELY(hrc == HV_SUCCESS))
754 return VINF_SUCCESS;
755
756 return nemR3DarwinHvSts2Rc(hrc);
757}
758
759#if 0 /*unused*/
760DECLINLINE(int) nemR3DarwinMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Val)
761{
762 hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, idMsr, u64Val);
763 if (RT_LIKELY(hrc == HV_SUCCESS))
764 return VINF_SUCCESS;
765
766 return nemR3DarwinHvSts2Rc(hrc);
767}
768#endif
769
770static int nemR3DarwinCopyStateFromHv(PVMCC pVM, PVMCPUCC pVCpu, uint64_t fWhat)
771{
772#define READ_GREG(a_GReg, a_Value) \
773 do \
774 { \
775 hrc = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, (a_GReg), &(a_Value)); \
776 if (RT_LIKELY(hrc == HV_SUCCESS)) \
777 { /* likely */ } \
778 else \
779 return VERR_INTERNAL_ERROR; \
780 } while(0)
781#define READ_VMCS_FIELD(a_Field, a_Value) \
782 do \
783 { \
784 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &(a_Value)); \
785 if (RT_LIKELY(hrc == HV_SUCCESS)) \
786 { /* likely */ } \
787 else \
788 return VERR_INTERNAL_ERROR; \
789 } while(0)
790#define READ_VMCS16_FIELD(a_Field, a_Value) \
791 do \
792 { \
793 uint64_t u64Data; \
794 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
795 if (RT_LIKELY(hrc == HV_SUCCESS)) \
796 { (a_Value) = (uint16_t)u64Data; } \
797 else \
798 return VERR_INTERNAL_ERROR; \
799 } while(0)
800#define READ_VMCS32_FIELD(a_Field, a_Value) \
801 do \
802 { \
803 uint64_t u64Data; \
804 hrc = hv_vmx_vcpu_read_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), &u64Data); \
805 if (RT_LIKELY(hrc == HV_SUCCESS)) \
806 { (a_Value) = (uint32_t)u64Data; } \
807 else \
808 return VERR_INTERNAL_ERROR; \
809 } while(0)
810#define READ_MSR(a_Msr, a_Value) \
811 do \
812 { \
813 hrc = hv_vcpu_read_msr(pVCpu->nem.s.hVCpuId, (a_Msr), &(a_Value)); \
814 if (RT_LIKELY(hrc == HV_SUCCESS)) \
815 { /* likely */ } \
816 else \
817 AssertFailedReturn(VERR_INTERNAL_ERROR); \
818 } while(0)
819
820 STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateImport, x);
821
822 RT_NOREF(pVM);
823 fWhat &= pVCpu->cpum.GstCtx.fExtrn;
824
825 /* GPRs */
826 hv_return_t hrc;
827 if (fWhat & CPUMCTX_EXTRN_GPRS_MASK)
828 {
829 if (fWhat & CPUMCTX_EXTRN_RAX)
830 READ_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
831 if (fWhat & CPUMCTX_EXTRN_RCX)
832 READ_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
833 if (fWhat & CPUMCTX_EXTRN_RDX)
834 READ_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
835 if (fWhat & CPUMCTX_EXTRN_RBX)
836 READ_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
837 if (fWhat & CPUMCTX_EXTRN_RSP)
838 READ_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
839 if (fWhat & CPUMCTX_EXTRN_RBP)
840 READ_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
841 if (fWhat & CPUMCTX_EXTRN_RSI)
842 READ_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
843 if (fWhat & CPUMCTX_EXTRN_RDI)
844 READ_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
845 if (fWhat & CPUMCTX_EXTRN_R8_R15)
846 {
847 READ_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
848 READ_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
849 READ_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
850 READ_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
851 READ_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
852 READ_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
853 READ_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
854 READ_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
855 }
856 }
857
858 /* RIP & Flags */
859 if (fWhat & CPUMCTX_EXTRN_RIP)
860 READ_GREG(HV_X86_RIP, pVCpu->cpum.GstCtx.rip);
861 if (fWhat & CPUMCTX_EXTRN_RFLAGS)
862 READ_GREG(HV_X86_RFLAGS, pVCpu->cpum.GstCtx.rflags.u);
863
864 /* Segments */
865#define READ_SEG(a_SReg, a_enmName) \
866 do { \
867 READ_VMCS16_FIELD(VMX_VMCS16_GUEST_ ## a_enmName ## _SEL, (a_SReg).Sel); \
868 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _LIMIT, (a_SReg).u32Limit); \
869 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_ ## a_enmName ## _ACCESS_RIGHTS, (a_SReg).Attr.u); \
870 READ_VMCS_FIELD(VMX_VMCS_GUEST_ ## a_enmName ## _BASE, (a_SReg).u64Base); \
871 (a_SReg).ValidSel = (a_SReg).Sel; \
872 } while (0)
873 if (fWhat & CPUMCTX_EXTRN_SREG_MASK)
874 {
875 if (fWhat & CPUMCTX_EXTRN_ES)
876 READ_SEG(pVCpu->cpum.GstCtx.es, ES);
877 if (fWhat & CPUMCTX_EXTRN_CS)
878 READ_SEG(pVCpu->cpum.GstCtx.cs, CS);
879 if (fWhat & CPUMCTX_EXTRN_SS)
880 READ_SEG(pVCpu->cpum.GstCtx.ss, SS);
881 if (fWhat & CPUMCTX_EXTRN_DS)
882 READ_SEG(pVCpu->cpum.GstCtx.ds, DS);
883 if (fWhat & CPUMCTX_EXTRN_FS)
884 READ_SEG(pVCpu->cpum.GstCtx.fs, FS);
885 if (fWhat & CPUMCTX_EXTRN_GS)
886 READ_SEG(pVCpu->cpum.GstCtx.gs, GS);
887 }
888
889 /* Descriptor tables and the task segment. */
890 if (fWhat & CPUMCTX_EXTRN_TABLE_MASK)
891 {
892 if (fWhat & CPUMCTX_EXTRN_LDTR)
893 READ_SEG(pVCpu->cpum.GstCtx.ldtr, LDTR);
894
895 if (fWhat & CPUMCTX_EXTRN_TR)
896 {
897 /* AMD-V likes loading TR with in AVAIL state, whereas intel insists on BUSY. So,
898 avoid to trigger sanity assertions around the code, always fix this. */
899 READ_SEG(pVCpu->cpum.GstCtx.tr, TR);
900 switch (pVCpu->cpum.GstCtx.tr.Attr.n.u4Type)
901 {
902 case X86_SEL_TYPE_SYS_386_TSS_BUSY:
903 case X86_SEL_TYPE_SYS_286_TSS_BUSY:
904 break;
905 case X86_SEL_TYPE_SYS_386_TSS_AVAIL:
906 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
907 break;
908 case X86_SEL_TYPE_SYS_286_TSS_AVAIL:
909 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_286_TSS_BUSY;
910 break;
911 }
912 }
913 if (fWhat & CPUMCTX_EXTRN_IDTR)
914 {
915 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_IDTR_LIMIT, pVCpu->cpum.GstCtx.idtr.cbIdt);
916 READ_VMCS_FIELD(VMX_VMCS_GUEST_IDTR_BASE, pVCpu->cpum.GstCtx.idtr.pIdt);
917 }
918 if (fWhat & CPUMCTX_EXTRN_GDTR)
919 {
920 READ_VMCS32_FIELD(VMX_VMCS32_GUEST_GDTR_LIMIT, pVCpu->cpum.GstCtx.gdtr.cbGdt);
921 READ_VMCS_FIELD(VMX_VMCS_GUEST_GDTR_BASE, pVCpu->cpum.GstCtx.gdtr.pGdt);
922 }
923 }
924
925 /* Control registers. */
926 bool fMaybeChangedMode = false;
927 bool fUpdateCr3 = false;
928 if (fWhat & CPUMCTX_EXTRN_CR_MASK)
929 {
930 uint64_t u64CrTmp = 0;
931
932 if (fWhat & CPUMCTX_EXTRN_CR0)
933 {
934 READ_GREG(HV_X86_CR0, u64CrTmp);
935 if (pVCpu->cpum.GstCtx.cr0 != u64CrTmp)
936 {
937 CPUMSetGuestCR0(pVCpu, u64CrTmp);
938 fMaybeChangedMode = true;
939 }
940 }
941 if (fWhat & CPUMCTX_EXTRN_CR2)
942 READ_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
943 if (fWhat & CPUMCTX_EXTRN_CR3)
944 {
945 READ_GREG(HV_X86_CR3, u64CrTmp);
946 if (pVCpu->cpum.GstCtx.cr3 != u64CrTmp)
947 {
948 CPUMSetGuestCR3(pVCpu, u64CrTmp);
949 fUpdateCr3 = true;
950 }
951 }
952 if (fWhat & CPUMCTX_EXTRN_CR4)
953 {
954 READ_GREG(HV_X86_CR4, u64CrTmp);
955 u64CrTmp &= ~VMX_V_CR4_FIXED0;
956
957 if (pVCpu->cpum.GstCtx.cr4 != u64CrTmp)
958 {
959 CPUMSetGuestCR4(pVCpu, u64CrTmp);
960 fMaybeChangedMode = true;
961 }
962 }
963 }
964
965#if 0 /* Always done. */
966 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
967 {
968 uint64_t u64Cr8 = 0;
969
970 READ_GREG(HV_X86_TPR, u64Cr8);
971 APICSetTpr(pVCpu, u64Cr8 << 4);
972 }
973#endif
974
975 if (fWhat & CPUMCTX_EXTRN_XCRx)
976 READ_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);
977
978 /* Debug registers. */
979 if (fWhat & CPUMCTX_EXTRN_DR7)
980 {
981 uint64_t u64Dr7;
982 READ_GREG(HV_X86_DR7, u64Dr7);
983 if (pVCpu->cpum.GstCtx.dr[7] != u64Dr7)
984 CPUMSetGuestDR7(pVCpu, u64Dr7);
985 pVCpu->cpum.GstCtx.fExtrn &= ~CPUMCTX_EXTRN_DR7; /* Hack alert! Avoids asserting when processing CPUMCTX_EXTRN_DR0_DR3. */
986 }
987 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
988 {
989 uint64_t u64DrTmp;
990
991 READ_GREG(HV_X86_DR0, u64DrTmp);
992 if (pVCpu->cpum.GstCtx.dr[0] != u64DrTmp)
993 CPUMSetGuestDR0(pVCpu, u64DrTmp);
994 READ_GREG(HV_X86_DR1, u64DrTmp);
995 if (pVCpu->cpum.GstCtx.dr[1] != u64DrTmp)
996 CPUMSetGuestDR1(pVCpu, u64DrTmp);
997 READ_GREG(HV_X86_DR2, u64DrTmp);
998 if (pVCpu->cpum.GstCtx.dr[2] != u64DrTmp)
999 CPUMSetGuestDR2(pVCpu, u64DrTmp);
1000 READ_GREG(HV_X86_DR3, u64DrTmp);
1001 if (pVCpu->cpum.GstCtx.dr[3] != u64DrTmp)
1002 CPUMSetGuestDR3(pVCpu, u64DrTmp);
1003 }
1004 if (fWhat & CPUMCTX_EXTRN_DR6)
1005 {
1006 uint64_t u64Dr6;
1007 READ_GREG(HV_X86_DR6, u64Dr6);
1008 if (pVCpu->cpum.GstCtx.dr[6] != u64Dr6)
1009 CPUMSetGuestDR6(pVCpu, u64Dr6);
1010 }
1011
1012 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX))
1013 {
1014 hrc = hv_vcpu_read_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
1015 if (hrc == HV_SUCCESS)
1016 { /* likely */ }
1017 else
1018 {
1019 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1020 return nemR3DarwinHvSts2Rc(hrc);
1021 }
1022 }
1023
1024 /* MSRs */
1025 if (fWhat & CPUMCTX_EXTRN_EFER)
1026 {
1027 uint64_t u64Efer;
1028
1029 READ_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, u64Efer);
1030 if (u64Efer != pVCpu->cpum.GstCtx.msrEFER)
1031 {
1032 Log7(("NEM/%u: MSR EFER changed %RX64 -> %RX64\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.msrEFER, u64Efer));
1033 if ((u64Efer ^ pVCpu->cpum.GstCtx.msrEFER) & MSR_K6_EFER_NXE)
1034 PGMNotifyNxeChanged(pVCpu, RT_BOOL(u64Efer & MSR_K6_EFER_NXE));
1035 pVCpu->cpum.GstCtx.msrEFER = u64Efer;
1036 fMaybeChangedMode = true;
1037 }
1038 }
1039
1040 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1041 READ_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
1042 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1043 {
1044 uint64_t u64Tmp;
1045 READ_MSR(MSR_IA32_SYSENTER_EIP, u64Tmp);
1046 pVCpu->cpum.GstCtx.SysEnter.eip = u64Tmp;
1047 READ_MSR(MSR_IA32_SYSENTER_ESP, u64Tmp);
1048 pVCpu->cpum.GstCtx.SysEnter.esp = u64Tmp;
1049 READ_MSR(MSR_IA32_SYSENTER_CS, u64Tmp);
1050 pVCpu->cpum.GstCtx.SysEnter.cs = u64Tmp;
1051 }
1052 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1053 {
1054 READ_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
1055 READ_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
1056 READ_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
1057 READ_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
1058 }
1059#if 0
1060 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1061 {
1062 Assert(aenmNames[iReg] == WHvX64RegisterApicBase);
1063 const uint64_t uOldBase = APICGetBaseMsrNoCheck(pVCpu);
1064 if (aValues[iReg].Reg64 != uOldBase)
1065 {
1066 Log7(("NEM/%u: MSR APICBase changed %RX64 -> %RX64 (%RX64)\n",
1067 pVCpu->idCpu, uOldBase, aValues[iReg].Reg64, aValues[iReg].Reg64 ^ uOldBase));
1068 int rc2 = APICSetBaseMsr(pVCpu, aValues[iReg].Reg64);
1069 AssertLogRelMsg(rc2 == VINF_SUCCESS, ("%Rrc %RX64\n", rc2, aValues[iReg].Reg64));
1070 }
1071 iReg++;
1072
1073 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterPat, "MSR PAT");
1074#if 0 /*def LOG_ENABLED*/ /** @todo something's wrong with HvX64RegisterMtrrCap? (AMD) */
1075 GET_REG64_LOG7(pVCpu->cpum.GstCtx.msrPAT, WHvX64RegisterMsrMtrrCap);
1076#endif
1077 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1078 GET_REG64_LOG7(pCtxMsrs->msr.MtrrDefType, WHvX64RegisterMsrMtrrDefType, "MSR MTRR_DEF_TYPE");
1079 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix64K_00000, WHvX64RegisterMsrMtrrFix64k00000, "MSR MTRR_FIX_64K_00000");
1080 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_80000, WHvX64RegisterMsrMtrrFix16k80000, "MSR MTRR_FIX_16K_80000");
1081 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix16K_A0000, WHvX64RegisterMsrMtrrFix16kA0000, "MSR MTRR_FIX_16K_A0000");
1082 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C0000, WHvX64RegisterMsrMtrrFix4kC0000, "MSR MTRR_FIX_4K_C0000");
1083 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_C8000, WHvX64RegisterMsrMtrrFix4kC8000, "MSR MTRR_FIX_4K_C8000");
1084 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D0000, WHvX64RegisterMsrMtrrFix4kD0000, "MSR MTRR_FIX_4K_D0000");
1085 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_D8000, WHvX64RegisterMsrMtrrFix4kD8000, "MSR MTRR_FIX_4K_D8000");
1086 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E0000, WHvX64RegisterMsrMtrrFix4kE0000, "MSR MTRR_FIX_4K_E0000");
1087 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_E8000, WHvX64RegisterMsrMtrrFix4kE8000, "MSR MTRR_FIX_4K_E8000");
1088 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F0000, WHvX64RegisterMsrMtrrFix4kF0000, "MSR MTRR_FIX_4K_F0000");
1089 GET_REG64_LOG7(pCtxMsrs->msr.MtrrFix4K_F8000, WHvX64RegisterMsrMtrrFix4kF8000, "MSR MTRR_FIX_4K_F8000");
1090 GET_REG64_LOG7(pCtxMsrs->msr.TscAux, WHvX64RegisterTscAux, "MSR TSC_AUX");
1091 /** @todo look for HvX64RegisterIa32MiscEnable and HvX64RegisterIa32FeatureControl? */
1092 }
1093#endif
1094
1095 /* Almost done, just update extrn flags and maybe change PGM mode. */
1096 pVCpu->cpum.GstCtx.fExtrn &= ~fWhat;
1097 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
1098 pVCpu->cpum.GstCtx.fExtrn = 0;
1099
1100#ifdef LOG_ENABLED
1101 nemR3DarwinLogState(pVM, pVCpu);
1102#endif
1103
1104 /* Typical. */
1105 if (!fMaybeChangedMode && !fUpdateCr3)
1106 {
1107 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1108 return VINF_SUCCESS;
1109 }
1110
1111 /*
1112 * Slow.
1113 */
1114 if (fMaybeChangedMode)
1115 {
1116 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER);
1117 AssertMsgReturn(rc == VINF_SUCCESS, ("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_1);
1118 }
1119
1120 if (fUpdateCr3)
1121 {
1122 int rc = PGMUpdateCR3(pVCpu, pVCpu->cpum.GstCtx.cr3, false /*fPdpesMapped*/);
1123 if (rc == VINF_SUCCESS)
1124 { /* likely */ }
1125 else
1126 AssertMsgFailedReturn(("rc=%Rrc\n", rc), RT_FAILURE_NP(rc) ? rc : VERR_NEM_IPE_2);
1127 }
1128
1129 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateImport, x);
1130
1131 return VINF_SUCCESS;
1132#undef READ_GREG
1133#undef READ_VMCS_FIELD
1134#undef READ_VMCS32_FIELD
1135#undef READ_SEG
1136#undef READ_MSR
1137}
1138
1139
1140/**
1141 * State to pass between nemHCWinHandleMemoryAccess / nemR3WinWHvHandleMemoryAccess
1142 * and nemHCWinHandleMemoryAccessPageCheckerCallback.
1143 */
1144typedef struct NEMHCDARWINHMACPCCSTATE
1145{
1146 /** Input: Write access. */
1147 bool fWriteAccess;
1148 /** Output: Set if we did something. */
1149 bool fDidSomething;
1150 /** Output: Set it we should resume. */
1151 bool fCanResume;
1152} NEMHCDARWINHMACPCCSTATE;
1153
1154/**
1155 * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
1156 * Worker for nemR3WinHandleMemoryAccess; pvUser points to a
1157 * NEMHCDARWINHMACPCCSTATE structure. }
1158 */
1159static DECLCALLBACK(int)
1160nemR3DarwinHandleMemoryAccessPageCheckerCallback(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
1161{
1162 NEMHCDARWINHMACPCCSTATE *pState = (NEMHCDARWINHMACPCCSTATE *)pvUser;
1163 pState->fDidSomething = false;
1164 pState->fCanResume = false;
1165
1166 uint8_t u2State = pInfo->u2NemState;
1167
1168 /*
1169 * Consolidate current page state with actual page protection and access type.
1170 * We don't really consider downgrades here, as they shouldn't happen.
1171 */
1172 int rc;
1173 switch (u2State)
1174 {
1175 case NEM_DARWIN_PAGE_STATE_UNMAPPED:
1176 case NEM_DARWIN_PAGE_STATE_NOT_SET:
1177 if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
1178 {
1179 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
1180 return VINF_SUCCESS;
1181 }
1182
1183 /* Don't bother remapping it if it's a write request to a non-writable page. */
1184 if ( pState->fWriteAccess
1185 && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
1186 {
1187 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
1188 return VINF_SUCCESS;
1189 }
1190
1191 /* Map the page. */
1192 rc = nemHCNativeSetPhysPage(pVM,
1193 pVCpu,
1194 GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
1195 GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
1196 pInfo->fNemProt,
1197 &u2State,
1198 true /*fBackingState*/);
1199 pInfo->u2NemState = u2State;
1200 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
1201 GCPhys, g_apszPageStates[u2State], rc));
1202 pState->fDidSomething = true;
1203 pState->fCanResume = true;
1204 return rc;
1205
1206 case NEM_DARWIN_PAGE_STATE_READABLE:
1207 if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1208 && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
1209 {
1210 pState->fCanResume = true;
1211 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
1212 return VINF_SUCCESS;
1213 }
1214 break;
1215
1216 case NEM_DARWIN_PAGE_STATE_WRITABLE:
1217 if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
1218 {
1219 /* We get spurious EPT exit violations when everything is fine (#3a case) but can resume without issues here... */
1220 pState->fCanResume = true;
1221 if (pInfo->u2OldNemState == NEM_DARWIN_PAGE_STATE_WRITABLE)
1222 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #3a\n", GCPhys));
1223 else
1224 Log4(("nemR3DarwinHandleMemoryAccessPageCheckerCallback: %RGp - #3b (%s -> %s)\n",
1225 GCPhys, g_apszPageStates[pInfo->u2OldNemState], g_apszPageStates[u2State]));
1226 return VINF_SUCCESS;
1227 }
1228
1229 break;
1230
1231 default:
1232 AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_NEM_IPE_4);
1233 }
1234
1235 /*
1236 * Unmap and restart the instruction.
1237 * If this fails, which it does every so often, just unmap everything for now.
1238 */
1239 rc = nemR3DarwinUnmap(pVM, GCPhys, X86_PAGE_SIZE);
1240 if (RT_SUCCESS(rc))
1241 {
1242 pState->fDidSomething = true;
1243 pState->fCanResume = true;
1244 pInfo->u2NemState = NEM_DARWIN_PAGE_STATE_UNMAPPED;
1245 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
1246 Log5(("NEM GPA unmapped/exit: %RGp (was %s)\n", GCPhys, g_apszPageStates[u2State]));
1247 return VINF_SUCCESS;
1248 }
1249 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
1250 LogRel(("nemR3DarwinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp %s rc=%Rrc\n",
1251 GCPhys, g_apszPageStates[u2State], rc));
1252 return VERR_NEM_UNMAP_PAGES_FAILED;
1253}
1254
1255
1256DECL_FORCE_INLINE(bool) vmxHCShouldSwapEferMsr(PCVMCPUCC pVCpu, PCVMXTRANSIENT pVmxTransient)
1257{
1258 RT_NOREF(pVCpu, pVmxTransient);
1259 return true;
1260}
1261
1262
1263DECL_FORCE_INLINE(bool) nemR3DarwinIsUnrestrictedGuest(PCVMCC pVM)
1264{
1265 RT_NOREF(pVM);
1266 return true;
1267}
1268
1269
1270DECL_FORCE_INLINE(bool) nemR3DarwinIsNestedPaging(PCVMCC pVM)
1271{
1272 RT_NOREF(pVM);
1273 return true;
1274}
1275
1276
1277DECL_FORCE_INLINE(bool) nemR3DarwinIsPreemptTimerUsed(PCVMCC pVM)
1278{
1279 RT_NOREF(pVM);
1280 return false;
1281}
1282
1283
1284#if 0 /* unused */
1285DECL_FORCE_INLINE(bool) nemR3DarwinIsVmxLbr(PCVMCC pVM)
1286{
1287 RT_NOREF(pVM);
1288 return false;
1289}
1290#endif
1291
1292
1293/*
1294 * Instantiate the code we share with ring-0.
1295 */
1296#define IN_NEM_DARWIN
1297//#define HMVMX_ALWAYS_TRAP_ALL_XCPTS
1298//#define HMVMX_ALWAYS_SYNC_FULL_GUEST_STATE
1299#define VCPU_2_VMXSTATE(a_pVCpu) (a_pVCpu)->nem.s
1300#define VCPU_2_VMXSTATS(a_pVCpu) (*(a_pVCpu)->nem.s.pVmxStats)
1301
1302#define VM_IS_VMX_UNRESTRICTED_GUEST(a_pVM) nemR3DarwinIsUnrestrictedGuest((a_pVM))
1303#define VM_IS_VMX_NESTED_PAGING(a_pVM) nemR3DarwinIsNestedPaging((a_pVM))
1304#define VM_IS_VMX_PREEMPT_TIMER_USED(a_pVM) nemR3DarwinIsPreemptTimerUsed((a_pVM))
1305#define VM_IS_VMX_LBR(a_pVM) nemR3DarwinIsVmxLbr((a_pVM))
1306
1307#define VMX_VMCS_WRITE_16(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs16((a_pVCpu), (a_FieldEnc), (a_Val))
1308#define VMX_VMCS_WRITE_32(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs32((a_pVCpu), (a_FieldEnc), (a_Val))
1309#define VMX_VMCS_WRITE_64(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
1310#define VMX_VMCS_WRITE_NW(a_pVCpu, a_FieldEnc, a_Val) nemR3DarwinWriteVmcs64((a_pVCpu), (a_FieldEnc), (a_Val))
1311
1312#define VMX_VMCS_READ_16(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs16((a_pVCpu), (a_FieldEnc), (a_pVal))
1313#define VMX_VMCS_READ_32(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs32((a_pVCpu), (a_FieldEnc), (a_pVal))
1314#define VMX_VMCS_READ_64(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
1315#define VMX_VMCS_READ_NW(a_pVCpu, a_FieldEnc, a_pVal) nemR3DarwinReadVmcs64((a_pVCpu), (a_FieldEnc), (a_pVal))
1316
1317#include "../VMMAll/VMXAllTemplate.cpp.h"
1318
1319#undef VMX_VMCS_WRITE_16
1320#undef VMX_VMCS_WRITE_32
1321#undef VMX_VMCS_WRITE_64
1322#undef VMX_VMCS_WRITE_NW
1323
1324#undef VMX_VMCS_READ_16
1325#undef VMX_VMCS_READ_32
1326#undef VMX_VMCS_READ_64
1327#undef VMX_VMCS_READ_NW
1328
1329#undef VM_IS_VMX_PREEMPT_TIMER_USED
1330#undef VM_IS_VMX_NESTED_PAGING
1331#undef VM_IS_VMX_UNRESTRICTED_GUEST
1332#undef VCPU_2_VMXSTATS
1333#undef VCPU_2_VMXSTATE
1334
1335
1336/**
1337 * Exports the guest GP registers to HV for execution.
1338 *
1339 * @returns VBox status code.
1340 * @param pVCpu The cross context virtual CPU structure of the
1341 * calling EMT.
1342 */
1343static int nemR3DarwinExportGuestGprs(PVMCPUCC pVCpu)
1344{
1345#define WRITE_GREG(a_GReg, a_Value) \
1346 do \
1347 { \
1348 hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
1349 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1350 { /* likely */ } \
1351 else \
1352 return VERR_INTERNAL_ERROR; \
1353 } while(0)
1354
1355 uint64_t fCtxChanged = ASMAtomicUoReadU64(&pVCpu->nem.s.fCtxChanged);
1356 if (fCtxChanged & HM_CHANGED_GUEST_GPRS_MASK)
1357 {
1358 if (fCtxChanged & HM_CHANGED_GUEST_RAX)
1359 WRITE_GREG(HV_X86_RAX, pVCpu->cpum.GstCtx.rax);
1360 if (fCtxChanged & HM_CHANGED_GUEST_RCX)
1361 WRITE_GREG(HV_X86_RCX, pVCpu->cpum.GstCtx.rcx);
1362 if (fCtxChanged & HM_CHANGED_GUEST_RDX)
1363 WRITE_GREG(HV_X86_RDX, pVCpu->cpum.GstCtx.rdx);
1364 if (fCtxChanged & HM_CHANGED_GUEST_RBX)
1365 WRITE_GREG(HV_X86_RBX, pVCpu->cpum.GstCtx.rbx);
1366 if (fCtxChanged & HM_CHANGED_GUEST_RSP)
1367 WRITE_GREG(HV_X86_RSP, pVCpu->cpum.GstCtx.rsp);
1368 if (fCtxChanged & HM_CHANGED_GUEST_RBP)
1369 WRITE_GREG(HV_X86_RBP, pVCpu->cpum.GstCtx.rbp);
1370 if (fCtxChanged & HM_CHANGED_GUEST_RSI)
1371 WRITE_GREG(HV_X86_RSI, pVCpu->cpum.GstCtx.rsi);
1372 if (fCtxChanged & HM_CHANGED_GUEST_RDI)
1373 WRITE_GREG(HV_X86_RDI, pVCpu->cpum.GstCtx.rdi);
1374 if (fCtxChanged & HM_CHANGED_GUEST_R8_R15)
1375 {
1376 WRITE_GREG(HV_X86_R8, pVCpu->cpum.GstCtx.r8);
1377 WRITE_GREG(HV_X86_R9, pVCpu->cpum.GstCtx.r9);
1378 WRITE_GREG(HV_X86_R10, pVCpu->cpum.GstCtx.r10);
1379 WRITE_GREG(HV_X86_R11, pVCpu->cpum.GstCtx.r11);
1380 WRITE_GREG(HV_X86_R12, pVCpu->cpum.GstCtx.r12);
1381 WRITE_GREG(HV_X86_R13, pVCpu->cpum.GstCtx.r13);
1382 WRITE_GREG(HV_X86_R14, pVCpu->cpum.GstCtx.r14);
1383 WRITE_GREG(HV_X86_R15, pVCpu->cpum.GstCtx.r15);
1384 }
1385
1386 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_GPRS_MASK);
1387 }
1388
1389 if (fCtxChanged & HM_CHANGED_GUEST_CR2)
1390 {
1391 WRITE_GREG(HV_X86_CR2, pVCpu->cpum.GstCtx.cr2);
1392 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_CR2);
1393 }
1394
1395 return VINF_SUCCESS;
1396#undef WRITE_GREG
1397}
1398
1399
1400/**
1401 * Converts the given CPUM externalized bitmask to the appropriate HM changed bitmask.
1402 *
1403 * @returns Bitmask of HM changed flags.
1404 * @param fCpumExtrn The CPUM extern bitmask.
1405 */
1406static uint64_t nemR3DarwinCpumExtrnToHmChanged(uint64_t fCpumExtrn)
1407{
1408 uint64_t fHmChanged = 0;
1409
1410 /* Invert to gt a mask of things which are kept in CPUM. */
1411 uint64_t fCpumIntern = ~fCpumExtrn;
1412
1413 if (fCpumIntern & CPUMCTX_EXTRN_GPRS_MASK)
1414 {
1415 if (fCpumIntern & CPUMCTX_EXTRN_RAX)
1416 fHmChanged |= HM_CHANGED_GUEST_RAX;
1417 if (fCpumIntern & CPUMCTX_EXTRN_RCX)
1418 fHmChanged |= HM_CHANGED_GUEST_RCX;
1419 if (fCpumIntern & CPUMCTX_EXTRN_RDX)
1420 fHmChanged |= HM_CHANGED_GUEST_RDX;
1421 if (fCpumIntern & CPUMCTX_EXTRN_RBX)
1422 fHmChanged |= HM_CHANGED_GUEST_RBX;
1423 if (fCpumIntern & CPUMCTX_EXTRN_RSP)
1424 fHmChanged |= HM_CHANGED_GUEST_RSP;
1425 if (fCpumIntern & CPUMCTX_EXTRN_RBP)
1426 fHmChanged |= HM_CHANGED_GUEST_RBP;
1427 if (fCpumIntern & CPUMCTX_EXTRN_RSI)
1428 fHmChanged |= HM_CHANGED_GUEST_RSI;
1429 if (fCpumIntern & CPUMCTX_EXTRN_RDI)
1430 fHmChanged |= HM_CHANGED_GUEST_RDI;
1431 if (fCpumIntern & CPUMCTX_EXTRN_R8_R15)
1432 fHmChanged |= HM_CHANGED_GUEST_R8_R15;
1433 }
1434
1435 /* RIP & Flags */
1436 if (fCpumIntern & CPUMCTX_EXTRN_RIP)
1437 fHmChanged |= HM_CHANGED_GUEST_RIP;
1438 if (fCpumIntern & CPUMCTX_EXTRN_RFLAGS)
1439 fHmChanged |= HM_CHANGED_GUEST_RFLAGS;
1440
1441 /* Segments */
1442 if (fCpumIntern & CPUMCTX_EXTRN_SREG_MASK)
1443 {
1444 if (fCpumIntern & CPUMCTX_EXTRN_ES)
1445 fHmChanged |= HM_CHANGED_GUEST_ES;
1446 if (fCpumIntern & CPUMCTX_EXTRN_CS)
1447 fHmChanged |= HM_CHANGED_GUEST_CS;
1448 if (fCpumIntern & CPUMCTX_EXTRN_SS)
1449 fHmChanged |= HM_CHANGED_GUEST_SS;
1450 if (fCpumIntern & CPUMCTX_EXTRN_DS)
1451 fHmChanged |= HM_CHANGED_GUEST_DS;
1452 if (fCpumIntern & CPUMCTX_EXTRN_FS)
1453 fHmChanged |= HM_CHANGED_GUEST_FS;
1454 if (fCpumIntern & CPUMCTX_EXTRN_GS)
1455 fHmChanged |= HM_CHANGED_GUEST_GS;
1456 }
1457
1458 /* Descriptor tables & task segment. */
1459 if (fCpumIntern & CPUMCTX_EXTRN_TABLE_MASK)
1460 {
1461 if (fCpumIntern & CPUMCTX_EXTRN_LDTR)
1462 fHmChanged |= HM_CHANGED_GUEST_LDTR;
1463 if (fCpumIntern & CPUMCTX_EXTRN_TR)
1464 fHmChanged |= HM_CHANGED_GUEST_TR;
1465 if (fCpumIntern & CPUMCTX_EXTRN_IDTR)
1466 fHmChanged |= HM_CHANGED_GUEST_IDTR;
1467 if (fCpumIntern & CPUMCTX_EXTRN_GDTR)
1468 fHmChanged |= HM_CHANGED_GUEST_GDTR;
1469 }
1470
1471 /* Control registers. */
1472 if (fCpumIntern & CPUMCTX_EXTRN_CR_MASK)
1473 {
1474 if (fCpumIntern & CPUMCTX_EXTRN_CR0)
1475 fHmChanged |= HM_CHANGED_GUEST_CR0;
1476 if (fCpumIntern & CPUMCTX_EXTRN_CR2)
1477 fHmChanged |= HM_CHANGED_GUEST_CR2;
1478 if (fCpumIntern & CPUMCTX_EXTRN_CR3)
1479 fHmChanged |= HM_CHANGED_GUEST_CR3;
1480 if (fCpumIntern & CPUMCTX_EXTRN_CR4)
1481 fHmChanged |= HM_CHANGED_GUEST_CR4;
1482 }
1483 if (fCpumIntern & CPUMCTX_EXTRN_APIC_TPR)
1484 fHmChanged |= HM_CHANGED_GUEST_APIC_TPR;
1485
1486 /* Debug registers. */
1487 if (fCpumIntern & CPUMCTX_EXTRN_DR0_DR3)
1488 fHmChanged |= HM_CHANGED_GUEST_DR0_DR3;
1489 if (fCpumIntern & CPUMCTX_EXTRN_DR6)
1490 fHmChanged |= HM_CHANGED_GUEST_DR6;
1491 if (fCpumIntern & CPUMCTX_EXTRN_DR7)
1492 fHmChanged |= HM_CHANGED_GUEST_DR7;
1493
1494 /* Floating point state. */
1495 if (fCpumIntern & CPUMCTX_EXTRN_X87)
1496 fHmChanged |= HM_CHANGED_GUEST_X87;
1497 if (fCpumIntern & CPUMCTX_EXTRN_SSE_AVX)
1498 fHmChanged |= HM_CHANGED_GUEST_SSE_AVX;
1499 if (fCpumIntern & CPUMCTX_EXTRN_OTHER_XSAVE)
1500 fHmChanged |= HM_CHANGED_GUEST_OTHER_XSAVE;
1501 if (fCpumIntern & CPUMCTX_EXTRN_XCRx)
1502 fHmChanged |= HM_CHANGED_GUEST_XCRx;
1503
1504 /* MSRs */
1505 if (fCpumIntern & CPUMCTX_EXTRN_EFER)
1506 fHmChanged |= HM_CHANGED_GUEST_EFER_MSR;
1507 if (fCpumIntern & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1508 fHmChanged |= HM_CHANGED_GUEST_KERNEL_GS_BASE;
1509 if (fCpumIntern & CPUMCTX_EXTRN_SYSENTER_MSRS)
1510 fHmChanged |= HM_CHANGED_GUEST_SYSENTER_MSR_MASK;
1511 if (fCpumIntern & CPUMCTX_EXTRN_SYSCALL_MSRS)
1512 fHmChanged |= HM_CHANGED_GUEST_SYSCALL_MSRS;
1513 if (fCpumIntern & CPUMCTX_EXTRN_TSC_AUX)
1514 fHmChanged |= HM_CHANGED_GUEST_TSC_AUX;
1515 if (fCpumIntern & CPUMCTX_EXTRN_OTHER_MSRS)
1516 fHmChanged |= HM_CHANGED_GUEST_OTHER_MSRS;
1517
1518 return fHmChanged;
1519}
1520
1521
1522/**
1523 * Exports the guest state to HV for execution.
1524 *
1525 * @returns VBox status code.
1526 * @param pVM The cross context VM structure.
1527 * @param pVCpu The cross context virtual CPU structure of the
1528 * calling EMT.
1529 * @param pVmxTransient The transient VMX structure.
1530 */
1531static int nemR3DarwinExportGuestState(PVMCC pVM, PVMCPUCC pVCpu, PVMXTRANSIENT pVmxTransient)
1532{
1533#define WRITE_GREG(a_GReg, a_Value) \
1534 do \
1535 { \
1536 hv_return_t hrc = hv_vcpu_write_register(pVCpu->nem.s.hVCpuId, (a_GReg), (a_Value)); \
1537 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1538 { /* likely */ } \
1539 else \
1540 return VERR_INTERNAL_ERROR; \
1541 } while(0)
1542#define WRITE_VMCS_FIELD(a_Field, a_Value) \
1543 do \
1544 { \
1545 hv_return_t hrc = hv_vmx_vcpu_write_vmcs(pVCpu->nem.s.hVCpuId, (a_Field), (a_Value)); \
1546 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1547 { /* likely */ } \
1548 else \
1549 return VERR_INTERNAL_ERROR; \
1550 } while(0)
1551#define WRITE_MSR(a_Msr, a_Value) \
1552 do \
1553 { \
1554 hv_return_t hrc = hv_vcpu_write_msr(pVCpu->nem.s.hVCpuId, (a_Msr), (a_Value)); \
1555 if (RT_LIKELY(hrc == HV_SUCCESS)) \
1556 { /* likely */ } \
1557 else \
1558 AssertFailedReturn(VERR_INTERNAL_ERROR); \
1559 } while(0)
1560
1561 RT_NOREF(pVM);
1562
1563#ifdef LOG_ENABLED
1564 nemR3DarwinLogState(pVM, pVCpu);
1565#endif
1566
1567 STAM_PROFILE_ADV_START(&pVCpu->nem.s.StatProfGstStateExport, x);
1568
1569 uint64_t const fWhat = ~pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL;
1570 if (!fWhat)
1571 return VINF_SUCCESS;
1572
1573 pVCpu->nem.s.fCtxChanged |= nemR3DarwinCpumExtrnToHmChanged(pVCpu->cpum.GstCtx.fExtrn);
1574
1575 int rc = vmxHCExportGuestEntryExitCtls(pVCpu, pVmxTransient);
1576 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1577
1578 rc = nemR3DarwinExportGuestGprs(pVCpu);
1579 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1580
1581 rc = vmxHCExportGuestCR0(pVCpu, pVmxTransient);
1582 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1583
1584 VBOXSTRICTRC rcStrict = vmxHCExportGuestCR3AndCR4(pVCpu, pVmxTransient);
1585 if (rcStrict == VINF_SUCCESS)
1586 { /* likely */ }
1587 else
1588 {
1589 Assert(rcStrict == VINF_EM_RESCHEDULE_REM || RT_FAILURE_NP(rcStrict));
1590 return VBOXSTRICTRC_VAL(rcStrict);
1591 }
1592
1593 vmxHCExportGuestXcptIntercepts(pVCpu, pVmxTransient);
1594 vmxHCExportGuestRip(pVCpu);
1595 //vmxHCExportGuestRsp(pVCpu);
1596 vmxHCExportGuestRflags(pVCpu, pVmxTransient);
1597
1598 rc = vmxHCExportGuestSegRegsXdtr(pVCpu, pVmxTransient);
1599 AssertLogRelMsgRCReturn(rc, ("rc=%Rrc\n", rc), rc);
1600
1601 if (fWhat & CPUMCTX_EXTRN_XCRx)
1602 {
1603 WRITE_GREG(HV_X86_XCR0, pVCpu->cpum.GstCtx.aXcr[0]);
1604 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_XCRx);
1605 }
1606
1607 if (fWhat & CPUMCTX_EXTRN_APIC_TPR)
1608 {
1609 Assert(pVCpu->nem.s.fCtxChanged & HM_CHANGED_GUEST_APIC_TPR);
1610 vmxHCExportGuestApicTpr(pVCpu, pVmxTransient);
1611
1612 rc = APICGetTpr(pVCpu, &pVmxTransient->u8GuestTpr, NULL /*pfPending*/, NULL /*pu8PendingIntr*/);
1613 AssertRC(rc);
1614
1615 WRITE_GREG(HV_X86_TPR, pVmxTransient->u8GuestTpr);
1616 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_APIC_TPR);
1617 }
1618
1619 /* Debug registers. */
1620 if (fWhat & CPUMCTX_EXTRN_DR0_DR3)
1621 {
1622 WRITE_GREG(HV_X86_DR0, pVCpu->cpum.GstCtx.dr[0]); // CPUMGetHyperDR0(pVCpu));
1623 WRITE_GREG(HV_X86_DR1, pVCpu->cpum.GstCtx.dr[1]); // CPUMGetHyperDR1(pVCpu));
1624 WRITE_GREG(HV_X86_DR2, pVCpu->cpum.GstCtx.dr[2]); // CPUMGetHyperDR2(pVCpu));
1625 WRITE_GREG(HV_X86_DR3, pVCpu->cpum.GstCtx.dr[3]); // CPUMGetHyperDR3(pVCpu));
1626 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR0_DR3);
1627 }
1628 if (fWhat & CPUMCTX_EXTRN_DR6)
1629 {
1630 WRITE_GREG(HV_X86_DR6, pVCpu->cpum.GstCtx.dr[6]); // CPUMGetHyperDR6(pVCpu));
1631 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR6);
1632 }
1633 if (fWhat & CPUMCTX_EXTRN_DR7)
1634 {
1635 WRITE_GREG(HV_X86_DR7, pVCpu->cpum.GstCtx.dr[7]); // CPUMGetHyperDR7(pVCpu));
1636 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_DR7);
1637 }
1638
1639 if (fWhat & (CPUMCTX_EXTRN_X87 | CPUMCTX_EXTRN_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE))
1640 {
1641 hv_return_t hrc = hv_vcpu_write_fpstate(pVCpu->nem.s.hVCpuId, &pVCpu->cpum.GstCtx.XState, sizeof(pVCpu->cpum.GstCtx.XState));
1642 if (hrc == HV_SUCCESS)
1643 { /* likely */ }
1644 else
1645 return nemR3DarwinHvSts2Rc(hrc);
1646
1647 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~(HM_CHANGED_GUEST_X87 | HM_CHANGED_GUEST_SSE_AVX | CPUMCTX_EXTRN_OTHER_XSAVE));
1648 }
1649
1650 /* MSRs */
1651 if (fWhat & CPUMCTX_EXTRN_EFER)
1652 {
1653 WRITE_VMCS_FIELD(VMX_VMCS64_GUEST_EFER_FULL, pVCpu->cpum.GstCtx.msrEFER);
1654 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_EFER_MSR);
1655 }
1656 if (fWhat & CPUMCTX_EXTRN_KERNEL_GS_BASE)
1657 {
1658 WRITE_MSR(MSR_K8_KERNEL_GS_BASE, pVCpu->cpum.GstCtx.msrKERNELGSBASE);
1659 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_KERNEL_GS_BASE);
1660 }
1661 if (fWhat & CPUMCTX_EXTRN_SYSENTER_MSRS)
1662 {
1663 WRITE_MSR(MSR_IA32_SYSENTER_CS, pVCpu->cpum.GstCtx.SysEnter.cs);
1664 WRITE_MSR(MSR_IA32_SYSENTER_EIP, pVCpu->cpum.GstCtx.SysEnter.eip);
1665 WRITE_MSR(MSR_IA32_SYSENTER_ESP, pVCpu->cpum.GstCtx.SysEnter.esp);
1666 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSENTER_MSR_MASK);
1667 }
1668 if (fWhat & CPUMCTX_EXTRN_SYSCALL_MSRS)
1669 {
1670 WRITE_MSR(MSR_K6_STAR, pVCpu->cpum.GstCtx.msrSTAR);
1671 WRITE_MSR(MSR_K8_LSTAR, pVCpu->cpum.GstCtx.msrLSTAR);
1672 WRITE_MSR(MSR_K8_CSTAR, pVCpu->cpum.GstCtx.msrCSTAR);
1673 WRITE_MSR(MSR_K8_SF_MASK, pVCpu->cpum.GstCtx.msrSFMASK);
1674 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_SYSCALL_MSRS);
1675 }
1676 if (fWhat & CPUMCTX_EXTRN_OTHER_MSRS)
1677 {
1678#if 0
1679 hv_return_t hrc = hv_vmx_vcpu_set_apic_address(pVCpu->nem.s.hVCpuId, APICGetBaseMsrNoCheck(pVCpu) & PAGE_BASE_GC_MASK);
1680 if (RT_UNLIKELY(hrc != HV_SUCCESS))
1681 return nemR3DarwinHvSts2Rc(hrc);
1682#endif
1683
1684 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_OTHER_MSRS);
1685
1686#if 0
1687 ADD_REG64(WHvX64RegisterPat, pVCpu->cpum.GstCtx.msrPAT);
1688#if 0 /** @todo check if WHvX64RegisterMsrMtrrCap works here... */
1689 ADD_REG64(WHvX64RegisterMsrMtrrCap, CPUMGetGuestIa32MtrrCap(pVCpu));
1690#endif
1691 PCPUMCTXMSRS pCtxMsrs = CPUMQueryGuestCtxMsrsPtr(pVCpu);
1692 ADD_REG64(WHvX64RegisterMsrMtrrDefType, pCtxMsrs->msr.MtrrDefType);
1693 ADD_REG64(WHvX64RegisterMsrMtrrFix64k00000, pCtxMsrs->msr.MtrrFix64K_00000);
1694 ADD_REG64(WHvX64RegisterMsrMtrrFix16k80000, pCtxMsrs->msr.MtrrFix16K_80000);
1695 ADD_REG64(WHvX64RegisterMsrMtrrFix16kA0000, pCtxMsrs->msr.MtrrFix16K_A0000);
1696 ADD_REG64(WHvX64RegisterMsrMtrrFix4kC0000, pCtxMsrs->msr.MtrrFix4K_C0000);
1697 ADD_REG64(WHvX64RegisterMsrMtrrFix4kC8000, pCtxMsrs->msr.MtrrFix4K_C8000);
1698 ADD_REG64(WHvX64RegisterMsrMtrrFix4kD0000, pCtxMsrs->msr.MtrrFix4K_D0000);
1699 ADD_REG64(WHvX64RegisterMsrMtrrFix4kD8000, pCtxMsrs->msr.MtrrFix4K_D8000);
1700 ADD_REG64(WHvX64RegisterMsrMtrrFix4kE0000, pCtxMsrs->msr.MtrrFix4K_E0000);
1701 ADD_REG64(WHvX64RegisterMsrMtrrFix4kE8000, pCtxMsrs->msr.MtrrFix4K_E8000);
1702 ADD_REG64(WHvX64RegisterMsrMtrrFix4kF0000, pCtxMsrs->msr.MtrrFix4K_F0000);
1703 ADD_REG64(WHvX64RegisterMsrMtrrFix4kF8000, pCtxMsrs->msr.MtrrFix4K_F8000);
1704 ADD_REG64(WHvX64RegisterTscAux, pCtxMsrs->msr.TscAux);
1705#if 0 /** @todo these registers aren't available? Might explain something.. .*/
1706 const CPUMCPUVENDOR enmCpuVendor = CPUMGetHostCpuVendor(pVM);
1707 if (enmCpuVendor != CPUMCPUVENDOR_AMD)
1708 {
1709 ADD_REG64(HvX64RegisterIa32MiscEnable, pCtxMsrs->msr.MiscEnable);
1710 ADD_REG64(HvX64RegisterIa32FeatureControl, CPUMGetGuestIa32FeatureControl(pVCpu));
1711 }
1712#endif
1713#endif
1714 }
1715
1716 WRITE_VMCS_FIELD(VMX_VMCS64_GUEST_DEBUGCTL_FULL, 0 /*MSR_IA32_DEBUGCTL_LBR*/);
1717
1718 hv_vcpu_invalidate_tlb(pVCpu->nem.s.hVCpuId);
1719 hv_vcpu_flush(pVCpu->nem.s.hVCpuId);
1720
1721 pVCpu->cpum.GstCtx.fExtrn |= CPUMCTX_EXTRN_ALL | CPUMCTX_EXTRN_KEEPER_NEM;
1722
1723 /* Clear any bits that may be set but exported unconditionally or unused/reserved bits. */
1724 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~(
1725 HM_CHANGED_GUEST_TSC_AUX
1726 | HM_CHANGED_GUEST_HWVIRT
1727 | HM_CHANGED_VMX_GUEST_AUTO_MSRS
1728 | HM_CHANGED_VMX_GUEST_LAZY_MSRS
1729 | (HM_CHANGED_KEEPER_STATE_MASK & ~HM_CHANGED_VMX_MASK)));
1730
1731 STAM_PROFILE_ADV_STOP(&pVCpu->nem.s.StatProfGstStateExport, x);
1732 return VINF_SUCCESS;
1733#undef WRITE_GREG
1734#undef WRITE_VMCS_FIELD
1735}
1736
1737
1738/**
1739 * Handles an exit from hv_vcpu_run().
1740 *
1741 * @returns VBox strict status code.
1742 * @param pVM The cross context VM structure.
1743 * @param pVCpu The cross context virtual CPU structure of the
1744 * calling EMT.
1745 * @param pVmxTransient The transient VMX structure.
1746 */
1747static VBOXSTRICTRC nemR3DarwinHandleExit(PVM pVM, PVMCPU pVCpu, PVMXTRANSIENT pVmxTransient)
1748{
1749 uint32_t uExitReason;
1750 int rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_RO_EXIT_REASON, &uExitReason);
1751 AssertRC(rc);
1752 pVmxTransient->fVmcsFieldsRead = 0;
1753 pVmxTransient->fIsNestedGuest = false;
1754 pVmxTransient->uExitReason = VMX_EXIT_REASON_BASIC(uExitReason);
1755 pVmxTransient->fVMEntryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
1756
1757 if (RT_UNLIKELY(pVmxTransient->fVMEntryFailed))
1758 AssertLogRelMsgFailedReturn(("Running guest failed for CPU #%u: %#x %u\n",
1759 pVCpu->idCpu, pVmxTransient->uExitReason, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
1760 VERR_NEM_IPE_0);
1761
1762 /** @todo Only copy the state on demand (the R0 VT-x code saves some stuff unconditionally and the VMX template assumes that
1763 * when handling exits). */
1764 rc = nemR3DarwinCopyStateFromHv(pVM, pVCpu, CPUMCTX_EXTRN_ALL);
1765 AssertRCReturn(rc, rc);
1766
1767 STAM_COUNTER_INC(&pVCpu->nem.s.pVmxStats->aStatExitReason[pVmxTransient->uExitReason & MASK_EXITREASON_STAT]);
1768 STAM_REL_COUNTER_INC(&pVCpu->nem.s.pVmxStats->StatExitAll);
1769
1770#ifndef HMVMX_USE_FUNCTION_TABLE
1771 return vmxHCHandleExit(pVCpu, pVmxTransient);
1772#else
1773 return g_aVMExitHandlers[pVmxTransient->uExitReason].pfn(pVCpu, pVmxTransient);
1774#endif
1775}
1776
1777
1778/**
1779 * Worker for nemR3NativeInit that loads the Hypervisor.framework shared library.
1780 *
1781 * @returns VBox status code.
1782 * @param fForced Whether the HMForced flag is set and we should
1783 * fail if we cannot initialize.
1784 * @param pErrInfo Where to always return error info.
1785 */
1786static int nemR3DarwinLoadHv(bool fForced, PRTERRINFO pErrInfo)
1787{
1788 RTLDRMOD hMod = NIL_RTLDRMOD;
1789 static const char *s_pszHvPath = "/System/Library/Frameworks/Hypervisor.framework/Hypervisor";
1790
1791 int rc = RTLdrLoadEx(s_pszHvPath, &hMod, RTLDRLOAD_FLAGS_NO_UNLOAD | RTLDRLOAD_FLAGS_NO_SUFFIX, pErrInfo);
1792 if (RT_SUCCESS(rc))
1793 {
1794 for (unsigned i = 0; i < RT_ELEMENTS(g_aImports); i++)
1795 {
1796 int rc2 = RTLdrGetSymbol(hMod, g_aImports[i].pszName, (void **)g_aImports[i].ppfn);
1797 if (RT_SUCCESS(rc2))
1798 {
1799 if (g_aImports[i].fOptional)
1800 LogRel(("NEM: info: Found optional import Hypervisor!%s.\n",
1801 g_aImports[i].pszName));
1802 }
1803 else
1804 {
1805 *g_aImports[i].ppfn = NULL;
1806
1807 LogRel(("NEM: %s: Failed to import Hypervisor!%s: %Rrc\n",
1808 g_aImports[i].fOptional ? "info" : fForced ? "fatal" : "error",
1809 g_aImports[i].pszName, rc2));
1810 if (!g_aImports[i].fOptional)
1811 {
1812 if (RTErrInfoIsSet(pErrInfo))
1813 RTErrInfoAddF(pErrInfo, rc2, ", Hypervisor!%s", g_aImports[i].pszName);
1814 else
1815 rc = RTErrInfoSetF(pErrInfo, rc2, "Failed to import: Hypervisor!%s", g_aImports[i].pszName);
1816 Assert(RT_FAILURE(rc));
1817 }
1818 }
1819 }
1820 if (RT_SUCCESS(rc))
1821 {
1822 Assert(!RTErrInfoIsSet(pErrInfo));
1823 }
1824
1825 RTLdrClose(hMod);
1826 }
1827 else
1828 {
1829 RTErrInfoAddF(pErrInfo, rc, "Failed to load Hypervisor.framwork: %s: %Rrc", s_pszHvPath, rc);
1830 rc = VERR_NEM_INIT_FAILED;
1831 }
1832
1833 return rc;
1834}
1835
1836
1837/**
1838 * Read and initialize the global capabilities supported by this CPU.
1839 *
1840 * @returns VBox status code.
1841 */
1842static int nemR3DarwinCapsInit(void)
1843{
1844 RT_ZERO(g_HmMsrs);
1845
1846 hv_return_t hrc = hv_vmx_read_capability(HV_VMX_CAP_PINBASED, &g_HmMsrs.u.vmx.PinCtls.u);
1847 if (hrc == HV_SUCCESS)
1848 hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED, &g_HmMsrs.u.vmx.ProcCtls.u);
1849 if (hrc == HV_SUCCESS)
1850 hrc = hv_vmx_read_capability(HV_VMX_CAP_ENTRY, &g_HmMsrs.u.vmx.EntryCtls.u);
1851 if (hrc == HV_SUCCESS)
1852 hrc = hv_vmx_read_capability(HV_VMX_CAP_EXIT, &g_HmMsrs.u.vmx.ExitCtls.u);
1853 if (hrc == HV_SUCCESS)
1854 {
1855 hrc = hv_vmx_read_capability(HV_VMX_CAP_BASIC, &g_HmMsrs.u.vmx.u64Basic);
1856 if (hrc == HV_SUCCESS)
1857 {
1858 if (hrc == HV_SUCCESS)
1859 hrc = hv_vmx_read_capability(HV_VMX_CAP_MISC, &g_HmMsrs.u.vmx.u64Misc);
1860 if (hrc == HV_SUCCESS)
1861 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED0, &g_HmMsrs.u.vmx.u64Cr0Fixed0);
1862 if (hrc == HV_SUCCESS)
1863 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR0_FIXED1, &g_HmMsrs.u.vmx.u64Cr0Fixed1);
1864 if (hrc == HV_SUCCESS)
1865 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED0, &g_HmMsrs.u.vmx.u64Cr4Fixed0);
1866 if (hrc == HV_SUCCESS)
1867 hrc = hv_vmx_read_capability(HV_VMX_CAP_CR4_FIXED1, &g_HmMsrs.u.vmx.u64Cr4Fixed1);
1868 if (hrc == HV_SUCCESS)
1869 hrc = hv_vmx_read_capability(HV_VMX_CAP_VMCS_ENUM, &g_HmMsrs.u.vmx.u64VmcsEnum);
1870 if ( hrc == HV_SUCCESS
1871 && RT_BF_GET(g_HmMsrs.u.vmx.u64Basic, VMX_BF_BASIC_TRUE_CTLS))
1872 {
1873 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PINBASED, &g_HmMsrs.u.vmx.TruePinCtls.u);
1874 if (hrc == HV_SUCCESS)
1875 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_PROCBASED, &g_HmMsrs.u.vmx.TrueProcCtls.u);
1876 if (hrc == HV_SUCCESS)
1877 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_ENTRY, &g_HmMsrs.u.vmx.TrueEntryCtls.u);
1878 if (hrc == HV_SUCCESS)
1879 hrc = hv_vmx_read_capability(HV_VMX_CAP_TRUE_EXIT, &g_HmMsrs.u.vmx.TrueExitCtls.u);
1880 }
1881 }
1882 else
1883 {
1884 /* Likely running on anything < 11.0 (BigSur) so provide some sensible defaults. */
1885 g_HmMsrs.u.vmx.u64Cr0Fixed0 = 0x80000021;
1886 g_HmMsrs.u.vmx.u64Cr0Fixed1 = 0xffffffff;
1887 g_HmMsrs.u.vmx.u64Cr4Fixed0 = 0x2000;
1888 g_HmMsrs.u.vmx.u64Cr4Fixed1 = 0x1767ff;
1889 hrc = HV_SUCCESS;
1890 }
1891 }
1892
1893 if ( hrc == HV_SUCCESS
1894 && g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
1895 {
1896 hrc = hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2, &g_HmMsrs.u.vmx.ProcCtls2.u);
1897
1898 if ( hrc == HV_SUCCESS
1899 && g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & (VMX_PROC_CTLS2_EPT | VMX_PROC_CTLS2_VPID))
1900 {
1901 hrc = hv_vmx_read_capability(HV_VMX_CAP_EPT_VPID_CAP, &g_HmMsrs.u.vmx.u64EptVpidCaps);
1902 if (hrc != HV_SUCCESS)
1903 hrc = HV_SUCCESS; /* Probably just outdated OS. */
1904 }
1905
1906 g_HmMsrs.u.vmx.u64VmFunc = 0; /* No way to read that on macOS. */
1907 }
1908
1909 if (hrc == HV_SUCCESS)
1910 {
1911 /*
1912 * Check for EFER swapping support.
1913 */
1914 g_fHmVmxSupportsVmcsEfer = true; //(g_HmMsrs.u.vmx.EntryCtls.n.allowed1 & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
1915 //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1916 //&& (g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_SAVE_EFER_MSR);
1917 }
1918
1919 return nemR3DarwinHvSts2Rc(hrc);
1920}
1921
1922
1923/**
1924 * Sets up pin-based VM-execution controls in the VMCS.
1925 *
1926 * @returns VBox status code.
1927 * @param pVCpu The cross context virtual CPU structure.
1928 * @param pVmcsInfo The VMCS info. object.
1929 */
1930static int nemR3DarwinVmxSetupVmcsPinCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
1931{
1932 //PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1933 uint32_t fVal = g_HmMsrs.u.vmx.PinCtls.n.allowed0; /* Bits set here must always be set. */
1934 uint32_t const fZap = g_HmMsrs.u.vmx.PinCtls.n.allowed1; /* Bits cleared here must always be cleared. */
1935
1936 if (g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_VIRT_NMI)
1937 fVal |= VMX_PIN_CTLS_VIRT_NMI; /* Use virtual NMIs and virtual-NMI blocking features. */
1938
1939#if 0 /** @todo Use preemption timer */
1940 /* Enable the VMX-preemption timer. */
1941 if (pVM->hmr0.s.vmx.fUsePreemptTimer)
1942 {
1943 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_PREEMPT_TIMER);
1944 fVal |= VMX_PIN_CTLS_PREEMPT_TIMER;
1945 }
1946
1947 /* Enable posted-interrupt processing. */
1948 if (pVM->hm.s.fPostedIntrs)
1949 {
1950 Assert(g_HmMsrs.u.vmx.PinCtls.n.allowed1 & VMX_PIN_CTLS_POSTED_INT);
1951 Assert(g_HmMsrs.u.vmx.ExitCtls.n.allowed1 & VMX_EXIT_CTLS_ACK_EXT_INT);
1952 fVal |= VMX_PIN_CTLS_POSTED_INT;
1953 }
1954#endif
1955
1956 if ((fVal & fZap) != fVal)
1957 {
1958 LogRelFunc(("Invalid pin-based VM-execution controls combo! Cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
1959 g_HmMsrs.u.vmx.PinCtls.n.allowed0, fVal, fZap));
1960 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PIN_EXEC;
1961 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
1962 }
1963
1964 /* Commit it to the VMCS and update our cache. */
1965 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PIN_EXEC, fVal);
1966 AssertRC(rc);
1967 pVmcsInfo->u32PinCtls = fVal;
1968
1969 return VINF_SUCCESS;
1970}
1971
1972
1973/**
1974 * Sets up secondary processor-based VM-execution controls in the VMCS.
1975 *
1976 * @returns VBox status code.
1977 * @param pVCpu The cross context virtual CPU structure.
1978 * @param pVmcsInfo The VMCS info. object.
1979 */
1980static int nemR3DarwinVmxSetupVmcsProcCtls2(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
1981{
1982 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
1983 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls2.n.allowed0; /* Bits set here must be set in the VMCS. */
1984 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls2.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
1985
1986 /* WBINVD causes a VM-exit. */
1987 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_WBINVD_EXIT)
1988 fVal |= VMX_PROC_CTLS2_WBINVD_EXIT;
1989
1990 /* Enable the INVPCID instruction if we expose it to the guest and is supported
1991 by the hardware. Without this, guest executing INVPCID would cause a #UD. */
1992 if ( pVM->cpum.ro.GuestFeatures.fInvpcid
1993 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_INVPCID))
1994 fVal |= VMX_PROC_CTLS2_INVPCID;
1995
1996#if 0 /** @todo */
1997 /* Enable VPID. */
1998 if (pVM->hmr0.s.vmx.fVpid)
1999 fVal |= VMX_PROC_CTLS2_VPID;
2000
2001 if (pVM->hm.s.fVirtApicRegs)
2002 {
2003 /* Enable APIC-register virtualization. */
2004 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_APIC_REG_VIRT);
2005 fVal |= VMX_PROC_CTLS2_APIC_REG_VIRT;
2006
2007 /* Enable virtual-interrupt delivery. */
2008 Assert(g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_INTR_DELIVERY);
2009 fVal |= VMX_PROC_CTLS2_VIRT_INTR_DELIVERY;
2010 }
2011
2012 /* Virtualize-APIC accesses if supported by the CPU. The virtual-APIC page is
2013 where the TPR shadow resides. */
2014 /** @todo VIRT_X2APIC support, it's mutually exclusive with this. So must be
2015 * done dynamically. */
2016 if (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
2017 {
2018 fVal |= VMX_PROC_CTLS2_VIRT_APIC_ACCESS;
2019 hmR0VmxSetupVmcsApicAccessAddr(pVCpu);
2020 }
2021#endif
2022
2023 /* Enable the RDTSCP instruction if we expose it to the guest and is supported
2024 by the hardware. Without this, guest executing RDTSCP would cause a #UD. */
2025 if ( pVM->cpum.ro.GuestFeatures.fRdTscP
2026 && (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_RDTSCP))
2027 fVal |= VMX_PROC_CTLS2_RDTSCP;
2028
2029#if 0
2030 /* Enable Pause-Loop exiting. */
2031 if ( (g_HmMsrs.u.vmx.ProcCtls2.n.allowed1 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
2032 && pVM->hm.s.vmx.cPleGapTicks
2033 && pVM->hm.s.vmx.cPleWindowTicks)
2034 {
2035 fVal |= VMX_PROC_CTLS2_PAUSE_LOOP_EXIT;
2036
2037 int rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_GAP, pVM->hm.s.vmx.cPleGapTicks); AssertRC(rc);
2038 rc = VMXWriteVmcs32(VMX_VMCS32_CTRL_PLE_WINDOW, pVM->hm.s.vmx.cPleWindowTicks); AssertRC(rc);
2039 }
2040#endif
2041
2042 if ((fVal & fZap) != fVal)
2043 {
2044 LogRelFunc(("Invalid secondary processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2045 g_HmMsrs.u.vmx.ProcCtls2.n.allowed0, fVal, fZap));
2046 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC2;
2047 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2048 }
2049
2050 /* Commit it to the VMCS and update our cache. */
2051 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC2, fVal);
2052 AssertRC(rc);
2053 pVmcsInfo->u32ProcCtls2 = fVal;
2054
2055 return VINF_SUCCESS;
2056}
2057
2058
2059/**
2060 * Enables native access for the given MSR.
2061 *
2062 * @returns VBox status code.
2063 * @param pVCpu The cross context virtual CPU structure.
2064 * @param idMsr The MSR to enable native access for.
2065 */
2066static int nemR3DarwinMsrSetNative(PVMCPUCC pVCpu, uint32_t idMsr)
2067{
2068 hv_return_t hrc = hv_vcpu_enable_native_msr(pVCpu->nem.s.hVCpuId, idMsr, true /*enable*/);
2069 if (hrc == HV_SUCCESS)
2070 return VINF_SUCCESS;
2071
2072 return nemR3DarwinHvSts2Rc(hrc);
2073}
2074
2075
2076/**
2077 * Sets up the MSR permissions which don't change through the lifetime of the VM.
2078 *
2079 * @returns VBox status code.
2080 * @param pVCpu The cross context virtual CPU structure.
2081 * @param pVmcsInfo The VMCS info. object.
2082 */
2083static int nemR3DarwinSetupVmcsMsrPermissions(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2084{
2085 RT_NOREF(pVmcsInfo);
2086
2087 /*
2088 * The guest can access the following MSRs (read, write) without causing
2089 * VM-exits; they are loaded/stored automatically using fields in the VMCS.
2090 */
2091 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2092 int rc;
2093 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_CS); AssertRCReturn(rc, rc);
2094 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_ESP); AssertRCReturn(rc, rc);
2095 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SYSENTER_EIP); AssertRCReturn(rc, rc);
2096 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_GS_BASE); AssertRCReturn(rc, rc);
2097 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_FS_BASE); AssertRCReturn(rc, rc);
2098
2099 /*
2100 * The IA32_PRED_CMD and IA32_FLUSH_CMD MSRs are write-only and has no state
2101 * associated with then. We never need to intercept access (writes need to be
2102 * executed without causing a VM-exit, reads will #GP fault anyway).
2103 *
2104 * The IA32_SPEC_CTRL MSR is read/write and has state. We allow the guest to
2105 * read/write them. We swap the guest/host MSR value using the
2106 * auto-load/store MSR area.
2107 */
2108 if (pVM->cpum.ro.GuestFeatures.fIbpb)
2109 {
2110 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_PRED_CMD);
2111 AssertRCReturn(rc, rc);
2112 }
2113#if 0 /* Doesn't work. */
2114 if (pVM->cpum.ro.GuestFeatures.fFlushCmd)
2115 {
2116 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_FLUSH_CMD);
2117 AssertRCReturn(rc, rc);
2118 }
2119#endif
2120 if (pVM->cpum.ro.GuestFeatures.fIbrs)
2121 {
2122 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_IA32_SPEC_CTRL);
2123 AssertRCReturn(rc, rc);
2124 }
2125
2126 /*
2127 * Allow full read/write access for the following MSRs (mandatory for VT-x)
2128 * required for 64-bit guests.
2129 */
2130 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_LSTAR); AssertRCReturn(rc, rc);
2131 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K6_STAR); AssertRCReturn(rc, rc);
2132 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_SF_MASK); AssertRCReturn(rc, rc);
2133 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_KERNEL_GS_BASE); AssertRCReturn(rc, rc);
2134
2135 /* Required for enabling the RDTSCP instruction. */
2136 rc = nemR3DarwinMsrSetNative(pVCpu, MSR_K8_TSC_AUX); AssertRCReturn(rc, rc);
2137
2138 return VINF_SUCCESS;
2139}
2140
2141
2142/**
2143 * Sets up processor-based VM-execution controls in the VMCS.
2144 *
2145 * @returns VBox status code.
2146 * @param pVCpu The cross context virtual CPU structure.
2147 * @param pVmcsInfo The VMCS info. object.
2148 */
2149static int nemR3DarwinVmxSetupVmcsProcCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2150{
2151 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2152 uint32_t fVal = g_HmMsrs.u.vmx.ProcCtls.n.allowed0; /* Bits set here must be set in the VMCS. */
2153 uint32_t const fZap = g_HmMsrs.u.vmx.ProcCtls.n.allowed1; /* Bits cleared here must be cleared in the VMCS. */
2154
2155 fVal |= VMX_PROC_CTLS_HLT_EXIT /* HLT causes a VM-exit. */
2156// | VMX_PROC_CTLS_USE_TSC_OFFSETTING /* Use TSC-offsetting. */
2157 | VMX_PROC_CTLS_MOV_DR_EXIT /* MOV DRx causes a VM-exit. */
2158 | VMX_PROC_CTLS_UNCOND_IO_EXIT /* All IO instructions cause a VM-exit. */
2159 | VMX_PROC_CTLS_RDPMC_EXIT /* RDPMC causes a VM-exit. */
2160 | VMX_PROC_CTLS_MONITOR_EXIT /* MONITOR causes a VM-exit. */
2161 | VMX_PROC_CTLS_MWAIT_EXIT; /* MWAIT causes a VM-exit. */
2162
2163 /* We toggle VMX_PROC_CTLS_MOV_DR_EXIT later, check if it's not -always- needed to be set or clear. */
2164 if ( !(g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_MOV_DR_EXIT)
2165 || (g_HmMsrs.u.vmx.ProcCtls.n.allowed0 & VMX_PROC_CTLS_MOV_DR_EXIT))
2166 {
2167 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_MOV_DRX_EXIT;
2168 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2169 }
2170
2171 /* Use the secondary processor-based VM-execution controls if supported by the CPU. */
2172 if (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
2173 fVal |= VMX_PROC_CTLS_USE_SECONDARY_CTLS;
2174
2175 if ((fVal & fZap) != fVal)
2176 {
2177 LogRelFunc(("Invalid processor-based VM-execution controls combo! cpu=%#RX32 fVal=%#RX32 fZap=%#RX32\n",
2178 g_HmMsrs.u.vmx.ProcCtls.n.allowed0, fVal, fZap));
2179 pVCpu->nem.s.u32HMError = VMX_UFC_CTRL_PROC_EXEC;
2180 return VERR_HM_UNSUPPORTED_CPU_FEATURE_COMBO;
2181 }
2182
2183 /* Commit it to the VMCS and update our cache. */
2184 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2185 AssertRC(rc);
2186 pVmcsInfo->u32ProcCtls = fVal;
2187
2188 /* Set up MSR permissions that don't change through the lifetime of the VM. */
2189 rc = nemR3DarwinSetupVmcsMsrPermissions(pVCpu, pVmcsInfo);
2190 AssertRCReturn(rc, rc);
2191
2192 /*
2193 * Set up secondary processor-based VM-execution controls
2194 * (we assume the CPU to always support it as we rely on unrestricted guest execution support).
2195 */
2196 Assert(pVmcsInfo->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS);
2197 return nemR3DarwinVmxSetupVmcsProcCtls2(pVCpu, pVmcsInfo);
2198}
2199
2200
2201/**
2202 * Sets up miscellaneous (everything other than Pin, Processor and secondary
2203 * Processor-based VM-execution) control fields in the VMCS.
2204 *
2205 * @returns VBox status code.
2206 * @param pVCpu The cross context virtual CPU structure.
2207 * @param pVmcsInfo The VMCS info. object.
2208 */
2209static int nemR3DarwinVmxSetupVmcsMiscCtls(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2210{
2211 int rc = VINF_SUCCESS;
2212 //rc = hmR0VmxSetupVmcsAutoLoadStoreMsrAddrs(pVmcsInfo); TODO
2213 if (RT_SUCCESS(rc))
2214 {
2215 uint64_t const u64Cr0Mask = vmxHCGetFixedCr0Mask(pVCpu);
2216 uint64_t const u64Cr4Mask = vmxHCGetFixedCr4Mask(pVCpu);
2217
2218 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR0_MASK, u64Cr0Mask); AssertRC(rc);
2219 rc = nemR3DarwinWriteVmcs64(pVCpu, VMX_VMCS_CTRL_CR4_MASK, u64Cr4Mask); AssertRC(rc);
2220
2221 pVmcsInfo->u64Cr0Mask = u64Cr0Mask;
2222 pVmcsInfo->u64Cr4Mask = u64Cr4Mask;
2223
2224#if 0 /** @todo */
2225 if (pVCpu->CTX_SUFF(pVM)->hmr0.s.vmx.fLbr)
2226 {
2227 rc = VMXWriteVmcsNw(VMX_VMCS64_GUEST_DEBUGCTL_FULL, MSR_IA32_DEBUGCTL_LBR);
2228 AssertRC(rc);
2229 }
2230#endif
2231 return VINF_SUCCESS;
2232 }
2233 else
2234 LogRelFunc(("Failed to initialize VMCS auto-load/store MSR addresses. rc=%Rrc\n", rc));
2235 return rc;
2236}
2237
2238
2239/**
2240 * Sets up the initial exception bitmap in the VMCS based on static conditions.
2241 *
2242 * We shall setup those exception intercepts that don't change during the
2243 * lifetime of the VM here. The rest are done dynamically while loading the
2244 * guest state.
2245 *
2246 * @param pVCpu The cross context virtual CPU structure.
2247 * @param pVmcsInfo The VMCS info. object.
2248 */
2249static void nemR3DarwinVmxSetupVmcsXcptBitmap(PVMCPUCC pVCpu, PVMXVMCSINFO pVmcsInfo)
2250{
2251 /*
2252 * The following exceptions are always intercepted:
2253 *
2254 * #AC - To prevent the guest from hanging the CPU and for dealing with
2255 * split-lock detecting host configs.
2256 * #DB - To maintain the DR6 state even when intercepting DRx reads/writes and
2257 * recursive #DBs can cause a CPU hang.
2258 */
2259 uint32_t const uXcptBitmap = RT_BIT(X86_XCPT_AC)
2260 | RT_BIT(X86_XCPT_DB);
2261
2262 /* Commit it to the VMCS. */
2263 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_EXCEPTION_BITMAP, uXcptBitmap);
2264 AssertRC(rc);
2265
2266 /* Update our cache of the exception bitmap. */
2267 pVmcsInfo->u32XcptBitmap = uXcptBitmap;
2268}
2269
2270
2271/**
2272 * Initialize the VMCS information field for the given vCPU.
2273 *
2274 * @returns VBox status code.
2275 * @param pVCpu The cross context virtual CPU structure of the
2276 * calling EMT.
2277 */
2278static int nemR3DarwinInitVmcs(PVMCPU pVCpu)
2279{
2280 int rc = nemR3DarwinVmxSetupVmcsPinCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2281 if (RT_SUCCESS(rc))
2282 {
2283 rc = nemR3DarwinVmxSetupVmcsProcCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2284 if (RT_SUCCESS(rc))
2285 {
2286 rc = nemR3DarwinVmxSetupVmcsMiscCtls(pVCpu, &pVCpu->nem.s.VmcsInfo);
2287 if (RT_SUCCESS(rc))
2288 {
2289 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY, &pVCpu->nem.s.VmcsInfo.u32EntryCtls);
2290 if (RT_SUCCESS(rc))
2291 {
2292 rc = nemR3DarwinReadVmcs32(pVCpu, VMX_VMCS32_CTRL_EXIT, &pVCpu->nem.s.VmcsInfo.u32ExitCtls);
2293 if (RT_SUCCESS(rc))
2294 {
2295 nemR3DarwinVmxSetupVmcsXcptBitmap(pVCpu, &pVCpu->nem.s.VmcsInfo);
2296 return VINF_SUCCESS;
2297 }
2298 else
2299 LogRelFunc(("Failed to read the exit controls. rc=%Rrc\n", rc));
2300 }
2301 else
2302 LogRelFunc(("Failed to read the entry controls. rc=%Rrc\n", rc));
2303 }
2304 else
2305 LogRelFunc(("Failed to setup miscellaneous controls. rc=%Rrc\n", rc));
2306 }
2307 else
2308 LogRelFunc(("Failed to setup processor-based VM-execution controls. rc=%Rrc\n", rc));
2309 }
2310 else
2311 LogRelFunc(("Failed to setup pin-based controls. rc=%Rrc\n", rc));
2312
2313 return rc;
2314}
2315
2316
2317/**
2318 * Registers statistics for the given vCPU.
2319 *
2320 * @returns VBox status code.
2321 * @param pVM The cross context VM structure.
2322 * @param idCpu The CPU ID.
2323 * @param pNemCpu The NEM CPU structure.
2324 */
2325static int nemR3DarwinStatisticsRegister(PVM pVM, VMCPUID idCpu, PNEMCPU pNemCpu)
2326{
2327#define NEM_REG_STAT(a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szNmFmt, a_szDesc) do { \
2328 int rc = STAMR3RegisterF(pVM, a_pVar, a_enmType, s_enmVisibility, a_enmUnit, a_szDesc, a_szNmFmt, idCpu); \
2329 AssertRC(rc); \
2330 } while (0)
2331#define NEM_REG_PROFILE(a_pVar, a_szNmFmt, a_szDesc) \
2332 NEM_REG_STAT(a_pVar, STAMTYPE_PROFILE, STAMVISIBILITY_USED, STAMUNIT_TICKS_PER_CALL, a_szNmFmt, a_szDesc)
2333#define NEM_REG_COUNTER(a, b, desc) NEM_REG_STAT(a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, b, desc)
2334
2335 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR0Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR0", "CR0 read.");
2336 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR2Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR2", "CR2 read.");
2337 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR3Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR3", "CR3 read.");
2338 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR4Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR4", "CR4 read.");
2339 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR8Read, "/NEM/CPU%u/Exit/Instr/CR-Read/CR8", "CR8 read.");
2340 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR0Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR0", "CR0 write.");
2341 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR2Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR2", "CR2 write.");
2342 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR3Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR3", "CR3 write.");
2343 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR4Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR4", "CR4 write.");
2344 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitCR8Write, "/NEM/CPU%u/Exit/Instr/CR-Write/CR8", "CR8 write.");
2345
2346 NEM_REG_COUNTER(&pNemCpu->pVmxStats->StatExitAll, "/NEM/CPU%u/Exit/All", "Total exits (including nested-guest exits).");
2347
2348#ifdef VBOX_WITH_STATISTICS
2349 NEM_REG_PROFILE(&pNemCpu->StatProfGstStateImport, "/NEM/CPU%u/ImportGuestState", "Profiling of importing guest state from hardware after VM-exit.");
2350 NEM_REG_PROFILE(&pNemCpu->StatProfGstStateExport, "/NEM/CPU%u/ExportGuestState", "Profiling of exporting guest state from hardware after VM-exit.");
2351
2352 for (int j = 0; j < MAX_EXITREASON_STAT; j++)
2353 {
2354 const char *pszExitName = HMGetVmxExitName(j);
2355 if (pszExitName)
2356 {
2357 int rc = STAMR3RegisterF(pVM, &pNemCpu->pVmxStats->aStatExitReason[j], STAMTYPE_COUNTER, STAMVISIBILITY_USED,
2358 STAMUNIT_OCCURENCES, pszExitName, "/NEM/CPU%u/Exit/Reason/%02x", idCpu, j);
2359 AssertRCReturn(rc, rc);
2360 }
2361 }
2362#endif
2363
2364 return VINF_SUCCESS;
2365
2366#undef NEM_REG_COUNTER
2367#undef NEM_REG_PROFILE
2368#undef NEM_REG_STAT
2369}
2370
2371
2372/**
2373 * Try initialize the native API.
2374 *
2375 * This may only do part of the job, more can be done in
2376 * nemR3NativeInitAfterCPUM() and nemR3NativeInitCompleted().
2377 *
2378 * @returns VBox status code.
2379 * @param pVM The cross context VM structure.
2380 * @param fFallback Whether we're in fallback mode or use-NEM mode. In
2381 * the latter we'll fail if we cannot initialize.
2382 * @param fForced Whether the HMForced flag is set and we should
2383 * fail if we cannot initialize.
2384 */
2385int nemR3NativeInit(PVM pVM, bool fFallback, bool fForced)
2386{
2387 AssertReturn(!pVM->nem.s.fCreatedVm, VERR_WRONG_ORDER);
2388
2389 /*
2390 * Some state init.
2391 */
2392
2393 /*
2394 * Error state.
2395 * The error message will be non-empty on failure and 'rc' will be set too.
2396 */
2397 RTERRINFOSTATIC ErrInfo;
2398 PRTERRINFO pErrInfo = RTErrInfoInitStatic(&ErrInfo);
2399 int rc = nemR3DarwinLoadHv(fForced, pErrInfo);
2400 if (RT_SUCCESS(rc))
2401 {
2402 hv_return_t hrc = hv_vm_create(HV_VM_DEFAULT);
2403 if (hrc == HV_SUCCESS)
2404 {
2405 if (hv_vm_space_create)
2406 {
2407 hrc = hv_vm_space_create(&pVM->nem.s.uVmAsid);
2408 if (hrc == HV_SUCCESS)
2409 {
2410 LogRel(("NEM: Successfully created ASID: %u\n", pVM->nem.s.uVmAsid));
2411 pVM->nem.s.fCreatedAsid = true;
2412 }
2413 else
2414 LogRel(("NEM: Failed to create ASID for VM (hrc=%#x), continuing...\n", pVM->nem.s.uVmAsid));
2415 }
2416 pVM->nem.s.fCreatedVm = true;
2417
2418 /* Register release statistics */
2419 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2420 {
2421 PNEMCPU pNemCpu = &pVM->apCpusR3[idCpu]->nem.s;
2422 PVMXSTATISTICS pVmxStats = (PVMXSTATISTICS)RTMemAllocZ(sizeof(*pVmxStats));
2423 if (RT_LIKELY(pVmxStats))
2424 {
2425 pNemCpu->pVmxStats = pVmxStats;
2426 rc = nemR3DarwinStatisticsRegister(pVM, idCpu, pNemCpu);
2427 AssertRC(rc);
2428 }
2429 else
2430 {
2431 rc = VERR_NO_MEMORY;
2432 break;
2433 }
2434 }
2435
2436 if (RT_SUCCESS(rc))
2437 {
2438 VM_SET_MAIN_EXECUTION_ENGINE(pVM, VM_EXEC_ENGINE_NATIVE_API);
2439 Log(("NEM: Marked active!\n"));
2440 PGMR3EnableNemMode(pVM);
2441 }
2442 }
2443 else
2444 rc = RTErrInfoSetF(pErrInfo, VERR_NEM_INIT_FAILED,
2445 "hv_vm_create() failed: %#x", hrc);
2446 }
2447
2448 /*
2449 * We only fail if in forced mode, otherwise just log the complaint and return.
2450 */
2451 Assert(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API || RTErrInfoIsSet(pErrInfo));
2452 if ( (fForced || !fFallback)
2453 && pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NATIVE_API)
2454 return VMSetError(pVM, RT_SUCCESS_NP(rc) ? VERR_NEM_NOT_AVAILABLE : rc, RT_SRC_POS, "%s", pErrInfo->pszMsg);
2455
2456 if (RTErrInfoIsSet(pErrInfo))
2457 LogRel(("NEM: Not available: %s\n", pErrInfo->pszMsg));
2458 return VINF_SUCCESS;
2459}
2460
2461
2462/**
2463 * Worker to create the vCPU handle on the EMT running it later on (as required by HV).
2464 *
2465 * @returns VBox status code
2466 * @param pVM The VM handle.
2467 * @param pVCpu The vCPU handle.
2468 * @param idCpu ID of the CPU to create.
2469 */
2470static DECLCALLBACK(int) nemR3DarwinNativeInitVCpuOnEmt(PVM pVM, PVMCPU pVCpu, VMCPUID idCpu)
2471{
2472 hv_return_t hrc = hv_vcpu_create(&pVCpu->nem.s.hVCpuId, HV_VCPU_DEFAULT);
2473 if (hrc != HV_SUCCESS)
2474 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS,
2475 "Call to hv_vcpu_create failed on vCPU %u: %#x (%Rrc)", idCpu, hrc, nemR3DarwinHvSts2Rc(hrc));
2476
2477 if (idCpu == 0)
2478 {
2479 /* First call initializs the MSR structure holding the capabilities of the host CPU. */
2480 int rc = nemR3DarwinCapsInit();
2481 AssertRCReturn(rc, rc);
2482 }
2483
2484 int rc = nemR3DarwinInitVmcs(pVCpu);
2485 AssertRCReturn(rc, rc);
2486
2487 if (pVM->nem.s.fCreatedAsid)
2488 {
2489 hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, pVM->nem.s.uVmAsid);
2490 AssertReturn(hrc == HV_SUCCESS, VERR_NEM_VM_CREATE_FAILED);
2491 }
2492
2493 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
2494
2495 return VINF_SUCCESS;
2496}
2497
2498
2499/**
2500 * Worker to destroy the vCPU handle on the EMT running it later on (as required by HV).
2501 *
2502 * @returns VBox status code
2503 * @param pVCpu The vCPU handle.
2504 */
2505static DECLCALLBACK(int) nemR3DarwinNativeTermVCpuOnEmt(PVMCPU pVCpu)
2506{
2507 hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
2508 Assert(hrc == HV_SUCCESS);
2509
2510 hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
2511 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
2512 return VINF_SUCCESS;
2513}
2514
2515
2516/**
2517 * Worker to setup the TPR shadowing feature if available on the CPU and the VM has an APIC enabled.
2518 *
2519 * @returns VBox status code
2520 * @param pVM The VM handle.
2521 * @param pVCpu The vCPU handle.
2522 * @param idCpu ID of the CPU to create.
2523 */
2524static DECLCALLBACK(int) nemR3DarwinNativeInitTprShadowing(PVM pVM, PVMCPU pVCpu, VMCPUID idCpu)
2525{
2526 PVMXVMCSINFO pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
2527 uint32_t fVal = pVmcsInfo->u32ProcCtls;
2528
2529 /* Use TPR shadowing if supported by the CPU. */
2530 if ( PDMHasApic(pVM)
2531 && (g_HmMsrs.u.vmx.ProcCtls.n.allowed1 & VMX_PROC_CTLS_USE_TPR_SHADOW))
2532 {
2533 fVal |= VMX_PROC_CTLS_USE_TPR_SHADOW; /* CR8 reads from the Virtual-APIC page. */
2534 /* CR8 writes cause a VM-exit based on TPR threshold. */
2535 Assert(!(fVal & VMX_PROC_CTLS_CR8_STORE_EXIT));
2536 Assert(!(fVal & VMX_PROC_CTLS_CR8_LOAD_EXIT));
2537 }
2538 else
2539 {
2540 fVal |= VMX_PROC_CTLS_CR8_STORE_EXIT /* CR8 reads cause a VM-exit. */
2541 | VMX_PROC_CTLS_CR8_LOAD_EXIT; /* CR8 writes cause a VM-exit. */
2542 }
2543
2544 /* Commit it to the VMCS and update our cache. */
2545 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_PROC_EXEC, fVal);
2546 AssertRC(rc);
2547 pVmcsInfo->u32ProcCtls = fVal;
2548
2549 return VINF_SUCCESS;
2550}
2551
2552
2553/**
2554 * This is called after CPUMR3Init is done.
2555 *
2556 * @returns VBox status code.
2557 * @param pVM The VM handle..
2558 */
2559int nemR3NativeInitAfterCPUM(PVM pVM)
2560{
2561 /*
2562 * Validate sanity.
2563 */
2564 AssertReturn(!pVM->nem.s.fCreatedEmts, VERR_WRONG_ORDER);
2565 AssertReturn(pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API, VERR_WRONG_ORDER);
2566
2567 /*
2568 * Setup the EMTs.
2569 */
2570 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2571 {
2572 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2573
2574 int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitVCpuOnEmt, 3, pVM, pVCpu, idCpu);
2575 if (RT_FAILURE(rc))
2576 {
2577 /* Rollback. */
2578 while (idCpu--)
2579 VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeTermVCpuOnEmt, 1, pVCpu);
2580
2581 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to hv_vcpu_create failed: %Rrc", rc);
2582 }
2583 }
2584
2585 pVM->nem.s.fCreatedEmts = true;
2586 return VINF_SUCCESS;
2587}
2588
2589
2590int nemR3NativeInitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
2591{
2592 if (enmWhat == VMINITCOMPLETED_RING3)
2593 {
2594 /* Now that PDM is initialized the APIC state is known in order to enable the TPR shadowing feature on all EMTs. */
2595 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2596 {
2597 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2598
2599 int rc = VMR3ReqCallWait(pVM, idCpu, (PFNRT)nemR3DarwinNativeInitTprShadowing, 3, pVM, pVCpu, idCpu);
2600 if (RT_FAILURE(rc))
2601 return VMSetError(pVM, VERR_NEM_VM_CREATE_FAILED, RT_SRC_POS, "Call to hv_vcpu_create failed: %Rrc", rc);
2602 }
2603 }
2604 return VINF_SUCCESS;
2605}
2606
2607
2608int nemR3NativeTerm(PVM pVM)
2609{
2610 /*
2611 * Delete the VM.
2612 */
2613
2614 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu--)
2615 {
2616 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2617
2618 /*
2619 * Need to do this or hv_vm_space_destroy() fails later on (on 10.15 at least). Could've been documented in
2620 * API reference so I wouldn't have to decompile the kext to find this out but we are talking
2621 * about Apple here unfortunately, API documentation is not their strong suit...
2622 * Would have been of course even better to just automatically drop the address space reference when the vCPU
2623 * gets destroyed.
2624 */
2625 hv_return_t hrc = hv_vcpu_set_space(pVCpu->nem.s.hVCpuId, 0 /*asid*/);
2626 Assert(hrc == HV_SUCCESS);
2627
2628 /*
2629 * Apple's documentation states that the vCPU should be destroyed
2630 * on the thread running the vCPU but as all the other EMTs are gone
2631 * at this point, destroying the VM would hang.
2632 *
2633 * We seem to be at luck here though as destroying apparently works
2634 * from EMT(0) as well.
2635 */
2636 hrc = hv_vcpu_destroy(pVCpu->nem.s.hVCpuId);
2637 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
2638
2639 if (pVCpu->nem.s.pVmxStats)
2640 {
2641 RTMemFree(pVCpu->nem.s.pVmxStats);
2642 pVCpu->nem.s.pVmxStats = NULL;
2643 }
2644 }
2645
2646 pVM->nem.s.fCreatedEmts = false;
2647
2648 if (pVM->nem.s.fCreatedAsid)
2649 {
2650 hv_return_t hrc = hv_vm_space_destroy(pVM->nem.s.uVmAsid);
2651 Assert(hrc == HV_SUCCESS); RT_NOREF(hrc);
2652 pVM->nem.s.fCreatedAsid = false;
2653 }
2654
2655 if (pVM->nem.s.fCreatedVm)
2656 {
2657 hv_return_t hrc = hv_vm_destroy();
2658 if (hrc != HV_SUCCESS)
2659 LogRel(("NEM: hv_vm_destroy() failed with %#x\n", hrc));
2660
2661 pVM->nem.s.fCreatedVm = false;
2662 }
2663 return VINF_SUCCESS;
2664}
2665
2666
2667/**
2668 * VM reset notification.
2669 *
2670 * @param pVM The cross context VM structure.
2671 */
2672void nemR3NativeReset(PVM pVM)
2673{
2674 RT_NOREF(pVM);
2675}
2676
2677
2678/**
2679 * Reset CPU due to INIT IPI or hot (un)plugging.
2680 *
2681 * @param pVCpu The cross context virtual CPU structure of the CPU being
2682 * reset.
2683 * @param fInitIpi Whether this is the INIT IPI or hot (un)plugging case.
2684 */
2685void nemR3NativeResetCpu(PVMCPU pVCpu, bool fInitIpi)
2686{
2687 RT_NOREF(fInitIpi);
2688 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
2689}
2690
2691
2692VBOXSTRICTRC nemR3NativeRunGC(PVM pVM, PVMCPU pVCpu)
2693{
2694 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 <=\n", pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags));
2695#ifdef LOG_ENABLED
2696 if (LogIs3Enabled())
2697 nemR3DarwinLogState(pVM, pVCpu);
2698#endif
2699
2700 /*
2701 * Try switch to NEM runloop state.
2702 */
2703 if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
2704 { /* likely */ }
2705 else
2706 {
2707 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2708 LogFlow(("NEM/%u: returning immediately because canceled\n", pVCpu->idCpu));
2709 return VINF_SUCCESS;
2710 }
2711
2712 /*
2713 * The run loop.
2714 *
2715 * Current approach to state updating to use the sledgehammer and sync
2716 * everything every time. This will be optimized later.
2717 */
2718
2719 VMXTRANSIENT VmxTransient;
2720 RT_ZERO(VmxTransient);
2721 VmxTransient.pVmcsInfo = &pVCpu->nem.s.VmcsInfo;
2722
2723 const bool fSingleStepping = DBGFIsStepping(pVCpu);
2724 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2725 for (unsigned iLoop = 0;; iLoop++)
2726 {
2727 /*
2728 * Check and process force flag actions, some of which might require us to go back to ring-3.
2729 */
2730 rcStrict = vmxHCCheckForceFlags(pVCpu, false /*fIsNestedGuest*/, fSingleStepping);
2731 if (rcStrict == VINF_SUCCESS)
2732 { /*likely */ }
2733 else
2734 break;
2735
2736 /*
2737 * Evaluate events to be injected into the guest.
2738 *
2739 * Events in TRPM can be injected without inspecting the guest state.
2740 * If any new events (interrupts/NMI) are pending currently, we try to set up the
2741 * guest to cause a VM-exit the next time they are ready to receive the event.
2742 */
2743 if (TRPMHasTrap(pVCpu))
2744 vmxHCTrpmTrapToPendingEvent(pVCpu);
2745
2746 uint32_t fIntrState;
2747 rcStrict = vmxHCEvaluatePendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, false /*fIsNestedGuest*/, &fIntrState);
2748
2749 /*
2750 * Event injection may take locks (currently the PGM lock for real-on-v86 case) and thus
2751 * needs to be done with longjmps or interrupts + preemption enabled. Event injection might
2752 * also result in triple-faulting the VM.
2753 *
2754 * With nested-guests, the above does not apply since unrestricted guest execution is a
2755 * requirement. Regardless, we do this here to avoid duplicating code elsewhere.
2756 */
2757 rcStrict = vmxHCInjectPendingEvent(pVCpu, &pVCpu->nem.s.VmcsInfo, false /*fIsNestedGuest*/, fIntrState, fSingleStepping);
2758 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
2759 { /* likely */ }
2760 else
2761 {
2762 AssertMsg(rcStrict == VINF_EM_RESET || (rcStrict == VINF_EM_DBG_STEPPED && fSingleStepping),
2763 ("%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
2764 break;
2765 }
2766
2767 int rc = nemR3DarwinExportGuestState(pVM, pVCpu, &VmxTransient);
2768 AssertRCReturn(rc, rc);
2769
2770 /*
2771 * Poll timers and run for a bit.
2772 */
2773 /** @todo See if we cannot optimize this TMTimerPollGIP by only redoing
2774 * the whole polling job when timers have changed... */
2775 uint64_t offDeltaIgnored;
2776 uint64_t const nsNextTimerEvt = TMTimerPollGIP(pVM, pVCpu, &offDeltaIgnored); NOREF(nsNextTimerEvt);
2777 if ( !VM_FF_IS_ANY_SET(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
2778 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
2779 {
2780 LogFlowFunc(("Running vCPU\n"));
2781 pVCpu->nem.s.Event.fPending = false;
2782
2783 TMNotifyStartOfExecution(pVM, pVCpu);
2784
2785 Assert(!pVCpu->nem.s.fCtxChanged);
2786 hv_return_t hrc;
2787 if (hv_vcpu_run_until)
2788 hrc = hv_vcpu_run_until(pVCpu->nem.s.hVCpuId, HV_DEADLINE_FOREVER);
2789 else
2790 hrc = hv_vcpu_run(pVCpu->nem.s.hVCpuId);
2791
2792 TMNotifyEndOfExecution(pVM, pVCpu, ASMReadTSC());
2793
2794 /*
2795 * Sync the TPR shadow with our APIC state.
2796 */
2797 if ( !VmxTransient.fIsNestedGuest
2798 && (pVCpu->nem.s.VmcsInfo.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW))
2799 {
2800 uint64_t u64Tpr;
2801 hrc = hv_vcpu_read_register(pVCpu->nem.s.hVCpuId, HV_X86_TPR, &u64Tpr);
2802 Assert(hrc == HV_SUCCESS);
2803
2804 if (VmxTransient.u8GuestTpr != (uint8_t)u64Tpr)
2805 {
2806 rc = APICSetTpr(pVCpu, (uint8_t)u64Tpr);
2807 AssertRC(rc);
2808 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_GUEST_APIC_TPR);
2809 }
2810 }
2811
2812 if (hrc == HV_SUCCESS)
2813 {
2814 /*
2815 * Deal with the message.
2816 */
2817 rcStrict = nemR3DarwinHandleExit(pVM, pVCpu, &VmxTransient);
2818 if (rcStrict == VINF_SUCCESS)
2819 { /* hopefully likely */ }
2820 else
2821 {
2822 LogFlow(("NEM/%u: breaking: nemR3DarwinHandleExit -> %Rrc\n", pVCpu->idCpu, VBOXSTRICTRC_VAL(rcStrict) ));
2823 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnStatus);
2824 break;
2825 }
2826 //Assert(!pVCpu->cpum.GstCtx.fExtrn);
2827 }
2828 else
2829 {
2830 AssertLogRelMsgFailedReturn(("hv_vcpu_run()) failed for CPU #%u: %#x %u\n",
2831 pVCpu->idCpu, hrc, vmxHCCheckGuestState(pVCpu, &pVCpu->nem.s.VmcsInfo)),
2832 VERR_NEM_IPE_0);
2833 }
2834
2835 /*
2836 * If no relevant FFs are pending, loop.
2837 */
2838 if ( !VM_FF_IS_ANY_SET( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
2839 && !VMCPU_FF_IS_ANY_SET(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
2840 continue;
2841
2842 /** @todo Try handle pending flags, not just return to EM loops. Take care
2843 * not to set important RCs here unless we've handled a message. */
2844 LogFlow(("NEM/%u: breaking: pending FF (%#x / %#RX64)\n",
2845 pVCpu->idCpu, pVM->fGlobalForcedActions, (uint64_t)pVCpu->fLocalForcedActions));
2846 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPost);
2847 }
2848 else
2849 {
2850 LogFlow(("NEM/%u: breaking: pending FF (pre exec)\n", pVCpu->idCpu));
2851 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatBreakOnFFPre);
2852 }
2853 break;
2854 } /* the run loop */
2855
2856
2857 /*
2858 * Convert any pending HM events back to TRPM due to premature exits.
2859 *
2860 * This is because execution may continue from IEM and we would need to inject
2861 * the event from there (hence place it back in TRPM).
2862 */
2863 if (pVCpu->nem.s.Event.fPending)
2864 {
2865 vmxHCPendingEventToTrpmTrap(pVCpu);
2866 Assert(!pVCpu->nem.s.Event.fPending);
2867
2868 /* Clear the events from the VMCS. */
2869 int rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO, 0); AssertRC(rc);
2870 rc = nemR3DarwinWriteVmcs32(pVCpu, VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS, 0); AssertRC(rc);
2871 }
2872
2873
2874 if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM))
2875 VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
2876
2877 if (pVCpu->cpum.GstCtx.fExtrn & (CPUMCTX_EXTRN_ALL))
2878 {
2879 /* Try anticipate what we might need. */
2880 uint64_t fImport = IEM_CPUMCTX_EXTRN_MUST_MASK;
2881 if ( (rcStrict >= VINF_EM_FIRST && rcStrict <= VINF_EM_LAST)
2882 || RT_FAILURE(rcStrict))
2883 fImport = CPUMCTX_EXTRN_ALL;
2884 else if (VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_APIC
2885 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI))
2886 fImport |= IEM_CPUMCTX_EXTRN_XCPT_MASK;
2887
2888 if (pVCpu->cpum.GstCtx.fExtrn & fImport)
2889 {
2890 /* Only import what is external currently. */
2891 int rc2 = nemR3DarwinCopyStateFromHv(pVM, pVCpu, fImport);
2892 if (RT_SUCCESS(rc2))
2893 pVCpu->cpum.GstCtx.fExtrn &= ~fImport;
2894 else if (RT_SUCCESS(rcStrict))
2895 rcStrict = rc2;
2896 if (!(pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_ALL))
2897 {
2898 pVCpu->cpum.GstCtx.fExtrn = 0;
2899 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
2900 }
2901 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturn);
2902 }
2903 else
2904 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2905 }
2906 else
2907 {
2908 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnReturnSkipped);
2909 pVCpu->cpum.GstCtx.fExtrn = 0;
2910 ASMAtomicUoOrU64(&pVCpu->nem.s.fCtxChanged, HM_CHANGED_ALL_GUEST);
2911 }
2912
2913 LogFlow(("NEM/%u: %04x:%08RX64 efl=%#08RX64 => %Rrc\n",
2914 pVCpu->idCpu, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.rflags, VBOXSTRICTRC_VAL(rcStrict) ));
2915 return rcStrict;
2916}
2917
2918
2919VMMR3_INT_DECL(bool) NEMR3CanExecuteGuest(PVM pVM, PVMCPU pVCpu)
2920{
2921 NOREF(pVM);
2922 return PGMPhysIsA20Enabled(pVCpu);
2923}
2924
2925
2926bool nemR3NativeSetSingleInstruction(PVM pVM, PVMCPU pVCpu, bool fEnable)
2927{
2928 NOREF(pVM); NOREF(pVCpu); NOREF(fEnable);
2929 return false;
2930}
2931
2932
2933/**
2934 * Forced flag notification call from VMEmt.h.
2935 *
2936 * This is only called when pVCpu is in the VMCPUSTATE_STARTED_EXEC_NEM state.
2937 *
2938 * @param pVM The cross context VM structure.
2939 * @param pVCpu The cross context virtual CPU structure of the CPU
2940 * to be notified.
2941 * @param fFlags Notification flags, VMNOTIFYFF_FLAGS_XXX.
2942 */
2943void nemR3NativeNotifyFF(PVM pVM, PVMCPU pVCpu, uint32_t fFlags)
2944{
2945 LogFlowFunc(("pVM=%p pVCpu=%p fFlags=%#x\n", pVM, pVCpu, fFlags));
2946
2947 RT_NOREF(pVM, fFlags);
2948
2949 hv_return_t hrc = hv_vcpu_interrupt(&pVCpu->nem.s.hVCpuId, 1);
2950 if (hrc != HV_SUCCESS)
2951 LogRel(("NEM: hv_vcpu_interrupt(%u, 1) failed with %#x\n", pVCpu->nem.s.hVCpuId, hrc));
2952}
2953
2954
2955VMMR3_INT_DECL(int) NEMR3NotifyPhysRamRegister(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvR3,
2956 uint8_t *pu2State, uint32_t *puNemRange)
2957{
2958 RT_NOREF(pVM, puNemRange);
2959
2960 Log5(("NEMR3NotifyPhysRamRegister: %RGp LB %RGp, pvR3=%p\n", GCPhys, cb, pvR3));
2961#if defined(VBOX_WITH_PGM_NEM_MODE)
2962 if (pvR3)
2963 {
2964 int rc = nemR3DarwinMap(pVM, GCPhys, pvR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
2965 if (RT_SUCCESS(rc))
2966 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
2967 else
2968 {
2969 LogRel(("NEMR3NotifyPhysRamRegister: GCPhys=%RGp LB %RGp pvR3=%p rc=%Rrc\n", GCPhys, cb, pvR3, rc));
2970 return VERR_NEM_MAP_PAGES_FAILED;
2971 }
2972 }
2973 return VINF_SUCCESS;
2974#else
2975 RT_NOREF(pVM, GCPhys, cb, pvR3);
2976 return VERR_NEM_MAP_PAGES_FAILED;
2977#endif
2978}
2979
2980
2981VMMR3_INT_DECL(bool) NEMR3IsMmio2DirtyPageTrackingSupported(PVM pVM)
2982{
2983 RT_NOREF(pVM);
2984 return false;
2985}
2986
2987
2988VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
2989 void *pvRam, void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
2990{
2991 RT_NOREF(pVM, puNemRange, pvRam, fFlags);
2992
2993 Log5(("NEMR3NotifyPhysMmioExMapEarly: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p (%d)\n",
2994 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, *pu2State));
2995
2996#if defined(VBOX_WITH_PGM_NEM_MODE)
2997 /*
2998 * Unmap the RAM we're replacing.
2999 */
3000 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
3001 {
3002 int rc = nemR3DarwinUnmap(pVM, GCPhys, cb);
3003 if (RT_SUCCESS(rc))
3004 { /* likely */ }
3005 else if (pvMmio2)
3006 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rc(ignored)\n",
3007 GCPhys, cb, fFlags, rc));
3008 else
3009 {
3010 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
3011 GCPhys, cb, fFlags, rc));
3012 return VERR_NEM_UNMAP_PAGES_FAILED;
3013 }
3014 }
3015
3016 /*
3017 * Map MMIO2 if any.
3018 */
3019 if (pvMmio2)
3020 {
3021 Assert(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2);
3022 int rc = nemR3DarwinMap(pVM, GCPhys, pvMmio2, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
3023 if (RT_SUCCESS(rc))
3024 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
3025 else
3026 {
3027 LogRel(("NEMR3NotifyPhysMmioExMapEarly: GCPhys=%RGp LB %RGp fFlags=%#x pvMmio2=%p: Map -> rc=%Rrc\n",
3028 GCPhys, cb, fFlags, pvMmio2, rc));
3029 return VERR_NEM_MAP_PAGES_FAILED;
3030 }
3031 }
3032 else
3033 {
3034 Assert(!(fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2));
3035 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
3036 }
3037
3038#else
3039 RT_NOREF(pVM, GCPhys, cb, pvRam, pvMmio2);
3040 *pu2State = (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE) ? UINT8_MAX : NEM_DARWIN_PAGE_STATE_UNMAPPED;
3041#endif
3042 return VINF_SUCCESS;
3043}
3044
3045
3046VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExMapLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags,
3047 void *pvRam, void *pvMmio2, uint32_t *puNemRange)
3048{
3049 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, puNemRange);
3050 return VINF_SUCCESS;
3051}
3052
3053
3054VMMR3_INT_DECL(int) NEMR3NotifyPhysMmioExUnmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t fFlags, void *pvRam,
3055 void *pvMmio2, uint8_t *pu2State, uint32_t *puNemRange)
3056{
3057 RT_NOREF(pVM, puNemRange);
3058
3059 Log5(("NEMR3NotifyPhysMmioExUnmap: %RGp LB %RGp fFlags=%#x pvRam=%p pvMmio2=%p pu2State=%p uNemRange=%#x (%#x)\n",
3060 GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State, puNemRange, *puNemRange));
3061
3062 int rc = VINF_SUCCESS;
3063#if defined(VBOX_WITH_PGM_NEM_MODE)
3064 /*
3065 * Unmap the MMIO2 pages.
3066 */
3067 /** @todo If we implement aliasing (MMIO2 page aliased into MMIO range),
3068 * we may have more stuff to unmap even in case of pure MMIO... */
3069 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_MMIO2)
3070 {
3071 rc = nemR3DarwinUnmap(pVM, GCPhys, cb);
3072 if (RT_FAILURE(rc))
3073 {
3074 LogRel2(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp fFlags=%#x: Unmap -> rc=%Rrc\n",
3075 GCPhys, cb, fFlags, rc));
3076 rc = VERR_NEM_UNMAP_PAGES_FAILED;
3077 }
3078 }
3079
3080 /*
3081 * Restore the RAM we replaced.
3082 */
3083 if (fFlags & NEM_NOTIFY_PHYS_MMIO_EX_F_REPLACE)
3084 {
3085 AssertPtr(pvRam);
3086 rc = nemR3DarwinMap(pVM, GCPhys, pvRam, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
3087 if (RT_SUCCESS(rc))
3088 { /* likely */ }
3089 else
3090 {
3091 LogRel(("NEMR3NotifyPhysMmioExUnmap: GCPhys=%RGp LB %RGp pvMmio2=%p rc=%Rrc\n", GCPhys, cb, pvMmio2, rc));
3092 rc = VERR_NEM_MAP_PAGES_FAILED;
3093 }
3094 if (pu2State)
3095 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
3096 }
3097 /* Mark the pages as unmapped if relevant. */
3098 else if (pu2State)
3099 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
3100
3101 RT_NOREF(pvMmio2);
3102#else
3103 RT_NOREF(pVM, GCPhys, cb, fFlags, pvRam, pvMmio2, pu2State);
3104 if (pu2State)
3105 *pu2State = UINT8_MAX;
3106 rc = VERR_NEM_UNMAP_PAGES_FAILED;
3107#endif
3108 return rc;
3109}
3110
3111
3112VMMR3_INT_DECL(int) NEMR3PhysMmio2QueryAndResetDirtyBitmap(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, uint32_t uNemRange,
3113 void *pvBitmap, size_t cbBitmap)
3114{
3115 RT_NOREF(pVM, GCPhys, cb, uNemRange, pvBitmap, cbBitmap);
3116 AssertFailed();
3117 return VERR_NOT_IMPLEMENTED;
3118}
3119
3120
3121VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterEarly(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages, uint32_t fFlags,
3122 uint8_t *pu2State, uint32_t *puNemRange)
3123{
3124 RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags, puNemRange);
3125
3126 Log5(("nemR3NativeNotifyPhysRomRegisterEarly: %RGp LB %RGp pvPages=%p fFlags=%#x\n", GCPhys, cb, pvPages, fFlags));
3127 *pu2State = UINT8_MAX;
3128 *puNemRange = 0;
3129 return VINF_SUCCESS;
3130}
3131
3132
3133VMMR3_INT_DECL(int) NEMR3NotifyPhysRomRegisterLate(PVM pVM, RTGCPHYS GCPhys, RTGCPHYS cb, void *pvPages,
3134 uint32_t fFlags, uint8_t *pu2State, uint32_t *puNemRange)
3135{
3136 Log5(("nemR3NativeNotifyPhysRomRegisterLate: %RGp LB %RGp pvPages=%p fFlags=%#x pu2State=%p (%d) puNemRange=%p (%#x)\n",
3137 GCPhys, cb, pvPages, fFlags, pu2State, *pu2State, puNemRange, *puNemRange));
3138 *pu2State = UINT8_MAX;
3139
3140#if defined(VBOX_WITH_PGM_NEM_MODE)
3141 /*
3142 * (Re-)map readonly.
3143 */
3144 AssertPtrReturn(pvPages, VERR_INVALID_POINTER);
3145 int rc = nemR3DarwinMap(pVM, GCPhys, pvPages, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE);
3146 if (RT_SUCCESS(rc))
3147 *pu2State = NEM_DARWIN_PAGE_STATE_READABLE;
3148 else
3149 {
3150 LogRel(("nemR3NativeNotifyPhysRomRegisterLate: GCPhys=%RGp LB %RGp pvPages=%p fFlags=%#x rc=%Rrc\n",
3151 GCPhys, cb, pvPages, fFlags, rc));
3152 return VERR_NEM_MAP_PAGES_FAILED;
3153 }
3154 RT_NOREF(pVM, fFlags, puNemRange);
3155 return VINF_SUCCESS;
3156#else
3157 RT_NOREF(pVM, GCPhys, cb, pvPages, fFlags, puNemRange);
3158 return VERR_NEM_MAP_PAGES_FAILED;
3159#endif
3160}
3161
3162
3163VMM_INT_DECL(void) NEMHCNotifyHandlerPhysicalDeregister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
3164 RTR3PTR pvMemR3, uint8_t *pu2State)
3165{
3166 RT_NOREF(pVM);
3167
3168 Log5(("NEMHCNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d pvMemR3=%p pu2State=%p (%d)\n",
3169 GCPhys, cb, enmKind, pvMemR3, pu2State, *pu2State));
3170
3171 *pu2State = UINT8_MAX;
3172#if defined(VBOX_WITH_PGM_NEM_MODE)
3173 if (pvMemR3)
3174 {
3175 int rc = nemR3DarwinMap(pVM, GCPhys, pvMemR3, cb, NEM_PAGE_PROT_READ | NEM_PAGE_PROT_WRITE | NEM_PAGE_PROT_EXECUTE);
3176 if (RT_SUCCESS(rc))
3177 *pu2State = NEM_DARWIN_PAGE_STATE_WRITABLE;
3178 else
3179 AssertLogRelMsgFailed(("NEMHCNotifyHandlerPhysicalDeregister: nemR3DarwinMap(,%p,%RGp,%RGp,) -> %Rrc\n",
3180 pvMemR3, GCPhys, cb, rc));
3181 }
3182 RT_NOREF(enmKind);
3183#else
3184 RT_NOREF(pVM, enmKind, GCPhys, cb, pvMemR3);
3185 AssertFailed();
3186#endif
3187}
3188
3189
3190static int nemHCJustUnmapPage(PVMCC pVM, RTGCPHYS GCPhysDst, uint8_t *pu2State)
3191{
3192 if (*pu2State <= NEM_DARWIN_PAGE_STATE_UNMAPPED)
3193 {
3194 Log5(("nemHCJustUnmapPage: %RGp == unmapped\n", GCPhysDst));
3195 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
3196 return VINF_SUCCESS;
3197 }
3198
3199 int rc = nemR3DarwinUnmap(pVM, GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE);
3200 if (RT_SUCCESS(rc))
3201 {
3202 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPage);
3203 *pu2State = NEM_DARWIN_PAGE_STATE_UNMAPPED;
3204 Log5(("nemHCJustUnmapPage: %RGp => unmapped\n", GCPhysDst));
3205 return VINF_SUCCESS;
3206 }
3207 STAM_REL_COUNTER_INC(&pVM->nem.s.StatUnmapPageFailed);
3208 LogRel(("nemHCJustUnmapPage(%RGp): failed! rc=%Rrc\n",
3209 GCPhysDst, rc));
3210 return VERR_NEM_IPE_6;
3211}
3212
3213
3214/**
3215 * Called when the A20 state changes.
3216 *
3217 * @param pVCpu The CPU the A20 state changed on.
3218 * @param fEnabled Whether it was enabled (true) or disabled.
3219 */
3220VMMR3_INT_DECL(void) NEMR3NotifySetA20(PVMCPU pVCpu, bool fEnabled)
3221{
3222 Log(("NEMR3NotifySetA20: fEnabled=%RTbool\n", fEnabled));
3223 RT_NOREF(pVCpu, fEnabled);
3224}
3225
3226
3227void nemHCNativeNotifyHandlerPhysicalRegister(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
3228{
3229 Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
3230 NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
3231}
3232
3233
3234void nemHCNativeNotifyHandlerPhysicalModify(PVMCC pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
3235 RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
3236{
3237 Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
3238 GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
3239 NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
3240}
3241
3242
3243int nemHCNativeNotifyPhysPageAllocated(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
3244 PGMPAGETYPE enmType, uint8_t *pu2State)
3245{
3246 Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
3247 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
3248 RT_NOREF(HCPhys, fPageProt, enmType);
3249
3250 return nemHCJustUnmapPage(pVM, GCPhys, pu2State);
3251}
3252
3253
3254VMM_INT_DECL(void) NEMHCNotifyPhysPageProtChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, RTR3PTR pvR3, uint32_t fPageProt,
3255 PGMPAGETYPE enmType, uint8_t *pu2State)
3256{
3257 Log5(("NEMHCNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
3258 GCPhys, HCPhys, fPageProt, enmType, *pu2State));
3259 RT_NOREF(HCPhys, pvR3, fPageProt, enmType)
3260
3261 nemHCJustUnmapPage(pVM, GCPhys, pu2State);
3262}
3263
3264
3265VMM_INT_DECL(void) NEMHCNotifyPhysPageChanged(PVMCC pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
3266 RTR3PTR pvNewR3, uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
3267{
3268 Log5(("NEMHCNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
3269 GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
3270 RT_NOREF(HCPhysPrev, HCPhysNew, pvNewR3, fPageProt, enmType);
3271
3272 nemHCJustUnmapPage(pVM, GCPhys, pu2State);
3273}
3274
3275
3276/**
3277 * Interface for importing state on demand (used by IEM).
3278 *
3279 * @returns VBox status code.
3280 * @param pVCpu The cross context CPU structure.
3281 * @param fWhat What to import, CPUMCTX_EXTRN_XXX.
3282 */
3283VMM_INT_DECL(int) NEMImportStateOnDemand(PVMCPUCC pVCpu, uint64_t fWhat)
3284{
3285 LogFlowFunc(("pVCpu=%p fWhat=%RX64\n", pVCpu, fWhat));
3286 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatImportOnDemand);
3287
3288 return nemR3DarwinCopyStateFromHv(pVCpu->pVMR3, pVCpu, fWhat);
3289}
3290
3291
3292/**
3293 * Query the CPU tick counter and optionally the TSC_AUX MSR value.
3294 *
3295 * @returns VBox status code.
3296 * @param pVCpu The cross context CPU structure.
3297 * @param pcTicks Where to return the CPU tick count.
3298 * @param puAux Where to return the TSC_AUX register value.
3299 */
3300VMM_INT_DECL(int) NEMHCQueryCpuTick(PVMCPUCC pVCpu, uint64_t *pcTicks, uint32_t *puAux)
3301{
3302 LogFlowFunc(("pVCpu=%p pcTicks=%RX64 puAux=%RX32\n", pVCpu, pcTicks, puAux));
3303 STAM_REL_COUNTER_INC(&pVCpu->nem.s.StatQueryCpuTick);
3304
3305 int rc = nemR3DarwinMsrRead(pVCpu, MSR_IA32_TSC, pcTicks);
3306 if ( RT_SUCCESS(rc)
3307 && puAux)
3308 {
3309 if (pVCpu->cpum.GstCtx.fExtrn & CPUMCTX_EXTRN_TSC_AUX)
3310 {
3311 /** @todo Why the heck is puAux a uint32_t?. */
3312 uint64_t u64Aux;
3313 rc = nemR3DarwinMsrRead(pVCpu, MSR_K8_TSC_AUX, &u64Aux);
3314 if (RT_SUCCESS(rc))
3315 *puAux = (uint32_t)u64Aux;
3316 }
3317 else
3318 *puAux = CPUMGetGuestTscAux(pVCpu);
3319 }
3320
3321 return rc;
3322}
3323
3324
3325/**
3326 * Resumes CPU clock (TSC) on all virtual CPUs.
3327 *
3328 * This is called by TM when the VM is started, restored, resumed or similar.
3329 *
3330 * @returns VBox status code.
3331 * @param pVM The cross context VM structure.
3332 * @param pVCpu The cross context CPU structure of the calling EMT.
3333 * @param uPausedTscValue The TSC value at the time of pausing.
3334 */
3335VMM_INT_DECL(int) NEMHCResumeCpuTickOnAll(PVMCC pVM, PVMCPUCC pVCpu, uint64_t uPausedTscValue)
3336{
3337 LogFlowFunc(("pVM=%p pVCpu=%p uPausedTscValue=%RX64\n", pVCpu, uPausedTscValue));
3338 VMCPU_ASSERT_EMT_RETURN(pVCpu, VERR_VM_THREAD_NOT_EMT);
3339 AssertReturn(VM_IS_NEM_ENABLED(pVM), VERR_NEM_IPE_9);
3340
3341 hv_return_t hrc = hv_vm_sync_tsc(uPausedTscValue);
3342 if (RT_LIKELY(hrc == HV_SUCCESS))
3343 {
3344 ASMAtomicUoAndU64(&pVCpu->nem.s.fCtxChanged, ~HM_CHANGED_GUEST_TSC_AUX);
3345 return VINF_SUCCESS;
3346 }
3347
3348 return nemR3DarwinHvSts2Rc(hrc);
3349}
3350
3351
3352/**
3353 * Returns features supported by the NEM backend.
3354 *
3355 * @returns Flags of features supported by the native NEM backend.
3356 * @param pVM The cross context VM structure.
3357 */
3358VMM_INT_DECL(uint32_t) NEMHCGetFeatures(PVMCC pVM)
3359{
3360 RT_NOREF(pVM);
3361 /*
3362 * Apple's Hypervisor.framework is not supported if the CPU doesn't support nested paging
3363 * and unrestricted guest execution support so we can safely return these flags here always.
3364 */
3365 return NEM_FEAT_F_NESTED_PAGING | NEM_FEAT_F_FULL_GST_EXEC | NEM_FEAT_F_XSAVE_XRSTOR;
3366}
3367
3368
3369/** @page pg_nem_darwin NEM/darwin - Native Execution Manager, macOS.
3370 *
3371 * @todo Add notes as the implementation progresses...
3372 */
3373
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette