VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 94931

最後變更 在這個檔案從94931是 94931,由 vboxsync 提交於 3 年 前

VMM/CPUM: Introduced a global variable g_CpumHostFeatures for keeping the host CPU features. This is safer than keeping this info in the shared part of the VM structure. bugref:10093

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id Revision
檔案大小: 241.2 KB
 
1/* $Id: CPUM.cpp 94931 2022-05-09 08:24:47Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2022 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#define CPUM_WITH_NONCONST_HOST_FEATURES
110#include <VBox/vmm/cpum.h>
111#include <VBox/vmm/cpumdis.h>
112#include <VBox/vmm/cpumctx-v1_6.h>
113#include <VBox/vmm/pgm.h>
114#include <VBox/vmm/apic.h>
115#include <VBox/vmm/mm.h>
116#include <VBox/vmm/em.h>
117#include <VBox/vmm/iem.h>
118#include <VBox/vmm/selm.h>
119#include <VBox/vmm/dbgf.h>
120#include <VBox/vmm/hm.h>
121#include <VBox/vmm/hmvmxinline.h>
122#include <VBox/vmm/ssm.h>
123#include "CPUMInternal.h"
124#include <VBox/vmm/vm.h>
125
126#include <VBox/param.h>
127#include <VBox/dis.h>
128#include <VBox/err.h>
129#include <VBox/log.h>
130#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
131# include <iprt/asm-amd64-x86.h>
132#endif
133#include <iprt/assert.h>
134#include <iprt/cpuset.h>
135#include <iprt/mem.h>
136#include <iprt/mp.h>
137#include <iprt/string.h>
138
139
140/*********************************************************************************************************************************
141* Defined Constants And Macros *
142*********************************************************************************************************************************/
143/**
144 * This was used in the saved state up to the early life of version 14.
145 *
146 * It indicates that we may have some out-of-sync hidden segement registers.
147 * It is only relevant for raw-mode.
148 */
149#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
150
151
152/*********************************************************************************************************************************
153* Structures and Typedefs *
154*********************************************************************************************************************************/
155
156/**
157 * What kind of cpu info dump to perform.
158 */
159typedef enum CPUMDUMPTYPE
160{
161 CPUMDUMPTYPE_TERSE,
162 CPUMDUMPTYPE_DEFAULT,
163 CPUMDUMPTYPE_VERBOSE
164} CPUMDUMPTYPE;
165/** Pointer to a cpu info dump type. */
166typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
167
168
169/*********************************************************************************************************************************
170* Internal Functions *
171*********************************************************************************************************************************/
172static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
175static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
176static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
177static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
181static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
182static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
183
184
185/*********************************************************************************************************************************
186* Global Variables *
187*********************************************************************************************************************************/
188#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
189/** Host CPU features. */
190DECL_HIDDEN_DATA(CPUHOSTFEATURES) g_CpumHostFeatures;
191#endif
192
193/** Saved state field descriptors for CPUMCTX. */
194static const SSMFIELD g_aCpumCtxFields[] =
195{
196 SSMFIELD_ENTRY( CPUMCTX, rdi),
197 SSMFIELD_ENTRY( CPUMCTX, rsi),
198 SSMFIELD_ENTRY( CPUMCTX, rbp),
199 SSMFIELD_ENTRY( CPUMCTX, rax),
200 SSMFIELD_ENTRY( CPUMCTX, rbx),
201 SSMFIELD_ENTRY( CPUMCTX, rdx),
202 SSMFIELD_ENTRY( CPUMCTX, rcx),
203 SSMFIELD_ENTRY( CPUMCTX, rsp),
204 SSMFIELD_ENTRY( CPUMCTX, rflags),
205 SSMFIELD_ENTRY( CPUMCTX, rip),
206 SSMFIELD_ENTRY( CPUMCTX, r8),
207 SSMFIELD_ENTRY( CPUMCTX, r9),
208 SSMFIELD_ENTRY( CPUMCTX, r10),
209 SSMFIELD_ENTRY( CPUMCTX, r11),
210 SSMFIELD_ENTRY( CPUMCTX, r12),
211 SSMFIELD_ENTRY( CPUMCTX, r13),
212 SSMFIELD_ENTRY( CPUMCTX, r14),
213 SSMFIELD_ENTRY( CPUMCTX, r15),
214 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
215 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
216 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
217 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
218 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
219 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
220 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
221 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
222 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
223 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
224 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
225 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
226 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
227 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
228 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
229 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
230 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
231 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
232 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
233 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
234 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
235 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
236 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
237 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
238 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
239 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
240 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
241 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
242 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
243 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
244 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
245 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
246 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
247 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
248 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
249 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
250 SSMFIELD_ENTRY( CPUMCTX, cr0),
251 SSMFIELD_ENTRY( CPUMCTX, cr2),
252 SSMFIELD_ENTRY( CPUMCTX, cr3),
253 SSMFIELD_ENTRY( CPUMCTX, cr4),
254 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
255 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
256 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
257 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
258 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
259 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
260 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
261 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
262 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
263 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
264 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
265 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
266 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
267 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
268 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
269 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
270 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
271 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
272 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
273 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
274 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
275 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
276 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
277 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
278 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
279 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
280 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
281 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
282 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
283 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
284 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
285 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
286 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
287 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
288 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
289 SSMFIELD_ENTRY_TERM()
290};
291
292/** Saved state field descriptors for SVM nested hardware-virtualization
293 * Host State. */
294static const SSMFIELD g_aSvmHwvirtHostState[] =
295{
296 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
324 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
325 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
326 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
327 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
328 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
329 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
330 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
331 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
332 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
333 SSMFIELD_ENTRY_TERM()
334};
335
336/** Saved state field descriptors for VMX nested hardware-virtualization
337 * VMCS. */
338static const SSMFIELD g_aVmxHwvirtVmcs[] =
339{
340 SSMFIELD_ENTRY( VMXVVMCS, u32VmcsRevId),
341 SSMFIELD_ENTRY( VMXVVMCS, enmVmxAbort),
342 SSMFIELD_ENTRY( VMXVVMCS, fVmcsState),
343 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au8Padding0),
344 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved0),
345
346 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, u16Reserved0),
347
348 SSMFIELD_ENTRY( VMXVVMCS, u32RoVmInstrError),
349 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitReason),
350 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntInfo),
351 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntErrCode),
352 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringInfo),
353 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringErrCode),
354 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrLen),
355 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrInfo),
356 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32RoReserved2),
357
358 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestPhysAddr),
359 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved1),
360
361 SSMFIELD_ENTRY( VMXVVMCS, u64RoExitQual),
362 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRcx),
363 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRsi),
364 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRdi),
365 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRip),
366 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestLinearAddr),
367 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved5),
368
369 SSMFIELD_ENTRY( VMXVVMCS, u16Vpid),
370 SSMFIELD_ENTRY( VMXVVMCS, u16PostIntNotifyVector),
371 SSMFIELD_ENTRY( VMXVVMCS, u16EptpIndex),
372 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved0),
373
374 SSMFIELD_ENTRY( VMXVVMCS, u32PinCtls),
375 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls),
376 SSMFIELD_ENTRY( VMXVVMCS, u32XcptBitmap),
377 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMask),
378 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMatch),
379 SSMFIELD_ENTRY( VMXVVMCS, u32Cr3TargetCount),
380 SSMFIELD_ENTRY( VMXVVMCS, u32ExitCtls),
381 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrStoreCount),
382 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrLoadCount),
383 SSMFIELD_ENTRY( VMXVVMCS, u32EntryCtls),
384 SSMFIELD_ENTRY( VMXVVMCS, u32EntryMsrLoadCount),
385 SSMFIELD_ENTRY( VMXVVMCS, u32EntryIntInfo),
386 SSMFIELD_ENTRY( VMXVVMCS, u32EntryXcptErrCode),
387 SSMFIELD_ENTRY( VMXVVMCS, u32EntryInstrLen),
388 SSMFIELD_ENTRY( VMXVVMCS, u32TprThreshold),
389 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls2),
390 SSMFIELD_ENTRY( VMXVVMCS, u32PleGap),
391 SSMFIELD_ENTRY( VMXVVMCS, u32PleWindow),
392 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved1),
393
394 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapA),
395 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapB),
396 SSMFIELD_ENTRY( VMXVVMCS, u64AddrMsrBitmap),
397 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrStore),
398 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrLoad),
399 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEntryMsrLoad),
400 SSMFIELD_ENTRY( VMXVVMCS, u64ExecVmcsPtr),
401 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPml),
402 SSMFIELD_ENTRY( VMXVVMCS, u64TscOffset),
403 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVirtApic),
404 SSMFIELD_ENTRY( VMXVVMCS, u64AddrApicAccess),
405 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPostedIntDesc),
406 SSMFIELD_ENTRY( VMXVVMCS, u64VmFuncCtls),
407 SSMFIELD_ENTRY( VMXVVMCS, u64EptPtr),
408 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap0),
409 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap1),
410 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap2),
411 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap3),
412 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEptpList),
413 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmreadBitmap),
414 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmwriteBitmap),
415 SSMFIELD_ENTRY( VMXVVMCS, u64AddrXcptVeInfo),
416 SSMFIELD_ENTRY( VMXVVMCS, u64XssExitBitmap),
417 SSMFIELD_ENTRY( VMXVVMCS, u64EnclsExitBitmap),
418 SSMFIELD_ENTRY( VMXVVMCS, u64SppTablePtr),
419 SSMFIELD_ENTRY( VMXVVMCS, u64TscMultiplier),
420 SSMFIELD_ENTRY_VER( VMXVVMCS, u64ProcCtls3, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
421 SSMFIELD_ENTRY_VER( VMXVVMCS, u64EnclvExitBitmap, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
422 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved0),
423
424 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0Mask),
425 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4Mask),
426 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0ReadShadow),
427 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4ReadShadow),
428 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target0),
429 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target1),
430 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target2),
431 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target3),
432 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved4),
433
434 SSMFIELD_ENTRY( VMXVVMCS, HostEs),
435 SSMFIELD_ENTRY( VMXVVMCS, HostCs),
436 SSMFIELD_ENTRY( VMXVVMCS, HostSs),
437 SSMFIELD_ENTRY( VMXVVMCS, HostDs),
438 SSMFIELD_ENTRY( VMXVVMCS, HostFs),
439 SSMFIELD_ENTRY( VMXVVMCS, HostGs),
440 SSMFIELD_ENTRY( VMXVVMCS, HostTr),
441 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved2),
442
443 SSMFIELD_ENTRY( VMXVVMCS, u32HostSysenterCs),
444 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved4),
445
446 SSMFIELD_ENTRY( VMXVVMCS, u64HostPatMsr),
447 SSMFIELD_ENTRY( VMXVVMCS, u64HostEferMsr),
448 SSMFIELD_ENTRY( VMXVVMCS, u64HostPerfGlobalCtlMsr),
449 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
450 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved3),
451
452 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr0),
453 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr3),
454 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr4),
455 SSMFIELD_ENTRY( VMXVVMCS, u64HostFsBase),
456 SSMFIELD_ENTRY( VMXVVMCS, u64HostGsBase),
457 SSMFIELD_ENTRY( VMXVVMCS, u64HostTrBase),
458 SSMFIELD_ENTRY( VMXVVMCS, u64HostGdtrBase),
459 SSMFIELD_ENTRY( VMXVVMCS, u64HostIdtrBase),
460 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEsp),
461 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEip),
462 SSMFIELD_ENTRY( VMXVVMCS, u64HostRsp),
463 SSMFIELD_ENTRY( VMXVVMCS, u64HostRip),
464 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
465 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
466 SSMFIELD_ENTRY_VER( VMXVVMCS, u64HostIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
467 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved7),
468
469 SSMFIELD_ENTRY( VMXVVMCS, GuestEs),
470 SSMFIELD_ENTRY( VMXVVMCS, GuestCs),
471 SSMFIELD_ENTRY( VMXVVMCS, GuestSs),
472 SSMFIELD_ENTRY( VMXVVMCS, GuestDs),
473 SSMFIELD_ENTRY( VMXVVMCS, GuestFs),
474 SSMFIELD_ENTRY( VMXVVMCS, GuestGs),
475 SSMFIELD_ENTRY( VMXVVMCS, GuestLdtr),
476 SSMFIELD_ENTRY( VMXVVMCS, GuestTr),
477 SSMFIELD_ENTRY( VMXVVMCS, u16GuestIntStatus),
478 SSMFIELD_ENTRY( VMXVVMCS, u16PmlIndex),
479 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved1),
480
481 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsLimit),
482 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsLimit),
483 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsLimit),
484 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsLimit),
485 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsLimit),
486 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsLimit),
487 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrLimit),
488 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrLimit),
489 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGdtrLimit),
490 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIdtrLimit),
491 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsAttr),
492 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsAttr),
493 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsAttr),
494 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsAttr),
495 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsAttr),
496 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsAttr),
497 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrAttr),
498 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrAttr),
499 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIntrState),
500 SSMFIELD_ENTRY( VMXVVMCS, u32GuestActivityState),
501 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSmBase),
502 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSysenterCS),
503 SSMFIELD_ENTRY( VMXVVMCS, u32PreemptTimer),
504 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved3),
505
506 SSMFIELD_ENTRY( VMXVVMCS, u64VmcsLinkPtr),
507 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDebugCtlMsr),
508 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPatMsr),
509 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEferMsr),
510 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPerfGlobalCtlMsr),
511 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte0),
512 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte1),
513 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte2),
514 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte3),
515 SSMFIELD_ENTRY( VMXVVMCS, u64GuestBndcfgsMsr),
516 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRtitCtlMsr),
517 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestPkrsMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
518 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved2),
519
520 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr0),
521 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr3),
522 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr4),
523 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEsBase),
524 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCsBase),
525 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSsBase),
526 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDsBase),
527 SSMFIELD_ENTRY( VMXVVMCS, u64GuestFsBase),
528 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGsBase),
529 SSMFIELD_ENTRY( VMXVVMCS, u64GuestLdtrBase),
530 SSMFIELD_ENTRY( VMXVVMCS, u64GuestTrBase),
531 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGdtrBase),
532 SSMFIELD_ENTRY( VMXVVMCS, u64GuestIdtrBase),
533 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDr7),
534 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRsp),
535 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRip),
536 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRFlags),
537 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPendingDbgXcpts),
538 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEsp),
539 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEip),
540 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSCetMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
541 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestSsp, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
542 SSMFIELD_ENTRY_VER( VMXVVMCS, u64GuestIntrSspTableAddrMsr, CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2),
543 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved6),
544
545 SSMFIELD_ENTRY_TERM()
546};
547
548/** Saved state field descriptors for CPUMCTX. */
549static const SSMFIELD g_aCpumX87Fields[] =
550{
551 SSMFIELD_ENTRY( X86FXSTATE, FCW),
552 SSMFIELD_ENTRY( X86FXSTATE, FSW),
553 SSMFIELD_ENTRY( X86FXSTATE, FTW),
554 SSMFIELD_ENTRY( X86FXSTATE, FOP),
555 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
556 SSMFIELD_ENTRY( X86FXSTATE, CS),
557 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
558 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
559 SSMFIELD_ENTRY( X86FXSTATE, DS),
560 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
561 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
562 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
563 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
564 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
565 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
566 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
567 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
568 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
569 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
570 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
571 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
572 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
573 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
574 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
575 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
576 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
577 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
578 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
579 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
580 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
581 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
582 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
583 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
584 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
585 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
586 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
587 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
588 SSMFIELD_ENTRY_TERM()
589};
590
591/** Saved state field descriptors for X86XSAVEHDR. */
592static const SSMFIELD g_aCpumXSaveHdrFields[] =
593{
594 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
595 SSMFIELD_ENTRY_TERM()
596};
597
598/** Saved state field descriptors for X86XSAVEYMMHI. */
599static const SSMFIELD g_aCpumYmmHiFields[] =
600{
601 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
602 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
603 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
604 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
605 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
606 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
607 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
608 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
609 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
610 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
611 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
612 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
613 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
614 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
615 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
616 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
617 SSMFIELD_ENTRY_TERM()
618};
619
620/** Saved state field descriptors for X86XSAVEBNDREGS. */
621static const SSMFIELD g_aCpumBndRegsFields[] =
622{
623 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
624 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
625 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
626 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
627 SSMFIELD_ENTRY_TERM()
628};
629
630/** Saved state field descriptors for X86XSAVEBNDCFG. */
631static const SSMFIELD g_aCpumBndCfgFields[] =
632{
633 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
634 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
635 SSMFIELD_ENTRY_TERM()
636};
637
638#if 0 /** @todo */
639/** Saved state field descriptors for X86XSAVEOPMASK. */
640static const SSMFIELD g_aCpumOpmaskFields[] =
641{
642 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
643 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
644 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
645 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
646 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
647 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
648 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
649 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
650 SSMFIELD_ENTRY_TERM()
651};
652#endif
653
654/** Saved state field descriptors for X86XSAVEZMMHI256. */
655static const SSMFIELD g_aCpumZmmHi256Fields[] =
656{
657 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
658 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
659 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
660 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
661 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
662 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
663 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
664 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
665 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
666 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
667 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
668 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
669 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
670 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
671 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
672 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
673 SSMFIELD_ENTRY_TERM()
674};
675
676/** Saved state field descriptors for X86XSAVEZMM16HI. */
677static const SSMFIELD g_aCpumZmm16HiFields[] =
678{
679 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
680 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
681 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
682 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
683 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
684 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
685 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
686 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
687 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
688 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
689 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
690 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
691 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
692 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
693 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
694 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
695 SSMFIELD_ENTRY_TERM()
696};
697
698
699
700/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
701 * registeres changed. */
702static const SSMFIELD g_aCpumX87FieldsMem[] =
703{
704 SSMFIELD_ENTRY( X86FXSTATE, FCW),
705 SSMFIELD_ENTRY( X86FXSTATE, FSW),
706 SSMFIELD_ENTRY( X86FXSTATE, FTW),
707 SSMFIELD_ENTRY( X86FXSTATE, FOP),
708 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
709 SSMFIELD_ENTRY( X86FXSTATE, CS),
710 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
711 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
712 SSMFIELD_ENTRY( X86FXSTATE, DS),
713 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
714 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
715 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
716 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
717 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
718 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
719 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
720 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
721 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
722 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
723 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
724 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
725 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
726 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
727 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
728 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
729 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
730 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
731 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
732 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
733 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
734 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
735 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
736 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
737 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
738 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
739 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
740 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
741 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
742};
743
744/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
745 * registeres changed. */
746static const SSMFIELD g_aCpumCtxFieldsMem[] =
747{
748 SSMFIELD_ENTRY( CPUMCTX, rdi),
749 SSMFIELD_ENTRY( CPUMCTX, rsi),
750 SSMFIELD_ENTRY( CPUMCTX, rbp),
751 SSMFIELD_ENTRY( CPUMCTX, rax),
752 SSMFIELD_ENTRY( CPUMCTX, rbx),
753 SSMFIELD_ENTRY( CPUMCTX, rdx),
754 SSMFIELD_ENTRY( CPUMCTX, rcx),
755 SSMFIELD_ENTRY( CPUMCTX, rsp),
756 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
757 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
758 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
759 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
760 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
761 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
762 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
763 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
764 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
765 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
766 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
767 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
768 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
769 SSMFIELD_ENTRY( CPUMCTX, rflags),
770 SSMFIELD_ENTRY( CPUMCTX, rip),
771 SSMFIELD_ENTRY( CPUMCTX, r8),
772 SSMFIELD_ENTRY( CPUMCTX, r9),
773 SSMFIELD_ENTRY( CPUMCTX, r10),
774 SSMFIELD_ENTRY( CPUMCTX, r11),
775 SSMFIELD_ENTRY( CPUMCTX, r12),
776 SSMFIELD_ENTRY( CPUMCTX, r13),
777 SSMFIELD_ENTRY( CPUMCTX, r14),
778 SSMFIELD_ENTRY( CPUMCTX, r15),
779 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
780 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
781 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
782 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
783 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
784 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
785 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
786 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
787 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
788 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
789 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
790 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
791 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
792 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
793 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
794 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
795 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
796 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
797 SSMFIELD_ENTRY( CPUMCTX, cr0),
798 SSMFIELD_ENTRY( CPUMCTX, cr2),
799 SSMFIELD_ENTRY( CPUMCTX, cr3),
800 SSMFIELD_ENTRY( CPUMCTX, cr4),
801 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
802 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
803 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
804 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
805 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
806 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
807 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
808 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
809 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
810 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
811 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
812 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
813 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
814 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
815 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
816 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
817 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
818 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
819 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
820 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
821 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
822 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
823 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
824 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
825 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
826 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
827 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
828 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
829 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
830 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
831 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
832 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
833 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
834 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
835 SSMFIELD_ENTRY_TERM()
836};
837
838/** Saved state field descriptors for CPUMCTX_VER1_6. */
839static const SSMFIELD g_aCpumX87FieldsV16[] =
840{
841 SSMFIELD_ENTRY( X86FXSTATE, FCW),
842 SSMFIELD_ENTRY( X86FXSTATE, FSW),
843 SSMFIELD_ENTRY( X86FXSTATE, FTW),
844 SSMFIELD_ENTRY( X86FXSTATE, FOP),
845 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
846 SSMFIELD_ENTRY( X86FXSTATE, CS),
847 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
848 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
849 SSMFIELD_ENTRY( X86FXSTATE, DS),
850 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
851 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
852 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
853 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
854 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
855 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
856 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
857 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
858 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
859 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
860 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
861 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
862 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
863 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
864 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
865 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
866 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
867 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
868 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
869 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
870 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
871 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
872 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
873 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
874 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
875 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
876 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
877 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
878 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
879 SSMFIELD_ENTRY_TERM()
880};
881
882/** Saved state field descriptors for CPUMCTX_VER1_6. */
883static const SSMFIELD g_aCpumCtxFieldsV16[] =
884{
885 SSMFIELD_ENTRY( CPUMCTX, rdi),
886 SSMFIELD_ENTRY( CPUMCTX, rsi),
887 SSMFIELD_ENTRY( CPUMCTX, rbp),
888 SSMFIELD_ENTRY( CPUMCTX, rax),
889 SSMFIELD_ENTRY( CPUMCTX, rbx),
890 SSMFIELD_ENTRY( CPUMCTX, rdx),
891 SSMFIELD_ENTRY( CPUMCTX, rcx),
892 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
893 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
894 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
895 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
896 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
897 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
898 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
899 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
900 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
901 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
902 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
903 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
904 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
905 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
906 SSMFIELD_ENTRY( CPUMCTX, rflags),
907 SSMFIELD_ENTRY( CPUMCTX, rip),
908 SSMFIELD_ENTRY( CPUMCTX, r8),
909 SSMFIELD_ENTRY( CPUMCTX, r9),
910 SSMFIELD_ENTRY( CPUMCTX, r10),
911 SSMFIELD_ENTRY( CPUMCTX, r11),
912 SSMFIELD_ENTRY( CPUMCTX, r12),
913 SSMFIELD_ENTRY( CPUMCTX, r13),
914 SSMFIELD_ENTRY( CPUMCTX, r14),
915 SSMFIELD_ENTRY( CPUMCTX, r15),
916 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
917 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
918 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
919 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
920 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
921 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
922 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
923 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
924 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
925 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
926 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
927 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
928 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
929 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
930 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
931 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
932 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
933 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
934 SSMFIELD_ENTRY( CPUMCTX, cr0),
935 SSMFIELD_ENTRY( CPUMCTX, cr2),
936 SSMFIELD_ENTRY( CPUMCTX, cr3),
937 SSMFIELD_ENTRY( CPUMCTX, cr4),
938 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
939 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
940 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
941 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
942 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
943 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
944 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
945 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
946 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
947 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
948 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
949 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
950 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
951 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
952 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
953 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
954 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
955 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
956 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
957 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
958 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
959 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
960 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
961 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
962 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
963 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
964 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
965 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
966 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
967 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
968 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
969 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
970 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
971 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
972 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
973 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
974 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
975 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
976 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
977 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
978 SSMFIELD_ENTRY_TERM()
979};
980
981
982#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
983/**
984 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
985 *
986 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
987 * (last instruction pointer, last data pointer, last opcode) except when the ES
988 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
989 * clear these registers there is potential, local FPU leakage from a process
990 * using the FPU to another.
991 *
992 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
993 *
994 * @param pVM The cross context VM structure.
995 */
996static void cpumR3CheckLeakyFpu(PVM pVM)
997{
998 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
999 uint32_t const u32Family = u32CpuVersion >> 8;
1000 if ( u32Family >= 6 /* K7 and higher */
1001 && (ASMIsAmdCpu() || ASMIsHygonCpu()) )
1002 {
1003 uint32_t cExt = ASMCpuId_EAX(0x80000000);
1004 if (RTX86IsValidExtRange(cExt))
1005 {
1006 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
1007 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
1008 {
1009 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1010 {
1011 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
1012 pVCpu->cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
1013 }
1014 Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n"));
1015 }
1016 }
1017 }
1018}
1019#endif
1020
1021
1022/**
1023 * Initialize SVM hardware virtualization state (used to allocate it).
1024 *
1025 * @param pVM The cross context VM structure.
1026 */
1027static void cpumR3InitSvmHwVirtState(PVM pVM)
1028{
1029 Assert(pVM->cpum.s.GuestFeatures.fSvm);
1030
1031 LogRel(("CPUM: AMD-V nested-guest init\n"));
1032 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1033 {
1034 PVMCPU pVCpu = pVM->apCpusR3[i];
1035 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
1036
1037 AssertCompile(SVM_VMCB_PAGES * X86_PAGE_SIZE == sizeof(pVCpu->cpum.s.Guest.hwvirt.svm.Vmcb));
1038 AssertCompile(SVM_MSRPM_PAGES * X86_PAGE_SIZE == sizeof(pVCpu->cpum.s.Guest.hwvirt.svm.abMsrBitmap));
1039 AssertCompile(SVM_IOPM_PAGES * X86_PAGE_SIZE == sizeof(pVCpu->cpum.s.Guest.hwvirt.svm.abIoBitmap));
1040 }
1041}
1042
1043
1044/**
1045 * Resets per-VCPU SVM hardware virtualization state.
1046 *
1047 * @param pVCpu The cross context virtual CPU structure.
1048 */
1049DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu)
1050{
1051 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1052 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
1053
1054 RT_ZERO(pCtx->hwvirt.svm.Vmcb);
1055 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1056 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1057}
1058
1059
1060/**
1061 * Allocates memory for the VMX hardware virtualization state.
1062 *
1063 * @param pVM The cross context VM structure.
1064 */
1065static void cpumR3InitVmxHwVirtState(PVM pVM)
1066{
1067 LogRel(("CPUM: VT-x nested-guest init\n"));
1068 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1069 {
1070 PVMCPU pVCpu = pVM->apCpusR3[i];
1071 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1072
1073 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
1074
1075 AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_PAGES * X86_PAGE_SIZE);
1076 AssertCompile(sizeof(pCtx->hwvirt.vmx.Vmcs) == VMX_V_VMCS_SIZE);
1077 AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_PAGES * X86_PAGE_SIZE);
1078 AssertCompile(sizeof(pCtx->hwvirt.vmx.ShadowVmcs) == VMX_V_SHADOW_VMCS_SIZE);
1079 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE);
1080 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmreadBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1081 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_PAGES * X86_PAGE_SIZE);
1082 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVmwriteBitmap) == VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1083 AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1084 AssertCompile(sizeof(pCtx->hwvirt.vmx.aEntryMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE);
1085 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1086 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrStoreArea) == VMX_V_AUTOMSR_AREA_SIZE);
1087 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_PAGES * X86_PAGE_SIZE);
1088 AssertCompile(sizeof(pCtx->hwvirt.vmx.aExitMsrLoadArea) == VMX_V_AUTOMSR_AREA_SIZE);
1089 AssertCompile(sizeof(pCtx->hwvirt.vmx.abMsrBitmap) == VMX_V_MSR_BITMAP_PAGES * X86_PAGE_SIZE);
1090 AssertCompile(sizeof(pCtx->hwvirt.vmx.abMsrBitmap) == VMX_V_MSR_BITMAP_SIZE);
1091 AssertCompile(sizeof(pCtx->hwvirt.vmx.abIoBitmap) == (VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES) * X86_PAGE_SIZE);
1092 AssertCompile(sizeof(pCtx->hwvirt.vmx.abIoBitmap) == VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
1093 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVirtApicPage) == VMX_V_VIRT_APIC_PAGES * X86_PAGE_SIZE);
1094 AssertCompile(sizeof(pCtx->hwvirt.vmx.abVirtApicPage) == VMX_V_VIRT_APIC_SIZE);
1095
1096 /*
1097 * Zero out all allocated pages (should compress well for saved-state).
1098 */
1099 /** @todo r=bird: this is and always was unnecessary - they are already zeroed. */
1100 RT_ZERO(pCtx->hwvirt.vmx.Vmcs);
1101 RT_ZERO(pCtx->hwvirt.vmx.ShadowVmcs);
1102 RT_ZERO(pCtx->hwvirt.vmx.abVmreadBitmap);
1103 RT_ZERO(pCtx->hwvirt.vmx.abVmwriteBitmap);
1104 RT_ZERO(pCtx->hwvirt.vmx.aEntryMsrLoadArea);
1105 RT_ZERO(pCtx->hwvirt.vmx.aExitMsrStoreArea);
1106 RT_ZERO(pCtx->hwvirt.vmx.aExitMsrLoadArea);
1107 RT_ZERO(pCtx->hwvirt.vmx.abMsrBitmap);
1108 RT_ZERO(pCtx->hwvirt.vmx.abIoBitmap);
1109 RT_ZERO(pCtx->hwvirt.vmx.abVirtApicPage);
1110 }
1111}
1112
1113
1114/**
1115 * Resets per-VCPU VMX hardware virtualization state.
1116 *
1117 * @param pVCpu The cross context virtual CPU structure.
1118 */
1119DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu)
1120{
1121 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1122 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1123
1124 RT_ZERO(pCtx->hwvirt.vmx.Vmcs);
1125 RT_ZERO(pCtx->hwvirt.vmx.ShadowVmcs);
1126 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1127 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1128 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1129 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1130 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1131 /* Don't reset diagnostics here. */
1132
1133 /* Stop any VMX-preemption timer. */
1134 CPUMStopGuestVmxPremptTimer(pVCpu);
1135
1136 /* Clear all nested-guest FFs. */
1137 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
1138}
1139
1140
1141/**
1142 * Displays the host and guest VMX features.
1143 *
1144 * @param pVM The cross context VM structure.
1145 * @param pHlp The info helper functions.
1146 * @param pszArgs "terse", "default" or "verbose".
1147 */
1148DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1149{
1150 RT_NOREF(pszArgs);
1151 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1152 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1153 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1154 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA
1155 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_SHANGHAI)
1156 {
1157#define VMXFEATDUMP(a_szDesc, a_Var) \
1158 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1159
1160 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1161 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1162 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1163 /* Basic. */
1164 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1165
1166 /* Pin-based controls. */
1167 VMXFEATDUMP("ExtIntExit - External interrupt exiting ", fVmxExtIntExit);
1168 VMXFEATDUMP("NmiExit - NMI exiting ", fVmxNmiExit);
1169 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1170 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1171 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1172
1173 /* Processor-based controls. */
1174 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1175 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1176 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1177 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1178 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1179 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1180 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1181 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1182 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1183 VMXFEATDUMP("TertiaryExecCtls - Activate tertiary controls ", fVmxTertiaryExecCtls);
1184 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1185 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1186 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1187 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1188 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1189 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1190 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1191 VMXFEATDUMP("MonitorTrapFlag - Monitor Trap Flag ", fVmxMonitorTrapFlag);
1192 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1193 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1194 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1195 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1196
1197 /* Secondary processor-based controls. */
1198 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1199 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1200 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1201 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1202 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1203 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1204 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1205 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1206 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1207 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1208 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1209 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1210 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1211 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1212 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1213 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1214 VMXFEATDUMP("PML - Page-Modification Log (PML) ", fVmxPml);
1215 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1216 VMXFEATDUMP("ConcealVmxFromPt - Conceal VMX from Processor Trace ", fVmxConcealVmxFromPt);
1217 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1218 VMXFEATDUMP("ModeBasedExecuteEpt - Mode-based execute permissions ", fVmxModeBasedExecuteEpt);
1219 VMXFEATDUMP("SppEpt - Sub-page page write permissions for EPT ", fVmxSppEpt);
1220 VMXFEATDUMP("PtEpt - Processor Trace address' translatable by EPT ", fVmxPtEpt);
1221 VMXFEATDUMP("UseTscScaling - Use TSC scaling ", fVmxUseTscScaling);
1222 VMXFEATDUMP("UserWaitPause - Enable TPAUSE, UMONITOR and UMWAIT ", fVmxUserWaitPause);
1223 VMXFEATDUMP("EnclvExit - ENCLV exiting ", fVmxEnclvExit);
1224
1225 /* Tertiary processor-based controls. */
1226 VMXFEATDUMP("LoadIwKeyExit - LOADIWKEY exiting ", fVmxLoadIwKeyExit);
1227
1228 /* VM-entry controls. */
1229 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1230 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1231 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER MSR on VM-entry ", fVmxEntryLoadEferMsr);
1232 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT MSR on VM-entry ", fVmxEntryLoadPatMsr);
1233
1234 /* VM-exit controls. */
1235 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1236 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1237 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1238 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT MSR on VM-exit ", fVmxExitSavePatMsr);
1239 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT MSR on VM-exit ", fVmxExitLoadPatMsr);
1240 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER MSR on VM-exit ", fVmxExitSaveEferMsr);
1241 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER MSR on VM-exit ", fVmxExitLoadEferMsr);
1242 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1243
1244 /* Miscellaneous data. */
1245 VMXFEATDUMP("ExitSaveEferLma - Save IA32_EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1246 VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxPt);
1247 VMXFEATDUMP("VmwriteAll - VMWRITE to any supported VMCS field ", fVmxVmwriteAll);
1248 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1249#undef VMXFEATDUMP
1250 }
1251 else
1252 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1253}
1254
1255
1256/**
1257 * Checks whether nested-guest execution using hardware-assisted VMX (e.g, using HM
1258 * or NEM) is allowed.
1259 *
1260 * @returns @c true if hardware-assisted nested-guest execution is allowed, @c false
1261 * otherwise.
1262 * @param pVM The cross context VM structure.
1263 */
1264static bool cpumR3IsHwAssistNstGstExecAllowed(PVM pVM)
1265{
1266 AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
1267#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
1268 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
1269 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
1270 return true;
1271#else
1272 NOREF(pVM);
1273#endif
1274 return false;
1275}
1276
1277
1278/**
1279 * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs.
1280 *
1281 * @param pVM The cross context VM structure.
1282 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1283 * and no hardware-assisted nested-guest execution is
1284 * possible for this VM.
1285 * @param pGuestFeatures The guest features to use (only VMX features are
1286 * accessed).
1287 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1288 *
1289 * @remarks This function ASSUMES the VMX guest-features are already exploded!
1290 */
1291static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs)
1292{
1293 bool const fIsNstGstHwExecAllowed = cpumR3IsHwAssistNstGstExecAllowed(pVM);
1294
1295 Assert(!fIsNstGstHwExecAllowed || pHostVmxMsrs);
1296 Assert(pGuestFeatures->fVmx);
1297
1298 /*
1299 * We don't support the following MSRs yet:
1300 * - True Pin-based VM-execution controls.
1301 * - True Processor-based VM-execution controls.
1302 * - True VM-entry VM-execution controls.
1303 * - True VM-exit VM-execution controls.
1304 */
1305
1306 /* Basic information. */
1307 uint8_t const fTrueVmxMsrs = 1;
1308 {
1309 uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
1310 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
1311 | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode )
1312 | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
1313 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
1314 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo)
1315 | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, fTrueVmxMsrs );
1316 pGuestVmxMsrs->u64Basic = u64Basic;
1317 }
1318
1319 /* Pin-based VM-execution controls. */
1320 {
1321 uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
1322 | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
1323 | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
1324 | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
1325 | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
1326 uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
1327 uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
1328 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
1329 fAllowed0, fAllowed1, fFeatures));
1330 pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1331
1332 /* True pin-based VM-execution controls. */
1333 if (fTrueVmxMsrs)
1334 {
1335 /* VMX_PIN_CTLS_DEFAULT1 contains MB1 reserved bits and must be reserved MB1 in true pin-based controls as well. */
1336 pGuestVmxMsrs->TruePinCtls.u = pGuestVmxMsrs->PinCtls.u;
1337 }
1338 }
1339
1340 /* Processor-based VM-execution controls. */
1341 {
1342 uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
1343 | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
1344 | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
1345 | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
1346 | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
1347 | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
1348 | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
1349 | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
1350 | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
1351 | (pGuestFeatures->fVmxTertiaryExecCtls << VMX_BF_PROC_CTLS_USE_TERTIARY_CTLS_SHIFT )
1352 | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
1353 | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
1354 | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
1355 | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
1356 | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
1357 | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
1358 | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
1359 | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
1360 | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
1361 | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
1362 | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
1363 | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
1364 uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
1365 uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
1366 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1367 fAllowed1, fFeatures));
1368 pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1369
1370 /* True processor-based VM-execution controls. */
1371 if (fTrueVmxMsrs)
1372 {
1373 /* VMX_PROC_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved. */
1374 uint32_t const fTrueAllowed0 = VMX_PROC_CTLS_DEFAULT1 & ~( VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_MASK
1375 | VMX_BF_PROC_CTLS_CR3_STORE_EXIT_MASK);
1376 uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0;
1377 pGuestVmxMsrs->TrueProcCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1);
1378 }
1379 }
1380
1381 /* Secondary processor-based VM-execution controls. */
1382 if (pGuestFeatures->fVmxSecondaryExecCtls)
1383 {
1384 uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
1385 | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
1386 | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
1387 | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
1388 | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
1389 | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
1390 | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
1391 | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT )
1392 | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
1393 | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
1394 | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
1395 | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
1396 | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
1397 | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
1398 | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
1399 | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
1400 | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
1401 | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
1402 | (pGuestFeatures->fVmxConcealVmxFromPt << VMX_BF_PROC_CTLS2_CONCEAL_VMX_FROM_PT_SHIFT)
1403 | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
1404 | (pGuestFeatures->fVmxModeBasedExecuteEpt << VMX_BF_PROC_CTLS2_MODE_BASED_EPT_PERM_SHIFT)
1405 | (pGuestFeatures->fVmxSppEpt << VMX_BF_PROC_CTLS2_SPP_EPT_SHIFT )
1406 | (pGuestFeatures->fVmxPtEpt << VMX_BF_PROC_CTLS2_PT_EPT_SHIFT )
1407 | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT )
1408 | (pGuestFeatures->fVmxUserWaitPause << VMX_BF_PROC_CTLS2_USER_WAIT_PAUSE_SHIFT )
1409 | (pGuestFeatures->fVmxEnclvExit << VMX_BF_PROC_CTLS2_ENCLV_EXIT_SHIFT );
1410 uint32_t const fAllowed0 = 0;
1411 uint32_t const fAllowed1 = fFeatures;
1412 pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1413 }
1414
1415 /* Tertiary processor-based VM-execution controls. */
1416 if (pGuestFeatures->fVmxTertiaryExecCtls)
1417 {
1418 pGuestVmxMsrs->u64ProcCtls3 = (pGuestFeatures->fVmxLoadIwKeyExit << VMX_BF_PROC_CTLS3_LOADIWKEY_EXIT_SHIFT);
1419 }
1420
1421 /* VM-exit controls. */
1422 {
1423 uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
1424 | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
1425 | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
1426 | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
1427 | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
1428 | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
1429 | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
1430 | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT );
1431 /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
1432 uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
1433 uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
1434 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1435 fAllowed1, fFeatures));
1436 pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1437
1438 /* True VM-exit controls. */
1439 if (fTrueVmxMsrs)
1440 {
1441 /* VMX_EXIT_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved */
1442 uint32_t const fTrueAllowed0 = VMX_EXIT_CTLS_DEFAULT1 & ~VMX_BF_EXIT_CTLS_SAVE_DEBUG_MASK;
1443 uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0;
1444 pGuestVmxMsrs->TrueExitCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1);
1445 }
1446 }
1447
1448 /* VM-entry controls. */
1449 {
1450 uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
1451 | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
1452 | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
1453 | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
1454 uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
1455 uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
1456 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1457 fAllowed1, fFeatures));
1458 pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1459
1460 /* True VM-entry controls. */
1461 if (fTrueVmxMsrs)
1462 {
1463 /* VMX_ENTRY_CTLS_DEFAULT1 contains MB1 reserved bits but the following are not really reserved */
1464 uint32_t const fTrueAllowed0 = VMX_ENTRY_CTLS_DEFAULT1 & ~( VMX_BF_ENTRY_CTLS_LOAD_DEBUG_MASK
1465 | VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_MASK
1466 | VMX_BF_ENTRY_CTLS_ENTRY_SMM_MASK
1467 | VMX_BF_ENTRY_CTLS_DEACTIVATE_DUAL_MON_MASK);
1468 uint32_t const fTrueAllowed1 = fFeatures | fTrueAllowed0;
1469 pGuestVmxMsrs->TrueEntryCtls.u = RT_MAKE_U64(fTrueAllowed0, fTrueAllowed1);
1470 }
1471 }
1472
1473 /* Miscellaneous data. */
1474 {
1475 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Misc : 0;
1476
1477 uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
1478 uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
1479 pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
1480 | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma )
1481 | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
1482 | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxPt )
1483 | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
1484 | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
1485 | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
1486 | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
1487 | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll )
1488 | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt)
1489 | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
1490 }
1491
1492 /* CR0 Fixed-0 (we report this fixed value regardless of whether UX is supported as it does on real hardware). */
1493 pGuestVmxMsrs->u64Cr0Fixed0 = VMX_V_CR0_FIXED0;
1494
1495 /* CR0 Fixed-1. */
1496 {
1497 /*
1498 * All CPUs I've looked at so far report CR0 fixed-1 bits as 0xffffffff.
1499 * This is different from CR4 fixed-1 bits which are reported as per the
1500 * CPU features and/or micro-architecture/generation. Why? Ask Intel.
1501 */
1502 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr0Fixed1 : VMX_V_CR0_FIXED1;
1503 pGuestVmxMsrs->u64Cr0Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr0Fixed0; /* Make sure the CR0 MB1 bits are not clear. */
1504 }
1505
1506 /* CR4 Fixed-0. */
1507 pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
1508
1509 /* CR4 Fixed-1. */
1510 {
1511 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr4Fixed1 : CPUMGetGuestCR4ValidMask(pVM);
1512 pGuestVmxMsrs->u64Cr4Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr4Fixed0; /* Make sure the CR4 MB1 bits are not clear. */
1513 }
1514
1515 /* VMCS Enumeration. */
1516 pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
1517
1518 /* VPID and EPT Capabilities. */
1519 if (pGuestFeatures->fVmxEpt)
1520 {
1521 /*
1522 * INVVPID instruction always causes a VM-exit unconditionally, so we are free to fake
1523 * and emulate any INVVPID flush type. However, it only makes sense to expose the types
1524 * when INVVPID instruction is supported just to be more compatible with guest
1525 * hypervisors that may make assumptions by only looking at this MSR even though they
1526 * are technically supposed to refer to VMX_PROC_CTLS2_VPID first.
1527 *
1528 * See Intel spec. 25.1.2 "Instructions That Cause VM Exits Unconditionally".
1529 * See Intel spec. 30.3 "VMX Instructions".
1530 */
1531 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64EptVpidCaps : UINT64_MAX;
1532 uint8_t const fVpid = pGuestFeatures->fVmxVpid;
1533
1534 uint8_t const fExecOnly = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_EXEC_ONLY);
1535 uint8_t const fPml4 = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4);
1536 uint8_t const fMemTypeUc = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_MEMTYPE_UC);
1537 uint8_t const fMemTypeWb = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_MEMTYPE_WB);
1538 uint8_t const f2MPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDE_2M);
1539 uint8_t const f1GPage = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_PDPTE_1G);
1540 uint8_t const fInvept = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT);
1541 /** @todo Nested VMX: Support accessed/dirty bits, see @bugref{10092#c25}. */
1542 /* uint8_t const fAccessDirty = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY); */
1543 uint8_t const fEptSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX);
1544 uint8_t const fEptAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX);
1545 uint8_t const fVpidIndiv = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
1546 uint8_t const fVpidSingle = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
1547 uint8_t const fVpidAll = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
1548 uint8_t const fVpidSingleGlobal = RT_BF_GET(uHostMsr, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
1549 pGuestVmxMsrs->u64EptVpidCaps = RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_EXEC_ONLY, fExecOnly)
1550 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4, fPml4)
1551 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_MEMTYPE_UC, fMemTypeUc)
1552 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_MEMTYPE_WB, fMemTypeWb)
1553 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDE_2M, f2MPage)
1554 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_PDPTE_1G, f1GPage)
1555 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT, fInvept)
1556 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY, 0)
1557 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION, 0)
1558 //| RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_SUPER_SHW_STACK, 0)
1559 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX, fEptSingle)
1560 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX, fEptAll)
1561 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID, fVpid)
1562 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR, fVpid & fVpidIndiv)
1563 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX, fVpid & fVpidSingle)
1564 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX, fVpid & fVpidAll)
1565 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS, fVpid & fVpidSingleGlobal);
1566 }
1567
1568 /* VM Functions. */
1569 if (pGuestFeatures->fVmxVmFunc)
1570 pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
1571}
1572
1573
1574/**
1575 * Checks whether the given guest CPU VMX features are compatible with the provided
1576 * base features.
1577 *
1578 * @returns @c true if compatible, @c false otherwise.
1579 * @param pVM The cross context VM structure.
1580 * @param pBase The base VMX CPU features.
1581 * @param pGst The guest VMX CPU features.
1582 *
1583 * @remarks Only VMX feature bits are examined.
1584 */
1585static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
1586{
1587 if (!cpumR3IsHwAssistNstGstExecAllowed(pVM))
1588 return false;
1589
1590#define CPUM_VMX_FEAT_SHIFT(a_pFeat, a_FeatName, a_cShift) ((uint64_t)(a_pFeat->a_FeatName) << (a_cShift))
1591#define CPUM_VMX_MAKE_FEATURES_1(a_pFeat) ( CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInsOutInfo , 0) \
1592 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExtIntExit , 1) \
1593 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxNmiExit , 2) \
1594 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtNmi , 3) \
1595 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPreemptTimer , 4) \
1596 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPostedInt , 5) \
1597 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxIntWindowExit , 6) \
1598 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxTscOffsetting , 7) \
1599 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxHltExit , 8) \
1600 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInvlpgExit , 9) \
1601 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMwaitExit , 10) \
1602 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdpmcExit , 12) \
1603 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdtscExit , 13) \
1604 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr3LoadExit , 14) \
1605 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr3StoreExit , 15) \
1606 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxTertiaryExecCtls , 16) \
1607 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr8LoadExit , 17) \
1608 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxCr8StoreExit , 18) \
1609 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseTprShadow , 19) \
1610 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxNmiWindowExit , 20) \
1611 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMovDRxExit , 21) \
1612 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUncondIoExit , 22) \
1613 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseIoBitmaps , 23) \
1614 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMonitorTrapFlag , 24) \
1615 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseMsrBitmaps , 25) \
1616 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxMonitorExit , 26) \
1617 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPauseExit , 27) \
1618 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSecondaryExecCtls , 28) \
1619 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtApicAccess , 29) \
1620 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEpt , 30) \
1621 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxDescTableExit , 31) \
1622 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdtscp , 32) \
1623 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtX2ApicMode , 33) \
1624 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVpid , 34) \
1625 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxWbinvdExit , 35) \
1626 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUnrestrictedGuest , 36) \
1627 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxApicRegVirt , 37) \
1628 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVirtIntDelivery , 38) \
1629 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPauseLoopExit , 39) \
1630 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdrandExit , 40) \
1631 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxInvpcid , 41) \
1632 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmFunc , 42) \
1633 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmcsShadowing , 43) \
1634 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxRdseedExit , 44) \
1635 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPml , 45) \
1636 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEptXcptVe , 46) \
1637 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxConcealVmxFromPt , 47) \
1638 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxXsavesXrstors , 48) \
1639 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxModeBasedExecuteEpt, 49) \
1640 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSppEpt , 50) \
1641 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPtEpt , 51) \
1642 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUseTscScaling , 52) \
1643 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxUserWaitPause , 53) \
1644 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEnclvExit , 54) \
1645 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxLoadIwKeyExit , 55) \
1646 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadDebugCtls , 56) \
1647 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxIa32eModeGuest , 57) \
1648 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadEferMsr , 58) \
1649 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryLoadPatMsr , 59) \
1650 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveDebugCtls , 60) \
1651 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxHostAddrSpaceSize , 61) \
1652 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitAckExtInt , 62) \
1653 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSavePatMsr , 63))
1654
1655#define CPUM_VMX_MAKE_FEATURES_2(a_pFeat) ( CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitLoadPatMsr , 0) \
1656 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveEferMsr , 1) \
1657 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitLoadEferMsr , 2) \
1658 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxSavePreemptTimer , 3) \
1659 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxExitSaveEferLma , 4) \
1660 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxPt , 5) \
1661 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxVmwriteAll , 6) \
1662 | CPUM_VMX_FEAT_SHIFT(a_pFeat, fVmxEntryInjectSoftInt , 7))
1663
1664 /* Check first set of feature bits. */
1665 {
1666 uint64_t const fBase = CPUM_VMX_MAKE_FEATURES_1(pBase);
1667 uint64_t const fGst = CPUM_VMX_MAKE_FEATURES_1(pGst);
1668 if ((fBase | fGst) != fBase)
1669 {
1670 uint64_t const fDiff = fBase ^ fGst;
1671 LogRel(("CPUM: VMX features (1) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1672 fBase, fGst, fDiff));
1673 return false;
1674 }
1675 }
1676
1677 /* Check second set of feature bits. */
1678 {
1679 uint64_t const fBase = CPUM_VMX_MAKE_FEATURES_2(pBase);
1680 uint64_t const fGst = CPUM_VMX_MAKE_FEATURES_2(pGst);
1681 if ((fBase | fGst) != fBase)
1682 {
1683 uint64_t const fDiff = fBase ^ fGst;
1684 LogRel(("CPUM: VMX features (2) now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1685 fBase, fGst, fDiff));
1686 return false;
1687 }
1688 }
1689#undef CPUM_VMX_FEAT_SHIFT
1690#undef CPUM_VMX_MAKE_FEATURES_1
1691#undef CPUM_VMX_MAKE_FEATURES_2
1692
1693 return true;
1694}
1695
1696
1697/**
1698 * Initializes VMX guest features and MSRs.
1699 *
1700 * @param pVM The cross context VM structure.
1701 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1702 * and no hardware-assisted nested-guest execution is
1703 * possible for this VM.
1704 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1705 */
1706void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs)
1707{
1708 Assert(pVM);
1709 Assert(pGuestVmxMsrs);
1710
1711 /*
1712 * While it would be nice to check this earlier while initializing fNestedVmxEpt
1713 * but we would not have enumearted host features then, so do it at least now.
1714 */
1715 if ( !pVM->cpum.s.HostFeatures.fNoExecute
1716 && pVM->cpum.s.fNestedVmxEpt)
1717 {
1718 LogRel(("CPUM: Warning! EPT not exposed to the guest since NX isn't available on the host.\n"));
1719 pVM->cpum.s.fNestedVmxEpt = false;
1720 pVM->cpum.s.fNestedVmxUnrestrictedGuest = false;
1721 }
1722
1723 /*
1724 * Initialize the set of VMX features we emulate.
1725 *
1726 * Note! Some bits might be reported as 1 always if they fall under the
1727 * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1728 */
1729 CPUMFEATURES EmuFeat;
1730 RT_ZERO(EmuFeat);
1731 EmuFeat.fVmx = 1;
1732 EmuFeat.fVmxInsOutInfo = 1;
1733 EmuFeat.fVmxExtIntExit = 1;
1734 EmuFeat.fVmxNmiExit = 1;
1735 EmuFeat.fVmxVirtNmi = 1;
1736 EmuFeat.fVmxPreemptTimer = pVM->cpum.s.fNestedVmxPreemptTimer;
1737 EmuFeat.fVmxPostedInt = 0;
1738 EmuFeat.fVmxIntWindowExit = 1;
1739 EmuFeat.fVmxTscOffsetting = 1;
1740 EmuFeat.fVmxHltExit = 1;
1741 EmuFeat.fVmxInvlpgExit = 1;
1742 EmuFeat.fVmxMwaitExit = 1;
1743 EmuFeat.fVmxRdpmcExit = 1;
1744 EmuFeat.fVmxRdtscExit = 1;
1745 EmuFeat.fVmxCr3LoadExit = 1;
1746 EmuFeat.fVmxCr3StoreExit = 1;
1747 EmuFeat.fVmxTertiaryExecCtls = 0;
1748 EmuFeat.fVmxCr8LoadExit = 1;
1749 EmuFeat.fVmxCr8StoreExit = 1;
1750 EmuFeat.fVmxUseTprShadow = 1;
1751 EmuFeat.fVmxNmiWindowExit = 0;
1752 EmuFeat.fVmxMovDRxExit = 1;
1753 EmuFeat.fVmxUncondIoExit = 1;
1754 EmuFeat.fVmxUseIoBitmaps = 1;
1755 EmuFeat.fVmxMonitorTrapFlag = 0;
1756 EmuFeat.fVmxUseMsrBitmaps = 1;
1757 EmuFeat.fVmxMonitorExit = 1;
1758 EmuFeat.fVmxPauseExit = 1;
1759 EmuFeat.fVmxSecondaryExecCtls = 1;
1760 EmuFeat.fVmxVirtApicAccess = 1;
1761 EmuFeat.fVmxEpt = pVM->cpum.s.fNestedVmxEpt;
1762 EmuFeat.fVmxDescTableExit = 1;
1763 EmuFeat.fVmxRdtscp = 1;
1764 EmuFeat.fVmxVirtX2ApicMode = 0;
1765 EmuFeat.fVmxVpid = 0; /** @todo Consider enabling this when EPT works. */
1766 EmuFeat.fVmxWbinvdExit = 1;
1767 EmuFeat.fVmxUnrestrictedGuest = pVM->cpum.s.fNestedVmxUnrestrictedGuest;
1768 EmuFeat.fVmxApicRegVirt = 0;
1769 EmuFeat.fVmxVirtIntDelivery = 0;
1770 EmuFeat.fVmxPauseLoopExit = 0;
1771 EmuFeat.fVmxRdrandExit = 0;
1772 EmuFeat.fVmxInvpcid = 1;
1773 EmuFeat.fVmxVmFunc = 0;
1774 EmuFeat.fVmxVmcsShadowing = 0;
1775 EmuFeat.fVmxRdseedExit = 0;
1776 EmuFeat.fVmxPml = 0;
1777 EmuFeat.fVmxEptXcptVe = 0;
1778 EmuFeat.fVmxConcealVmxFromPt = 0;
1779 EmuFeat.fVmxXsavesXrstors = 0;
1780 EmuFeat.fVmxModeBasedExecuteEpt = 0;
1781 EmuFeat.fVmxSppEpt = 0;
1782 EmuFeat.fVmxPtEpt = 0;
1783 EmuFeat.fVmxUseTscScaling = 0;
1784 EmuFeat.fVmxUserWaitPause = 0;
1785 EmuFeat.fVmxEnclvExit = 0;
1786 EmuFeat.fVmxLoadIwKeyExit = 0;
1787 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1788 EmuFeat.fVmxIa32eModeGuest = 1;
1789 EmuFeat.fVmxEntryLoadEferMsr = 1;
1790 EmuFeat.fVmxEntryLoadPatMsr = 0;
1791 EmuFeat.fVmxExitSaveDebugCtls = 1;
1792 EmuFeat.fVmxHostAddrSpaceSize = 1;
1793 EmuFeat.fVmxExitAckExtInt = 1;
1794 EmuFeat.fVmxExitSavePatMsr = 0;
1795 EmuFeat.fVmxExitLoadPatMsr = 0;
1796 EmuFeat.fVmxExitSaveEferMsr = 1;
1797 EmuFeat.fVmxExitLoadEferMsr = 1;
1798 EmuFeat.fVmxSavePreemptTimer = 0; /* Cannot be enabled if VMX-preemption timer is disabled. */
1799 EmuFeat.fVmxExitSaveEferLma = 1; /* Cannot be disabled if unrestricted guest is enabled. */
1800 EmuFeat.fVmxPt = 0;
1801 EmuFeat.fVmxVmwriteAll = 0; /** @todo NSTVMX: enable this when nested VMCS shadowing is enabled. */
1802 EmuFeat.fVmxEntryInjectSoftInt = 1;
1803
1804 /*
1805 * Merge guest features.
1806 *
1807 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1808 * by the hardware, hence we merge our emulated features with the host features below.
1809 */
1810 PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat;
1811 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1812 Assert(pBaseFeat->fVmx);
1813 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1814 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1815 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1816 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1817 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1818 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1819 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1820 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1821 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1822 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1823 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1824 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1825 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1826 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1827 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1828 pGuestFeat->fVmxTertiaryExecCtls = (pBaseFeat->fVmxTertiaryExecCtls & EmuFeat.fVmxTertiaryExecCtls );
1829 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1830 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1831 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1832 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1833 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1834 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1835 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1836 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1837 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1838 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1839 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1840 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1841 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1842 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1843 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1844 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1845 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
1846 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1847 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1848 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1849 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1850 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1851 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1852 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1853 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1854 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1855 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1856 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1857 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1858 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1859 pGuestFeat->fVmxConcealVmxFromPt = (pBaseFeat->fVmxConcealVmxFromPt & EmuFeat.fVmxConcealVmxFromPt );
1860 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1861 pGuestFeat->fVmxModeBasedExecuteEpt = (pBaseFeat->fVmxModeBasedExecuteEpt & EmuFeat.fVmxModeBasedExecuteEpt );
1862 pGuestFeat->fVmxSppEpt = (pBaseFeat->fVmxSppEpt & EmuFeat.fVmxSppEpt );
1863 pGuestFeat->fVmxPtEpt = (pBaseFeat->fVmxPtEpt & EmuFeat.fVmxPtEpt );
1864 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1865 pGuestFeat->fVmxUserWaitPause = (pBaseFeat->fVmxUserWaitPause & EmuFeat.fVmxUserWaitPause );
1866 pGuestFeat->fVmxEnclvExit = (pBaseFeat->fVmxEnclvExit & EmuFeat.fVmxEnclvExit );
1867 pGuestFeat->fVmxLoadIwKeyExit = (pBaseFeat->fVmxLoadIwKeyExit & EmuFeat.fVmxLoadIwKeyExit );
1868 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1869 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1870 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1871 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1872 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1873 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1874 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1875 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1876 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1877 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1878 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1879 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1880 pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
1881 pGuestFeat->fVmxPt = (pBaseFeat->fVmxPt & EmuFeat.fVmxPt );
1882 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1883 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1884
1885#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
1886 /* Don't expose VMX preemption timer if host is subject to VMX-preemption timer erratum. */
1887 if ( pGuestFeat->fVmxPreemptTimer
1888 && HMIsSubjectToVmxPreemptTimerErratum())
1889 {
1890 LogRel(("CPUM: Warning! VMX-preemption timer not exposed to guest due to host CPU erratum.\n"));
1891 pGuestFeat->fVmxPreemptTimer = 0;
1892 pGuestFeat->fVmxSavePreemptTimer = 0;
1893 }
1894#endif
1895
1896 /* Sanity checking. */
1897 if (!pGuestFeat->fVmxSecondaryExecCtls)
1898 {
1899 Assert(!pGuestFeat->fVmxVirtApicAccess);
1900 Assert(!pGuestFeat->fVmxEpt);
1901 Assert(!pGuestFeat->fVmxDescTableExit);
1902 Assert(!pGuestFeat->fVmxRdtscp);
1903 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
1904 Assert(!pGuestFeat->fVmxVpid);
1905 Assert(!pGuestFeat->fVmxWbinvdExit);
1906 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
1907 Assert(!pGuestFeat->fVmxApicRegVirt);
1908 Assert(!pGuestFeat->fVmxVirtIntDelivery);
1909 Assert(!pGuestFeat->fVmxPauseLoopExit);
1910 Assert(!pGuestFeat->fVmxRdrandExit);
1911 Assert(!pGuestFeat->fVmxInvpcid);
1912 Assert(!pGuestFeat->fVmxVmFunc);
1913 Assert(!pGuestFeat->fVmxVmcsShadowing);
1914 Assert(!pGuestFeat->fVmxRdseedExit);
1915 Assert(!pGuestFeat->fVmxPml);
1916 Assert(!pGuestFeat->fVmxEptXcptVe);
1917 Assert(!pGuestFeat->fVmxConcealVmxFromPt);
1918 Assert(!pGuestFeat->fVmxXsavesXrstors);
1919 Assert(!pGuestFeat->fVmxModeBasedExecuteEpt);
1920 Assert(!pGuestFeat->fVmxSppEpt);
1921 Assert(!pGuestFeat->fVmxPtEpt);
1922 Assert(!pGuestFeat->fVmxUseTscScaling);
1923 Assert(!pGuestFeat->fVmxUserWaitPause);
1924 Assert(!pGuestFeat->fVmxEnclvExit);
1925 }
1926 else if (pGuestFeat->fVmxUnrestrictedGuest)
1927 {
1928 /* See footnote in Intel spec. 27.2 "Recording VM-Exit Information And Updating VM-entry Control Fields". */
1929 Assert(pGuestFeat->fVmxExitSaveEferLma);
1930 /* Unrestricted guest execution requires EPT. See Intel spec. 25.2.1.1 "VM-Execution Control Fields". */
1931 Assert(pGuestFeat->fVmxEpt);
1932 }
1933
1934 if (!pGuestFeat->fVmxTertiaryExecCtls)
1935 Assert(!pGuestFeat->fVmxLoadIwKeyExit);
1936
1937 /*
1938 * Finally initialize the VMX guest MSRs.
1939 */
1940 cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs);
1941}
1942
1943
1944/**
1945 * Gets the host hardware-virtualization MSRs.
1946 *
1947 * @returns VBox status code.
1948 * @param pMsrs Where to store the MSRs.
1949 */
1950static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs)
1951{
1952 Assert(pMsrs);
1953
1954 uint32_t fCaps = 0;
1955 int rc = SUPR3QueryVTCaps(&fCaps);
1956 if (RT_SUCCESS(rc))
1957 {
1958 if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V))
1959 {
1960 SUPHWVIRTMSRS HwvirtMsrs;
1961 rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */);
1962 if (RT_SUCCESS(rc))
1963 {
1964 if (fCaps & SUPVTCAPS_VT_X)
1965 HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.vmx);
1966 else
1967 HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.svm);
1968 return VINF_SUCCESS;
1969 }
1970
1971 LogRel(("CPUM: Querying hardware-virtualization MSRs failed. rc=%Rrc\n", rc));
1972 return rc;
1973 }
1974
1975 LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n"));
1976 return VERR_INTERNAL_ERROR_5;
1977 }
1978 LogRel(("CPUM: No hardware-virtualization capability detected\n"));
1979 return VINF_SUCCESS;
1980}
1981
1982
1983/**
1984 * @callback_method_impl{FNTMTIMERINT,
1985 * Callback that fires when the nested VMX-preemption timer expired.}
1986 */
1987static DECLCALLBACK(void) cpumR3VmxPreemptTimerCallback(PVM pVM, TMTIMERHANDLE hTimer, void *pvUser)
1988{
1989 RT_NOREF(pVM, hTimer);
1990 PVMCPU pVCpu = (PVMCPUR3)pvUser;
1991 AssertPtr(pVCpu);
1992 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
1993}
1994
1995
1996/**
1997 * Initializes the CPUM.
1998 *
1999 * @returns VBox status code.
2000 * @param pVM The cross context VM structure.
2001 */
2002VMMR3DECL(int) CPUMR3Init(PVM pVM)
2003{
2004 LogFlow(("CPUMR3Init\n"));
2005
2006 /*
2007 * Assert alignment, sizes and tables.
2008 */
2009 AssertCompileMemberAlignment(VM, cpum.s, 32);
2010 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
2011 AssertCompileSizeAlignment(CPUMCTX, 64);
2012 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
2013 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
2014 AssertCompileMemberAlignment(VM, cpum, 64);
2015 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
2016#ifdef VBOX_STRICT
2017 int rc2 = cpumR3MsrStrictInitChecks();
2018 AssertRCReturn(rc2, rc2);
2019#endif
2020
2021 /*
2022 * Gather info about the host CPU.
2023 */
2024#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2025 if (!ASMHasCpuId())
2026 {
2027 LogRel(("The CPU doesn't support CPUID!\n"));
2028 return VERR_UNSUPPORTED_CPU;
2029 }
2030
2031 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
2032#endif
2033
2034 CPUMMSRS HostMsrs;
2035 RT_ZERO(HostMsrs);
2036 int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs);
2037 AssertLogRelRCReturn(rc, rc);
2038
2039#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2040 PCPUMCPUIDLEAF paLeaves;
2041 uint32_t cLeaves;
2042 rc = CPUMCpuIdCollectLeavesX86(&paLeaves, &cLeaves);
2043 AssertLogRelRCReturn(rc, rc);
2044
2045 rc = cpumCpuIdExplodeFeaturesX86(paLeaves, cLeaves, &HostMsrs, &g_CpumHostFeatures.s);
2046 RTMemFree(paLeaves);
2047 AssertLogRelRCReturn(rc, rc);
2048 pVM->cpum.s.HostFeatures = g_CpumHostFeatures.s;
2049 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
2050#endif
2051
2052 /*
2053 * Check that the CPU supports the minimum features we require.
2054 */
2055#if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
2056 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
2057 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
2058 if (!pVM->cpum.s.HostFeatures.fMmx)
2059 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
2060 if (!pVM->cpum.s.HostFeatures.fTsc)
2061 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
2062#endif
2063
2064 /*
2065 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
2066 */
2067 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
2068 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
2069
2070 /*
2071 * Figure out which XSAVE/XRSTOR features are available on the host.
2072 */
2073 uint64_t fXcr0Host = 0;
2074 uint64_t fXStateHostMask = 0;
2075#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2076 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
2077 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
2078 {
2079 fXStateHostMask = fXcr0Host = ASMGetXcr0();
2080 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
2081 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
2082 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
2083 }
2084#endif
2085 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
2086 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
2087 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
2088
2089 /*
2090 * Initialize the host XSAVE/XRSTOR mask.
2091 */
2092#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2093 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
2094 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
2095 AssertLogRelReturn( pVM->cpum.s.HostFeatures.cbMaxExtendedState >= sizeof(X86FXSTATE)
2096 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Host.XState)
2097 && pVM->cpum.s.HostFeatures.cbMaxExtendedState <= sizeof(pVM->apCpusR3[0]->cpum.s.Guest.XState)
2098 , VERR_CPUM_IPE_2);
2099#endif
2100
2101 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2102 {
2103 PVMCPU pVCpu = pVM->apCpusR3[i];
2104
2105 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
2106 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2107 }
2108
2109 /*
2110 * Register saved state data item.
2111 */
2112 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
2113 NULL, cpumR3LiveExec, NULL,
2114 NULL, cpumR3SaveExec, NULL,
2115 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
2116 if (RT_FAILURE(rc))
2117 return rc;
2118
2119 /*
2120 * Register info handlers and registers with the debugger facility.
2121 */
2122 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
2123 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
2124 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
2125 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
2126 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
2127 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
2128 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
2129 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
2130 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
2131 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
2132 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
2133 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
2134 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.",
2135 &cpumR3CpuIdInfo);
2136 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
2137 &cpumR3InfoVmxFeatures);
2138
2139 rc = cpumR3DbgInit(pVM);
2140 if (RT_FAILURE(rc))
2141 return rc;
2142
2143#if defined(RT_ARCH_X86) || defined(RT_ARCH_AMD64)
2144 /*
2145 * Check if we need to workaround partial/leaky FPU handling.
2146 */
2147 cpumR3CheckLeakyFpu(pVM);
2148#endif
2149
2150 /*
2151 * Initialize the Guest CPUID and MSR states.
2152 */
2153 rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs);
2154 if (RT_FAILURE(rc))
2155 return rc;
2156
2157 /*
2158 * Init the VMX/SVM state.
2159 *
2160 * This must be done after initializing CPUID/MSR features as we access the
2161 * the VMX/SVM guest features below.
2162 *
2163 * In the case of nested VT-x, we also need to create the per-VCPU
2164 * VMX preemption timers.
2165 */
2166 if (pVM->cpum.s.GuestFeatures.fVmx)
2167 cpumR3InitVmxHwVirtState(pVM);
2168 else if (pVM->cpum.s.GuestFeatures.fSvm)
2169 cpumR3InitSvmHwVirtState(pVM);
2170 else
2171 Assert(pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
2172
2173 CPUMR3Reset(pVM);
2174 return VINF_SUCCESS;
2175}
2176
2177
2178/**
2179 * Applies relocations to data and code managed by this
2180 * component. This function will be called at init and
2181 * whenever the VMM need to relocate it self inside the GC.
2182 *
2183 * The CPUM will update the addresses used by the switcher.
2184 *
2185 * @param pVM The cross context VM structure.
2186 */
2187VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
2188{
2189 RT_NOREF(pVM);
2190}
2191
2192
2193/**
2194 * Terminates the CPUM.
2195 *
2196 * Termination means cleaning up and freeing all resources,
2197 * the VM it self is at this point powered off or suspended.
2198 *
2199 * @returns VBox status code.
2200 * @param pVM The cross context VM structure.
2201 */
2202VMMR3DECL(int) CPUMR3Term(PVM pVM)
2203{
2204#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2205 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2206 {
2207 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2208 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
2209 pVCpu->cpum.s.uMagic = 0;
2210 pvCpu->cpum.s.Guest.dr[5] = 0;
2211 }
2212#endif
2213
2214 if (pVM->cpum.s.GuestFeatures.fVmx)
2215 {
2216 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2217 {
2218 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2219 if (pVCpu->cpum.s.hNestedVmxPreemptTimer != NIL_TMTIMERHANDLE)
2220 {
2221 int rc = TMR3TimerDestroy(pVM, pVCpu->cpum.s.hNestedVmxPreemptTimer); AssertRC(rc);
2222 pVCpu->cpum.s.hNestedVmxPreemptTimer = NIL_TMTIMERHANDLE;
2223 }
2224 }
2225 }
2226 return VINF_SUCCESS;
2227}
2228
2229
2230/**
2231 * Resets a virtual CPU.
2232 *
2233 * Used by CPUMR3Reset and CPU hot plugging.
2234 *
2235 * @param pVM The cross context VM structure.
2236 * @param pVCpu The cross context virtual CPU structure of the CPU that is
2237 * being reset. This may differ from the current EMT.
2238 */
2239VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2240{
2241 /** @todo anything different for VCPU > 0? */
2242 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2243
2244 /*
2245 * Initialize everything to ZERO first.
2246 */
2247 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
2248
2249 RT_BZERO(pCtx, RT_UOFFSETOF(CPUMCTX, aoffXState));
2250
2251 pVCpu->cpum.s.fUseFlags = fUseFlags;
2252
2253 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
2254 pCtx->eip = 0x0000fff0;
2255 pCtx->edx = 0x00000600; /* P6 processor */
2256 pCtx->eflags.Bits.u1Reserved0 = 1;
2257
2258 pCtx->cs.Sel = 0xf000;
2259 pCtx->cs.ValidSel = 0xf000;
2260 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2261 pCtx->cs.u64Base = UINT64_C(0xffff0000);
2262 pCtx->cs.u32Limit = 0x0000ffff;
2263 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
2264 pCtx->cs.Attr.n.u1Present = 1;
2265 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
2266
2267 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
2268 pCtx->ds.u32Limit = 0x0000ffff;
2269 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
2270 pCtx->ds.Attr.n.u1Present = 1;
2271 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2272
2273 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
2274 pCtx->es.u32Limit = 0x0000ffff;
2275 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
2276 pCtx->es.Attr.n.u1Present = 1;
2277 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2278
2279 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
2280 pCtx->fs.u32Limit = 0x0000ffff;
2281 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
2282 pCtx->fs.Attr.n.u1Present = 1;
2283 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2284
2285 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
2286 pCtx->gs.u32Limit = 0x0000ffff;
2287 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
2288 pCtx->gs.Attr.n.u1Present = 1;
2289 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2290
2291 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2292 pCtx->ss.u32Limit = 0x0000ffff;
2293 pCtx->ss.Attr.n.u1Present = 1;
2294 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
2295 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2296
2297 pCtx->idtr.cbIdt = 0xffff;
2298 pCtx->gdtr.cbGdt = 0xffff;
2299
2300 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2301 pCtx->ldtr.u32Limit = 0xffff;
2302 pCtx->ldtr.Attr.n.u1Present = 1;
2303 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
2304
2305 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2306 pCtx->tr.u32Limit = 0xffff;
2307 pCtx->tr.Attr.n.u1Present = 1;
2308 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
2309
2310 pCtx->dr[6] = X86_DR6_INIT_VAL;
2311 pCtx->dr[7] = X86_DR7_INIT_VAL;
2312
2313 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
2314 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
2315 pFpuCtx->FCW = 0x37f;
2316
2317 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
2318 IA-32 Processor States Following Power-up, Reset, or INIT */
2319 pFpuCtx->MXCSR = 0x1F80;
2320 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
2321
2322 pCtx->aXcr[0] = XSAVE_C_X87;
2323 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
2324 {
2325 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
2326 as we don't know what happened before. (Bother optimize later?) */
2327 pCtx->XState.Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
2328 }
2329
2330 /*
2331 * MSRs.
2332 */
2333 /* Init PAT MSR */
2334 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
2335
2336 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
2337 * The Intel docs don't mention it. */
2338 Assert(!pCtx->msrEFER);
2339
2340 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
2341 is supposed to be here, just trying provide useful/sensible values. */
2342 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
2343 if (pRange)
2344 {
2345 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2346 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
2347 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
2348 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
2349 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2350 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
2351 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
2352 }
2353
2354 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
2355
2356 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
2357 * called from each EMT while we're getting called by CPUMR3Reset()
2358 * iteratively on the same thread. Fix later. */
2359#if 0 /** @todo r=bird: This we will do in TM, not here. */
2360 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
2361 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
2362#endif
2363
2364
2365 /* C-state control. Guesses. */
2366 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
2367 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
2368 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
2369 * functionality. The default value must be different due to incompatible write mask.
2370 */
2371 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
2372 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
2373 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
2374 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
2375
2376 /*
2377 * Hardware virtualization state.
2378 */
2379 CPUMSetGuestGif(pCtx, true);
2380 Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
2381 if (pVM->cpum.s.GuestFeatures.fVmx)
2382 cpumR3ResetVmxHwVirtState(pVCpu);
2383 else if (pVM->cpum.s.GuestFeatures.fSvm)
2384 cpumR3ResetSvmHwVirtState(pVCpu);
2385}
2386
2387
2388/**
2389 * Resets the CPU.
2390 *
2391 * @returns VINF_SUCCESS.
2392 * @param pVM The cross context VM structure.
2393 */
2394VMMR3DECL(void) CPUMR3Reset(PVM pVM)
2395{
2396 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2397 {
2398 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2399 CPUMR3ResetCpu(pVM, pVCpu);
2400
2401#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2402
2403 /* Magic marker for searching in crash dumps. */
2404 strcpy((char *)pVCpu->.cpum.s.aMagic, "CPUMCPU Magic");
2405 pVCpu->cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2406 pVCpu->cpum.s.Guest->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
2407#endif
2408 }
2409}
2410
2411
2412
2413
2414/**
2415 * Pass 0 live exec callback.
2416 *
2417 * @returns VINF_SSM_DONT_CALL_AGAIN.
2418 * @param pVM The cross context VM structure.
2419 * @param pSSM The saved state handle.
2420 * @param uPass The pass (0).
2421 */
2422static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2423{
2424 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2425 cpumR3SaveCpuId(pVM, pSSM);
2426 return VINF_SSM_DONT_CALL_AGAIN;
2427}
2428
2429
2430/**
2431 * Execute state save operation.
2432 *
2433 * @returns VBox status code.
2434 * @param pVM The cross context VM structure.
2435 * @param pSSM SSM operation handle.
2436 */
2437static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2438{
2439 /*
2440 * Save.
2441 */
2442 SSMR3PutU32(pSSM, pVM->cCpus);
2443 SSMR3PutU32(pSSM, sizeof(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr));
2444 CPUMCTX DummyHyperCtx;
2445 RT_ZERO(DummyHyperCtx);
2446 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2447 {
2448 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2449
2450 SSMR3PutStructEx(pSSM, &DummyHyperCtx, sizeof(DummyHyperCtx), 0, g_aCpumCtxFields, NULL);
2451
2452 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2453 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2454 SSMR3PutStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2455 if (pGstCtx->fXStateMask != 0)
2456 SSMR3PutStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2457 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2458 {
2459 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2460 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2461 }
2462 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2463 {
2464 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2465 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2466 }
2467 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2468 {
2469 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2470 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2471 }
2472 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2473 {
2474 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2475 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2476 }
2477 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2478 {
2479 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2480 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2481 }
2482 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[0].u);
2483 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[1].u);
2484 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[2].u);
2485 SSMR3PutU64(pSSM, pGstCtx->aPaePdpes[3].u);
2486 if (pVM->cpum.s.GuestFeatures.fSvm)
2487 {
2488 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2489 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2490 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2491 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2492 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2493 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2494 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2495 g_aSvmHwvirtHostState, NULL /* pvUser */);
2496 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2497 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2498 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2499 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
2500 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2501 }
2502 if (pVM->cpum.s.GuestFeatures.fVmx)
2503 {
2504 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmxon);
2505 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmcs);
2506 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2507 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxRootMode);
2508 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2509 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInterceptEvents);
2510 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2511 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs), 0, g_aVmxHwvirtVmcs, NULL);
2512 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs),
2513 0, g_aVmxHwvirtVmcs, NULL);
2514 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap));
2515 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap));
2516 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea));
2517 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea));
2518 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea));
2519 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abMsrBitmap));
2520 SSMR3PutMem(pSSM, &pGstCtx->hwvirt.vmx.abIoBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abIoBitmap));
2521 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2522 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uPrevPauseTick);
2523 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uEntryTick);
2524 SSMR3PutU16(pSSM, pGstCtx->hwvirt.vmx.offVirtApicWrite);
2525 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2526 SSMR3PutU64(pSSM, MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON); /* Deprecated since 2021/09/22. Value kept backwards compatibile with 6.1.26. */
2527 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2528 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2529 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2530 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2531 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2532 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2533 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2534 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2535 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2536 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2537 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2538 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2539 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2540 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2541 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2542 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2543 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2544 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2545 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2546 }
2547 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2548 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2549 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2550 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2551 }
2552
2553 cpumR3SaveCpuId(pVM, pSSM);
2554 return VINF_SUCCESS;
2555}
2556
2557
2558/**
2559 * @callback_method_impl{FNSSMINTLOADPREP}
2560 */
2561static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2562{
2563 NOREF(pSSM);
2564 pVM->cpum.s.fPendingRestore = true;
2565 return VINF_SUCCESS;
2566}
2567
2568
2569/**
2570 * @callback_method_impl{FNSSMINTLOADEXEC}
2571 */
2572static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2573{
2574 int rc; /* Only for AssertRCReturn use. */
2575
2576 /*
2577 * Validate version.
2578 */
2579 if ( uVersion != CPUM_SAVED_STATE_VERSION_PAE_PDPES
2580 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2
2581 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX
2582 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2583 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2584 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2585 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2586 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2587 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2588 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2589 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2590 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2591 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2592 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2593 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2594 {
2595 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2596 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2597 }
2598
2599 if (uPass == SSM_PASS_FINAL)
2600 {
2601 /*
2602 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2603 * really old SSM file versions.)
2604 */
2605 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2606 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2607 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2608 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR));
2609
2610 /*
2611 * Figure x86 and ctx field definitions to use for older states.
2612 */
2613 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2614 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2615 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2616 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2617 {
2618 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2619 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2620 }
2621 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2622 {
2623 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2624 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2625 }
2626
2627 /*
2628 * The hyper state used to preceed the CPU count. Starting with
2629 * XSAVE it was moved down till after we've got the count.
2630 */
2631 CPUMCTX HyperCtxIgnored;
2632 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2633 {
2634 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2635 {
2636 X86FXSTATE Ign;
2637 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2638 SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored),
2639 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2640 }
2641 }
2642
2643 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2644 {
2645 uint32_t cCpus;
2646 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2647 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2648 VERR_SSM_UNEXPECTED_DATA);
2649 }
2650 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2651 || pVM->cCpus == 1,
2652 ("cCpus=%u\n", pVM->cCpus),
2653 VERR_SSM_UNEXPECTED_DATA);
2654
2655 uint32_t cbMsrs = 0;
2656 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2657 {
2658 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2659 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2660 VERR_SSM_UNEXPECTED_DATA);
2661 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2662 VERR_SSM_UNEXPECTED_DATA);
2663 }
2664
2665 /*
2666 * Do the per-CPU restoring.
2667 */
2668 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2669 {
2670 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2671 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2672
2673 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2674 {
2675 /*
2676 * The XSAVE saved state layout moved the hyper state down here.
2677 */
2678 rc = SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored), 0, g_aCpumCtxFields, NULL);
2679 AssertRCReturn(rc, rc);
2680
2681 /*
2682 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2683 */
2684 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2685 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87), 0, g_aCpumX87Fields, NULL);
2686 AssertRCReturn(rc, rc);
2687
2688 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2689 if (pGstCtx->fXStateMask != 0)
2690 {
2691 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2692 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2693 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2694 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2695 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2696 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2697 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2698 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2699 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2700 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2701 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2702 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2703 }
2704
2705 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2706 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2707 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2708 {
2709 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2710 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2711 VERR_CPUM_INVALID_XCR0);
2712 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2713 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2714 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2715 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2716 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2717 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2718 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2719 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2720 }
2721
2722 /* Check that the XCR1 is zero, as we don't implement it yet. */
2723 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2724
2725 /*
2726 * Restore the individual extended state components we support.
2727 */
2728 if (pGstCtx->fXStateMask != 0)
2729 {
2730 rc = SSMR3GetStructEx(pSSM, &pGstCtx->XState.Hdr, sizeof(pGstCtx->XState.Hdr),
2731 0, g_aCpumXSaveHdrFields, NULL);
2732 AssertRCReturn(rc, rc);
2733 AssertLogRelMsgReturn(!(pGstCtx->XState.Hdr.bmXState & ~pGstCtx->fXStateMask),
2734 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2735 pGstCtx->XState.Hdr.bmXState, pGstCtx->fXStateMask),
2736 VERR_CPUM_INVALID_XSAVE_HDR);
2737 }
2738 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2739 {
2740 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2741 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2742 }
2743 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2744 {
2745 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2746 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2747 }
2748 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2749 {
2750 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2751 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2752 }
2753 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2754 {
2755 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2756 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2757 }
2758 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2759 {
2760 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2761 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2762 }
2763 if (uVersion >= CPUM_SAVED_STATE_VERSION_PAE_PDPES)
2764 {
2765 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[0].u);
2766 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[1].u);
2767 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[2].u);
2768 SSMR3GetU64(pSSM, &pGstCtx->aPaePdpes[3].u);
2769 }
2770 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2771 {
2772 if (pVM->cpum.s.GuestFeatures.fSvm)
2773 {
2774 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2775 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2776 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2777 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2778 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2779 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2780 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2781 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2782 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.Vmcb, sizeof(pGstCtx->hwvirt.svm.Vmcb));
2783 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.svm.abMsrBitmap));
2784 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.svm.abIoBitmap[0], sizeof(pGstCtx->hwvirt.svm.abIoBitmap));
2785 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2786 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2787 }
2788 }
2789 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX)
2790 {
2791 if (pVM->cpum.s.GuestFeatures.fVmx)
2792 {
2793 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmxon);
2794 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmcs);
2795 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2796 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxRootMode);
2797 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2798 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInterceptEvents);
2799 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2800 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.Vmcs, sizeof(pGstCtx->hwvirt.vmx.Vmcs),
2801 0, g_aVmxHwvirtVmcs, NULL);
2802 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.vmx.ShadowVmcs, sizeof(pGstCtx->hwvirt.vmx.ShadowVmcs),
2803 0, g_aVmxHwvirtVmcs, NULL);
2804 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmreadBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmreadBitmap));
2805 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abVmwriteBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abVmwriteBitmap));
2806 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aEntryMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aEntryMsrLoadArea));
2807 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrStoreArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrStoreArea));
2808 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.aExitMsrLoadArea[0], sizeof(pGstCtx->hwvirt.vmx.aExitMsrLoadArea));
2809 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abMsrBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abMsrBitmap));
2810 SSMR3GetMem(pSSM, &pGstCtx->hwvirt.vmx.abIoBitmap[0], sizeof(pGstCtx->hwvirt.vmx.abIoBitmap));
2811 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2812 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uPrevPauseTick);
2813 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uEntryTick);
2814 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.vmx.offVirtApicWrite);
2815 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2816 SSMR3Skip(pSSM, sizeof(uint64_t)); /* Unused - used to be IA32_FEATURE_CONTROL, see @bugref{10106}. */
2817 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2818 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2819 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2820 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2821 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2822 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2823 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2824 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2825 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2826 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2827 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2828 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2829 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2830 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2831 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2832 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2833 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2834 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2835 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_2)
2836 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64ProcCtls3);
2837 }
2838 }
2839 }
2840 else
2841 {
2842 /*
2843 * Pre XSAVE saved state.
2844 */
2845 SSMR3GetStructEx(pSSM, &pGstCtx->XState.x87, sizeof(pGstCtx->XState.x87),
2846 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2847 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2848 }
2849
2850 /*
2851 * Restore a couple of flags and the MSRs.
2852 */
2853 uint32_t fIgnoredUsedFlags = 0;
2854 rc = SSMR3GetU32(pSSM, &fIgnoredUsedFlags); /* we're recalc the two relevant flags after loading state. */
2855 AssertRCReturn(rc, rc);
2856 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2857
2858 rc = VINF_SUCCESS;
2859 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2860 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2861 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2862 {
2863 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2864 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2865 }
2866 AssertRCReturn(rc, rc);
2867
2868 /* REM and other may have cleared must-be-one fields in DR6 and
2869 DR7, fix these. */
2870 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2871 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2872 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2873 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2874 }
2875
2876 /* Older states does not have the internal selector register flags
2877 and valid selector value. Supply those. */
2878 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2879 {
2880 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2881 {
2882 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2883 bool const fValid = true /*!VM_IS_RAW_MODE_ENABLED(pVM)*/
2884 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2885 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2886 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2887 if (fValid)
2888 {
2889 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2890 {
2891 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2892 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2893 }
2894
2895 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2896 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2897 }
2898 else
2899 {
2900 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2901 {
2902 paSelReg[iSelReg].fFlags = 0;
2903 paSelReg[iSelReg].ValidSel = 0;
2904 }
2905
2906 /* This might not be 104% correct, but I think it's close
2907 enough for all practical purposes... (REM always loaded
2908 LDTR registers.) */
2909 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2910 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2911 }
2912 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2913 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2914 }
2915 }
2916
2917 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2918 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2919 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2920 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2921 {
2922 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2923 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2924 }
2925
2926 /*
2927 * A quick sanity check.
2928 */
2929 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2930 {
2931 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2932 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2933 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2934 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2935 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2936 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2937 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2938 }
2939 }
2940
2941 pVM->cpum.s.fPendingRestore = false;
2942
2943 /*
2944 * Guest CPUIDs (and VMX MSR features).
2945 */
2946 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
2947 {
2948 CPUMMSRS GuestMsrs;
2949 RT_ZERO(GuestMsrs);
2950
2951 CPUMFEATURES BaseFeatures;
2952 bool const fVmxGstFeat = pVM->cpum.s.GuestFeatures.fVmx;
2953 if (fVmxGstFeat)
2954 {
2955 /*
2956 * At this point the MSRs in the guest CPU-context are loaded with the guest VMX MSRs from the saved state.
2957 * However the VMX sub-features have not been exploded yet. So cache the base (host derived) VMX features
2958 * here so we can compare them for compatibility after exploding guest features.
2959 */
2960 BaseFeatures = pVM->cpum.s.GuestFeatures;
2961
2962 /* Use the VMX MSR features from the saved state while exploding guest features. */
2963 GuestMsrs.hwvirt.vmx = pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.vmx.Msrs;
2964 }
2965
2966 /* Load CPUID and explode guest features. */
2967 rc = cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs);
2968 if (fVmxGstFeat)
2969 {
2970 /*
2971 * Check if the exploded VMX features from the saved state are compatible with the host-derived features
2972 * we cached earlier (above). The is required if we use hardware-assisted nested-guest execution with
2973 * VMX features presented to the guest.
2974 */
2975 bool const fIsCompat = cpumR3AreVmxCpuFeaturesCompatible(pVM, &BaseFeatures, &pVM->cpum.s.GuestFeatures);
2976 if (!fIsCompat)
2977 return VERR_CPUM_INVALID_HWVIRT_FEAT_COMBO;
2978 }
2979 return rc;
2980 }
2981 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
2982}
2983
2984
2985/**
2986 * @callback_method_impl{FNSSMINTLOADDONE}
2987 */
2988static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2989{
2990 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2991 return VINF_SUCCESS;
2992
2993 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2994 if (pVM->cpum.s.fPendingRestore)
2995 {
2996 LogRel(("CPUM: Missing state!\n"));
2997 return VERR_INTERNAL_ERROR_2;
2998 }
2999
3000 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3001 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3002 {
3003 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3004
3005 /* Notify PGM of the NXE states in case they've changed. */
3006 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
3007
3008 /* During init. this is done in CPUMR3InitCompleted(). */
3009 if (fSupportsLongMode)
3010 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3011
3012 /* Recalc the CPUM_USE_DEBUG_REGS_HYPER value. */
3013 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX);
3014 }
3015 return VINF_SUCCESS;
3016}
3017
3018
3019/**
3020 * Checks if the CPUM state restore is still pending.
3021 *
3022 * @returns true / false.
3023 * @param pVM The cross context VM structure.
3024 */
3025VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
3026{
3027 return pVM->cpum.s.fPendingRestore;
3028}
3029
3030
3031/**
3032 * Formats the EFLAGS value into mnemonics.
3033 *
3034 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
3035 * @param efl The EFLAGS value.
3036 */
3037static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
3038{
3039 /*
3040 * Format the flags.
3041 */
3042 static const struct
3043 {
3044 const char *pszSet; const char *pszClear; uint32_t fFlag;
3045 } s_aFlags[] =
3046 {
3047 { "vip",NULL, X86_EFL_VIP },
3048 { "vif",NULL, X86_EFL_VIF },
3049 { "ac", NULL, X86_EFL_AC },
3050 { "vm", NULL, X86_EFL_VM },
3051 { "rf", NULL, X86_EFL_RF },
3052 { "nt", NULL, X86_EFL_NT },
3053 { "ov", "nv", X86_EFL_OF },
3054 { "dn", "up", X86_EFL_DF },
3055 { "ei", "di", X86_EFL_IF },
3056 { "tf", NULL, X86_EFL_TF },
3057 { "nt", "pl", X86_EFL_SF },
3058 { "nz", "zr", X86_EFL_ZF },
3059 { "ac", "na", X86_EFL_AF },
3060 { "po", "pe", X86_EFL_PF },
3061 { "cy", "nc", X86_EFL_CF },
3062 };
3063 char *psz = pszEFlags;
3064 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
3065 {
3066 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
3067 if (pszAdd)
3068 {
3069 strcpy(psz, pszAdd);
3070 psz += strlen(pszAdd);
3071 *psz++ = ' ';
3072 }
3073 }
3074 psz[-1] = '\0';
3075}
3076
3077
3078/**
3079 * Formats a full register dump.
3080 *
3081 * @param pVM The cross context VM structure.
3082 * @param pCtx The context to format.
3083 * @param pCtxCore The context core to format.
3084 * @param pHlp Output functions.
3085 * @param enmType The dump type.
3086 * @param pszPrefix Register name prefix.
3087 */
3088static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
3089 const char *pszPrefix)
3090{
3091 NOREF(pVM);
3092
3093 /*
3094 * Format the EFLAGS.
3095 */
3096 uint32_t efl = pCtxCore->eflags.u32;
3097 char szEFlags[80];
3098 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3099
3100 /*
3101 * Format the registers.
3102 */
3103 switch (enmType)
3104 {
3105 case CPUMDUMPTYPE_TERSE:
3106 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3107 pHlp->pfnPrintf(pHlp,
3108 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3109 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3110 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3111 "%sr14=%016RX64 %sr15=%016RX64\n"
3112 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3113 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3114 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3115 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3116 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3117 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3118 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3119 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3120 else
3121 pHlp->pfnPrintf(pHlp,
3122 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3123 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3124 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3125 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3126 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3127 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3128 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3129 break;
3130
3131 case CPUMDUMPTYPE_DEFAULT:
3132 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3133 pHlp->pfnPrintf(pHlp,
3134 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3135 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3136 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3137 "%sr14=%016RX64 %sr15=%016RX64\n"
3138 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3139 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3140 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
3141 ,
3142 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3143 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3144 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3145 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3146 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3147 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3148 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3149 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3150 else
3151 pHlp->pfnPrintf(pHlp,
3152 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3153 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3154 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3155 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
3156 ,
3157 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3158 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3159 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3160 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3161 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3162 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3163 break;
3164
3165 case CPUMDUMPTYPE_VERBOSE:
3166 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3167 pHlp->pfnPrintf(pHlp,
3168 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3169 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3170 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3171 "%sr14=%016RX64 %sr15=%016RX64\n"
3172 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3173 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3174 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3175 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3176 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3177 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3178 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3179 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
3180 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
3181 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
3182 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3183 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3184 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3185 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
3186 ,
3187 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3188 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3189 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3190 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3191 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
3192 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
3193 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
3194 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
3195 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
3196 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
3197 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3198 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3199 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3200 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3201 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3202 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3203 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3204 else
3205 pHlp->pfnPrintf(pHlp,
3206 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3207 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3208 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
3209 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
3210 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
3211 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
3212 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
3213 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
3214 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3215 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3216 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3217 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
3218 ,
3219 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3220 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3221 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
3222 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3223 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
3224 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3225 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
3226 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3227 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3228 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3229 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3230 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3231
3232 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
3233 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
3234 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
3235 {
3236 PX86FXSTATE pFpuCtx = &pCtx->XState.x87;
3237 pHlp->pfnPrintf(pHlp,
3238 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
3239 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
3240 ,
3241 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
3242 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
3243 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
3244 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
3245 );
3246 /*
3247 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
3248 * not (FP)R0-7 as Intel SDM suggests.
3249 */
3250 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
3251 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
3252 {
3253 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
3254 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
3255 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
3256 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
3257 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
3258 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
3259 iExponent -= 16383; /* subtract bias */
3260 /** @todo This isn't entirenly correct and needs more work! */
3261 pHlp->pfnPrintf(pHlp,
3262 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
3263 pszPrefix, iST, pszPrefix, iFPR,
3264 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
3265 uTag, chSign, iInteger, u64Fraction, iExponent);
3266 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
3267 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
3268 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
3269 else
3270 pHlp->pfnPrintf(pHlp, "\n");
3271 }
3272
3273 /* XMM/YMM/ZMM registers. */
3274 if (pCtx->fXStateMask & XSAVE_C_YMM)
3275 {
3276 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
3277 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
3278 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3279 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3280 pszPrefix, i, i < 10 ? " " : "",
3281 pYmmHiCtx->aYmmHi[i].au32[3],
3282 pYmmHiCtx->aYmmHi[i].au32[2],
3283 pYmmHiCtx->aYmmHi[i].au32[1],
3284 pYmmHiCtx->aYmmHi[i].au32[0],
3285 pFpuCtx->aXMM[i].au32[3],
3286 pFpuCtx->aXMM[i].au32[2],
3287 pFpuCtx->aXMM[i].au32[1],
3288 pFpuCtx->aXMM[i].au32[0]);
3289 else
3290 {
3291 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
3292 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3293 pHlp->pfnPrintf(pHlp,
3294 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3295 pszPrefix, i, i < 10 ? " " : "",
3296 pZmmHi256->aHi256Regs[i].au32[7],
3297 pZmmHi256->aHi256Regs[i].au32[6],
3298 pZmmHi256->aHi256Regs[i].au32[5],
3299 pZmmHi256->aHi256Regs[i].au32[4],
3300 pZmmHi256->aHi256Regs[i].au32[3],
3301 pZmmHi256->aHi256Regs[i].au32[2],
3302 pZmmHi256->aHi256Regs[i].au32[1],
3303 pZmmHi256->aHi256Regs[i].au32[0],
3304 pYmmHiCtx->aYmmHi[i].au32[3],
3305 pYmmHiCtx->aYmmHi[i].au32[2],
3306 pYmmHiCtx->aYmmHi[i].au32[1],
3307 pYmmHiCtx->aYmmHi[i].au32[0],
3308 pFpuCtx->aXMM[i].au32[3],
3309 pFpuCtx->aXMM[i].au32[2],
3310 pFpuCtx->aXMM[i].au32[1],
3311 pFpuCtx->aXMM[i].au32[0]);
3312
3313 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
3314 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
3315 pHlp->pfnPrintf(pHlp,
3316 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3317 pszPrefix, i + 16,
3318 pZmm16Hi->aRegs[i].au32[15],
3319 pZmm16Hi->aRegs[i].au32[14],
3320 pZmm16Hi->aRegs[i].au32[13],
3321 pZmm16Hi->aRegs[i].au32[12],
3322 pZmm16Hi->aRegs[i].au32[11],
3323 pZmm16Hi->aRegs[i].au32[10],
3324 pZmm16Hi->aRegs[i].au32[9],
3325 pZmm16Hi->aRegs[i].au32[8],
3326 pZmm16Hi->aRegs[i].au32[7],
3327 pZmm16Hi->aRegs[i].au32[6],
3328 pZmm16Hi->aRegs[i].au32[5],
3329 pZmm16Hi->aRegs[i].au32[4],
3330 pZmm16Hi->aRegs[i].au32[3],
3331 pZmm16Hi->aRegs[i].au32[2],
3332 pZmm16Hi->aRegs[i].au32[1],
3333 pZmm16Hi->aRegs[i].au32[0]);
3334 }
3335 }
3336 else
3337 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3338 pHlp->pfnPrintf(pHlp,
3339 i & 1
3340 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3341 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3342 pszPrefix, i, i < 10 ? " " : "",
3343 pFpuCtx->aXMM[i].au32[3],
3344 pFpuCtx->aXMM[i].au32[2],
3345 pFpuCtx->aXMM[i].au32[1],
3346 pFpuCtx->aXMM[i].au32[0]);
3347
3348 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
3349 {
3350 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
3351 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
3352 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
3353 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
3354 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
3355 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
3356 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
3357 }
3358
3359 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
3360 {
3361 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
3362 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
3363 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
3364 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
3365 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
3366 }
3367
3368 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
3369 {
3370 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
3371 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
3372 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
3373 }
3374
3375 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
3376 if (pFpuCtx->au32RsrvdRest[i])
3377 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
3378 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
3379 }
3380
3381 pHlp->pfnPrintf(pHlp,
3382 "%sEFER =%016RX64\n"
3383 "%sPAT =%016RX64\n"
3384 "%sSTAR =%016RX64\n"
3385 "%sCSTAR =%016RX64\n"
3386 "%sLSTAR =%016RX64\n"
3387 "%sSFMASK =%016RX64\n"
3388 "%sKERNELGSBASE =%016RX64\n",
3389 pszPrefix, pCtx->msrEFER,
3390 pszPrefix, pCtx->msrPAT,
3391 pszPrefix, pCtx->msrSTAR,
3392 pszPrefix, pCtx->msrCSTAR,
3393 pszPrefix, pCtx->msrLSTAR,
3394 pszPrefix, pCtx->msrSFMASK,
3395 pszPrefix, pCtx->msrKERNELGSBASE);
3396
3397 if (CPUMIsGuestInPAEModeEx(pCtx))
3398 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->aPaePdpes); i++)
3399 pHlp->pfnPrintf(pHlp, "%sPAE PDPTE %u =%016RX64\n", pszPrefix, i, pCtx->aPaePdpes[i]);
3400 break;
3401 }
3402}
3403
3404
3405/**
3406 * Display all cpu states and any other cpum info.
3407 *
3408 * @param pVM The cross context VM structure.
3409 * @param pHlp The info helper functions.
3410 * @param pszArgs Arguments, ignored.
3411 */
3412static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3413{
3414 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3415 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3416 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
3417 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3418 cpumR3InfoHost(pVM, pHlp, pszArgs);
3419}
3420
3421
3422/**
3423 * Parses the info argument.
3424 *
3425 * The argument starts with 'verbose', 'terse' or 'default' and then
3426 * continues with the comment string.
3427 *
3428 * @param pszArgs The pointer to the argument string.
3429 * @param penmType Where to store the dump type request.
3430 * @param ppszComment Where to store the pointer to the comment string.
3431 */
3432static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3433{
3434 if (!pszArgs)
3435 {
3436 *penmType = CPUMDUMPTYPE_DEFAULT;
3437 *ppszComment = "";
3438 }
3439 else
3440 {
3441 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3442 {
3443 pszArgs += 7;
3444 *penmType = CPUMDUMPTYPE_VERBOSE;
3445 }
3446 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3447 {
3448 pszArgs += 5;
3449 *penmType = CPUMDUMPTYPE_TERSE;
3450 }
3451 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3452 {
3453 pszArgs += 7;
3454 *penmType = CPUMDUMPTYPE_DEFAULT;
3455 }
3456 else
3457 *penmType = CPUMDUMPTYPE_DEFAULT;
3458 *ppszComment = RTStrStripL(pszArgs);
3459 }
3460}
3461
3462
3463/**
3464 * Display the guest cpu state.
3465 *
3466 * @param pVM The cross context VM structure.
3467 * @param pHlp The info helper functions.
3468 * @param pszArgs Arguments.
3469 */
3470static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3471{
3472 CPUMDUMPTYPE enmType;
3473 const char *pszComment;
3474 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3475
3476 PVMCPU pVCpu = VMMGetCpu(pVM);
3477 if (!pVCpu)
3478 pVCpu = pVM->apCpusR3[0];
3479
3480 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3481
3482 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3483 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
3484}
3485
3486
3487/**
3488 * Displays an SVM VMCB control area.
3489 *
3490 * @param pHlp The info helper functions.
3491 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
3492 * @param pszPrefix Caller specified string prefix.
3493 */
3494static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
3495{
3496 AssertReturnVoid(pHlp);
3497 AssertReturnVoid(pVmcbCtrl);
3498
3499 pHlp->pfnPrintf(pHlp, "%sCRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
3500 pHlp->pfnPrintf(pHlp, "%sCRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
3501 pHlp->pfnPrintf(pHlp, "%sDRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
3502 pHlp->pfnPrintf(pHlp, "%sDRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
3503 pHlp->pfnPrintf(pHlp, "%sException intercepts = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
3504 pHlp->pfnPrintf(pHlp, "%sControl intercepts = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
3505 pHlp->pfnPrintf(pHlp, "%sPause-filter threshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
3506 pHlp->pfnPrintf(pHlp, "%sPause-filter count = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
3507 pHlp->pfnPrintf(pHlp, "%sIOPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
3508 pHlp->pfnPrintf(pHlp, "%sMSRPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
3509 pHlp->pfnPrintf(pHlp, "%sTSC offset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
3510 pHlp->pfnPrintf(pHlp, "%sTLB Control\n", pszPrefix);
3511 pHlp->pfnPrintf(pHlp, " %sASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
3512 pHlp->pfnPrintf(pHlp, " %sTLB-flush type = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
3513 pHlp->pfnPrintf(pHlp, "%sInterrupt Control\n", pszPrefix);
3514 pHlp->pfnPrintf(pHlp, " %sVTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
3515 pHlp->pfnPrintf(pHlp, " %sVIRQ (Pending) = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
3516 pHlp->pfnPrintf(pHlp, " %sVINTR vector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
3517 pHlp->pfnPrintf(pHlp, " %sVGIF = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
3518 pHlp->pfnPrintf(pHlp, " %sVINTR priority = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
3519 pHlp->pfnPrintf(pHlp, " %sIgnore TPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
3520 pHlp->pfnPrintf(pHlp, " %sVINTR masking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
3521 pHlp->pfnPrintf(pHlp, " %sVGIF enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
3522 pHlp->pfnPrintf(pHlp, " %sAVIC enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
3523 pHlp->pfnPrintf(pHlp, "%sInterrupt Shadow\n", pszPrefix);
3524 pHlp->pfnPrintf(pHlp, " %sInterrupt shadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
3525 pHlp->pfnPrintf(pHlp, " %sGuest-interrupt Mask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
3526 pHlp->pfnPrintf(pHlp, "%sExit Code = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
3527 pHlp->pfnPrintf(pHlp, "%sEXITINFO1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
3528 pHlp->pfnPrintf(pHlp, "%sEXITINFO2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
3529 pHlp->pfnPrintf(pHlp, "%sExit Interrupt Info\n", pszPrefix);
3530 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
3531 pHlp->pfnPrintf(pHlp, " %sVector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
3532 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
3533 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
3534 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
3535 pHlp->pfnPrintf(pHlp, "%sNested paging and SEV\n", pszPrefix);
3536 pHlp->pfnPrintf(pHlp, " %sNested paging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
3537 pHlp->pfnPrintf(pHlp, " %sSEV (Secure Encrypted VM) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
3538 pHlp->pfnPrintf(pHlp, " %sSEV-ES (Encrypted State) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
3539 pHlp->pfnPrintf(pHlp, "%sEvent Inject\n", pszPrefix);
3540 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
3541 pHlp->pfnPrintf(pHlp, " %sVector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
3542 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
3543 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
3544 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
3545 pHlp->pfnPrintf(pHlp, "%sNested-paging CR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
3546 pHlp->pfnPrintf(pHlp, "%sLBR Virtualization\n", pszPrefix);
3547 pHlp->pfnPrintf(pHlp, " %sLBR virt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
3548 pHlp->pfnPrintf(pHlp, " %sVirt. VMSAVE/VMLOAD = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
3549 pHlp->pfnPrintf(pHlp, "%sVMCB Clean Bits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
3550 pHlp->pfnPrintf(pHlp, "%sNext-RIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
3551 pHlp->pfnPrintf(pHlp, "%sInstruction bytes fetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
3552 pHlp->pfnPrintf(pHlp, "%sInstruction bytes = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
3553 pHlp->pfnPrintf(pHlp, "%sAVIC\n", pszPrefix);
3554 pHlp->pfnPrintf(pHlp, " %sBar addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
3555 pHlp->pfnPrintf(pHlp, " %sBacking page addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
3556 pHlp->pfnPrintf(pHlp, " %sLogical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
3557 pHlp->pfnPrintf(pHlp, " %sPhysical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
3558 pHlp->pfnPrintf(pHlp, " %sLast guest core Id = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
3559}
3560
3561
3562/**
3563 * Helper for dumping the SVM VMCB selector registers.
3564 *
3565 * @param pHlp The info helper functions.
3566 * @param pSel Pointer to the SVM selector register.
3567 * @param pszName Name of the selector.
3568 * @param pszPrefix Caller specified string prefix.
3569 */
3570DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3571{
3572 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3573 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3574 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3575}
3576
3577
3578/**
3579 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3580 *
3581 * @param pHlp The info helper functions.
3582 * @param pXdtr Pointer to the descriptor table register.
3583 * @param pszName Name of the descriptor table register.
3584 * @param pszPrefix Caller specified string prefix.
3585 */
3586DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3587{
3588 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3589 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3590}
3591
3592
3593/**
3594 * Displays an SVM VMCB state-save area.
3595 *
3596 * @param pHlp The info helper functions.
3597 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3598 * @param pszPrefix Caller specified string prefix.
3599 */
3600static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3601{
3602 AssertReturnVoid(pHlp);
3603 AssertReturnVoid(pVmcbStateSave);
3604
3605 char szEFlags[80];
3606 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3607
3608 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3609 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3610 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3611 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3612 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3613 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3614 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3615 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3616 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3617 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3618 pHlp->pfnPrintf(pHlp, "%sCPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3619 pHlp->pfnPrintf(pHlp, "%sEFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3620 pHlp->pfnPrintf(pHlp, "%sCR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3621 pHlp->pfnPrintf(pHlp, "%sCR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3622 pHlp->pfnPrintf(pHlp, "%sCR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3623 pHlp->pfnPrintf(pHlp, "%sDR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3624 pHlp->pfnPrintf(pHlp, "%sDR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3625 pHlp->pfnPrintf(pHlp, "%sRFLAGS = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3626 pHlp->pfnPrintf(pHlp, "%sRIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3627 pHlp->pfnPrintf(pHlp, "%sRSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3628 pHlp->pfnPrintf(pHlp, "%sRAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3629 pHlp->pfnPrintf(pHlp, "%sSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3630 pHlp->pfnPrintf(pHlp, "%sLSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3631 pHlp->pfnPrintf(pHlp, "%sCSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3632 pHlp->pfnPrintf(pHlp, "%sSFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3633 pHlp->pfnPrintf(pHlp, "%sKERNELGSBASE = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3634 pHlp->pfnPrintf(pHlp, "%sSysEnter CS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3635 pHlp->pfnPrintf(pHlp, "%sSysEnter EIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3636 pHlp->pfnPrintf(pHlp, "%sSysEnter ESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3637 pHlp->pfnPrintf(pHlp, "%sCR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3638 pHlp->pfnPrintf(pHlp, "%sPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3639 pHlp->pfnPrintf(pHlp, "%sDBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3640 pHlp->pfnPrintf(pHlp, "%sBR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3641 pHlp->pfnPrintf(pHlp, "%sBR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3642 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3643 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3644}
3645
3646
3647/**
3648 * Displays a virtual-VMCS.
3649 *
3650 * @param pVCpu The cross context virtual CPU structure.
3651 * @param pHlp The info helper functions.
3652 * @param pVmcs Pointer to a virtual VMCS.
3653 * @param pszPrefix Caller specified string prefix.
3654 */
3655static void cpumR3InfoVmxVmcs(PVMCPU pVCpu, PCDBGFINFOHLP pHlp, PCVMXVVMCS pVmcs, const char *pszPrefix)
3656{
3657 AssertReturnVoid(pHlp);
3658 AssertReturnVoid(pVmcs);
3659
3660 /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */
3661#define CPUMVMX_DUMP_HOST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3662 do { \
3663 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64}\n", \
3664 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u); \
3665 } while (0)
3666
3667#define CPUMVMX_DUMP_HOST_FS_GS_TR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3668 do { \
3669 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64}\n", \
3670 (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u); \
3671 } while (0)
3672
3673#define CPUMVMX_DUMP_GUEST_SEGREG(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3674 do { \
3675 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \
3676 (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \
3677 (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr); \
3678 } while (0)
3679
3680#define CPUMVMX_DUMP_GUEST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3681 do { \
3682 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64 limit=%08x}\n", \
3683 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit); \
3684 } while (0)
3685
3686 /* Header. */
3687 {
3688 pHlp->pfnPrintf(pHlp, "%sHeader:\n", pszPrefix);
3689 pHlp->pfnPrintf(pHlp, " %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId);
3690 pHlp->pfnPrintf(pHlp, " %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, VMXGetAbortDesc(pVmcs->enmVmxAbort));
3691 pHlp->pfnPrintf(pHlp, " %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, VMXGetVmcsStateDesc(pVmcs->fVmcsState));
3692 }
3693
3694 /* Control fields. */
3695 {
3696 /* 16-bit. */
3697 pHlp->pfnPrintf(pHlp, "%sControl:\n", pszPrefix);
3698 pHlp->pfnPrintf(pHlp, " %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid);
3699 pHlp->pfnPrintf(pHlp, " %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector);
3700 pHlp->pfnPrintf(pHlp, " %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex);
3701
3702 /* 32-bit. */
3703 pHlp->pfnPrintf(pHlp, " %sPin ctls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls);
3704 pHlp->pfnPrintf(pHlp, " %sProcessor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls);
3705 pHlp->pfnPrintf(pHlp, " %sSecondary processor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2);
3706 pHlp->pfnPrintf(pHlp, " %sVM-exit ctls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls);
3707 pHlp->pfnPrintf(pHlp, " %sVM-entry ctls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls);
3708 pHlp->pfnPrintf(pHlp, " %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap);
3709 pHlp->pfnPrintf(pHlp, " %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask);
3710 pHlp->pfnPrintf(pHlp, " %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch);
3711 pHlp->pfnPrintf(pHlp, " %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount);
3712 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount);
3713 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount);
3714 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount);
3715 pHlp->pfnPrintf(pHlp, " %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo);
3716 {
3717 uint32_t const fInfo = pVmcs->u32EntryIntInfo;
3718 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo);
3719 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo));
3720 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetEntryIntInfoTypeDesc(uType));
3721 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_ENTRY_INT_INFO_VECTOR(fInfo));
3722 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3723 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3724 }
3725 pHlp->pfnPrintf(pHlp, " %sVM-entry xcpt error-code = %#RX32\n", pszPrefix, pVmcs->u32EntryXcptErrCode);
3726 pHlp->pfnPrintf(pHlp, " %sVM-entry instr length = %u byte(s)\n", pszPrefix, pVmcs->u32EntryInstrLen);
3727 pHlp->pfnPrintf(pHlp, " %sTPR threshold = %#RX32\n", pszPrefix, pVmcs->u32TprThreshold);
3728 pHlp->pfnPrintf(pHlp, " %sPLE gap = %#RX32\n", pszPrefix, pVmcs->u32PleGap);
3729 pHlp->pfnPrintf(pHlp, " %sPLE window = %#RX32\n", pszPrefix, pVmcs->u32PleWindow);
3730
3731 /* 64-bit. */
3732 pHlp->pfnPrintf(pHlp, " %sIO-bitmap A addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapA.u);
3733 pHlp->pfnPrintf(pHlp, " %sIO-bitmap B addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapB.u);
3734 pHlp->pfnPrintf(pHlp, " %sMSR-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrMsrBitmap.u);
3735 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrStore.u);
3736 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrLoad.u);
3737 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEntryMsrLoad.u);
3738 pHlp->pfnPrintf(pHlp, " %sExecutive VMCS ptr = %#RX64\n", pszPrefix, pVmcs->u64ExecVmcsPtr.u);
3739 pHlp->pfnPrintf(pHlp, " %sPML addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPml.u);
3740 pHlp->pfnPrintf(pHlp, " %sTSC offset = %#RX64\n", pszPrefix, pVmcs->u64TscOffset.u);
3741 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVirtApic.u);
3742 pHlp->pfnPrintf(pHlp, " %sAPIC-access addr = %#RX64\n", pszPrefix, pVmcs->u64AddrApicAccess.u);
3743 pHlp->pfnPrintf(pHlp, " %sPosted-intr desc addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPostedIntDesc.u);
3744 pHlp->pfnPrintf(pHlp, " %sVM-functions control = %#RX64\n", pszPrefix, pVmcs->u64VmFuncCtls.u);
3745 pHlp->pfnPrintf(pHlp, " %sEPTP ptr = %#RX64\n", pszPrefix, pVmcs->u64EptPtr.u);
3746 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 0 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap0.u);
3747 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 1 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap1.u);
3748 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 2 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap2.u);
3749 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 3 = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap3.u);
3750 pHlp->pfnPrintf(pHlp, " %sEPTP-list addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEptpList.u);
3751 pHlp->pfnPrintf(pHlp, " %sVMREAD-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmreadBitmap.u);
3752 pHlp->pfnPrintf(pHlp, " %sVMWRITE-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmwriteBitmap.u);
3753 pHlp->pfnPrintf(pHlp, " %sVirt-Xcpt info addr = %#RX64\n", pszPrefix, pVmcs->u64AddrXcptVeInfo.u);
3754 pHlp->pfnPrintf(pHlp, " %sXSS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64XssExitBitmap.u);
3755 pHlp->pfnPrintf(pHlp, " %sENCLS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclsExitBitmap.u);
3756 pHlp->pfnPrintf(pHlp, " %sSPP-table ptr = %#RX64\n", pszPrefix, pVmcs->u64SppTablePtr.u);
3757 pHlp->pfnPrintf(pHlp, " %sTSC multiplier = %#RX64\n", pszPrefix, pVmcs->u64TscMultiplier.u);
3758 pHlp->pfnPrintf(pHlp, " %sTertiary processor ctls = %#RX64\n", pszPrefix, pVmcs->u64ProcCtls3.u);
3759 pHlp->pfnPrintf(pHlp, " %sENCLV-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclvExitBitmap.u);
3760
3761 /* Natural width. */
3762 pHlp->pfnPrintf(pHlp, " %sCR0 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr0Mask.u);
3763 pHlp->pfnPrintf(pHlp, " %sCR4 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr4Mask.u);
3764 pHlp->pfnPrintf(pHlp, " %sCR0 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr0ReadShadow.u);
3765 pHlp->pfnPrintf(pHlp, " %sCR4 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr4ReadShadow.u);
3766 pHlp->pfnPrintf(pHlp, " %sCR3-target 0 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target0.u);
3767 pHlp->pfnPrintf(pHlp, " %sCR3-target 1 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target1.u);
3768 pHlp->pfnPrintf(pHlp, " %sCR3-target 2 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target2.u);
3769 pHlp->pfnPrintf(pHlp, " %sCR3-target 3 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target3.u);
3770 }
3771
3772 /* Guest state. */
3773 {
3774 char szEFlags[80];
3775 cpumR3InfoFormatFlags(&szEFlags[0], pVmcs->u64GuestRFlags.u);
3776 pHlp->pfnPrintf(pHlp, "%sGuest state:\n", pszPrefix);
3777
3778 /* 16-bit. */
3779 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Cs, "CS", pszPrefix);
3780 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ss, "SS", pszPrefix);
3781 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Es, "ES", pszPrefix);
3782 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ds, "DS", pszPrefix);
3783 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Fs, "FS", pszPrefix);
3784 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Gs, "GS", pszPrefix);
3785 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ldtr, "LDTR", pszPrefix);
3786 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Tr, "TR", pszPrefix);
3787 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
3788 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
3789 pHlp->pfnPrintf(pHlp, " %sInterrupt status = %#RX16\n", pszPrefix, pVmcs->u16GuestIntStatus);
3790 pHlp->pfnPrintf(pHlp, " %sPML index = %#RX16\n", pszPrefix, pVmcs->u16PmlIndex);
3791
3792 /* 32-bit. */
3793 pHlp->pfnPrintf(pHlp, " %sInterruptibility state = %#RX32\n", pszPrefix, pVmcs->u32GuestIntrState);
3794 pHlp->pfnPrintf(pHlp, " %sActivity state = %#RX32\n", pszPrefix, pVmcs->u32GuestActivityState);
3795 pHlp->pfnPrintf(pHlp, " %sSMBASE = %#RX32\n", pszPrefix, pVmcs->u32GuestSmBase);
3796 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32GuestSysenterCS);
3797 pHlp->pfnPrintf(pHlp, " %sVMX-preemption timer value = %#RX32\n", pszPrefix, pVmcs->u32PreemptTimer);
3798
3799 /* 64-bit. */
3800 pHlp->pfnPrintf(pHlp, " %sVMCS link ptr = %#RX64\n", pszPrefix, pVmcs->u64VmcsLinkPtr.u);
3801 pHlp->pfnPrintf(pHlp, " %sDBGCTL = %#RX64\n", pszPrefix, pVmcs->u64GuestDebugCtlMsr.u);
3802 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64GuestPatMsr.u);
3803 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64GuestEferMsr.u);
3804 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64GuestPerfGlobalCtlMsr.u);
3805 pHlp->pfnPrintf(pHlp, " %sPDPTE 0 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte0.u);
3806 pHlp->pfnPrintf(pHlp, " %sPDPTE 1 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte1.u);
3807 pHlp->pfnPrintf(pHlp, " %sPDPTE 2 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte2.u);
3808 pHlp->pfnPrintf(pHlp, " %sPDPTE 3 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte3.u);
3809 pHlp->pfnPrintf(pHlp, " %sBNDCFGS = %#RX64\n", pszPrefix, pVmcs->u64GuestBndcfgsMsr.u);
3810 pHlp->pfnPrintf(pHlp, " %sRTIT_CTL = %#RX64\n", pszPrefix, pVmcs->u64GuestRtitCtlMsr.u);
3811 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64GuestPkrsMsr.u);
3812
3813 /* Natural width. */
3814 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr0.u);
3815 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr3.u);
3816 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr4.u);
3817 pHlp->pfnPrintf(pHlp, " %sDR7 = %#RX64\n", pszPrefix, pVmcs->u64GuestDr7.u);
3818 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64GuestRsp.u);
3819 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64GuestRip.u);
3820 pHlp->pfnPrintf(pHlp, " %sRFLAGS = %#RX64 %31s\n",pszPrefix, pVmcs->u64GuestRFlags.u, szEFlags);
3821 pHlp->pfnPrintf(pHlp, " %sPending debug xcpts = %#RX64\n", pszPrefix, pVmcs->u64GuestPendingDbgXcpts.u);
3822 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEsp.u);
3823 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEip.u);
3824 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64GuestSCetMsr.u);
3825 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64GuestSsp.u);
3826 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64GuestIntrSspTableAddrMsr.u);
3827 }
3828
3829 /* Host state. */
3830 {
3831 pHlp->pfnPrintf(pHlp, "%sHost state:\n", pszPrefix);
3832
3833 /* 16-bit. */
3834 pHlp->pfnPrintf(pHlp, " %sCS = %#RX16\n", pszPrefix, pVmcs->HostCs);
3835 pHlp->pfnPrintf(pHlp, " %sSS = %#RX16\n", pszPrefix, pVmcs->HostSs);
3836 pHlp->pfnPrintf(pHlp, " %sDS = %#RX16\n", pszPrefix, pVmcs->HostDs);
3837 pHlp->pfnPrintf(pHlp, " %sES = %#RX16\n", pszPrefix, pVmcs->HostEs);
3838 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Fs, "FS", pszPrefix);
3839 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Gs, "GS", pszPrefix);
3840 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Tr, "TR", pszPrefix);
3841 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Gdtr, "GDTR", pszPrefix);
3842 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Idtr, "IDTR", pszPrefix);
3843
3844 /* 32-bit. */
3845 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32HostSysenterCs);
3846
3847 /* 64-bit. */
3848 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64HostEferMsr.u);
3849 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64HostPatMsr.u);
3850 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64HostPerfGlobalCtlMsr.u);
3851 pHlp->pfnPrintf(pHlp, " %sPKRS = %#RX64\n", pszPrefix, pVmcs->u64HostPkrsMsr.u);
3852
3853 /* Natural width. */
3854 pHlp->pfnPrintf(pHlp, " %sCR0 = %#RX64\n", pszPrefix, pVmcs->u64HostCr0.u);
3855 pHlp->pfnPrintf(pHlp, " %sCR3 = %#RX64\n", pszPrefix, pVmcs->u64HostCr3.u);
3856 pHlp->pfnPrintf(pHlp, " %sCR4 = %#RX64\n", pszPrefix, pVmcs->u64HostCr4.u);
3857 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEsp.u);
3858 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEip.u);
3859 pHlp->pfnPrintf(pHlp, " %sRSP = %#RX64\n", pszPrefix, pVmcs->u64HostRsp.u);
3860 pHlp->pfnPrintf(pHlp, " %sRIP = %#RX64\n", pszPrefix, pVmcs->u64HostRip.u);
3861 pHlp->pfnPrintf(pHlp, " %sS_CET = %#RX64\n", pszPrefix, pVmcs->u64HostSCetMsr.u);
3862 pHlp->pfnPrintf(pHlp, " %sSSP = %#RX64\n", pszPrefix, pVmcs->u64HostSsp.u);
3863 pHlp->pfnPrintf(pHlp, " %sINTERRUPT_SSP_TABLE_ADDR = %#RX64\n", pszPrefix, pVmcs->u64HostIntrSspTableAddrMsr.u);
3864
3865 }
3866
3867 /* Read-only fields. */
3868 {
3869 pHlp->pfnPrintf(pHlp, "%sRead-only data fields:\n", pszPrefix);
3870
3871 /* 16-bit (none currently). */
3872
3873 /* 32-bit. */
3874 pHlp->pfnPrintf(pHlp, " %sExit reason = %u (%s)\n", pszPrefix, pVmcs->u32RoExitReason, HMGetVmxExitName(pVmcs->u32RoExitReason));
3875 pHlp->pfnPrintf(pHlp, " %sExit qualification = %#RX64\n", pszPrefix, pVmcs->u64RoExitQual.u);
3876 pHlp->pfnPrintf(pHlp, " %sVM-instruction error = %#RX32\n", pszPrefix, pVmcs->u32RoVmInstrError);
3877 pHlp->pfnPrintf(pHlp, " %sVM-exit intr info = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntInfo);
3878 {
3879 uint32_t const fInfo = pVmcs->u32RoExitIntInfo;
3880 uint8_t const uType = VMX_EXIT_INT_INFO_TYPE(fInfo);
3881 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_VALID(fInfo));
3882 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetExitIntInfoTypeDesc(uType));
3883 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_EXIT_INT_INFO_VECTOR(fInfo));
3884 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3885 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3886 }
3887 pHlp->pfnPrintf(pHlp, " %sVM-exit intr error-code = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntErrCode);
3888 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring info = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringInfo);
3889 {
3890 uint32_t const fInfo = pVmcs->u32RoIdtVectoringInfo;
3891 uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(fInfo);
3892 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_VALID(fInfo));
3893 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetIdtVectoringInfoTypeDesc(uType));
3894 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_IDT_VECTORING_INFO_VECTOR(fInfo));
3895 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(fInfo));
3896 }
3897 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring error-code = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringErrCode);
3898 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction length = %u byte(s)\n", pszPrefix, pVmcs->u32RoExitInstrLen);
3899 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction info = %#RX64\n", pszPrefix, pVmcs->u32RoExitInstrInfo);
3900
3901 /* 64-bit. */
3902 pHlp->pfnPrintf(pHlp, " %sGuest-physical addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestPhysAddr.u);
3903
3904 /* Natural width. */
3905 pHlp->pfnPrintf(pHlp, " %sI/O RCX = %#RX64\n", pszPrefix, pVmcs->u64RoIoRcx.u);
3906 pHlp->pfnPrintf(pHlp, " %sI/O RSI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRsi.u);
3907 pHlp->pfnPrintf(pHlp, " %sI/O RDI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRdi.u);
3908 pHlp->pfnPrintf(pHlp, " %sI/O RIP = %#RX64\n", pszPrefix, pVmcs->u64RoIoRip.u);
3909 pHlp->pfnPrintf(pHlp, " %sGuest-linear addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestLinearAddr.u);
3910 }
3911
3912#ifdef DEBUG_ramshankar
3913 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3914 {
3915 void *pvPage = RTMemTmpAllocZ(VMX_V_VIRT_APIC_SIZE);
3916 Assert(pvPage);
3917 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
3918 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pvPage, GCPhysVirtApic, VMX_V_VIRT_APIC_SIZE);
3919 if (RT_SUCCESS(rc))
3920 {
3921 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC page\n", pszPrefix);
3922 pHlp->pfnPrintf(pHlp, "%.*Rhxs\n", VMX_V_VIRT_APIC_SIZE, pvPage);
3923 pHlp->pfnPrintf(pHlp, "\n");
3924 }
3925 RTMemTmpFree(pvPage);
3926 }
3927#else
3928 NOREF(pVCpu);
3929#endif
3930
3931#undef CPUMVMX_DUMP_HOST_XDTR
3932#undef CPUMVMX_DUMP_HOST_FS_GS_TR
3933#undef CPUMVMX_DUMP_GUEST_SEGREG
3934#undef CPUMVMX_DUMP_GUEST_XDTR
3935}
3936
3937
3938/**
3939 * Display the guest's hardware-virtualization cpu state.
3940 *
3941 * @param pVM The cross context VM structure.
3942 * @param pHlp The info helper functions.
3943 * @param pszArgs Arguments, ignored.
3944 */
3945static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3946{
3947 RT_NOREF(pszArgs);
3948
3949 PVMCPU pVCpu = VMMGetCpu(pVM);
3950 if (!pVCpu)
3951 pVCpu = pVM->apCpusR3[0];
3952
3953 PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3954 bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm;
3955 bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx;
3956
3957 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
3958 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
3959 pHlp->pfnPrintf(pHlp, "In nested-guest hwvirt mode = %RTbool\n", CPUMIsGuestInNestedHwvirtMode(pCtx));
3960
3961 if (fSvm)
3962 {
3963 pHlp->pfnPrintf(pHlp, "SVM hwvirt state:\n");
3964 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
3965
3966 char szEFlags[80];
3967 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
3968 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
3969 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
3970 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
3971 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.Vmcb.ctrl, " " /* pszPrefix */);
3972 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
3973 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.Vmcb.guest, " " /* pszPrefix */);
3974 pHlp->pfnPrintf(pHlp, " HostState:\n");
3975 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
3976 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
3977 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
3978 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
3979 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
3980 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
3981 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
3982 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
3983 PCCPUMSELREG pSelEs = &pCtx->hwvirt.svm.HostState.es;
3984 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3985 pSelEs->Sel, pSelEs->u64Base, pSelEs->u32Limit, pSelEs->Attr.u);
3986 PCCPUMSELREG pSelCs = &pCtx->hwvirt.svm.HostState.cs;
3987 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3988 pSelCs->Sel, pSelCs->u64Base, pSelCs->u32Limit, pSelCs->Attr.u);
3989 PCCPUMSELREG pSelSs = &pCtx->hwvirt.svm.HostState.ss;
3990 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3991 pSelSs->Sel, pSelSs->u64Base, pSelSs->u32Limit, pSelSs->Attr.u);
3992 PCCPUMSELREG pSelDs = &pCtx->hwvirt.svm.HostState.ds;
3993 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
3994 pSelDs->Sel, pSelDs->u64Base, pSelDs->u32Limit, pSelDs->Attr.u);
3995 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
3996 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
3997 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
3998 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
3999 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
4000 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
4001 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
4002 }
4003 else if (fVmx)
4004 {
4005 pHlp->pfnPrintf(pHlp, "VMX hwvirt state:\n");
4006 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
4007 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
4008 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
4009 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMGetVmxDiagDesc(pCtx->hwvirt.vmx.enmDiag));
4010 pHlp->pfnPrintf(pHlp, " uDiagAux = %#RX64\n", pCtx->hwvirt.vmx.uDiagAux);
4011 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, VMXGetAbortDesc(pCtx->hwvirt.vmx.enmAbort));
4012 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
4013 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
4014 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
4015 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
4016 pHlp->pfnPrintf(pHlp, " fNmiUnblockingIret = %RTbool\n", pCtx->hwvirt.vmx.fNmiUnblockingIret);
4017 pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
4018 pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
4019 pHlp->pfnPrintf(pHlp, " uEntryTick = %RX64\n", pCtx->hwvirt.vmx.uEntryTick);
4020 pHlp->pfnPrintf(pHlp, " offVirtApicWrite = %#RX16\n", pCtx->hwvirt.vmx.offVirtApicWrite);
4021 pHlp->pfnPrintf(pHlp, " fVirtNmiBlocking = %RTbool\n", pCtx->hwvirt.vmx.fVirtNmiBlocking);
4022 pHlp->pfnPrintf(pHlp, " VMCS cache:\n");
4023 cpumR3InfoVmxVmcs(pVCpu, pHlp, &pCtx->hwvirt.vmx.Vmcs, " " /* pszPrefix */);
4024 }
4025 else
4026 pHlp->pfnPrintf(pHlp, "Hwvirt state disabled.\n");
4027
4028#undef CPUMHWVIRTDUMP_NONE
4029#undef CPUMHWVIRTDUMP_COMMON
4030#undef CPUMHWVIRTDUMP_SVM
4031#undef CPUMHWVIRTDUMP_VMX
4032#undef CPUMHWVIRTDUMP_LAST
4033#undef CPUMHWVIRTDUMP_ALL
4034}
4035
4036/**
4037 * Display the current guest instruction
4038 *
4039 * @param pVM The cross context VM structure.
4040 * @param pHlp The info helper functions.
4041 * @param pszArgs Arguments, ignored.
4042 */
4043static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4044{
4045 NOREF(pszArgs);
4046
4047 PVMCPU pVCpu = VMMGetCpu(pVM);
4048 if (!pVCpu)
4049 pVCpu = pVM->apCpusR3[0];
4050
4051 char szInstruction[256];
4052 szInstruction[0] = '\0';
4053 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
4054 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
4055}
4056
4057
4058/**
4059 * Display the hypervisor cpu state.
4060 *
4061 * @param pVM The cross context VM structure.
4062 * @param pHlp The info helper functions.
4063 * @param pszArgs Arguments, ignored.
4064 */
4065static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4066{
4067 PVMCPU pVCpu = VMMGetCpu(pVM);
4068 if (!pVCpu)
4069 pVCpu = pVM->apCpusR3[0];
4070
4071 CPUMDUMPTYPE enmType;
4072 const char *pszComment;
4073 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4074 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
4075
4076 pHlp->pfnPrintf(pHlp,
4077 ".dr0=%016RX64 .dr1=%016RX64 .dr2=%016RX64 .dr3=%016RX64\n"
4078 ".dr4=%016RX64 .dr5=%016RX64 .dr6=%016RX64 .dr7=%016RX64\n",
4079 pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3],
4080 pVCpu->cpum.s.Hyper.dr[4], pVCpu->cpum.s.Hyper.dr[5], pVCpu->cpum.s.Hyper.dr[6], pVCpu->cpum.s.Hyper.dr[7]);
4081 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
4082}
4083
4084
4085/**
4086 * Display the host cpu state.
4087 *
4088 * @param pVM The cross context VM structure.
4089 * @param pHlp The info helper functions.
4090 * @param pszArgs Arguments, ignored.
4091 */
4092static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4093{
4094 CPUMDUMPTYPE enmType;
4095 const char *pszComment;
4096 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4097 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
4098
4099 PVMCPU pVCpu = VMMGetCpu(pVM);
4100 if (!pVCpu)
4101 pVCpu = pVM->apCpusR3[0];
4102 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
4103
4104 /*
4105 * Format the EFLAGS.
4106 */
4107 uint64_t efl = pCtx->rflags;
4108 char szEFlags[80];
4109 cpumR3InfoFormatFlags(&szEFlags[0], efl);
4110
4111 /*
4112 * Format the registers.
4113 */
4114 pHlp->pfnPrintf(pHlp,
4115 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
4116 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
4117 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
4118 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
4119 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
4120 "r14=%016RX64 r15=%016RX64\n"
4121 "iopl=%d %31s\n"
4122 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
4123 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
4124 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
4125 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
4126 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
4127 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
4128 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
4129 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
4130 ,
4131 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
4132 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
4133 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
4134 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
4135 pCtx->r11, pCtx->r12, pCtx->r13,
4136 pCtx->r14, pCtx->r15,
4137 X86_EFL_GET_IOPL(efl), szEFlags,
4138 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
4139 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
4140 pCtx->cr4, pCtx->ldtr, pCtx->tr,
4141 pCtx->dr0, pCtx->dr1, pCtx->dr2,
4142 pCtx->dr3, pCtx->dr6, pCtx->dr7,
4143 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
4144 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
4145 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
4146}
4147
4148/**
4149 * Structure used when disassembling and instructions in DBGF.
4150 * This is used so the reader function can get the stuff it needs.
4151 */
4152typedef struct CPUMDISASSTATE
4153{
4154 /** Pointer to the CPU structure. */
4155 PDISCPUSTATE pCpu;
4156 /** Pointer to the VM. */
4157 PVM pVM;
4158 /** Pointer to the VMCPU. */
4159 PVMCPU pVCpu;
4160 /** Pointer to the first byte in the segment. */
4161 RTGCUINTPTR GCPtrSegBase;
4162 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
4163 RTGCUINTPTR GCPtrSegEnd;
4164 /** The size of the segment minus 1. */
4165 RTGCUINTPTR cbSegLimit;
4166 /** Pointer to the current page - R3 Ptr. */
4167 void const *pvPageR3;
4168 /** Pointer to the current page - GC Ptr. */
4169 RTGCPTR pvPageGC;
4170 /** The lock information that PGMPhysReleasePageMappingLock needs. */
4171 PGMPAGEMAPLOCK PageMapLock;
4172 /** Whether the PageMapLock is valid or not. */
4173 bool fLocked;
4174 /** 64 bits mode or not. */
4175 bool f64Bits;
4176} CPUMDISASSTATE, *PCPUMDISASSTATE;
4177
4178
4179/**
4180 * @callback_method_impl{FNDISREADBYTES}
4181 */
4182static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
4183{
4184 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
4185 for (;;)
4186 {
4187 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
4188
4189 /*
4190 * Need to update the page translation?
4191 */
4192 if ( !pState->pvPageR3
4193 || (GCPtr >> GUEST_PAGE_SHIFT) != (pState->pvPageGC >> GUEST_PAGE_SHIFT))
4194 {
4195 /* translate the address */
4196 pState->pvPageGC = GCPtr & ~(RTGCPTR)GUEST_PAGE_OFFSET_MASK;
4197
4198 /* Release mapping lock previously acquired. */
4199 if (pState->fLocked)
4200 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
4201 int rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
4202 if (RT_SUCCESS(rc))
4203 pState->fLocked = true;
4204 else
4205 {
4206 pState->fLocked = false;
4207 pState->pvPageR3 = NULL;
4208 return rc;
4209 }
4210 }
4211
4212 /*
4213 * Check the segment limit.
4214 */
4215 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
4216 return VERR_OUT_OF_SELECTOR_BOUNDS;
4217
4218 /*
4219 * Calc how much we can read.
4220 */
4221 uint32_t cb = GUEST_PAGE_SIZE - (GCPtr & GUEST_PAGE_OFFSET_MASK);
4222 if (!pState->f64Bits)
4223 {
4224 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
4225 if (cb > cbSeg && cbSeg)
4226 cb = cbSeg;
4227 }
4228 if (cb > cbMaxRead)
4229 cb = cbMaxRead;
4230
4231 /*
4232 * Read and advance or exit.
4233 */
4234 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & GUEST_PAGE_OFFSET_MASK), cb);
4235 offInstr += (uint8_t)cb;
4236 if (cb >= cbMinRead)
4237 {
4238 pDis->cbCachedInstr = offInstr;
4239 return VINF_SUCCESS;
4240 }
4241 cbMinRead -= (uint8_t)cb;
4242 cbMaxRead -= (uint8_t)cb;
4243 }
4244}
4245
4246
4247/**
4248 * Disassemble an instruction and return the information in the provided structure.
4249 *
4250 * @returns VBox status code.
4251 * @param pVM The cross context VM structure.
4252 * @param pVCpu The cross context virtual CPU structure.
4253 * @param pCtx Pointer to the guest CPU context.
4254 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
4255 * @param pCpu Disassembly state.
4256 * @param pszPrefix String prefix for logging (debug only).
4257 *
4258 */
4259VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
4260 const char *pszPrefix)
4261{
4262 CPUMDISASSTATE State;
4263 int rc;
4264
4265 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
4266 State.pCpu = pCpu;
4267 State.pvPageGC = 0;
4268 State.pvPageR3 = NULL;
4269 State.pVM = pVM;
4270 State.pVCpu = pVCpu;
4271 State.fLocked = false;
4272 State.f64Bits = false;
4273
4274 /*
4275 * Get selector information.
4276 */
4277 DISCPUMODE enmDisCpuMode;
4278 if ( (pCtx->cr0 & X86_CR0_PE)
4279 && pCtx->eflags.Bits.u1VM == 0)
4280 {
4281 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4282 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
4283 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
4284 State.GCPtrSegBase = pCtx->cs.u64Base;
4285 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
4286 State.cbSegLimit = pCtx->cs.u32Limit;
4287 enmDisCpuMode = (State.f64Bits)
4288 ? DISCPUMODE_64BIT
4289 : pCtx->cs.Attr.n.u1DefBig
4290 ? DISCPUMODE_32BIT
4291 : DISCPUMODE_16BIT;
4292 }
4293 else
4294 {
4295 /* real or V86 mode */
4296 enmDisCpuMode = DISCPUMODE_16BIT;
4297 State.GCPtrSegBase = pCtx->cs.Sel * 16;
4298 State.GCPtrSegEnd = 0xFFFFFFFF;
4299 State.cbSegLimit = 0xFFFFFFFF;
4300 }
4301
4302 /*
4303 * Disassemble the instruction.
4304 */
4305 uint32_t cbInstr;
4306#ifndef LOG_ENABLED
4307 RT_NOREF_PV(pszPrefix);
4308 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
4309 if (RT_SUCCESS(rc))
4310 {
4311#else
4312 char szOutput[160];
4313 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
4314 pCpu, &cbInstr, szOutput, sizeof(szOutput));
4315 if (RT_SUCCESS(rc))
4316 {
4317 /* log it */
4318 if (pszPrefix)
4319 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
4320 else
4321 Log(("%s", szOutput));
4322#endif
4323 rc = VINF_SUCCESS;
4324 }
4325 else
4326 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
4327
4328 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
4329 if (State.fLocked)
4330 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
4331
4332 return rc;
4333}
4334
4335
4336
4337/**
4338 * API for controlling a few of the CPU features found in CR4.
4339 *
4340 * Currently only X86_CR4_TSD is accepted as input.
4341 *
4342 * @returns VBox status code.
4343 *
4344 * @param pVM The cross context VM structure.
4345 * @param fOr The CR4 OR mask.
4346 * @param fAnd The CR4 AND mask.
4347 */
4348VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
4349{
4350 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
4351 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
4352
4353 pVM->cpum.s.CR4.OrMask &= fAnd;
4354 pVM->cpum.s.CR4.OrMask |= fOr;
4355
4356 return VINF_SUCCESS;
4357}
4358
4359
4360/**
4361 * Called when the ring-3 init phase completes.
4362 *
4363 * @returns VBox status code.
4364 * @param pVM The cross context VM structure.
4365 * @param enmWhat Which init phase.
4366 */
4367VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
4368{
4369 switch (enmWhat)
4370 {
4371 case VMINITCOMPLETED_RING3:
4372 {
4373 /*
4374 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
4375 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
4376 */
4377 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
4378 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4379 {
4380 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4381
4382 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
4383 if (fSupportsLongMode)
4384 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
4385 }
4386
4387 /* Register statistic counters for MSRs. */
4388 cpumR3MsrRegStats(pVM);
4389
4390 /* Create VMX-preemption timer for nested guests if required. Must be
4391 done here as CPUM is initialized before TM. */
4392 if (pVM->cpum.s.GuestFeatures.fVmx)
4393 {
4394 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4395 {
4396 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4397 char szName[32];
4398 RTStrPrintf(szName, sizeof(szName), "Nested VMX-preemption %u", idCpu);
4399 int rc = TMR3TimerCreate(pVM, TMCLOCK_VIRTUAL_SYNC, cpumR3VmxPreemptTimerCallback, pVCpu,
4400 TMTIMER_FLAGS_RING0, szName, &pVCpu->cpum.s.hNestedVmxPreemptTimer);
4401 AssertLogRelRCReturn(rc, rc);
4402 }
4403 }
4404 break;
4405 }
4406
4407 default:
4408 break;
4409 }
4410 return VINF_SUCCESS;
4411}
4412
4413
4414/**
4415 * Called when the ring-0 init phases completed.
4416 *
4417 * @param pVM The cross context VM structure.
4418 */
4419VMMR3DECL(void) CPUMR3LogCpuIdAndMsrFeatures(PVM pVM)
4420{
4421 /*
4422 * Enable log buffering as we're going to log a lot of lines.
4423 */
4424 bool const fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
4425
4426 /*
4427 * Log the cpuid.
4428 */
4429 RTCPUSET OnlineSet;
4430 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
4431 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
4432 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
4433 RTCPUID cCores = RTMpGetCoreCount();
4434 if (cCores)
4435 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
4436 LogRel(("************************* CPUID dump ************************\n"));
4437 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
4438 LogRel(("\n"));
4439 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
4440 LogRel(("******************** End of CPUID dump **********************\n"));
4441
4442 /*
4443 * Log VT-x extended features.
4444 *
4445 * SVM features are currently all covered under CPUID so there is nothing
4446 * to do here for SVM.
4447 */
4448 if (pVM->cpum.s.HostFeatures.fVmx)
4449 {
4450 LogRel(("*********************** VT-x features ***********************\n"));
4451 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
4452 LogRel(("\n"));
4453 LogRel(("******************* End of VT-x features ********************\n"));
4454 }
4455
4456 /*
4457 * Restore the log buffering state to what it was previously.
4458 */
4459 RTLogRelSetBuffering(fOldBuffered);
4460}
4461
4462
4463/**
4464 * Marks the guest debug state as active.
4465 *
4466 * @returns nothing.
4467 * @param pVCpu The cross context virtual CPU structure.
4468 *
4469 * @note This is used solely by NEM (hence the name) to set the correct flags here
4470 * without loading the host's DRx registers, which is not possible from ring-3 anyway.
4471 * The specific NEM backends have to make sure to load the correct values.
4472 */
4473VMMR3_INT_DECL(void) CPUMR3NemActivateGuestDebugState(PVMCPUCC pVCpu)
4474{
4475 ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~CPUM_USED_DEBUG_REGS_HYPER);
4476 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_GUEST);
4477}
4478
4479
4480/**
4481 * Marks the hyper debug state as active.
4482 *
4483 * @returns nothing.
4484 * @param pVCpu The cross context virtual CPU structure.
4485 *
4486 * @note This is used solely by NEM (hence the name) to set the correct flags here
4487 * without loading the host's DRx registers, which is not possible from ring-3 anyway.
4488 * The specific NEM backends have to make sure to load the correct values.
4489 */
4490VMMR3_INT_DECL(void) CPUMR3NemActivateHyperDebugState(PVMCPUCC pVCpu)
4491{
4492 /*
4493 * Make sure the hypervisor values are up to date.
4494 */
4495 CPUMRecalcHyperDRx(pVCpu, UINT8_MAX /* no loading, please */);
4496
4497 ASMAtomicAndU32(&pVCpu->cpum.s.fUseFlags, ~CPUM_USED_DEBUG_REGS_GUEST);
4498 ASMAtomicOrU32(&pVCpu->cpum.s.fUseFlags, CPUM_USED_DEBUG_REGS_HYPER);
4499}
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette