VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 81733

最後變更 在這個檔案從81733是 81733,由 vboxsync 提交於 5 年 前

VMM: Nested VMX: bugref:9180 Detect VMX-preemption timer erratum and don't passthrough the feature to guests
if the erratum is detected.

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id Revision
檔案大小: 237.9 KB
 
1/* $Id: CPUM.cpp 81733 2019-11-07 04:43:30Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/hm.h>
120#include <VBox/vmm/hmvmxinline.h>
121#include <VBox/vmm/ssm.h>
122#include "CPUMInternal.h"
123#include <VBox/vmm/vm.h>
124
125#include <VBox/param.h>
126#include <VBox/dis.h>
127#include <VBox/err.h>
128#include <VBox/log.h>
129#include <iprt/asm-amd64-x86.h>
130#include <iprt/assert.h>
131#include <iprt/cpuset.h>
132#include <iprt/mem.h>
133#include <iprt/mp.h>
134#include <iprt/string.h>
135
136
137/*********************************************************************************************************************************
138* Defined Constants And Macros *
139*********************************************************************************************************************************/
140/**
141 * This was used in the saved state up to the early life of version 14.
142 *
143 * It indicates that we may have some out-of-sync hidden segement registers.
144 * It is only relevant for raw-mode.
145 */
146#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
147
148
149/*********************************************************************************************************************************
150* Structures and Typedefs *
151*********************************************************************************************************************************/
152
153/**
154 * What kind of cpu info dump to perform.
155 */
156typedef enum CPUMDUMPTYPE
157{
158 CPUMDUMPTYPE_TERSE,
159 CPUMDUMPTYPE_DEFAULT,
160 CPUMDUMPTYPE_VERBOSE
161} CPUMDUMPTYPE;
162/** Pointer to a cpu info dump type. */
163typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
164
165
166/*********************************************************************************************************************************
167* Internal Functions *
168*********************************************************************************************************************************/
169static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
170static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
172static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
173static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
174static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
180
181
182/*********************************************************************************************************************************
183* Global Variables *
184*********************************************************************************************************************************/
185/** Saved state field descriptors for CPUMCTX. */
186static const SSMFIELD g_aCpumCtxFields[] =
187{
188 SSMFIELD_ENTRY( CPUMCTX, rdi),
189 SSMFIELD_ENTRY( CPUMCTX, rsi),
190 SSMFIELD_ENTRY( CPUMCTX, rbp),
191 SSMFIELD_ENTRY( CPUMCTX, rax),
192 SSMFIELD_ENTRY( CPUMCTX, rbx),
193 SSMFIELD_ENTRY( CPUMCTX, rdx),
194 SSMFIELD_ENTRY( CPUMCTX, rcx),
195 SSMFIELD_ENTRY( CPUMCTX, rsp),
196 SSMFIELD_ENTRY( CPUMCTX, rflags),
197 SSMFIELD_ENTRY( CPUMCTX, rip),
198 SSMFIELD_ENTRY( CPUMCTX, r8),
199 SSMFIELD_ENTRY( CPUMCTX, r9),
200 SSMFIELD_ENTRY( CPUMCTX, r10),
201 SSMFIELD_ENTRY( CPUMCTX, r11),
202 SSMFIELD_ENTRY( CPUMCTX, r12),
203 SSMFIELD_ENTRY( CPUMCTX, r13),
204 SSMFIELD_ENTRY( CPUMCTX, r14),
205 SSMFIELD_ENTRY( CPUMCTX, r15),
206 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
207 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
208 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
209 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
214 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
220 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
222 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
223 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
224 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
226 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
228 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
229 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
230 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
232 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
234 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
235 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
236 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
238 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
240 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
241 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
242 SSMFIELD_ENTRY( CPUMCTX, cr0),
243 SSMFIELD_ENTRY( CPUMCTX, cr2),
244 SSMFIELD_ENTRY( CPUMCTX, cr3),
245 SSMFIELD_ENTRY( CPUMCTX, cr4),
246 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
251 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
253 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
255 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
258 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
259 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
260 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
261 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
262 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
264 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
265 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
271 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
272 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
274 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
276 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
277 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
281 SSMFIELD_ENTRY_TERM()
282};
283
284/** Saved state field descriptors for SVM nested hardware-virtualization
285 * Host State. */
286static const SSMFIELD g_aSvmHwvirtHostState[] =
287{
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
323 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
324 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
325 SSMFIELD_ENTRY_TERM()
326};
327
328/** Saved state field descriptors for VMX nested hardware-virtualization
329 * VMCS. */
330static const SSMFIELD g_aVmxHwvirtVmcs[] =
331{
332 SSMFIELD_ENTRY( VMXVVMCS, u32VmcsRevId),
333 SSMFIELD_ENTRY( VMXVVMCS, enmVmxAbort),
334 SSMFIELD_ENTRY( VMXVVMCS, fVmcsState),
335 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au8Padding0),
336 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved0),
337
338 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, u16Reserved0),
339
340 SSMFIELD_ENTRY( VMXVVMCS, u32RoVmInstrError),
341 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitReason),
342 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntInfo),
343 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntErrCode),
344 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringInfo),
345 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringErrCode),
346 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrLen),
347 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrInfo),
348 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32RoReserved2),
349
350 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestPhysAddr),
351 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved1),
352
353 SSMFIELD_ENTRY( VMXVVMCS, u64RoExitQual),
354 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRcx),
355 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRsi),
356 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRdi),
357 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRip),
358 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestLinearAddr),
359 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved5),
360
361 SSMFIELD_ENTRY( VMXVVMCS, u16Vpid),
362 SSMFIELD_ENTRY( VMXVVMCS, u16PostIntNotifyVector),
363 SSMFIELD_ENTRY( VMXVVMCS, u16EptpIndex),
364 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved0),
365
366 SSMFIELD_ENTRY( VMXVVMCS, u32PinCtls),
367 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls),
368 SSMFIELD_ENTRY( VMXVVMCS, u32XcptBitmap),
369 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMask),
370 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMatch),
371 SSMFIELD_ENTRY( VMXVVMCS, u32Cr3TargetCount),
372 SSMFIELD_ENTRY( VMXVVMCS, u32ExitCtls),
373 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrStoreCount),
374 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrLoadCount),
375 SSMFIELD_ENTRY( VMXVVMCS, u32EntryCtls),
376 SSMFIELD_ENTRY( VMXVVMCS, u32EntryMsrLoadCount),
377 SSMFIELD_ENTRY( VMXVVMCS, u32EntryIntInfo),
378 SSMFIELD_ENTRY( VMXVVMCS, u32EntryXcptErrCode),
379 SSMFIELD_ENTRY( VMXVVMCS, u32EntryInstrLen),
380 SSMFIELD_ENTRY( VMXVVMCS, u32TprThreshold),
381 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls2),
382 SSMFIELD_ENTRY( VMXVVMCS, u32PleGap),
383 SSMFIELD_ENTRY( VMXVVMCS, u32PleWindow),
384 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved1),
385
386 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapA),
387 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapB),
388 SSMFIELD_ENTRY( VMXVVMCS, u64AddrMsrBitmap),
389 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrStore),
390 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrLoad),
391 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEntryMsrLoad),
392 SSMFIELD_ENTRY( VMXVVMCS, u64ExecVmcsPtr),
393 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPml),
394 SSMFIELD_ENTRY( VMXVVMCS, u64TscOffset),
395 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVirtApic),
396 SSMFIELD_ENTRY( VMXVVMCS, u64AddrApicAccess),
397 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPostedIntDesc),
398 SSMFIELD_ENTRY( VMXVVMCS, u64VmFuncCtls),
399 SSMFIELD_ENTRY( VMXVVMCS, u64EptpPtr),
400 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap0),
401 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap1),
402 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap2),
403 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap3),
404 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEptpList),
405 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmreadBitmap),
406 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmwriteBitmap),
407 SSMFIELD_ENTRY( VMXVVMCS, u64AddrXcptVeInfo),
408 SSMFIELD_ENTRY( VMXVVMCS, u64XssBitmap),
409 SSMFIELD_ENTRY( VMXVVMCS, u64EnclsBitmap),
410 SSMFIELD_ENTRY( VMXVVMCS, u64SpptPtr),
411 SSMFIELD_ENTRY( VMXVVMCS, u64TscMultiplier),
412 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved0),
413
414 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0Mask),
415 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4Mask),
416 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0ReadShadow),
417 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4ReadShadow),
418 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target0),
419 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target1),
420 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target2),
421 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target3),
422 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved4),
423
424 SSMFIELD_ENTRY( VMXVVMCS, HostEs),
425 SSMFIELD_ENTRY( VMXVVMCS, HostCs),
426 SSMFIELD_ENTRY( VMXVVMCS, HostSs),
427 SSMFIELD_ENTRY( VMXVVMCS, HostDs),
428 SSMFIELD_ENTRY( VMXVVMCS, HostFs),
429 SSMFIELD_ENTRY( VMXVVMCS, HostGs),
430 SSMFIELD_ENTRY( VMXVVMCS, HostTr),
431 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved2),
432
433 SSMFIELD_ENTRY( VMXVVMCS, u32HostSysenterCs),
434 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved4),
435
436 SSMFIELD_ENTRY( VMXVVMCS, u64HostPatMsr),
437 SSMFIELD_ENTRY( VMXVVMCS, u64HostEferMsr),
438 SSMFIELD_ENTRY( VMXVVMCS, u64HostPerfGlobalCtlMsr),
439 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved3),
440
441 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr0),
442 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr3),
443 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr4),
444 SSMFIELD_ENTRY( VMXVVMCS, u64HostFsBase),
445 SSMFIELD_ENTRY( VMXVVMCS, u64HostGsBase),
446 SSMFIELD_ENTRY( VMXVVMCS, u64HostTrBase),
447 SSMFIELD_ENTRY( VMXVVMCS, u64HostGdtrBase),
448 SSMFIELD_ENTRY( VMXVVMCS, u64HostIdtrBase),
449 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEsp),
450 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEip),
451 SSMFIELD_ENTRY( VMXVVMCS, u64HostRsp),
452 SSMFIELD_ENTRY( VMXVVMCS, u64HostRip),
453 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved7),
454
455 SSMFIELD_ENTRY( VMXVVMCS, GuestEs),
456 SSMFIELD_ENTRY( VMXVVMCS, GuestCs),
457 SSMFIELD_ENTRY( VMXVVMCS, GuestSs),
458 SSMFIELD_ENTRY( VMXVVMCS, GuestDs),
459 SSMFIELD_ENTRY( VMXVVMCS, GuestFs),
460 SSMFIELD_ENTRY( VMXVVMCS, GuestGs),
461 SSMFIELD_ENTRY( VMXVVMCS, GuestLdtr),
462 SSMFIELD_ENTRY( VMXVVMCS, GuestTr),
463 SSMFIELD_ENTRY( VMXVVMCS, u16GuestIntStatus),
464 SSMFIELD_ENTRY( VMXVVMCS, u16PmlIndex),
465 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved1),
466
467 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsLimit),
468 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsLimit),
469 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsLimit),
470 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsLimit),
471 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsLimit),
472 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsLimit),
473 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrLimit),
474 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrLimit),
475 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGdtrLimit),
476 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIdtrLimit),
477 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsAttr),
478 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsAttr),
479 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsAttr),
480 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsAttr),
481 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsAttr),
482 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsAttr),
483 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrAttr),
484 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrAttr),
485 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIntrState),
486 SSMFIELD_ENTRY( VMXVVMCS, u32GuestActivityState),
487 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSmBase),
488 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSysenterCS),
489 SSMFIELD_ENTRY( VMXVVMCS, u32PreemptTimer),
490 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved3),
491
492 SSMFIELD_ENTRY( VMXVVMCS, u64VmcsLinkPtr),
493 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDebugCtlMsr),
494 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPatMsr),
495 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEferMsr),
496 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPerfGlobalCtlMsr),
497 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte0),
498 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte1),
499 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte2),
500 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte3),
501 SSMFIELD_ENTRY( VMXVVMCS, u64GuestBndcfgsMsr),
502 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRtitCtlMsr),
503 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved2),
504
505 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr0),
506 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr3),
507 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr4),
508 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEsBase),
509 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCsBase),
510 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSsBase),
511 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDsBase),
512 SSMFIELD_ENTRY( VMXVVMCS, u64GuestFsBase),
513 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGsBase),
514 SSMFIELD_ENTRY( VMXVVMCS, u64GuestLdtrBase),
515 SSMFIELD_ENTRY( VMXVVMCS, u64GuestTrBase),
516 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGdtrBase),
517 SSMFIELD_ENTRY( VMXVVMCS, u64GuestIdtrBase),
518 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDr7),
519 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRsp),
520 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRip),
521 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRFlags),
522 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPendingDbgXcpts),
523 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEsp),
524 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEip),
525 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved6),
526
527 SSMFIELD_ENTRY_TERM()
528};
529
530/** Saved state field descriptors for CPUMCTX. */
531static const SSMFIELD g_aCpumX87Fields[] =
532{
533 SSMFIELD_ENTRY( X86FXSTATE, FCW),
534 SSMFIELD_ENTRY( X86FXSTATE, FSW),
535 SSMFIELD_ENTRY( X86FXSTATE, FTW),
536 SSMFIELD_ENTRY( X86FXSTATE, FOP),
537 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
538 SSMFIELD_ENTRY( X86FXSTATE, CS),
539 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
540 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
541 SSMFIELD_ENTRY( X86FXSTATE, DS),
542 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
543 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
544 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
545 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
546 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
547 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
548 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
549 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
550 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
551 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
552 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
553 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
554 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
555 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
556 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
557 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
558 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
559 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
560 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
561 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
562 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
563 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
564 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
565 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
566 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
567 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
568 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
569 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
570 SSMFIELD_ENTRY_TERM()
571};
572
573/** Saved state field descriptors for X86XSAVEHDR. */
574static const SSMFIELD g_aCpumXSaveHdrFields[] =
575{
576 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
577 SSMFIELD_ENTRY_TERM()
578};
579
580/** Saved state field descriptors for X86XSAVEYMMHI. */
581static const SSMFIELD g_aCpumYmmHiFields[] =
582{
583 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
584 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
585 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
586 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
587 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
588 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
589 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
590 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
591 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
592 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
593 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
594 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
595 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
596 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
597 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
598 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
599 SSMFIELD_ENTRY_TERM()
600};
601
602/** Saved state field descriptors for X86XSAVEBNDREGS. */
603static const SSMFIELD g_aCpumBndRegsFields[] =
604{
605 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
606 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
607 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
608 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
609 SSMFIELD_ENTRY_TERM()
610};
611
612/** Saved state field descriptors for X86XSAVEBNDCFG. */
613static const SSMFIELD g_aCpumBndCfgFields[] =
614{
615 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
616 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
617 SSMFIELD_ENTRY_TERM()
618};
619
620#if 0 /** @todo */
621/** Saved state field descriptors for X86XSAVEOPMASK. */
622static const SSMFIELD g_aCpumOpmaskFields[] =
623{
624 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
625 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
626 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
627 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
628 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
629 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
630 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
631 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
632 SSMFIELD_ENTRY_TERM()
633};
634#endif
635
636/** Saved state field descriptors for X86XSAVEZMMHI256. */
637static const SSMFIELD g_aCpumZmmHi256Fields[] =
638{
639 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
640 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
641 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
642 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
643 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
644 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
645 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
646 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
647 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
648 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
649 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
650 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
651 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
652 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
653 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
654 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
655 SSMFIELD_ENTRY_TERM()
656};
657
658/** Saved state field descriptors for X86XSAVEZMM16HI. */
659static const SSMFIELD g_aCpumZmm16HiFields[] =
660{
661 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
662 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
663 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
664 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
665 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
666 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
667 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
668 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
669 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
670 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
671 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
672 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
673 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
674 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
675 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
676 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
677 SSMFIELD_ENTRY_TERM()
678};
679
680
681
682/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
683 * registeres changed. */
684static const SSMFIELD g_aCpumX87FieldsMem[] =
685{
686 SSMFIELD_ENTRY( X86FXSTATE, FCW),
687 SSMFIELD_ENTRY( X86FXSTATE, FSW),
688 SSMFIELD_ENTRY( X86FXSTATE, FTW),
689 SSMFIELD_ENTRY( X86FXSTATE, FOP),
690 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
691 SSMFIELD_ENTRY( X86FXSTATE, CS),
692 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
693 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
694 SSMFIELD_ENTRY( X86FXSTATE, DS),
695 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
696 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
697 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
698 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
699 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
700 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
701 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
702 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
703 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
704 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
705 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
706 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
707 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
708 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
709 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
710 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
711 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
712 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
713 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
714 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
715 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
716 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
717 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
718 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
719 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
720 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
721 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
722 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
723 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
724};
725
726/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
727 * registeres changed. */
728static const SSMFIELD g_aCpumCtxFieldsMem[] =
729{
730 SSMFIELD_ENTRY( CPUMCTX, rdi),
731 SSMFIELD_ENTRY( CPUMCTX, rsi),
732 SSMFIELD_ENTRY( CPUMCTX, rbp),
733 SSMFIELD_ENTRY( CPUMCTX, rax),
734 SSMFIELD_ENTRY( CPUMCTX, rbx),
735 SSMFIELD_ENTRY( CPUMCTX, rdx),
736 SSMFIELD_ENTRY( CPUMCTX, rcx),
737 SSMFIELD_ENTRY( CPUMCTX, rsp),
738 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
739 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
740 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
741 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
742 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
743 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
744 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
745 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
746 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
747 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
748 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
749 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
750 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
751 SSMFIELD_ENTRY( CPUMCTX, rflags),
752 SSMFIELD_ENTRY( CPUMCTX, rip),
753 SSMFIELD_ENTRY( CPUMCTX, r8),
754 SSMFIELD_ENTRY( CPUMCTX, r9),
755 SSMFIELD_ENTRY( CPUMCTX, r10),
756 SSMFIELD_ENTRY( CPUMCTX, r11),
757 SSMFIELD_ENTRY( CPUMCTX, r12),
758 SSMFIELD_ENTRY( CPUMCTX, r13),
759 SSMFIELD_ENTRY( CPUMCTX, r14),
760 SSMFIELD_ENTRY( CPUMCTX, r15),
761 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
762 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
763 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
764 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
765 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
766 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
767 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
768 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
769 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
770 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
771 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
772 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
773 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
774 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
775 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
776 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
777 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
778 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
779 SSMFIELD_ENTRY( CPUMCTX, cr0),
780 SSMFIELD_ENTRY( CPUMCTX, cr2),
781 SSMFIELD_ENTRY( CPUMCTX, cr3),
782 SSMFIELD_ENTRY( CPUMCTX, cr4),
783 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
784 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
785 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
786 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
787 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
788 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
789 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
790 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
791 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
792 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
793 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
794 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
795 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
796 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
797 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
798 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
799 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
800 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
801 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
802 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
803 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
804 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
805 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
806 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
807 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
808 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
809 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
810 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
811 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
812 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
813 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
814 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
815 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
816 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
817 SSMFIELD_ENTRY_TERM()
818};
819
820/** Saved state field descriptors for CPUMCTX_VER1_6. */
821static const SSMFIELD g_aCpumX87FieldsV16[] =
822{
823 SSMFIELD_ENTRY( X86FXSTATE, FCW),
824 SSMFIELD_ENTRY( X86FXSTATE, FSW),
825 SSMFIELD_ENTRY( X86FXSTATE, FTW),
826 SSMFIELD_ENTRY( X86FXSTATE, FOP),
827 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
828 SSMFIELD_ENTRY( X86FXSTATE, CS),
829 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
830 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
831 SSMFIELD_ENTRY( X86FXSTATE, DS),
832 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
833 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
834 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
835 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
836 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
837 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
838 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
839 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
840 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
841 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
842 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
843 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
844 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
845 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
846 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
847 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
848 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
849 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
850 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
851 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
852 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
853 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
854 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
855 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
856 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
857 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
858 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
859 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
860 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
861 SSMFIELD_ENTRY_TERM()
862};
863
864/** Saved state field descriptors for CPUMCTX_VER1_6. */
865static const SSMFIELD g_aCpumCtxFieldsV16[] =
866{
867 SSMFIELD_ENTRY( CPUMCTX, rdi),
868 SSMFIELD_ENTRY( CPUMCTX, rsi),
869 SSMFIELD_ENTRY( CPUMCTX, rbp),
870 SSMFIELD_ENTRY( CPUMCTX, rax),
871 SSMFIELD_ENTRY( CPUMCTX, rbx),
872 SSMFIELD_ENTRY( CPUMCTX, rdx),
873 SSMFIELD_ENTRY( CPUMCTX, rcx),
874 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
875 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
876 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
877 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
878 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
879 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
880 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
881 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
882 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
883 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
884 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
885 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
886 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
887 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
888 SSMFIELD_ENTRY( CPUMCTX, rflags),
889 SSMFIELD_ENTRY( CPUMCTX, rip),
890 SSMFIELD_ENTRY( CPUMCTX, r8),
891 SSMFIELD_ENTRY( CPUMCTX, r9),
892 SSMFIELD_ENTRY( CPUMCTX, r10),
893 SSMFIELD_ENTRY( CPUMCTX, r11),
894 SSMFIELD_ENTRY( CPUMCTX, r12),
895 SSMFIELD_ENTRY( CPUMCTX, r13),
896 SSMFIELD_ENTRY( CPUMCTX, r14),
897 SSMFIELD_ENTRY( CPUMCTX, r15),
898 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
899 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
900 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
901 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
902 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
903 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
904 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
905 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
906 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
907 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
908 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
909 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
910 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
911 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
912 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
913 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
914 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
915 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
916 SSMFIELD_ENTRY( CPUMCTX, cr0),
917 SSMFIELD_ENTRY( CPUMCTX, cr2),
918 SSMFIELD_ENTRY( CPUMCTX, cr3),
919 SSMFIELD_ENTRY( CPUMCTX, cr4),
920 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
921 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
922 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
923 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
924 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
925 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
926 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
927 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
928 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
929 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
930 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
931 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
932 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
933 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
934 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
935 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
936 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
937 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
938 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
939 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
940 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
941 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
942 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
943 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
944 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
945 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
946 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
947 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
948 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
949 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
950 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
951 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
952 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
953 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
954 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
955 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
956 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
957 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
958 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
959 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
960 SSMFIELD_ENTRY_TERM()
961};
962
963
964/**
965 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
966 *
967 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
968 * (last instruction pointer, last data pointer, last opcode) except when the ES
969 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
970 * clear these registers there is potential, local FPU leakage from a process
971 * using the FPU to another.
972 *
973 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
974 *
975 * @param pVM The cross context VM structure.
976 */
977static void cpumR3CheckLeakyFpu(PVM pVM)
978{
979 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
980 uint32_t const u32Family = u32CpuVersion >> 8;
981 if ( u32Family >= 6 /* K7 and higher */
982 && (ASMIsAmdCpu() || ASMIsHygonCpu()) )
983 {
984 uint32_t cExt = ASMCpuId_EAX(0x80000000);
985 if (ASMIsValidExtRange(cExt))
986 {
987 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
988 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
989 {
990 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
991 {
992 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
993 pVCpu->cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
994 }
995 Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n"));
996 }
997 }
998 }
999}
1000
1001
1002/**
1003 * Frees memory allocated for the SVM hardware virtualization state.
1004 *
1005 * @param pVM The cross context VM structure.
1006 */
1007static void cpumR3FreeSvmHwVirtState(PVM pVM)
1008{
1009 Assert(pVM->cpum.s.GuestFeatures.fSvm);
1010 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1011 {
1012 PVMCPU pVCpu = pVM->apCpusR3[i];
1013 if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
1014 {
1015 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
1016 pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
1017 }
1018 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
1019
1020 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
1021 {
1022 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
1023 pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
1024 }
1025
1026 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
1027 {
1028 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
1029 pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
1030 }
1031 }
1032}
1033
1034
1035/**
1036 * Allocates memory for the SVM hardware virtualization state.
1037 *
1038 * @returns VBox status code.
1039 * @param pVM The cross context VM structure.
1040 */
1041static int cpumR3AllocSvmHwVirtState(PVM pVM)
1042{
1043 Assert(pVM->cpum.s.GuestFeatures.fSvm);
1044
1045 int rc = VINF_SUCCESS;
1046 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
1047 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
1048 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1049 {
1050 PVMCPU pVCpu = pVM->apCpusR3[i];
1051 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
1052
1053 /*
1054 * Allocate the nested-guest VMCB.
1055 */
1056 SUPPAGE SupNstGstVmcbPage;
1057 RT_ZERO(SupNstGstVmcbPage);
1058 SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
1059 Assert(SVM_VMCB_PAGES == 1);
1060 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
1061 rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
1062 &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
1063 if (RT_FAILURE(rc))
1064 {
1065 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
1066 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
1067 break;
1068 }
1069 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
1070
1071 /*
1072 * Allocate the MSRPM (MSR Permission bitmap).
1073 */
1074 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
1075 rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
1076 &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
1077 if (RT_FAILURE(rc))
1078 {
1079 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
1080 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
1081 SVM_MSRPM_PAGES));
1082 break;
1083 }
1084
1085 /*
1086 * Allocate the IOPM (IO Permission bitmap).
1087 */
1088 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
1089 rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
1090 &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
1091 if (RT_FAILURE(rc))
1092 {
1093 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
1094 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
1095 SVM_IOPM_PAGES));
1096 break;
1097 }
1098 }
1099
1100 /* On any failure, cleanup. */
1101 if (RT_FAILURE(rc))
1102 cpumR3FreeSvmHwVirtState(pVM);
1103
1104 return rc;
1105}
1106
1107
1108/**
1109 * Resets per-VCPU SVM hardware virtualization state.
1110 *
1111 * @param pVCpu The cross context virtual CPU structure.
1112 */
1113DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu)
1114{
1115 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1116 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
1117 Assert(pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
1118
1119 memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
1120 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1121 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1122}
1123
1124
1125/**
1126 * Frees memory allocated for the VMX hardware virtualization state.
1127 *
1128 * @param pVM The cross context VM structure.
1129 */
1130static void cpumR3FreeVmxHwVirtState(PVM pVM)
1131{
1132 Assert(pVM->cpum.s.GuestFeatures.fVmx);
1133 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1134 {
1135 PVMCPU pVCpu = pVM->apCpusR3[i];
1136 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1137
1138 if (pCtx->hwvirt.vmx.pVmcsR3)
1139 {
1140 SUPR3ContFree(pCtx->hwvirt.vmx.pVmcsR3, VMX_V_VMCS_PAGES);
1141 pCtx->hwvirt.vmx.pVmcsR3 = NULL;
1142 }
1143 if (pCtx->hwvirt.vmx.pShadowVmcsR3)
1144 {
1145 SUPR3ContFree(pCtx->hwvirt.vmx.pShadowVmcsR3, VMX_V_VMCS_PAGES);
1146 pCtx->hwvirt.vmx.pShadowVmcsR3 = NULL;
1147 }
1148 if (pCtx->hwvirt.vmx.pvVirtApicPageR3)
1149 {
1150 SUPR3ContFree(pCtx->hwvirt.vmx.pvVirtApicPageR3, VMX_V_VIRT_APIC_PAGES);
1151 pCtx->hwvirt.vmx.pvVirtApicPageR3 = NULL;
1152 }
1153 if (pCtx->hwvirt.vmx.pvVmreadBitmapR3)
1154 {
1155 SUPR3ContFree(pCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
1156 pCtx->hwvirt.vmx.pvVmreadBitmapR3 = NULL;
1157 }
1158 if (pCtx->hwvirt.vmx.pvVmwriteBitmapR3)
1159 {
1160 SUPR3ContFree(pCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
1161 pCtx->hwvirt.vmx.pvVmwriteBitmapR3 = NULL;
1162 }
1163 if (pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3)
1164 {
1165 SUPR3ContFree(pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1166 pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3 = NULL;
1167 }
1168 if (pCtx->hwvirt.vmx.pExitMsrStoreAreaR3)
1169 {
1170 SUPR3ContFree(pCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1171 pCtx->hwvirt.vmx.pExitMsrStoreAreaR3 = NULL;
1172 }
1173 if (pCtx->hwvirt.vmx.pExitMsrLoadAreaR3)
1174 {
1175 SUPR3ContFree(pCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1176 pCtx->hwvirt.vmx.pExitMsrLoadAreaR3 = NULL;
1177 }
1178 if (pCtx->hwvirt.vmx.pvMsrBitmapR3)
1179 {
1180 SUPR3ContFree(pCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_PAGES);
1181 pCtx->hwvirt.vmx.pvMsrBitmapR3 = NULL;
1182 }
1183 if (pCtx->hwvirt.vmx.pvIoBitmapR3)
1184 {
1185 SUPR3ContFree(pCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
1186 pCtx->hwvirt.vmx.pvIoBitmapR3 = NULL;
1187 }
1188 }
1189}
1190
1191
1192/**
1193 * Allocates memory for the VMX hardware virtualization state.
1194 *
1195 * @returns VBox status code.
1196 * @param pVM The cross context VM structure.
1197 */
1198static int cpumR3AllocVmxHwVirtState(PVM pVM)
1199{
1200 int rc = VINF_SUCCESS;
1201 uint32_t const cPages = VMX_V_VMCS_PAGES
1202 + VMX_V_SHADOW_VMCS_PAGES
1203 + VMX_V_VIRT_APIC_PAGES
1204 + (2 * VMX_V_VMREAD_VMWRITE_BITMAP_PAGES)
1205 + (3 * VMX_V_AUTOMSR_AREA_PAGES)
1206 + VMX_V_MSR_BITMAP_PAGES
1207 + (VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
1208 LogRel(("CPUM: Allocating %u pages for the nested-guest VMCS and related structures\n", pVM->cCpus * cPages));
1209 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1210 {
1211 PVMCPU pVCpu = pVM->apCpusR3[i];
1212 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1213 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
1214
1215 /*
1216 * Allocate the nested-guest current VMCS.
1217 */
1218 pCtx->hwvirt.vmx.pVmcsR3 = (PVMXVVMCS)SUPR3ContAlloc(VMX_V_VMCS_PAGES,
1219 &pCtx->hwvirt.vmx.pVmcsR0,
1220 &pCtx->hwvirt.vmx.HCPhysVmcs);
1221 if (pCtx->hwvirt.vmx.pVmcsR3)
1222 { /* likely */ }
1223 else
1224 {
1225 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1226 break;
1227 }
1228
1229 /*
1230 * Allocate the nested-guest shadow VMCS.
1231 */
1232 pCtx->hwvirt.vmx.pShadowVmcsR3 = (PVMXVVMCS)SUPR3ContAlloc(VMX_V_VMCS_PAGES,
1233 &pCtx->hwvirt.vmx.pShadowVmcsR0,
1234 &pCtx->hwvirt.vmx.HCPhysShadowVmcs);
1235 if (pCtx->hwvirt.vmx.pShadowVmcsR3)
1236 { /* likely */ }
1237 else
1238 {
1239 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's shadow VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1240 break;
1241 }
1242
1243 /*
1244 * Allocate the virtual-APIC page.
1245 */
1246 pCtx->hwvirt.vmx.pvVirtApicPageR3 = SUPR3ContAlloc(VMX_V_VIRT_APIC_PAGES,
1247 &pCtx->hwvirt.vmx.pvVirtApicPageR0,
1248 &pCtx->hwvirt.vmx.HCPhysVirtApicPage);
1249 if (pCtx->hwvirt.vmx.pvVirtApicPageR3)
1250 { /* likely */ }
1251 else
1252 {
1253 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's virtual-APIC page\n", pVCpu->idCpu,
1254 VMX_V_VIRT_APIC_PAGES));
1255 break;
1256 }
1257
1258 /*
1259 * Allocate the VMREAD-bitmap.
1260 */
1261 pCtx->hwvirt.vmx.pvVmreadBitmapR3 = SUPR3ContAlloc(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES,
1262 &pCtx->hwvirt.vmx.pvVmreadBitmapR0,
1263 &pCtx->hwvirt.vmx.HCPhysVmreadBitmap);
1264 if (pCtx->hwvirt.vmx.pvVmreadBitmapR3)
1265 { /* likely */ }
1266 else
1267 {
1268 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMREAD-bitmap\n", pVCpu->idCpu,
1269 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1270 break;
1271 }
1272
1273 /*
1274 * Allocatge the VMWRITE-bitmap.
1275 */
1276 pCtx->hwvirt.vmx.pvVmwriteBitmapR3 = SUPR3ContAlloc(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES,
1277 &pCtx->hwvirt.vmx.pvVmwriteBitmapR0,
1278 &pCtx->hwvirt.vmx.HCPhysVmwriteBitmap);
1279 if (pCtx->hwvirt.vmx.pvVmwriteBitmapR3)
1280 { /* likely */ }
1281 else
1282 {
1283 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMWRITE-bitmap\n", pVCpu->idCpu,
1284 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1285 break;
1286 }
1287
1288 /*
1289 * Allocate the VM-entry MSR-load area.
1290 */
1291 pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1292 &pCtx->hwvirt.vmx.pEntryMsrLoadAreaR0,
1293 &pCtx->hwvirt.vmx.HCPhysEntryMsrLoadArea);
1294 if (pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3)
1295 { /* likely */ }
1296 else
1297 {
1298 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-entry MSR-load area\n", pVCpu->idCpu,
1299 VMX_V_AUTOMSR_AREA_PAGES));
1300 break;
1301 }
1302
1303 /*
1304 * Allocate the VM-exit MSR-store area.
1305 */
1306 pCtx->hwvirt.vmx.pExitMsrStoreAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1307 &pCtx->hwvirt.vmx.pExitMsrStoreAreaR0,
1308 &pCtx->hwvirt.vmx.HCPhysExitMsrStoreArea);
1309 if (pCtx->hwvirt.vmx.pExitMsrStoreAreaR3)
1310 { /* likely */ }
1311 else
1312 {
1313 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-exit MSR-store area\n", pVCpu->idCpu,
1314 VMX_V_AUTOMSR_AREA_PAGES));
1315 break;
1316 }
1317
1318 /*
1319 * Allocate the VM-exit MSR-load area.
1320 */
1321 pCtx->hwvirt.vmx.pExitMsrLoadAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1322 &pCtx->hwvirt.vmx.pExitMsrLoadAreaR0,
1323 &pCtx->hwvirt.vmx.HCPhysExitMsrLoadArea);
1324 if (pCtx->hwvirt.vmx.pExitMsrLoadAreaR3)
1325 { /* likely */ }
1326 else
1327 {
1328 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-exit MSR-load area\n", pVCpu->idCpu,
1329 VMX_V_AUTOMSR_AREA_PAGES));
1330 break;
1331 }
1332
1333 /*
1334 * Allocate the MSR bitmap.
1335 */
1336 pCtx->hwvirt.vmx.pvMsrBitmapR3 = SUPR3ContAlloc(VMX_V_MSR_BITMAP_PAGES,
1337 &pCtx->hwvirt.vmx.pvMsrBitmapR0,
1338 &pCtx->hwvirt.vmx.HCPhysMsrBitmap);
1339 if (pCtx->hwvirt.vmx.pvMsrBitmapR3)
1340 { /* likely */ }
1341 else
1342 {
1343 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR bitmap\n", pVCpu->idCpu,
1344 VMX_V_MSR_BITMAP_PAGES));
1345 break;
1346 }
1347
1348 /*
1349 * Allocate the I/O bitmaps (A and B).
1350 */
1351 pCtx->hwvirt.vmx.pvIoBitmapR3 = SUPR3ContAlloc(VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES,
1352 &pCtx->hwvirt.vmx.pvIoBitmapR0,
1353 &pCtx->hwvirt.vmx.HCPhysIoBitmap);
1354 if (pCtx->hwvirt.vmx.pvIoBitmapR3)
1355 { /* likely */ }
1356 else
1357 {
1358 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's I/O bitmaps\n", pVCpu->idCpu,
1359 VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES));
1360 break;
1361 }
1362
1363 /*
1364 * Zero out all allocated pages (should compress well for saved-state).
1365 */
1366 memset(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs), 0, VMX_V_VMCS_SIZE);
1367 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_SHADOW_VMCS_SIZE);
1368 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVirtApicPage), 0, VMX_V_VIRT_APIC_SIZE);
1369 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVmreadBitmap), 0, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1370 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap), 0, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1371 memset(pCtx->hwvirt.vmx.CTX_SUFF(pEntryMsrLoadArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1372 memset(pCtx->hwvirt.vmx.CTX_SUFF(pExitMsrStoreArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1373 memset(pCtx->hwvirt.vmx.CTX_SUFF(pExitMsrLoadArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1374 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvMsrBitmap), 0, VMX_V_MSR_BITMAP_SIZE);
1375 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvIoBitmap), 0, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
1376 }
1377
1378 /* On any failure, cleanup. */
1379 if (RT_FAILURE(rc))
1380 cpumR3FreeVmxHwVirtState(pVM);
1381
1382 return rc;
1383}
1384
1385
1386/**
1387 * Resets per-VCPU VMX hardware virtualization state.
1388 *
1389 * @param pVCpu The cross context virtual CPU structure.
1390 */
1391DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu)
1392{
1393 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1394 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1395 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
1396 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs));
1397
1398 memset(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs), 0, VMX_V_VMCS_SIZE);
1399 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_SHADOW_VMCS_SIZE);
1400 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1401 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1402 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1403 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1404 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1405 /* Don't reset diagnostics here. */
1406}
1407
1408
1409/**
1410 * Displays the host and guest VMX features.
1411 *
1412 * @param pVM The cross context VM structure.
1413 * @param pHlp The info helper functions.
1414 * @param pszArgs "terse", "default" or "verbose".
1415 */
1416DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1417{
1418 RT_NOREF(pszArgs);
1419 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1420 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1421 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1422 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA
1423 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_SHANGHAI)
1424 {
1425#define VMXFEATDUMP(a_szDesc, a_Var) \
1426 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1427
1428 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1429 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1430 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1431 /* Basic. */
1432 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1433 /* Pin-based controls. */
1434 VMXFEATDUMP("ExtIntExit - External interrupt exiting ", fVmxExtIntExit);
1435 VMXFEATDUMP("NmiExit - NMI exiting ", fVmxNmiExit);
1436 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1437 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1438 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1439 /* Processor-based controls. */
1440 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1441 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1442 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1443 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1444 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1445 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1446 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1447 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1448 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1449 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1450 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1451 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1452 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1453 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1454 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1455 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1456 VMXFEATDUMP("MonitorTrapFlag - Monitor Trap Flag ", fVmxMonitorTrapFlag);
1457 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1458 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1459 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1460 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1461 /* Secondary processor-based controls. */
1462 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1463 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1464 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1465 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1466 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1467 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1468 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1469 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1470 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1471 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1472 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1473 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1474 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1475 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1476 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1477 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1478 VMXFEATDUMP("PML - Page-Modification Log (PML) ", fVmxPml);
1479 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1480 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1481 /* VM-entry controls. */
1482 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1483 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1484 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER MSR on VM-entry ", fVmxEntryLoadEferMsr);
1485 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT MSR on VM-entry ", fVmxEntryLoadPatMsr);
1486 /* VM-exit controls. */
1487 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1488 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1489 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1490 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT MSR on VM-exit ", fVmxExitSavePatMsr);
1491 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT MSR on VM-exit ", fVmxExitLoadPatMsr);
1492 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER MSR on VM-exit ", fVmxExitSaveEferMsr);
1493 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER MSR on VM-exit ", fVmxExitLoadEferMsr);
1494 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1495 /* Miscellaneous data. */
1496 VMXFEATDUMP("ExitSaveEferLma - Save IA32_EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1497 VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxIntelPt);
1498 VMXFEATDUMP("VmwriteAll - VMWRITE to any supported VMCS field ", fVmxVmwriteAll);
1499 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1500#undef VMXFEATDUMP
1501 }
1502 else
1503 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1504}
1505
1506
1507/**
1508 * Checks whether nested-guest execution using hardware-assisted VMX (e.g, using HM
1509 * or NEM) is allowed.
1510 *
1511 * @returns @c true if hardware-assisted nested-guest execution is allowed, @c false
1512 * otherwise.
1513 * @param pVM The cross context VM structure.
1514 */
1515static bool cpumR3IsHwAssistNstGstExecAllowed(PVM pVM)
1516{
1517 AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
1518#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
1519 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
1520 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
1521 return true;
1522#else
1523 NOREF(pVM);
1524#endif
1525 return false;
1526}
1527
1528
1529/**
1530 * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs.
1531 *
1532 * @param pVM The cross context VM structure.
1533 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1534 * and no hardware-assisted nested-guest execution is
1535 * possible for this VM.
1536 * @param pGuestFeatures The guest features to use (only VMX features are
1537 * accessed).
1538 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1539 *
1540 * @remarks This function ASSUMES the VMX guest-features are already exploded!
1541 */
1542static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs)
1543{
1544 bool const fIsNstGstHwExecAllowed = cpumR3IsHwAssistNstGstExecAllowed(pVM);
1545
1546 Assert(!fIsNstGstHwExecAllowed || pHostVmxMsrs);
1547 Assert(pGuestFeatures->fVmx);
1548
1549 /*
1550 * We don't support the following MSRs yet:
1551 * - True Pin-based VM-execution controls.
1552 * - True Processor-based VM-execution controls.
1553 * - True VM-entry VM-execution controls.
1554 * - True VM-exit VM-execution controls.
1555 */
1556
1557 /* Feature control. */
1558 pGuestVmxMsrs->u64FeatCtrl = MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON;
1559
1560 /* Basic information. */
1561 {
1562 uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
1563 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
1564 | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode )
1565 | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
1566 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
1567 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo)
1568 | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, 0 );
1569 pGuestVmxMsrs->u64Basic = u64Basic;
1570 }
1571
1572 /* Pin-based VM-execution controls. */
1573 {
1574 uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
1575 | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
1576 | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
1577 | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
1578 | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
1579 uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
1580 uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
1581 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
1582 fAllowed0, fAllowed1, fFeatures));
1583 pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1584 }
1585
1586 /* Processor-based VM-execution controls. */
1587 {
1588 uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
1589 | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
1590 | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
1591 | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
1592 | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
1593 | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
1594 | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
1595 | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
1596 | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
1597 | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
1598 | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
1599 | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
1600 | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
1601 | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
1602 | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
1603 | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
1604 | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
1605 | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
1606 | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
1607 | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
1608 | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
1609 uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
1610 uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
1611 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1612 fAllowed1, fFeatures));
1613 pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1614 }
1615
1616 /* Secondary processor-based VM-execution controls. */
1617 if (pGuestFeatures->fVmxSecondaryExecCtls)
1618 {
1619 uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
1620 | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
1621 | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
1622 | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
1623 | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
1624 | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
1625 | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
1626 | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT)
1627 | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
1628 | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
1629 | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
1630 | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
1631 | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
1632 | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
1633 | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
1634 | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
1635 | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
1636 | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
1637 | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
1638 | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT );
1639 uint32_t const fAllowed0 = 0;
1640 uint32_t const fAllowed1 = fFeatures;
1641 pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1642 }
1643
1644 /* VM-exit controls. */
1645 {
1646 uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
1647 | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
1648 | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
1649 | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
1650 | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
1651 | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
1652 | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
1653 | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT );
1654 /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
1655 uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
1656 uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
1657 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1658 fAllowed1, fFeatures));
1659 pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1660 }
1661
1662 /* VM-entry controls. */
1663 {
1664 uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
1665 | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
1666 | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
1667 | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
1668 uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
1669 uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
1670 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1671 fAllowed1, fFeatures));
1672 pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1673 }
1674
1675 /* Miscellaneous data. */
1676 {
1677 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Misc : 0;
1678
1679 uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
1680 uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
1681 pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
1682 | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma )
1683 | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
1684 | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxIntelPt )
1685 | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
1686 | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
1687 | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
1688 | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
1689 | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll )
1690 | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt)
1691 | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
1692 }
1693
1694 /* CR0 Fixed-0. */
1695 pGuestVmxMsrs->u64Cr0Fixed0 = pGuestFeatures->fVmxUnrestrictedGuest ? VMX_V_CR0_FIXED0_UX : VMX_V_CR0_FIXED0;
1696
1697 /* CR0 Fixed-1. */
1698 {
1699 /*
1700 * All CPUs I've looked at so far report CR0 fixed-1 bits as 0xffffffff.
1701 * This is different from CR4 fixed-1 bits which are reported as per the
1702 * CPU features and/or micro-architecture/generation. Why? Ask Intel.
1703 */
1704 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr0Fixed1 : 0xffffffff;
1705 pGuestVmxMsrs->u64Cr0Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr0Fixed0; /* Make sure the CR0 MB1 bits are not clear. */
1706 }
1707
1708 /* CR4 Fixed-0. */
1709 pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
1710
1711 /* CR4 Fixed-1. */
1712 {
1713 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr4Fixed1 : CPUMGetGuestCR4ValidMask(pVM);
1714 pGuestVmxMsrs->u64Cr4Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr4Fixed0; /* Make sure the CR4 MB1 bits are not clear. */
1715 }
1716
1717 /* VMCS Enumeration. */
1718 pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
1719
1720 /* VPID and EPT Capabilities. */
1721 {
1722 /*
1723 * INVVPID instruction always causes a VM-exit unconditionally, so we are free to fake
1724 * and emulate any INVVPID flush type. However, it only makes sense to expose the types
1725 * when INVVPID instruction is supported just to be more compatible with guest
1726 * hypervisors that may make assumptions by only looking at this MSR even though they
1727 * are technically supposed to refer to bit 37 of MSR_IA32_VMX_PROC_CTLS2 first.
1728 *
1729 * See Intel spec. 25.1.2 "Instructions That Cause VM Exits Unconditionally".
1730 * See Intel spec. 30.3 "VMX Instructions".
1731 */
1732 uint8_t const fVpid = pGuestFeatures->fVmxVpid;
1733 pGuestVmxMsrs->u64EptVpidCaps = RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID, fVpid)
1734 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX, fVpid & 1)
1735 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX, fVpid & 1)
1736 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS, fVpid & 1);
1737 }
1738
1739 /* VM Functions. */
1740 if (pGuestFeatures->fVmxVmFunc)
1741 pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
1742}
1743
1744
1745/**
1746 * Checks whether the given guest CPU VMX features are compatible with the provided
1747 * base features.
1748 *
1749 * @returns @c true if compatible, @c false otherwise.
1750 * @param pVM The cross context VM structure.
1751 * @param pBase The base VMX CPU features.
1752 * @param pGst The guest VMX CPU features.
1753 *
1754 * @remarks Only VMX feature bits are examined.
1755 */
1756static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
1757{
1758 if (cpumR3IsHwAssistNstGstExecAllowed(pVM))
1759 {
1760 uint64_t const fBase = ((uint64_t)pBase->fVmxInsOutInfo << 0) | ((uint64_t)pBase->fVmxExtIntExit << 1)
1761 | ((uint64_t)pBase->fVmxNmiExit << 2) | ((uint64_t)pBase->fVmxVirtNmi << 3)
1762 | ((uint64_t)pBase->fVmxPreemptTimer << 4) | ((uint64_t)pBase->fVmxPostedInt << 5)
1763 | ((uint64_t)pBase->fVmxIntWindowExit << 6) | ((uint64_t)pBase->fVmxTscOffsetting << 7)
1764 | ((uint64_t)pBase->fVmxHltExit << 8) | ((uint64_t)pBase->fVmxInvlpgExit << 9)
1765 | ((uint64_t)pBase->fVmxMwaitExit << 10) | ((uint64_t)pBase->fVmxRdpmcExit << 11)
1766 | ((uint64_t)pBase->fVmxRdtscExit << 12) | ((uint64_t)pBase->fVmxCr3LoadExit << 13)
1767 | ((uint64_t)pBase->fVmxCr3StoreExit << 14) | ((uint64_t)pBase->fVmxCr8LoadExit << 15)
1768 | ((uint64_t)pBase->fVmxCr8StoreExit << 16) | ((uint64_t)pBase->fVmxUseTprShadow << 17)
1769 | ((uint64_t)pBase->fVmxNmiWindowExit << 18) | ((uint64_t)pBase->fVmxMovDRxExit << 19)
1770 | ((uint64_t)pBase->fVmxUncondIoExit << 20) | ((uint64_t)pBase->fVmxUseIoBitmaps << 21)
1771 | ((uint64_t)pBase->fVmxMonitorTrapFlag << 22) | ((uint64_t)pBase->fVmxUseMsrBitmaps << 23)
1772 | ((uint64_t)pBase->fVmxMonitorExit << 24) | ((uint64_t)pBase->fVmxPauseExit << 25)
1773 | ((uint64_t)pBase->fVmxSecondaryExecCtls << 26) | ((uint64_t)pBase->fVmxVirtApicAccess << 27)
1774 | ((uint64_t)pBase->fVmxEpt << 28) | ((uint64_t)pBase->fVmxDescTableExit << 29)
1775 | ((uint64_t)pBase->fVmxRdtscp << 30) | ((uint64_t)pBase->fVmxVirtX2ApicMode << 31)
1776 | ((uint64_t)pBase->fVmxVpid << 32) | ((uint64_t)pBase->fVmxWbinvdExit << 33)
1777 | ((uint64_t)pBase->fVmxUnrestrictedGuest << 34) | ((uint64_t)pBase->fVmxApicRegVirt << 35)
1778 | ((uint64_t)pBase->fVmxVirtIntDelivery << 36) | ((uint64_t)pBase->fVmxPauseLoopExit << 37)
1779 | ((uint64_t)pBase->fVmxRdrandExit << 38) | ((uint64_t)pBase->fVmxInvpcid << 39)
1780 | ((uint64_t)pBase->fVmxVmFunc << 40) | ((uint64_t)pBase->fVmxVmcsShadowing << 41)
1781 | ((uint64_t)pBase->fVmxRdseedExit << 42) | ((uint64_t)pBase->fVmxPml << 43)
1782 | ((uint64_t)pBase->fVmxEptXcptVe << 44) | ((uint64_t)pBase->fVmxXsavesXrstors << 45)
1783 | ((uint64_t)pBase->fVmxUseTscScaling << 46) | ((uint64_t)pBase->fVmxEntryLoadDebugCtls << 47)
1784 | ((uint64_t)pBase->fVmxIa32eModeGuest << 48) | ((uint64_t)pBase->fVmxEntryLoadEferMsr << 49)
1785 | ((uint64_t)pBase->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pBase->fVmxExitSaveDebugCtls << 51)
1786 | ((uint64_t)pBase->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pBase->fVmxExitAckExtInt << 53)
1787 | ((uint64_t)pBase->fVmxExitSavePatMsr << 54) | ((uint64_t)pBase->fVmxExitLoadPatMsr << 55)
1788 | ((uint64_t)pBase->fVmxExitSaveEferMsr << 56) | ((uint64_t)pBase->fVmxExitLoadEferMsr << 57)
1789 | ((uint64_t)pBase->fVmxSavePreemptTimer << 58) | ((uint64_t)pBase->fVmxExitSaveEferLma << 59)
1790 | ((uint64_t)pBase->fVmxIntelPt << 60) | ((uint64_t)pBase->fVmxVmwriteAll << 61)
1791 | ((uint64_t)pBase->fVmxEntryInjectSoftInt << 62);
1792
1793 uint64_t const fGst = ((uint64_t)pGst->fVmxInsOutInfo << 0) | ((uint64_t)pGst->fVmxExtIntExit << 1)
1794 | ((uint64_t)pGst->fVmxNmiExit << 2) | ((uint64_t)pGst->fVmxVirtNmi << 3)
1795 | ((uint64_t)pGst->fVmxPreemptTimer << 4) | ((uint64_t)pGst->fVmxPostedInt << 5)
1796 | ((uint64_t)pGst->fVmxIntWindowExit << 6) | ((uint64_t)pGst->fVmxTscOffsetting << 7)
1797 | ((uint64_t)pGst->fVmxHltExit << 8) | ((uint64_t)pGst->fVmxInvlpgExit << 9)
1798 | ((uint64_t)pGst->fVmxMwaitExit << 10) | ((uint64_t)pGst->fVmxRdpmcExit << 11)
1799 | ((uint64_t)pGst->fVmxRdtscExit << 12) | ((uint64_t)pGst->fVmxCr3LoadExit << 13)
1800 | ((uint64_t)pGst->fVmxCr3StoreExit << 14) | ((uint64_t)pGst->fVmxCr8LoadExit << 15)
1801 | ((uint64_t)pGst->fVmxCr8StoreExit << 16) | ((uint64_t)pGst->fVmxUseTprShadow << 17)
1802 | ((uint64_t)pGst->fVmxNmiWindowExit << 18) | ((uint64_t)pGst->fVmxMovDRxExit << 19)
1803 | ((uint64_t)pGst->fVmxUncondIoExit << 20) | ((uint64_t)pGst->fVmxUseIoBitmaps << 21)
1804 | ((uint64_t)pGst->fVmxMonitorTrapFlag << 22) | ((uint64_t)pGst->fVmxUseMsrBitmaps << 23)
1805 | ((uint64_t)pGst->fVmxMonitorExit << 24) | ((uint64_t)pGst->fVmxPauseExit << 25)
1806 | ((uint64_t)pGst->fVmxSecondaryExecCtls << 26) | ((uint64_t)pGst->fVmxVirtApicAccess << 27)
1807 | ((uint64_t)pGst->fVmxEpt << 28) | ((uint64_t)pGst->fVmxDescTableExit << 29)
1808 | ((uint64_t)pGst->fVmxRdtscp << 30) | ((uint64_t)pGst->fVmxVirtX2ApicMode << 31)
1809 | ((uint64_t)pGst->fVmxVpid << 32) | ((uint64_t)pGst->fVmxWbinvdExit << 33)
1810 | ((uint64_t)pGst->fVmxUnrestrictedGuest << 34) | ((uint64_t)pGst->fVmxApicRegVirt << 35)
1811 | ((uint64_t)pGst->fVmxVirtIntDelivery << 36) | ((uint64_t)pGst->fVmxPauseLoopExit << 37)
1812 | ((uint64_t)pGst->fVmxRdrandExit << 38) | ((uint64_t)pGst->fVmxInvpcid << 39)
1813 | ((uint64_t)pGst->fVmxVmFunc << 40) | ((uint64_t)pGst->fVmxVmcsShadowing << 41)
1814 | ((uint64_t)pGst->fVmxRdseedExit << 42) | ((uint64_t)pGst->fVmxPml << 43)
1815 | ((uint64_t)pGst->fVmxEptXcptVe << 44) | ((uint64_t)pGst->fVmxXsavesXrstors << 45)
1816 | ((uint64_t)pGst->fVmxUseTscScaling << 46) | ((uint64_t)pGst->fVmxEntryLoadDebugCtls << 47)
1817 | ((uint64_t)pGst->fVmxIa32eModeGuest << 48) | ((uint64_t)pGst->fVmxEntryLoadEferMsr << 49)
1818 | ((uint64_t)pGst->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pGst->fVmxExitSaveDebugCtls << 51)
1819 | ((uint64_t)pGst->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pGst->fVmxExitAckExtInt << 53)
1820 | ((uint64_t)pGst->fVmxExitSavePatMsr << 54) | ((uint64_t)pGst->fVmxExitLoadPatMsr << 55)
1821 | ((uint64_t)pGst->fVmxExitSaveEferMsr << 56) | ((uint64_t)pGst->fVmxExitLoadEferMsr << 57)
1822 | ((uint64_t)pGst->fVmxSavePreemptTimer << 58) | ((uint64_t)pGst->fVmxExitSaveEferLma << 59)
1823 | ((uint64_t)pGst->fVmxIntelPt << 60) | ((uint64_t)pGst->fVmxVmwriteAll << 61)
1824 | ((uint64_t)pGst->fVmxEntryInjectSoftInt << 62);
1825
1826 if ((fBase | fGst) != fBase)
1827 {
1828 uint64_t const fDiff = fBase ^ fGst;
1829 LogRel(("CPUM: VMX features now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1830 fBase, fGst, fDiff));
1831 return false;
1832 }
1833 return true;
1834 }
1835 return true;
1836}
1837
1838
1839/**
1840 * Initializes VMX guest features and MSRs.
1841 *
1842 * @param pVM The cross context VM structure.
1843 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1844 * and no hardware-assisted nested-guest execution is
1845 * possible for this VM.
1846 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1847 */
1848void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs)
1849{
1850 Assert(pVM);
1851 Assert(pGuestVmxMsrs);
1852
1853 /*
1854 * Initialize the set of VMX features we emulate.
1855 *
1856 * Note! Some bits might be reported as 1 always if they fall under the
1857 * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1858 */
1859 CPUMFEATURES EmuFeat;
1860 RT_ZERO(EmuFeat);
1861 EmuFeat.fVmx = 1;
1862 EmuFeat.fVmxInsOutInfo = 1;
1863 EmuFeat.fVmxExtIntExit = 1;
1864 EmuFeat.fVmxNmiExit = 1;
1865 EmuFeat.fVmxVirtNmi = 0;
1866 EmuFeat.fVmxPreemptTimer = 0; /** @todo NSTVMX: enable this. */
1867 EmuFeat.fVmxPostedInt = 0;
1868 EmuFeat.fVmxIntWindowExit = 1;
1869 EmuFeat.fVmxTscOffsetting = 1;
1870 EmuFeat.fVmxHltExit = 1;
1871 EmuFeat.fVmxInvlpgExit = 1;
1872 EmuFeat.fVmxMwaitExit = 1;
1873 EmuFeat.fVmxRdpmcExit = 1;
1874 EmuFeat.fVmxRdtscExit = 1;
1875 EmuFeat.fVmxCr3LoadExit = 1;
1876 EmuFeat.fVmxCr3StoreExit = 1;
1877 EmuFeat.fVmxCr8LoadExit = 1;
1878 EmuFeat.fVmxCr8StoreExit = 1;
1879 EmuFeat.fVmxUseTprShadow = 1;
1880 EmuFeat.fVmxNmiWindowExit = 0;
1881 EmuFeat.fVmxMovDRxExit = 1;
1882 EmuFeat.fVmxUncondIoExit = 1;
1883 EmuFeat.fVmxUseIoBitmaps = 1;
1884 EmuFeat.fVmxMonitorTrapFlag = 0;
1885 EmuFeat.fVmxUseMsrBitmaps = 1;
1886 EmuFeat.fVmxMonitorExit = 1;
1887 EmuFeat.fVmxPauseExit = 1;
1888 EmuFeat.fVmxSecondaryExecCtls = 1;
1889 EmuFeat.fVmxVirtApicAccess = 1;
1890 EmuFeat.fVmxEpt = 0; /* Cannot be disabled if unrestricted guest is enabled. */
1891 EmuFeat.fVmxDescTableExit = 1;
1892 EmuFeat.fVmxRdtscp = 1;
1893 EmuFeat.fVmxVirtX2ApicMode = 0;
1894 EmuFeat.fVmxVpid = 0; /** @todo NSTVMX: enable this. */
1895 EmuFeat.fVmxWbinvdExit = 1;
1896 EmuFeat.fVmxUnrestrictedGuest = 0;
1897 EmuFeat.fVmxApicRegVirt = 0;
1898 EmuFeat.fVmxVirtIntDelivery = 0;
1899 EmuFeat.fVmxPauseLoopExit = 0;
1900 EmuFeat.fVmxRdrandExit = 0;
1901 EmuFeat.fVmxInvpcid = 1;
1902 EmuFeat.fVmxVmFunc = 0;
1903 EmuFeat.fVmxVmcsShadowing = 0;
1904 EmuFeat.fVmxRdseedExit = 0;
1905 EmuFeat.fVmxPml = 0;
1906 EmuFeat.fVmxEptXcptVe = 0;
1907 EmuFeat.fVmxXsavesXrstors = 0;
1908 EmuFeat.fVmxUseTscScaling = 0;
1909 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1910 EmuFeat.fVmxIa32eModeGuest = 1;
1911 EmuFeat.fVmxEntryLoadEferMsr = 1;
1912 EmuFeat.fVmxEntryLoadPatMsr = 0;
1913 EmuFeat.fVmxExitSaveDebugCtls = 1;
1914 EmuFeat.fVmxHostAddrSpaceSize = 1;
1915 EmuFeat.fVmxExitAckExtInt = 1;
1916 EmuFeat.fVmxExitSavePatMsr = 0;
1917 EmuFeat.fVmxExitLoadPatMsr = 0;
1918 EmuFeat.fVmxExitSaveEferMsr = 1;
1919 EmuFeat.fVmxExitLoadEferMsr = 1;
1920 EmuFeat.fVmxSavePreemptTimer = 0;
1921 EmuFeat.fVmxExitSaveEferLma = 1; /* Cannot be disabled if unrestricted guest is enabled. */
1922 EmuFeat.fVmxIntelPt = 0;
1923 EmuFeat.fVmxVmwriteAll = 0; /** @todo NSTVMX: enable this when nested VMCS shadowing is enabled. */
1924 EmuFeat.fVmxEntryInjectSoftInt = 1;
1925
1926 /*
1927 * Merge guest features.
1928 *
1929 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1930 * by the hardware, hence we merge our emulated features with the host features below.
1931 */
1932 PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat;
1933 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1934 Assert(pBaseFeat->fVmx);
1935 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1936 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1937 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1938 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1939 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1940 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1941 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1942 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1943 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1944 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1945 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1946 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1947 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1948 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1949 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1950 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1951 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1952 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1953 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1954 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1955 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1956 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1957 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1958 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1959 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1960 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1961 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1962 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1963 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1964 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1965 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1966 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
1967 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1968 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1969 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1970 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1971 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1972 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1973 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1974 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1975 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1976 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1977 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1978 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1979 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1980 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1981 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1982 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1983 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1984 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1985 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1986 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1987 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1988 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1989 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1990 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1991 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1992 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1993 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1994 pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
1995 pGuestFeat->fVmxIntelPt = (pBaseFeat->fVmxIntelPt & EmuFeat.fVmxIntelPt );
1996 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1997 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1998
1999 if (HMIsSubjectToVmxPreemptTimerErratum())
2000 {
2001 Log(("CPUM: VMX-preemption timer erratum detected. Cannot expose VMX-preemption timer feature to guests."));
2002 pGuestFeat->fVmxPreemptTimer = 0;
2003 }
2004
2005 /* Paranoia. */
2006 if (!pGuestFeat->fVmxSecondaryExecCtls)
2007 {
2008 Assert(!pGuestFeat->fVmxVirtApicAccess);
2009 Assert(!pGuestFeat->fVmxEpt);
2010 Assert(!pGuestFeat->fVmxDescTableExit);
2011 Assert(!pGuestFeat->fVmxRdtscp);
2012 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
2013 Assert(!pGuestFeat->fVmxVpid);
2014 Assert(!pGuestFeat->fVmxWbinvdExit);
2015 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
2016 Assert(!pGuestFeat->fVmxApicRegVirt);
2017 Assert(!pGuestFeat->fVmxVirtIntDelivery);
2018 Assert(!pGuestFeat->fVmxPauseLoopExit);
2019 Assert(!pGuestFeat->fVmxRdrandExit);
2020 Assert(!pGuestFeat->fVmxInvpcid);
2021 Assert(!pGuestFeat->fVmxVmFunc);
2022 Assert(!pGuestFeat->fVmxVmcsShadowing);
2023 Assert(!pGuestFeat->fVmxRdseedExit);
2024 Assert(!pGuestFeat->fVmxPml);
2025 Assert(!pGuestFeat->fVmxEptXcptVe);
2026 Assert(!pGuestFeat->fVmxXsavesXrstors);
2027 Assert(!pGuestFeat->fVmxUseTscScaling);
2028 }
2029 if (pGuestFeat->fVmxUnrestrictedGuest)
2030 {
2031 /* See footnote in Intel spec. 27.2 "Recording VM-Exit Information And Updating VM-entry Control Fields". */
2032 Assert(pGuestFeat->fVmxExitSaveEferLma);
2033 }
2034
2035 /*
2036 * Finally initialize the VMX guest MSRs.
2037 */
2038 cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs);
2039}
2040
2041
2042/**
2043 * Gets the host hardware-virtualization MSRs.
2044 *
2045 * @returns VBox status code.
2046 * @param pMsrs Where to store the MSRs.
2047 */
2048static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs)
2049{
2050 Assert(pMsrs);
2051
2052 uint32_t fCaps = 0;
2053 int rc = SUPR3QueryVTCaps(&fCaps);
2054 if (RT_SUCCESS(rc))
2055 {
2056 if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V))
2057 {
2058 SUPHWVIRTMSRS HwvirtMsrs;
2059 rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */);
2060 if (RT_SUCCESS(rc))
2061 {
2062 if (fCaps & SUPVTCAPS_VT_X)
2063 HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.vmx);
2064 else
2065 HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.svm);
2066 return VINF_SUCCESS;
2067 }
2068
2069 LogRel(("CPUM: Querying hardware-virtualization MSRs failed. rc=%Rrc\n", rc));
2070 return rc;
2071 }
2072 else
2073 {
2074 LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n"));
2075 return VERR_INTERNAL_ERROR_5;
2076 }
2077 }
2078 else
2079 LogRel(("CPUM: No hardware-virtualization capability detected\n"));
2080
2081 return VINF_SUCCESS;
2082}
2083
2084
2085/**
2086 * Initializes the CPUM.
2087 *
2088 * @returns VBox status code.
2089 * @param pVM The cross context VM structure.
2090 */
2091VMMR3DECL(int) CPUMR3Init(PVM pVM)
2092{
2093 LogFlow(("CPUMR3Init\n"));
2094
2095 /*
2096 * Assert alignment, sizes and tables.
2097 */
2098 AssertCompileMemberAlignment(VM, cpum.s, 32);
2099 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
2100 AssertCompileSizeAlignment(CPUMCTX, 64);
2101 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
2102 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
2103 AssertCompileMemberAlignment(VM, cpum, 64);
2104 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
2105#ifdef VBOX_STRICT
2106 int rc2 = cpumR3MsrStrictInitChecks();
2107 AssertRCReturn(rc2, rc2);
2108#endif
2109
2110 /*
2111 * Gather info about the host CPU.
2112 */
2113 if (!ASMHasCpuId())
2114 {
2115 LogRel(("The CPU doesn't support CPUID!\n"));
2116 return VERR_UNSUPPORTED_CPU;
2117 }
2118
2119 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
2120
2121 CPUMMSRS HostMsrs;
2122 RT_ZERO(HostMsrs);
2123 int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs);
2124 AssertLogRelRCReturn(rc, rc);
2125
2126 PCPUMCPUIDLEAF paLeaves;
2127 uint32_t cLeaves;
2128 rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
2129 AssertLogRelRCReturn(rc, rc);
2130
2131 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &HostMsrs, &pVM->cpum.s.HostFeatures);
2132 RTMemFree(paLeaves);
2133 AssertLogRelRCReturn(rc, rc);
2134 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
2135
2136 /*
2137 * Check that the CPU supports the minimum features we require.
2138 */
2139 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
2140 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
2141 if (!pVM->cpum.s.HostFeatures.fMmx)
2142 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
2143 if (!pVM->cpum.s.HostFeatures.fTsc)
2144 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
2145
2146 /*
2147 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
2148 */
2149 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
2150 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
2151
2152 /*
2153 * Figure out which XSAVE/XRSTOR features are available on the host.
2154 */
2155 uint64_t fXcr0Host = 0;
2156 uint64_t fXStateHostMask = 0;
2157 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
2158 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
2159 {
2160 fXStateHostMask = fXcr0Host = ASMGetXcr0();
2161 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
2162 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
2163 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
2164 }
2165 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
2166 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
2167 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
2168
2169 /*
2170 * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
2171 */
2172 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
2173 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
2174 AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
2175
2176 uint8_t *pbXStates;
2177 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * 2 * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
2178 MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
2179 AssertLogRelRCReturn(rc, rc);
2180
2181 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2182 {
2183 PVMCPU pVCpu = pVM->apCpusR3[i];
2184
2185 pVCpu->cpum.s.Guest.pXStateR3 = (PX86XSAVEAREA)pbXStates;
2186 pVCpu->cpum.s.Guest.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
2187 pbXStates += cbMaxXState;
2188
2189 pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
2190 pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
2191 pbXStates += cbMaxXState;
2192
2193 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
2194 }
2195
2196 /*
2197 * Register saved state data item.
2198 */
2199 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
2200 NULL, cpumR3LiveExec, NULL,
2201 NULL, cpumR3SaveExec, NULL,
2202 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
2203 if (RT_FAILURE(rc))
2204 return rc;
2205
2206 /*
2207 * Register info handlers and registers with the debugger facility.
2208 */
2209 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
2210 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
2211 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
2212 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
2213 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
2214 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
2215 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
2216 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
2217 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
2218 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
2219 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
2220 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
2221 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
2222 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
2223 &cpumR3InfoVmxFeatures);
2224
2225 rc = cpumR3DbgInit(pVM);
2226 if (RT_FAILURE(rc))
2227 return rc;
2228
2229 /*
2230 * Check if we need to workaround partial/leaky FPU handling.
2231 */
2232 cpumR3CheckLeakyFpu(pVM);
2233
2234 /*
2235 * Initialize the Guest CPUID and MSR states.
2236 */
2237 rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs);
2238 if (RT_FAILURE(rc))
2239 return rc;
2240
2241 /*
2242 * Allocate memory required by the guest hardware-virtualization structures.
2243 * This must be done after initializing CPUID/MSR features as we access the
2244 * the VMX/SVM guest features below.
2245 */
2246 if (pVM->cpum.s.GuestFeatures.fVmx)
2247 rc = cpumR3AllocVmxHwVirtState(pVM);
2248 else if (pVM->cpum.s.GuestFeatures.fSvm)
2249 rc = cpumR3AllocSvmHwVirtState(pVM);
2250 else
2251 Assert(pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
2252 if (RT_FAILURE(rc))
2253 return rc;
2254
2255 CPUMR3Reset(pVM);
2256 return VINF_SUCCESS;
2257}
2258
2259
2260/**
2261 * Applies relocations to data and code managed by this
2262 * component. This function will be called at init and
2263 * whenever the VMM need to relocate it self inside the GC.
2264 *
2265 * The CPUM will update the addresses used by the switcher.
2266 *
2267 * @param pVM The cross context VM structure.
2268 */
2269VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
2270{
2271 RT_NOREF(pVM);
2272}
2273
2274
2275/**
2276 * Terminates the CPUM.
2277 *
2278 * Termination means cleaning up and freeing all resources,
2279 * the VM it self is at this point powered off or suspended.
2280 *
2281 * @returns VBox status code.
2282 * @param pVM The cross context VM structure.
2283 */
2284VMMR3DECL(int) CPUMR3Term(PVM pVM)
2285{
2286#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2287 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2288 {
2289 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2290 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
2291 pVCpu->cpum.s.uMagic = 0;
2292 pvCpu->cpum.s.Guest.dr[5] = 0;
2293 }
2294#endif
2295
2296 if (pVM->cpum.s.GuestFeatures.fVmx)
2297 cpumR3FreeVmxHwVirtState(pVM);
2298 else if (pVM->cpum.s.GuestFeatures.fSvm)
2299 cpumR3FreeSvmHwVirtState(pVM);
2300 return VINF_SUCCESS;
2301}
2302
2303
2304/**
2305 * Resets a virtual CPU.
2306 *
2307 * Used by CPUMR3Reset and CPU hot plugging.
2308 *
2309 * @param pVM The cross context VM structure.
2310 * @param pVCpu The cross context virtual CPU structure of the CPU that is
2311 * being reset. This may differ from the current EMT.
2312 */
2313VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2314{
2315 /** @todo anything different for VCPU > 0? */
2316 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2317
2318 /*
2319 * Initialize everything to ZERO first.
2320 */
2321 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
2322
2323 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateR3));
2324 memset(pCtx, 0, RT_UOFFSETOF(CPUMCTX, pXStateR0));
2325
2326 pVCpu->cpum.s.fUseFlags = fUseFlags;
2327
2328 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
2329 pCtx->eip = 0x0000fff0;
2330 pCtx->edx = 0x00000600; /* P6 processor */
2331 pCtx->eflags.Bits.u1Reserved0 = 1;
2332
2333 pCtx->cs.Sel = 0xf000;
2334 pCtx->cs.ValidSel = 0xf000;
2335 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2336 pCtx->cs.u64Base = UINT64_C(0xffff0000);
2337 pCtx->cs.u32Limit = 0x0000ffff;
2338 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
2339 pCtx->cs.Attr.n.u1Present = 1;
2340 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
2341
2342 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
2343 pCtx->ds.u32Limit = 0x0000ffff;
2344 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
2345 pCtx->ds.Attr.n.u1Present = 1;
2346 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2347
2348 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
2349 pCtx->es.u32Limit = 0x0000ffff;
2350 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
2351 pCtx->es.Attr.n.u1Present = 1;
2352 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2353
2354 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
2355 pCtx->fs.u32Limit = 0x0000ffff;
2356 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
2357 pCtx->fs.Attr.n.u1Present = 1;
2358 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2359
2360 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
2361 pCtx->gs.u32Limit = 0x0000ffff;
2362 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
2363 pCtx->gs.Attr.n.u1Present = 1;
2364 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2365
2366 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2367 pCtx->ss.u32Limit = 0x0000ffff;
2368 pCtx->ss.Attr.n.u1Present = 1;
2369 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
2370 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2371
2372 pCtx->idtr.cbIdt = 0xffff;
2373 pCtx->gdtr.cbGdt = 0xffff;
2374
2375 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2376 pCtx->ldtr.u32Limit = 0xffff;
2377 pCtx->ldtr.Attr.n.u1Present = 1;
2378 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
2379
2380 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2381 pCtx->tr.u32Limit = 0xffff;
2382 pCtx->tr.Attr.n.u1Present = 1;
2383 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
2384
2385 pCtx->dr[6] = X86_DR6_INIT_VAL;
2386 pCtx->dr[7] = X86_DR7_INIT_VAL;
2387
2388 PX86FXSTATE pFpuCtx = &pCtx->pXStateR3->x87; AssertReleaseMsg(RT_VALID_PTR(pFpuCtx), ("%p\n", pFpuCtx));
2389 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
2390 pFpuCtx->FCW = 0x37f;
2391
2392 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
2393 IA-32 Processor States Following Power-up, Reset, or INIT */
2394 pFpuCtx->MXCSR = 0x1F80;
2395 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
2396
2397 pCtx->aXcr[0] = XSAVE_C_X87;
2398 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
2399 {
2400 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
2401 as we don't know what happened before. (Bother optimize later?) */
2402 pCtx->pXStateR3->Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
2403 }
2404
2405 /*
2406 * MSRs.
2407 */
2408 /* Init PAT MSR */
2409 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
2410
2411 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
2412 * The Intel docs don't mention it. */
2413 Assert(!pCtx->msrEFER);
2414
2415 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
2416 is supposed to be here, just trying provide useful/sensible values. */
2417 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
2418 if (pRange)
2419 {
2420 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2421 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
2422 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
2423 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
2424 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2425 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
2426 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
2427 }
2428
2429 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
2430
2431 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
2432 * called from each EMT while we're getting called by CPUMR3Reset()
2433 * iteratively on the same thread. Fix later. */
2434#if 0 /** @todo r=bird: This we will do in TM, not here. */
2435 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
2436 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
2437#endif
2438
2439
2440 /* C-state control. Guesses. */
2441 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
2442 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
2443 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
2444 * functionality. The default value must be different due to incompatible write mask.
2445 */
2446 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
2447 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
2448 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
2449 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
2450
2451 /*
2452 * Hardware virtualization state.
2453 */
2454 CPUMSetGuestGif(pCtx, true);
2455 Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
2456 if (pVM->cpum.s.GuestFeatures.fVmx)
2457 cpumR3ResetVmxHwVirtState(pVCpu);
2458 else if (pVM->cpum.s.GuestFeatures.fSvm)
2459 cpumR3ResetSvmHwVirtState(pVCpu);
2460}
2461
2462
2463/**
2464 * Resets the CPU.
2465 *
2466 * @returns VINF_SUCCESS.
2467 * @param pVM The cross context VM structure.
2468 */
2469VMMR3DECL(void) CPUMR3Reset(PVM pVM)
2470{
2471 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2472 {
2473 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2474 CPUMR3ResetCpu(pVM, pVCpu);
2475
2476#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2477
2478 /* Magic marker for searching in crash dumps. */
2479 strcpy((char *)pVCpu->.cpum.s.aMagic, "CPUMCPU Magic");
2480 pVCpu->cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2481 pVCpu->cpum.s.Guest->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
2482#endif
2483 }
2484}
2485
2486
2487
2488
2489/**
2490 * Pass 0 live exec callback.
2491 *
2492 * @returns VINF_SSM_DONT_CALL_AGAIN.
2493 * @param pVM The cross context VM structure.
2494 * @param pSSM The saved state handle.
2495 * @param uPass The pass (0).
2496 */
2497static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2498{
2499 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2500 cpumR3SaveCpuId(pVM, pSSM);
2501 return VINF_SSM_DONT_CALL_AGAIN;
2502}
2503
2504
2505/**
2506 * Execute state save operation.
2507 *
2508 * @returns VBox status code.
2509 * @param pVM The cross context VM structure.
2510 * @param pSSM SSM operation handle.
2511 */
2512static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2513{
2514 /*
2515 * Save.
2516 */
2517 SSMR3PutU32(pSSM, pVM->cCpus);
2518 SSMR3PutU32(pSSM, sizeof(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr));
2519 CPUMCTX DummyHyperCtx;
2520 RT_ZERO(DummyHyperCtx);
2521 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2522 {
2523 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2524
2525 SSMR3PutStructEx(pSSM, &DummyHyperCtx, sizeof(DummyHyperCtx), 0, g_aCpumCtxFields, NULL);
2526
2527 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2528 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2529 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2530 if (pGstCtx->fXStateMask != 0)
2531 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2532 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2533 {
2534 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2535 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2536 }
2537 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2538 {
2539 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2540 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2541 }
2542 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2543 {
2544 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2545 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2546 }
2547 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2548 {
2549 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2550 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2551 }
2552 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2553 {
2554 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2555 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2556 }
2557 if (pVM->cpum.s.GuestFeatures.fSvm)
2558 {
2559 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2560 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2561 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2562 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2563 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2564 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2565 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2566 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2567 g_aSvmHwvirtHostState, NULL /* pvUser */);
2568 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2569 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2570 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2571 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
2572 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2573 }
2574 if (pVM->cpum.s.GuestFeatures.fVmx)
2575 {
2576 Assert(pGstCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
2577 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmxon);
2578 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmcs);
2579 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2580 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxRootMode);
2581 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2582 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInterceptEvents);
2583 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2584 SSMR3PutStructEx(pSSM, pGstCtx->hwvirt.vmx.pVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2585 SSMR3PutStructEx(pSSM, pGstCtx->hwvirt.vmx.pShadowVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2586 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2587 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2588 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2589 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2590 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2591 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_SIZE);
2592 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
2593 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2594 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uPrevPauseTick);
2595 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uEntryTick);
2596 SSMR3PutU16(pSSM, pGstCtx->hwvirt.vmx.offVirtApicWrite);
2597 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2598 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64FeatCtrl);
2599 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2600 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2601 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2602 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2603 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2604 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2605 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2606 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2607 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2608 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2609 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2610 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2611 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2612 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2613 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2614 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2615 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2616 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2617 }
2618 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2619 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2620 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2621 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2622 }
2623
2624 cpumR3SaveCpuId(pVM, pSSM);
2625 return VINF_SUCCESS;
2626}
2627
2628
2629/**
2630 * @callback_method_impl{FNSSMINTLOADPREP}
2631 */
2632static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2633{
2634 NOREF(pSSM);
2635 pVM->cpum.s.fPendingRestore = true;
2636 return VINF_SUCCESS;
2637}
2638
2639
2640/**
2641 * @callback_method_impl{FNSSMINTLOADEXEC}
2642 */
2643static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2644{
2645 int rc; /* Only for AssertRCReturn use. */
2646
2647 /*
2648 * Validate version.
2649 */
2650 if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_IEM
2651 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2652 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2653 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2654 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2655 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2656 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2657 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2658 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2659 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2660 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2661 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2662 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2663 {
2664 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2665 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2666 }
2667
2668 if (uPass == SSM_PASS_FINAL)
2669 {
2670 /*
2671 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2672 * really old SSM file versions.)
2673 */
2674 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2675 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2676 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2677 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR));
2678
2679 /*
2680 * Figure x86 and ctx field definitions to use for older states.
2681 */
2682 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2683 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2684 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2685 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2686 {
2687 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2688 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2689 }
2690 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2691 {
2692 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2693 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2694 }
2695
2696 /*
2697 * The hyper state used to preceed the CPU count. Starting with
2698 * XSAVE it was moved down till after we've got the count.
2699 */
2700 CPUMCTX HyperCtxIgnored;
2701 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2702 {
2703 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2704 {
2705 X86FXSTATE Ign;
2706 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2707 SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored),
2708 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2709 }
2710 }
2711
2712 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2713 {
2714 uint32_t cCpus;
2715 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2716 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2717 VERR_SSM_UNEXPECTED_DATA);
2718 }
2719 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2720 || pVM->cCpus == 1,
2721 ("cCpus=%u\n", pVM->cCpus),
2722 VERR_SSM_UNEXPECTED_DATA);
2723
2724 uint32_t cbMsrs = 0;
2725 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2726 {
2727 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2728 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2729 VERR_SSM_UNEXPECTED_DATA);
2730 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2731 VERR_SSM_UNEXPECTED_DATA);
2732 }
2733
2734 /*
2735 * Do the per-CPU restoring.
2736 */
2737 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2738 {
2739 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2740 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2741
2742 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2743 {
2744 /*
2745 * The XSAVE saved state layout moved the hyper state down here.
2746 */
2747 rc = SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored), 0, g_aCpumCtxFields, NULL);
2748 AssertRCReturn(rc, rc);
2749
2750 /*
2751 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2752 */
2753 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2754 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2755 AssertRCReturn(rc, rc);
2756
2757 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2758 if (pGstCtx->fXStateMask != 0)
2759 {
2760 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2761 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2762 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2763 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2764 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2765 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2766 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2767 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2768 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2769 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2770 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2771 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2772 }
2773
2774 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2775 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2776 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2777 {
2778 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2779 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2780 VERR_CPUM_INVALID_XCR0);
2781 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2782 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2783 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2784 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2785 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2786 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2787 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2788 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2789 }
2790
2791 /* Check that the XCR1 is zero, as we don't implement it yet. */
2792 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2793
2794 /*
2795 * Restore the individual extended state components we support.
2796 */
2797 if (pGstCtx->fXStateMask != 0)
2798 {
2799 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr),
2800 0, g_aCpumXSaveHdrFields, NULL);
2801 AssertRCReturn(rc, rc);
2802 AssertLogRelMsgReturn(!(pGstCtx->pXStateR3->Hdr.bmXState & ~pGstCtx->fXStateMask),
2803 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2804 pGstCtx->pXStateR3->Hdr.bmXState, pGstCtx->fXStateMask),
2805 VERR_CPUM_INVALID_XSAVE_HDR);
2806 }
2807 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2808 {
2809 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2810 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2811 }
2812 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2813 {
2814 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2815 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2816 }
2817 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2818 {
2819 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2820 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2821 }
2822 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2823 {
2824 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2825 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2826 }
2827 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2828 {
2829 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2830 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2831 }
2832 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2833 {
2834 if (pVM->cpum.s.GuestFeatures.fSvm)
2835 {
2836 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2837 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2838 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2839 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2840 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2841 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2842 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2843 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2844 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2845 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2846 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2847 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2848 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2849 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2850 }
2851 }
2852 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_IEM)
2853 {
2854 if (pVM->cpum.s.GuestFeatures.fVmx)
2855 {
2856 Assert(pGstCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
2857 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmxon);
2858 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmcs);
2859 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2860 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxRootMode);
2861 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2862 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInterceptEvents);
2863 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2864 SSMR3GetStructEx(pSSM, pGstCtx->hwvirt.vmx.pVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2865 SSMR3GetStructEx(pSSM, pGstCtx->hwvirt.vmx.pShadowVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2866 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2867 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2868 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2869 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2870 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2871 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_SIZE);
2872 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
2873 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2874 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uPrevPauseTick);
2875 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uEntryTick);
2876 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.vmx.offVirtApicWrite);
2877 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2878 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64FeatCtrl);
2879 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2880 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2881 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2882 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2883 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2884 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2885 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2886 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2887 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2888 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2889 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2890 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2891 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2892 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2893 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2894 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2895 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2896 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2897 }
2898 }
2899 }
2900 else
2901 {
2902 /*
2903 * Pre XSAVE saved state.
2904 */
2905 SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87),
2906 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2907 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2908 }
2909
2910 /*
2911 * Restore a couple of flags and the MSRs.
2912 */
2913 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
2914 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2915
2916 rc = VINF_SUCCESS;
2917 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2918 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2919 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2920 {
2921 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2922 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2923 }
2924 AssertRCReturn(rc, rc);
2925
2926 /* REM and other may have cleared must-be-one fields in DR6 and
2927 DR7, fix these. */
2928 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2929 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2930 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2931 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2932 }
2933
2934 /* Older states does not have the internal selector register flags
2935 and valid selector value. Supply those. */
2936 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2937 {
2938 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2939 {
2940 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2941 bool const fValid = true /*!VM_IS_RAW_MODE_ENABLED(pVM)*/
2942 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2943 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2944 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2945 if (fValid)
2946 {
2947 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2948 {
2949 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2950 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2951 }
2952
2953 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2954 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2955 }
2956 else
2957 {
2958 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2959 {
2960 paSelReg[iSelReg].fFlags = 0;
2961 paSelReg[iSelReg].ValidSel = 0;
2962 }
2963
2964 /* This might not be 104% correct, but I think it's close
2965 enough for all practical purposes... (REM always loaded
2966 LDTR registers.) */
2967 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2968 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2969 }
2970 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2971 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2972 }
2973 }
2974
2975 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2976 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2977 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2978 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2979 {
2980 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2981 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2982 }
2983
2984 /*
2985 * A quick sanity check.
2986 */
2987 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2988 {
2989 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2990 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2991 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2992 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2993 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2994 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2995 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2996 }
2997 }
2998
2999 pVM->cpum.s.fPendingRestore = false;
3000
3001 /*
3002 * Guest CPUIDs (and VMX MSR features).
3003 */
3004 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
3005 {
3006 CPUMMSRS GuestMsrs;
3007 RT_ZERO(GuestMsrs);
3008
3009 CPUMFEATURES BaseFeatures;
3010 bool const fVmxGstFeat = pVM->cpum.s.GuestFeatures.fVmx;
3011 if (fVmxGstFeat)
3012 {
3013 /*
3014 * At this point the MSRs in the guest CPU-context are loaded with the guest VMX MSRs from the saved state.
3015 * However the VMX sub-features have not been exploded yet. So cache the base (host derived) VMX features
3016 * here so we can compare them for compatibility after exploding guest features.
3017 */
3018 BaseFeatures = pVM->cpum.s.GuestFeatures;
3019
3020 /* Use the VMX MSR features from the saved state while exploding guest features. */
3021 GuestMsrs.hwvirt.vmx = pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.vmx.Msrs;
3022 }
3023
3024 /* Load CPUID and explode guest features. */
3025 rc = cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs);
3026 if (fVmxGstFeat)
3027 {
3028 /*
3029 * Check if the exploded VMX features from the saved state are compatible with the host-derived features
3030 * we cached earlier (above). The is required if we use hardware-assisted nested-guest execution with
3031 * VMX features presented to the guest.
3032 */
3033 bool const fIsCompat = cpumR3AreVmxCpuFeaturesCompatible(pVM, &BaseFeatures, &pVM->cpum.s.GuestFeatures);
3034 if (!fIsCompat)
3035 return VERR_CPUM_INVALID_HWVIRT_FEAT_COMBO;
3036 }
3037 return rc;
3038 }
3039 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
3040}
3041
3042
3043/**
3044 * @callback_method_impl{FNSSMINTLOADDONE}
3045 */
3046static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
3047{
3048 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
3049 return VINF_SUCCESS;
3050
3051 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
3052 if (pVM->cpum.s.fPendingRestore)
3053 {
3054 LogRel(("CPUM: Missing state!\n"));
3055 return VERR_INTERNAL_ERROR_2;
3056 }
3057
3058 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3059 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3060 {
3061 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3062
3063 /* Notify PGM of the NXE states in case they've changed. */
3064 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
3065
3066 /* During init. this is done in CPUMR3InitCompleted(). */
3067 if (fSupportsLongMode)
3068 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3069 }
3070 return VINF_SUCCESS;
3071}
3072
3073
3074/**
3075 * Checks if the CPUM state restore is still pending.
3076 *
3077 * @returns true / false.
3078 * @param pVM The cross context VM structure.
3079 */
3080VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
3081{
3082 return pVM->cpum.s.fPendingRestore;
3083}
3084
3085
3086/**
3087 * Formats the EFLAGS value into mnemonics.
3088 *
3089 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
3090 * @param efl The EFLAGS value.
3091 */
3092static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
3093{
3094 /*
3095 * Format the flags.
3096 */
3097 static const struct
3098 {
3099 const char *pszSet; const char *pszClear; uint32_t fFlag;
3100 } s_aFlags[] =
3101 {
3102 { "vip",NULL, X86_EFL_VIP },
3103 { "vif",NULL, X86_EFL_VIF },
3104 { "ac", NULL, X86_EFL_AC },
3105 { "vm", NULL, X86_EFL_VM },
3106 { "rf", NULL, X86_EFL_RF },
3107 { "nt", NULL, X86_EFL_NT },
3108 { "ov", "nv", X86_EFL_OF },
3109 { "dn", "up", X86_EFL_DF },
3110 { "ei", "di", X86_EFL_IF },
3111 { "tf", NULL, X86_EFL_TF },
3112 { "nt", "pl", X86_EFL_SF },
3113 { "nz", "zr", X86_EFL_ZF },
3114 { "ac", "na", X86_EFL_AF },
3115 { "po", "pe", X86_EFL_PF },
3116 { "cy", "nc", X86_EFL_CF },
3117 };
3118 char *psz = pszEFlags;
3119 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
3120 {
3121 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
3122 if (pszAdd)
3123 {
3124 strcpy(psz, pszAdd);
3125 psz += strlen(pszAdd);
3126 *psz++ = ' ';
3127 }
3128 }
3129 psz[-1] = '\0';
3130}
3131
3132
3133/**
3134 * Formats a full register dump.
3135 *
3136 * @param pVM The cross context VM structure.
3137 * @param pCtx The context to format.
3138 * @param pCtxCore The context core to format.
3139 * @param pHlp Output functions.
3140 * @param enmType The dump type.
3141 * @param pszPrefix Register name prefix.
3142 */
3143static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
3144 const char *pszPrefix)
3145{
3146 NOREF(pVM);
3147
3148 /*
3149 * Format the EFLAGS.
3150 */
3151 uint32_t efl = pCtxCore->eflags.u32;
3152 char szEFlags[80];
3153 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3154
3155 /*
3156 * Format the registers.
3157 */
3158 switch (enmType)
3159 {
3160 case CPUMDUMPTYPE_TERSE:
3161 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3162 pHlp->pfnPrintf(pHlp,
3163 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3164 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3165 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3166 "%sr14=%016RX64 %sr15=%016RX64\n"
3167 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3168 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3169 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3170 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3171 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3172 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3173 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3174 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3175 else
3176 pHlp->pfnPrintf(pHlp,
3177 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3178 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3179 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3180 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3181 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3182 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3183 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3184 break;
3185
3186 case CPUMDUMPTYPE_DEFAULT:
3187 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3188 pHlp->pfnPrintf(pHlp,
3189 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3190 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3191 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3192 "%sr14=%016RX64 %sr15=%016RX64\n"
3193 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3194 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3195 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
3196 ,
3197 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3198 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3199 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3200 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3201 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3202 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3203 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3204 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3205 else
3206 pHlp->pfnPrintf(pHlp,
3207 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3208 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3209 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3210 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
3211 ,
3212 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3213 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3214 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3215 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3216 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3217 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3218 break;
3219
3220 case CPUMDUMPTYPE_VERBOSE:
3221 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3222 pHlp->pfnPrintf(pHlp,
3223 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3224 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3225 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3226 "%sr14=%016RX64 %sr15=%016RX64\n"
3227 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3228 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3229 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3230 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3231 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3232 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3233 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3234 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
3235 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
3236 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
3237 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3238 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3239 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3240 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
3241 ,
3242 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3243 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3244 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3245 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3246 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
3247 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
3248 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
3249 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
3250 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
3251 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
3252 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3253 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3254 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3255 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3256 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3257 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3258 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3259 else
3260 pHlp->pfnPrintf(pHlp,
3261 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3262 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3263 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
3264 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
3265 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
3266 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
3267 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
3268 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
3269 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3270 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3271 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3272 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
3273 ,
3274 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3275 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3276 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
3277 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3278 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
3279 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3280 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
3281 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3282 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3283 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3284 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3285 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3286
3287 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
3288 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
3289 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
3290 if (pCtx->CTX_SUFF(pXState))
3291 {
3292 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
3293 pHlp->pfnPrintf(pHlp,
3294 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
3295 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
3296 ,
3297 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
3298 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
3299 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
3300 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
3301 );
3302 /*
3303 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
3304 * not (FP)R0-7 as Intel SDM suggests.
3305 */
3306 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
3307 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
3308 {
3309 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
3310 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
3311 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
3312 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
3313 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
3314 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
3315 iExponent -= 16383; /* subtract bias */
3316 /** @todo This isn't entirenly correct and needs more work! */
3317 pHlp->pfnPrintf(pHlp,
3318 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
3319 pszPrefix, iST, pszPrefix, iFPR,
3320 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
3321 uTag, chSign, iInteger, u64Fraction, iExponent);
3322 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
3323 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
3324 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
3325 else
3326 pHlp->pfnPrintf(pHlp, "\n");
3327 }
3328
3329 /* XMM/YMM/ZMM registers. */
3330 if (pCtx->fXStateMask & XSAVE_C_YMM)
3331 {
3332 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
3333 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
3334 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3335 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3336 pszPrefix, i, i < 10 ? " " : "",
3337 pYmmHiCtx->aYmmHi[i].au32[3],
3338 pYmmHiCtx->aYmmHi[i].au32[2],
3339 pYmmHiCtx->aYmmHi[i].au32[1],
3340 pYmmHiCtx->aYmmHi[i].au32[0],
3341 pFpuCtx->aXMM[i].au32[3],
3342 pFpuCtx->aXMM[i].au32[2],
3343 pFpuCtx->aXMM[i].au32[1],
3344 pFpuCtx->aXMM[i].au32[0]);
3345 else
3346 {
3347 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
3348 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3349 pHlp->pfnPrintf(pHlp,
3350 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3351 pszPrefix, i, i < 10 ? " " : "",
3352 pZmmHi256->aHi256Regs[i].au32[7],
3353 pZmmHi256->aHi256Regs[i].au32[6],
3354 pZmmHi256->aHi256Regs[i].au32[5],
3355 pZmmHi256->aHi256Regs[i].au32[4],
3356 pZmmHi256->aHi256Regs[i].au32[3],
3357 pZmmHi256->aHi256Regs[i].au32[2],
3358 pZmmHi256->aHi256Regs[i].au32[1],
3359 pZmmHi256->aHi256Regs[i].au32[0],
3360 pYmmHiCtx->aYmmHi[i].au32[3],
3361 pYmmHiCtx->aYmmHi[i].au32[2],
3362 pYmmHiCtx->aYmmHi[i].au32[1],
3363 pYmmHiCtx->aYmmHi[i].au32[0],
3364 pFpuCtx->aXMM[i].au32[3],
3365 pFpuCtx->aXMM[i].au32[2],
3366 pFpuCtx->aXMM[i].au32[1],
3367 pFpuCtx->aXMM[i].au32[0]);
3368
3369 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
3370 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
3371 pHlp->pfnPrintf(pHlp,
3372 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3373 pszPrefix, i + 16,
3374 pZmm16Hi->aRegs[i].au32[15],
3375 pZmm16Hi->aRegs[i].au32[14],
3376 pZmm16Hi->aRegs[i].au32[13],
3377 pZmm16Hi->aRegs[i].au32[12],
3378 pZmm16Hi->aRegs[i].au32[11],
3379 pZmm16Hi->aRegs[i].au32[10],
3380 pZmm16Hi->aRegs[i].au32[9],
3381 pZmm16Hi->aRegs[i].au32[8],
3382 pZmm16Hi->aRegs[i].au32[7],
3383 pZmm16Hi->aRegs[i].au32[6],
3384 pZmm16Hi->aRegs[i].au32[5],
3385 pZmm16Hi->aRegs[i].au32[4],
3386 pZmm16Hi->aRegs[i].au32[3],
3387 pZmm16Hi->aRegs[i].au32[2],
3388 pZmm16Hi->aRegs[i].au32[1],
3389 pZmm16Hi->aRegs[i].au32[0]);
3390 }
3391 }
3392 else
3393 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3394 pHlp->pfnPrintf(pHlp,
3395 i & 1
3396 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3397 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3398 pszPrefix, i, i < 10 ? " " : "",
3399 pFpuCtx->aXMM[i].au32[3],
3400 pFpuCtx->aXMM[i].au32[2],
3401 pFpuCtx->aXMM[i].au32[1],
3402 pFpuCtx->aXMM[i].au32[0]);
3403
3404 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
3405 {
3406 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
3407 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
3408 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
3409 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
3410 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
3411 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
3412 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
3413 }
3414
3415 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
3416 {
3417 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
3418 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
3419 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
3420 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
3421 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
3422 }
3423
3424 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
3425 {
3426 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
3427 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
3428 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
3429 }
3430
3431 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
3432 if (pFpuCtx->au32RsrvdRest[i])
3433 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
3434 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
3435 }
3436
3437 pHlp->pfnPrintf(pHlp,
3438 "%sEFER =%016RX64\n"
3439 "%sPAT =%016RX64\n"
3440 "%sSTAR =%016RX64\n"
3441 "%sCSTAR =%016RX64\n"
3442 "%sLSTAR =%016RX64\n"
3443 "%sSFMASK =%016RX64\n"
3444 "%sKERNELGSBASE =%016RX64\n",
3445 pszPrefix, pCtx->msrEFER,
3446 pszPrefix, pCtx->msrPAT,
3447 pszPrefix, pCtx->msrSTAR,
3448 pszPrefix, pCtx->msrCSTAR,
3449 pszPrefix, pCtx->msrLSTAR,
3450 pszPrefix, pCtx->msrSFMASK,
3451 pszPrefix, pCtx->msrKERNELGSBASE);
3452 break;
3453 }
3454}
3455
3456
3457/**
3458 * Display all cpu states and any other cpum info.
3459 *
3460 * @param pVM The cross context VM structure.
3461 * @param pHlp The info helper functions.
3462 * @param pszArgs Arguments, ignored.
3463 */
3464static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3465{
3466 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3467 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3468 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
3469 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3470 cpumR3InfoHost(pVM, pHlp, pszArgs);
3471}
3472
3473
3474/**
3475 * Parses the info argument.
3476 *
3477 * The argument starts with 'verbose', 'terse' or 'default' and then
3478 * continues with the comment string.
3479 *
3480 * @param pszArgs The pointer to the argument string.
3481 * @param penmType Where to store the dump type request.
3482 * @param ppszComment Where to store the pointer to the comment string.
3483 */
3484static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3485{
3486 if (!pszArgs)
3487 {
3488 *penmType = CPUMDUMPTYPE_DEFAULT;
3489 *ppszComment = "";
3490 }
3491 else
3492 {
3493 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3494 {
3495 pszArgs += 7;
3496 *penmType = CPUMDUMPTYPE_VERBOSE;
3497 }
3498 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3499 {
3500 pszArgs += 5;
3501 *penmType = CPUMDUMPTYPE_TERSE;
3502 }
3503 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3504 {
3505 pszArgs += 7;
3506 *penmType = CPUMDUMPTYPE_DEFAULT;
3507 }
3508 else
3509 *penmType = CPUMDUMPTYPE_DEFAULT;
3510 *ppszComment = RTStrStripL(pszArgs);
3511 }
3512}
3513
3514
3515/**
3516 * Display the guest cpu state.
3517 *
3518 * @param pVM The cross context VM structure.
3519 * @param pHlp The info helper functions.
3520 * @param pszArgs Arguments.
3521 */
3522static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3523{
3524 CPUMDUMPTYPE enmType;
3525 const char *pszComment;
3526 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3527
3528 PVMCPU pVCpu = VMMGetCpu(pVM);
3529 if (!pVCpu)
3530 pVCpu = pVM->apCpusR3[0];
3531
3532 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3533
3534 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3535 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
3536}
3537
3538
3539/**
3540 * Displays an SVM VMCB control area.
3541 *
3542 * @param pHlp The info helper functions.
3543 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
3544 * @param pszPrefix Caller specified string prefix.
3545 */
3546static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
3547{
3548 AssertReturnVoid(pHlp);
3549 AssertReturnVoid(pVmcbCtrl);
3550
3551 pHlp->pfnPrintf(pHlp, "%sCRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
3552 pHlp->pfnPrintf(pHlp, "%sCRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
3553 pHlp->pfnPrintf(pHlp, "%sDRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
3554 pHlp->pfnPrintf(pHlp, "%sDRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
3555 pHlp->pfnPrintf(pHlp, "%sException intercepts = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
3556 pHlp->pfnPrintf(pHlp, "%sControl intercepts = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
3557 pHlp->pfnPrintf(pHlp, "%sPause-filter threshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
3558 pHlp->pfnPrintf(pHlp, "%sPause-filter count = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
3559 pHlp->pfnPrintf(pHlp, "%sIOPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
3560 pHlp->pfnPrintf(pHlp, "%sMSRPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
3561 pHlp->pfnPrintf(pHlp, "%sTSC offset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
3562 pHlp->pfnPrintf(pHlp, "%sTLB Control\n", pszPrefix);
3563 pHlp->pfnPrintf(pHlp, " %sASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
3564 pHlp->pfnPrintf(pHlp, " %sTLB-flush type = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
3565 pHlp->pfnPrintf(pHlp, "%sInterrupt Control\n", pszPrefix);
3566 pHlp->pfnPrintf(pHlp, " %sVTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
3567 pHlp->pfnPrintf(pHlp, " %sVIRQ (Pending) = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
3568 pHlp->pfnPrintf(pHlp, " %sVINTR vector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
3569 pHlp->pfnPrintf(pHlp, " %sVGIF = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
3570 pHlp->pfnPrintf(pHlp, " %sVINTR priority = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
3571 pHlp->pfnPrintf(pHlp, " %sIgnore TPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
3572 pHlp->pfnPrintf(pHlp, " %sVINTR masking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
3573 pHlp->pfnPrintf(pHlp, " %sVGIF enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
3574 pHlp->pfnPrintf(pHlp, " %sAVIC enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
3575 pHlp->pfnPrintf(pHlp, "%sInterrupt Shadow\n", pszPrefix);
3576 pHlp->pfnPrintf(pHlp, " %sInterrupt shadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
3577 pHlp->pfnPrintf(pHlp, " %sGuest-interrupt Mask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
3578 pHlp->pfnPrintf(pHlp, "%sExit Code = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
3579 pHlp->pfnPrintf(pHlp, "%sEXITINFO1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
3580 pHlp->pfnPrintf(pHlp, "%sEXITINFO2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
3581 pHlp->pfnPrintf(pHlp, "%sExit Interrupt Info\n", pszPrefix);
3582 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
3583 pHlp->pfnPrintf(pHlp, " %sVector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
3584 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
3585 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
3586 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
3587 pHlp->pfnPrintf(pHlp, "%sNested paging and SEV\n", pszPrefix);
3588 pHlp->pfnPrintf(pHlp, " %sNested paging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
3589 pHlp->pfnPrintf(pHlp, " %sSEV (Secure Encrypted VM) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
3590 pHlp->pfnPrintf(pHlp, " %sSEV-ES (Encrypted State) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
3591 pHlp->pfnPrintf(pHlp, "%sEvent Inject\n", pszPrefix);
3592 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
3593 pHlp->pfnPrintf(pHlp, " %sVector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
3594 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
3595 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
3596 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
3597 pHlp->pfnPrintf(pHlp, "%sNested-paging CR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
3598 pHlp->pfnPrintf(pHlp, "%sLBR Virtualization\n", pszPrefix);
3599 pHlp->pfnPrintf(pHlp, " %sLBR virt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
3600 pHlp->pfnPrintf(pHlp, " %sVirt. VMSAVE/VMLOAD = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
3601 pHlp->pfnPrintf(pHlp, "%sVMCB Clean Bits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
3602 pHlp->pfnPrintf(pHlp, "%sNext-RIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
3603 pHlp->pfnPrintf(pHlp, "%sInstruction bytes fetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
3604 pHlp->pfnPrintf(pHlp, "%sInstruction bytes = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
3605 pHlp->pfnPrintf(pHlp, "%sAVIC\n", pszPrefix);
3606 pHlp->pfnPrintf(pHlp, " %sBar addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
3607 pHlp->pfnPrintf(pHlp, " %sBacking page addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
3608 pHlp->pfnPrintf(pHlp, " %sLogical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
3609 pHlp->pfnPrintf(pHlp, " %sPhysical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
3610 pHlp->pfnPrintf(pHlp, " %sLast guest core Id = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
3611}
3612
3613
3614/**
3615 * Helper for dumping the SVM VMCB selector registers.
3616 *
3617 * @param pHlp The info helper functions.
3618 * @param pSel Pointer to the SVM selector register.
3619 * @param pszName Name of the selector.
3620 * @param pszPrefix Caller specified string prefix.
3621 */
3622DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3623{
3624 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3625 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3626 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3627}
3628
3629
3630/**
3631 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3632 *
3633 * @param pHlp The info helper functions.
3634 * @param pXdtr Pointer to the descriptor table register.
3635 * @param pszName Name of the descriptor table register.
3636 * @param pszPrefix Caller specified string prefix.
3637 */
3638DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3639{
3640 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3641 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3642}
3643
3644
3645/**
3646 * Displays an SVM VMCB state-save area.
3647 *
3648 * @param pHlp The info helper functions.
3649 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3650 * @param pszPrefix Caller specified string prefix.
3651 */
3652static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3653{
3654 AssertReturnVoid(pHlp);
3655 AssertReturnVoid(pVmcbStateSave);
3656
3657 char szEFlags[80];
3658 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3659
3660 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3661 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3662 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3663 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3664 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3665 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3666 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3667 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3668 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3669 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3670 pHlp->pfnPrintf(pHlp, "%sCPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3671 pHlp->pfnPrintf(pHlp, "%sEFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3672 pHlp->pfnPrintf(pHlp, "%sCR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3673 pHlp->pfnPrintf(pHlp, "%sCR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3674 pHlp->pfnPrintf(pHlp, "%sCR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3675 pHlp->pfnPrintf(pHlp, "%sDR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3676 pHlp->pfnPrintf(pHlp, "%sDR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3677 pHlp->pfnPrintf(pHlp, "%sRFLAGS = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3678 pHlp->pfnPrintf(pHlp, "%sRIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3679 pHlp->pfnPrintf(pHlp, "%sRSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3680 pHlp->pfnPrintf(pHlp, "%sRAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3681 pHlp->pfnPrintf(pHlp, "%sSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3682 pHlp->pfnPrintf(pHlp, "%sLSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3683 pHlp->pfnPrintf(pHlp, "%sCSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3684 pHlp->pfnPrintf(pHlp, "%sSFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3685 pHlp->pfnPrintf(pHlp, "%sKERNELGSBASE = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3686 pHlp->pfnPrintf(pHlp, "%sSysEnter CS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3687 pHlp->pfnPrintf(pHlp, "%sSysEnter EIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3688 pHlp->pfnPrintf(pHlp, "%sSysEnter ESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3689 pHlp->pfnPrintf(pHlp, "%sCR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3690 pHlp->pfnPrintf(pHlp, "%sPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3691 pHlp->pfnPrintf(pHlp, "%sDBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3692 pHlp->pfnPrintf(pHlp, "%sBR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3693 pHlp->pfnPrintf(pHlp, "%sBR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3694 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3695 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3696}
3697
3698
3699/**
3700 * Displays a virtual-VMCS.
3701 *
3702 * @param pVCpu The cross context virtual CPU structure.
3703 * @param pHlp The info helper functions.
3704 * @param pVmcs Pointer to a virtual VMCS.
3705 * @param pszPrefix Caller specified string prefix.
3706 */
3707static void cpumR3InfoVmxVmcs(PVMCPU pVCpu, PCDBGFINFOHLP pHlp, PCVMXVVMCS pVmcs, const char *pszPrefix)
3708{
3709 AssertReturnVoid(pHlp);
3710 AssertReturnVoid(pVmcs);
3711
3712 /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */
3713#define CPUMVMX_DUMP_HOST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3714 do { \
3715 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64}\n", \
3716 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u); \
3717 } while (0)
3718
3719#define CPUMVMX_DUMP_HOST_FS_GS_TR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3720 do { \
3721 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64}\n", \
3722 (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u); \
3723 } while (0)
3724
3725#define CPUMVMX_DUMP_GUEST_SEGREG(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3726 do { \
3727 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \
3728 (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \
3729 (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr); \
3730 } while (0)
3731
3732#define CPUMVMX_DUMP_GUEST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3733 do { \
3734 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64 limit=%08x}\n", \
3735 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit); \
3736 } while (0)
3737
3738 /* Header. */
3739 {
3740 pHlp->pfnPrintf(pHlp, "%sHeader:\n", pszPrefix);
3741 pHlp->pfnPrintf(pHlp, " %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId);
3742 pHlp->pfnPrintf(pHlp, " %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, VMXGetAbortDesc(pVmcs->enmVmxAbort));
3743 pHlp->pfnPrintf(pHlp, " %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, VMXGetVmcsStateDesc(pVmcs->fVmcsState));
3744 }
3745
3746 /* Control fields. */
3747 {
3748 /* 16-bit. */
3749 pHlp->pfnPrintf(pHlp, "%sControl:\n", pszPrefix);
3750 pHlp->pfnPrintf(pHlp, " %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid);
3751 pHlp->pfnPrintf(pHlp, " %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector);
3752 pHlp->pfnPrintf(pHlp, " %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex);
3753
3754 /* 32-bit. */
3755 pHlp->pfnPrintf(pHlp, " %sPin ctls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls);
3756 pHlp->pfnPrintf(pHlp, " %sProcessor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls);
3757 pHlp->pfnPrintf(pHlp, " %sSecondary processor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2);
3758 pHlp->pfnPrintf(pHlp, " %sVM-exit ctls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls);
3759 pHlp->pfnPrintf(pHlp, " %sVM-entry ctls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls);
3760 pHlp->pfnPrintf(pHlp, " %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap);
3761 pHlp->pfnPrintf(pHlp, " %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask);
3762 pHlp->pfnPrintf(pHlp, " %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch);
3763 pHlp->pfnPrintf(pHlp, " %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount);
3764 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount);
3765 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount);
3766 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount);
3767 pHlp->pfnPrintf(pHlp, " %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo);
3768 {
3769 uint32_t const fInfo = pVmcs->u32EntryIntInfo;
3770 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo);
3771 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo));
3772 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetEntryIntInfoTypeDesc(uType));
3773 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_ENTRY_INT_INFO_VECTOR(fInfo));
3774 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3775 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3776 }
3777 pHlp->pfnPrintf(pHlp, " %sVM-entry xcpt error-code = %#RX32\n", pszPrefix, pVmcs->u32EntryXcptErrCode);
3778 pHlp->pfnPrintf(pHlp, " %sVM-entry instr length = %u byte(s)\n", pszPrefix, pVmcs->u32EntryInstrLen);
3779 pHlp->pfnPrintf(pHlp, " %sTPR threshold = %#RX32\n", pszPrefix, pVmcs->u32TprThreshold);
3780 pHlp->pfnPrintf(pHlp, " %sPLE gap = %#RX32\n", pszPrefix, pVmcs->u32PleGap);
3781 pHlp->pfnPrintf(pHlp, " %sPLE window = %#RX32\n", pszPrefix, pVmcs->u32PleWindow);
3782
3783 /* 64-bit. */
3784 pHlp->pfnPrintf(pHlp, " %sIO-bitmap A addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapA.u);
3785 pHlp->pfnPrintf(pHlp, " %sIO-bitmap B addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapB.u);
3786 pHlp->pfnPrintf(pHlp, " %sMSR-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrMsrBitmap.u);
3787 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrStore.u);
3788 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrLoad.u);
3789 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEntryMsrLoad.u);
3790 pHlp->pfnPrintf(pHlp, " %sExecutive VMCS ptr = %#RX64\n", pszPrefix, pVmcs->u64ExecVmcsPtr.u);
3791 pHlp->pfnPrintf(pHlp, " %sPML addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPml.u);
3792 pHlp->pfnPrintf(pHlp, " %sTSC offset = %#RX64\n", pszPrefix, pVmcs->u64TscOffset.u);
3793 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVirtApic.u);
3794 pHlp->pfnPrintf(pHlp, " %sAPIC-access addr = %#RX64\n", pszPrefix, pVmcs->u64AddrApicAccess.u);
3795 pHlp->pfnPrintf(pHlp, " %sPosted-intr desc addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPostedIntDesc.u);
3796 pHlp->pfnPrintf(pHlp, " %sVM-functions control = %#RX64\n", pszPrefix, pVmcs->u64VmFuncCtls.u);
3797 pHlp->pfnPrintf(pHlp, " %sEPTP ptr = %#RX64\n", pszPrefix, pVmcs->u64EptpPtr.u);
3798 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 0 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap0.u);
3799 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 1 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap1.u);
3800 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 2 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap2.u);
3801 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 3 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap3.u);
3802 pHlp->pfnPrintf(pHlp, " %sEPTP-list addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEptpList.u);
3803 pHlp->pfnPrintf(pHlp, " %sVMREAD-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmreadBitmap.u);
3804 pHlp->pfnPrintf(pHlp, " %sVMWRITE-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmwriteBitmap.u);
3805 pHlp->pfnPrintf(pHlp, " %sVirt-Xcpt info addr = %#RX64\n", pszPrefix, pVmcs->u64AddrXcptVeInfo.u);
3806 pHlp->pfnPrintf(pHlp, " %sXSS-bitmap = %#RX64\n", pszPrefix, pVmcs->u64XssBitmap.u);
3807 pHlp->pfnPrintf(pHlp, " %sENCLS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclsBitmap.u);
3808 pHlp->pfnPrintf(pHlp, " %sSPPT ptr = %#RX64\n", pszPrefix, pVmcs->u64SpptPtr.u);
3809 pHlp->pfnPrintf(pHlp, " %sTSC multiplier = %#RX64\n", pszPrefix, pVmcs->u64TscMultiplier.u);
3810
3811 /* Natural width. */
3812 pHlp->pfnPrintf(pHlp, " %sCR0 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr0Mask.u);
3813 pHlp->pfnPrintf(pHlp, " %sCR4 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr4Mask.u);
3814 pHlp->pfnPrintf(pHlp, " %sCR0 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr0ReadShadow.u);
3815 pHlp->pfnPrintf(pHlp, " %sCR4 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr4ReadShadow.u);
3816 pHlp->pfnPrintf(pHlp, " %sCR3-target 0 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target0.u);
3817 pHlp->pfnPrintf(pHlp, " %sCR3-target 1 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target1.u);
3818 pHlp->pfnPrintf(pHlp, " %sCR3-target 2 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target2.u);
3819 pHlp->pfnPrintf(pHlp, " %sCR3-target 3 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target3.u);
3820 }
3821
3822 /* Guest state. */
3823 {
3824 char szEFlags[80];
3825 cpumR3InfoFormatFlags(&szEFlags[0], pVmcs->u64GuestRFlags.u);
3826 pHlp->pfnPrintf(pHlp, "%sGuest state:\n", pszPrefix);
3827
3828 /* 16-bit. */
3829 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Cs, "cs", pszPrefix);
3830 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ss, "ss", pszPrefix);
3831 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Es, "es", pszPrefix);
3832 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ds, "ds", pszPrefix);
3833 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Fs, "fs", pszPrefix);
3834 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Gs, "gs", pszPrefix);
3835 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ldtr, "ldtr", pszPrefix);
3836 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Tr, "tr", pszPrefix);
3837 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Gdtr, "gdtr", pszPrefix);
3838 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Idtr, "idtr", pszPrefix);
3839 pHlp->pfnPrintf(pHlp, " %sInterrupt status = %#RX16\n", pszPrefix, pVmcs->u16GuestIntStatus);
3840 pHlp->pfnPrintf(pHlp, " %sPML index = %#RX16\n", pszPrefix, pVmcs->u16PmlIndex);
3841
3842 /* 32-bit. */
3843 pHlp->pfnPrintf(pHlp, " %sInterruptibility state = %#RX32\n", pszPrefix, pVmcs->u32GuestIntrState);
3844 pHlp->pfnPrintf(pHlp, " %sActivity state = %#RX32\n", pszPrefix, pVmcs->u32GuestActivityState);
3845 pHlp->pfnPrintf(pHlp, " %sSMBASE = %#RX32\n", pszPrefix, pVmcs->u32GuestSmBase);
3846 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32GuestSysenterCS);
3847 pHlp->pfnPrintf(pHlp, " %sVMX-preemption timer value = %#RX32\n", pszPrefix, pVmcs->u32PreemptTimer);
3848
3849 /* 64-bit. */
3850 pHlp->pfnPrintf(pHlp, " %sVMCS link ptr = %#RX64\n", pszPrefix, pVmcs->u64VmcsLinkPtr.u);
3851 pHlp->pfnPrintf(pHlp, " %sDBGCTL = %#RX64\n", pszPrefix, pVmcs->u64GuestDebugCtlMsr.u);
3852 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64GuestPatMsr.u);
3853 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64GuestEferMsr.u);
3854 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64GuestPerfGlobalCtlMsr.u);
3855 pHlp->pfnPrintf(pHlp, " %sPDPTE 0 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte0.u);
3856 pHlp->pfnPrintf(pHlp, " %sPDPTE 1 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte1.u);
3857 pHlp->pfnPrintf(pHlp, " %sPDPTE 2 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte2.u);
3858 pHlp->pfnPrintf(pHlp, " %sPDPTE 3 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte3.u);
3859 pHlp->pfnPrintf(pHlp, " %sBNDCFGS = %#RX64\n", pszPrefix, pVmcs->u64GuestBndcfgsMsr.u);
3860 pHlp->pfnPrintf(pHlp, " %sRTIT_CTL = %#RX64\n", pszPrefix, pVmcs->u64GuestRtitCtlMsr.u);
3861
3862 /* Natural width. */
3863 pHlp->pfnPrintf(pHlp, " %scr0 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr0.u);
3864 pHlp->pfnPrintf(pHlp, " %scr3 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr3.u);
3865 pHlp->pfnPrintf(pHlp, " %scr4 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr4.u);
3866 pHlp->pfnPrintf(pHlp, " %sdr7 = %#RX64\n", pszPrefix, pVmcs->u64GuestDr7.u);
3867 pHlp->pfnPrintf(pHlp, " %srsp = %#RX64\n", pszPrefix, pVmcs->u64GuestRsp.u);
3868 pHlp->pfnPrintf(pHlp, " %srip = %#RX64\n", pszPrefix, pVmcs->u64GuestRip.u);
3869 pHlp->pfnPrintf(pHlp, " %srflags = %#RX64 %31s\n",pszPrefix, pVmcs->u64GuestRFlags.u, szEFlags);
3870 pHlp->pfnPrintf(pHlp, " %sPending debug xcpts = %#RX64\n", pszPrefix, pVmcs->u64GuestPendingDbgXcpts.u);
3871 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEsp.u);
3872 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEip.u);
3873 }
3874
3875 /* Host state. */
3876 {
3877 pHlp->pfnPrintf(pHlp, "%sHost state:\n", pszPrefix);
3878
3879 /* 16-bit. */
3880 pHlp->pfnPrintf(pHlp, " %scs = %#RX16\n", pszPrefix, pVmcs->HostCs);
3881 pHlp->pfnPrintf(pHlp, " %sss = %#RX16\n", pszPrefix, pVmcs->HostSs);
3882 pHlp->pfnPrintf(pHlp, " %sds = %#RX16\n", pszPrefix, pVmcs->HostDs);
3883 pHlp->pfnPrintf(pHlp, " %ses = %#RX16\n", pszPrefix, pVmcs->HostEs);
3884 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Fs, "fs", pszPrefix);
3885 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Gs, "gs", pszPrefix);
3886 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Tr, "tr", pszPrefix);
3887 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Gdtr, "gdtr", pszPrefix);
3888 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Idtr, "idtr", pszPrefix);
3889
3890 /* 32-bit. */
3891 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32HostSysenterCs);
3892
3893 /* 64-bit. */
3894 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64HostEferMsr.u);
3895 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64HostPatMsr.u);
3896 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64HostPerfGlobalCtlMsr.u);
3897
3898 /* Natural width. */
3899 pHlp->pfnPrintf(pHlp, " %scr0 = %#RX64\n", pszPrefix, pVmcs->u64HostCr0.u);
3900 pHlp->pfnPrintf(pHlp, " %scr3 = %#RX64\n", pszPrefix, pVmcs->u64HostCr3.u);
3901 pHlp->pfnPrintf(pHlp, " %scr4 = %#RX64\n", pszPrefix, pVmcs->u64HostCr4.u);
3902 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEsp.u);
3903 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEip.u);
3904 pHlp->pfnPrintf(pHlp, " %srsp = %#RX64\n", pszPrefix, pVmcs->u64HostRsp.u);
3905 pHlp->pfnPrintf(pHlp, " %srip = %#RX64\n", pszPrefix, pVmcs->u64HostRip.u);
3906 }
3907
3908 /* Read-only fields. */
3909 {
3910 pHlp->pfnPrintf(pHlp, "%sRead-only data fields:\n", pszPrefix);
3911
3912 /* 16-bit (none currently). */
3913
3914 /* 32-bit. */
3915 pHlp->pfnPrintf(pHlp, " %sExit reason = %u (%s)\n", pszPrefix, pVmcs->u32RoExitReason, HMGetVmxExitName(pVmcs->u32RoExitReason));
3916 pHlp->pfnPrintf(pHlp, " %sExit qualification = %#RX64\n", pszPrefix, pVmcs->u64RoExitQual.u);
3917 pHlp->pfnPrintf(pHlp, " %sVM-instruction error = %#RX32\n", pszPrefix, pVmcs->u32RoVmInstrError);
3918 pHlp->pfnPrintf(pHlp, " %sVM-exit intr info = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntInfo);
3919 {
3920 uint32_t const fInfo = pVmcs->u32RoExitIntInfo;
3921 uint8_t const uType = VMX_EXIT_INT_INFO_TYPE(fInfo);
3922 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_VALID(fInfo));
3923 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetExitIntInfoTypeDesc(uType));
3924 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_EXIT_INT_INFO_VECTOR(fInfo));
3925 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3926 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3927 }
3928 pHlp->pfnPrintf(pHlp, " %sVM-exit intr error-code = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntErrCode);
3929 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring info = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringInfo);
3930 {
3931 uint32_t const fInfo = pVmcs->u32RoIdtVectoringInfo;
3932 uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(fInfo);
3933 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_VALID(fInfo));
3934 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, VMXGetIdtVectoringInfoTypeDesc(uType));
3935 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_IDT_VECTORING_INFO_VECTOR(fInfo));
3936 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(fInfo));
3937 }
3938 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring error-code = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringErrCode);
3939 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction length = %u byte(s)\n", pszPrefix, pVmcs->u32RoExitInstrLen);
3940 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction info = %#RX64\n", pszPrefix, pVmcs->u32RoExitInstrInfo);
3941
3942 /* 64-bit. */
3943 pHlp->pfnPrintf(pHlp, " %sGuest-physical addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestPhysAddr.u);
3944
3945 /* Natural width. */
3946 pHlp->pfnPrintf(pHlp, " %sI/O RCX = %#RX64\n", pszPrefix, pVmcs->u64RoIoRcx.u);
3947 pHlp->pfnPrintf(pHlp, " %sI/O RSI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRsi.u);
3948 pHlp->pfnPrintf(pHlp, " %sI/O RDI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRdi.u);
3949 pHlp->pfnPrintf(pHlp, " %sI/O RIP = %#RX64\n", pszPrefix, pVmcs->u64RoIoRip.u);
3950 pHlp->pfnPrintf(pHlp, " %sGuest-linear addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestLinearAddr.u);
3951 }
3952
3953#ifdef DEBUG_ramshankar
3954 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3955 {
3956 void *pvPage = RTMemTmpAllocZ(VMX_V_VIRT_APIC_SIZE);
3957 Assert(pvPage);
3958 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
3959 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pvPage, GCPhysVirtApic, VMX_V_VIRT_APIC_SIZE);
3960 if (RT_SUCCESS(rc))
3961 {
3962 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC page\n", pszPrefix);
3963 pHlp->pfnPrintf(pHlp, "%.*Rhxs\n", VMX_V_VIRT_APIC_SIZE, pvPage);
3964 pHlp->pfnPrintf(pHlp, "\n");
3965 }
3966 RTMemTmpFree(pvPage);
3967 }
3968#else
3969 NOREF(pVCpu);
3970#endif
3971
3972#undef CPUMVMX_DUMP_HOST_XDTR
3973#undef CPUMVMX_DUMP_HOST_FS_GS_TR
3974#undef CPUMVMX_DUMP_GUEST_SEGREG
3975#undef CPUMVMX_DUMP_GUEST_XDTR
3976}
3977
3978
3979/**
3980 * Display the guest's hardware-virtualization cpu state.
3981 *
3982 * @param pVM The cross context VM structure.
3983 * @param pHlp The info helper functions.
3984 * @param pszArgs Arguments, ignored.
3985 */
3986static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3987{
3988 RT_NOREF(pszArgs);
3989
3990 PVMCPU pVCpu = VMMGetCpu(pVM);
3991 if (!pVCpu)
3992 pVCpu = pVM->apCpusR3[0];
3993
3994 /*
3995 * Figure out what to dump.
3996 *
3997 * In the future we may need to dump everything whether or not we're actively in nested-guest mode
3998 * or not, hence the reason why we use a mask to determine what needs dumping. Currently, we only
3999 * dump hwvirt. state when the guest CPU is executing a nested-guest.
4000 */
4001 /** @todo perhaps make this configurable through pszArgs, depending on how much
4002 * noise we wish to accept when nested hwvirt. isn't used. */
4003#define CPUMHWVIRTDUMP_NONE (0)
4004#define CPUMHWVIRTDUMP_SVM RT_BIT(0)
4005#define CPUMHWVIRTDUMP_VMX RT_BIT(1)
4006#define CPUMHWVIRTDUMP_COMMON RT_BIT(2)
4007#define CPUMHWVIRTDUMP_LAST CPUMHWVIRTDUMP_VMX
4008
4009 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
4010 static const char *const s_aHwvirtModes[] = { "No/inactive", "SVM", "VMX", "Common" };
4011 bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm;
4012 bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx;
4013 uint8_t const idxHwvirtState = fSvm ? CPUMHWVIRTDUMP_SVM : (fVmx ? CPUMHWVIRTDUMP_VMX : CPUMHWVIRTDUMP_NONE);
4014 AssertCompile(CPUMHWVIRTDUMP_LAST <= RT_ELEMENTS(s_aHwvirtModes));
4015 Assert(idxHwvirtState < RT_ELEMENTS(s_aHwvirtModes));
4016 const char *pcszHwvirtMode = s_aHwvirtModes[idxHwvirtState];
4017 uint32_t fDumpState = idxHwvirtState | CPUMHWVIRTDUMP_COMMON;
4018
4019 /*
4020 * Dump it.
4021 */
4022 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
4023
4024 if (fDumpState & CPUMHWVIRTDUMP_COMMON)
4025 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
4026
4027 pHlp->pfnPrintf(pHlp, "%s hwvirt state%s\n", pcszHwvirtMode, (fDumpState & (CPUMHWVIRTDUMP_SVM | CPUMHWVIRTDUMP_VMX)) ?
4028 ":" : "");
4029 if (fDumpState & CPUMHWVIRTDUMP_SVM)
4030 {
4031 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
4032
4033 char szEFlags[80];
4034 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
4035 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
4036 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
4037 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
4038 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
4039 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
4040 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
4041 pHlp->pfnPrintf(pHlp, " HostState:\n");
4042 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
4043 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
4044 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
4045 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
4046 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
4047 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
4048 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
4049 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
4050 PCPUMSELREG pSel = &pCtx->hwvirt.svm.HostState.es;
4051 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4052 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4053 pSel = &pCtx->hwvirt.svm.HostState.cs;
4054 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4055 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4056 pSel = &pCtx->hwvirt.svm.HostState.ss;
4057 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4058 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4059 pSel = &pCtx->hwvirt.svm.HostState.ds;
4060 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4061 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4062 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
4063 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
4064 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
4065 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
4066 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
4067 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
4068 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
4069 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
4070 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
4071 pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
4072 pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
4073 }
4074
4075 if (fDumpState & CPUMHWVIRTDUMP_VMX)
4076 {
4077 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
4078 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
4079 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
4080 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMGetVmxDiagDesc(pCtx->hwvirt.vmx.enmDiag));
4081 pHlp->pfnPrintf(pHlp, " uDiagAux = %#RX64\n", pCtx->hwvirt.vmx.uDiagAux);
4082 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, VMXGetAbortDesc(pCtx->hwvirt.vmx.enmAbort));
4083 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
4084 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
4085 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
4086 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
4087 pHlp->pfnPrintf(pHlp, " fNmiUnblockingIret = %RTbool\n", pCtx->hwvirt.vmx.fNmiUnblockingIret);
4088 pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
4089 pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
4090 pHlp->pfnPrintf(pHlp, " uEntryTick = %RX64\n", pCtx->hwvirt.vmx.uEntryTick);
4091 pHlp->pfnPrintf(pHlp, " offVirtApicWrite = %#RX16\n", pCtx->hwvirt.vmx.offVirtApicWrite);
4092 pHlp->pfnPrintf(pHlp, " fVirtNmiBlocking = %RTbool\n", pCtx->hwvirt.vmx.fVirtNmiBlocking);
4093 pHlp->pfnPrintf(pHlp, " VMCS cache:\n");
4094 cpumR3InfoVmxVmcs(pVCpu, pHlp, pCtx->hwvirt.vmx.pVmcsR3, " " /* pszPrefix */);
4095 }
4096
4097#undef CPUMHWVIRTDUMP_NONE
4098#undef CPUMHWVIRTDUMP_COMMON
4099#undef CPUMHWVIRTDUMP_SVM
4100#undef CPUMHWVIRTDUMP_VMX
4101#undef CPUMHWVIRTDUMP_LAST
4102#undef CPUMHWVIRTDUMP_ALL
4103}
4104
4105/**
4106 * Display the current guest instruction
4107 *
4108 * @param pVM The cross context VM structure.
4109 * @param pHlp The info helper functions.
4110 * @param pszArgs Arguments, ignored.
4111 */
4112static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4113{
4114 NOREF(pszArgs);
4115
4116 PVMCPU pVCpu = VMMGetCpu(pVM);
4117 if (!pVCpu)
4118 pVCpu = pVM->apCpusR3[0];
4119
4120 char szInstruction[256];
4121 szInstruction[0] = '\0';
4122 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
4123 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
4124}
4125
4126
4127/**
4128 * Display the hypervisor cpu state.
4129 *
4130 * @param pVM The cross context VM structure.
4131 * @param pHlp The info helper functions.
4132 * @param pszArgs Arguments, ignored.
4133 */
4134static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4135{
4136 PVMCPU pVCpu = VMMGetCpu(pVM);
4137 if (!pVCpu)
4138 pVCpu = pVM->apCpusR3[0];
4139
4140 CPUMDUMPTYPE enmType;
4141 const char *pszComment;
4142 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4143 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
4144
4145 pHlp->pfnPrintf(pHlp,
4146 ".dr0=%016RX64 .dr1=%016RX64 .dr2=%016RX64 .dr3=%016RX64\n"
4147 ".dr4=%016RX64 .dr5=%016RX64 .dr6=%016RX64 .dr7=%016RX64\n",
4148 pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3],
4149 pVCpu->cpum.s.Hyper.dr[4], pVCpu->cpum.s.Hyper.dr[5], pVCpu->cpum.s.Hyper.dr[6], pVCpu->cpum.s.Hyper.dr[7]);
4150 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
4151}
4152
4153
4154/**
4155 * Display the host cpu state.
4156 *
4157 * @param pVM The cross context VM structure.
4158 * @param pHlp The info helper functions.
4159 * @param pszArgs Arguments, ignored.
4160 */
4161static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4162{
4163 CPUMDUMPTYPE enmType;
4164 const char *pszComment;
4165 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4166 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
4167
4168 PVMCPU pVCpu = VMMGetCpu(pVM);
4169 if (!pVCpu)
4170 pVCpu = pVM->apCpusR3[0];
4171 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
4172
4173 /*
4174 * Format the EFLAGS.
4175 */
4176 uint64_t efl = pCtx->rflags;
4177 char szEFlags[80];
4178 cpumR3InfoFormatFlags(&szEFlags[0], efl);
4179
4180 /*
4181 * Format the registers.
4182 */
4183 pHlp->pfnPrintf(pHlp,
4184 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
4185 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
4186 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
4187 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
4188 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
4189 "r14=%016RX64 r15=%016RX64\n"
4190 "iopl=%d %31s\n"
4191 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
4192 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
4193 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
4194 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
4195 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
4196 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
4197 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
4198 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
4199 ,
4200 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
4201 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
4202 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
4203 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
4204 pCtx->r11, pCtx->r12, pCtx->r13,
4205 pCtx->r14, pCtx->r15,
4206 X86_EFL_GET_IOPL(efl), szEFlags,
4207 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
4208 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
4209 pCtx->cr4, pCtx->ldtr, pCtx->tr,
4210 pCtx->dr0, pCtx->dr1, pCtx->dr2,
4211 pCtx->dr3, pCtx->dr6, pCtx->dr7,
4212 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
4213 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
4214 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
4215}
4216
4217/**
4218 * Structure used when disassembling and instructions in DBGF.
4219 * This is used so the reader function can get the stuff it needs.
4220 */
4221typedef struct CPUMDISASSTATE
4222{
4223 /** Pointer to the CPU structure. */
4224 PDISCPUSTATE pCpu;
4225 /** Pointer to the VM. */
4226 PVM pVM;
4227 /** Pointer to the VMCPU. */
4228 PVMCPU pVCpu;
4229 /** Pointer to the first byte in the segment. */
4230 RTGCUINTPTR GCPtrSegBase;
4231 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
4232 RTGCUINTPTR GCPtrSegEnd;
4233 /** The size of the segment minus 1. */
4234 RTGCUINTPTR cbSegLimit;
4235 /** Pointer to the current page - R3 Ptr. */
4236 void const *pvPageR3;
4237 /** Pointer to the current page - GC Ptr. */
4238 RTGCPTR pvPageGC;
4239 /** The lock information that PGMPhysReleasePageMappingLock needs. */
4240 PGMPAGEMAPLOCK PageMapLock;
4241 /** Whether the PageMapLock is valid or not. */
4242 bool fLocked;
4243 /** 64 bits mode or not. */
4244 bool f64Bits;
4245} CPUMDISASSTATE, *PCPUMDISASSTATE;
4246
4247
4248/**
4249 * @callback_method_impl{FNDISREADBYTES}
4250 */
4251static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
4252{
4253 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
4254 for (;;)
4255 {
4256 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
4257
4258 /*
4259 * Need to update the page translation?
4260 */
4261 if ( !pState->pvPageR3
4262 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
4263 {
4264 /* translate the address */
4265 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
4266
4267 /* Release mapping lock previously acquired. */
4268 if (pState->fLocked)
4269 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
4270 int rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
4271 if (RT_SUCCESS(rc))
4272 pState->fLocked = true;
4273 else
4274 {
4275 pState->fLocked = false;
4276 pState->pvPageR3 = NULL;
4277 return rc;
4278 }
4279 }
4280
4281 /*
4282 * Check the segment limit.
4283 */
4284 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
4285 return VERR_OUT_OF_SELECTOR_BOUNDS;
4286
4287 /*
4288 * Calc how much we can read.
4289 */
4290 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
4291 if (!pState->f64Bits)
4292 {
4293 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
4294 if (cb > cbSeg && cbSeg)
4295 cb = cbSeg;
4296 }
4297 if (cb > cbMaxRead)
4298 cb = cbMaxRead;
4299
4300 /*
4301 * Read and advance or exit.
4302 */
4303 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
4304 offInstr += (uint8_t)cb;
4305 if (cb >= cbMinRead)
4306 {
4307 pDis->cbCachedInstr = offInstr;
4308 return VINF_SUCCESS;
4309 }
4310 cbMinRead -= (uint8_t)cb;
4311 cbMaxRead -= (uint8_t)cb;
4312 }
4313}
4314
4315
4316/**
4317 * Disassemble an instruction and return the information in the provided structure.
4318 *
4319 * @returns VBox status code.
4320 * @param pVM The cross context VM structure.
4321 * @param pVCpu The cross context virtual CPU structure.
4322 * @param pCtx Pointer to the guest CPU context.
4323 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
4324 * @param pCpu Disassembly state.
4325 * @param pszPrefix String prefix for logging (debug only).
4326 *
4327 */
4328VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
4329 const char *pszPrefix)
4330{
4331 CPUMDISASSTATE State;
4332 int rc;
4333
4334 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
4335 State.pCpu = pCpu;
4336 State.pvPageGC = 0;
4337 State.pvPageR3 = NULL;
4338 State.pVM = pVM;
4339 State.pVCpu = pVCpu;
4340 State.fLocked = false;
4341 State.f64Bits = false;
4342
4343 /*
4344 * Get selector information.
4345 */
4346 DISCPUMODE enmDisCpuMode;
4347 if ( (pCtx->cr0 & X86_CR0_PE)
4348 && pCtx->eflags.Bits.u1VM == 0)
4349 {
4350 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4351 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
4352 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
4353 State.GCPtrSegBase = pCtx->cs.u64Base;
4354 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
4355 State.cbSegLimit = pCtx->cs.u32Limit;
4356 enmDisCpuMode = (State.f64Bits)
4357 ? DISCPUMODE_64BIT
4358 : pCtx->cs.Attr.n.u1DefBig
4359 ? DISCPUMODE_32BIT
4360 : DISCPUMODE_16BIT;
4361 }
4362 else
4363 {
4364 /* real or V86 mode */
4365 enmDisCpuMode = DISCPUMODE_16BIT;
4366 State.GCPtrSegBase = pCtx->cs.Sel * 16;
4367 State.GCPtrSegEnd = 0xFFFFFFFF;
4368 State.cbSegLimit = 0xFFFFFFFF;
4369 }
4370
4371 /*
4372 * Disassemble the instruction.
4373 */
4374 uint32_t cbInstr;
4375#ifndef LOG_ENABLED
4376 RT_NOREF_PV(pszPrefix);
4377 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
4378 if (RT_SUCCESS(rc))
4379 {
4380#else
4381 char szOutput[160];
4382 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
4383 pCpu, &cbInstr, szOutput, sizeof(szOutput));
4384 if (RT_SUCCESS(rc))
4385 {
4386 /* log it */
4387 if (pszPrefix)
4388 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
4389 else
4390 Log(("%s", szOutput));
4391#endif
4392 rc = VINF_SUCCESS;
4393 }
4394 else
4395 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
4396
4397 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
4398 if (State.fLocked)
4399 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
4400
4401 return rc;
4402}
4403
4404
4405
4406/**
4407 * API for controlling a few of the CPU features found in CR4.
4408 *
4409 * Currently only X86_CR4_TSD is accepted as input.
4410 *
4411 * @returns VBox status code.
4412 *
4413 * @param pVM The cross context VM structure.
4414 * @param fOr The CR4 OR mask.
4415 * @param fAnd The CR4 AND mask.
4416 */
4417VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
4418{
4419 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
4420 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
4421
4422 pVM->cpum.s.CR4.OrMask &= fAnd;
4423 pVM->cpum.s.CR4.OrMask |= fOr;
4424
4425 return VINF_SUCCESS;
4426}
4427
4428
4429/**
4430 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
4431 *
4432 * Only REM should ever call this function!
4433 *
4434 * @returns The changed flags.
4435 * @param pVCpu The cross context virtual CPU structure.
4436 * @param puCpl Where to return the current privilege level (CPL).
4437 */
4438VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
4439{
4440 Assert(!pVCpu->cpum.s.fRemEntered);
4441
4442 /*
4443 * Get the CPL first.
4444 */
4445 *puCpl = CPUMGetGuestCPL(pVCpu);
4446
4447 /*
4448 * Get and reset the flags.
4449 */
4450 uint32_t fFlags = pVCpu->cpum.s.fChanged;
4451 pVCpu->cpum.s.fChanged = 0;
4452
4453 /** @todo change the switcher to use the fChanged flags. */
4454 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
4455 {
4456 fFlags |= CPUM_CHANGED_FPU_REM;
4457 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
4458 }
4459
4460 pVCpu->cpum.s.fRemEntered = true;
4461 return fFlags;
4462}
4463
4464
4465/**
4466 * Leaves REM.
4467 *
4468 * @param pVCpu The cross context virtual CPU structure.
4469 * @param fNoOutOfSyncSels This is @c false if there are out of sync
4470 * registers.
4471 */
4472VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
4473{
4474 Assert(pVCpu->cpum.s.fRemEntered);
4475
4476 RT_NOREF_PV(fNoOutOfSyncSels);
4477
4478 pVCpu->cpum.s.fRemEntered = false;
4479}
4480
4481
4482/**
4483 * Called when the ring-3 init phase completes.
4484 *
4485 * @returns VBox status code.
4486 * @param pVM The cross context VM structure.
4487 * @param enmWhat Which init phase.
4488 */
4489VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
4490{
4491 switch (enmWhat)
4492 {
4493 case VMINITCOMPLETED_RING3:
4494 {
4495 /*
4496 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
4497 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
4498 */
4499 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
4500 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4501 {
4502 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4503
4504 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
4505 if (fSupportsLongMode)
4506 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
4507 }
4508
4509 /* Register statistic counters for MSRs. */
4510 cpumR3MsrRegStats(pVM);
4511 break;
4512 }
4513
4514 default:
4515 break;
4516 }
4517 return VINF_SUCCESS;
4518}
4519
4520
4521/**
4522 * Called when the ring-0 init phases completed.
4523 *
4524 * @param pVM The cross context VM structure.
4525 */
4526VMMR3DECL(void) CPUMR3LogCpuIdAndMsrFeatures(PVM pVM)
4527{
4528 /*
4529 * Enable log buffering as we're going to log a lot of lines.
4530 */
4531 bool const fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
4532
4533 /*
4534 * Log the cpuid.
4535 */
4536 RTCPUSET OnlineSet;
4537 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
4538 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
4539 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
4540 RTCPUID cCores = RTMpGetCoreCount();
4541 if (cCores)
4542 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
4543 LogRel(("************************* CPUID dump ************************\n"));
4544 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
4545 LogRel(("\n"));
4546 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
4547 LogRel(("******************** End of CPUID dump **********************\n"));
4548
4549 /*
4550 * Log VT-x extended features.
4551 *
4552 * SVM features are currently all covered under CPUID so there is nothing
4553 * to do here for SVM.
4554 */
4555 if (pVM->cpum.s.HostFeatures.fVmx)
4556 {
4557 LogRel(("*********************** VT-x features ***********************\n"));
4558 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
4559 LogRel(("\n"));
4560 LogRel(("******************* End of VT-x features ********************\n"));
4561 }
4562
4563 /*
4564 * Restore the log buffering state to what it was previously.
4565 */
4566 RTLogRelSetBuffering(fOldBuffered);
4567}
4568
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette