VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 80334

最後變更 在這個檔案從80334是 80333,由 vboxsync 提交於 6 年 前

VMM: Eliminating the VBOX_BUGREF_9217_PART_I preprocessor macro. bugref:9217

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id Revision
檔案大小: 237.6 KB
 
1/* $Id: CPUM.cpp 80333 2019-08-16 20:28:38Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2019 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 *
33 * @section sec_cpum_fpu FPU / SSE / AVX / ++ state.
34 *
35 * TODO: proper write up, currently just some notes.
36 *
37 * The ring-0 FPU handling per OS:
38 *
39 * - 64-bit Windows uses XMM registers in the kernel as part of the calling
40 * convention (Visual C++ doesn't seem to have a way to disable
41 * generating such code either), so CR0.TS/EM are always zero from what I
42 * can tell. We are also forced to always load/save the guest XMM0-XMM15
43 * registers when entering/leaving guest context. Interrupt handlers
44 * using FPU/SSE will offically have call save and restore functions
45 * exported by the kernel, if the really really have to use the state.
46 *
47 * - 32-bit windows does lazy FPU handling, I think, probably including
48 * lazying saving. The Windows Internals book states that it's a bad
49 * idea to use the FPU in kernel space. However, it looks like it will
50 * restore the FPU state of the current thread in case of a kernel \#NM.
51 * Interrupt handlers should be same as for 64-bit.
52 *
53 * - Darwin allows taking \#NM in kernel space, restoring current thread's
54 * state if I read the code correctly. It saves the FPU state of the
55 * outgoing thread, and uses CR0.TS to lazily load the state of the
56 * incoming one. No idea yet how the FPU is treated by interrupt
57 * handlers, i.e. whether they are allowed to disable the state or
58 * something.
59 *
60 * - Linux also allows \#NM in kernel space (don't know since when), and
61 * uses CR0.TS for lazy loading. Saves outgoing thread's state, lazy
62 * loads the incoming unless configured to agressivly load it. Interrupt
63 * handlers can ask whether they're allowed to use the FPU, and may
64 * freely trash the state if Linux thinks it has saved the thread's state
65 * already. This is a problem.
66 *
67 * - Solaris will, from what I can tell, panic if it gets an \#NM in kernel
68 * context. When switching threads, the kernel will save the state of
69 * the outgoing thread and lazy load the incoming one using CR0.TS.
70 * There are a few routines in seeblk.s which uses the SSE unit in ring-0
71 * to do stuff, HAT are among the users. The routines there will
72 * manually clear CR0.TS and save the XMM registers they use only if
73 * CR0.TS was zero upon entry. They will skip it when not, because as
74 * mentioned above, the FPU state is saved when switching away from a
75 * thread and CR0.TS set to 1, so when CR0.TS is 1 there is nothing to
76 * preserve. This is a problem if we restore CR0.TS to 1 after loading
77 * the guest state.
78 *
79 * - FreeBSD - no idea yet.
80 *
81 * - OS/2 does not allow \#NMs in kernel space IIRC. Does lazy loading,
82 * possibly also lazy saving. Interrupts must preserve the CR0.TS+EM &
83 * FPU states.
84 *
85 * Up to r107425 (2016-05-24) we would only temporarily modify CR0.TS/EM while
86 * saving and restoring the host and guest states. The motivation for this
87 * change is that we want to be able to emulate SSE instruction in ring-0 (IEM).
88 *
89 * Starting with that change, we will leave CR0.TS=EM=0 after saving the host
90 * state and only restore it once we've restore the host FPU state. This has the
91 * accidental side effect of triggering Solaris to preserve XMM registers in
92 * sseblk.s. When CR0 was changed by saving the FPU state, CPUM must now inform
93 * the VT-x (HMVMX) code about it as it caches the CR0 value in the VMCS.
94 *
95 *
96 * @section sec_cpum_logging Logging Level Assignments.
97 *
98 * Following log level assignments:
99 * - Log6 is used for FPU state management.
100 * - Log7 is used for FPU state actualization.
101 *
102 */
103
104
105/*********************************************************************************************************************************
106* Header Files *
107*********************************************************************************************************************************/
108#define LOG_GROUP LOG_GROUP_CPUM
109#include <VBox/vmm/cpum.h>
110#include <VBox/vmm/cpumdis.h>
111#include <VBox/vmm/cpumctx-v1_6.h>
112#include <VBox/vmm/pgm.h>
113#include <VBox/vmm/apic.h>
114#include <VBox/vmm/mm.h>
115#include <VBox/vmm/em.h>
116#include <VBox/vmm/iem.h>
117#include <VBox/vmm/selm.h>
118#include <VBox/vmm/dbgf.h>
119#include <VBox/vmm/hm.h>
120#include <VBox/vmm/ssm.h>
121#include "CPUMInternal.h"
122#include <VBox/vmm/vm.h>
123
124#include <VBox/param.h>
125#include <VBox/dis.h>
126#include <VBox/err.h>
127#include <VBox/log.h>
128#include <iprt/asm-amd64-x86.h>
129#include <iprt/assert.h>
130#include <iprt/cpuset.h>
131#include <iprt/mem.h>
132#include <iprt/mp.h>
133#include <iprt/string.h>
134
135
136/*********************************************************************************************************************************
137* Defined Constants And Macros *
138*********************************************************************************************************************************/
139/**
140 * This was used in the saved state up to the early life of version 14.
141 *
142 * It indicates that we may have some out-of-sync hidden segement registers.
143 * It is only relevant for raw-mode.
144 */
145#define CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID RT_BIT(12)
146
147
148/*********************************************************************************************************************************
149* Structures and Typedefs *
150*********************************************************************************************************************************/
151
152/**
153 * What kind of cpu info dump to perform.
154 */
155typedef enum CPUMDUMPTYPE
156{
157 CPUMDUMPTYPE_TERSE,
158 CPUMDUMPTYPE_DEFAULT,
159 CPUMDUMPTYPE_VERBOSE
160} CPUMDUMPTYPE;
161/** Pointer to a cpu info dump type. */
162typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
163
164
165/*********************************************************************************************************************************
166* Internal Functions *
167*********************************************************************************************************************************/
168static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
169static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
170static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
171static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
172static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
173static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
174static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
175static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
176static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
177static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
178static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
179
180
181/*********************************************************************************************************************************
182* Global Variables *
183*********************************************************************************************************************************/
184/** Saved state field descriptors for CPUMCTX. */
185static const SSMFIELD g_aCpumCtxFields[] =
186{
187 SSMFIELD_ENTRY( CPUMCTX, rdi),
188 SSMFIELD_ENTRY( CPUMCTX, rsi),
189 SSMFIELD_ENTRY( CPUMCTX, rbp),
190 SSMFIELD_ENTRY( CPUMCTX, rax),
191 SSMFIELD_ENTRY( CPUMCTX, rbx),
192 SSMFIELD_ENTRY( CPUMCTX, rdx),
193 SSMFIELD_ENTRY( CPUMCTX, rcx),
194 SSMFIELD_ENTRY( CPUMCTX, rsp),
195 SSMFIELD_ENTRY( CPUMCTX, rflags),
196 SSMFIELD_ENTRY( CPUMCTX, rip),
197 SSMFIELD_ENTRY( CPUMCTX, r8),
198 SSMFIELD_ENTRY( CPUMCTX, r9),
199 SSMFIELD_ENTRY( CPUMCTX, r10),
200 SSMFIELD_ENTRY( CPUMCTX, r11),
201 SSMFIELD_ENTRY( CPUMCTX, r12),
202 SSMFIELD_ENTRY( CPUMCTX, r13),
203 SSMFIELD_ENTRY( CPUMCTX, r14),
204 SSMFIELD_ENTRY( CPUMCTX, r15),
205 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
206 SSMFIELD_ENTRY( CPUMCTX, es.ValidSel),
207 SSMFIELD_ENTRY( CPUMCTX, es.fFlags),
208 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
209 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
210 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
211 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
212 SSMFIELD_ENTRY( CPUMCTX, cs.ValidSel),
213 SSMFIELD_ENTRY( CPUMCTX, cs.fFlags),
214 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
215 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
216 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
217 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
218 SSMFIELD_ENTRY( CPUMCTX, ss.ValidSel),
219 SSMFIELD_ENTRY( CPUMCTX, ss.fFlags),
220 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
221 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
222 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
223 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
224 SSMFIELD_ENTRY( CPUMCTX, ds.ValidSel),
225 SSMFIELD_ENTRY( CPUMCTX, ds.fFlags),
226 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
227 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
228 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
229 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
230 SSMFIELD_ENTRY( CPUMCTX, fs.ValidSel),
231 SSMFIELD_ENTRY( CPUMCTX, fs.fFlags),
232 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
233 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
234 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
235 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
236 SSMFIELD_ENTRY( CPUMCTX, gs.ValidSel),
237 SSMFIELD_ENTRY( CPUMCTX, gs.fFlags),
238 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
239 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
240 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
241 SSMFIELD_ENTRY( CPUMCTX, cr0),
242 SSMFIELD_ENTRY( CPUMCTX, cr2),
243 SSMFIELD_ENTRY( CPUMCTX, cr3),
244 SSMFIELD_ENTRY( CPUMCTX, cr4),
245 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
246 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
247 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
248 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
249 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
250 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
251 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
252 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
253 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
254 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
255 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
256 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
257 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
258 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
259 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
260 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
261 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
262 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
263 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
264 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
265 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
266 SSMFIELD_ENTRY( CPUMCTX, ldtr.ValidSel),
267 SSMFIELD_ENTRY( CPUMCTX, ldtr.fFlags),
268 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
269 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
270 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
271 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
272 SSMFIELD_ENTRY( CPUMCTX, tr.ValidSel),
273 SSMFIELD_ENTRY( CPUMCTX, tr.fFlags),
274 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
275 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
276 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
277 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[0], CPUM_SAVED_STATE_VERSION_XSAVE),
278 SSMFIELD_ENTRY_VER( CPUMCTX, aXcr[1], CPUM_SAVED_STATE_VERSION_XSAVE),
279 SSMFIELD_ENTRY_VER( CPUMCTX, fXStateMask, CPUM_SAVED_STATE_VERSION_XSAVE),
280 SSMFIELD_ENTRY_TERM()
281};
282
283/** Saved state field descriptors for SVM nested hardware-virtualization
284 * Host State. */
285static const SSMFIELD g_aSvmHwvirtHostState[] =
286{
287 SSMFIELD_ENTRY( SVMHOSTSTATE, uEferMsr),
288 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr0),
289 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr4),
290 SSMFIELD_ENTRY( SVMHOSTSTATE, uCr3),
291 SSMFIELD_ENTRY( SVMHOSTSTATE, uRip),
292 SSMFIELD_ENTRY( SVMHOSTSTATE, uRsp),
293 SSMFIELD_ENTRY( SVMHOSTSTATE, uRax),
294 SSMFIELD_ENTRY( SVMHOSTSTATE, rflags),
295 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Sel),
296 SSMFIELD_ENTRY( SVMHOSTSTATE, es.ValidSel),
297 SSMFIELD_ENTRY( SVMHOSTSTATE, es.fFlags),
298 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u64Base),
299 SSMFIELD_ENTRY( SVMHOSTSTATE, es.u32Limit),
300 SSMFIELD_ENTRY( SVMHOSTSTATE, es.Attr),
301 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Sel),
302 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.ValidSel),
303 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.fFlags),
304 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u64Base),
305 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.u32Limit),
306 SSMFIELD_ENTRY( SVMHOSTSTATE, cs.Attr),
307 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Sel),
308 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.ValidSel),
309 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.fFlags),
310 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u64Base),
311 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.u32Limit),
312 SSMFIELD_ENTRY( SVMHOSTSTATE, ss.Attr),
313 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Sel),
314 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.ValidSel),
315 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.fFlags),
316 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u64Base),
317 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.u32Limit),
318 SSMFIELD_ENTRY( SVMHOSTSTATE, ds.Attr),
319 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.cbGdt),
320 SSMFIELD_ENTRY( SVMHOSTSTATE, gdtr.pGdt),
321 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.cbIdt),
322 SSMFIELD_ENTRY( SVMHOSTSTATE, idtr.pIdt),
323 SSMFIELD_ENTRY_IGNORE(SVMHOSTSTATE, abPadding),
324 SSMFIELD_ENTRY_TERM()
325};
326
327/** Saved state field descriptors for VMX nested hardware-virtualization
328 * VMCS. */
329static const SSMFIELD g_aVmxHwvirtVmcs[] =
330{
331 SSMFIELD_ENTRY( VMXVVMCS, u32VmcsRevId),
332 SSMFIELD_ENTRY( VMXVVMCS, enmVmxAbort),
333 SSMFIELD_ENTRY( VMXVVMCS, fVmcsState),
334 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au8Padding0),
335 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved0),
336
337 SSMFIELD_ENTRY( VMXVVMCS, u16Vpid),
338 SSMFIELD_ENTRY( VMXVVMCS, u16PostIntNotifyVector),
339 SSMFIELD_ENTRY( VMXVVMCS, u16EptpIndex),
340 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved0),
341
342 SSMFIELD_ENTRY( VMXVVMCS, GuestEs),
343 SSMFIELD_ENTRY( VMXVVMCS, GuestCs),
344 SSMFIELD_ENTRY( VMXVVMCS, GuestSs),
345 SSMFIELD_ENTRY( VMXVVMCS, GuestDs),
346 SSMFIELD_ENTRY( VMXVVMCS, GuestFs),
347 SSMFIELD_ENTRY( VMXVVMCS, GuestGs),
348 SSMFIELD_ENTRY( VMXVVMCS, GuestLdtr),
349 SSMFIELD_ENTRY( VMXVVMCS, GuestTr),
350 SSMFIELD_ENTRY( VMXVVMCS, u16GuestIntStatus),
351 SSMFIELD_ENTRY( VMXVVMCS, u16PmlIndex),
352 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved1),
353
354 SSMFIELD_ENTRY( VMXVVMCS, HostEs),
355 SSMFIELD_ENTRY( VMXVVMCS, HostCs),
356 SSMFIELD_ENTRY( VMXVVMCS, HostSs),
357 SSMFIELD_ENTRY( VMXVVMCS, HostDs),
358 SSMFIELD_ENTRY( VMXVVMCS, HostFs),
359 SSMFIELD_ENTRY( VMXVVMCS, HostGs),
360 SSMFIELD_ENTRY( VMXVVMCS, HostTr),
361 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au16Reserved2),
362
363 SSMFIELD_ENTRY( VMXVVMCS, u32PinCtls),
364 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls),
365 SSMFIELD_ENTRY( VMXVVMCS, u32XcptBitmap),
366 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMask),
367 SSMFIELD_ENTRY( VMXVVMCS, u32XcptPFMatch),
368 SSMFIELD_ENTRY( VMXVVMCS, u32Cr3TargetCount),
369 SSMFIELD_ENTRY( VMXVVMCS, u32ExitCtls),
370 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrStoreCount),
371 SSMFIELD_ENTRY( VMXVVMCS, u32ExitMsrLoadCount),
372 SSMFIELD_ENTRY( VMXVVMCS, u32EntryCtls),
373 SSMFIELD_ENTRY( VMXVVMCS, u32EntryMsrLoadCount),
374 SSMFIELD_ENTRY( VMXVVMCS, u32EntryIntInfo),
375 SSMFIELD_ENTRY( VMXVVMCS, u32EntryXcptErrCode),
376 SSMFIELD_ENTRY( VMXVVMCS, u32EntryInstrLen),
377 SSMFIELD_ENTRY( VMXVVMCS, u32TprThreshold),
378 SSMFIELD_ENTRY( VMXVVMCS, u32ProcCtls2),
379 SSMFIELD_ENTRY( VMXVVMCS, u32PleGap),
380 SSMFIELD_ENTRY( VMXVVMCS, u32PleWindow),
381 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved1),
382
383 SSMFIELD_ENTRY( VMXVVMCS, u32RoVmInstrError),
384 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitReason),
385 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntInfo),
386 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitIntErrCode),
387 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringInfo),
388 SSMFIELD_ENTRY( VMXVVMCS, u32RoIdtVectoringErrCode),
389 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrLen),
390 SSMFIELD_ENTRY( VMXVVMCS, u32RoExitInstrInfo),
391 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32RoReserved2),
392
393 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsLimit),
394 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsLimit),
395 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsLimit),
396 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsLimit),
397 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsLimit),
398 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsLimit),
399 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrLimit),
400 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrLimit),
401 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGdtrLimit),
402 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIdtrLimit),
403 SSMFIELD_ENTRY( VMXVVMCS, u32GuestEsAttr),
404 SSMFIELD_ENTRY( VMXVVMCS, u32GuestCsAttr),
405 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSsAttr),
406 SSMFIELD_ENTRY( VMXVVMCS, u32GuestDsAttr),
407 SSMFIELD_ENTRY( VMXVVMCS, u32GuestFsAttr),
408 SSMFIELD_ENTRY( VMXVVMCS, u32GuestGsAttr),
409 SSMFIELD_ENTRY( VMXVVMCS, u32GuestLdtrAttr),
410 SSMFIELD_ENTRY( VMXVVMCS, u32GuestTrAttr),
411 SSMFIELD_ENTRY( VMXVVMCS, u32GuestIntrState),
412 SSMFIELD_ENTRY( VMXVVMCS, u32GuestActivityState),
413 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSmBase),
414 SSMFIELD_ENTRY( VMXVVMCS, u32GuestSysenterCS),
415 SSMFIELD_ENTRY( VMXVVMCS, u32PreemptTimer),
416 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved3),
417
418 SSMFIELD_ENTRY( VMXVVMCS, u32HostSysenterCs),
419 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au32Reserved4),
420
421 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapA),
422 SSMFIELD_ENTRY( VMXVVMCS, u64AddrIoBitmapB),
423 SSMFIELD_ENTRY( VMXVVMCS, u64AddrMsrBitmap),
424 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrStore),
425 SSMFIELD_ENTRY( VMXVVMCS, u64AddrExitMsrLoad),
426 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEntryMsrLoad),
427 SSMFIELD_ENTRY( VMXVVMCS, u64ExecVmcsPtr),
428 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPml),
429 SSMFIELD_ENTRY( VMXVVMCS, u64TscOffset),
430 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVirtApic),
431 SSMFIELD_ENTRY( VMXVVMCS, u64AddrApicAccess),
432 SSMFIELD_ENTRY( VMXVVMCS, u64AddrPostedIntDesc),
433 SSMFIELD_ENTRY( VMXVVMCS, u64VmFuncCtls),
434 SSMFIELD_ENTRY( VMXVVMCS, u64EptpPtr),
435 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap0),
436 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap1),
437 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap2),
438 SSMFIELD_ENTRY( VMXVVMCS, u64EoiExitBitmap3),
439 SSMFIELD_ENTRY( VMXVVMCS, u64AddrEptpList),
440 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmreadBitmap),
441 SSMFIELD_ENTRY( VMXVVMCS, u64AddrVmwriteBitmap),
442 SSMFIELD_ENTRY( VMXVVMCS, u64AddrXcptVeInfo),
443 SSMFIELD_ENTRY( VMXVVMCS, u64XssBitmap),
444 SSMFIELD_ENTRY( VMXVVMCS, u64EnclsBitmap),
445 SSMFIELD_ENTRY( VMXVVMCS, u64SpptPtr),
446 SSMFIELD_ENTRY( VMXVVMCS, u64TscMultiplier),
447 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved0),
448
449 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestPhysAddr),
450 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved1),
451
452 SSMFIELD_ENTRY( VMXVVMCS, u64VmcsLinkPtr),
453 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDebugCtlMsr),
454 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPatMsr),
455 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEferMsr),
456 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPerfGlobalCtlMsr),
457 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte0),
458 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte1),
459 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte2),
460 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPdpte3),
461 SSMFIELD_ENTRY( VMXVVMCS, u64GuestBndcfgsMsr),
462 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRtitCtlMsr),
463 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved2),
464
465 SSMFIELD_ENTRY( VMXVVMCS, u64HostPatMsr),
466 SSMFIELD_ENTRY( VMXVVMCS, u64HostEferMsr),
467 SSMFIELD_ENTRY( VMXVVMCS, u64HostPerfGlobalCtlMsr),
468 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved3),
469
470 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0Mask),
471 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4Mask),
472 SSMFIELD_ENTRY( VMXVVMCS, u64Cr0ReadShadow),
473 SSMFIELD_ENTRY( VMXVVMCS, u64Cr4ReadShadow),
474 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target0),
475 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target1),
476 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target2),
477 SSMFIELD_ENTRY( VMXVVMCS, u64Cr3Target3),
478 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved4),
479
480 SSMFIELD_ENTRY( VMXVVMCS, u64RoExitQual),
481 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRcx),
482 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRsi),
483 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRdi),
484 SSMFIELD_ENTRY( VMXVVMCS, u64RoIoRip),
485 SSMFIELD_ENTRY( VMXVVMCS, u64RoGuestLinearAddr),
486 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved5),
487
488 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr0),
489 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr3),
490 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCr4),
491 SSMFIELD_ENTRY( VMXVVMCS, u64GuestEsBase),
492 SSMFIELD_ENTRY( VMXVVMCS, u64GuestCsBase),
493 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSsBase),
494 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDsBase),
495 SSMFIELD_ENTRY( VMXVVMCS, u64GuestFsBase),
496 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGsBase),
497 SSMFIELD_ENTRY( VMXVVMCS, u64GuestLdtrBase),
498 SSMFIELD_ENTRY( VMXVVMCS, u64GuestTrBase),
499 SSMFIELD_ENTRY( VMXVVMCS, u64GuestGdtrBase),
500 SSMFIELD_ENTRY( VMXVVMCS, u64GuestIdtrBase),
501 SSMFIELD_ENTRY( VMXVVMCS, u64GuestDr7),
502 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRsp),
503 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRip),
504 SSMFIELD_ENTRY( VMXVVMCS, u64GuestRFlags),
505 SSMFIELD_ENTRY( VMXVVMCS, u64GuestPendingDbgXcpt),
506 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEsp),
507 SSMFIELD_ENTRY( VMXVVMCS, u64GuestSysenterEip),
508 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved6),
509
510 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr0),
511 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr3),
512 SSMFIELD_ENTRY( VMXVVMCS, u64HostCr4),
513 SSMFIELD_ENTRY( VMXVVMCS, u64HostFsBase),
514 SSMFIELD_ENTRY( VMXVVMCS, u64HostGsBase),
515 SSMFIELD_ENTRY( VMXVVMCS, u64HostTrBase),
516 SSMFIELD_ENTRY( VMXVVMCS, u64HostGdtrBase),
517 SSMFIELD_ENTRY( VMXVVMCS, u64HostIdtrBase),
518 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEsp),
519 SSMFIELD_ENTRY( VMXVVMCS, u64HostSysenterEip),
520 SSMFIELD_ENTRY( VMXVVMCS, u64HostRsp),
521 SSMFIELD_ENTRY( VMXVVMCS, u64HostRip),
522 SSMFIELD_ENTRY_IGNORE(VMXVVMCS, au64Reserved7),
523 SSMFIELD_ENTRY_TERM()
524};
525
526/** Saved state field descriptors for CPUMCTX. */
527static const SSMFIELD g_aCpumX87Fields[] =
528{
529 SSMFIELD_ENTRY( X86FXSTATE, FCW),
530 SSMFIELD_ENTRY( X86FXSTATE, FSW),
531 SSMFIELD_ENTRY( X86FXSTATE, FTW),
532 SSMFIELD_ENTRY( X86FXSTATE, FOP),
533 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
534 SSMFIELD_ENTRY( X86FXSTATE, CS),
535 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
536 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
537 SSMFIELD_ENTRY( X86FXSTATE, DS),
538 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
539 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
540 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
541 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
542 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
543 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
544 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
545 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
546 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
547 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
548 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
549 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
550 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
551 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
552 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
553 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
554 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
555 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
556 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
557 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
558 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
559 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
560 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
561 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
562 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
563 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
564 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
565 SSMFIELD_ENTRY_VER( X86FXSTATE, au32RsrvdForSoftware[0], CPUM_SAVED_STATE_VERSION_XSAVE), /* 32-bit/64-bit hack */
566 SSMFIELD_ENTRY_TERM()
567};
568
569/** Saved state field descriptors for X86XSAVEHDR. */
570static const SSMFIELD g_aCpumXSaveHdrFields[] =
571{
572 SSMFIELD_ENTRY( X86XSAVEHDR, bmXState),
573 SSMFIELD_ENTRY_TERM()
574};
575
576/** Saved state field descriptors for X86XSAVEYMMHI. */
577static const SSMFIELD g_aCpumYmmHiFields[] =
578{
579 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[0]),
580 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[1]),
581 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[2]),
582 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[3]),
583 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[4]),
584 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[5]),
585 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[6]),
586 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[7]),
587 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[8]),
588 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[9]),
589 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[10]),
590 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[11]),
591 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[12]),
592 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[13]),
593 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[14]),
594 SSMFIELD_ENTRY( X86XSAVEYMMHI, aYmmHi[15]),
595 SSMFIELD_ENTRY_TERM()
596};
597
598/** Saved state field descriptors for X86XSAVEBNDREGS. */
599static const SSMFIELD g_aCpumBndRegsFields[] =
600{
601 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[0]),
602 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[1]),
603 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[2]),
604 SSMFIELD_ENTRY( X86XSAVEBNDREGS, aRegs[3]),
605 SSMFIELD_ENTRY_TERM()
606};
607
608/** Saved state field descriptors for X86XSAVEBNDCFG. */
609static const SSMFIELD g_aCpumBndCfgFields[] =
610{
611 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fConfig),
612 SSMFIELD_ENTRY( X86XSAVEBNDCFG, fStatus),
613 SSMFIELD_ENTRY_TERM()
614};
615
616#if 0 /** @todo */
617/** Saved state field descriptors for X86XSAVEOPMASK. */
618static const SSMFIELD g_aCpumOpmaskFields[] =
619{
620 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[0]),
621 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[1]),
622 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[2]),
623 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[3]),
624 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[4]),
625 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[5]),
626 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[6]),
627 SSMFIELD_ENTRY( X86XSAVEOPMASK, aKRegs[7]),
628 SSMFIELD_ENTRY_TERM()
629};
630#endif
631
632/** Saved state field descriptors for X86XSAVEZMMHI256. */
633static const SSMFIELD g_aCpumZmmHi256Fields[] =
634{
635 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[0]),
636 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[1]),
637 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[2]),
638 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[3]),
639 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[4]),
640 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[5]),
641 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[6]),
642 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[7]),
643 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[8]),
644 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[9]),
645 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[10]),
646 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[11]),
647 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[12]),
648 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[13]),
649 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[14]),
650 SSMFIELD_ENTRY( X86XSAVEZMMHI256, aHi256Regs[15]),
651 SSMFIELD_ENTRY_TERM()
652};
653
654/** Saved state field descriptors for X86XSAVEZMM16HI. */
655static const SSMFIELD g_aCpumZmm16HiFields[] =
656{
657 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[0]),
658 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[1]),
659 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[2]),
660 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[3]),
661 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[4]),
662 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[5]),
663 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[6]),
664 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[7]),
665 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[8]),
666 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[9]),
667 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[10]),
668 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[11]),
669 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[12]),
670 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[13]),
671 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[14]),
672 SSMFIELD_ENTRY( X86XSAVEZMM16HI, aRegs[15]),
673 SSMFIELD_ENTRY_TERM()
674};
675
676
677
678/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
679 * registeres changed. */
680static const SSMFIELD g_aCpumX87FieldsMem[] =
681{
682 SSMFIELD_ENTRY( X86FXSTATE, FCW),
683 SSMFIELD_ENTRY( X86FXSTATE, FSW),
684 SSMFIELD_ENTRY( X86FXSTATE, FTW),
685 SSMFIELD_ENTRY( X86FXSTATE, FOP),
686 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
687 SSMFIELD_ENTRY( X86FXSTATE, CS),
688 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
689 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
690 SSMFIELD_ENTRY( X86FXSTATE, DS),
691 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
692 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
693 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
694 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
695 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
696 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
697 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
698 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
699 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
700 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
701 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
702 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
703 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
704 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
705 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
706 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
707 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
708 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
709 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
710 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
711 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
712 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
713 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
714 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
715 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
716 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
717 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
718 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
719 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
720};
721
722/** Saved state field descriptors for CPUMCTX in V4.1 before the hidden selector
723 * registeres changed. */
724static const SSMFIELD g_aCpumCtxFieldsMem[] =
725{
726 SSMFIELD_ENTRY( CPUMCTX, rdi),
727 SSMFIELD_ENTRY( CPUMCTX, rsi),
728 SSMFIELD_ENTRY( CPUMCTX, rbp),
729 SSMFIELD_ENTRY( CPUMCTX, rax),
730 SSMFIELD_ENTRY( CPUMCTX, rbx),
731 SSMFIELD_ENTRY( CPUMCTX, rdx),
732 SSMFIELD_ENTRY( CPUMCTX, rcx),
733 SSMFIELD_ENTRY( CPUMCTX, rsp),
734 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
735 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
736 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
737 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
738 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
739 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
740 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
741 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
742 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
743 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
744 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
745 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
746 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
747 SSMFIELD_ENTRY( CPUMCTX, rflags),
748 SSMFIELD_ENTRY( CPUMCTX, rip),
749 SSMFIELD_ENTRY( CPUMCTX, r8),
750 SSMFIELD_ENTRY( CPUMCTX, r9),
751 SSMFIELD_ENTRY( CPUMCTX, r10),
752 SSMFIELD_ENTRY( CPUMCTX, r11),
753 SSMFIELD_ENTRY( CPUMCTX, r12),
754 SSMFIELD_ENTRY( CPUMCTX, r13),
755 SSMFIELD_ENTRY( CPUMCTX, r14),
756 SSMFIELD_ENTRY( CPUMCTX, r15),
757 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
758 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
759 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
760 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
761 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
762 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
763 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
764 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
765 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
766 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
767 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
768 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
769 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
770 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
771 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
772 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
773 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
774 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
775 SSMFIELD_ENTRY( CPUMCTX, cr0),
776 SSMFIELD_ENTRY( CPUMCTX, cr2),
777 SSMFIELD_ENTRY( CPUMCTX, cr3),
778 SSMFIELD_ENTRY( CPUMCTX, cr4),
779 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
780 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
781 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
782 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
783 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
784 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
785 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
786 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
787 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
788 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
789 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
790 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
791 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
792 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
793 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
794 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
795 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
796 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
797 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
798 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
799 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
800 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
801 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
802 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
803 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
804 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
805 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
806 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
807 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
808 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
809 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
810 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
811 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
812 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
813 SSMFIELD_ENTRY_TERM()
814};
815
816/** Saved state field descriptors for CPUMCTX_VER1_6. */
817static const SSMFIELD g_aCpumX87FieldsV16[] =
818{
819 SSMFIELD_ENTRY( X86FXSTATE, FCW),
820 SSMFIELD_ENTRY( X86FXSTATE, FSW),
821 SSMFIELD_ENTRY( X86FXSTATE, FTW),
822 SSMFIELD_ENTRY( X86FXSTATE, FOP),
823 SSMFIELD_ENTRY( X86FXSTATE, FPUIP),
824 SSMFIELD_ENTRY( X86FXSTATE, CS),
825 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd1),
826 SSMFIELD_ENTRY( X86FXSTATE, FPUDP),
827 SSMFIELD_ENTRY( X86FXSTATE, DS),
828 SSMFIELD_ENTRY( X86FXSTATE, Rsrvd2),
829 SSMFIELD_ENTRY( X86FXSTATE, MXCSR),
830 SSMFIELD_ENTRY( X86FXSTATE, MXCSR_MASK),
831 SSMFIELD_ENTRY( X86FXSTATE, aRegs[0]),
832 SSMFIELD_ENTRY( X86FXSTATE, aRegs[1]),
833 SSMFIELD_ENTRY( X86FXSTATE, aRegs[2]),
834 SSMFIELD_ENTRY( X86FXSTATE, aRegs[3]),
835 SSMFIELD_ENTRY( X86FXSTATE, aRegs[4]),
836 SSMFIELD_ENTRY( X86FXSTATE, aRegs[5]),
837 SSMFIELD_ENTRY( X86FXSTATE, aRegs[6]),
838 SSMFIELD_ENTRY( X86FXSTATE, aRegs[7]),
839 SSMFIELD_ENTRY( X86FXSTATE, aXMM[0]),
840 SSMFIELD_ENTRY( X86FXSTATE, aXMM[1]),
841 SSMFIELD_ENTRY( X86FXSTATE, aXMM[2]),
842 SSMFIELD_ENTRY( X86FXSTATE, aXMM[3]),
843 SSMFIELD_ENTRY( X86FXSTATE, aXMM[4]),
844 SSMFIELD_ENTRY( X86FXSTATE, aXMM[5]),
845 SSMFIELD_ENTRY( X86FXSTATE, aXMM[6]),
846 SSMFIELD_ENTRY( X86FXSTATE, aXMM[7]),
847 SSMFIELD_ENTRY( X86FXSTATE, aXMM[8]),
848 SSMFIELD_ENTRY( X86FXSTATE, aXMM[9]),
849 SSMFIELD_ENTRY( X86FXSTATE, aXMM[10]),
850 SSMFIELD_ENTRY( X86FXSTATE, aXMM[11]),
851 SSMFIELD_ENTRY( X86FXSTATE, aXMM[12]),
852 SSMFIELD_ENTRY( X86FXSTATE, aXMM[13]),
853 SSMFIELD_ENTRY( X86FXSTATE, aXMM[14]),
854 SSMFIELD_ENTRY( X86FXSTATE, aXMM[15]),
855 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdRest),
856 SSMFIELD_ENTRY_IGNORE( X86FXSTATE, au32RsrvdForSoftware),
857 SSMFIELD_ENTRY_TERM()
858};
859
860/** Saved state field descriptors for CPUMCTX_VER1_6. */
861static const SSMFIELD g_aCpumCtxFieldsV16[] =
862{
863 SSMFIELD_ENTRY( CPUMCTX, rdi),
864 SSMFIELD_ENTRY( CPUMCTX, rsi),
865 SSMFIELD_ENTRY( CPUMCTX, rbp),
866 SSMFIELD_ENTRY( CPUMCTX, rax),
867 SSMFIELD_ENTRY( CPUMCTX, rbx),
868 SSMFIELD_ENTRY( CPUMCTX, rdx),
869 SSMFIELD_ENTRY( CPUMCTX, rcx),
870 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
871 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
872 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
873 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
874 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
875 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
876 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
877 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
878 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
879 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
880 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
881 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
882 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
883 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
884 SSMFIELD_ENTRY( CPUMCTX, rflags),
885 SSMFIELD_ENTRY( CPUMCTX, rip),
886 SSMFIELD_ENTRY( CPUMCTX, r8),
887 SSMFIELD_ENTRY( CPUMCTX, r9),
888 SSMFIELD_ENTRY( CPUMCTX, r10),
889 SSMFIELD_ENTRY( CPUMCTX, r11),
890 SSMFIELD_ENTRY( CPUMCTX, r12),
891 SSMFIELD_ENTRY( CPUMCTX, r13),
892 SSMFIELD_ENTRY( CPUMCTX, r14),
893 SSMFIELD_ENTRY( CPUMCTX, r15),
894 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
895 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
896 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
897 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
898 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
899 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
900 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
901 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
902 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
903 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
904 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
905 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
906 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
907 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
908 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
909 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
910 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
911 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
912 SSMFIELD_ENTRY( CPUMCTX, cr0),
913 SSMFIELD_ENTRY( CPUMCTX, cr2),
914 SSMFIELD_ENTRY( CPUMCTX, cr3),
915 SSMFIELD_ENTRY( CPUMCTX, cr4),
916 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
917 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
918 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
919 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
920 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
921 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
922 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
923 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
924 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
925 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
926 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
927 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
928 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
929 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
930 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
931 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
932 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
933 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
934 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
935 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
936 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
937 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
938 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
939 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
940 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
941 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
942 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
943 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
944 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
945 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
946 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
947 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
948 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
949 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
950 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
951 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
952 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
953 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
954 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
955 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
956 SSMFIELD_ENTRY_TERM()
957};
958
959
960/**
961 * Checks for partial/leaky FXSAVE/FXRSTOR handling on AMD CPUs.
962 *
963 * AMD K7, K8 and newer AMD CPUs do not save/restore the x87 error pointers
964 * (last instruction pointer, last data pointer, last opcode) except when the ES
965 * bit (Exception Summary) in x87 FSW (FPU Status Word) is set. Thus if we don't
966 * clear these registers there is potential, local FPU leakage from a process
967 * using the FPU to another.
968 *
969 * See AMD Instruction Reference for FXSAVE, FXRSTOR.
970 *
971 * @param pVM The cross context VM structure.
972 */
973static void cpumR3CheckLeakyFpu(PVM pVM)
974{
975 uint32_t u32CpuVersion = ASMCpuId_EAX(1);
976 uint32_t const u32Family = u32CpuVersion >> 8;
977 if ( u32Family >= 6 /* K7 and higher */
978 && ASMIsAmdCpu())
979 {
980 uint32_t cExt = ASMCpuId_EAX(0x80000000);
981 if (ASMIsValidExtRange(cExt))
982 {
983 uint32_t fExtFeaturesEDX = ASMCpuId_EDX(0x80000001);
984 if (fExtFeaturesEDX & X86_CPUID_AMD_FEATURE_EDX_FFXSR)
985 {
986 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
987 {
988 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
989 pVCpu->cpum.s.fUseFlags |= CPUM_USE_FFXSR_LEAKY;
990 }
991 Log(("CPUM: Host CPU has leaky fxsave/fxrstor behaviour\n"));
992 }
993 }
994 }
995}
996
997
998/**
999 * Frees memory allocated for the SVM hardware virtualization state.
1000 *
1001 * @param pVM The cross context VM structure.
1002 */
1003static void cpumR3FreeSvmHwVirtState(PVM pVM)
1004{
1005 Assert(pVM->cpum.s.GuestFeatures.fSvm);
1006 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1007 {
1008 PVMCPU pVCpu = pVM->apCpusR3[i];
1009 if (pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3)
1010 {
1011 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES);
1012 pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3 = NULL;
1013 }
1014 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = NIL_RTHCPHYS;
1015
1016 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3)
1017 {
1018 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES);
1019 pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3 = NULL;
1020 }
1021
1022 if (pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3)
1023 {
1024 SUPR3PageFreeEx(pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES);
1025 pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3 = NULL;
1026 }
1027 }
1028}
1029
1030
1031/**
1032 * Allocates memory for the SVM hardware virtualization state.
1033 *
1034 * @returns VBox status code.
1035 * @param pVM The cross context VM structure.
1036 */
1037static int cpumR3AllocSvmHwVirtState(PVM pVM)
1038{
1039 Assert(pVM->cpum.s.GuestFeatures.fSvm);
1040
1041 int rc = VINF_SUCCESS;
1042 LogRel(("CPUM: Allocating %u pages for the nested-guest SVM MSR and IO permission bitmaps\n",
1043 pVM->cCpus * (SVM_MSRPM_PAGES + SVM_IOPM_PAGES)));
1044 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1045 {
1046 PVMCPU pVCpu = pVM->apCpusR3[i];
1047 pVCpu->cpum.s.Guest.hwvirt.enmHwvirt = CPUMHWVIRT_SVM;
1048
1049 /*
1050 * Allocate the nested-guest VMCB.
1051 */
1052 SUPPAGE SupNstGstVmcbPage;
1053 RT_ZERO(SupNstGstVmcbPage);
1054 SupNstGstVmcbPage.Phys = NIL_RTHCPHYS;
1055 Assert(SVM_VMCB_PAGES == 1);
1056 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
1057 rc = SUPR3PageAllocEx(SVM_VMCB_PAGES, 0 /* fFlags */, (void **)&pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3,
1058 &pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR0, &SupNstGstVmcbPage);
1059 if (RT_FAILURE(rc))
1060 {
1061 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pVmcbR3);
1062 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCB\n", pVCpu->idCpu, SVM_VMCB_PAGES));
1063 break;
1064 }
1065 pVCpu->cpum.s.Guest.hwvirt.svm.HCPhysVmcb = SupNstGstVmcbPage.Phys;
1066
1067 /*
1068 * Allocate the MSRPM (MSR Permission bitmap).
1069 */
1070 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
1071 rc = SUPR3PageAllocEx(SVM_MSRPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3,
1072 &pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR0, NULL /* paPages */);
1073 if (RT_FAILURE(rc))
1074 {
1075 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvMsrBitmapR3);
1076 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR permission bitmap\n", pVCpu->idCpu,
1077 SVM_MSRPM_PAGES));
1078 break;
1079 }
1080
1081 /*
1082 * Allocate the IOPM (IO Permission bitmap).
1083 */
1084 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
1085 rc = SUPR3PageAllocEx(SVM_IOPM_PAGES, 0 /* fFlags */, &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3,
1086 &pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR0, NULL /* paPages */);
1087 if (RT_FAILURE(rc))
1088 {
1089 Assert(!pVCpu->cpum.s.Guest.hwvirt.svm.pvIoBitmapR3);
1090 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's IO permission bitmap\n", pVCpu->idCpu,
1091 SVM_IOPM_PAGES));
1092 break;
1093 }
1094 }
1095
1096 /* On any failure, cleanup. */
1097 if (RT_FAILURE(rc))
1098 cpumR3FreeSvmHwVirtState(pVM);
1099
1100 return rc;
1101}
1102
1103
1104/**
1105 * Resets per-VCPU SVM hardware virtualization state.
1106 *
1107 * @param pVCpu The cross context virtual CPU structure.
1108 */
1109DECLINLINE(void) cpumR3ResetSvmHwVirtState(PVMCPU pVCpu)
1110{
1111 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1112 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_SVM);
1113 Assert(pCtx->hwvirt.svm.CTX_SUFF(pVmcb));
1114
1115 memset(pCtx->hwvirt.svm.CTX_SUFF(pVmcb), 0, SVM_VMCB_PAGES << PAGE_SHIFT);
1116 pCtx->hwvirt.svm.uMsrHSavePa = 0;
1117 pCtx->hwvirt.svm.uPrevPauseTick = 0;
1118}
1119
1120
1121/**
1122 * Frees memory allocated for the VMX hardware virtualization state.
1123 *
1124 * @param pVM The cross context VM structure.
1125 */
1126static void cpumR3FreeVmxHwVirtState(PVM pVM)
1127{
1128 Assert(pVM->cpum.s.GuestFeatures.fVmx);
1129 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1130 {
1131 PVMCPU pVCpu = pVM->apCpusR3[i];
1132 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1133
1134 if (pCtx->hwvirt.vmx.pVmcsR3)
1135 {
1136 SUPR3ContFree(pCtx->hwvirt.vmx.pVmcsR3, VMX_V_VMCS_PAGES);
1137 pCtx->hwvirt.vmx.pVmcsR3 = NULL;
1138 }
1139 if (pCtx->hwvirt.vmx.pShadowVmcsR3)
1140 {
1141 SUPR3ContFree(pCtx->hwvirt.vmx.pShadowVmcsR3, VMX_V_VMCS_PAGES);
1142 pCtx->hwvirt.vmx.pShadowVmcsR3 = NULL;
1143 }
1144 if (pCtx->hwvirt.vmx.pvVirtApicPageR3)
1145 {
1146 SUPR3ContFree(pCtx->hwvirt.vmx.pvVirtApicPageR3, VMX_V_VIRT_APIC_PAGES);
1147 pCtx->hwvirt.vmx.pvVirtApicPageR3 = NULL;
1148 }
1149 if (pCtx->hwvirt.vmx.pvVmreadBitmapR3)
1150 {
1151 SUPR3ContFree(pCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
1152 pCtx->hwvirt.vmx.pvVmreadBitmapR3 = NULL;
1153 }
1154 if (pCtx->hwvirt.vmx.pvVmwriteBitmapR3)
1155 {
1156 SUPR3ContFree(pCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_PAGES);
1157 pCtx->hwvirt.vmx.pvVmwriteBitmapR3 = NULL;
1158 }
1159 if (pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3)
1160 {
1161 SUPR3ContFree(pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1162 pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3 = NULL;
1163 }
1164 if (pCtx->hwvirt.vmx.pExitMsrStoreAreaR3)
1165 {
1166 SUPR3ContFree(pCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1167 pCtx->hwvirt.vmx.pExitMsrStoreAreaR3 = NULL;
1168 }
1169 if (pCtx->hwvirt.vmx.pExitMsrLoadAreaR3)
1170 {
1171 SUPR3ContFree(pCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_PAGES);
1172 pCtx->hwvirt.vmx.pExitMsrLoadAreaR3 = NULL;
1173 }
1174 if (pCtx->hwvirt.vmx.pvMsrBitmapR3)
1175 {
1176 SUPR3ContFree(pCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_PAGES);
1177 pCtx->hwvirt.vmx.pvMsrBitmapR3 = NULL;
1178 }
1179 if (pCtx->hwvirt.vmx.pvIoBitmapR3)
1180 {
1181 SUPR3ContFree(pCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
1182 pCtx->hwvirt.vmx.pvIoBitmapR3 = NULL;
1183 }
1184 }
1185}
1186
1187
1188/**
1189 * Allocates memory for the VMX hardware virtualization state.
1190 *
1191 * @returns VBox status code.
1192 * @param pVM The cross context VM structure.
1193 */
1194static int cpumR3AllocVmxHwVirtState(PVM pVM)
1195{
1196 int rc = VINF_SUCCESS;
1197 uint32_t const cPages = VMX_V_VMCS_PAGES
1198 + VMX_V_SHADOW_VMCS_PAGES
1199 + VMX_V_VIRT_APIC_PAGES
1200 + (2 * VMX_V_VMREAD_VMWRITE_BITMAP_PAGES)
1201 + (3 * VMX_V_AUTOMSR_AREA_PAGES)
1202 + VMX_V_MSR_BITMAP_PAGES
1203 + (VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES);
1204 LogRel(("CPUM: Allocating %u pages for the nested-guest VMCS and related structures\n", pVM->cCpus * cPages));
1205 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1206 {
1207 PVMCPU pVCpu = pVM->apCpusR3[i];
1208 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1209 pCtx->hwvirt.enmHwvirt = CPUMHWVIRT_VMX;
1210
1211 /*
1212 * Allocate the nested-guest current VMCS.
1213 */
1214 pCtx->hwvirt.vmx.pVmcsR3 = (PVMXVVMCS)SUPR3ContAlloc(VMX_V_VMCS_PAGES,
1215 &pCtx->hwvirt.vmx.pVmcsR0,
1216 &pCtx->hwvirt.vmx.HCPhysVmcs);
1217 if (pCtx->hwvirt.vmx.pVmcsR3)
1218 { /* likely */ }
1219 else
1220 {
1221 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1222 break;
1223 }
1224
1225 /*
1226 * Allocate the nested-guest shadow VMCS.
1227 */
1228 pCtx->hwvirt.vmx.pShadowVmcsR3 = (PVMXVVMCS)SUPR3ContAlloc(VMX_V_VMCS_PAGES,
1229 &pCtx->hwvirt.vmx.pShadowVmcsR0,
1230 &pCtx->hwvirt.vmx.HCPhysShadowVmcs);
1231 if (pCtx->hwvirt.vmx.pShadowVmcsR3)
1232 { /* likely */ }
1233 else
1234 {
1235 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's shadow VMCS\n", pVCpu->idCpu, VMX_V_VMCS_PAGES));
1236 break;
1237 }
1238
1239 /*
1240 * Allocate the virtual-APIC page.
1241 */
1242 pCtx->hwvirt.vmx.pvVirtApicPageR3 = SUPR3ContAlloc(VMX_V_VIRT_APIC_PAGES,
1243 &pCtx->hwvirt.vmx.pvVirtApicPageR0,
1244 &pCtx->hwvirt.vmx.HCPhysVirtApicPage);
1245 if (pCtx->hwvirt.vmx.pvVirtApicPageR3)
1246 { /* likely */ }
1247 else
1248 {
1249 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's virtual-APIC page\n", pVCpu->idCpu,
1250 VMX_V_VIRT_APIC_PAGES));
1251 break;
1252 }
1253
1254 /*
1255 * Allocate the VMREAD-bitmap.
1256 */
1257 pCtx->hwvirt.vmx.pvVmreadBitmapR3 = SUPR3ContAlloc(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES,
1258 &pCtx->hwvirt.vmx.pvVmreadBitmapR0,
1259 &pCtx->hwvirt.vmx.HCPhysVmreadBitmap);
1260 if (pCtx->hwvirt.vmx.pvVmreadBitmapR3)
1261 { /* likely */ }
1262 else
1263 {
1264 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMREAD-bitmap\n", pVCpu->idCpu,
1265 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1266 break;
1267 }
1268
1269 /*
1270 * Allocatge the VMWRITE-bitmap.
1271 */
1272 pCtx->hwvirt.vmx.pvVmwriteBitmapR3 = SUPR3ContAlloc(VMX_V_VMREAD_VMWRITE_BITMAP_PAGES,
1273 &pCtx->hwvirt.vmx.pvVmwriteBitmapR0,
1274 &pCtx->hwvirt.vmx.HCPhysVmwriteBitmap);
1275 if (pCtx->hwvirt.vmx.pvVmwriteBitmapR3)
1276 { /* likely */ }
1277 else
1278 {
1279 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VMWRITE-bitmap\n", pVCpu->idCpu,
1280 VMX_V_VMREAD_VMWRITE_BITMAP_PAGES));
1281 break;
1282 }
1283
1284 /*
1285 * Allocate the VM-entry MSR-load area.
1286 */
1287 pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1288 &pCtx->hwvirt.vmx.pEntryMsrLoadAreaR0,
1289 &pCtx->hwvirt.vmx.HCPhysEntryMsrLoadArea);
1290 if (pCtx->hwvirt.vmx.pEntryMsrLoadAreaR3)
1291 { /* likely */ }
1292 else
1293 {
1294 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-entry MSR-load area\n", pVCpu->idCpu,
1295 VMX_V_AUTOMSR_AREA_PAGES));
1296 break;
1297 }
1298
1299 /*
1300 * Allocate the VM-exit MSR-store area.
1301 */
1302 pCtx->hwvirt.vmx.pExitMsrStoreAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1303 &pCtx->hwvirt.vmx.pExitMsrStoreAreaR0,
1304 &pCtx->hwvirt.vmx.HCPhysExitMsrStoreArea);
1305 if (pCtx->hwvirt.vmx.pExitMsrStoreAreaR3)
1306 { /* likely */ }
1307 else
1308 {
1309 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-exit MSR-store area\n", pVCpu->idCpu,
1310 VMX_V_AUTOMSR_AREA_PAGES));
1311 break;
1312 }
1313
1314 /*
1315 * Allocate the VM-exit MSR-load area.
1316 */
1317 pCtx->hwvirt.vmx.pExitMsrLoadAreaR3 = (PVMXAUTOMSR)SUPR3ContAlloc(VMX_V_AUTOMSR_AREA_PAGES,
1318 &pCtx->hwvirt.vmx.pExitMsrLoadAreaR0,
1319 &pCtx->hwvirt.vmx.HCPhysExitMsrLoadArea);
1320 if (pCtx->hwvirt.vmx.pExitMsrLoadAreaR3)
1321 { /* likely */ }
1322 else
1323 {
1324 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's VM-exit MSR-load area\n", pVCpu->idCpu,
1325 VMX_V_AUTOMSR_AREA_PAGES));
1326 break;
1327 }
1328
1329 /*
1330 * Allocate the MSR bitmap.
1331 */
1332 pCtx->hwvirt.vmx.pvMsrBitmapR3 = SUPR3ContAlloc(VMX_V_MSR_BITMAP_PAGES,
1333 &pCtx->hwvirt.vmx.pvMsrBitmapR0,
1334 &pCtx->hwvirt.vmx.HCPhysMsrBitmap);
1335 if (pCtx->hwvirt.vmx.pvMsrBitmapR3)
1336 { /* likely */ }
1337 else
1338 {
1339 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's MSR bitmap\n", pVCpu->idCpu,
1340 VMX_V_MSR_BITMAP_PAGES));
1341 break;
1342 }
1343
1344 /*
1345 * Allocate the I/O bitmaps (A and B).
1346 */
1347 pCtx->hwvirt.vmx.pvIoBitmapR3 = SUPR3ContAlloc(VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES,
1348 &pCtx->hwvirt.vmx.pvIoBitmapR0,
1349 &pCtx->hwvirt.vmx.HCPhysIoBitmap);
1350 if (pCtx->hwvirt.vmx.pvIoBitmapR3)
1351 { /* likely */ }
1352 else
1353 {
1354 LogRel(("CPUM%u: Failed to alloc %u pages for the nested-guest's I/O bitmaps\n", pVCpu->idCpu,
1355 VMX_V_IO_BITMAP_A_PAGES + VMX_V_IO_BITMAP_B_PAGES));
1356 break;
1357 }
1358
1359 /*
1360 * Zero out all allocated pages (should compress well for saved-state).
1361 */
1362 memset(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs), 0, VMX_V_VMCS_SIZE);
1363 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_SHADOW_VMCS_SIZE);
1364 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVirtApicPage), 0, VMX_V_VIRT_APIC_SIZE);
1365 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVmreadBitmap), 0, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1366 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvVmwriteBitmap), 0, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
1367 memset(pCtx->hwvirt.vmx.CTX_SUFF(pEntryMsrLoadArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1368 memset(pCtx->hwvirt.vmx.CTX_SUFF(pExitMsrStoreArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1369 memset(pCtx->hwvirt.vmx.CTX_SUFF(pExitMsrLoadArea), 0, VMX_V_AUTOMSR_AREA_SIZE);
1370 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvMsrBitmap), 0, VMX_V_MSR_BITMAP_SIZE);
1371 memset(pCtx->hwvirt.vmx.CTX_SUFF(pvIoBitmap), 0, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
1372 }
1373
1374 /* On any failure, cleanup. */
1375 if (RT_FAILURE(rc))
1376 cpumR3FreeVmxHwVirtState(pVM);
1377
1378 return rc;
1379}
1380
1381
1382/**
1383 * Resets per-VCPU VMX hardware virtualization state.
1384 *
1385 * @param pVCpu The cross context virtual CPU structure.
1386 */
1387DECLINLINE(void) cpumR3ResetVmxHwVirtState(PVMCPU pVCpu)
1388{
1389 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
1390 Assert(pCtx->hwvirt.enmHwvirt == CPUMHWVIRT_VMX);
1391 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
1392 Assert(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs));
1393
1394 memset(pCtx->hwvirt.vmx.CTX_SUFF(pVmcs), 0, VMX_V_VMCS_SIZE);
1395 memset(pCtx->hwvirt.vmx.CTX_SUFF(pShadowVmcs), 0, VMX_V_SHADOW_VMCS_SIZE);
1396 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1397 pCtx->hwvirt.vmx.GCPhysShadowVmcs = NIL_RTGCPHYS;
1398 pCtx->hwvirt.vmx.GCPhysVmxon = NIL_RTGCPHYS;
1399 pCtx->hwvirt.vmx.fInVmxRootMode = false;
1400 pCtx->hwvirt.vmx.fInVmxNonRootMode = false;
1401 /* Don't reset diagnostics here. */
1402}
1403
1404
1405/**
1406 * Displays the host and guest VMX features.
1407 *
1408 * @param pVM The cross context VM structure.
1409 * @param pHlp The info helper functions.
1410 * @param pszArgs "terse", "default" or "verbose".
1411 */
1412DECLCALLBACK(void) cpumR3InfoVmxFeatures(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
1413{
1414 RT_NOREF(pszArgs);
1415 PCCPUMFEATURES pHostFeatures = &pVM->cpum.s.HostFeatures;
1416 PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
1417 if ( pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_INTEL
1418 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_VIA
1419 || pHostFeatures->enmCpuVendor == CPUMCPUVENDOR_SHANGHAI)
1420 {
1421#define VMXFEATDUMP(a_szDesc, a_Var) \
1422 pHlp->pfnPrintf(pHlp, " %s = %u (%u)\n", a_szDesc, pGuestFeatures->a_Var, pHostFeatures->a_Var)
1423
1424 pHlp->pfnPrintf(pHlp, "Nested hardware virtualization - VMX features\n");
1425 pHlp->pfnPrintf(pHlp, " Mnemonic - Description = guest (host)\n");
1426 VMXFEATDUMP("VMX - Virtual-Machine Extensions ", fVmx);
1427 /* Basic. */
1428 VMXFEATDUMP("InsOutInfo - INS/OUTS instruction info. ", fVmxInsOutInfo);
1429 /* Pin-based controls. */
1430 VMXFEATDUMP("ExtIntExit - External interrupt exiting ", fVmxExtIntExit);
1431 VMXFEATDUMP("NmiExit - NMI exiting ", fVmxNmiExit);
1432 VMXFEATDUMP("VirtNmi - Virtual NMIs ", fVmxVirtNmi);
1433 VMXFEATDUMP("PreemptTimer - VMX preemption timer ", fVmxPreemptTimer);
1434 VMXFEATDUMP("PostedInt - Posted interrupts ", fVmxPostedInt);
1435 /* Processor-based controls. */
1436 VMXFEATDUMP("IntWindowExit - Interrupt-window exiting ", fVmxIntWindowExit);
1437 VMXFEATDUMP("TscOffsetting - TSC offsetting ", fVmxTscOffsetting);
1438 VMXFEATDUMP("HltExit - HLT exiting ", fVmxHltExit);
1439 VMXFEATDUMP("InvlpgExit - INVLPG exiting ", fVmxInvlpgExit);
1440 VMXFEATDUMP("MwaitExit - MWAIT exiting ", fVmxMwaitExit);
1441 VMXFEATDUMP("RdpmcExit - RDPMC exiting ", fVmxRdpmcExit);
1442 VMXFEATDUMP("RdtscExit - RDTSC exiting ", fVmxRdtscExit);
1443 VMXFEATDUMP("Cr3LoadExit - CR3-load exiting ", fVmxCr3LoadExit);
1444 VMXFEATDUMP("Cr3StoreExit - CR3-store exiting ", fVmxCr3StoreExit);
1445 VMXFEATDUMP("Cr8LoadExit - CR8-load exiting ", fVmxCr8LoadExit);
1446 VMXFEATDUMP("Cr8StoreExit - CR8-store exiting ", fVmxCr8StoreExit);
1447 VMXFEATDUMP("UseTprShadow - Use TPR shadow ", fVmxUseTprShadow);
1448 VMXFEATDUMP("NmiWindowExit - NMI-window exiting ", fVmxNmiWindowExit);
1449 VMXFEATDUMP("MovDRxExit - Mov-DR exiting ", fVmxMovDRxExit);
1450 VMXFEATDUMP("UncondIoExit - Unconditional I/O exiting ", fVmxUncondIoExit);
1451 VMXFEATDUMP("UseIoBitmaps - Use I/O bitmaps ", fVmxUseIoBitmaps);
1452 VMXFEATDUMP("MonitorTrapFlag - Monitor Trap Flag ", fVmxMonitorTrapFlag);
1453 VMXFEATDUMP("UseMsrBitmaps - MSR bitmaps ", fVmxUseMsrBitmaps);
1454 VMXFEATDUMP("MonitorExit - MONITOR exiting ", fVmxMonitorExit);
1455 VMXFEATDUMP("PauseExit - PAUSE exiting ", fVmxPauseExit);
1456 VMXFEATDUMP("SecondaryExecCtl - Activate secondary controls ", fVmxSecondaryExecCtls);
1457 /* Secondary processor-based controls. */
1458 VMXFEATDUMP("VirtApic - Virtualize-APIC accesses ", fVmxVirtApicAccess);
1459 VMXFEATDUMP("Ept - Extended Page Tables ", fVmxEpt);
1460 VMXFEATDUMP("DescTableExit - Descriptor-table exiting ", fVmxDescTableExit);
1461 VMXFEATDUMP("Rdtscp - Enable RDTSCP ", fVmxRdtscp);
1462 VMXFEATDUMP("VirtX2ApicMode - Virtualize-x2APIC mode ", fVmxVirtX2ApicMode);
1463 VMXFEATDUMP("Vpid - Enable VPID ", fVmxVpid);
1464 VMXFEATDUMP("WbinvdExit - WBINVD exiting ", fVmxWbinvdExit);
1465 VMXFEATDUMP("UnrestrictedGuest - Unrestricted guest ", fVmxUnrestrictedGuest);
1466 VMXFEATDUMP("ApicRegVirt - APIC-register virtualization ", fVmxApicRegVirt);
1467 VMXFEATDUMP("VirtIntDelivery - Virtual-interrupt delivery ", fVmxVirtIntDelivery);
1468 VMXFEATDUMP("PauseLoopExit - PAUSE-loop exiting ", fVmxPauseLoopExit);
1469 VMXFEATDUMP("RdrandExit - RDRAND exiting ", fVmxRdrandExit);
1470 VMXFEATDUMP("Invpcid - Enable INVPCID ", fVmxInvpcid);
1471 VMXFEATDUMP("VmFuncs - Enable VM Functions ", fVmxVmFunc);
1472 VMXFEATDUMP("VmcsShadowing - VMCS shadowing ", fVmxVmcsShadowing);
1473 VMXFEATDUMP("RdseedExiting - RDSEED exiting ", fVmxRdseedExit);
1474 VMXFEATDUMP("PML - Page-Modification Log (PML) ", fVmxPml);
1475 VMXFEATDUMP("EptVe - EPT violations can cause #VE ", fVmxEptXcptVe);
1476 VMXFEATDUMP("XsavesXRstors - Enable XSAVES/XRSTORS ", fVmxXsavesXrstors);
1477 /* VM-entry controls. */
1478 VMXFEATDUMP("EntryLoadDebugCtls - Load debug controls on VM-entry ", fVmxEntryLoadDebugCtls);
1479 VMXFEATDUMP("Ia32eModeGuest - IA-32e mode guest ", fVmxIa32eModeGuest);
1480 VMXFEATDUMP("EntryLoadEferMsr - Load IA32_EFER MSR on VM-entry ", fVmxEntryLoadEferMsr);
1481 VMXFEATDUMP("EntryLoadPatMsr - Load IA32_PAT MSR on VM-entry ", fVmxEntryLoadPatMsr);
1482 /* VM-exit controls. */
1483 VMXFEATDUMP("ExitSaveDebugCtls - Save debug controls on VM-exit ", fVmxExitSaveDebugCtls);
1484 VMXFEATDUMP("HostAddrSpaceSize - Host address-space size ", fVmxHostAddrSpaceSize);
1485 VMXFEATDUMP("ExitAckExtInt - Acknowledge interrupt on VM-exit ", fVmxExitAckExtInt);
1486 VMXFEATDUMP("ExitSavePatMsr - Save IA32_PAT MSR on VM-exit ", fVmxExitSavePatMsr);
1487 VMXFEATDUMP("ExitLoadPatMsr - Load IA32_PAT MSR on VM-exit ", fVmxExitLoadPatMsr);
1488 VMXFEATDUMP("ExitSaveEferMsr - Save IA32_EFER MSR on VM-exit ", fVmxExitSaveEferMsr);
1489 VMXFEATDUMP("ExitLoadEferMsr - Load IA32_EFER MSR on VM-exit ", fVmxExitLoadEferMsr);
1490 VMXFEATDUMP("SavePreemptTimer - Save VMX-preemption timer ", fVmxSavePreemptTimer);
1491 /* Miscellaneous data. */
1492 VMXFEATDUMP("ExitSaveEferLma - Save IA32_EFER.LMA on VM-exit ", fVmxExitSaveEferLma);
1493 VMXFEATDUMP("IntelPt - Intel PT (Processor Trace) in VMX operation ", fVmxIntelPt);
1494 VMXFEATDUMP("VmwriteAll - VMWRITE to any supported VMCS field ", fVmxVmwriteAll);
1495 VMXFEATDUMP("EntryInjectSoftInt - Inject softint. with 0-len instr. ", fVmxEntryInjectSoftInt);
1496#undef VMXFEATDUMP
1497 }
1498 else
1499 pHlp->pfnPrintf(pHlp, "No VMX features present - requires an Intel or compatible CPU.\n");
1500}
1501
1502
1503/**
1504 * Checks whether nested-guest execution using hardware-assisted VMX (e.g, using HM
1505 * or NEM) is allowed.
1506 *
1507 * @returns @c true if hardware-assisted nested-guest execution is allowed, @c false
1508 * otherwise.
1509 * @param pVM The cross context VM structure.
1510 */
1511static bool cpumR3IsHwAssistNstGstExecAllowed(PVM pVM)
1512{
1513 AssertMsg(pVM->bMainExecutionEngine != VM_EXEC_ENGINE_NOT_SET, ("Calling this function too early!\n"));
1514#ifndef VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM
1515 if ( pVM->bMainExecutionEngine == VM_EXEC_ENGINE_HW_VIRT
1516 || pVM->bMainExecutionEngine == VM_EXEC_ENGINE_NATIVE_API)
1517 return true;
1518#else
1519 NOREF(pVM);
1520#endif
1521 return false;
1522}
1523
1524
1525/**
1526 * Initializes the VMX guest MSRs from guest CPU features based on the host MSRs.
1527 *
1528 * @param pVM The cross context VM structure.
1529 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1530 * and no hardware-assisted nested-guest execution is
1531 * possible for this VM.
1532 * @param pGuestFeatures The guest features to use (only VMX features are
1533 * accessed).
1534 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1535 *
1536 * @remarks This function ASSUMES the VMX guest-features are already exploded!
1537 */
1538static void cpumR3InitVmxGuestMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PCCPUMFEATURES pGuestFeatures, PVMXMSRS pGuestVmxMsrs)
1539{
1540 bool const fIsNstGstHwExecAllowed = cpumR3IsHwAssistNstGstExecAllowed(pVM);
1541
1542 Assert(!fIsNstGstHwExecAllowed || pHostVmxMsrs);
1543 Assert(pGuestFeatures->fVmx);
1544
1545 /*
1546 * We don't support the following MSRs yet:
1547 * - True Pin-based VM-execution controls.
1548 * - True Processor-based VM-execution controls.
1549 * - True VM-entry VM-execution controls.
1550 * - True VM-exit VM-execution controls.
1551 */
1552
1553 /* Feature control. */
1554 pGuestVmxMsrs->u64FeatCtrl = MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON;
1555
1556 /* Basic information. */
1557 {
1558 uint64_t const u64Basic = RT_BF_MAKE(VMX_BF_BASIC_VMCS_ID, VMX_V_VMCS_REVISION_ID )
1559 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_SIZE, VMX_V_VMCS_SIZE )
1560 | RT_BF_MAKE(VMX_BF_BASIC_PHYSADDR_WIDTH, !pGuestFeatures->fLongMode )
1561 | RT_BF_MAKE(VMX_BF_BASIC_DUAL_MON, 0 )
1562 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_MEM_TYPE, VMX_BASIC_MEM_TYPE_WB )
1563 | RT_BF_MAKE(VMX_BF_BASIC_VMCS_INS_OUTS, pGuestFeatures->fVmxInsOutInfo)
1564 | RT_BF_MAKE(VMX_BF_BASIC_TRUE_CTLS, 0 );
1565 pGuestVmxMsrs->u64Basic = u64Basic;
1566 }
1567
1568 /* Pin-based VM-execution controls. */
1569 {
1570 uint32_t const fFeatures = (pGuestFeatures->fVmxExtIntExit << VMX_BF_PIN_CTLS_EXT_INT_EXIT_SHIFT )
1571 | (pGuestFeatures->fVmxNmiExit << VMX_BF_PIN_CTLS_NMI_EXIT_SHIFT )
1572 | (pGuestFeatures->fVmxVirtNmi << VMX_BF_PIN_CTLS_VIRT_NMI_SHIFT )
1573 | (pGuestFeatures->fVmxPreemptTimer << VMX_BF_PIN_CTLS_PREEMPT_TIMER_SHIFT)
1574 | (pGuestFeatures->fVmxPostedInt << VMX_BF_PIN_CTLS_POSTED_INT_SHIFT );
1575 uint32_t const fAllowed0 = VMX_PIN_CTLS_DEFAULT1;
1576 uint32_t const fAllowed1 = fFeatures | VMX_PIN_CTLS_DEFAULT1;
1577 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n",
1578 fAllowed0, fAllowed1, fFeatures));
1579 pGuestVmxMsrs->PinCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1580 }
1581
1582 /* Processor-based VM-execution controls. */
1583 {
1584 uint32_t const fFeatures = (pGuestFeatures->fVmxIntWindowExit << VMX_BF_PROC_CTLS_INT_WINDOW_EXIT_SHIFT )
1585 | (pGuestFeatures->fVmxTscOffsetting << VMX_BF_PROC_CTLS_USE_TSC_OFFSETTING_SHIFT)
1586 | (pGuestFeatures->fVmxHltExit << VMX_BF_PROC_CTLS_HLT_EXIT_SHIFT )
1587 | (pGuestFeatures->fVmxInvlpgExit << VMX_BF_PROC_CTLS_INVLPG_EXIT_SHIFT )
1588 | (pGuestFeatures->fVmxMwaitExit << VMX_BF_PROC_CTLS_MWAIT_EXIT_SHIFT )
1589 | (pGuestFeatures->fVmxRdpmcExit << VMX_BF_PROC_CTLS_RDPMC_EXIT_SHIFT )
1590 | (pGuestFeatures->fVmxRdtscExit << VMX_BF_PROC_CTLS_RDTSC_EXIT_SHIFT )
1591 | (pGuestFeatures->fVmxCr3LoadExit << VMX_BF_PROC_CTLS_CR3_LOAD_EXIT_SHIFT )
1592 | (pGuestFeatures->fVmxCr3StoreExit << VMX_BF_PROC_CTLS_CR3_STORE_EXIT_SHIFT )
1593 | (pGuestFeatures->fVmxCr8LoadExit << VMX_BF_PROC_CTLS_CR8_LOAD_EXIT_SHIFT )
1594 | (pGuestFeatures->fVmxCr8StoreExit << VMX_BF_PROC_CTLS_CR8_STORE_EXIT_SHIFT )
1595 | (pGuestFeatures->fVmxUseTprShadow << VMX_BF_PROC_CTLS_USE_TPR_SHADOW_SHIFT )
1596 | (pGuestFeatures->fVmxNmiWindowExit << VMX_BF_PROC_CTLS_NMI_WINDOW_EXIT_SHIFT )
1597 | (pGuestFeatures->fVmxMovDRxExit << VMX_BF_PROC_CTLS_MOV_DR_EXIT_SHIFT )
1598 | (pGuestFeatures->fVmxUncondIoExit << VMX_BF_PROC_CTLS_UNCOND_IO_EXIT_SHIFT )
1599 | (pGuestFeatures->fVmxUseIoBitmaps << VMX_BF_PROC_CTLS_USE_IO_BITMAPS_SHIFT )
1600 | (pGuestFeatures->fVmxMonitorTrapFlag << VMX_BF_PROC_CTLS_MONITOR_TRAP_FLAG_SHIFT )
1601 | (pGuestFeatures->fVmxUseMsrBitmaps << VMX_BF_PROC_CTLS_USE_MSR_BITMAPS_SHIFT )
1602 | (pGuestFeatures->fVmxMonitorExit << VMX_BF_PROC_CTLS_MONITOR_EXIT_SHIFT )
1603 | (pGuestFeatures->fVmxPauseExit << VMX_BF_PROC_CTLS_PAUSE_EXIT_SHIFT )
1604 | (pGuestFeatures->fVmxSecondaryExecCtls << VMX_BF_PROC_CTLS_USE_SECONDARY_CTLS_SHIFT);
1605 uint32_t const fAllowed0 = VMX_PROC_CTLS_DEFAULT1;
1606 uint32_t const fAllowed1 = fFeatures | VMX_PROC_CTLS_DEFAULT1;
1607 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1608 fAllowed1, fFeatures));
1609 pGuestVmxMsrs->ProcCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1610 }
1611
1612 /* Secondary processor-based VM-execution controls. */
1613 if (pGuestFeatures->fVmxSecondaryExecCtls)
1614 {
1615 uint32_t const fFeatures = (pGuestFeatures->fVmxVirtApicAccess << VMX_BF_PROC_CTLS2_VIRT_APIC_ACCESS_SHIFT )
1616 | (pGuestFeatures->fVmxEpt << VMX_BF_PROC_CTLS2_EPT_SHIFT )
1617 | (pGuestFeatures->fVmxDescTableExit << VMX_BF_PROC_CTLS2_DESC_TABLE_EXIT_SHIFT )
1618 | (pGuestFeatures->fVmxRdtscp << VMX_BF_PROC_CTLS2_RDTSCP_SHIFT )
1619 | (pGuestFeatures->fVmxVirtX2ApicMode << VMX_BF_PROC_CTLS2_VIRT_X2APIC_MODE_SHIFT )
1620 | (pGuestFeatures->fVmxVpid << VMX_BF_PROC_CTLS2_VPID_SHIFT )
1621 | (pGuestFeatures->fVmxWbinvdExit << VMX_BF_PROC_CTLS2_WBINVD_EXIT_SHIFT )
1622 | (pGuestFeatures->fVmxUnrestrictedGuest << VMX_BF_PROC_CTLS2_UNRESTRICTED_GUEST_SHIFT)
1623 | (pGuestFeatures->fVmxApicRegVirt << VMX_BF_PROC_CTLS2_APIC_REG_VIRT_SHIFT )
1624 | (pGuestFeatures->fVmxVirtIntDelivery << VMX_BF_PROC_CTLS2_VIRT_INT_DELIVERY_SHIFT )
1625 | (pGuestFeatures->fVmxPauseLoopExit << VMX_BF_PROC_CTLS2_PAUSE_LOOP_EXIT_SHIFT )
1626 | (pGuestFeatures->fVmxRdrandExit << VMX_BF_PROC_CTLS2_RDRAND_EXIT_SHIFT )
1627 | (pGuestFeatures->fVmxInvpcid << VMX_BF_PROC_CTLS2_INVPCID_SHIFT )
1628 | (pGuestFeatures->fVmxVmFunc << VMX_BF_PROC_CTLS2_VMFUNC_SHIFT )
1629 | (pGuestFeatures->fVmxVmcsShadowing << VMX_BF_PROC_CTLS2_VMCS_SHADOWING_SHIFT )
1630 | (pGuestFeatures->fVmxRdseedExit << VMX_BF_PROC_CTLS2_RDSEED_EXIT_SHIFT )
1631 | (pGuestFeatures->fVmxPml << VMX_BF_PROC_CTLS2_PML_SHIFT )
1632 | (pGuestFeatures->fVmxEptXcptVe << VMX_BF_PROC_CTLS2_EPT_VE_SHIFT )
1633 | (pGuestFeatures->fVmxXsavesXrstors << VMX_BF_PROC_CTLS2_XSAVES_XRSTORS_SHIFT )
1634 | (pGuestFeatures->fVmxUseTscScaling << VMX_BF_PROC_CTLS2_TSC_SCALING_SHIFT );
1635 uint32_t const fAllowed0 = 0;
1636 uint32_t const fAllowed1 = fFeatures;
1637 pGuestVmxMsrs->ProcCtls2.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1638 }
1639
1640 /* VM-exit controls. */
1641 {
1642 uint32_t const fFeatures = (pGuestFeatures->fVmxExitSaveDebugCtls << VMX_BF_EXIT_CTLS_SAVE_DEBUG_SHIFT )
1643 | (pGuestFeatures->fVmxHostAddrSpaceSize << VMX_BF_EXIT_CTLS_HOST_ADDR_SPACE_SIZE_SHIFT)
1644 | (pGuestFeatures->fVmxExitAckExtInt << VMX_BF_EXIT_CTLS_ACK_EXT_INT_SHIFT )
1645 | (pGuestFeatures->fVmxExitSavePatMsr << VMX_BF_EXIT_CTLS_SAVE_PAT_MSR_SHIFT )
1646 | (pGuestFeatures->fVmxExitLoadPatMsr << VMX_BF_EXIT_CTLS_LOAD_PAT_MSR_SHIFT )
1647 | (pGuestFeatures->fVmxExitSaveEferMsr << VMX_BF_EXIT_CTLS_SAVE_EFER_MSR_SHIFT )
1648 | (pGuestFeatures->fVmxExitLoadEferMsr << VMX_BF_EXIT_CTLS_LOAD_EFER_MSR_SHIFT )
1649 | (pGuestFeatures->fVmxSavePreemptTimer << VMX_BF_EXIT_CTLS_SAVE_PREEMPT_TIMER_SHIFT );
1650 /* Set the default1 class bits. See Intel spec. A.4 "VM-exit Controls". */
1651 uint32_t const fAllowed0 = VMX_EXIT_CTLS_DEFAULT1;
1652 uint32_t const fAllowed1 = fFeatures | VMX_EXIT_CTLS_DEFAULT1;
1653 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed1=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1654 fAllowed1, fFeatures));
1655 pGuestVmxMsrs->ExitCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1656 }
1657
1658 /* VM-entry controls. */
1659 {
1660 uint32_t const fFeatures = (pGuestFeatures->fVmxEntryLoadDebugCtls << VMX_BF_ENTRY_CTLS_LOAD_DEBUG_SHIFT )
1661 | (pGuestFeatures->fVmxIa32eModeGuest << VMX_BF_ENTRY_CTLS_IA32E_MODE_GUEST_SHIFT)
1662 | (pGuestFeatures->fVmxEntryLoadEferMsr << VMX_BF_ENTRY_CTLS_LOAD_EFER_MSR_SHIFT )
1663 | (pGuestFeatures->fVmxEntryLoadPatMsr << VMX_BF_ENTRY_CTLS_LOAD_PAT_MSR_SHIFT );
1664 uint32_t const fAllowed0 = VMX_ENTRY_CTLS_DEFAULT1;
1665 uint32_t const fAllowed1 = fFeatures | VMX_ENTRY_CTLS_DEFAULT1;
1666 AssertMsg((fAllowed0 & fAllowed1) == fAllowed0, ("fAllowed0=%#RX32 fAllowed0=%#RX32 fFeatures=%#RX32\n", fAllowed0,
1667 fAllowed1, fFeatures));
1668 pGuestVmxMsrs->EntryCtls.u = RT_MAKE_U64(fAllowed0, fAllowed1);
1669 }
1670
1671 /* Miscellaneous data. */
1672 {
1673 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Misc : 0;
1674
1675 uint8_t const cMaxMsrs = RT_MIN(RT_BF_GET(uHostMsr, VMX_BF_MISC_MAX_MSRS), VMX_V_AUTOMSR_COUNT_MAX);
1676 uint8_t const fActivityState = RT_BF_GET(uHostMsr, VMX_BF_MISC_ACTIVITY_STATES) & VMX_V_GUEST_ACTIVITY_STATE_MASK;
1677 pGuestVmxMsrs->u64Misc = RT_BF_MAKE(VMX_BF_MISC_PREEMPT_TIMER_TSC, VMX_V_PREEMPT_TIMER_SHIFT )
1678 | RT_BF_MAKE(VMX_BF_MISC_EXIT_SAVE_EFER_LMA, pGuestFeatures->fVmxExitSaveEferLma )
1679 | RT_BF_MAKE(VMX_BF_MISC_ACTIVITY_STATES, fActivityState )
1680 | RT_BF_MAKE(VMX_BF_MISC_INTEL_PT, pGuestFeatures->fVmxIntelPt )
1681 | RT_BF_MAKE(VMX_BF_MISC_SMM_READ_SMBASE_MSR, 0 )
1682 | RT_BF_MAKE(VMX_BF_MISC_CR3_TARGET, VMX_V_CR3_TARGET_COUNT )
1683 | RT_BF_MAKE(VMX_BF_MISC_MAX_MSRS, cMaxMsrs )
1684 | RT_BF_MAKE(VMX_BF_MISC_VMXOFF_BLOCK_SMI, 0 )
1685 | RT_BF_MAKE(VMX_BF_MISC_VMWRITE_ALL, pGuestFeatures->fVmxVmwriteAll )
1686 | RT_BF_MAKE(VMX_BF_MISC_ENTRY_INJECT_SOFT_INT, pGuestFeatures->fVmxEntryInjectSoftInt)
1687 | RT_BF_MAKE(VMX_BF_MISC_MSEG_ID, VMX_V_MSEG_REV_ID );
1688 }
1689
1690 /* CR0 Fixed-0. */
1691 pGuestVmxMsrs->u64Cr0Fixed0 = pGuestFeatures->fVmxUnrestrictedGuest ? VMX_V_CR0_FIXED0_UX : VMX_V_CR0_FIXED0;
1692
1693 /* CR0 Fixed-1. */
1694 {
1695 /*
1696 * All CPUs I've looked at so far report CR0 fixed-1 bits as 0xffffffff.
1697 * This is different from CR4 fixed-1 bits which are reported as per the
1698 * CPU features and/or micro-architecture/generation. Why? Ask Intel.
1699 */
1700 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr0Fixed1 : 0xffffffff;
1701 pGuestVmxMsrs->u64Cr0Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr0Fixed0; /* Make sure the CR0 MB1 bits are not clear. */
1702 }
1703
1704 /* CR4 Fixed-0. */
1705 pGuestVmxMsrs->u64Cr4Fixed0 = VMX_V_CR4_FIXED0;
1706
1707 /* CR4 Fixed-1. */
1708 {
1709 uint64_t const uHostMsr = fIsNstGstHwExecAllowed ? pHostVmxMsrs->u64Cr4Fixed1 : CPUMGetGuestCR4ValidMask(pVM);
1710 pGuestVmxMsrs->u64Cr4Fixed1 = uHostMsr | pGuestVmxMsrs->u64Cr4Fixed0; /* Make sure the CR4 MB1 bits are not clear. */
1711 }
1712
1713 /* VMCS Enumeration. */
1714 pGuestVmxMsrs->u64VmcsEnum = VMX_V_VMCS_MAX_INDEX << VMX_BF_VMCS_ENUM_HIGHEST_IDX_SHIFT;
1715
1716 /* VPID and EPT Capabilities. */
1717 {
1718 /*
1719 * INVVPID instruction always causes a VM-exit unconditionally, so we are free to fake
1720 * and emulate any INVVPID flush type. However, it only makes sense to expose the types
1721 * when INVVPID instruction is supported just to be more compatible with guest
1722 * hypervisors that may make assumptions by only looking at this MSR even though they
1723 * are technically supposed to refer to bit 37 of MSR_IA32_VMX_PROC_CTLS2 first.
1724 *
1725 * See Intel spec. 25.1.2 "Instructions That Cause VM Exits Unconditionally".
1726 * See Intel spec. 30.3 "VMX Instructions".
1727 */
1728 uint8_t const fVpid = pGuestFeatures->fVmxVpid;
1729 pGuestVmxMsrs->u64EptVpidCaps = RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID, fVpid)
1730 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX, fVpid & 1)
1731 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX, fVpid & 1)
1732 | RT_BF_MAKE(VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS, fVpid & 1);
1733 }
1734
1735 /* VM Functions. */
1736 if (pGuestFeatures->fVmxVmFunc)
1737 pGuestVmxMsrs->u64VmFunc = RT_BF_MAKE(VMX_BF_VMFUNC_EPTP_SWITCHING, 1);
1738}
1739
1740
1741/**
1742 * Checks whether the given guest CPU VMX features are compatible with the provided
1743 * base features.
1744 *
1745 * @returns @c true if compatible, @c false otherwise.
1746 * @param pVM The cross context VM structure.
1747 * @param pBase The base VMX CPU features.
1748 * @param pGst The guest VMX CPU features.
1749 *
1750 * @remarks Only VMX feature bits are examined.
1751 */
1752static bool cpumR3AreVmxCpuFeaturesCompatible(PVM pVM, PCCPUMFEATURES pBase, PCCPUMFEATURES pGst)
1753{
1754 if (cpumR3IsHwAssistNstGstExecAllowed(pVM))
1755 {
1756 uint64_t const fBase = ((uint64_t)pBase->fVmxInsOutInfo << 0) | ((uint64_t)pBase->fVmxExtIntExit << 1)
1757 | ((uint64_t)pBase->fVmxNmiExit << 2) | ((uint64_t)pBase->fVmxVirtNmi << 3)
1758 | ((uint64_t)pBase->fVmxPreemptTimer << 4) | ((uint64_t)pBase->fVmxPostedInt << 5)
1759 | ((uint64_t)pBase->fVmxIntWindowExit << 6) | ((uint64_t)pBase->fVmxTscOffsetting << 7)
1760 | ((uint64_t)pBase->fVmxHltExit << 8) | ((uint64_t)pBase->fVmxInvlpgExit << 9)
1761 | ((uint64_t)pBase->fVmxMwaitExit << 10) | ((uint64_t)pBase->fVmxRdpmcExit << 11)
1762 | ((uint64_t)pBase->fVmxRdtscExit << 12) | ((uint64_t)pBase->fVmxCr3LoadExit << 13)
1763 | ((uint64_t)pBase->fVmxCr3StoreExit << 14) | ((uint64_t)pBase->fVmxCr8LoadExit << 15)
1764 | ((uint64_t)pBase->fVmxCr8StoreExit << 16) | ((uint64_t)pBase->fVmxUseTprShadow << 17)
1765 | ((uint64_t)pBase->fVmxNmiWindowExit << 18) | ((uint64_t)pBase->fVmxMovDRxExit << 19)
1766 | ((uint64_t)pBase->fVmxUncondIoExit << 20) | ((uint64_t)pBase->fVmxUseIoBitmaps << 21)
1767 | ((uint64_t)pBase->fVmxMonitorTrapFlag << 22) | ((uint64_t)pBase->fVmxUseMsrBitmaps << 23)
1768 | ((uint64_t)pBase->fVmxMonitorExit << 24) | ((uint64_t)pBase->fVmxPauseExit << 25)
1769 | ((uint64_t)pBase->fVmxSecondaryExecCtls << 26) | ((uint64_t)pBase->fVmxVirtApicAccess << 27)
1770 | ((uint64_t)pBase->fVmxEpt << 28) | ((uint64_t)pBase->fVmxDescTableExit << 29)
1771 | ((uint64_t)pBase->fVmxRdtscp << 30) | ((uint64_t)pBase->fVmxVirtX2ApicMode << 31)
1772 | ((uint64_t)pBase->fVmxVpid << 32) | ((uint64_t)pBase->fVmxWbinvdExit << 33)
1773 | ((uint64_t)pBase->fVmxUnrestrictedGuest << 34) | ((uint64_t)pBase->fVmxApicRegVirt << 35)
1774 | ((uint64_t)pBase->fVmxVirtIntDelivery << 36) | ((uint64_t)pBase->fVmxPauseLoopExit << 37)
1775 | ((uint64_t)pBase->fVmxRdrandExit << 38) | ((uint64_t)pBase->fVmxInvpcid << 39)
1776 | ((uint64_t)pBase->fVmxVmFunc << 40) | ((uint64_t)pBase->fVmxVmcsShadowing << 41)
1777 | ((uint64_t)pBase->fVmxRdseedExit << 42) | ((uint64_t)pBase->fVmxPml << 43)
1778 | ((uint64_t)pBase->fVmxEptXcptVe << 44) | ((uint64_t)pBase->fVmxXsavesXrstors << 45)
1779 | ((uint64_t)pBase->fVmxUseTscScaling << 46) | ((uint64_t)pBase->fVmxEntryLoadDebugCtls << 47)
1780 | ((uint64_t)pBase->fVmxIa32eModeGuest << 48) | ((uint64_t)pBase->fVmxEntryLoadEferMsr << 49)
1781 | ((uint64_t)pBase->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pBase->fVmxExitSaveDebugCtls << 51)
1782 | ((uint64_t)pBase->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pBase->fVmxExitAckExtInt << 53)
1783 | ((uint64_t)pBase->fVmxExitSavePatMsr << 54) | ((uint64_t)pBase->fVmxExitLoadPatMsr << 55)
1784 | ((uint64_t)pBase->fVmxExitSaveEferMsr << 56) | ((uint64_t)pBase->fVmxExitLoadEferMsr << 57)
1785 | ((uint64_t)pBase->fVmxSavePreemptTimer << 58) | ((uint64_t)pBase->fVmxExitSaveEferLma << 59)
1786 | ((uint64_t)pBase->fVmxIntelPt << 60) | ((uint64_t)pBase->fVmxVmwriteAll << 61)
1787 | ((uint64_t)pBase->fVmxEntryInjectSoftInt << 62);
1788
1789 uint64_t const fGst = ((uint64_t)pGst->fVmxInsOutInfo << 0) | ((uint64_t)pGst->fVmxExtIntExit << 1)
1790 | ((uint64_t)pGst->fVmxNmiExit << 2) | ((uint64_t)pGst->fVmxVirtNmi << 3)
1791 | ((uint64_t)pGst->fVmxPreemptTimer << 4) | ((uint64_t)pGst->fVmxPostedInt << 5)
1792 | ((uint64_t)pGst->fVmxIntWindowExit << 6) | ((uint64_t)pGst->fVmxTscOffsetting << 7)
1793 | ((uint64_t)pGst->fVmxHltExit << 8) | ((uint64_t)pGst->fVmxInvlpgExit << 9)
1794 | ((uint64_t)pGst->fVmxMwaitExit << 10) | ((uint64_t)pGst->fVmxRdpmcExit << 11)
1795 | ((uint64_t)pGst->fVmxRdtscExit << 12) | ((uint64_t)pGst->fVmxCr3LoadExit << 13)
1796 | ((uint64_t)pGst->fVmxCr3StoreExit << 14) | ((uint64_t)pGst->fVmxCr8LoadExit << 15)
1797 | ((uint64_t)pGst->fVmxCr8StoreExit << 16) | ((uint64_t)pGst->fVmxUseTprShadow << 17)
1798 | ((uint64_t)pGst->fVmxNmiWindowExit << 18) | ((uint64_t)pGst->fVmxMovDRxExit << 19)
1799 | ((uint64_t)pGst->fVmxUncondIoExit << 20) | ((uint64_t)pGst->fVmxUseIoBitmaps << 21)
1800 | ((uint64_t)pGst->fVmxMonitorTrapFlag << 22) | ((uint64_t)pGst->fVmxUseMsrBitmaps << 23)
1801 | ((uint64_t)pGst->fVmxMonitorExit << 24) | ((uint64_t)pGst->fVmxPauseExit << 25)
1802 | ((uint64_t)pGst->fVmxSecondaryExecCtls << 26) | ((uint64_t)pGst->fVmxVirtApicAccess << 27)
1803 | ((uint64_t)pGst->fVmxEpt << 28) | ((uint64_t)pGst->fVmxDescTableExit << 29)
1804 | ((uint64_t)pGst->fVmxRdtscp << 30) | ((uint64_t)pGst->fVmxVirtX2ApicMode << 31)
1805 | ((uint64_t)pGst->fVmxVpid << 32) | ((uint64_t)pGst->fVmxWbinvdExit << 33)
1806 | ((uint64_t)pGst->fVmxUnrestrictedGuest << 34) | ((uint64_t)pGst->fVmxApicRegVirt << 35)
1807 | ((uint64_t)pGst->fVmxVirtIntDelivery << 36) | ((uint64_t)pGst->fVmxPauseLoopExit << 37)
1808 | ((uint64_t)pGst->fVmxRdrandExit << 38) | ((uint64_t)pGst->fVmxInvpcid << 39)
1809 | ((uint64_t)pGst->fVmxVmFunc << 40) | ((uint64_t)pGst->fVmxVmcsShadowing << 41)
1810 | ((uint64_t)pGst->fVmxRdseedExit << 42) | ((uint64_t)pGst->fVmxPml << 43)
1811 | ((uint64_t)pGst->fVmxEptXcptVe << 44) | ((uint64_t)pGst->fVmxXsavesXrstors << 45)
1812 | ((uint64_t)pGst->fVmxUseTscScaling << 46) | ((uint64_t)pGst->fVmxEntryLoadDebugCtls << 47)
1813 | ((uint64_t)pGst->fVmxIa32eModeGuest << 48) | ((uint64_t)pGst->fVmxEntryLoadEferMsr << 49)
1814 | ((uint64_t)pGst->fVmxEntryLoadPatMsr << 50) | ((uint64_t)pGst->fVmxExitSaveDebugCtls << 51)
1815 | ((uint64_t)pGst->fVmxHostAddrSpaceSize << 52) | ((uint64_t)pGst->fVmxExitAckExtInt << 53)
1816 | ((uint64_t)pGst->fVmxExitSavePatMsr << 54) | ((uint64_t)pGst->fVmxExitLoadPatMsr << 55)
1817 | ((uint64_t)pGst->fVmxExitSaveEferMsr << 56) | ((uint64_t)pGst->fVmxExitLoadEferMsr << 57)
1818 | ((uint64_t)pGst->fVmxSavePreemptTimer << 58) | ((uint64_t)pGst->fVmxExitSaveEferLma << 59)
1819 | ((uint64_t)pGst->fVmxIntelPt << 60) | ((uint64_t)pGst->fVmxVmwriteAll << 61)
1820 | ((uint64_t)pGst->fVmxEntryInjectSoftInt << 62);
1821
1822 if ((fBase | fGst) != fBase)
1823 {
1824 uint64_t const fDiff = fBase ^ fGst;
1825 LogRel(("CPUM: VMX features now exposed to the guest are incompatible with those from the saved state. fBase=%#RX64 fGst=%#RX64 fDiff=%#RX64\n",
1826 fBase, fGst, fDiff));
1827 return false;
1828 }
1829 return true;
1830 }
1831 return true;
1832}
1833
1834
1835/**
1836 * Initializes VMX guest features and MSRs.
1837 *
1838 * @param pVM The cross context VM structure.
1839 * @param pHostVmxMsrs The host VMX MSRs. Pass NULL when fully emulating VMX
1840 * and no hardware-assisted nested-guest execution is
1841 * possible for this VM.
1842 * @param pGuestVmxMsrs Where to store the initialized guest VMX MSRs.
1843 */
1844void cpumR3InitVmxGuestFeaturesAndMsrs(PVM pVM, PCVMXMSRS pHostVmxMsrs, PVMXMSRS pGuestVmxMsrs)
1845{
1846 Assert(pVM);
1847 Assert(pGuestVmxMsrs);
1848
1849 /*
1850 * Initialize the set of VMX features we emulate.
1851 *
1852 * Note! Some bits might be reported as 1 always if they fall under the
1853 * default1 class bits (e.g. fVmxEntryLoadDebugCtls), see @bugref{9180#c5}.
1854 */
1855 CPUMFEATURES EmuFeat;
1856 RT_ZERO(EmuFeat);
1857 EmuFeat.fVmx = 1;
1858 EmuFeat.fVmxInsOutInfo = 1;
1859 EmuFeat.fVmxExtIntExit = 1;
1860 EmuFeat.fVmxNmiExit = 1;
1861 EmuFeat.fVmxVirtNmi = 0;
1862 EmuFeat.fVmxPreemptTimer = 0; /** @todo NSTVMX: enable this. */
1863 EmuFeat.fVmxPostedInt = 0;
1864 EmuFeat.fVmxIntWindowExit = 1;
1865 EmuFeat.fVmxTscOffsetting = 1;
1866 EmuFeat.fVmxHltExit = 1;
1867 EmuFeat.fVmxInvlpgExit = 1;
1868 EmuFeat.fVmxMwaitExit = 1;
1869 EmuFeat.fVmxRdpmcExit = 1;
1870 EmuFeat.fVmxRdtscExit = 1;
1871 EmuFeat.fVmxCr3LoadExit = 1;
1872 EmuFeat.fVmxCr3StoreExit = 1;
1873 EmuFeat.fVmxCr8LoadExit = 1;
1874 EmuFeat.fVmxCr8StoreExit = 1;
1875 EmuFeat.fVmxUseTprShadow = 1;
1876 EmuFeat.fVmxNmiWindowExit = 0;
1877 EmuFeat.fVmxMovDRxExit = 1;
1878 EmuFeat.fVmxUncondIoExit = 1;
1879 EmuFeat.fVmxUseIoBitmaps = 1;
1880 EmuFeat.fVmxMonitorTrapFlag = 0;
1881 EmuFeat.fVmxUseMsrBitmaps = 1;
1882 EmuFeat.fVmxMonitorExit = 1;
1883 EmuFeat.fVmxPauseExit = 1;
1884 EmuFeat.fVmxSecondaryExecCtls = 1;
1885 EmuFeat.fVmxVirtApicAccess = 1;
1886 EmuFeat.fVmxEpt = 0; /* Cannot be disabled if unrestricted guest is enabled. */
1887 EmuFeat.fVmxDescTableExit = 1;
1888 EmuFeat.fVmxRdtscp = 1;
1889 EmuFeat.fVmxVirtX2ApicMode = 0;
1890 EmuFeat.fVmxVpid = 0; /** @todo NSTVMX: enable this. */
1891 EmuFeat.fVmxWbinvdExit = 1;
1892 EmuFeat.fVmxUnrestrictedGuest = 0;
1893 EmuFeat.fVmxApicRegVirt = 0;
1894 EmuFeat.fVmxVirtIntDelivery = 0;
1895 EmuFeat.fVmxPauseLoopExit = 0;
1896 EmuFeat.fVmxRdrandExit = 0;
1897 EmuFeat.fVmxInvpcid = 1;
1898 EmuFeat.fVmxVmFunc = 0;
1899 EmuFeat.fVmxVmcsShadowing = 0;
1900 EmuFeat.fVmxRdseedExit = 0;
1901 EmuFeat.fVmxPml = 0;
1902 EmuFeat.fVmxEptXcptVe = 0;
1903 EmuFeat.fVmxXsavesXrstors = 0;
1904 EmuFeat.fVmxUseTscScaling = 0;
1905 EmuFeat.fVmxEntryLoadDebugCtls = 1;
1906 EmuFeat.fVmxIa32eModeGuest = 1;
1907 EmuFeat.fVmxEntryLoadEferMsr = 1;
1908 EmuFeat.fVmxEntryLoadPatMsr = 0;
1909 EmuFeat.fVmxExitSaveDebugCtls = 1;
1910 EmuFeat.fVmxHostAddrSpaceSize = 1;
1911 EmuFeat.fVmxExitAckExtInt = 0;
1912 EmuFeat.fVmxExitSavePatMsr = 0;
1913 EmuFeat.fVmxExitLoadPatMsr = 0;
1914 EmuFeat.fVmxExitSaveEferMsr = 1;
1915 EmuFeat.fVmxExitLoadEferMsr = 1;
1916 EmuFeat.fVmxSavePreemptTimer = 0;
1917 EmuFeat.fVmxExitSaveEferLma = 1; /* Cannot be disabled if unrestricted guest is enabled. */
1918 EmuFeat.fVmxIntelPt = 0;
1919 EmuFeat.fVmxVmwriteAll = 0; /** @todo NSTVMX: enable this when nested VMCS shadowing is enabled. */
1920 EmuFeat.fVmxEntryInjectSoftInt = 1;
1921
1922 /*
1923 * Merge guest features.
1924 *
1925 * When hardware-assisted VMX may be used, any feature we emulate must also be supported
1926 * by the hardware, hence we merge our emulated features with the host features below.
1927 */
1928 PCCPUMFEATURES pBaseFeat = cpumR3IsHwAssistNstGstExecAllowed(pVM) ? &pVM->cpum.s.HostFeatures : &EmuFeat;
1929 PCPUMFEATURES pGuestFeat = &pVM->cpum.s.GuestFeatures;
1930 Assert(pBaseFeat->fVmx);
1931 pGuestFeat->fVmxInsOutInfo = (pBaseFeat->fVmxInsOutInfo & EmuFeat.fVmxInsOutInfo );
1932 pGuestFeat->fVmxExtIntExit = (pBaseFeat->fVmxExtIntExit & EmuFeat.fVmxExtIntExit );
1933 pGuestFeat->fVmxNmiExit = (pBaseFeat->fVmxNmiExit & EmuFeat.fVmxNmiExit );
1934 pGuestFeat->fVmxVirtNmi = (pBaseFeat->fVmxVirtNmi & EmuFeat.fVmxVirtNmi );
1935 pGuestFeat->fVmxPreemptTimer = (pBaseFeat->fVmxPreemptTimer & EmuFeat.fVmxPreemptTimer );
1936 pGuestFeat->fVmxPostedInt = (pBaseFeat->fVmxPostedInt & EmuFeat.fVmxPostedInt );
1937 pGuestFeat->fVmxIntWindowExit = (pBaseFeat->fVmxIntWindowExit & EmuFeat.fVmxIntWindowExit );
1938 pGuestFeat->fVmxTscOffsetting = (pBaseFeat->fVmxTscOffsetting & EmuFeat.fVmxTscOffsetting );
1939 pGuestFeat->fVmxHltExit = (pBaseFeat->fVmxHltExit & EmuFeat.fVmxHltExit );
1940 pGuestFeat->fVmxInvlpgExit = (pBaseFeat->fVmxInvlpgExit & EmuFeat.fVmxInvlpgExit );
1941 pGuestFeat->fVmxMwaitExit = (pBaseFeat->fVmxMwaitExit & EmuFeat.fVmxMwaitExit );
1942 pGuestFeat->fVmxRdpmcExit = (pBaseFeat->fVmxRdpmcExit & EmuFeat.fVmxRdpmcExit );
1943 pGuestFeat->fVmxRdtscExit = (pBaseFeat->fVmxRdtscExit & EmuFeat.fVmxRdtscExit );
1944 pGuestFeat->fVmxCr3LoadExit = (pBaseFeat->fVmxCr3LoadExit & EmuFeat.fVmxCr3LoadExit );
1945 pGuestFeat->fVmxCr3StoreExit = (pBaseFeat->fVmxCr3StoreExit & EmuFeat.fVmxCr3StoreExit );
1946 pGuestFeat->fVmxCr8LoadExit = (pBaseFeat->fVmxCr8LoadExit & EmuFeat.fVmxCr8LoadExit );
1947 pGuestFeat->fVmxCr8StoreExit = (pBaseFeat->fVmxCr8StoreExit & EmuFeat.fVmxCr8StoreExit );
1948 pGuestFeat->fVmxUseTprShadow = (pBaseFeat->fVmxUseTprShadow & EmuFeat.fVmxUseTprShadow );
1949 pGuestFeat->fVmxNmiWindowExit = (pBaseFeat->fVmxNmiWindowExit & EmuFeat.fVmxNmiWindowExit );
1950 pGuestFeat->fVmxMovDRxExit = (pBaseFeat->fVmxMovDRxExit & EmuFeat.fVmxMovDRxExit );
1951 pGuestFeat->fVmxUncondIoExit = (pBaseFeat->fVmxUncondIoExit & EmuFeat.fVmxUncondIoExit );
1952 pGuestFeat->fVmxUseIoBitmaps = (pBaseFeat->fVmxUseIoBitmaps & EmuFeat.fVmxUseIoBitmaps );
1953 pGuestFeat->fVmxMonitorTrapFlag = (pBaseFeat->fVmxMonitorTrapFlag & EmuFeat.fVmxMonitorTrapFlag );
1954 pGuestFeat->fVmxUseMsrBitmaps = (pBaseFeat->fVmxUseMsrBitmaps & EmuFeat.fVmxUseMsrBitmaps );
1955 pGuestFeat->fVmxMonitorExit = (pBaseFeat->fVmxMonitorExit & EmuFeat.fVmxMonitorExit );
1956 pGuestFeat->fVmxPauseExit = (pBaseFeat->fVmxPauseExit & EmuFeat.fVmxPauseExit );
1957 pGuestFeat->fVmxSecondaryExecCtls = (pBaseFeat->fVmxSecondaryExecCtls & EmuFeat.fVmxSecondaryExecCtls );
1958 pGuestFeat->fVmxVirtApicAccess = (pBaseFeat->fVmxVirtApicAccess & EmuFeat.fVmxVirtApicAccess );
1959 pGuestFeat->fVmxEpt = (pBaseFeat->fVmxEpt & EmuFeat.fVmxEpt );
1960 pGuestFeat->fVmxDescTableExit = (pBaseFeat->fVmxDescTableExit & EmuFeat.fVmxDescTableExit );
1961 pGuestFeat->fVmxRdtscp = (pBaseFeat->fVmxRdtscp & EmuFeat.fVmxRdtscp );
1962 pGuestFeat->fVmxVirtX2ApicMode = (pBaseFeat->fVmxVirtX2ApicMode & EmuFeat.fVmxVirtX2ApicMode );
1963 pGuestFeat->fVmxVpid = (pBaseFeat->fVmxVpid & EmuFeat.fVmxVpid );
1964 pGuestFeat->fVmxWbinvdExit = (pBaseFeat->fVmxWbinvdExit & EmuFeat.fVmxWbinvdExit );
1965 pGuestFeat->fVmxUnrestrictedGuest = (pBaseFeat->fVmxUnrestrictedGuest & EmuFeat.fVmxUnrestrictedGuest );
1966 pGuestFeat->fVmxApicRegVirt = (pBaseFeat->fVmxApicRegVirt & EmuFeat.fVmxApicRegVirt );
1967 pGuestFeat->fVmxVirtIntDelivery = (pBaseFeat->fVmxVirtIntDelivery & EmuFeat.fVmxVirtIntDelivery );
1968 pGuestFeat->fVmxPauseLoopExit = (pBaseFeat->fVmxPauseLoopExit & EmuFeat.fVmxPauseLoopExit );
1969 pGuestFeat->fVmxRdrandExit = (pBaseFeat->fVmxRdrandExit & EmuFeat.fVmxRdrandExit );
1970 pGuestFeat->fVmxInvpcid = (pBaseFeat->fVmxInvpcid & EmuFeat.fVmxInvpcid );
1971 pGuestFeat->fVmxVmFunc = (pBaseFeat->fVmxVmFunc & EmuFeat.fVmxVmFunc );
1972 pGuestFeat->fVmxVmcsShadowing = (pBaseFeat->fVmxVmcsShadowing & EmuFeat.fVmxVmcsShadowing );
1973 pGuestFeat->fVmxRdseedExit = (pBaseFeat->fVmxRdseedExit & EmuFeat.fVmxRdseedExit );
1974 pGuestFeat->fVmxPml = (pBaseFeat->fVmxPml & EmuFeat.fVmxPml );
1975 pGuestFeat->fVmxEptXcptVe = (pBaseFeat->fVmxEptXcptVe & EmuFeat.fVmxEptXcptVe );
1976 pGuestFeat->fVmxXsavesXrstors = (pBaseFeat->fVmxXsavesXrstors & EmuFeat.fVmxXsavesXrstors );
1977 pGuestFeat->fVmxUseTscScaling = (pBaseFeat->fVmxUseTscScaling & EmuFeat.fVmxUseTscScaling );
1978 pGuestFeat->fVmxEntryLoadDebugCtls = (pBaseFeat->fVmxEntryLoadDebugCtls & EmuFeat.fVmxEntryLoadDebugCtls );
1979 pGuestFeat->fVmxIa32eModeGuest = (pBaseFeat->fVmxIa32eModeGuest & EmuFeat.fVmxIa32eModeGuest );
1980 pGuestFeat->fVmxEntryLoadEferMsr = (pBaseFeat->fVmxEntryLoadEferMsr & EmuFeat.fVmxEntryLoadEferMsr );
1981 pGuestFeat->fVmxEntryLoadPatMsr = (pBaseFeat->fVmxEntryLoadPatMsr & EmuFeat.fVmxEntryLoadPatMsr );
1982 pGuestFeat->fVmxExitSaveDebugCtls = (pBaseFeat->fVmxExitSaveDebugCtls & EmuFeat.fVmxExitSaveDebugCtls );
1983 pGuestFeat->fVmxHostAddrSpaceSize = (pBaseFeat->fVmxHostAddrSpaceSize & EmuFeat.fVmxHostAddrSpaceSize );
1984 pGuestFeat->fVmxExitAckExtInt = (pBaseFeat->fVmxExitAckExtInt & EmuFeat.fVmxExitAckExtInt );
1985 pGuestFeat->fVmxExitSavePatMsr = (pBaseFeat->fVmxExitSavePatMsr & EmuFeat.fVmxExitSavePatMsr );
1986 pGuestFeat->fVmxExitLoadPatMsr = (pBaseFeat->fVmxExitLoadPatMsr & EmuFeat.fVmxExitLoadPatMsr );
1987 pGuestFeat->fVmxExitSaveEferMsr = (pBaseFeat->fVmxExitSaveEferMsr & EmuFeat.fVmxExitSaveEferMsr );
1988 pGuestFeat->fVmxExitLoadEferMsr = (pBaseFeat->fVmxExitLoadEferMsr & EmuFeat.fVmxExitLoadEferMsr );
1989 pGuestFeat->fVmxSavePreemptTimer = (pBaseFeat->fVmxSavePreemptTimer & EmuFeat.fVmxSavePreemptTimer );
1990 pGuestFeat->fVmxExitSaveEferLma = (pBaseFeat->fVmxExitSaveEferLma & EmuFeat.fVmxExitSaveEferLma );
1991 pGuestFeat->fVmxIntelPt = (pBaseFeat->fVmxIntelPt & EmuFeat.fVmxIntelPt );
1992 pGuestFeat->fVmxVmwriteAll = (pBaseFeat->fVmxVmwriteAll & EmuFeat.fVmxVmwriteAll );
1993 pGuestFeat->fVmxEntryInjectSoftInt = (pBaseFeat->fVmxEntryInjectSoftInt & EmuFeat.fVmxEntryInjectSoftInt );
1994
1995 /* Paranoia. */
1996 if (!pGuestFeat->fVmxSecondaryExecCtls)
1997 {
1998 Assert(!pGuestFeat->fVmxVirtApicAccess);
1999 Assert(!pGuestFeat->fVmxEpt);
2000 Assert(!pGuestFeat->fVmxDescTableExit);
2001 Assert(!pGuestFeat->fVmxRdtscp);
2002 Assert(!pGuestFeat->fVmxVirtX2ApicMode);
2003 Assert(!pGuestFeat->fVmxVpid);
2004 Assert(!pGuestFeat->fVmxWbinvdExit);
2005 Assert(!pGuestFeat->fVmxUnrestrictedGuest);
2006 Assert(!pGuestFeat->fVmxApicRegVirt);
2007 Assert(!pGuestFeat->fVmxVirtIntDelivery);
2008 Assert(!pGuestFeat->fVmxPauseLoopExit);
2009 Assert(!pGuestFeat->fVmxRdrandExit);
2010 Assert(!pGuestFeat->fVmxInvpcid);
2011 Assert(!pGuestFeat->fVmxVmFunc);
2012 Assert(!pGuestFeat->fVmxVmcsShadowing);
2013 Assert(!pGuestFeat->fVmxRdseedExit);
2014 Assert(!pGuestFeat->fVmxPml);
2015 Assert(!pGuestFeat->fVmxEptXcptVe);
2016 Assert(!pGuestFeat->fVmxXsavesXrstors);
2017 Assert(!pGuestFeat->fVmxUseTscScaling);
2018 }
2019 if (pGuestFeat->fVmxUnrestrictedGuest)
2020 {
2021 /* See footnote in Intel spec. 27.2 "Recording VM-Exit Information And Updating VM-entry Control Fields". */
2022 Assert(pGuestFeat->fVmxExitSaveEferLma);
2023 }
2024
2025 /*
2026 * Finally initialize the VMX guest MSRs.
2027 */
2028 cpumR3InitVmxGuestMsrs(pVM, pHostVmxMsrs, pGuestFeat, pGuestVmxMsrs);
2029}
2030
2031
2032/**
2033 * Gets the host hardware-virtualization MSRs.
2034 *
2035 * @returns VBox status code.
2036 * @param pMsrs Where to store the MSRs.
2037 */
2038static int cpumR3GetHostHwvirtMsrs(PCPUMMSRS pMsrs)
2039{
2040 Assert(pMsrs);
2041
2042 uint32_t fCaps = 0;
2043 int rc = SUPR3QueryVTCaps(&fCaps);
2044 if (RT_SUCCESS(rc))
2045 {
2046 if (fCaps & (SUPVTCAPS_VT_X | SUPVTCAPS_AMD_V))
2047 {
2048 SUPHWVIRTMSRS HwvirtMsrs;
2049 rc = SUPR3GetHwvirtMsrs(&HwvirtMsrs, false /* fForceRequery */);
2050 if (RT_SUCCESS(rc))
2051 {
2052 if (fCaps & SUPVTCAPS_VT_X)
2053 HMGetVmxMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.vmx);
2054 else
2055 HMGetSvmMsrsFromHwvirtMsrs(&HwvirtMsrs, &pMsrs->hwvirt.svm);
2056 return VINF_SUCCESS;
2057 }
2058
2059 LogRel(("CPUM: Querying hardware-virtualization MSRs failed. rc=%Rrc\n", rc));
2060 return rc;
2061 }
2062 else
2063 {
2064 LogRel(("CPUM: Querying hardware-virtualization capability succeeded but did not find VT-x or AMD-V\n"));
2065 return VERR_INTERNAL_ERROR_5;
2066 }
2067 }
2068 else
2069 LogRel(("CPUM: No hardware-virtualization capability detected\n"));
2070
2071 return VINF_SUCCESS;
2072}
2073
2074
2075/**
2076 * Initializes the CPUM.
2077 *
2078 * @returns VBox status code.
2079 * @param pVM The cross context VM structure.
2080 */
2081VMMR3DECL(int) CPUMR3Init(PVM pVM)
2082{
2083 LogFlow(("CPUMR3Init\n"));
2084
2085 /*
2086 * Assert alignment, sizes and tables.
2087 */
2088 AssertCompileMemberAlignment(VM, cpum.s, 32);
2089 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
2090 AssertCompileSizeAlignment(CPUMCTX, 64);
2091 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
2092 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
2093 AssertCompileMemberAlignment(VM, cpum, 64);
2094 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
2095#ifdef VBOX_STRICT
2096 int rc2 = cpumR3MsrStrictInitChecks();
2097 AssertRCReturn(rc2, rc2);
2098#endif
2099
2100 /*
2101 * Gather info about the host CPU.
2102 */
2103 if (!ASMHasCpuId())
2104 {
2105 LogRel(("The CPU doesn't support CPUID!\n"));
2106 return VERR_UNSUPPORTED_CPU;
2107 }
2108
2109 pVM->cpum.s.fHostMxCsrMask = CPUMR3DeterminHostMxCsrMask();
2110
2111 CPUMMSRS HostMsrs;
2112 RT_ZERO(HostMsrs);
2113 int rc = cpumR3GetHostHwvirtMsrs(&HostMsrs);
2114 AssertLogRelRCReturn(rc, rc);
2115
2116 PCPUMCPUIDLEAF paLeaves;
2117 uint32_t cLeaves;
2118 rc = CPUMR3CpuIdCollectLeaves(&paLeaves, &cLeaves);
2119 AssertLogRelRCReturn(rc, rc);
2120
2121 rc = cpumR3CpuIdExplodeFeatures(paLeaves, cLeaves, &HostMsrs, &pVM->cpum.s.HostFeatures);
2122 RTMemFree(paLeaves);
2123 AssertLogRelRCReturn(rc, rc);
2124 pVM->cpum.s.GuestFeatures.enmCpuVendor = pVM->cpum.s.HostFeatures.enmCpuVendor;
2125
2126 /*
2127 * Check that the CPU supports the minimum features we require.
2128 */
2129 if (!pVM->cpum.s.HostFeatures.fFxSaveRstor)
2130 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support the FXSAVE/FXRSTOR instruction.");
2131 if (!pVM->cpum.s.HostFeatures.fMmx)
2132 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support MMX.");
2133 if (!pVM->cpum.s.HostFeatures.fTsc)
2134 return VMSetError(pVM, VERR_UNSUPPORTED_CPU, RT_SRC_POS, "Host CPU does not support RDTSC.");
2135
2136 /*
2137 * Setup the CR4 AND and OR masks used in the raw-mode switcher.
2138 */
2139 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
2140 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFXSR;
2141
2142 /*
2143 * Figure out which XSAVE/XRSTOR features are available on the host.
2144 */
2145 uint64_t fXcr0Host = 0;
2146 uint64_t fXStateHostMask = 0;
2147 if ( pVM->cpum.s.HostFeatures.fXSaveRstor
2148 && pVM->cpum.s.HostFeatures.fOpSysXSaveRstor)
2149 {
2150 fXStateHostMask = fXcr0Host = ASMGetXcr0();
2151 fXStateHostMask &= XSAVE_C_X87 | XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI;
2152 AssertLogRelMsgStmt((fXStateHostMask & (XSAVE_C_X87 | XSAVE_C_SSE)) == (XSAVE_C_X87 | XSAVE_C_SSE),
2153 ("%#llx\n", fXStateHostMask), fXStateHostMask = 0);
2154 }
2155 pVM->cpum.s.fXStateHostMask = fXStateHostMask;
2156 LogRel(("CPUM: fXStateHostMask=%#llx; initial: %#llx; host XCR0=%#llx\n",
2157 pVM->cpum.s.fXStateHostMask, fXStateHostMask, fXcr0Host));
2158
2159 /*
2160 * Allocate memory for the extended CPU state and initialize the host XSAVE/XRSTOR mask.
2161 */
2162 uint32_t cbMaxXState = pVM->cpum.s.HostFeatures.cbMaxExtendedState;
2163 cbMaxXState = RT_ALIGN(cbMaxXState, 128);
2164 AssertLogRelReturn(cbMaxXState >= sizeof(X86FXSTATE) && cbMaxXState <= _8K, VERR_CPUM_IPE_2);
2165
2166 uint8_t *pbXStates;
2167 rc = MMR3HyperAllocOnceNoRelEx(pVM, cbMaxXState * 2 * pVM->cCpus, PAGE_SIZE, MM_TAG_CPUM_CTX,
2168 MMHYPER_AONR_FLAGS_KERNEL_MAPPING, (void **)&pbXStates);
2169 AssertLogRelRCReturn(rc, rc);
2170
2171 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2172 {
2173 PVMCPU pVCpu = pVM->apCpusR3[i];
2174
2175 pVCpu->cpum.s.Guest.pXStateR3 = (PX86XSAVEAREA)pbXStates;
2176 pVCpu->cpum.s.Guest.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
2177 pbXStates += cbMaxXState;
2178
2179 pVCpu->cpum.s.Host.pXStateR3 = (PX86XSAVEAREA)pbXStates;
2180 pVCpu->cpum.s.Host.pXStateR0 = MMHyperR3ToR0(pVM, pbXStates);
2181 pbXStates += cbMaxXState;
2182
2183 pVCpu->cpum.s.Host.fXStateMask = fXStateHostMask;
2184 }
2185
2186 /*
2187 * Register saved state data item.
2188 */
2189 rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
2190 NULL, cpumR3LiveExec, NULL,
2191 NULL, cpumR3SaveExec, NULL,
2192 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
2193 if (RT_FAILURE(rc))
2194 return rc;
2195
2196 /*
2197 * Register info handlers and registers with the debugger facility.
2198 */
2199 DBGFR3InfoRegisterInternalEx(pVM, "cpum", "Displays the all the cpu states.",
2200 &cpumR3InfoAll, DBGFINFO_FLAGS_ALL_EMTS);
2201 DBGFR3InfoRegisterInternalEx(pVM, "cpumguest", "Displays the guest cpu state.",
2202 &cpumR3InfoGuest, DBGFINFO_FLAGS_ALL_EMTS);
2203 DBGFR3InfoRegisterInternalEx(pVM, "cpumguesthwvirt", "Displays the guest hwvirt. cpu state.",
2204 &cpumR3InfoGuestHwvirt, DBGFINFO_FLAGS_ALL_EMTS);
2205 DBGFR3InfoRegisterInternalEx(pVM, "cpumhyper", "Displays the hypervisor cpu state.",
2206 &cpumR3InfoHyper, DBGFINFO_FLAGS_ALL_EMTS);
2207 DBGFR3InfoRegisterInternalEx(pVM, "cpumhost", "Displays the host cpu state.",
2208 &cpumR3InfoHost, DBGFINFO_FLAGS_ALL_EMTS);
2209 DBGFR3InfoRegisterInternalEx(pVM, "cpumguestinstr", "Displays the current guest instruction.",
2210 &cpumR3InfoGuestInstr, DBGFINFO_FLAGS_ALL_EMTS);
2211 DBGFR3InfoRegisterInternal( pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
2212 DBGFR3InfoRegisterInternal( pVM, "cpumvmxfeat", "Displays the host and guest VMX hwvirt. features.",
2213 &cpumR3InfoVmxFeatures);
2214
2215 rc = cpumR3DbgInit(pVM);
2216 if (RT_FAILURE(rc))
2217 return rc;
2218
2219 /*
2220 * Check if we need to workaround partial/leaky FPU handling.
2221 */
2222 cpumR3CheckLeakyFpu(pVM);
2223
2224 /*
2225 * Initialize the Guest CPUID and MSR states.
2226 */
2227 rc = cpumR3InitCpuIdAndMsrs(pVM, &HostMsrs);
2228 if (RT_FAILURE(rc))
2229 return rc;
2230
2231 /*
2232 * Allocate memory required by the guest hardware-virtualization structures.
2233 * This must be done after initializing CPUID/MSR features as we access the
2234 * the VMX/SVM guest features below.
2235 */
2236 if (pVM->cpum.s.GuestFeatures.fVmx)
2237 rc = cpumR3AllocVmxHwVirtState(pVM);
2238 else if (pVM->cpum.s.GuestFeatures.fSvm)
2239 rc = cpumR3AllocSvmHwVirtState(pVM);
2240 else
2241 Assert(pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.enmHwvirt == CPUMHWVIRT_NONE);
2242 if (RT_FAILURE(rc))
2243 return rc;
2244
2245 CPUMR3Reset(pVM);
2246 return VINF_SUCCESS;
2247}
2248
2249
2250/**
2251 * Applies relocations to data and code managed by this
2252 * component. This function will be called at init and
2253 * whenever the VMM need to relocate it self inside the GC.
2254 *
2255 * The CPUM will update the addresses used by the switcher.
2256 *
2257 * @param pVM The cross context VM structure.
2258 */
2259VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
2260{
2261 RT_NOREF(pVM);
2262}
2263
2264
2265/**
2266 * Terminates the CPUM.
2267 *
2268 * Termination means cleaning up and freeing all resources,
2269 * the VM it self is at this point powered off or suspended.
2270 *
2271 * @returns VBox status code.
2272 * @param pVM The cross context VM structure.
2273 */
2274VMMR3DECL(int) CPUMR3Term(PVM pVM)
2275{
2276#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2277 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2278 {
2279 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2280 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
2281 pVCpu->cpum.s.uMagic = 0;
2282 pvCpu->cpum.s.Guest.dr[5] = 0;
2283 }
2284#endif
2285
2286 if (pVM->cpum.s.GuestFeatures.fVmx)
2287 cpumR3FreeVmxHwVirtState(pVM);
2288 else if (pVM->cpum.s.GuestFeatures.fSvm)
2289 cpumR3FreeSvmHwVirtState(pVM);
2290 return VINF_SUCCESS;
2291}
2292
2293
2294/**
2295 * Resets a virtual CPU.
2296 *
2297 * Used by CPUMR3Reset and CPU hot plugging.
2298 *
2299 * @param pVM The cross context VM structure.
2300 * @param pVCpu The cross context virtual CPU structure of the CPU that is
2301 * being reset. This may differ from the current EMT.
2302 */
2303VMMR3DECL(void) CPUMR3ResetCpu(PVM pVM, PVMCPU pVCpu)
2304{
2305 /** @todo anything different for VCPU > 0? */
2306 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
2307
2308 /*
2309 * Initialize everything to ZERO first.
2310 */
2311 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
2312
2313 AssertCompile(RTASSERT_OFFSET_OF(CPUMCTX, pXStateR0) < RTASSERT_OFFSET_OF(CPUMCTX, pXStateR3));
2314 memset(pCtx, 0, RT_UOFFSETOF(CPUMCTX, pXStateR0));
2315
2316 pVCpu->cpum.s.fUseFlags = fUseFlags;
2317
2318 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
2319 pCtx->eip = 0x0000fff0;
2320 pCtx->edx = 0x00000600; /* P6 processor */
2321 pCtx->eflags.Bits.u1Reserved0 = 1;
2322
2323 pCtx->cs.Sel = 0xf000;
2324 pCtx->cs.ValidSel = 0xf000;
2325 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
2326 pCtx->cs.u64Base = UINT64_C(0xffff0000);
2327 pCtx->cs.u32Limit = 0x0000ffff;
2328 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
2329 pCtx->cs.Attr.n.u1Present = 1;
2330 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_ER_ACC;
2331
2332 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
2333 pCtx->ds.u32Limit = 0x0000ffff;
2334 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
2335 pCtx->ds.Attr.n.u1Present = 1;
2336 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2337
2338 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
2339 pCtx->es.u32Limit = 0x0000ffff;
2340 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
2341 pCtx->es.Attr.n.u1Present = 1;
2342 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2343
2344 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
2345 pCtx->fs.u32Limit = 0x0000ffff;
2346 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
2347 pCtx->fs.Attr.n.u1Present = 1;
2348 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2349
2350 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
2351 pCtx->gs.u32Limit = 0x0000ffff;
2352 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
2353 pCtx->gs.Attr.n.u1Present = 1;
2354 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2355
2356 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
2357 pCtx->ss.u32Limit = 0x0000ffff;
2358 pCtx->ss.Attr.n.u1Present = 1;
2359 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
2360 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW_ACC;
2361
2362 pCtx->idtr.cbIdt = 0xffff;
2363 pCtx->gdtr.cbGdt = 0xffff;
2364
2365 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2366 pCtx->ldtr.u32Limit = 0xffff;
2367 pCtx->ldtr.Attr.n.u1Present = 1;
2368 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
2369
2370 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
2371 pCtx->tr.u32Limit = 0xffff;
2372 pCtx->tr.Attr.n.u1Present = 1;
2373 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
2374
2375 pCtx->dr[6] = X86_DR6_INIT_VAL;
2376 pCtx->dr[7] = X86_DR7_INIT_VAL;
2377
2378 PX86FXSTATE pFpuCtx = &pCtx->pXStateR3->x87; AssertReleaseMsg(RT_VALID_PTR(pFpuCtx), ("%p\n", pFpuCtx));
2379 pFpuCtx->FTW = 0x00; /* All empty (abbridged tag reg edition). */
2380 pFpuCtx->FCW = 0x37f;
2381
2382 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
2383 IA-32 Processor States Following Power-up, Reset, or INIT */
2384 pFpuCtx->MXCSR = 0x1F80;
2385 pFpuCtx->MXCSR_MASK = pVM->cpum.s.GuestInfo.fMxCsrMask; /** @todo check if REM messes this up... */
2386
2387 pCtx->aXcr[0] = XSAVE_C_X87;
2388 if (pVM->cpum.s.HostFeatures.cbMaxExtendedState >= RT_UOFFSETOF(X86XSAVEAREA, Hdr))
2389 {
2390 /* The entire FXSAVE state needs loading when we switch to XSAVE/XRSTOR
2391 as we don't know what happened before. (Bother optimize later?) */
2392 pCtx->pXStateR3->Hdr.bmXState = XSAVE_C_X87 | XSAVE_C_SSE;
2393 }
2394
2395 /*
2396 * MSRs.
2397 */
2398 /* Init PAT MSR */
2399 pCtx->msrPAT = MSR_IA32_CR_PAT_INIT_VAL;
2400
2401 /* EFER MBZ; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State.
2402 * The Intel docs don't mention it. */
2403 Assert(!pCtx->msrEFER);
2404
2405 /* IA32_MISC_ENABLE - not entirely sure what the init/reset state really
2406 is supposed to be here, just trying provide useful/sensible values. */
2407 PCPUMMSRRANGE pRange = cpumLookupMsrRange(pVM, MSR_IA32_MISC_ENABLE);
2408 if (pRange)
2409 {
2410 pVCpu->cpum.s.GuestMsrs.msr.MiscEnable = MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2411 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL
2412 | (pVM->cpum.s.GuestFeatures.fMonitorMWait ? MSR_IA32_MISC_ENABLE_MONITOR : 0)
2413 | MSR_IA32_MISC_ENABLE_FAST_STRINGS;
2414 pRange->fWrIgnMask |= MSR_IA32_MISC_ENABLE_BTS_UNAVAIL
2415 | MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL;
2416 pRange->fWrGpMask &= ~pVCpu->cpum.s.GuestMsrs.msr.MiscEnable;
2417 }
2418
2419 /** @todo Wire IA32_MISC_ENABLE bit 22 to our NT 4 CPUID trick. */
2420
2421 /** @todo r=ramshankar: Currently broken for SMP as TMCpuTickSet() expects to be
2422 * called from each EMT while we're getting called by CPUMR3Reset()
2423 * iteratively on the same thread. Fix later. */
2424#if 0 /** @todo r=bird: This we will do in TM, not here. */
2425 /* TSC must be 0. Intel spec. Table 9-1. "IA-32 Processor States Following Power-up, Reset, or INIT." */
2426 CPUMSetGuestMsr(pVCpu, MSR_IA32_TSC, 0);
2427#endif
2428
2429
2430 /* C-state control. Guesses. */
2431 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 1 /*C1*/ | RT_BIT_32(25) | RT_BIT_32(26) | RT_BIT_32(27) | RT_BIT_32(28);
2432 /* For Nehalem+ and Atoms, the 0xE2 MSR (MSR_PKG_CST_CONFIG_CONTROL) is documented. For Core 2,
2433 * it's undocumented but exists as MSR_PMG_CST_CONFIG_CONTROL and has similar but not identical
2434 * functionality. The default value must be different due to incompatible write mask.
2435 */
2436 if (CPUMMICROARCH_IS_INTEL_CORE2(pVM->cpum.s.GuestFeatures.enmMicroarch))
2437 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x202a01; /* From Mac Pro Harpertown, unlocked. */
2438 else if (pVM->cpum.s.GuestFeatures.enmMicroarch == kCpumMicroarch_Intel_Core_Yonah)
2439 pVCpu->cpum.s.GuestMsrs.msr.PkgCStateCfgCtrl = 0x26740c; /* From MacBookPro1,1. */
2440
2441 /*
2442 * Hardware virtualization state.
2443 */
2444 CPUMSetGuestGif(pCtx, true);
2445 Assert(!pVM->cpum.s.GuestFeatures.fVmx || !pVM->cpum.s.GuestFeatures.fSvm); /* Paranoia. */
2446 if (pVM->cpum.s.GuestFeatures.fVmx)
2447 cpumR3ResetVmxHwVirtState(pVCpu);
2448 else if (pVM->cpum.s.GuestFeatures.fSvm)
2449 cpumR3ResetSvmHwVirtState(pVCpu);
2450}
2451
2452
2453/**
2454 * Resets the CPU.
2455 *
2456 * @returns VINF_SUCCESS.
2457 * @param pVM The cross context VM structure.
2458 */
2459VMMR3DECL(void) CPUMR3Reset(PVM pVM)
2460{
2461 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2462 {
2463 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2464 CPUMR3ResetCpu(pVM, pVCpu);
2465
2466#ifdef VBOX_WITH_CRASHDUMP_MAGIC
2467
2468 /* Magic marker for searching in crash dumps. */
2469 strcpy((char *)pVCpu->.cpum.s.aMagic, "CPUMCPU Magic");
2470 pVCpu->cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
2471 pVCpu->cpum.s.Guest->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
2472#endif
2473 }
2474}
2475
2476
2477
2478
2479/**
2480 * Pass 0 live exec callback.
2481 *
2482 * @returns VINF_SSM_DONT_CALL_AGAIN.
2483 * @param pVM The cross context VM structure.
2484 * @param pSSM The saved state handle.
2485 * @param uPass The pass (0).
2486 */
2487static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2488{
2489 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2490 cpumR3SaveCpuId(pVM, pSSM);
2491 return VINF_SSM_DONT_CALL_AGAIN;
2492}
2493
2494
2495/**
2496 * Execute state save operation.
2497 *
2498 * @returns VBox status code.
2499 * @param pVM The cross context VM structure.
2500 * @param pSSM SSM operation handle.
2501 */
2502static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2503{
2504 /*
2505 * Save.
2506 */
2507 SSMR3PutU32(pSSM, pVM->cCpus);
2508 SSMR3PutU32(pSSM, sizeof(pVM->apCpusR3[0]->cpum.s.GuestMsrs.msr));
2509 CPUMCTX DummyHyperCtx;
2510 RT_ZERO(DummyHyperCtx);
2511 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2512 {
2513 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2514
2515 SSMR3PutStructEx(pSSM, &DummyHyperCtx, sizeof(DummyHyperCtx), 0, g_aCpumCtxFields, NULL);
2516
2517 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2518 SSMR3PutStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2519 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2520 if (pGstCtx->fXStateMask != 0)
2521 SSMR3PutStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr), 0, g_aCpumXSaveHdrFields, NULL);
2522 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2523 {
2524 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
2525 SSMR3PutStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2526 }
2527 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2528 {
2529 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
2530 SSMR3PutStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2531 }
2532 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2533 {
2534 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
2535 SSMR3PutStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2536 }
2537 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2538 {
2539 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
2540 SSMR3PutStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2541 }
2542 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2543 {
2544 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
2545 SSMR3PutStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2546 }
2547 if (pVM->cpum.s.GuestFeatures.fSvm)
2548 {
2549 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2550 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uMsrHSavePa);
2551 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.svm.GCPhysVmcb);
2552 SSMR3PutU64(pSSM, pGstCtx->hwvirt.svm.uPrevPauseTick);
2553 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilter);
2554 SSMR3PutU16(pSSM, pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2555 SSMR3PutBool(pSSM, pGstCtx->hwvirt.svm.fInterceptEvents);
2556 SSMR3PutStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState), 0 /* fFlags */,
2557 g_aSvmHwvirtHostState, NULL /* pvUser */);
2558 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2559 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2560 SSMR3PutMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2561 SSMR3PutU32(pSSM, pGstCtx->hwvirt.fLocalForcedActions);
2562 SSMR3PutBool(pSSM, pGstCtx->hwvirt.fGif);
2563 }
2564 if (pVM->cpum.s.GuestFeatures.fVmx)
2565 {
2566 Assert(pGstCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
2567 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmxon);
2568 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysVmcs);
2569 SSMR3PutGCPhys(pSSM, pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2570 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxRootMode);
2571 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2572 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fInterceptEvents);
2573 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2574 SSMR3PutStructEx(pSSM, pGstCtx->hwvirt.vmx.pVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2575 SSMR3PutStructEx(pSSM, pGstCtx->hwvirt.vmx.pShadowVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2576 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2577 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2578 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2579 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2580 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2581 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_SIZE);
2582 SSMR3PutMem(pSSM, pGstCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
2583 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2584 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uPrevPauseTick);
2585 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.uEntryTick);
2586 SSMR3PutU16(pSSM, pGstCtx->hwvirt.vmx.offVirtApicWrite);
2587 SSMR3PutBool(pSSM, pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2588 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64FeatCtrl);
2589 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2590 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2591 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2592 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2593 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2594 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2595 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2596 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2597 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2598 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2599 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2600 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2601 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2602 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2603 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2604 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2605 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2606 SSMR3PutU64(pSSM, pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2607 }
2608 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2609 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2610 AssertCompileSizeAlignment(pVCpu->cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2611 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVCpu->cpum.s.GuestMsrs.msr));
2612 }
2613
2614 cpumR3SaveCpuId(pVM, pSSM);
2615 return VINF_SUCCESS;
2616}
2617
2618
2619/**
2620 * @callback_method_impl{FNSSMINTLOADPREP}
2621 */
2622static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2623{
2624 NOREF(pSSM);
2625 pVM->cpum.s.fPendingRestore = true;
2626 return VINF_SUCCESS;
2627}
2628
2629
2630/**
2631 * @callback_method_impl{FNSSMINTLOADEXEC}
2632 */
2633static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2634{
2635 int rc; /* Only for AssertRCReturn use. */
2636
2637 /*
2638 * Validate version.
2639 */
2640 if ( uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_IEM
2641 && uVersion != CPUM_SAVED_STATE_VERSION_HWVIRT_SVM
2642 && uVersion != CPUM_SAVED_STATE_VERSION_XSAVE
2643 && uVersion != CPUM_SAVED_STATE_VERSION_GOOD_CPUID_COUNT
2644 && uVersion != CPUM_SAVED_STATE_VERSION_BAD_CPUID_COUNT
2645 && uVersion != CPUM_SAVED_STATE_VERSION_PUT_STRUCT
2646 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2647 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2648 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2649 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2650 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2651 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2652 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2653 {
2654 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2655 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2656 }
2657
2658 if (uPass == SSM_PASS_FINAL)
2659 {
2660 /*
2661 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2662 * really old SSM file versions.)
2663 */
2664 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2665 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2666 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2667 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR));
2668
2669 /*
2670 * Figure x86 and ctx field definitions to use for older states.
2671 */
2672 uint32_t const fLoad = uVersion > CPUM_SAVED_STATE_VERSION_MEM ? 0 : SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2673 PCSSMFIELD paCpumCtx1Fields = g_aCpumX87Fields;
2674 PCSSMFIELD paCpumCtx2Fields = g_aCpumCtxFields;
2675 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2676 {
2677 paCpumCtx1Fields = g_aCpumX87FieldsV16;
2678 paCpumCtx2Fields = g_aCpumCtxFieldsV16;
2679 }
2680 else if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2681 {
2682 paCpumCtx1Fields = g_aCpumX87FieldsMem;
2683 paCpumCtx2Fields = g_aCpumCtxFieldsMem;
2684 }
2685
2686 /*
2687 * The hyper state used to preceed the CPU count. Starting with
2688 * XSAVE it was moved down till after we've got the count.
2689 */
2690 CPUMCTX HyperCtxIgnored;
2691 if (uVersion < CPUM_SAVED_STATE_VERSION_XSAVE)
2692 {
2693 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2694 {
2695 X86FXSTATE Ign;
2696 SSMR3GetStructEx(pSSM, &Ign, sizeof(Ign), fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2697 SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored),
2698 fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2699 }
2700 }
2701
2702 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2703 {
2704 uint32_t cCpus;
2705 rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2706 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2707 VERR_SSM_UNEXPECTED_DATA);
2708 }
2709 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2710 || pVM->cCpus == 1,
2711 ("cCpus=%u\n", pVM->cCpus),
2712 VERR_SSM_UNEXPECTED_DATA);
2713
2714 uint32_t cbMsrs = 0;
2715 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2716 {
2717 rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2718 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2719 VERR_SSM_UNEXPECTED_DATA);
2720 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2721 VERR_SSM_UNEXPECTED_DATA);
2722 }
2723
2724 /*
2725 * Do the per-CPU restoring.
2726 */
2727 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2728 {
2729 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2730 PCPUMCTX pGstCtx = &pVCpu->cpum.s.Guest;
2731
2732 if (uVersion >= CPUM_SAVED_STATE_VERSION_XSAVE)
2733 {
2734 /*
2735 * The XSAVE saved state layout moved the hyper state down here.
2736 */
2737 rc = SSMR3GetStructEx(pSSM, &HyperCtxIgnored, sizeof(HyperCtxIgnored), 0, g_aCpumCtxFields, NULL);
2738 AssertRCReturn(rc, rc);
2739
2740 /*
2741 * Start by restoring the CPUMCTX structure and the X86FXSAVE bits of the extended state.
2742 */
2743 rc = SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), 0, g_aCpumCtxFields, NULL);
2744 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87), 0, g_aCpumX87Fields, NULL);
2745 AssertRCReturn(rc, rc);
2746
2747 /* Check that the xsave/xrstor mask is valid (invalid results in #GP). */
2748 if (pGstCtx->fXStateMask != 0)
2749 {
2750 AssertLogRelMsgReturn(!(pGstCtx->fXStateMask & ~pVM->cpum.s.fXStateGuestMask),
2751 ("fXStateMask=%#RX64 fXStateGuestMask=%#RX64\n",
2752 pGstCtx->fXStateMask, pVM->cpum.s.fXStateGuestMask),
2753 VERR_CPUM_INCOMPATIBLE_XSAVE_COMP_MASK);
2754 AssertLogRelMsgReturn(pGstCtx->fXStateMask & XSAVE_C_X87,
2755 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2756 AssertLogRelMsgReturn((pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2757 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2758 AssertLogRelMsgReturn( (pGstCtx->fXStateMask & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2759 || (pGstCtx->fXStateMask & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2760 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2761 ("fXStateMask=%#RX64\n", pGstCtx->fXStateMask), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2762 }
2763
2764 /* Check that the XCR0 mask is valid (invalid results in #GP). */
2765 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87, ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XCR0);
2766 if (pGstCtx->aXcr[0] != XSAVE_C_X87)
2767 {
2768 AssertLogRelMsgReturn(!(pGstCtx->aXcr[0] & ~(pGstCtx->fXStateMask | XSAVE_C_X87)),
2769 ("xcr0=%#RX64 fXStateMask=%#RX64\n", pGstCtx->aXcr[0], pGstCtx->fXStateMask),
2770 VERR_CPUM_INVALID_XCR0);
2771 AssertLogRelMsgReturn(pGstCtx->aXcr[0] & XSAVE_C_X87,
2772 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2773 AssertLogRelMsgReturn((pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM,
2774 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2775 AssertLogRelMsgReturn( (pGstCtx->aXcr[0] & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
2776 || (pGstCtx->aXcr[0] & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
2777 == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI),
2778 ("xcr0=%#RX64\n", pGstCtx->aXcr[0]), VERR_CPUM_INVALID_XSAVE_COMP_MASK);
2779 }
2780
2781 /* Check that the XCR1 is zero, as we don't implement it yet. */
2782 AssertLogRelMsgReturn(!pGstCtx->aXcr[1], ("xcr1=%#RX64\n", pGstCtx->aXcr[1]), VERR_SSM_DATA_UNIT_FORMAT_CHANGED);
2783
2784 /*
2785 * Restore the individual extended state components we support.
2786 */
2787 if (pGstCtx->fXStateMask != 0)
2788 {
2789 rc = SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->Hdr, sizeof(pGstCtx->pXStateR3->Hdr),
2790 0, g_aCpumXSaveHdrFields, NULL);
2791 AssertRCReturn(rc, rc);
2792 AssertLogRelMsgReturn(!(pGstCtx->pXStateR3->Hdr.bmXState & ~pGstCtx->fXStateMask),
2793 ("bmXState=%#RX64 fXStateMask=%#RX64\n",
2794 pGstCtx->pXStateR3->Hdr.bmXState, pGstCtx->fXStateMask),
2795 VERR_CPUM_INVALID_XSAVE_HDR);
2796 }
2797 if (pGstCtx->fXStateMask & XSAVE_C_YMM)
2798 {
2799 PX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_YMM_BIT, PX86XSAVEYMMHI);
2800 SSMR3GetStructEx(pSSM, pYmmHiCtx, sizeof(*pYmmHiCtx), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumYmmHiFields, NULL);
2801 }
2802 if (pGstCtx->fXStateMask & XSAVE_C_BNDREGS)
2803 {
2804 PX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDREGS_BIT, PX86XSAVEBNDREGS);
2805 SSMR3GetStructEx(pSSM, pBndRegs, sizeof(*pBndRegs), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndRegsFields, NULL);
2806 }
2807 if (pGstCtx->fXStateMask & XSAVE_C_BNDCSR)
2808 {
2809 PX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_BNDCSR_BIT, PX86XSAVEBNDCFG);
2810 SSMR3GetStructEx(pSSM, pBndCfg, sizeof(*pBndCfg), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumBndCfgFields, NULL);
2811 }
2812 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_HI256)
2813 {
2814 PX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_HI256_BIT, PX86XSAVEZMMHI256);
2815 SSMR3GetStructEx(pSSM, pZmmHi256, sizeof(*pZmmHi256), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmmHi256Fields, NULL);
2816 }
2817 if (pGstCtx->fXStateMask & XSAVE_C_ZMM_16HI)
2818 {
2819 PX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pGstCtx, XSAVE_C_ZMM_16HI_BIT, PX86XSAVEZMM16HI);
2820 SSMR3GetStructEx(pSSM, pZmm16Hi, sizeof(*pZmm16Hi), SSMSTRUCT_FLAGS_FULL_STRUCT, g_aCpumZmm16HiFields, NULL);
2821 }
2822 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_SVM)
2823 {
2824 if (pVM->cpum.s.GuestFeatures.fSvm)
2825 {
2826 Assert(pGstCtx->hwvirt.svm.CTX_SUFF(pVmcb));
2827 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uMsrHSavePa);
2828 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.svm.GCPhysVmcb);
2829 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.svm.uPrevPauseTick);
2830 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilter);
2831 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.svm.cPauseFilterThreshold);
2832 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.svm.fInterceptEvents);
2833 SSMR3GetStructEx(pSSM, &pGstCtx->hwvirt.svm.HostState, sizeof(pGstCtx->hwvirt.svm.HostState),
2834 0 /* fFlags */, g_aSvmHwvirtHostState, NULL /* pvUser */);
2835 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pVmcbR3, SVM_VMCB_PAGES << X86_PAGE_4K_SHIFT);
2836 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvMsrBitmapR3, SVM_MSRPM_PAGES << X86_PAGE_4K_SHIFT);
2837 SSMR3GetMem(pSSM, pGstCtx->hwvirt.svm.pvIoBitmapR3, SVM_IOPM_PAGES << X86_PAGE_4K_SHIFT);
2838 SSMR3GetU32(pSSM, &pGstCtx->hwvirt.fLocalForcedActions);
2839 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.fGif);
2840 }
2841 }
2842 if (uVersion >= CPUM_SAVED_STATE_VERSION_HWVIRT_VMX_IEM)
2843 {
2844 if (pVM->cpum.s.GuestFeatures.fVmx)
2845 {
2846 Assert(pGstCtx->hwvirt.vmx.CTX_SUFF(pVmcs));
2847 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmxon);
2848 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysVmcs);
2849 SSMR3GetGCPhys(pSSM, &pGstCtx->hwvirt.vmx.GCPhysShadowVmcs);
2850 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxRootMode);
2851 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInVmxNonRootMode);
2852 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fInterceptEvents);
2853 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fNmiUnblockingIret);
2854 SSMR3GetStructEx(pSSM, pGstCtx->hwvirt.vmx.pVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2855 SSMR3GetStructEx(pSSM, pGstCtx->hwvirt.vmx.pShadowVmcsR3, sizeof(VMXVVMCS), 0, g_aVmxHwvirtVmcs, NULL);
2856 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvVmreadBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2857 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvVmwriteBitmapR3, VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
2858 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pEntryMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2859 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrStoreAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2860 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pExitMsrLoadAreaR3, VMX_V_AUTOMSR_AREA_SIZE);
2861 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvMsrBitmapR3, VMX_V_MSR_BITMAP_SIZE);
2862 SSMR3GetMem(pSSM, pGstCtx->hwvirt.vmx.pvIoBitmapR3, VMX_V_IO_BITMAP_A_SIZE + VMX_V_IO_BITMAP_B_SIZE);
2863 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uFirstPauseLoopTick);
2864 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uPrevPauseTick);
2865 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.uEntryTick);
2866 SSMR3GetU16(pSSM, &pGstCtx->hwvirt.vmx.offVirtApicWrite);
2867 SSMR3GetBool(pSSM, &pGstCtx->hwvirt.vmx.fVirtNmiBlocking);
2868 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64FeatCtrl);
2869 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Basic);
2870 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.PinCtls.u);
2871 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls.u);
2872 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ProcCtls2.u);
2873 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.ExitCtls.u);
2874 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.EntryCtls.u);
2875 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TruePinCtls.u);
2876 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueProcCtls.u);
2877 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueEntryCtls.u);
2878 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.TrueExitCtls.u);
2879 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Misc);
2880 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed0);
2881 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr0Fixed1);
2882 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed0);
2883 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64Cr4Fixed1);
2884 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmcsEnum);
2885 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64VmFunc);
2886 SSMR3GetU64(pSSM, &pGstCtx->hwvirt.vmx.Msrs.u64EptVpidCaps);
2887 }
2888 }
2889 }
2890 else
2891 {
2892 /*
2893 * Pre XSAVE saved state.
2894 */
2895 SSMR3GetStructEx(pSSM, &pGstCtx->pXStateR3->x87, sizeof(pGstCtx->pXStateR3->x87),
2896 fLoad | SSMSTRUCT_FLAGS_NO_TAIL_MARKER, paCpumCtx1Fields, NULL);
2897 SSMR3GetStructEx(pSSM, pGstCtx, sizeof(*pGstCtx), fLoad | SSMSTRUCT_FLAGS_NO_LEAD_MARKER, paCpumCtx2Fields, NULL);
2898 }
2899
2900 /*
2901 * Restore a couple of flags and the MSRs.
2902 */
2903 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fUseFlags);
2904 SSMR3GetU32(pSSM, &pVCpu->cpum.s.fChanged);
2905
2906 rc = VINF_SUCCESS;
2907 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2908 rc = SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], cbMsrs);
2909 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2910 {
2911 SSMR3GetMem(pSSM, &pVCpu->cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2912 rc = SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2913 }
2914 AssertRCReturn(rc, rc);
2915
2916 /* REM and other may have cleared must-be-one fields in DR6 and
2917 DR7, fix these. */
2918 pGstCtx->dr[6] &= ~(X86_DR6_RAZ_MASK | X86_DR6_MBZ_MASK);
2919 pGstCtx->dr[6] |= X86_DR6_RA1_MASK;
2920 pGstCtx->dr[7] &= ~(X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
2921 pGstCtx->dr[7] |= X86_DR7_RA1_MASK;
2922 }
2923
2924 /* Older states does not have the internal selector register flags
2925 and valid selector value. Supply those. */
2926 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2927 {
2928 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2929 {
2930 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2931 bool const fValid = true /*!VM_IS_RAW_MODE_ENABLED(pVM)*/
2932 || ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2933 && !(pVCpu->cpum.s.fChanged & CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID));
2934 PCPUMSELREG paSelReg = CPUMCTX_FIRST_SREG(&pVCpu->cpum.s.Guest);
2935 if (fValid)
2936 {
2937 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2938 {
2939 paSelReg[iSelReg].fFlags = CPUMSELREG_FLAGS_VALID;
2940 paSelReg[iSelReg].ValidSel = paSelReg[iSelReg].Sel;
2941 }
2942
2943 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2944 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2945 }
2946 else
2947 {
2948 for (uint32_t iSelReg = 0; iSelReg < X86_SREG_COUNT; iSelReg++)
2949 {
2950 paSelReg[iSelReg].fFlags = 0;
2951 paSelReg[iSelReg].ValidSel = 0;
2952 }
2953
2954 /* This might not be 104% correct, but I think it's close
2955 enough for all practical purposes... (REM always loaded
2956 LDTR registers.) */
2957 pVCpu->cpum.s.Guest.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
2958 pVCpu->cpum.s.Guest.ldtr.ValidSel = pVCpu->cpum.s.Guest.ldtr.Sel;
2959 }
2960 pVCpu->cpum.s.Guest.tr.fFlags = CPUMSELREG_FLAGS_VALID;
2961 pVCpu->cpum.s.Guest.tr.ValidSel = pVCpu->cpum.s.Guest.tr.Sel;
2962 }
2963 }
2964
2965 /* Clear CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID. */
2966 if ( uVersion > CPUM_SAVED_STATE_VERSION_VER3_2
2967 && uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2968 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2969 {
2970 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2971 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2972 }
2973
2974 /*
2975 * A quick sanity check.
2976 */
2977 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
2978 {
2979 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
2980 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.es.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2981 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.cs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2982 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ss.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2983 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.ds.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2984 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.fs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2985 AssertLogRelReturn(!(pVCpu->cpum.s.Guest.gs.fFlags & ~CPUMSELREG_FLAGS_VALID_MASK), VERR_SSM_UNEXPECTED_DATA);
2986 }
2987 }
2988
2989 pVM->cpum.s.fPendingRestore = false;
2990
2991 /*
2992 * Guest CPUIDs (and VMX MSR features).
2993 */
2994 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2)
2995 {
2996 CPUMMSRS GuestMsrs;
2997 RT_ZERO(GuestMsrs);
2998
2999 CPUMFEATURES BaseFeatures;
3000 bool const fVmxGstFeat = pVM->cpum.s.GuestFeatures.fVmx;
3001 if (fVmxGstFeat)
3002 {
3003 /*
3004 * At this point the MSRs in the guest CPU-context are loaded with the guest VMX MSRs from the saved state.
3005 * However the VMX sub-features have not been exploded yet. So cache the base (host derived) VMX features
3006 * here so we can compare them for compatibility after exploding guest features.
3007 */
3008 BaseFeatures = pVM->cpum.s.GuestFeatures;
3009
3010 /* Use the VMX MSR features from the saved state while exploding guest features. */
3011 GuestMsrs.hwvirt.vmx = pVM->apCpusR3[0]->cpum.s.Guest.hwvirt.vmx.Msrs;
3012 }
3013
3014 /* Load CPUID and explode guest features. */
3015 rc = cpumR3LoadCpuId(pVM, pSSM, uVersion, &GuestMsrs);
3016 if (fVmxGstFeat)
3017 {
3018 /*
3019 * Check if the exploded VMX features from the saved state are compatible with the host-derived features
3020 * we cached earlier (above). The is required if we use hardware-assisted nested-guest execution with
3021 * VMX features presented to the guest.
3022 */
3023 bool const fIsCompat = cpumR3AreVmxCpuFeaturesCompatible(pVM, &BaseFeatures, &pVM->cpum.s.GuestFeatures);
3024 if (!fIsCompat)
3025 return VERR_CPUM_INVALID_HWVIRT_FEAT_COMBO;
3026 }
3027 return rc;
3028 }
3029 return cpumR3LoadCpuIdPre32(pVM, pSSM, uVersion);
3030}
3031
3032
3033/**
3034 * @callback_method_impl{FNSSMINTLOADDONE}
3035 */
3036static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
3037{
3038 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
3039 return VINF_SUCCESS;
3040
3041 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
3042 if (pVM->cpum.s.fPendingRestore)
3043 {
3044 LogRel(("CPUM: Missing state!\n"));
3045 return VERR_INTERNAL_ERROR_2;
3046 }
3047
3048 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
3049 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
3050 {
3051 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
3052
3053 /* Notify PGM of the NXE states in case they've changed. */
3054 PGMNotifyNxeChanged(pVCpu, RT_BOOL(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
3055
3056 /* During init. this is done in CPUMR3InitCompleted(). */
3057 if (fSupportsLongMode)
3058 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
3059 }
3060 return VINF_SUCCESS;
3061}
3062
3063
3064/**
3065 * Checks if the CPUM state restore is still pending.
3066 *
3067 * @returns true / false.
3068 * @param pVM The cross context VM structure.
3069 */
3070VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
3071{
3072 return pVM->cpum.s.fPendingRestore;
3073}
3074
3075
3076/**
3077 * Formats the EFLAGS value into mnemonics.
3078 *
3079 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
3080 * @param efl The EFLAGS value.
3081 */
3082static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
3083{
3084 /*
3085 * Format the flags.
3086 */
3087 static const struct
3088 {
3089 const char *pszSet; const char *pszClear; uint32_t fFlag;
3090 } s_aFlags[] =
3091 {
3092 { "vip",NULL, X86_EFL_VIP },
3093 { "vif",NULL, X86_EFL_VIF },
3094 { "ac", NULL, X86_EFL_AC },
3095 { "vm", NULL, X86_EFL_VM },
3096 { "rf", NULL, X86_EFL_RF },
3097 { "nt", NULL, X86_EFL_NT },
3098 { "ov", "nv", X86_EFL_OF },
3099 { "dn", "up", X86_EFL_DF },
3100 { "ei", "di", X86_EFL_IF },
3101 { "tf", NULL, X86_EFL_TF },
3102 { "nt", "pl", X86_EFL_SF },
3103 { "nz", "zr", X86_EFL_ZF },
3104 { "ac", "na", X86_EFL_AF },
3105 { "po", "pe", X86_EFL_PF },
3106 { "cy", "nc", X86_EFL_CF },
3107 };
3108 char *psz = pszEFlags;
3109 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
3110 {
3111 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
3112 if (pszAdd)
3113 {
3114 strcpy(psz, pszAdd);
3115 psz += strlen(pszAdd);
3116 *psz++ = ' ';
3117 }
3118 }
3119 psz[-1] = '\0';
3120}
3121
3122
3123/**
3124 * Formats a full register dump.
3125 *
3126 * @param pVM The cross context VM structure.
3127 * @param pCtx The context to format.
3128 * @param pCtxCore The context core to format.
3129 * @param pHlp Output functions.
3130 * @param enmType The dump type.
3131 * @param pszPrefix Register name prefix.
3132 */
3133static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
3134 const char *pszPrefix)
3135{
3136 NOREF(pVM);
3137
3138 /*
3139 * Format the EFLAGS.
3140 */
3141 uint32_t efl = pCtxCore->eflags.u32;
3142 char szEFlags[80];
3143 cpumR3InfoFormatFlags(&szEFlags[0], efl);
3144
3145 /*
3146 * Format the registers.
3147 */
3148 switch (enmType)
3149 {
3150 case CPUMDUMPTYPE_TERSE:
3151 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3152 pHlp->pfnPrintf(pHlp,
3153 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3154 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3155 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3156 "%sr14=%016RX64 %sr15=%016RX64\n"
3157 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3158 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3159 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3160 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3161 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3162 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3163 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3164 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3165 else
3166 pHlp->pfnPrintf(pHlp,
3167 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3168 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3169 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
3170 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3171 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3172 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3173 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
3174 break;
3175
3176 case CPUMDUMPTYPE_DEFAULT:
3177 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3178 pHlp->pfnPrintf(pHlp,
3179 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3180 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3181 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3182 "%sr14=%016RX64 %sr15=%016RX64\n"
3183 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3184 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3185 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
3186 ,
3187 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3188 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3189 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3190 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3191 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3192 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3193 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3194 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3195 else
3196 pHlp->pfnPrintf(pHlp,
3197 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3198 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3199 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
3200 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
3201 ,
3202 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3203 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3204 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
3205 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
3206 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3207 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
3208 break;
3209
3210 case CPUMDUMPTYPE_VERBOSE:
3211 if (CPUMIsGuestIn64BitCodeEx(pCtx))
3212 pHlp->pfnPrintf(pHlp,
3213 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
3214 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
3215 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
3216 "%sr14=%016RX64 %sr15=%016RX64\n"
3217 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
3218 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3219 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3220 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3221 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3222 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3223 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
3224 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
3225 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
3226 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
3227 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3228 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3229 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3230 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
3231 ,
3232 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
3233 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
3234 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
3235 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3236 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
3237 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
3238 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
3239 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
3240 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
3241 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
3242 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3243 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3244 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3245 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3246 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3247 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3248 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3249 else
3250 pHlp->pfnPrintf(pHlp,
3251 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
3252 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
3253 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
3254 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
3255 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
3256 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
3257 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
3258 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
3259 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
3260 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3261 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
3262 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
3263 ,
3264 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
3265 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
3266 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
3267 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
3268 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
3269 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
3270 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
3271 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
3272 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
3273 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
3274 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
3275 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
3276
3277 pHlp->pfnPrintf(pHlp, "%sxcr=%016RX64 %sxcr1=%016RX64 %sxss=%016RX64 (fXStateMask=%016RX64)\n",
3278 pszPrefix, pCtx->aXcr[0], pszPrefix, pCtx->aXcr[1],
3279 pszPrefix, UINT64_C(0) /** @todo XSS */, pCtx->fXStateMask);
3280 if (pCtx->CTX_SUFF(pXState))
3281 {
3282 PX86FXSTATE pFpuCtx = &pCtx->CTX_SUFF(pXState)->x87;
3283 pHlp->pfnPrintf(pHlp,
3284 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
3285 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
3286 ,
3287 pszPrefix, pFpuCtx->FCW, pszPrefix, pFpuCtx->FSW, pszPrefix, pFpuCtx->FTW, pszPrefix, pFpuCtx->FOP,
3288 pszPrefix, pFpuCtx->MXCSR, pszPrefix, pFpuCtx->MXCSR_MASK,
3289 pszPrefix, pFpuCtx->FPUIP, pszPrefix, pFpuCtx->CS, pszPrefix, pFpuCtx->Rsrvd1,
3290 pszPrefix, pFpuCtx->FPUDP, pszPrefix, pFpuCtx->DS, pszPrefix, pFpuCtx->Rsrvd2
3291 );
3292 /*
3293 * The FSAVE style memory image contains ST(0)-ST(7) at increasing addresses,
3294 * not (FP)R0-7 as Intel SDM suggests.
3295 */
3296 unsigned iShift = (pFpuCtx->FSW >> 11) & 7;
3297 for (unsigned iST = 0; iST < RT_ELEMENTS(pFpuCtx->aRegs); iST++)
3298 {
3299 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pFpuCtx->aRegs);
3300 unsigned uTag = (pFpuCtx->FTW >> (2 * iFPR)) & 3;
3301 char chSign = pFpuCtx->aRegs[iST].au16[4] & 0x8000 ? '-' : '+';
3302 unsigned iInteger = (unsigned)(pFpuCtx->aRegs[iST].au64[0] >> 63);
3303 uint64_t u64Fraction = pFpuCtx->aRegs[iST].au64[0] & UINT64_C(0x7fffffffffffffff);
3304 int iExponent = pFpuCtx->aRegs[iST].au16[4] & 0x7fff;
3305 iExponent -= 16383; /* subtract bias */
3306 /** @todo This isn't entirenly correct and needs more work! */
3307 pHlp->pfnPrintf(pHlp,
3308 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu * 2 ^ %d (*)",
3309 pszPrefix, iST, pszPrefix, iFPR,
3310 pFpuCtx->aRegs[iST].au16[4], pFpuCtx->aRegs[iST].au32[1], pFpuCtx->aRegs[iST].au32[0],
3311 uTag, chSign, iInteger, u64Fraction, iExponent);
3312 if (pFpuCtx->aRegs[iST].au16[5] || pFpuCtx->aRegs[iST].au16[6] || pFpuCtx->aRegs[iST].au16[7])
3313 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
3314 pFpuCtx->aRegs[iST].au16[5], pFpuCtx->aRegs[iST].au16[6], pFpuCtx->aRegs[iST].au16[7]);
3315 else
3316 pHlp->pfnPrintf(pHlp, "\n");
3317 }
3318
3319 /* XMM/YMM/ZMM registers. */
3320 if (pCtx->fXStateMask & XSAVE_C_YMM)
3321 {
3322 PCX86XSAVEYMMHI pYmmHiCtx = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_YMM_BIT, PCX86XSAVEYMMHI);
3323 if (!(pCtx->fXStateMask & XSAVE_C_ZMM_HI256))
3324 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3325 pHlp->pfnPrintf(pHlp, "%sYMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3326 pszPrefix, i, i < 10 ? " " : "",
3327 pYmmHiCtx->aYmmHi[i].au32[3],
3328 pYmmHiCtx->aYmmHi[i].au32[2],
3329 pYmmHiCtx->aYmmHi[i].au32[1],
3330 pYmmHiCtx->aYmmHi[i].au32[0],
3331 pFpuCtx->aXMM[i].au32[3],
3332 pFpuCtx->aXMM[i].au32[2],
3333 pFpuCtx->aXMM[i].au32[1],
3334 pFpuCtx->aXMM[i].au32[0]);
3335 else
3336 {
3337 PCX86XSAVEZMMHI256 pZmmHi256 = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_HI256_BIT, PCX86XSAVEZMMHI256);
3338 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3339 pHlp->pfnPrintf(pHlp,
3340 "%sZMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3341 pszPrefix, i, i < 10 ? " " : "",
3342 pZmmHi256->aHi256Regs[i].au32[7],
3343 pZmmHi256->aHi256Regs[i].au32[6],
3344 pZmmHi256->aHi256Regs[i].au32[5],
3345 pZmmHi256->aHi256Regs[i].au32[4],
3346 pZmmHi256->aHi256Regs[i].au32[3],
3347 pZmmHi256->aHi256Regs[i].au32[2],
3348 pZmmHi256->aHi256Regs[i].au32[1],
3349 pZmmHi256->aHi256Regs[i].au32[0],
3350 pYmmHiCtx->aYmmHi[i].au32[3],
3351 pYmmHiCtx->aYmmHi[i].au32[2],
3352 pYmmHiCtx->aYmmHi[i].au32[1],
3353 pYmmHiCtx->aYmmHi[i].au32[0],
3354 pFpuCtx->aXMM[i].au32[3],
3355 pFpuCtx->aXMM[i].au32[2],
3356 pFpuCtx->aXMM[i].au32[1],
3357 pFpuCtx->aXMM[i].au32[0]);
3358
3359 PCX86XSAVEZMM16HI pZmm16Hi = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_ZMM_16HI_BIT, PCX86XSAVEZMM16HI);
3360 for (unsigned i = 0; i < RT_ELEMENTS(pZmm16Hi->aRegs); i++)
3361 pHlp->pfnPrintf(pHlp,
3362 "%sZMM%u=%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32''%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32'%08RX32\n",
3363 pszPrefix, i + 16,
3364 pZmm16Hi->aRegs[i].au32[15],
3365 pZmm16Hi->aRegs[i].au32[14],
3366 pZmm16Hi->aRegs[i].au32[13],
3367 pZmm16Hi->aRegs[i].au32[12],
3368 pZmm16Hi->aRegs[i].au32[11],
3369 pZmm16Hi->aRegs[i].au32[10],
3370 pZmm16Hi->aRegs[i].au32[9],
3371 pZmm16Hi->aRegs[i].au32[8],
3372 pZmm16Hi->aRegs[i].au32[7],
3373 pZmm16Hi->aRegs[i].au32[6],
3374 pZmm16Hi->aRegs[i].au32[5],
3375 pZmm16Hi->aRegs[i].au32[4],
3376 pZmm16Hi->aRegs[i].au32[3],
3377 pZmm16Hi->aRegs[i].au32[2],
3378 pZmm16Hi->aRegs[i].au32[1],
3379 pZmm16Hi->aRegs[i].au32[0]);
3380 }
3381 }
3382 else
3383 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->aXMM); i++)
3384 pHlp->pfnPrintf(pHlp,
3385 i & 1
3386 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
3387 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
3388 pszPrefix, i, i < 10 ? " " : "",
3389 pFpuCtx->aXMM[i].au32[3],
3390 pFpuCtx->aXMM[i].au32[2],
3391 pFpuCtx->aXMM[i].au32[1],
3392 pFpuCtx->aXMM[i].au32[0]);
3393
3394 if (pCtx->fXStateMask & XSAVE_C_OPMASK)
3395 {
3396 PCX86XSAVEOPMASK pOpMask = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_OPMASK_BIT, PCX86XSAVEOPMASK);
3397 for (unsigned i = 0; i < RT_ELEMENTS(pOpMask->aKRegs); i += 4)
3398 pHlp->pfnPrintf(pHlp, "%sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64 %sK%u=%016RX64\n",
3399 pszPrefix, i + 0, pOpMask->aKRegs[i + 0],
3400 pszPrefix, i + 1, pOpMask->aKRegs[i + 1],
3401 pszPrefix, i + 2, pOpMask->aKRegs[i + 2],
3402 pszPrefix, i + 3, pOpMask->aKRegs[i + 3]);
3403 }
3404
3405 if (pCtx->fXStateMask & XSAVE_C_BNDREGS)
3406 {
3407 PCX86XSAVEBNDREGS pBndRegs = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDREGS_BIT, PCX86XSAVEBNDREGS);
3408 for (unsigned i = 0; i < RT_ELEMENTS(pBndRegs->aRegs); i += 2)
3409 pHlp->pfnPrintf(pHlp, "%sBNDREG%u=%016RX64/%016RX64 %sBNDREG%u=%016RX64/%016RX64\n",
3410 pszPrefix, i, pBndRegs->aRegs[i].uLowerBound, pBndRegs->aRegs[i].uUpperBound,
3411 pszPrefix, i + 1, pBndRegs->aRegs[i + 1].uLowerBound, pBndRegs->aRegs[i + 1].uUpperBound);
3412 }
3413
3414 if (pCtx->fXStateMask & XSAVE_C_BNDCSR)
3415 {
3416 PCX86XSAVEBNDCFG pBndCfg = CPUMCTX_XSAVE_C_PTR(pCtx, XSAVE_C_BNDCSR_BIT, PCX86XSAVEBNDCFG);
3417 pHlp->pfnPrintf(pHlp, "%sBNDCFG.CONFIG=%016RX64 %sBNDCFG.STATUS=%016RX64\n",
3418 pszPrefix, pBndCfg->fConfig, pszPrefix, pBndCfg->fStatus);
3419 }
3420
3421 for (unsigned i = 0; i < RT_ELEMENTS(pFpuCtx->au32RsrvdRest); i++)
3422 if (pFpuCtx->au32RsrvdRest[i])
3423 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[%u]=%RX32 (offset=%#x)\n",
3424 pszPrefix, i, pFpuCtx->au32RsrvdRest[i], RT_UOFFSETOF_DYN(X86FXSTATE, au32RsrvdRest[i]) );
3425 }
3426
3427 pHlp->pfnPrintf(pHlp,
3428 "%sEFER =%016RX64\n"
3429 "%sPAT =%016RX64\n"
3430 "%sSTAR =%016RX64\n"
3431 "%sCSTAR =%016RX64\n"
3432 "%sLSTAR =%016RX64\n"
3433 "%sSFMASK =%016RX64\n"
3434 "%sKERNELGSBASE =%016RX64\n",
3435 pszPrefix, pCtx->msrEFER,
3436 pszPrefix, pCtx->msrPAT,
3437 pszPrefix, pCtx->msrSTAR,
3438 pszPrefix, pCtx->msrCSTAR,
3439 pszPrefix, pCtx->msrLSTAR,
3440 pszPrefix, pCtx->msrSFMASK,
3441 pszPrefix, pCtx->msrKERNELGSBASE);
3442 break;
3443 }
3444}
3445
3446
3447/**
3448 * Display all cpu states and any other cpum info.
3449 *
3450 * @param pVM The cross context VM structure.
3451 * @param pHlp The info helper functions.
3452 * @param pszArgs Arguments, ignored.
3453 */
3454static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3455{
3456 cpumR3InfoGuest(pVM, pHlp, pszArgs);
3457 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
3458 cpumR3InfoGuestHwvirt(pVM, pHlp, pszArgs);
3459 cpumR3InfoHyper(pVM, pHlp, pszArgs);
3460 cpumR3InfoHost(pVM, pHlp, pszArgs);
3461}
3462
3463
3464/**
3465 * Parses the info argument.
3466 *
3467 * The argument starts with 'verbose', 'terse' or 'default' and then
3468 * continues with the comment string.
3469 *
3470 * @param pszArgs The pointer to the argument string.
3471 * @param penmType Where to store the dump type request.
3472 * @param ppszComment Where to store the pointer to the comment string.
3473 */
3474static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
3475{
3476 if (!pszArgs)
3477 {
3478 *penmType = CPUMDUMPTYPE_DEFAULT;
3479 *ppszComment = "";
3480 }
3481 else
3482 {
3483 if (!strncmp(pszArgs, RT_STR_TUPLE("verbose")))
3484 {
3485 pszArgs += 7;
3486 *penmType = CPUMDUMPTYPE_VERBOSE;
3487 }
3488 else if (!strncmp(pszArgs, RT_STR_TUPLE("terse")))
3489 {
3490 pszArgs += 5;
3491 *penmType = CPUMDUMPTYPE_TERSE;
3492 }
3493 else if (!strncmp(pszArgs, RT_STR_TUPLE("default")))
3494 {
3495 pszArgs += 7;
3496 *penmType = CPUMDUMPTYPE_DEFAULT;
3497 }
3498 else
3499 *penmType = CPUMDUMPTYPE_DEFAULT;
3500 *ppszComment = RTStrStripL(pszArgs);
3501 }
3502}
3503
3504
3505/**
3506 * Display the guest cpu state.
3507 *
3508 * @param pVM The cross context VM structure.
3509 * @param pHlp The info helper functions.
3510 * @param pszArgs Arguments.
3511 */
3512static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3513{
3514 CPUMDUMPTYPE enmType;
3515 const char *pszComment;
3516 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
3517
3518 PVMCPU pVCpu = VMMGetCpu(pVM);
3519 if (!pVCpu)
3520 pVCpu = pVM->apCpusR3[0];
3521
3522 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
3523
3524 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3525 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
3526}
3527
3528
3529/**
3530 * Displays an SVM VMCB control area.
3531 *
3532 * @param pHlp The info helper functions.
3533 * @param pVmcbCtrl Pointer to a SVM VMCB controls area.
3534 * @param pszPrefix Caller specified string prefix.
3535 */
3536static void cpumR3InfoSvmVmcbCtrl(PCDBGFINFOHLP pHlp, PCSVMVMCBCTRL pVmcbCtrl, const char *pszPrefix)
3537{
3538 AssertReturnVoid(pHlp);
3539 AssertReturnVoid(pVmcbCtrl);
3540
3541 pHlp->pfnPrintf(pHlp, "%sCRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdCRx);
3542 pHlp->pfnPrintf(pHlp, "%sCRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrCRx);
3543 pHlp->pfnPrintf(pHlp, "%sDRX-read intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptRdDRx);
3544 pHlp->pfnPrintf(pHlp, "%sDRX-write intercepts = %#RX16\n", pszPrefix, pVmcbCtrl->u16InterceptWrDRx);
3545 pHlp->pfnPrintf(pHlp, "%sException intercepts = %#RX32\n", pszPrefix, pVmcbCtrl->u32InterceptXcpt);
3546 pHlp->pfnPrintf(pHlp, "%sControl intercepts = %#RX64\n", pszPrefix, pVmcbCtrl->u64InterceptCtrl);
3547 pHlp->pfnPrintf(pHlp, "%sPause-filter threshold = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterThreshold);
3548 pHlp->pfnPrintf(pHlp, "%sPause-filter count = %#RX16\n", pszPrefix, pVmcbCtrl->u16PauseFilterCount);
3549 pHlp->pfnPrintf(pHlp, "%sIOPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64IOPMPhysAddr);
3550 pHlp->pfnPrintf(pHlp, "%sMSRPM bitmap physaddr = %#RX64\n", pszPrefix, pVmcbCtrl->u64MSRPMPhysAddr);
3551 pHlp->pfnPrintf(pHlp, "%sTSC offset = %#RX64\n", pszPrefix, pVmcbCtrl->u64TSCOffset);
3552 pHlp->pfnPrintf(pHlp, "%sTLB Control\n", pszPrefix);
3553 pHlp->pfnPrintf(pHlp, " %sASID = %#RX32\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u32ASID);
3554 pHlp->pfnPrintf(pHlp, " %sTLB-flush type = %u\n", pszPrefix, pVmcbCtrl->TLBCtrl.n.u8TLBFlush);
3555 pHlp->pfnPrintf(pHlp, "%sInterrupt Control\n", pszPrefix);
3556 pHlp->pfnPrintf(pHlp, " %sVTPR = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VTPR, pVmcbCtrl->IntCtrl.n.u8VTPR);
3557 pHlp->pfnPrintf(pHlp, " %sVIRQ (Pending) = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIrqPending);
3558 pHlp->pfnPrintf(pHlp, " %sVINTR vector = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u8VIntrVector);
3559 pHlp->pfnPrintf(pHlp, " %sVGIF = %u\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGif);
3560 pHlp->pfnPrintf(pHlp, " %sVINTR priority = %#RX8\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u4VIntrPrio);
3561 pHlp->pfnPrintf(pHlp, " %sIgnore TPR = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1IgnoreTPR);
3562 pHlp->pfnPrintf(pHlp, " %sVINTR masking = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VIntrMasking);
3563 pHlp->pfnPrintf(pHlp, " %sVGIF enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1VGifEnable);
3564 pHlp->pfnPrintf(pHlp, " %sAVIC enable = %RTbool\n", pszPrefix, pVmcbCtrl->IntCtrl.n.u1AvicEnable);
3565 pHlp->pfnPrintf(pHlp, "%sInterrupt Shadow\n", pszPrefix);
3566 pHlp->pfnPrintf(pHlp, " %sInterrupt shadow = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1IntShadow);
3567 pHlp->pfnPrintf(pHlp, " %sGuest-interrupt Mask = %RTbool\n", pszPrefix, pVmcbCtrl->IntShadow.n.u1GuestIntMask);
3568 pHlp->pfnPrintf(pHlp, "%sExit Code = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitCode);
3569 pHlp->pfnPrintf(pHlp, "%sEXITINFO1 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo1);
3570 pHlp->pfnPrintf(pHlp, "%sEXITINFO2 = %#RX64\n", pszPrefix, pVmcbCtrl->u64ExitInfo2);
3571 pHlp->pfnPrintf(pHlp, "%sExit Interrupt Info\n", pszPrefix);
3572 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1Valid);
3573 pHlp->pfnPrintf(pHlp, " %sVector = %#RX8 (%u)\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u8Vector, pVmcbCtrl->ExitIntInfo.n.u8Vector);
3574 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u3Type);
3575 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u1ErrorCodeValid);
3576 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->ExitIntInfo.n.u32ErrorCode);
3577 pHlp->pfnPrintf(pHlp, "%sNested paging and SEV\n", pszPrefix);
3578 pHlp->pfnPrintf(pHlp, " %sNested paging = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1NestedPaging);
3579 pHlp->pfnPrintf(pHlp, " %sSEV (Secure Encrypted VM) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1Sev);
3580 pHlp->pfnPrintf(pHlp, " %sSEV-ES (Encrypted State) = %RTbool\n", pszPrefix, pVmcbCtrl->NestedPagingCtrl.n.u1SevEs);
3581 pHlp->pfnPrintf(pHlp, "%sEvent Inject\n", pszPrefix);
3582 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1Valid);
3583 pHlp->pfnPrintf(pHlp, " %sVector = %#RX32 (%u)\n", pszPrefix, pVmcbCtrl->EventInject.n.u8Vector, pVmcbCtrl->EventInject.n.u8Vector);
3584 pHlp->pfnPrintf(pHlp, " %sType = %u\n", pszPrefix, pVmcbCtrl->EventInject.n.u3Type);
3585 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, pVmcbCtrl->EventInject.n.u1ErrorCodeValid);
3586 pHlp->pfnPrintf(pHlp, " %sError-code = %#RX32\n", pszPrefix, pVmcbCtrl->EventInject.n.u32ErrorCode);
3587 pHlp->pfnPrintf(pHlp, "%sNested-paging CR3 = %#RX64\n", pszPrefix, pVmcbCtrl->u64NestedPagingCR3);
3588 pHlp->pfnPrintf(pHlp, "%sLBR Virtualization\n", pszPrefix);
3589 pHlp->pfnPrintf(pHlp, " %sLBR virt = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1LbrVirt);
3590 pHlp->pfnPrintf(pHlp, " %sVirt. VMSAVE/VMLOAD = %RTbool\n", pszPrefix, pVmcbCtrl->LbrVirt.n.u1VirtVmsaveVmload);
3591 pHlp->pfnPrintf(pHlp, "%sVMCB Clean Bits = %#RX32\n", pszPrefix, pVmcbCtrl->u32VmcbCleanBits);
3592 pHlp->pfnPrintf(pHlp, "%sNext-RIP = %#RX64\n", pszPrefix, pVmcbCtrl->u64NextRIP);
3593 pHlp->pfnPrintf(pHlp, "%sInstruction bytes fetched = %u\n", pszPrefix, pVmcbCtrl->cbInstrFetched);
3594 pHlp->pfnPrintf(pHlp, "%sInstruction bytes = %.*Rhxs\n", pszPrefix, sizeof(pVmcbCtrl->abInstr), pVmcbCtrl->abInstr);
3595 pHlp->pfnPrintf(pHlp, "%sAVIC\n", pszPrefix);
3596 pHlp->pfnPrintf(pHlp, " %sBar addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBar.n.u40Addr);
3597 pHlp->pfnPrintf(pHlp, " %sBacking page addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicBackingPagePtr.n.u40Addr);
3598 pHlp->pfnPrintf(pHlp, " %sLogical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicLogicalTablePtr.n.u40Addr);
3599 pHlp->pfnPrintf(pHlp, " %sPhysical table addr = %#RX64\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u40Addr);
3600 pHlp->pfnPrintf(pHlp, " %sLast guest core Id = %u\n", pszPrefix, pVmcbCtrl->AvicPhysicalTablePtr.n.u8LastGuestCoreId);
3601}
3602
3603
3604/**
3605 * Helper for dumping the SVM VMCB selector registers.
3606 *
3607 * @param pHlp The info helper functions.
3608 * @param pSel Pointer to the SVM selector register.
3609 * @param pszName Name of the selector.
3610 * @param pszPrefix Caller specified string prefix.
3611 */
3612DECLINLINE(void) cpumR3InfoSvmVmcbSelReg(PCDBGFINFOHLP pHlp, PCSVMSELREG pSel, const char *pszName, const char *pszPrefix)
3613{
3614 /* The string width of 4 used below is to handle 'LDTR'. Change later if longer register names are used. */
3615 pHlp->pfnPrintf(pHlp, "%s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", pszPrefix,
3616 pszName, pSel->u16Sel, pSel->u64Base, pSel->u32Limit, pSel->u16Attr);
3617}
3618
3619
3620/**
3621 * Helper for dumping the SVM VMCB GDTR/IDTR registers.
3622 *
3623 * @param pHlp The info helper functions.
3624 * @param pXdtr Pointer to the descriptor table register.
3625 * @param pszName Name of the descriptor table register.
3626 * @param pszPrefix Caller specified string prefix.
3627 */
3628DECLINLINE(void) cpumR3InfoSvmVmcbXdtr(PCDBGFINFOHLP pHlp, PCSVMXDTR pXdtr, const char *pszName, const char *pszPrefix)
3629{
3630 /* The string width of 4 used below is to cover 'GDTR', 'IDTR'. Change later if longer register names are used. */
3631 pHlp->pfnPrintf(pHlp, "%s%-4s = %016RX64:%04x\n", pszPrefix, pszName, pXdtr->u64Base, pXdtr->u32Limit);
3632}
3633
3634
3635/**
3636 * Displays an SVM VMCB state-save area.
3637 *
3638 * @param pHlp The info helper functions.
3639 * @param pVmcbStateSave Pointer to a SVM VMCB controls area.
3640 * @param pszPrefix Caller specified string prefix.
3641 */
3642static void cpumR3InfoSvmVmcbStateSave(PCDBGFINFOHLP pHlp, PCSVMVMCBSTATESAVE pVmcbStateSave, const char *pszPrefix)
3643{
3644 AssertReturnVoid(pHlp);
3645 AssertReturnVoid(pVmcbStateSave);
3646
3647 char szEFlags[80];
3648 cpumR3InfoFormatFlags(&szEFlags[0], pVmcbStateSave->u64RFlags);
3649
3650 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->CS, "CS", pszPrefix);
3651 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->SS, "SS", pszPrefix);
3652 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->ES, "ES", pszPrefix);
3653 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->DS, "DS", pszPrefix);
3654 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->FS, "FS", pszPrefix);
3655 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->GS, "GS", pszPrefix);
3656 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->LDTR, "LDTR", pszPrefix);
3657 cpumR3InfoSvmVmcbSelReg(pHlp, &pVmcbStateSave->TR, "TR", pszPrefix);
3658 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->GDTR, "GDTR", pszPrefix);
3659 cpumR3InfoSvmVmcbXdtr(pHlp, &pVmcbStateSave->IDTR, "IDTR", pszPrefix);
3660 pHlp->pfnPrintf(pHlp, "%sCPL = %u\n", pszPrefix, pVmcbStateSave->u8CPL);
3661 pHlp->pfnPrintf(pHlp, "%sEFER = %#RX64\n", pszPrefix, pVmcbStateSave->u64EFER);
3662 pHlp->pfnPrintf(pHlp, "%sCR4 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR4);
3663 pHlp->pfnPrintf(pHlp, "%sCR3 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR3);
3664 pHlp->pfnPrintf(pHlp, "%sCR0 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR0);
3665 pHlp->pfnPrintf(pHlp, "%sDR7 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR7);
3666 pHlp->pfnPrintf(pHlp, "%sDR6 = %#RX64\n", pszPrefix, pVmcbStateSave->u64DR6);
3667 pHlp->pfnPrintf(pHlp, "%sRFLAGS = %#RX64 %31s\n", pszPrefix, pVmcbStateSave->u64RFlags, szEFlags);
3668 pHlp->pfnPrintf(pHlp, "%sRIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RIP);
3669 pHlp->pfnPrintf(pHlp, "%sRSP = %#RX64\n", pszPrefix, pVmcbStateSave->u64RSP);
3670 pHlp->pfnPrintf(pHlp, "%sRAX = %#RX64\n", pszPrefix, pVmcbStateSave->u64RAX);
3671 pHlp->pfnPrintf(pHlp, "%sSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64STAR);
3672 pHlp->pfnPrintf(pHlp, "%sLSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64LSTAR);
3673 pHlp->pfnPrintf(pHlp, "%sCSTAR = %#RX64\n", pszPrefix, pVmcbStateSave->u64CSTAR);
3674 pHlp->pfnPrintf(pHlp, "%sSFMASK = %#RX64\n", pszPrefix, pVmcbStateSave->u64SFMASK);
3675 pHlp->pfnPrintf(pHlp, "%sKERNELGSBASE = %#RX64\n", pszPrefix, pVmcbStateSave->u64KernelGSBase);
3676 pHlp->pfnPrintf(pHlp, "%sSysEnter CS = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterCS);
3677 pHlp->pfnPrintf(pHlp, "%sSysEnter EIP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterEIP);
3678 pHlp->pfnPrintf(pHlp, "%sSysEnter ESP = %#RX64\n", pszPrefix, pVmcbStateSave->u64SysEnterESP);
3679 pHlp->pfnPrintf(pHlp, "%sCR2 = %#RX64\n", pszPrefix, pVmcbStateSave->u64CR2);
3680 pHlp->pfnPrintf(pHlp, "%sPAT = %#RX64\n", pszPrefix, pVmcbStateSave->u64PAT);
3681 pHlp->pfnPrintf(pHlp, "%sDBGCTL = %#RX64\n", pszPrefix, pVmcbStateSave->u64DBGCTL);
3682 pHlp->pfnPrintf(pHlp, "%sBR_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_FROM);
3683 pHlp->pfnPrintf(pHlp, "%sBR_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64BR_TO);
3684 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_FROM = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPFROM);
3685 pHlp->pfnPrintf(pHlp, "%sLASTXCPT_TO = %#RX64\n", pszPrefix, pVmcbStateSave->u64LASTEXCPTO);
3686}
3687
3688
3689/**
3690 * Displays a virtual-VMCS.
3691 *
3692 * @param pVCpu The cross context virtual CPU structure.
3693 * @param pHlp The info helper functions.
3694 * @param pVmcs Pointer to a virtual VMCS.
3695 * @param pszPrefix Caller specified string prefix.
3696 */
3697static void cpumR3InfoVmxVmcs(PVMCPU pVCpu, PCDBGFINFOHLP pHlp, PCVMXVVMCS pVmcs, const char *pszPrefix)
3698{
3699 AssertReturnVoid(pHlp);
3700 AssertReturnVoid(pVmcs);
3701
3702 /* The string width of -4 used in the macros below to cover 'LDTR', 'GDTR', 'IDTR. */
3703#define CPUMVMX_DUMP_HOST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3704 do { \
3705 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64}\n", \
3706 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Host##a_Seg##Base.u); \
3707 } while (0)
3708
3709#define CPUMVMX_DUMP_HOST_FS_GS_TR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3710 do { \
3711 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64}\n", \
3712 (a_pszPrefix), (a_SegName), (a_pVmcs)->Host##a_Seg, (a_pVmcs)->u64Host##a_Seg##Base.u); \
3713 } while (0)
3714
3715#define CPUMVMX_DUMP_GUEST_SEGREG(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3716 do { \
3717 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {%04x base=%016RX64 limit=%08x flags=%04x}\n", \
3718 (a_pszPrefix), (a_SegName), (a_pVmcs)->Guest##a_Seg, (a_pVmcs)->u64Guest##a_Seg##Base.u, \
3719 (a_pVmcs)->u32Guest##a_Seg##Limit, (a_pVmcs)->u32Guest##a_Seg##Attr); \
3720 } while (0)
3721
3722#define CPUMVMX_DUMP_GUEST_XDTR(a_pHlp, a_pVmcs, a_Seg, a_SegName, a_pszPrefix) \
3723 do { \
3724 (a_pHlp)->pfnPrintf((a_pHlp), " %s%-4s = {base=%016RX64 limit=%08x}\n", \
3725 (a_pszPrefix), (a_SegName), (a_pVmcs)->u64Guest##a_Seg##Base.u, (a_pVmcs)->u32Guest##a_Seg##Limit); \
3726 } while (0)
3727
3728 /* Header. */
3729 {
3730 pHlp->pfnPrintf(pHlp, "%sHeader:\n", pszPrefix);
3731 pHlp->pfnPrintf(pHlp, " %sVMCS revision id = %#RX32\n", pszPrefix, pVmcs->u32VmcsRevId);
3732 pHlp->pfnPrintf(pHlp, " %sVMX-abort id = %#RX32 (%s)\n", pszPrefix, pVmcs->enmVmxAbort, HMGetVmxAbortDesc(pVmcs->enmVmxAbort));
3733 pHlp->pfnPrintf(pHlp, " %sVMCS state = %#x (%s)\n", pszPrefix, pVmcs->fVmcsState, HMGetVmxVmcsStateDesc(pVmcs->fVmcsState));
3734 }
3735
3736 /* Control fields. */
3737 {
3738 /* 16-bit. */
3739 pHlp->pfnPrintf(pHlp, "%sControl:\n", pszPrefix);
3740 pHlp->pfnPrintf(pHlp, " %sVPID = %#RX16\n", pszPrefix, pVmcs->u16Vpid);
3741 pHlp->pfnPrintf(pHlp, " %sPosted intr notify vector = %#RX16\n", pszPrefix, pVmcs->u16PostIntNotifyVector);
3742 pHlp->pfnPrintf(pHlp, " %sEPTP index = %#RX16\n", pszPrefix, pVmcs->u16EptpIndex);
3743
3744 /* 32-bit. */
3745 pHlp->pfnPrintf(pHlp, " %sPin ctls = %#RX32\n", pszPrefix, pVmcs->u32PinCtls);
3746 pHlp->pfnPrintf(pHlp, " %sProcessor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls);
3747 pHlp->pfnPrintf(pHlp, " %sSecondary processor ctls = %#RX32\n", pszPrefix, pVmcs->u32ProcCtls2);
3748 pHlp->pfnPrintf(pHlp, " %sVM-exit ctls = %#RX32\n", pszPrefix, pVmcs->u32ExitCtls);
3749 pHlp->pfnPrintf(pHlp, " %sVM-entry ctls = %#RX32\n", pszPrefix, pVmcs->u32EntryCtls);
3750 pHlp->pfnPrintf(pHlp, " %sException bitmap = %#RX32\n", pszPrefix, pVmcs->u32XcptBitmap);
3751 pHlp->pfnPrintf(pHlp, " %sPage-fault mask = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMask);
3752 pHlp->pfnPrintf(pHlp, " %sPage-fault match = %#RX32\n", pszPrefix, pVmcs->u32XcptPFMatch);
3753 pHlp->pfnPrintf(pHlp, " %sCR3-target count = %RU32\n", pszPrefix, pVmcs->u32Cr3TargetCount);
3754 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrStoreCount);
3755 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load count = %RU32\n", pszPrefix, pVmcs->u32ExitMsrLoadCount);
3756 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load count = %RU32\n", pszPrefix, pVmcs->u32EntryMsrLoadCount);
3757 pHlp->pfnPrintf(pHlp, " %sVM-entry interruption info = %#RX32\n", pszPrefix, pVmcs->u32EntryIntInfo);
3758 {
3759 uint32_t const fInfo = pVmcs->u32EntryIntInfo;
3760 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(fInfo);
3761 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_VALID(fInfo));
3762 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, HMGetVmxEntryIntInfoTypeDesc(uType));
3763 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_ENTRY_INT_INFO_VECTOR(fInfo));
3764 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3765 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3766 }
3767 pHlp->pfnPrintf(pHlp, " %sVM-entry xcpt error-code = %#RX32\n", pszPrefix, pVmcs->u32EntryXcptErrCode);
3768 pHlp->pfnPrintf(pHlp, " %sVM-entry instr length = %u byte(s)\n", pszPrefix, pVmcs->u32EntryInstrLen);
3769 pHlp->pfnPrintf(pHlp, " %sTPR threshold = %#RX32\n", pszPrefix, pVmcs->u32TprThreshold);
3770 pHlp->pfnPrintf(pHlp, " %sPLE gap = %#RX32\n", pszPrefix, pVmcs->u32PleGap);
3771 pHlp->pfnPrintf(pHlp, " %sPLE window = %#RX32\n", pszPrefix, pVmcs->u32PleWindow);
3772
3773 /* 64-bit. */
3774 pHlp->pfnPrintf(pHlp, " %sIO-bitmap A addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapA.u);
3775 pHlp->pfnPrintf(pHlp, " %sIO-bitmap B addr = %#RX64\n", pszPrefix, pVmcs->u64AddrIoBitmapB.u);
3776 pHlp->pfnPrintf(pHlp, " %sMSR-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrMsrBitmap.u);
3777 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR store addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrStore.u);
3778 pHlp->pfnPrintf(pHlp, " %sVM-exit MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrExitMsrLoad.u);
3779 pHlp->pfnPrintf(pHlp, " %sVM-entry MSR load addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEntryMsrLoad.u);
3780 pHlp->pfnPrintf(pHlp, " %sExecutive VMCS ptr = %#RX64\n", pszPrefix, pVmcs->u64ExecVmcsPtr.u);
3781 pHlp->pfnPrintf(pHlp, " %sPML addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPml.u);
3782 pHlp->pfnPrintf(pHlp, " %sTSC offset = %#RX64\n", pszPrefix, pVmcs->u64TscOffset.u);
3783 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVirtApic.u);
3784 pHlp->pfnPrintf(pHlp, " %sAPIC-access addr = %#RX64\n", pszPrefix, pVmcs->u64AddrApicAccess.u);
3785 pHlp->pfnPrintf(pHlp, " %sPosted-intr desc addr = %#RX64\n", pszPrefix, pVmcs->u64AddrPostedIntDesc.u);
3786 pHlp->pfnPrintf(pHlp, " %sVM-functions control = %#RX64\n", pszPrefix, pVmcs->u64VmFuncCtls.u);
3787 pHlp->pfnPrintf(pHlp, " %sEPTP ptr = %#RX64\n", pszPrefix, pVmcs->u64EptpPtr.u);
3788 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 0 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap0.u);
3789 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 1 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap1.u);
3790 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 2 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap2.u);
3791 pHlp->pfnPrintf(pHlp, " %sEOI-exit bitmap 3 addr = %#RX64\n", pszPrefix, pVmcs->u64EoiExitBitmap3.u);
3792 pHlp->pfnPrintf(pHlp, " %sEPTP-list addr = %#RX64\n", pszPrefix, pVmcs->u64AddrEptpList.u);
3793 pHlp->pfnPrintf(pHlp, " %sVMREAD-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmreadBitmap.u);
3794 pHlp->pfnPrintf(pHlp, " %sVMWRITE-bitmap addr = %#RX64\n", pszPrefix, pVmcs->u64AddrVmwriteBitmap.u);
3795 pHlp->pfnPrintf(pHlp, " %sVirt-Xcpt info addr = %#RX64\n", pszPrefix, pVmcs->u64AddrXcptVeInfo.u);
3796 pHlp->pfnPrintf(pHlp, " %sXSS-bitmap = %#RX64\n", pszPrefix, pVmcs->u64XssBitmap.u);
3797 pHlp->pfnPrintf(pHlp, " %sENCLS-exiting bitmap = %#RX64\n", pszPrefix, pVmcs->u64EnclsBitmap.u);
3798 pHlp->pfnPrintf(pHlp, " %sSPPT ptr = %#RX64\n", pszPrefix, pVmcs->u64SpptPtr.u);
3799 pHlp->pfnPrintf(pHlp, " %sTSC multiplier = %#RX64\n", pszPrefix, pVmcs->u64TscMultiplier.u);
3800
3801 /* Natural width. */
3802 pHlp->pfnPrintf(pHlp, " %sCR0 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr0Mask.u);
3803 pHlp->pfnPrintf(pHlp, " %sCR4 guest/host mask = %#RX64\n", pszPrefix, pVmcs->u64Cr4Mask.u);
3804 pHlp->pfnPrintf(pHlp, " %sCR0 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr0ReadShadow.u);
3805 pHlp->pfnPrintf(pHlp, " %sCR4 read shadow = %#RX64\n", pszPrefix, pVmcs->u64Cr4ReadShadow.u);
3806 pHlp->pfnPrintf(pHlp, " %sCR3-target 0 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target0.u);
3807 pHlp->pfnPrintf(pHlp, " %sCR3-target 1 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target1.u);
3808 pHlp->pfnPrintf(pHlp, " %sCR3-target 2 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target2.u);
3809 pHlp->pfnPrintf(pHlp, " %sCR3-target 3 = %#RX64\n", pszPrefix, pVmcs->u64Cr3Target3.u);
3810 }
3811
3812 /* Guest state. */
3813 {
3814 char szEFlags[80];
3815 cpumR3InfoFormatFlags(&szEFlags[0], pVmcs->u64GuestRFlags.u);
3816 pHlp->pfnPrintf(pHlp, "%sGuest state:\n", pszPrefix);
3817
3818 /* 16-bit. */
3819 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Cs, "cs", pszPrefix);
3820 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ss, "ss", pszPrefix);
3821 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Es, "es", pszPrefix);
3822 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ds, "ds", pszPrefix);
3823 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Fs, "fs", pszPrefix);
3824 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Gs, "gs", pszPrefix);
3825 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Ldtr, "ldtr", pszPrefix);
3826 CPUMVMX_DUMP_GUEST_SEGREG(pHlp, pVmcs, Tr, "tr", pszPrefix);
3827 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Gdtr, "gdtr", pszPrefix);
3828 CPUMVMX_DUMP_GUEST_XDTR(pHlp, pVmcs, Idtr, "idtr", pszPrefix);
3829 pHlp->pfnPrintf(pHlp, " %sInterrupt status = %#RX16\n", pszPrefix, pVmcs->u16GuestIntStatus);
3830 pHlp->pfnPrintf(pHlp, " %sPML index = %#RX16\n", pszPrefix, pVmcs->u16PmlIndex);
3831
3832 /* 32-bit. */
3833 pHlp->pfnPrintf(pHlp, " %sInterruptibility state = %#RX32\n", pszPrefix, pVmcs->u32GuestIntrState);
3834 pHlp->pfnPrintf(pHlp, " %sActivity state = %#RX32\n", pszPrefix, pVmcs->u32GuestActivityState);
3835 pHlp->pfnPrintf(pHlp, " %sSMBASE = %#RX32\n", pszPrefix, pVmcs->u32GuestSmBase);
3836 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32GuestSysenterCS);
3837 pHlp->pfnPrintf(pHlp, " %sVMX-preemption timer value = %#RX32\n", pszPrefix, pVmcs->u32PreemptTimer);
3838
3839 /* 64-bit. */
3840 pHlp->pfnPrintf(pHlp, " %sVMCS link ptr = %#RX64\n", pszPrefix, pVmcs->u64VmcsLinkPtr.u);
3841 pHlp->pfnPrintf(pHlp, " %sDBGCTL = %#RX64\n", pszPrefix, pVmcs->u64GuestDebugCtlMsr.u);
3842 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64GuestPatMsr.u);
3843 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64GuestEferMsr.u);
3844 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64GuestPerfGlobalCtlMsr.u);
3845 pHlp->pfnPrintf(pHlp, " %sPDPTE 0 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte0.u);
3846 pHlp->pfnPrintf(pHlp, " %sPDPTE 1 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte1.u);
3847 pHlp->pfnPrintf(pHlp, " %sPDPTE 2 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte2.u);
3848 pHlp->pfnPrintf(pHlp, " %sPDPTE 3 = %#RX64\n", pszPrefix, pVmcs->u64GuestPdpte3.u);
3849 pHlp->pfnPrintf(pHlp, " %sBNDCFGS = %#RX64\n", pszPrefix, pVmcs->u64GuestBndcfgsMsr.u);
3850 pHlp->pfnPrintf(pHlp, " %sRTIT_CTL = %#RX64\n", pszPrefix, pVmcs->u64GuestRtitCtlMsr.u);
3851
3852 /* Natural width. */
3853 pHlp->pfnPrintf(pHlp, " %scr0 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr0.u);
3854 pHlp->pfnPrintf(pHlp, " %scr3 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr3.u);
3855 pHlp->pfnPrintf(pHlp, " %scr4 = %#RX64\n", pszPrefix, pVmcs->u64GuestCr4.u);
3856 pHlp->pfnPrintf(pHlp, " %sdr7 = %#RX64\n", pszPrefix, pVmcs->u64GuestDr7.u);
3857 pHlp->pfnPrintf(pHlp, " %srsp = %#RX64\n", pszPrefix, pVmcs->u64GuestRsp.u);
3858 pHlp->pfnPrintf(pHlp, " %srip = %#RX64\n", pszPrefix, pVmcs->u64GuestRip.u);
3859 pHlp->pfnPrintf(pHlp, " %srflags = %#RX64 %31s\n",pszPrefix, pVmcs->u64GuestRFlags.u, szEFlags);
3860 pHlp->pfnPrintf(pHlp, " %sPending debug xcpts = %#RX64\n", pszPrefix, pVmcs->u64GuestPendingDbgXcpt.u);
3861 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEsp.u);
3862 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64GuestSysenterEip.u);
3863 }
3864
3865 /* Host state. */
3866 {
3867 pHlp->pfnPrintf(pHlp, "%sHost state:\n", pszPrefix);
3868
3869 /* 16-bit. */
3870 pHlp->pfnPrintf(pHlp, " %scs = %#RX16\n", pszPrefix, pVmcs->HostCs);
3871 pHlp->pfnPrintf(pHlp, " %sss = %#RX16\n", pszPrefix, pVmcs->HostSs);
3872 pHlp->pfnPrintf(pHlp, " %sds = %#RX16\n", pszPrefix, pVmcs->HostDs);
3873 pHlp->pfnPrintf(pHlp, " %ses = %#RX16\n", pszPrefix, pVmcs->HostEs);
3874 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Fs, "fs", pszPrefix);
3875 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Gs, "gs", pszPrefix);
3876 CPUMVMX_DUMP_HOST_FS_GS_TR(pHlp, pVmcs, Tr, "tr", pszPrefix);
3877 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Gdtr, "gdtr", pszPrefix);
3878 CPUMVMX_DUMP_HOST_XDTR(pHlp, pVmcs, Idtr, "idtr", pszPrefix);
3879
3880 /* 32-bit. */
3881 pHlp->pfnPrintf(pHlp, " %sSysEnter CS = %#RX32\n", pszPrefix, pVmcs->u32HostSysenterCs);
3882
3883 /* 64-bit. */
3884 pHlp->pfnPrintf(pHlp, " %sEFER = %#RX64\n", pszPrefix, pVmcs->u64HostEferMsr.u);
3885 pHlp->pfnPrintf(pHlp, " %sPAT = %#RX64\n", pszPrefix, pVmcs->u64HostPatMsr.u);
3886 pHlp->pfnPrintf(pHlp, " %sPERFGLOBALCTRL = %#RX64\n", pszPrefix, pVmcs->u64HostPerfGlobalCtlMsr.u);
3887
3888 /* Natural width. */
3889 pHlp->pfnPrintf(pHlp, " %scr0 = %#RX64\n", pszPrefix, pVmcs->u64HostCr0.u);
3890 pHlp->pfnPrintf(pHlp, " %scr3 = %#RX64\n", pszPrefix, pVmcs->u64HostCr3.u);
3891 pHlp->pfnPrintf(pHlp, " %scr4 = %#RX64\n", pszPrefix, pVmcs->u64HostCr4.u);
3892 pHlp->pfnPrintf(pHlp, " %sSysEnter ESP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEsp.u);
3893 pHlp->pfnPrintf(pHlp, " %sSysEnter EIP = %#RX64\n", pszPrefix, pVmcs->u64HostSysenterEip.u);
3894 pHlp->pfnPrintf(pHlp, " %srsp = %#RX64\n", pszPrefix, pVmcs->u64HostRsp.u);
3895 pHlp->pfnPrintf(pHlp, " %srip = %#RX64\n", pszPrefix, pVmcs->u64HostRip.u);
3896 }
3897
3898 /* Read-only fields. */
3899 {
3900 pHlp->pfnPrintf(pHlp, "%sRead-only data fields:\n", pszPrefix);
3901
3902 /* 16-bit (none currently). */
3903
3904 /* 32-bit. */
3905 pHlp->pfnPrintf(pHlp, " %sExit reason = %u (%s)\n", pszPrefix, pVmcs->u32RoExitReason, HMGetVmxExitName(pVmcs->u32RoExitReason));
3906 pHlp->pfnPrintf(pHlp, " %sExit qualification = %#RX64\n", pszPrefix, pVmcs->u64RoExitQual.u);
3907 pHlp->pfnPrintf(pHlp, " %sVM-instruction error = %#RX32\n", pszPrefix, pVmcs->u32RoVmInstrError);
3908 pHlp->pfnPrintf(pHlp, " %sVM-exit intr info = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntInfo);
3909 {
3910 uint32_t const fInfo = pVmcs->u32RoExitIntInfo;
3911 uint8_t const uType = VMX_EXIT_INT_INFO_TYPE(fInfo);
3912 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_VALID(fInfo));
3913 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, HMGetVmxExitIntInfoTypeDesc(uType));
3914 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_EXIT_INT_INFO_VECTOR(fInfo));
3915 pHlp->pfnPrintf(pHlp, " %sNMI-unblocking-IRET = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_NMI_UNBLOCK_IRET(fInfo));
3916 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_EXIT_INT_INFO_IS_ERROR_CODE_VALID(fInfo));
3917 }
3918 pHlp->pfnPrintf(pHlp, " %sVM-exit intr error-code = %#RX32\n", pszPrefix, pVmcs->u32RoExitIntErrCode);
3919 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring info = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringInfo);
3920 {
3921 uint32_t const fInfo = pVmcs->u32RoIdtVectoringInfo;
3922 uint8_t const uType = VMX_IDT_VECTORING_INFO_TYPE(fInfo);
3923 pHlp->pfnPrintf(pHlp, " %sValid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_VALID(fInfo));
3924 pHlp->pfnPrintf(pHlp, " %sType = %#x (%s)\n", pszPrefix, uType, HMGetVmxIdtVectoringInfoTypeDesc(uType));
3925 pHlp->pfnPrintf(pHlp, " %sVector = %#x\n", pszPrefix, VMX_IDT_VECTORING_INFO_VECTOR(fInfo));
3926 pHlp->pfnPrintf(pHlp, " %sError-code valid = %RTbool\n", pszPrefix, VMX_IDT_VECTORING_INFO_IS_ERROR_CODE_VALID(fInfo));
3927 }
3928 pHlp->pfnPrintf(pHlp, " %sIDT-vectoring error-code = %#RX32\n", pszPrefix, pVmcs->u32RoIdtVectoringErrCode);
3929 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction length = %u byte(s)\n", pszPrefix, pVmcs->u32RoExitInstrLen);
3930 pHlp->pfnPrintf(pHlp, " %sVM-exit instruction info = %#RX64\n", pszPrefix, pVmcs->u32RoExitInstrInfo);
3931
3932 /* 64-bit. */
3933 pHlp->pfnPrintf(pHlp, " %sGuest-physical addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestPhysAddr.u);
3934
3935 /* Natural width. */
3936 pHlp->pfnPrintf(pHlp, " %sI/O RCX = %#RX64\n", pszPrefix, pVmcs->u64RoIoRcx.u);
3937 pHlp->pfnPrintf(pHlp, " %sI/O RSI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRsi.u);
3938 pHlp->pfnPrintf(pHlp, " %sI/O RDI = %#RX64\n", pszPrefix, pVmcs->u64RoIoRdi.u);
3939 pHlp->pfnPrintf(pHlp, " %sI/O RIP = %#RX64\n", pszPrefix, pVmcs->u64RoIoRip.u);
3940 pHlp->pfnPrintf(pHlp, " %sGuest-linear addr = %#RX64\n", pszPrefix, pVmcs->u64RoGuestLinearAddr.u);
3941 }
3942
3943#ifdef DEBUG_ramshankar
3944 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
3945 {
3946 void *pvPage = RTMemTmpAllocZ(VMX_V_VIRT_APIC_SIZE);
3947 Assert(pvPage);
3948 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
3949 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), pvPage, GCPhysVirtApic, VMX_V_VIRT_APIC_SIZE);
3950 if (RT_SUCCESS(rc))
3951 {
3952 pHlp->pfnPrintf(pHlp, " %sVirtual-APIC page\n", pszPrefix);
3953 pHlp->pfnPrintf(pHlp, "%.*Rhxs\n", VMX_V_VIRT_APIC_SIZE, pvPage);
3954 pHlp->pfnPrintf(pHlp, "\n");
3955 }
3956 RTMemTmpFree(pvPage);
3957 }
3958#else
3959 NOREF(pVCpu);
3960#endif
3961
3962#undef CPUMVMX_DUMP_HOST_XDTR
3963#undef CPUMVMX_DUMP_HOST_FS_GS_TR
3964#undef CPUMVMX_DUMP_GUEST_SEGREG
3965#undef CPUMVMX_DUMP_GUEST_XDTR
3966}
3967
3968
3969/**
3970 * Display the guest's hardware-virtualization cpu state.
3971 *
3972 * @param pVM The cross context VM structure.
3973 * @param pHlp The info helper functions.
3974 * @param pszArgs Arguments, ignored.
3975 */
3976static DECLCALLBACK(void) cpumR3InfoGuestHwvirt(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3977{
3978 RT_NOREF(pszArgs);
3979
3980 PVMCPU pVCpu = VMMGetCpu(pVM);
3981 if (!pVCpu)
3982 pVCpu = pVM->apCpusR3[0];
3983
3984 /*
3985 * Figure out what to dump.
3986 *
3987 * In the future we may need to dump everything whether or not we're actively in nested-guest mode
3988 * or not, hence the reason why we use a mask to determine what needs dumping. Currently, we only
3989 * dump hwvirt. state when the guest CPU is executing a nested-guest.
3990 */
3991 /** @todo perhaps make this configurable through pszArgs, depending on how much
3992 * noise we wish to accept when nested hwvirt. isn't used. */
3993#define CPUMHWVIRTDUMP_NONE (0)
3994#define CPUMHWVIRTDUMP_SVM RT_BIT(0)
3995#define CPUMHWVIRTDUMP_VMX RT_BIT(1)
3996#define CPUMHWVIRTDUMP_COMMON RT_BIT(2)
3997#define CPUMHWVIRTDUMP_LAST CPUMHWVIRTDUMP_VMX
3998
3999 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
4000 static const char *const s_aHwvirtModes[] = { "No/inactive", "SVM", "VMX", "Common" };
4001 bool const fSvm = pVM->cpum.s.GuestFeatures.fSvm;
4002 bool const fVmx = pVM->cpum.s.GuestFeatures.fVmx;
4003 uint8_t const idxHwvirtState = fSvm ? CPUMHWVIRTDUMP_SVM : (fVmx ? CPUMHWVIRTDUMP_VMX : CPUMHWVIRTDUMP_NONE);
4004 AssertCompile(CPUMHWVIRTDUMP_LAST <= RT_ELEMENTS(s_aHwvirtModes));
4005 Assert(idxHwvirtState < RT_ELEMENTS(s_aHwvirtModes));
4006 const char *pcszHwvirtMode = s_aHwvirtModes[idxHwvirtState];
4007 uint32_t fDumpState = idxHwvirtState | CPUMHWVIRTDUMP_COMMON;
4008
4009 /*
4010 * Dump it.
4011 */
4012 pHlp->pfnPrintf(pHlp, "VCPU[%u] hardware virtualization state:\n", pVCpu->idCpu);
4013
4014 if (fDumpState & CPUMHWVIRTDUMP_COMMON)
4015 pHlp->pfnPrintf(pHlp, "fLocalForcedActions = %#RX32\n", pCtx->hwvirt.fLocalForcedActions);
4016
4017 pHlp->pfnPrintf(pHlp, "%s hwvirt state%s\n", pcszHwvirtMode, (fDumpState & (CPUMHWVIRTDUMP_SVM | CPUMHWVIRTDUMP_VMX)) ?
4018 ":" : "");
4019 if (fDumpState & CPUMHWVIRTDUMP_SVM)
4020 {
4021 pHlp->pfnPrintf(pHlp, " fGif = %RTbool\n", pCtx->hwvirt.fGif);
4022
4023 char szEFlags[80];
4024 cpumR3InfoFormatFlags(&szEFlags[0], pCtx->hwvirt.svm.HostState.rflags.u);
4025 pHlp->pfnPrintf(pHlp, " uMsrHSavePa = %#RX64\n", pCtx->hwvirt.svm.uMsrHSavePa);
4026 pHlp->pfnPrintf(pHlp, " GCPhysVmcb = %#RGp\n", pCtx->hwvirt.svm.GCPhysVmcb);
4027 pHlp->pfnPrintf(pHlp, " VmcbCtrl:\n");
4028 cpumR3InfoSvmVmcbCtrl(pHlp, &pCtx->hwvirt.svm.pVmcbR3->ctrl, " " /* pszPrefix */);
4029 pHlp->pfnPrintf(pHlp, " VmcbStateSave:\n");
4030 cpumR3InfoSvmVmcbStateSave(pHlp, &pCtx->hwvirt.svm.pVmcbR3->guest, " " /* pszPrefix */);
4031 pHlp->pfnPrintf(pHlp, " HostState:\n");
4032 pHlp->pfnPrintf(pHlp, " uEferMsr = %#RX64\n", pCtx->hwvirt.svm.HostState.uEferMsr);
4033 pHlp->pfnPrintf(pHlp, " uCr0 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr0);
4034 pHlp->pfnPrintf(pHlp, " uCr4 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr4);
4035 pHlp->pfnPrintf(pHlp, " uCr3 = %#RX64\n", pCtx->hwvirt.svm.HostState.uCr3);
4036 pHlp->pfnPrintf(pHlp, " uRip = %#RX64\n", pCtx->hwvirt.svm.HostState.uRip);
4037 pHlp->pfnPrintf(pHlp, " uRsp = %#RX64\n", pCtx->hwvirt.svm.HostState.uRsp);
4038 pHlp->pfnPrintf(pHlp, " uRax = %#RX64\n", pCtx->hwvirt.svm.HostState.uRax);
4039 pHlp->pfnPrintf(pHlp, " rflags = %#RX64 %31s\n", pCtx->hwvirt.svm.HostState.rflags.u64, szEFlags);
4040 PCPUMSELREG pSel = &pCtx->hwvirt.svm.HostState.es;
4041 pHlp->pfnPrintf(pHlp, " es = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4042 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4043 pSel = &pCtx->hwvirt.svm.HostState.cs;
4044 pHlp->pfnPrintf(pHlp, " cs = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4045 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4046 pSel = &pCtx->hwvirt.svm.HostState.ss;
4047 pHlp->pfnPrintf(pHlp, " ss = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4048 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4049 pSel = &pCtx->hwvirt.svm.HostState.ds;
4050 pHlp->pfnPrintf(pHlp, " ds = {%04x base=%016RX64 limit=%08x flags=%08x}\n",
4051 pSel->Sel, pSel->u64Base, pSel->u32Limit, pSel->Attr.u);
4052 pHlp->pfnPrintf(pHlp, " gdtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.gdtr.pGdt,
4053 pCtx->hwvirt.svm.HostState.gdtr.cbGdt);
4054 pHlp->pfnPrintf(pHlp, " idtr = %016RX64:%04x\n", pCtx->hwvirt.svm.HostState.idtr.pIdt,
4055 pCtx->hwvirt.svm.HostState.idtr.cbIdt);
4056 pHlp->pfnPrintf(pHlp, " cPauseFilter = %RU16\n", pCtx->hwvirt.svm.cPauseFilter);
4057 pHlp->pfnPrintf(pHlp, " cPauseFilterThreshold = %RU32\n", pCtx->hwvirt.svm.cPauseFilterThreshold);
4058 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %u\n", pCtx->hwvirt.svm.fInterceptEvents);
4059 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR3 = %p\n", pCtx->hwvirt.svm.pvMsrBitmapR3);
4060 pHlp->pfnPrintf(pHlp, " pvMsrBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvMsrBitmapR0);
4061 pHlp->pfnPrintf(pHlp, " pvIoBitmapR3 = %p\n", pCtx->hwvirt.svm.pvIoBitmapR3);
4062 pHlp->pfnPrintf(pHlp, " pvIoBitmapR0 = %RKv\n", pCtx->hwvirt.svm.pvIoBitmapR0);
4063 }
4064
4065 if (fDumpState & CPUMHWVIRTDUMP_VMX)
4066 {
4067 pHlp->pfnPrintf(pHlp, " GCPhysVmxon = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmxon);
4068 pHlp->pfnPrintf(pHlp, " GCPhysVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysVmcs);
4069 pHlp->pfnPrintf(pHlp, " GCPhysShadowVmcs = %#RGp\n", pCtx->hwvirt.vmx.GCPhysShadowVmcs);
4070 pHlp->pfnPrintf(pHlp, " enmDiag = %u (%s)\n", pCtx->hwvirt.vmx.enmDiag, HMGetVmxDiagDesc(pCtx->hwvirt.vmx.enmDiag));
4071 pHlp->pfnPrintf(pHlp, " uDiagAux = %#RX64\n", pCtx->hwvirt.vmx.uDiagAux);
4072 pHlp->pfnPrintf(pHlp, " enmAbort = %u (%s)\n", pCtx->hwvirt.vmx.enmAbort, HMGetVmxAbortDesc(pCtx->hwvirt.vmx.enmAbort));
4073 pHlp->pfnPrintf(pHlp, " uAbortAux = %u (%#x)\n", pCtx->hwvirt.vmx.uAbortAux, pCtx->hwvirt.vmx.uAbortAux);
4074 pHlp->pfnPrintf(pHlp, " fInVmxRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxRootMode);
4075 pHlp->pfnPrintf(pHlp, " fInVmxNonRootMode = %RTbool\n", pCtx->hwvirt.vmx.fInVmxNonRootMode);
4076 pHlp->pfnPrintf(pHlp, " fInterceptEvents = %RTbool\n", pCtx->hwvirt.vmx.fInterceptEvents);
4077 pHlp->pfnPrintf(pHlp, " fNmiUnblockingIret = %RTbool\n", pCtx->hwvirt.vmx.fNmiUnblockingIret);
4078 pHlp->pfnPrintf(pHlp, " uFirstPauseLoopTick = %RX64\n", pCtx->hwvirt.vmx.uFirstPauseLoopTick);
4079 pHlp->pfnPrintf(pHlp, " uPrevPauseTick = %RX64\n", pCtx->hwvirt.vmx.uPrevPauseTick);
4080 pHlp->pfnPrintf(pHlp, " uEntryTick = %RX64\n", pCtx->hwvirt.vmx.uEntryTick);
4081 pHlp->pfnPrintf(pHlp, " offVirtApicWrite = %#RX16\n", pCtx->hwvirt.vmx.offVirtApicWrite);
4082 pHlp->pfnPrintf(pHlp, " fVirtNmiBlocking = %RTbool\n", pCtx->hwvirt.vmx.fVirtNmiBlocking);
4083 pHlp->pfnPrintf(pHlp, " VMCS cache:\n");
4084 cpumR3InfoVmxVmcs(pVCpu, pHlp, pCtx->hwvirt.vmx.pVmcsR3, " " /* pszPrefix */);
4085 }
4086
4087#undef CPUMHWVIRTDUMP_NONE
4088#undef CPUMHWVIRTDUMP_COMMON
4089#undef CPUMHWVIRTDUMP_SVM
4090#undef CPUMHWVIRTDUMP_VMX
4091#undef CPUMHWVIRTDUMP_LAST
4092#undef CPUMHWVIRTDUMP_ALL
4093}
4094
4095/**
4096 * Display the current guest instruction
4097 *
4098 * @param pVM The cross context VM structure.
4099 * @param pHlp The info helper functions.
4100 * @param pszArgs Arguments, ignored.
4101 */
4102static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4103{
4104 NOREF(pszArgs);
4105
4106 PVMCPU pVCpu = VMMGetCpu(pVM);
4107 if (!pVCpu)
4108 pVCpu = pVM->apCpusR3[0];
4109
4110 char szInstruction[256];
4111 szInstruction[0] = '\0';
4112 DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
4113 pHlp->pfnPrintf(pHlp, "\nCPUM%u: %s\n\n", pVCpu->idCpu, szInstruction);
4114}
4115
4116
4117/**
4118 * Display the hypervisor cpu state.
4119 *
4120 * @param pVM The cross context VM structure.
4121 * @param pHlp The info helper functions.
4122 * @param pszArgs Arguments, ignored.
4123 */
4124static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4125{
4126 PVMCPU pVCpu = VMMGetCpu(pVM);
4127 if (!pVCpu)
4128 pVCpu = pVM->apCpusR3[0];
4129
4130 CPUMDUMPTYPE enmType;
4131 const char *pszComment;
4132 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4133 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
4134
4135 pHlp->pfnPrintf(pHlp,
4136 ".dr0=%016RX64 .dr1=%016RX64 .dr2=%016RX64 .dr3=%016RX64\n"
4137 ".dr4=%016RX64 .dr5=%016RX64 .dr6=%016RX64 .dr7=%016RX64\n",
4138 pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1], pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3],
4139 pVCpu->cpum.s.Hyper.dr[4], pVCpu->cpum.s.Hyper.dr[5], pVCpu->cpum.s.Hyper.dr[6], pVCpu->cpum.s.Hyper.dr[7]);
4140 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
4141}
4142
4143
4144/**
4145 * Display the host cpu state.
4146 *
4147 * @param pVM The cross context VM structure.
4148 * @param pHlp The info helper functions.
4149 * @param pszArgs Arguments, ignored.
4150 */
4151static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
4152{
4153 CPUMDUMPTYPE enmType;
4154 const char *pszComment;
4155 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
4156 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
4157
4158 PVMCPU pVCpu = VMMGetCpu(pVM);
4159 if (!pVCpu)
4160 pVCpu = pVM->apCpusR3[0];
4161 PCPUMHOSTCTX pCtx = &pVCpu->cpum.s.Host;
4162
4163 /*
4164 * Format the EFLAGS.
4165 */
4166 uint64_t efl = pCtx->rflags;
4167 char szEFlags[80];
4168 cpumR3InfoFormatFlags(&szEFlags[0], efl);
4169
4170 /*
4171 * Format the registers.
4172 */
4173 pHlp->pfnPrintf(pHlp,
4174 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
4175 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
4176 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
4177 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
4178 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
4179 "r14=%016RX64 r15=%016RX64\n"
4180 "iopl=%d %31s\n"
4181 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
4182 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
4183 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
4184 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
4185 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
4186 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
4187 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
4188 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
4189 ,
4190 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
4191 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
4192 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
4193 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
4194 pCtx->r11, pCtx->r12, pCtx->r13,
4195 pCtx->r14, pCtx->r15,
4196 X86_EFL_GET_IOPL(efl), szEFlags,
4197 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
4198 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
4199 pCtx->cr4, pCtx->ldtr, pCtx->tr,
4200 pCtx->dr0, pCtx->dr1, pCtx->dr2,
4201 pCtx->dr3, pCtx->dr6, pCtx->dr7,
4202 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
4203 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
4204 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
4205}
4206
4207/**
4208 * Structure used when disassembling and instructions in DBGF.
4209 * This is used so the reader function can get the stuff it needs.
4210 */
4211typedef struct CPUMDISASSTATE
4212{
4213 /** Pointer to the CPU structure. */
4214 PDISCPUSTATE pCpu;
4215 /** Pointer to the VM. */
4216 PVM pVM;
4217 /** Pointer to the VMCPU. */
4218 PVMCPU pVCpu;
4219 /** Pointer to the first byte in the segment. */
4220 RTGCUINTPTR GCPtrSegBase;
4221 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
4222 RTGCUINTPTR GCPtrSegEnd;
4223 /** The size of the segment minus 1. */
4224 RTGCUINTPTR cbSegLimit;
4225 /** Pointer to the current page - R3 Ptr. */
4226 void const *pvPageR3;
4227 /** Pointer to the current page - GC Ptr. */
4228 RTGCPTR pvPageGC;
4229 /** The lock information that PGMPhysReleasePageMappingLock needs. */
4230 PGMPAGEMAPLOCK PageMapLock;
4231 /** Whether the PageMapLock is valid or not. */
4232 bool fLocked;
4233 /** 64 bits mode or not. */
4234 bool f64Bits;
4235} CPUMDISASSTATE, *PCPUMDISASSTATE;
4236
4237
4238/**
4239 * @callback_method_impl{FNDISREADBYTES}
4240 */
4241static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
4242{
4243 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
4244 for (;;)
4245 {
4246 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
4247
4248 /*
4249 * Need to update the page translation?
4250 */
4251 if ( !pState->pvPageR3
4252 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
4253 {
4254 /* translate the address */
4255 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
4256
4257 /* Release mapping lock previously acquired. */
4258 if (pState->fLocked)
4259 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
4260 int rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
4261 if (RT_SUCCESS(rc))
4262 pState->fLocked = true;
4263 else
4264 {
4265 pState->fLocked = false;
4266 pState->pvPageR3 = NULL;
4267 return rc;
4268 }
4269 }
4270
4271 /*
4272 * Check the segment limit.
4273 */
4274 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
4275 return VERR_OUT_OF_SELECTOR_BOUNDS;
4276
4277 /*
4278 * Calc how much we can read.
4279 */
4280 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
4281 if (!pState->f64Bits)
4282 {
4283 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
4284 if (cb > cbSeg && cbSeg)
4285 cb = cbSeg;
4286 }
4287 if (cb > cbMaxRead)
4288 cb = cbMaxRead;
4289
4290 /*
4291 * Read and advance or exit.
4292 */
4293 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
4294 offInstr += (uint8_t)cb;
4295 if (cb >= cbMinRead)
4296 {
4297 pDis->cbCachedInstr = offInstr;
4298 return VINF_SUCCESS;
4299 }
4300 cbMinRead -= (uint8_t)cb;
4301 cbMaxRead -= (uint8_t)cb;
4302 }
4303}
4304
4305
4306/**
4307 * Disassemble an instruction and return the information in the provided structure.
4308 *
4309 * @returns VBox status code.
4310 * @param pVM The cross context VM structure.
4311 * @param pVCpu The cross context virtual CPU structure.
4312 * @param pCtx Pointer to the guest CPU context.
4313 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
4314 * @param pCpu Disassembly state.
4315 * @param pszPrefix String prefix for logging (debug only).
4316 *
4317 */
4318VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu,
4319 const char *pszPrefix)
4320{
4321 CPUMDISASSTATE State;
4322 int rc;
4323
4324 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
4325 State.pCpu = pCpu;
4326 State.pvPageGC = 0;
4327 State.pvPageR3 = NULL;
4328 State.pVM = pVM;
4329 State.pVCpu = pVCpu;
4330 State.fLocked = false;
4331 State.f64Bits = false;
4332
4333 /*
4334 * Get selector information.
4335 */
4336 DISCPUMODE enmDisCpuMode;
4337 if ( (pCtx->cr0 & X86_CR0_PE)
4338 && pCtx->eflags.Bits.u1VM == 0)
4339 {
4340 if (!CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pCtx->cs))
4341 return VERR_CPUM_HIDDEN_CS_LOAD_ERROR;
4342 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
4343 State.GCPtrSegBase = pCtx->cs.u64Base;
4344 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
4345 State.cbSegLimit = pCtx->cs.u32Limit;
4346 enmDisCpuMode = (State.f64Bits)
4347 ? DISCPUMODE_64BIT
4348 : pCtx->cs.Attr.n.u1DefBig
4349 ? DISCPUMODE_32BIT
4350 : DISCPUMODE_16BIT;
4351 }
4352 else
4353 {
4354 /* real or V86 mode */
4355 enmDisCpuMode = DISCPUMODE_16BIT;
4356 State.GCPtrSegBase = pCtx->cs.Sel * 16;
4357 State.GCPtrSegEnd = 0xFFFFFFFF;
4358 State.cbSegLimit = 0xFFFFFFFF;
4359 }
4360
4361 /*
4362 * Disassemble the instruction.
4363 */
4364 uint32_t cbInstr;
4365#ifndef LOG_ENABLED
4366 RT_NOREF_PV(pszPrefix);
4367 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
4368 if (RT_SUCCESS(rc))
4369 {
4370#else
4371 char szOutput[160];
4372 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
4373 pCpu, &cbInstr, szOutput, sizeof(szOutput));
4374 if (RT_SUCCESS(rc))
4375 {
4376 /* log it */
4377 if (pszPrefix)
4378 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
4379 else
4380 Log(("%s", szOutput));
4381#endif
4382 rc = VINF_SUCCESS;
4383 }
4384 else
4385 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
4386
4387 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
4388 if (State.fLocked)
4389 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
4390
4391 return rc;
4392}
4393
4394
4395
4396/**
4397 * API for controlling a few of the CPU features found in CR4.
4398 *
4399 * Currently only X86_CR4_TSD is accepted as input.
4400 *
4401 * @returns VBox status code.
4402 *
4403 * @param pVM The cross context VM structure.
4404 * @param fOr The CR4 OR mask.
4405 * @param fAnd The CR4 AND mask.
4406 */
4407VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
4408{
4409 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
4410 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
4411
4412 pVM->cpum.s.CR4.OrMask &= fAnd;
4413 pVM->cpum.s.CR4.OrMask |= fOr;
4414
4415 return VINF_SUCCESS;
4416}
4417
4418
4419/**
4420 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
4421 *
4422 * Only REM should ever call this function!
4423 *
4424 * @returns The changed flags.
4425 * @param pVCpu The cross context virtual CPU structure.
4426 * @param puCpl Where to return the current privilege level (CPL).
4427 */
4428VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
4429{
4430 Assert(!pVCpu->cpum.s.fRemEntered);
4431
4432 /*
4433 * Get the CPL first.
4434 */
4435 *puCpl = CPUMGetGuestCPL(pVCpu);
4436
4437 /*
4438 * Get and reset the flags.
4439 */
4440 uint32_t fFlags = pVCpu->cpum.s.fChanged;
4441 pVCpu->cpum.s.fChanged = 0;
4442
4443 /** @todo change the switcher to use the fChanged flags. */
4444 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
4445 {
4446 fFlags |= CPUM_CHANGED_FPU_REM;
4447 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
4448 }
4449
4450 pVCpu->cpum.s.fRemEntered = true;
4451 return fFlags;
4452}
4453
4454
4455/**
4456 * Leaves REM.
4457 *
4458 * @param pVCpu The cross context virtual CPU structure.
4459 * @param fNoOutOfSyncSels This is @c false if there are out of sync
4460 * registers.
4461 */
4462VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
4463{
4464 Assert(pVCpu->cpum.s.fRemEntered);
4465
4466 RT_NOREF_PV(fNoOutOfSyncSels);
4467
4468 pVCpu->cpum.s.fRemEntered = false;
4469}
4470
4471
4472/**
4473 * Called when the ring-3 init phase completes.
4474 *
4475 * @returns VBox status code.
4476 * @param pVM The cross context VM structure.
4477 * @param enmWhat Which init phase.
4478 */
4479VMMR3DECL(int) CPUMR3InitCompleted(PVM pVM, VMINITCOMPLETED enmWhat)
4480{
4481 switch (enmWhat)
4482 {
4483 case VMINITCOMPLETED_RING3:
4484 {
4485 /*
4486 * Figure out if the guest uses 32-bit or 64-bit FPU state at runtime for 64-bit capable VMs.
4487 * Only applicable/used on 64-bit hosts, refer CPUMR0A.asm. See @bugref{7138}.
4488 */
4489 bool const fSupportsLongMode = VMR3IsLongModeAllowed(pVM);
4490 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
4491 {
4492 PVMCPU pVCpu = pVM->apCpusR3[idCpu];
4493
4494 /* While loading a saved-state we fix it up in, cpumR3LoadDone(). */
4495 if (fSupportsLongMode)
4496 pVCpu->cpum.s.fUseFlags |= CPUM_USE_SUPPORTS_LONGMODE;
4497 }
4498
4499 /* Register statistic counters for MSRs. */
4500 cpumR3MsrRegStats(pVM);
4501 break;
4502 }
4503
4504 default:
4505 break;
4506 }
4507 return VINF_SUCCESS;
4508}
4509
4510
4511/**
4512 * Called when the ring-0 init phases completed.
4513 *
4514 * @param pVM The cross context VM structure.
4515 */
4516VMMR3DECL(void) CPUMR3LogCpuIdAndMsrFeatures(PVM pVM)
4517{
4518 /*
4519 * Enable log buffering as we're going to log a lot of lines.
4520 */
4521 bool const fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
4522
4523 /*
4524 * Log the cpuid.
4525 */
4526 RTCPUSET OnlineSet;
4527 LogRel(("CPUM: Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
4528 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
4529 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
4530 RTCPUID cCores = RTMpGetCoreCount();
4531 if (cCores)
4532 LogRel(("CPUM: Physical host cores: %u\n", (unsigned)cCores));
4533 LogRel(("************************* CPUID dump ************************\n"));
4534 DBGFR3Info(pVM->pUVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
4535 LogRel(("\n"));
4536 DBGFR3_INFO_LOG_SAFE(pVM, "cpuid", "verbose"); /* macro */
4537 LogRel(("******************** End of CPUID dump **********************\n"));
4538
4539 /*
4540 * Log VT-x extended features.
4541 *
4542 * SVM features are currently all covered under CPUID so there is nothing
4543 * to do here for SVM.
4544 */
4545 if (pVM->cpum.s.HostFeatures.fVmx)
4546 {
4547 LogRel(("*********************** VT-x features ***********************\n"));
4548 DBGFR3Info(pVM->pUVM, "cpumvmxfeat", "default", DBGFR3InfoLogRelHlp());
4549 LogRel(("\n"));
4550 LogRel(("******************* End of VT-x features ********************\n"));
4551 }
4552
4553 /*
4554 * Restore the log buffering state to what it was previously.
4555 */
4556 RTLogRelSetBuffering(fOldBuffered);
4557}
4558
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette