VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 41985

最後變更 在這個檔案從41985是 41965,由 vboxsync 提交於 13 年 前

VMM: ran scm. Mostly svn:keywords changes (adding Revision).

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id Revision
檔案大小: 201.5 KB
 
1/* $Id: CPUM.cpp 41965 2012-06-29 02:52:49Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2012 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 */
33
34/*******************************************************************************
35* Header Files *
36*******************************************************************************/
37#define LOG_GROUP LOG_GROUP_CPUM
38#include <VBox/vmm/cpum.h>
39#include <VBox/vmm/cpumdis.h>
40#include <VBox/vmm/cpumctx-v1_6.h>
41#include <VBox/vmm/pgm.h>
42#include <VBox/vmm/mm.h>
43#include <VBox/vmm/selm.h>
44#include <VBox/vmm/dbgf.h>
45#include <VBox/vmm/patm.h>
46#include <VBox/vmm/hwaccm.h>
47#include <VBox/vmm/ssm.h>
48#include "CPUMInternal.h"
49#include <VBox/vmm/vm.h>
50
51#include <VBox/param.h>
52#include <VBox/dis.h>
53#include <VBox/err.h>
54#include <VBox/log.h>
55#include <iprt/assert.h>
56#include <iprt/asm-amd64-x86.h>
57#include <iprt/string.h>
58#include <iprt/mp.h>
59#include <iprt/cpuset.h>
60#include "internal/pgm.h"
61
62
63/*******************************************************************************
64* Defined Constants And Macros *
65*******************************************************************************/
66#if 0 /* later when actual changes have been made */
67/** The current saved state version. */
68#define CPUM_SAVED_STATE_VERSION 14
69#else
70# define CPUM_SAVED_STATE_VERSION CPUM_SAVED_STATE_VERSION_MEM
71#endif
72/** The current saved state version before using SSMR3PutStruct. */
73#define CPUM_SAVED_STATE_VERSION_MEM 13
74/** The saved state version before introducing the MSR size field. */
75#define CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE 12
76/** The saved state version of 3.2, 3.1 and 3.3 trunk before the hidden
77 * selector register change (CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID). */
78#define CPUM_SAVED_STATE_VERSION_VER3_2 11
79/** The saved state version of 3.0 and 3.1 trunk before the teleportation
80 * changes. */
81#define CPUM_SAVED_STATE_VERSION_VER3_0 10
82/** The saved state version for the 2.1 trunk before the MSR changes. */
83#define CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR 9
84/** The saved state version of 2.0, used for backwards compatibility. */
85#define CPUM_SAVED_STATE_VERSION_VER2_0 8
86/** The saved state version of 1.6, used for backwards compatibility. */
87#define CPUM_SAVED_STATE_VERSION_VER1_6 6
88
89#define CPUM_WITH_CHANGED_CPUMCTX
90
91/*******************************************************************************
92* Structures and Typedefs *
93*******************************************************************************/
94
95/**
96 * What kind of cpu info dump to perform.
97 */
98typedef enum CPUMDUMPTYPE
99{
100 CPUMDUMPTYPE_TERSE,
101 CPUMDUMPTYPE_DEFAULT,
102 CPUMDUMPTYPE_VERBOSE
103} CPUMDUMPTYPE;
104/** Pointer to a cpu info dump type. */
105typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
106
107
108/*******************************************************************************
109* Internal Functions *
110*******************************************************************************/
111static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX);
112static int cpumR3CpuIdInit(PVM pVM);
113static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
114static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
115static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
116static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
117static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
118static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
119static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
120static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
121static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
122static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
123static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
124
125
126/*******************************************************************************
127* Global Variables *
128*******************************************************************************/
129/** Saved state field descriptors for CPUMCTX. */
130static const SSMFIELD g_aCpumCtxFields[] =
131{
132 SSMFIELD_ENTRY( CPUMCTX, fpu.FCW),
133 SSMFIELD_ENTRY( CPUMCTX, fpu.FSW),
134 SSMFIELD_ENTRY( CPUMCTX, fpu.FTW),
135 SSMFIELD_ENTRY( CPUMCTX, fpu.FOP),
136 SSMFIELD_ENTRY( CPUMCTX, fpu.FPUIP),
137 SSMFIELD_ENTRY( CPUMCTX, fpu.CS),
138 SSMFIELD_ENTRY( CPUMCTX, fpu.Rsrvd1),
139 SSMFIELD_ENTRY( CPUMCTX, fpu.FPUDP),
140 SSMFIELD_ENTRY( CPUMCTX, fpu.DS),
141 SSMFIELD_ENTRY( CPUMCTX, fpu.Rsrvd2),
142 SSMFIELD_ENTRY( CPUMCTX, fpu.MXCSR),
143 SSMFIELD_ENTRY( CPUMCTX, fpu.MXCSR_MASK),
144 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[0]),
145 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[1]),
146 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[2]),
147 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[3]),
148 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[4]),
149 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[5]),
150 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[6]),
151 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[7]),
152 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[0]),
153 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[1]),
154 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[2]),
155 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[3]),
156 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[4]),
157 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[5]),
158 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[6]),
159 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[7]),
160 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[8]),
161 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[9]),
162 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[10]),
163 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[11]),
164 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[12]),
165 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[13]),
166 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[14]),
167 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[15]),
168 SSMFIELD_ENTRY_IGNORE( CPUMCTX, fpu.au32RsrvdRest),
169 SSMFIELD_ENTRY( CPUMCTX, rdi),
170 SSMFIELD_ENTRY( CPUMCTX, rsi),
171 SSMFIELD_ENTRY( CPUMCTX, rbp),
172 SSMFIELD_ENTRY( CPUMCTX, rax),
173 SSMFIELD_ENTRY( CPUMCTX, rbx),
174 SSMFIELD_ENTRY( CPUMCTX, rdx),
175 SSMFIELD_ENTRY( CPUMCTX, rcx),
176 SSMFIELD_ENTRY( CPUMCTX, rsp),
177 SSMFIELD_ENTRY_OLD( lss_esp, sizeof(uint32_t)),
178 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
179 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
180 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
181 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
182 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
183 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
184 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
185 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
186 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
187 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
188 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
189 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
190 SSMFIELD_ENTRY( CPUMCTX, rflags),
191 SSMFIELD_ENTRY( CPUMCTX, rip),
192 SSMFIELD_ENTRY( CPUMCTX, r8),
193 SSMFIELD_ENTRY( CPUMCTX, r9),
194 SSMFIELD_ENTRY( CPUMCTX, r10),
195 SSMFIELD_ENTRY( CPUMCTX, r11),
196 SSMFIELD_ENTRY( CPUMCTX, r12),
197 SSMFIELD_ENTRY( CPUMCTX, r13),
198 SSMFIELD_ENTRY( CPUMCTX, r14),
199 SSMFIELD_ENTRY( CPUMCTX, r15),
200 SSMFIELD_ENTRY( CPUMCTX, es.u64Base),
201 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
202 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
203 SSMFIELD_ENTRY( CPUMCTX, cs.u64Base),
204 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
205 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
206 SSMFIELD_ENTRY( CPUMCTX, ss.u64Base),
207 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
208 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
209 SSMFIELD_ENTRY( CPUMCTX, ds.u64Base),
210 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
211 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
212 SSMFIELD_ENTRY( CPUMCTX, fs.u64Base),
213 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
214 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
215 SSMFIELD_ENTRY( CPUMCTX, gs.u64Base),
216 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
217 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
218 SSMFIELD_ENTRY( CPUMCTX, cr0),
219 SSMFIELD_ENTRY( CPUMCTX, cr2),
220 SSMFIELD_ENTRY( CPUMCTX, cr3),
221 SSMFIELD_ENTRY( CPUMCTX, cr4),
222 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
223 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
224 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
225 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
226 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
227 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
228 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
229 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
230 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
231 SSMFIELD_ENTRY( CPUMCTX, gdtr.pGdt),
232 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
233 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
234 SSMFIELD_ENTRY( CPUMCTX, idtr.pIdt),
235 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
236 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
237 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
238 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
239 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
240 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
241 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
242 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
243 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
244 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
245 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
246 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
247 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
248 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
249 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
250 SSMFIELD_ENTRY( CPUMCTX, ldtr.u64Base),
251 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
252 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
253 SSMFIELD_ENTRY( CPUMCTX, tr.u64Base),
254 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
255 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
256 SSMFIELD_ENTRY_TERM()
257};
258
259/** Saved state field descriptors for CPUMCTX_VER1_6. */
260static const SSMFIELD g_aCpumCtxFieldsV16[] =
261{
262 SSMFIELD_ENTRY( CPUMCTX, fpu.FCW),
263 SSMFIELD_ENTRY( CPUMCTX, fpu.FSW),
264 SSMFIELD_ENTRY( CPUMCTX, fpu.FTW),
265 SSMFIELD_ENTRY( CPUMCTX, fpu.FOP),
266 SSMFIELD_ENTRY( CPUMCTX, fpu.FPUIP),
267 SSMFIELD_ENTRY( CPUMCTX, fpu.CS),
268 SSMFIELD_ENTRY( CPUMCTX, fpu.Rsrvd1),
269 SSMFIELD_ENTRY( CPUMCTX, fpu.FPUDP),
270 SSMFIELD_ENTRY( CPUMCTX, fpu.DS),
271 SSMFIELD_ENTRY( CPUMCTX, fpu.Rsrvd2),
272 SSMFIELD_ENTRY( CPUMCTX, fpu.MXCSR),
273 SSMFIELD_ENTRY( CPUMCTX, fpu.MXCSR_MASK),
274 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[0]),
275 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[1]),
276 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[2]),
277 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[3]),
278 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[4]),
279 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[5]),
280 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[6]),
281 SSMFIELD_ENTRY( CPUMCTX, fpu.aRegs[7]),
282 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[0]),
283 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[1]),
284 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[2]),
285 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[3]),
286 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[4]),
287 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[5]),
288 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[6]),
289 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[7]),
290 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[8]),
291 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[9]),
292 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[10]),
293 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[11]),
294 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[12]),
295 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[13]),
296 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[14]),
297 SSMFIELD_ENTRY( CPUMCTX, fpu.aXMM[15]),
298 SSMFIELD_ENTRY_IGNORE( CPUMCTX, fpu.au32RsrvdRest),
299 SSMFIELD_ENTRY( CPUMCTX, rdi),
300 SSMFIELD_ENTRY( CPUMCTX, rsi),
301 SSMFIELD_ENTRY( CPUMCTX, rbp),
302 SSMFIELD_ENTRY( CPUMCTX, rax),
303 SSMFIELD_ENTRY( CPUMCTX, rbx),
304 SSMFIELD_ENTRY( CPUMCTX, rdx),
305 SSMFIELD_ENTRY( CPUMCTX, rcx),
306 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, rsp),
307 SSMFIELD_ENTRY( CPUMCTX, ss.Sel),
308 SSMFIELD_ENTRY_OLD( ssPadding, sizeof(uint16_t)),
309 SSMFIELD_ENTRY_OLD( CPUMCTX, sizeof(uint64_t) /*rsp_notused*/),
310 SSMFIELD_ENTRY( CPUMCTX, gs.Sel),
311 SSMFIELD_ENTRY_OLD( gsPadding, sizeof(uint16_t)),
312 SSMFIELD_ENTRY( CPUMCTX, fs.Sel),
313 SSMFIELD_ENTRY_OLD( fsPadding, sizeof(uint16_t)),
314 SSMFIELD_ENTRY( CPUMCTX, es.Sel),
315 SSMFIELD_ENTRY_OLD( esPadding, sizeof(uint16_t)),
316 SSMFIELD_ENTRY( CPUMCTX, ds.Sel),
317 SSMFIELD_ENTRY_OLD( dsPadding, sizeof(uint16_t)),
318 SSMFIELD_ENTRY( CPUMCTX, cs.Sel),
319 SSMFIELD_ENTRY_OLD( csPadding, sizeof(uint16_t)*3),
320 SSMFIELD_ENTRY( CPUMCTX, rflags),
321 SSMFIELD_ENTRY( CPUMCTX, rip),
322 SSMFIELD_ENTRY( CPUMCTX, r8),
323 SSMFIELD_ENTRY( CPUMCTX, r9),
324 SSMFIELD_ENTRY( CPUMCTX, r10),
325 SSMFIELD_ENTRY( CPUMCTX, r11),
326 SSMFIELD_ENTRY( CPUMCTX, r12),
327 SSMFIELD_ENTRY( CPUMCTX, r13),
328 SSMFIELD_ENTRY( CPUMCTX, r14),
329 SSMFIELD_ENTRY( CPUMCTX, r15),
330 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, es.u64Base),
331 SSMFIELD_ENTRY( CPUMCTX, es.u32Limit),
332 SSMFIELD_ENTRY( CPUMCTX, es.Attr),
333 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, cs.u64Base),
334 SSMFIELD_ENTRY( CPUMCTX, cs.u32Limit),
335 SSMFIELD_ENTRY( CPUMCTX, cs.Attr),
336 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ss.u64Base),
337 SSMFIELD_ENTRY( CPUMCTX, ss.u32Limit),
338 SSMFIELD_ENTRY( CPUMCTX, ss.Attr),
339 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ds.u64Base),
340 SSMFIELD_ENTRY( CPUMCTX, ds.u32Limit),
341 SSMFIELD_ENTRY( CPUMCTX, ds.Attr),
342 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, fs.u64Base),
343 SSMFIELD_ENTRY( CPUMCTX, fs.u32Limit),
344 SSMFIELD_ENTRY( CPUMCTX, fs.Attr),
345 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gs.u64Base),
346 SSMFIELD_ENTRY( CPUMCTX, gs.u32Limit),
347 SSMFIELD_ENTRY( CPUMCTX, gs.Attr),
348 SSMFIELD_ENTRY( CPUMCTX, cr0),
349 SSMFIELD_ENTRY( CPUMCTX, cr2),
350 SSMFIELD_ENTRY( CPUMCTX, cr3),
351 SSMFIELD_ENTRY( CPUMCTX, cr4),
352 SSMFIELD_ENTRY_OLD( cr8, sizeof(uint64_t)),
353 SSMFIELD_ENTRY( CPUMCTX, dr[0]),
354 SSMFIELD_ENTRY( CPUMCTX, dr[1]),
355 SSMFIELD_ENTRY( CPUMCTX, dr[2]),
356 SSMFIELD_ENTRY( CPUMCTX, dr[3]),
357 SSMFIELD_ENTRY_OLD( dr[4], sizeof(uint64_t)),
358 SSMFIELD_ENTRY_OLD( dr[5], sizeof(uint64_t)),
359 SSMFIELD_ENTRY( CPUMCTX, dr[6]),
360 SSMFIELD_ENTRY( CPUMCTX, dr[7]),
361 SSMFIELD_ENTRY( CPUMCTX, gdtr.cbGdt),
362 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, gdtr.pGdt),
363 SSMFIELD_ENTRY_OLD( gdtrPadding, sizeof(uint16_t)),
364 SSMFIELD_ENTRY_OLD( gdtrPadding64, sizeof(uint64_t)),
365 SSMFIELD_ENTRY( CPUMCTX, idtr.cbIdt),
366 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, idtr.pIdt),
367 SSMFIELD_ENTRY_OLD( idtrPadding, sizeof(uint16_t)),
368 SSMFIELD_ENTRY_OLD( idtrPadding64, sizeof(uint64_t)),
369 SSMFIELD_ENTRY( CPUMCTX, ldtr.Sel),
370 SSMFIELD_ENTRY_OLD( ldtrPadding, sizeof(uint16_t)),
371 SSMFIELD_ENTRY( CPUMCTX, tr.Sel),
372 SSMFIELD_ENTRY_OLD( trPadding, sizeof(uint16_t)),
373 SSMFIELD_ENTRY( CPUMCTX, SysEnter.cs),
374 SSMFIELD_ENTRY( CPUMCTX, SysEnter.eip),
375 SSMFIELD_ENTRY( CPUMCTX, SysEnter.esp),
376 SSMFIELD_ENTRY( CPUMCTX, msrEFER),
377 SSMFIELD_ENTRY( CPUMCTX, msrSTAR),
378 SSMFIELD_ENTRY( CPUMCTX, msrPAT),
379 SSMFIELD_ENTRY( CPUMCTX, msrLSTAR),
380 SSMFIELD_ENTRY( CPUMCTX, msrCSTAR),
381 SSMFIELD_ENTRY( CPUMCTX, msrSFMASK),
382 SSMFIELD_ENTRY_OLD( msrFSBASE, sizeof(uint64_t)),
383 SSMFIELD_ENTRY_OLD( msrGSBASE, sizeof(uint64_t)),
384 SSMFIELD_ENTRY( CPUMCTX, msrKERNELGSBASE),
385 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, ldtr.u64Base),
386 SSMFIELD_ENTRY( CPUMCTX, ldtr.u32Limit),
387 SSMFIELD_ENTRY( CPUMCTX, ldtr.Attr),
388 SSMFIELD_ENTRY_U32_ZX_U64( CPUMCTX, tr.u64Base),
389 SSMFIELD_ENTRY( CPUMCTX, tr.u32Limit),
390 SSMFIELD_ENTRY( CPUMCTX, tr.Attr),
391 SSMFIELD_ENTRY_OLD( padding, sizeof(uint32_t)*2),
392 SSMFIELD_ENTRY_TERM()
393};
394
395
396/**
397 * Initializes the CPUM.
398 *
399 * @returns VBox status code.
400 * @param pVM Pointer to the VM.
401 */
402VMMR3DECL(int) CPUMR3Init(PVM pVM)
403{
404 LogFlow(("CPUMR3Init\n"));
405
406 /*
407 * Assert alignment and sizes.
408 */
409 AssertCompileMemberAlignment(VM, cpum.s, 32);
410 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
411 AssertCompileSizeAlignment(CPUMCTX, 64);
412 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
413 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
414 AssertCompileMemberAlignment(VM, cpum, 64);
415 AssertCompileMemberAlignment(VM, aCpus, 64);
416 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
417 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
418
419 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
420 pVM->cpum.s.offCPUMCPU0 = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
421 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
422
423 /* Calculate the offset from CPUMCPU to CPUM. */
424 for (VMCPUID i = 0; i < pVM->cCpus; i++)
425 {
426 PVMCPU pVCpu = &pVM->aCpus[i];
427
428 pVCpu->cpum.s.offCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
429 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
430 }
431
432 /*
433 * Check that the CPU supports the minimum features we require.
434 */
435 if (!ASMHasCpuId())
436 {
437 Log(("The CPU doesn't support CPUID!\n"));
438 return VERR_UNSUPPORTED_CPU;
439 }
440 ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
441 ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
442
443 /* Setup the CR4 AND and OR masks used in the switcher */
444 /* Depends on the presence of FXSAVE(SSE) support on the host CPU */
445 if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
446 {
447 Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
448 /* No FXSAVE implies no SSE */
449 pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
450 pVM->cpum.s.CR4.OrMask = 0;
451 }
452 else
453 {
454 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
455 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
456 }
457
458 if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
459 {
460 Log(("The CPU doesn't support MMX!\n"));
461 return VERR_UNSUPPORTED_CPU;
462 }
463 if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
464 {
465 Log(("The CPU doesn't support TSC!\n"));
466 return VERR_UNSUPPORTED_CPU;
467 }
468 /* Bogus on AMD? */
469 if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
470 Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
471
472 /*
473 * Detect the host CPU vendor.
474 * (The guest CPU vendor is re-detected later on.)
475 */
476 uint32_t uEAX, uEBX, uECX, uEDX;
477 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
478 pVM->cpum.s.enmHostCpuVendor = cpumR3DetectVendor(uEAX, uEBX, uECX, uEDX);
479 pVM->cpum.s.enmGuestCpuVendor = pVM->cpum.s.enmHostCpuVendor;
480
481 /*
482 * Setup hypervisor startup values.
483 */
484
485 /*
486 * Register saved state data item.
487 */
488 int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
489 NULL, cpumR3LiveExec, NULL,
490 NULL, cpumR3SaveExec, NULL,
491 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
492 if (RT_FAILURE(rc))
493 return rc;
494
495 /*
496 * Register info handlers and registers with the debugger facility.
497 */
498 DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
499 DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
500 DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
501 DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
502 DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
503 DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
504
505 rc = cpumR3DbgInit(pVM);
506 if (RT_FAILURE(rc))
507 return rc;
508
509 /*
510 * Initialize the Guest CPUID state.
511 */
512 rc = cpumR3CpuIdInit(pVM);
513 if (RT_FAILURE(rc))
514 return rc;
515 CPUMR3Reset(pVM);
516 return VINF_SUCCESS;
517}
518
519
520/**
521 * Detect the CPU vendor give n the
522 *
523 * @returns The vendor.
524 * @param uEAX EAX from CPUID(0).
525 * @param uEBX EBX from CPUID(0).
526 * @param uECX ECX from CPUID(0).
527 * @param uEDX EDX from CPUID(0).
528 */
529static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
530{
531 if ( uEAX >= 1
532 && uEBX == X86_CPUID_VENDOR_AMD_EBX
533 && uECX == X86_CPUID_VENDOR_AMD_ECX
534 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
535 return CPUMCPUVENDOR_AMD;
536
537 if ( uEAX >= 1
538 && uEBX == X86_CPUID_VENDOR_INTEL_EBX
539 && uECX == X86_CPUID_VENDOR_INTEL_ECX
540 && uEDX == X86_CPUID_VENDOR_INTEL_EDX)
541 return CPUMCPUVENDOR_INTEL;
542
543 /** @todo detect the other buggers... */
544 return CPUMCPUVENDOR_UNKNOWN;
545}
546
547
548/**
549 * Fetches overrides for a CPUID leaf.
550 *
551 * @returns VBox status code.
552 * @param pLeaf The leaf to load the overrides into.
553 * @param pCfgNode The CFGM node containing the overrides
554 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
555 * @param iLeaf The CPUID leaf number.
556 */
557static int cpumR3CpuIdFetchLeafOverride(PCPUMCPUID pLeaf, PCFGMNODE pCfgNode, uint32_t iLeaf)
558{
559 PCFGMNODE pLeafNode = CFGMR3GetChildF(pCfgNode, "%RX32", iLeaf);
560 if (pLeafNode)
561 {
562 uint32_t u32;
563 int rc = CFGMR3QueryU32(pLeafNode, "eax", &u32);
564 if (RT_SUCCESS(rc))
565 pLeaf->eax = u32;
566 else
567 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
568
569 rc = CFGMR3QueryU32(pLeafNode, "ebx", &u32);
570 if (RT_SUCCESS(rc))
571 pLeaf->ebx = u32;
572 else
573 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
574
575 rc = CFGMR3QueryU32(pLeafNode, "ecx", &u32);
576 if (RT_SUCCESS(rc))
577 pLeaf->ecx = u32;
578 else
579 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
580
581 rc = CFGMR3QueryU32(pLeafNode, "edx", &u32);
582 if (RT_SUCCESS(rc))
583 pLeaf->edx = u32;
584 else
585 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
586
587 }
588 return VINF_SUCCESS;
589}
590
591
592/**
593 * Load the overrides for a set of CPUID leaves.
594 *
595 * @returns VBox status code.
596 * @param paLeaves The leaf array.
597 * @param cLeaves The number of leaves.
598 * @param uStart The start leaf number.
599 * @param pCfgNode The CFGM node containing the overrides
600 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
601 */
602static int cpumR3CpuIdInitLoadOverrideSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
603{
604 for (uint32_t i = 0; i < cLeaves; i++)
605 {
606 int rc = cpumR3CpuIdFetchLeafOverride(&paLeaves[i], pCfgNode, uStart + i);
607 if (RT_FAILURE(rc))
608 return rc;
609 }
610
611 return VINF_SUCCESS;
612}
613
614/**
615 * Init a set of host CPUID leaves.
616 *
617 * @returns VBox status code.
618 * @param paLeaves The leaf array.
619 * @param cLeaves The number of leaves.
620 * @param uStart The start leaf number.
621 * @param pCfgNode The /CPUM/HostCPUID/ node.
622 */
623static int cpumR3CpuIdInitHostSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
624{
625 /* Using the ECX variant for all of them can't hurt... */
626 for (uint32_t i = 0; i < cLeaves; i++)
627 ASMCpuId_Idx_ECX(uStart + i, 0, &paLeaves[i].eax, &paLeaves[i].ebx, &paLeaves[i].ecx, &paLeaves[i].edx);
628
629 /* Load CPUID leaf override; we currently don't care if the user
630 specifies features the host CPU doesn't support. */
631 return cpumR3CpuIdInitLoadOverrideSet(uStart, paLeaves, cLeaves, pCfgNode);
632}
633
634
635/**
636 * Initializes the emulated CPU's cpuid information.
637 *
638 * @returns VBox status code.
639 * @param pVM Pointer to the VM.
640 */
641static int cpumR3CpuIdInit(PVM pVM)
642{
643 PCPUM pCPUM = &pVM->cpum.s;
644 PCFGMNODE pCpumCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM");
645 uint32_t i;
646 int rc;
647
648#define PORTABLE_CLEAR_BITS_WHEN(Lvl, LeafSuffReg, FeatNm, fMask, uValue) \
649 if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fMask)) == (uValue) ) \
650 { \
651 LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: %#x -> 0\n", pCPUM->aGuestCpuId##LeafSuffReg & (fMask))); \
652 pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fMask); \
653 }
654#define PORTABLE_DISABLE_FEATURE_BIT(Lvl, LeafSuffReg, FeatNm, fBitMask) \
655 if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fBitMask)) ) \
656 { \
657 LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: 1 -> 0\n")); \
658 pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fBitMask); \
659 }
660
661 /*
662 * Read the configuration.
663 */
664 /** @cfgm{CPUM/SyntheticCpu, boolean, false}
665 * Enables the Synthetic CPU. The Vendor ID and Processor Name are
666 * completely overridden by VirtualBox custom strings. Some
667 * CPUID information is withheld, like the cache info. */
668 rc = CFGMR3QueryBoolDef(pCpumCfg, "SyntheticCpu", &pCPUM->fSyntheticCpu, false);
669 AssertRCReturn(rc, rc);
670
671 /** @cfgm{CPUM/PortableCpuIdLevel, 8-bit, 0, 3, 0}
672 * When non-zero CPUID features that could cause portability issues will be
673 * stripped. The higher the value the more features gets stripped. Higher
674 * values should only be used when older CPUs are involved since it may
675 * harm performance and maybe also cause problems with specific guests. */
676 rc = CFGMR3QueryU8Def(pCpumCfg, "PortableCpuIdLevel", &pCPUM->u8PortableCpuIdLevel, 0);
677 AssertRCReturn(rc, rc);
678
679 AssertLogRelReturn(!pCPUM->fSyntheticCpu || !pCPUM->u8PortableCpuIdLevel, VERR_CPUM_INCOMPATIBLE_CONFIG);
680
681 /*
682 * Get the host CPUID leaves and redetect the guest CPU vendor (could've
683 * been overridden).
684 */
685 /** @cfgm{CPUM/HostCPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
686 * Overrides the host CPUID leaf values used for calculating the guest CPUID
687 * leaves. This can be used to preserve the CPUID values when moving a VM
688 * to a different machine. Another use is restricting (or extending) the
689 * feature set exposed to the guest. */
690 PCFGMNODE pHostOverrideCfg = CFGMR3GetChild(pCpumCfg, "HostCPUID");
691 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pHostOverrideCfg);
692 AssertRCReturn(rc, rc);
693 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pHostOverrideCfg);
694 AssertRCReturn(rc, rc);
695 rc = cpumR3CpuIdInitHostSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pHostOverrideCfg);
696 AssertRCReturn(rc, rc);
697
698 pCPUM->enmGuestCpuVendor = cpumR3DetectVendor(pCPUM->aGuestCpuIdStd[0].eax, pCPUM->aGuestCpuIdStd[0].ebx,
699 pCPUM->aGuestCpuIdStd[0].ecx, pCPUM->aGuestCpuIdStd[0].edx);
700
701 /*
702 * Determine the default leaf.
703 *
704 * Intel returns values of the highest standard function, while AMD
705 * returns zeros. VIA on the other hand seems to returning nothing or
706 * perhaps some random garbage, we don't try to duplicate this behavior.
707 */
708 ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10, /** @todo r=bird: Use the host value here in case of overrides and more than 10 leaves being stripped already. */
709 &pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
710 &pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
711
712
713 /* Cpuid 1 & 0x80000001:
714 * Only report features we can support.
715 *
716 * Note! When enabling new features the Synthetic CPU and Portable CPUID
717 * options may require adjusting (i.e. stripping what was enabled).
718 */
719 pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
720 | X86_CPUID_FEATURE_EDX_VME
721 | X86_CPUID_FEATURE_EDX_DE
722 | X86_CPUID_FEATURE_EDX_PSE
723 | X86_CPUID_FEATURE_EDX_TSC
724 | X86_CPUID_FEATURE_EDX_MSR
725 //| X86_CPUID_FEATURE_EDX_PAE - set later if configured.
726 | X86_CPUID_FEATURE_EDX_MCE
727 | X86_CPUID_FEATURE_EDX_CX8
728 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
729 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see @bugref{1757}) */
730 //| X86_CPUID_FEATURE_EDX_SEP
731 | X86_CPUID_FEATURE_EDX_MTRR
732 | X86_CPUID_FEATURE_EDX_PGE
733 | X86_CPUID_FEATURE_EDX_MCA
734 | X86_CPUID_FEATURE_EDX_CMOV
735 | X86_CPUID_FEATURE_EDX_PAT
736 | X86_CPUID_FEATURE_EDX_PSE36
737 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
738 | X86_CPUID_FEATURE_EDX_CLFSH
739 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
740 //| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
741 | X86_CPUID_FEATURE_EDX_MMX
742 | X86_CPUID_FEATURE_EDX_FXSR
743 | X86_CPUID_FEATURE_EDX_SSE
744 | X86_CPUID_FEATURE_EDX_SSE2
745 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
746 //| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
747 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
748 //| X86_CPUID_FEATURE_EDX_PBE - no pending break enabled.
749 | 0;
750 pCPUM->aGuestCpuIdStd[1].ecx &= 0
751 | X86_CPUID_FEATURE_ECX_SSE3
752 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
753 | ((pVM->cCpus == 1) ? X86_CPUID_FEATURE_ECX_MONITOR : 0)
754 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
755 //| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
756 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
757 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
758 | X86_CPUID_FEATURE_ECX_SSSE3
759 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
760 //| X86_CPUID_FEATURE_ECX_CX16 - no cmpxchg16b
761 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
762 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
763 /* ECX Bit 21 - x2APIC support - not yet. */
764 // | X86_CPUID_FEATURE_ECX_X2APIC
765 /* ECX Bit 23 - POPCNT instruction. */
766 //| X86_CPUID_FEATURE_ECX_POPCNT
767 | 0;
768 if (pCPUM->u8PortableCpuIdLevel > 0)
769 {
770 PORTABLE_CLEAR_BITS_WHEN(1, Std[1].eax, ProcessorType, (UINT32_C(3) << 12), (UINT32_C(2) << 12));
771 PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSSE3, X86_CPUID_FEATURE_ECX_SSSE3);
772 PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSE3, X86_CPUID_FEATURE_ECX_SSE3);
773 PORTABLE_DISABLE_FEATURE_BIT(2, Std[1].edx, SSE2, X86_CPUID_FEATURE_EDX_SSE2);
774 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, SSE, X86_CPUID_FEATURE_EDX_SSE);
775 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CLFSH, X86_CPUID_FEATURE_EDX_CLFSH);
776 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CMOV, X86_CPUID_FEATURE_EDX_CMOV);
777
778 Assert(!(pCPUM->aGuestCpuIdStd[1].edx & ( X86_CPUID_FEATURE_EDX_SEP
779 | X86_CPUID_FEATURE_EDX_PSN
780 | X86_CPUID_FEATURE_EDX_DS
781 | X86_CPUID_FEATURE_EDX_ACPI
782 | X86_CPUID_FEATURE_EDX_SS
783 | X86_CPUID_FEATURE_EDX_TM
784 | X86_CPUID_FEATURE_EDX_PBE
785 )));
786 Assert(!(pCPUM->aGuestCpuIdStd[1].ecx & ( X86_CPUID_FEATURE_ECX_PCLMUL
787 | X86_CPUID_FEATURE_ECX_DTES64
788 | X86_CPUID_FEATURE_ECX_CPLDS
789 | X86_CPUID_FEATURE_ECX_VMX
790 | X86_CPUID_FEATURE_ECX_SMX
791 | X86_CPUID_FEATURE_ECX_EST
792 | X86_CPUID_FEATURE_ECX_TM2
793 | X86_CPUID_FEATURE_ECX_CNTXID
794 | X86_CPUID_FEATURE_ECX_FMA
795 | X86_CPUID_FEATURE_ECX_CX16
796 | X86_CPUID_FEATURE_ECX_TPRUPDATE
797 | X86_CPUID_FEATURE_ECX_PDCM
798 | X86_CPUID_FEATURE_ECX_DCA
799 | X86_CPUID_FEATURE_ECX_MOVBE
800 | X86_CPUID_FEATURE_ECX_AES
801 | X86_CPUID_FEATURE_ECX_POPCNT
802 | X86_CPUID_FEATURE_ECX_XSAVE
803 | X86_CPUID_FEATURE_ECX_OSXSAVE
804 | X86_CPUID_FEATURE_ECX_AVX
805 )));
806 }
807
808 /* Cpuid 0x80000001:
809 * Only report features we can support.
810 *
811 * Note! When enabling new features the Synthetic CPU and Portable CPUID
812 * options may require adjusting (i.e. stripping what was enabled).
813 *
814 * ASSUMES that this is ALWAYS the AMD defined feature set if present.
815 */
816 pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
817 | X86_CPUID_AMD_FEATURE_EDX_VME
818 | X86_CPUID_AMD_FEATURE_EDX_DE
819 | X86_CPUID_AMD_FEATURE_EDX_PSE
820 | X86_CPUID_AMD_FEATURE_EDX_TSC
821 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
822 //| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
823 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
824 | X86_CPUID_AMD_FEATURE_EDX_CX8
825 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
826 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see @bugref{1757}) */
827 //| X86_CPUID_AMD_FEATURE_EDX_SEP
828 | X86_CPUID_AMD_FEATURE_EDX_MTRR
829 | X86_CPUID_AMD_FEATURE_EDX_PGE
830 | X86_CPUID_AMD_FEATURE_EDX_MCA
831 | X86_CPUID_AMD_FEATURE_EDX_CMOV
832 | X86_CPUID_AMD_FEATURE_EDX_PAT
833 | X86_CPUID_AMD_FEATURE_EDX_PSE36
834 //| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
835 //| X86_CPUID_AMD_FEATURE_EDX_AXMMX
836 | X86_CPUID_AMD_FEATURE_EDX_MMX
837 | X86_CPUID_AMD_FEATURE_EDX_FXSR
838 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
839 //| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
840 //| X86_CPUID_AMD_FEATURE_EDX_RDTSCP - AMD only; turned on when necessary
841 //| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - turned on when necessary
842 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
843 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
844 | 0;
845 pCPUM->aGuestCpuIdExt[1].ecx &= 0
846 //| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
847 //| X86_CPUID_AMD_FEATURE_ECX_CMPL
848 //| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
849 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
850 /* Note: This could prevent teleporting from AMD to Intel CPUs! */
851 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
852 //| X86_CPUID_AMD_FEATURE_ECX_ABM
853 //| X86_CPUID_AMD_FEATURE_ECX_SSE4A
854 //| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
855 //| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
856 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
857 //| X86_CPUID_AMD_FEATURE_ECX_IBS
858 //| X86_CPUID_AMD_FEATURE_ECX_SSE5
859 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
860 //| X86_CPUID_AMD_FEATURE_ECX_WDT
861 | 0;
862 if (pCPUM->u8PortableCpuIdLevel > 0)
863 {
864 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].ecx, CR8L, X86_CPUID_AMD_FEATURE_ECX_CR8L);
865 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
866 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW_EX, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
867 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, FFXSR, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
868 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, RDTSCP, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
869 PORTABLE_DISABLE_FEATURE_BIT(2, Ext[1].ecx, LAHF_SAHF, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
870 PORTABLE_DISABLE_FEATURE_BIT(3, Ext[1].ecx, CMOV, X86_CPUID_AMD_FEATURE_EDX_CMOV);
871
872 Assert(!(pCPUM->aGuestCpuIdExt[1].ecx & ( X86_CPUID_AMD_FEATURE_ECX_CMPL
873 | X86_CPUID_AMD_FEATURE_ECX_SVM
874 | X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
875 | X86_CPUID_AMD_FEATURE_ECX_CR8L
876 | X86_CPUID_AMD_FEATURE_ECX_ABM
877 | X86_CPUID_AMD_FEATURE_ECX_SSE4A
878 | X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
879 | X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
880 | X86_CPUID_AMD_FEATURE_ECX_OSVW
881 | X86_CPUID_AMD_FEATURE_ECX_IBS
882 | X86_CPUID_AMD_FEATURE_ECX_SSE5
883 | X86_CPUID_AMD_FEATURE_ECX_SKINIT
884 | X86_CPUID_AMD_FEATURE_ECX_WDT
885 | UINT32_C(0xffffc000)
886 )));
887 Assert(!(pCPUM->aGuestCpuIdExt[1].edx & ( RT_BIT(10)
888 | X86_CPUID_AMD_FEATURE_EDX_SEP
889 | RT_BIT(18)
890 | RT_BIT(19)
891 | RT_BIT(21)
892 | X86_CPUID_AMD_FEATURE_EDX_AXMMX
893 | X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
894 | RT_BIT(28)
895 )));
896 }
897
898 /*
899 * Apply the Synthetic CPU modifications. (TODO: move this up)
900 */
901 if (pCPUM->fSyntheticCpu)
902 {
903 static const char s_szVendor[13] = "VirtualBox ";
904 static const char s_szProcessor[48] = "VirtualBox SPARCx86 Processor v1000 "; /* includes null terminator */
905
906 pCPUM->enmGuestCpuVendor = CPUMCPUVENDOR_SYNTHETIC;
907
908 /* Limit the nr of standard leaves; 5 for monitor/mwait */
909 pCPUM->aGuestCpuIdStd[0].eax = RT_MIN(pCPUM->aGuestCpuIdStd[0].eax, 5);
910
911 /* 0: Vendor */
912 pCPUM->aGuestCpuIdStd[0].ebx = pCPUM->aGuestCpuIdExt[0].ebx = ((uint32_t *)s_szVendor)[0];
913 pCPUM->aGuestCpuIdStd[0].ecx = pCPUM->aGuestCpuIdExt[0].ecx = ((uint32_t *)s_szVendor)[2];
914 pCPUM->aGuestCpuIdStd[0].edx = pCPUM->aGuestCpuIdExt[0].edx = ((uint32_t *)s_szVendor)[1];
915
916 /* 1.eax: Version information. family : model : stepping */
917 pCPUM->aGuestCpuIdStd[1].eax = (0xf << 8) + (0x1 << 4) + 1;
918
919 /* Leaves 2 - 4 are Intel only - zero them out */
920 memset(&pCPUM->aGuestCpuIdStd[2], 0, sizeof(pCPUM->aGuestCpuIdStd[2]));
921 memset(&pCPUM->aGuestCpuIdStd[3], 0, sizeof(pCPUM->aGuestCpuIdStd[3]));
922 memset(&pCPUM->aGuestCpuIdStd[4], 0, sizeof(pCPUM->aGuestCpuIdStd[4]));
923
924 /* Leaf 5 = monitor/mwait */
925
926 /* Limit the nr of extended leaves: 0x80000008 to include the max virtual and physical address size (64 bits guests). */
927 pCPUM->aGuestCpuIdExt[0].eax = RT_MIN(pCPUM->aGuestCpuIdExt[0].eax, 0x80000008);
928 /* AMD only - set to zero. */
929 pCPUM->aGuestCpuIdExt[0].ebx = pCPUM->aGuestCpuIdExt[0].ecx = pCPUM->aGuestCpuIdExt[0].edx = 0;
930
931 /* 0x800000001: AMD only; shared feature bits are set dynamically. */
932 memset(&pCPUM->aGuestCpuIdExt[1], 0, sizeof(pCPUM->aGuestCpuIdExt[1]));
933
934 /* 0x800000002-4: Processor Name String Identifier. */
935 pCPUM->aGuestCpuIdExt[2].eax = ((uint32_t *)s_szProcessor)[0];
936 pCPUM->aGuestCpuIdExt[2].ebx = ((uint32_t *)s_szProcessor)[1];
937 pCPUM->aGuestCpuIdExt[2].ecx = ((uint32_t *)s_szProcessor)[2];
938 pCPUM->aGuestCpuIdExt[2].edx = ((uint32_t *)s_szProcessor)[3];
939 pCPUM->aGuestCpuIdExt[3].eax = ((uint32_t *)s_szProcessor)[4];
940 pCPUM->aGuestCpuIdExt[3].ebx = ((uint32_t *)s_szProcessor)[5];
941 pCPUM->aGuestCpuIdExt[3].ecx = ((uint32_t *)s_szProcessor)[6];
942 pCPUM->aGuestCpuIdExt[3].edx = ((uint32_t *)s_szProcessor)[7];
943 pCPUM->aGuestCpuIdExt[4].eax = ((uint32_t *)s_szProcessor)[8];
944 pCPUM->aGuestCpuIdExt[4].ebx = ((uint32_t *)s_szProcessor)[9];
945 pCPUM->aGuestCpuIdExt[4].ecx = ((uint32_t *)s_szProcessor)[10];
946 pCPUM->aGuestCpuIdExt[4].edx = ((uint32_t *)s_szProcessor)[11];
947
948 /* 0x800000005-7 - reserved -> zero */
949 memset(&pCPUM->aGuestCpuIdExt[5], 0, sizeof(pCPUM->aGuestCpuIdExt[5]));
950 memset(&pCPUM->aGuestCpuIdExt[6], 0, sizeof(pCPUM->aGuestCpuIdExt[6]));
951 memset(&pCPUM->aGuestCpuIdExt[7], 0, sizeof(pCPUM->aGuestCpuIdExt[7]));
952
953 /* 0x800000008: only the max virtual and physical address size. */
954 pCPUM->aGuestCpuIdExt[8].ecx = pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
955 }
956
957 /*
958 * Hide HTT, multicode, SMP, whatever.
959 * (APIC-ID := 0 and #LogCpus := 0)
960 */
961 pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
962#ifdef VBOX_WITH_MULTI_CORE
963 if ( pCPUM->enmGuestCpuVendor != CPUMCPUVENDOR_SYNTHETIC
964 && pVM->cCpus > 1)
965 {
966 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU core times the number of CPU cores per processor */
967 pCPUM->aGuestCpuIdStd[1].ebx |= (pVM->cCpus << 16);
968 pCPUM->aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_HTT; /* necessary for hyper-threading *or* multi-core CPUs */
969 }
970#endif
971
972 /* Cpuid 2:
973 * Intel: Cache and TLB information
974 * AMD: Reserved
975 * Safe to expose; restrict the number of calls to 1 for the portable case.
976 */
977 if ( pCPUM->u8PortableCpuIdLevel > 0
978 && pCPUM->aGuestCpuIdStd[0].eax >= 2
979 && (pCPUM->aGuestCpuIdStd[2].eax & 0xff) > 1)
980 {
981 LogRel(("PortableCpuId: Std[2].al: %d -> 1\n", pCPUM->aGuestCpuIdStd[2].eax & 0xff));
982 pCPUM->aGuestCpuIdStd[2].eax &= UINT32_C(0xfffffffe);
983 }
984
985 /* Cpuid 3:
986 * Intel: EAX, EBX - reserved (transmeta uses these)
987 * ECX, EDX - Processor Serial Number if available, otherwise reserved
988 * AMD: Reserved
989 * Safe to expose
990 */
991 if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
992 {
993 pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
994 if (pCPUM->u8PortableCpuIdLevel > 0)
995 pCPUM->aGuestCpuIdStd[3].eax = pCPUM->aGuestCpuIdStd[3].ebx = 0;
996 }
997
998 /* Cpuid 4:
999 * Intel: Deterministic Cache Parameters Leaf
1000 * Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
1001 * AMD: Reserved
1002 * Safe to expose, except for EAX:
1003 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
1004 * Bits 31-26: Maximum number of processor cores in this physical package**
1005 * Note: These SMP values are constant regardless of ECX
1006 */
1007 pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
1008 pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
1009#ifdef VBOX_WITH_MULTI_CORE
1010 if ( pVM->cCpus > 1
1011 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_INTEL)
1012 {
1013 AssertReturn(pVM->cCpus <= 64, VERR_TOO_MANY_CPUS);
1014 /* One logical processor with possibly multiple cores. */
1015 /* See http://www.intel.com/Assets/PDF/appnote/241618.pdf p. 29 */
1016 pCPUM->aGuestCpuIdStd[4].eax |= ((pVM->cCpus - 1) << 26); /* 6 bits only -> 64 cores! */
1017 }
1018#endif
1019
1020 /* Cpuid 5: Monitor/mwait Leaf
1021 * Intel: ECX, EDX - reserved
1022 * EAX, EBX - Smallest and largest monitor line size
1023 * AMD: EDX - reserved
1024 * EAX, EBX - Smallest and largest monitor line size
1025 * ECX - extensions (ignored for now)
1026 * Safe to expose
1027 */
1028 if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
1029 pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
1030
1031 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
1032 /** @cfgm{/CPUM/MWaitExtensions, boolean, false}
1033 * Expose MWAIT extended features to the guest. For now we expose
1034 * just MWAIT break on interrupt feature (bit 1).
1035 */
1036 bool fMWaitExtensions;
1037 rc = CFGMR3QueryBoolDef(pCpumCfg, "MWaitExtensions", &fMWaitExtensions, false); AssertRCReturn(rc, rc);
1038 if (fMWaitExtensions)
1039 {
1040 pCPUM->aGuestCpuIdStd[5].ecx = X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0;
1041 /* @todo: for now we just expose host's MWAIT C-states, although conceptually
1042 it shall be part of our power management virtualization model */
1043#if 0
1044 /* MWAIT sub C-states */
1045 pCPUM->aGuestCpuIdStd[5].edx =
1046 (0 << 0) /* 0 in C0 */ |
1047 (2 << 4) /* 2 in C1 */ |
1048 (2 << 8) /* 2 in C2 */ |
1049 (2 << 12) /* 2 in C3 */ |
1050 (0 << 16) /* 0 in C4 */
1051 ;
1052#endif
1053 }
1054 else
1055 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
1056
1057 /* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
1058 * Safe to pass on to the guest.
1059 *
1060 * Intel: 0x800000005 reserved
1061 * 0x800000006 L2 cache information
1062 * AMD: 0x800000005 L1 cache information
1063 * 0x800000006 L2/L3 cache information
1064 */
1065
1066 /* Cpuid 0x800000007:
1067 * AMD: EAX, EBX, ECX - reserved
1068 * EDX: Advanced Power Management Information
1069 * Intel: Reserved
1070 */
1071 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
1072 {
1073 Assert(pVM->cpum.s.enmGuestCpuVendor != CPUMCPUVENDOR_INVALID);
1074
1075 pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
1076
1077 if (pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
1078 {
1079 /* Only expose the TSC invariant capability bit to the guest. */
1080 pCPUM->aGuestCpuIdExt[7].edx &= 0
1081 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
1082 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
1083 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
1084 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
1085 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
1086 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
1087 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
1088 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
1089#if 0 /* We don't expose X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR, because newer
1090 * Linux kernels blindly assume that the AMD performance counters work
1091 * if this is set for 64 bits guests. (Can't really find a CPUID feature
1092 * bit for them though.) */
1093 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
1094#endif
1095 | 0;
1096 }
1097 else
1098 pCPUM->aGuestCpuIdExt[7].edx = 0;
1099 }
1100
1101 /* Cpuid 0x800000008:
1102 * AMD: EBX, EDX - reserved
1103 * EAX: Virtual/Physical/Guest address Size
1104 * ECX: Number of cores + APICIdCoreIdSize
1105 * Intel: EAX: Virtual/Physical address Size
1106 * EBX, ECX, EDX - reserved
1107 */
1108 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
1109 {
1110 /* Only expose the virtual and physical address sizes to the guest. */
1111 pCPUM->aGuestCpuIdExt[8].eax &= UINT32_C(0x0000ffff);
1112 pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
1113 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
1114 * NC (0-7) Number of cores; 0 equals 1 core */
1115 pCPUM->aGuestCpuIdExt[8].ecx = 0;
1116#ifdef VBOX_WITH_MULTI_CORE
1117 if ( pVM->cCpus > 1
1118 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
1119 {
1120 /* Legacy method to determine the number of cores. */
1121 pCPUM->aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_CMPL;
1122 pCPUM->aGuestCpuIdExt[8].ecx |= (pVM->cCpus - 1); /* NC: Number of CPU cores - 1; 8 bits */
1123 }
1124#endif
1125 }
1126
1127 /** @cfgm{/CPUM/NT4LeafLimit, boolean, false}
1128 * Limit the number of standard CPUID leaves to 0..3 to prevent NT4 from
1129 * bugchecking with MULTIPROCESSOR_CONFIGURATION_NOT_SUPPORTED (0x3e).
1130 * This option corresponds somewhat to IA32_MISC_ENABLES.BOOT_NT4[bit 22].
1131 */
1132 bool fNt4LeafLimit;
1133 rc = CFGMR3QueryBoolDef(pCpumCfg, "NT4LeafLimit", &fNt4LeafLimit, false); AssertRCReturn(rc, rc);
1134 if (fNt4LeafLimit)
1135 pCPUM->aGuestCpuIdStd[0].eax = 3; /** @todo r=bird: shouldn't we check if pCPUM->aGuestCpuIdStd[0].eax > 3 before setting it 3 here? */
1136
1137 /*
1138 * Limit it the number of entries and fill the remaining with the defaults.
1139 *
1140 * The limits are masking off stuff about power saving and similar, this
1141 * is perhaps a bit crudely done as there is probably some relatively harmless
1142 * info too in these leaves (like words about having a constant TSC).
1143 */
1144 if (pCPUM->aGuestCpuIdStd[0].eax > 5)
1145 pCPUM->aGuestCpuIdStd[0].eax = 5;
1146 for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
1147 pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
1148
1149 if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
1150 pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
1151 for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
1152 ? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
1153 : 0;
1154 i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt);
1155 i++)
1156 pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
1157
1158 /*
1159 * Centaur stuff (VIA).
1160 *
1161 * The important part here (we think) is to make sure the 0xc0000000
1162 * function returns 0xc0000001. As for the features, we don't currently
1163 * let on about any of those... 0xc0000002 seems to be some
1164 * temperature/hz/++ stuff, include it as well (static).
1165 */
1166 if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
1167 && pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
1168 {
1169 pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
1170 pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
1171 for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
1172 i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
1173 i++)
1174 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
1175 }
1176 else
1177 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
1178 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
1179
1180 /*
1181 * Hypervisor identification.
1182 *
1183 * We only return minimal information, primarily ensuring that the
1184 * 0x40000000 function returns 0x40000001 and identifying ourselves.
1185 * Currently we do not support any hypervisor-specific interface.
1186 */
1187 pCPUM->aGuestCpuIdHyper[0].eax = UINT32_C(0x40000001);
1188 pCPUM->aGuestCpuIdHyper[0].ebx = pCPUM->aGuestCpuIdHyper[0].ecx
1189 = pCPUM->aGuestCpuIdHyper[0].edx = 0x786f4256; /* 'VBox' */
1190 pCPUM->aGuestCpuIdHyper[1].eax = 0x656e6f6e; /* 'none' */
1191 pCPUM->aGuestCpuIdHyper[1].ebx = pCPUM->aGuestCpuIdHyper[1].ecx
1192 = pCPUM->aGuestCpuIdHyper[1].edx = 0; /* Reserved */
1193
1194 /*
1195 * Load CPUID overrides from configuration.
1196 * Note: Kind of redundant now, but allows unchanged overrides
1197 */
1198 /** @cfgm{CPUM/CPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
1199 * Overrides the CPUID leaf values. */
1200 PCFGMNODE pOverrideCfg = CFGMR3GetChild(pCpumCfg, "CPUID");
1201 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pOverrideCfg);
1202 AssertRCReturn(rc, rc);
1203 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pOverrideCfg);
1204 AssertRCReturn(rc, rc);
1205 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pOverrideCfg);
1206 AssertRCReturn(rc, rc);
1207
1208 /*
1209 * Check if PAE was explicitely enabled by the user.
1210 */
1211 bool fEnable;
1212 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable, false); AssertRCReturn(rc, rc);
1213 if (fEnable)
1214 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
1215
1216 /*
1217 * We don't normally enable NX for raw-mode, so give the user a chance to
1218 * force it on.
1219 */
1220 rc = CFGMR3QueryBoolDef(pCpumCfg, "EnableNX", &fEnable, false); AssertRCReturn(rc, rc);
1221 if (fEnable)
1222 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NXE);
1223
1224 /*
1225 * We don't enable the Hypervisor Present bit by default, but it may
1226 * be needed by some guests.
1227 */
1228 rc = CFGMR3QueryBoolDef(pCpumCfg, "EnableHVP", &fEnable, false); AssertRCReturn(rc, rc);
1229 if (fEnable)
1230 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_HVP);
1231 /*
1232 * Log the cpuid and we're good.
1233 */
1234 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
1235 RTCPUSET OnlineSet;
1236 LogRel(("Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
1237 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
1238 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
1239 LogRel(("************************* CPUID dump ************************\n"));
1240 DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
1241 LogRel(("\n"));
1242 DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
1243 RTLogRelSetBuffering(fOldBuffered);
1244 LogRel(("******************** End of CPUID dump **********************\n"));
1245
1246#undef PORTABLE_DISABLE_FEATURE_BIT
1247#undef PORTABLE_CLEAR_BITS_WHEN
1248
1249 return VINF_SUCCESS;
1250}
1251
1252
1253/**
1254 * Applies relocations to data and code managed by this
1255 * component. This function will be called at init and
1256 * whenever the VMM need to relocate it self inside the GC.
1257 *
1258 * The CPUM will update the addresses used by the switcher.
1259 *
1260 * @param pVM The VM.
1261 */
1262VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
1263{
1264 LogFlow(("CPUMR3Relocate\n"));
1265 /* nothing to do any more. */
1266}
1267
1268
1269/**
1270 * Apply late CPUM property changes based on the fHWVirtEx setting
1271 *
1272 * @param pVM Pointer to the VM.
1273 * @param fHWVirtExEnabled HWVirtEx enabled/disabled
1274 */
1275VMMR3DECL(void) CPUMR3SetHWVirtEx(PVM pVM, bool fHWVirtExEnabled)
1276{
1277 /*
1278 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestCpuIdDef:
1279 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
1280 * of processors from (cpuid(4).eax >> 26) + 1.
1281 *
1282 * Note: this code is obsolete, but let's keep it here for reference.
1283 * Purpose is valid when we artificially cap the max std id to less than 4.
1284 */
1285 if (!fHWVirtExEnabled)
1286 {
1287 Assert( pVM->cpum.s.aGuestCpuIdStd[4].eax == 0
1288 || pVM->cpum.s.aGuestCpuIdStd[0].eax < 0x4);
1289 pVM->cpum.s.aGuestCpuIdStd[4].eax = 0;
1290 }
1291}
1292
1293/**
1294 * Terminates the CPUM.
1295 *
1296 * Termination means cleaning up and freeing all resources,
1297 * the VM it self is at this point powered off or suspended.
1298 *
1299 * @returns VBox status code.
1300 * @param pVM Pointer to the VM.
1301 */
1302VMMR3DECL(int) CPUMR3Term(PVM pVM)
1303{
1304#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1305 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1306 {
1307 PVMCPU pVCpu = &pVM->aCpus[i];
1308 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1309
1310 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1311 pVCpu->cpum.s.uMagic = 0;
1312 pCtx->dr[5] = 0;
1313 }
1314#else
1315 NOREF(pVM);
1316#endif
1317 return VINF_SUCCESS;
1318}
1319
1320
1321/**
1322 * Resets a virtual CPU.
1323 *
1324 * Used by CPUMR3Reset and CPU hot plugging.
1325 *
1326 * @param pVCpu Pointer to the VMCPU.
1327 */
1328VMMR3DECL(void) CPUMR3ResetCpu(PVMCPU pVCpu)
1329{
1330 /** @todo anything different for VCPU > 0? */
1331 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1332
1333 /*
1334 * Initialize everything to ZERO first.
1335 */
1336 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1337 memset(pCtx, 0, sizeof(*pCtx));
1338 pVCpu->cpum.s.fUseFlags = fUseFlags;
1339
1340 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1341 pCtx->eip = 0x0000fff0;
1342 pCtx->edx = 0x00000600; /* P6 processor */
1343 pCtx->eflags.Bits.u1Reserved0 = 1;
1344
1345 pCtx->cs.Sel = 0xf000;
1346 pCtx->cs.ValidSel = 0xf000;
1347 pCtx->cs.fFlags = CPUMSELREG_FLAGS_VALID;
1348 pCtx->cs.u64Base = UINT64_C(0xffff0000);
1349 pCtx->cs.u32Limit = 0x0000ffff;
1350 pCtx->cs.Attr.n.u1DescType = 1; /* code/data segment */
1351 pCtx->cs.Attr.n.u1Present = 1;
1352 pCtx->cs.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
1353
1354 pCtx->ds.fFlags = CPUMSELREG_FLAGS_VALID;
1355 pCtx->ds.u32Limit = 0x0000ffff;
1356 pCtx->ds.Attr.n.u1DescType = 1; /* code/data segment */
1357 pCtx->ds.Attr.n.u1Present = 1;
1358 pCtx->ds.Attr.n.u4Type = X86_SEL_TYPE_RW;
1359
1360 pCtx->es.fFlags = CPUMSELREG_FLAGS_VALID;
1361 pCtx->es.u32Limit = 0x0000ffff;
1362 pCtx->es.Attr.n.u1DescType = 1; /* code/data segment */
1363 pCtx->es.Attr.n.u1Present = 1;
1364 pCtx->es.Attr.n.u4Type = X86_SEL_TYPE_RW;
1365
1366 pCtx->fs.fFlags = CPUMSELREG_FLAGS_VALID;
1367 pCtx->fs.u32Limit = 0x0000ffff;
1368 pCtx->fs.Attr.n.u1DescType = 1; /* code/data segment */
1369 pCtx->fs.Attr.n.u1Present = 1;
1370 pCtx->fs.Attr.n.u4Type = X86_SEL_TYPE_RW;
1371
1372 pCtx->gs.fFlags = CPUMSELREG_FLAGS_VALID;
1373 pCtx->gs.u32Limit = 0x0000ffff;
1374 pCtx->gs.Attr.n.u1DescType = 1; /* code/data segment */
1375 pCtx->gs.Attr.n.u1Present = 1;
1376 pCtx->gs.Attr.n.u4Type = X86_SEL_TYPE_RW;
1377
1378 pCtx->ss.fFlags = CPUMSELREG_FLAGS_VALID;
1379 pCtx->ss.u32Limit = 0x0000ffff;
1380 pCtx->ss.Attr.n.u1Present = 1;
1381 pCtx->ss.Attr.n.u1DescType = 1; /* code/data segment */
1382 pCtx->ss.Attr.n.u4Type = X86_SEL_TYPE_RW;
1383
1384 pCtx->idtr.cbIdt = 0xffff;
1385 pCtx->gdtr.cbGdt = 0xffff;
1386
1387 pCtx->ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1388 pCtx->ldtr.u32Limit = 0xffff;
1389 pCtx->ldtr.Attr.n.u1Present = 1;
1390 pCtx->ldtr.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1391
1392 pCtx->tr.fFlags = CPUMSELREG_FLAGS_VALID;
1393 pCtx->tr.u32Limit = 0xffff;
1394 pCtx->tr.Attr.n.u1Present = 1;
1395 pCtx->tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
1396
1397 pCtx->dr[6] = X86_DR6_INIT_VAL;
1398 pCtx->dr[7] = X86_DR7_INIT_VAL;
1399
1400 pCtx->fpu.FTW = 0x00; /* All empty (abbridged tag reg edition). */
1401 pCtx->fpu.FCW = 0x37f;
1402
1403 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
1404 IA-32 Processor States Following Power-up, Reset, or INIT */
1405 pCtx->fpu.MXCSR = 0x1F80;
1406 pCtx->fpu.MXCSR_MASK = 0xffff; /** @todo REM always changed this for us. Should probably check if the HW really
1407 supports all bits, since a zero value here should be read as 0xffbf. */
1408
1409 /* Init PAT MSR */
1410 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
1411
1412 /* Reset EFER; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State
1413 * The Intel docs don't mention it.
1414 */
1415 pCtx->msrEFER = 0;
1416}
1417
1418
1419/**
1420 * Resets the CPU.
1421 *
1422 * @returns VINF_SUCCESS.
1423 * @param pVM Pointer to the VM.
1424 */
1425VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1426{
1427 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1428 {
1429 CPUMR3ResetCpu(&pVM->aCpus[i]);
1430
1431#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1432 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(&pVM->aCpus[i]);
1433
1434 /* Magic marker for searching in crash dumps. */
1435 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1436 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1437 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1438#endif
1439 }
1440}
1441
1442
1443/**
1444 * Called both in pass 0 and the final pass.
1445 *
1446 * @param pVM Pointer to the VM.
1447 * @param pSSM The saved state handle.
1448 */
1449static void cpumR3SaveCpuId(PVM pVM, PSSMHANDLE pSSM)
1450{
1451 /*
1452 * Save all the CPU ID leaves here so we can check them for compatibility
1453 * upon loading.
1454 */
1455 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
1456 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
1457
1458 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
1459 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1460
1461 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
1462 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
1463
1464 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
1465
1466 /*
1467 * Save a good portion of the raw CPU IDs as well as they may come in
1468 * handy when validating features for raw mode.
1469 */
1470 CPUMCPUID aRawStd[16];
1471 for (unsigned i = 0; i < RT_ELEMENTS(aRawStd); i++)
1472 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1473 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawStd));
1474 SSMR3PutMem(pSSM, &aRawStd[0], sizeof(aRawStd));
1475
1476 CPUMCPUID aRawExt[32];
1477 for (unsigned i = 0; i < RT_ELEMENTS(aRawExt); i++)
1478 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1479 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawExt));
1480 SSMR3PutMem(pSSM, &aRawExt[0], sizeof(aRawExt));
1481}
1482
1483
1484/**
1485 * Loads the CPU ID leaves saved by pass 0.
1486 *
1487 * @returns VBox status code.
1488 * @param pVM Pointer to the VM.
1489 * @param pSSM The saved state handle.
1490 * @param uVersion The format version.
1491 */
1492static int cpumR3LoadCpuId(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
1493{
1494 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
1495
1496 /*
1497 * Define a bunch of macros for simplifying the code.
1498 */
1499 /* Generic expression + failure message. */
1500#define CPUID_CHECK_RET(expr, fmt) \
1501 do { \
1502 if (!(expr)) \
1503 { \
1504 char *pszMsg = RTStrAPrintf2 fmt; /* lack of variadic macros sucks */ \
1505 if (fStrictCpuIdChecks) \
1506 { \
1507 int rcCpuid = SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, "%s", pszMsg); \
1508 RTStrFree(pszMsg); \
1509 return rcCpuid; \
1510 } \
1511 LogRel(("CPUM: %s\n", pszMsg)); \
1512 RTStrFree(pszMsg); \
1513 } \
1514 } while (0)
1515#define CPUID_CHECK_WRN(expr, fmt) \
1516 do { \
1517 if (!(expr)) \
1518 LogRel(fmt); \
1519 } while (0)
1520
1521 /* For comparing two values and bitch if they differs. */
1522#define CPUID_CHECK2_RET(what, host, saved) \
1523 do { \
1524 if ((host) != (saved)) \
1525 { \
1526 if (fStrictCpuIdChecks) \
1527 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1528 N_(#what " mismatch: host=%#x saved=%#x"), (host), (saved)); \
1529 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1530 } \
1531 } while (0)
1532#define CPUID_CHECK2_WRN(what, host, saved) \
1533 do { \
1534 if ((host) != (saved)) \
1535 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1536 } while (0)
1537
1538 /* For checking raw cpu features (raw mode). */
1539#define CPUID_RAW_FEATURE_RET(set, reg, bit) \
1540 do { \
1541 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1542 { \
1543 if (fStrictCpuIdChecks) \
1544 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1545 N_(#bit " mismatch: host=%d saved=%d"), \
1546 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) ); \
1547 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1548 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1549 } \
1550 } while (0)
1551#define CPUID_RAW_FEATURE_WRN(set, reg, bit) \
1552 do { \
1553 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1554 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1555 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1556 } while (0)
1557#define CPUID_RAW_FEATURE_IGN(set, reg, bit) do { } while (0)
1558
1559 /* For checking guest features. */
1560#define CPUID_GST_FEATURE_RET(set, reg, bit) \
1561 do { \
1562 if ( (aGuestCpuId##set [1].reg & bit) \
1563 && !(aHostRaw##set [1].reg & bit) \
1564 && !(aHostOverride##set [1].reg & bit) \
1565 && !(aGuestOverride##set [1].reg & bit) \
1566 ) \
1567 { \
1568 if (fStrictCpuIdChecks) \
1569 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1570 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1571 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1572 } \
1573 } while (0)
1574#define CPUID_GST_FEATURE_WRN(set, reg, bit) \
1575 do { \
1576 if ( (aGuestCpuId##set [1].reg & bit) \
1577 && !(aHostRaw##set [1].reg & bit) \
1578 && !(aHostOverride##set [1].reg & bit) \
1579 && !(aGuestOverride##set [1].reg & bit) \
1580 ) \
1581 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1582 } while (0)
1583#define CPUID_GST_FEATURE_EMU(set, reg, bit) \
1584 do { \
1585 if ( (aGuestCpuId##set [1].reg & bit) \
1586 && !(aHostRaw##set [1].reg & bit) \
1587 && !(aHostOverride##set [1].reg & bit) \
1588 && !(aGuestOverride##set [1].reg & bit) \
1589 ) \
1590 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1591 } while (0)
1592#define CPUID_GST_FEATURE_IGN(set, reg, bit) do { } while (0)
1593
1594 /* For checking guest features if AMD guest CPU. */
1595#define CPUID_GST_AMD_FEATURE_RET(set, reg, bit) \
1596 do { \
1597 if ( (aGuestCpuId##set [1].reg & bit) \
1598 && fGuestAmd \
1599 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1600 && !(aHostOverride##set [1].reg & bit) \
1601 && !(aGuestOverride##set [1].reg & bit) \
1602 ) \
1603 { \
1604 if (fStrictCpuIdChecks) \
1605 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1606 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1607 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1608 } \
1609 } while (0)
1610#define CPUID_GST_AMD_FEATURE_WRN(set, reg, bit) \
1611 do { \
1612 if ( (aGuestCpuId##set [1].reg & bit) \
1613 && fGuestAmd \
1614 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1615 && !(aHostOverride##set [1].reg & bit) \
1616 && !(aGuestOverride##set [1].reg & bit) \
1617 ) \
1618 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1619 } while (0)
1620#define CPUID_GST_AMD_FEATURE_EMU(set, reg, bit) \
1621 do { \
1622 if ( (aGuestCpuId##set [1].reg & bit) \
1623 && fGuestAmd \
1624 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1625 && !(aHostOverride##set [1].reg & bit) \
1626 && !(aGuestOverride##set [1].reg & bit) \
1627 ) \
1628 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1629 } while (0)
1630#define CPUID_GST_AMD_FEATURE_IGN(set, reg, bit) do { } while (0)
1631
1632 /* For checking AMD features which have a corresponding bit in the standard
1633 range. (Intel defines very few bits in the extended feature sets.) */
1634#define CPUID_GST_FEATURE2_RET(reg, ExtBit, StdBit) \
1635 do { \
1636 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1637 && !(fHostAmd \
1638 ? aHostRawExt[1].reg & (ExtBit) \
1639 : aHostRawStd[1].reg & (StdBit)) \
1640 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1641 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1642 ) \
1643 { \
1644 if (fStrictCpuIdChecks) \
1645 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1646 N_(#ExtBit " is not supported by the host but has already exposed to the guest")); \
1647 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1648 } \
1649 } while (0)
1650#define CPUID_GST_FEATURE2_WRN(reg, ExtBit, StdBit) \
1651 do { \
1652 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1653 && !(fHostAmd \
1654 ? aHostRawExt[1].reg & (ExtBit) \
1655 : aHostRawStd[1].reg & (StdBit)) \
1656 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1657 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1658 ) \
1659 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1660 } while (0)
1661#define CPUID_GST_FEATURE2_EMU(reg, ExtBit, StdBit) \
1662 do { \
1663 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1664 && !(fHostAmd \
1665 ? aHostRawExt[1].reg & (ExtBit) \
1666 : aHostRawStd[1].reg & (StdBit)) \
1667 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1668 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1669 ) \
1670 LogRel(("CPUM: Warning - " #ExtBit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1671 } while (0)
1672#define CPUID_GST_FEATURE2_IGN(reg, ExtBit, StdBit) do { } while (0)
1673
1674 /*
1675 * Load them into stack buffers first.
1676 */
1677 CPUMCPUID aGuestCpuIdStd[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd)];
1678 uint32_t cGuestCpuIdStd;
1679 int rc = SSMR3GetU32(pSSM, &cGuestCpuIdStd); AssertRCReturn(rc, rc);
1680 if (cGuestCpuIdStd > RT_ELEMENTS(aGuestCpuIdStd))
1681 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1682 SSMR3GetMem(pSSM, &aGuestCpuIdStd[0], cGuestCpuIdStd * sizeof(aGuestCpuIdStd[0]));
1683
1684 CPUMCPUID aGuestCpuIdExt[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt)];
1685 uint32_t cGuestCpuIdExt;
1686 rc = SSMR3GetU32(pSSM, &cGuestCpuIdExt); AssertRCReturn(rc, rc);
1687 if (cGuestCpuIdExt > RT_ELEMENTS(aGuestCpuIdExt))
1688 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1689 SSMR3GetMem(pSSM, &aGuestCpuIdExt[0], cGuestCpuIdExt * sizeof(aGuestCpuIdExt[0]));
1690
1691 CPUMCPUID aGuestCpuIdCentaur[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur)];
1692 uint32_t cGuestCpuIdCentaur;
1693 rc = SSMR3GetU32(pSSM, &cGuestCpuIdCentaur); AssertRCReturn(rc, rc);
1694 if (cGuestCpuIdCentaur > RT_ELEMENTS(aGuestCpuIdCentaur))
1695 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1696 SSMR3GetMem(pSSM, &aGuestCpuIdCentaur[0], cGuestCpuIdCentaur * sizeof(aGuestCpuIdCentaur[0]));
1697
1698 CPUMCPUID GuestCpuIdDef;
1699 rc = SSMR3GetMem(pSSM, &GuestCpuIdDef, sizeof(GuestCpuIdDef));
1700 AssertRCReturn(rc, rc);
1701
1702 CPUMCPUID aRawStd[16];
1703 uint32_t cRawStd;
1704 rc = SSMR3GetU32(pSSM, &cRawStd); AssertRCReturn(rc, rc);
1705 if (cRawStd > RT_ELEMENTS(aRawStd))
1706 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1707 SSMR3GetMem(pSSM, &aRawStd[0], cRawStd * sizeof(aRawStd[0]));
1708
1709 CPUMCPUID aRawExt[32];
1710 uint32_t cRawExt;
1711 rc = SSMR3GetU32(pSSM, &cRawExt); AssertRCReturn(rc, rc);
1712 if (cRawExt > RT_ELEMENTS(aRawExt))
1713 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1714 rc = SSMR3GetMem(pSSM, &aRawExt[0], cRawExt * sizeof(aRawExt[0]));
1715 AssertRCReturn(rc, rc);
1716
1717 /*
1718 * Note that we support restoring less than the current amount of standard
1719 * leaves because we've been allowed more is newer version of VBox.
1720 *
1721 * So, pad new entries with the default.
1722 */
1723 for (uint32_t i = cGuestCpuIdStd; i < RT_ELEMENTS(aGuestCpuIdStd); i++)
1724 aGuestCpuIdStd[i] = GuestCpuIdDef;
1725
1726 for (uint32_t i = cGuestCpuIdExt; i < RT_ELEMENTS(aGuestCpuIdExt); i++)
1727 aGuestCpuIdExt[i] = GuestCpuIdDef;
1728
1729 for (uint32_t i = cGuestCpuIdCentaur; i < RT_ELEMENTS(aGuestCpuIdCentaur); i++)
1730 aGuestCpuIdCentaur[i] = GuestCpuIdDef;
1731
1732 for (uint32_t i = cRawStd; i < RT_ELEMENTS(aRawStd); i++)
1733 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1734
1735 for (uint32_t i = cRawExt; i < RT_ELEMENTS(aRawExt); i++)
1736 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1737
1738 /*
1739 * Get the raw CPU IDs for the current host.
1740 */
1741 CPUMCPUID aHostRawStd[16];
1742 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawStd); i++)
1743 ASMCpuId(i, &aHostRawStd[i].eax, &aHostRawStd[i].ebx, &aHostRawStd[i].ecx, &aHostRawStd[i].edx);
1744
1745 CPUMCPUID aHostRawExt[32];
1746 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawExt); i++)
1747 ASMCpuId(i | UINT32_C(0x80000000), &aHostRawExt[i].eax, &aHostRawExt[i].ebx, &aHostRawExt[i].ecx, &aHostRawExt[i].edx);
1748
1749 /*
1750 * Get the host and guest overrides so we don't reject the state because
1751 * some feature was enabled thru these interfaces.
1752 * Note! We currently only need the feature leaves, so skip rest.
1753 */
1754 PCFGMNODE pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/CPUID");
1755 CPUMCPUID aGuestOverrideStd[2];
1756 memcpy(&aGuestOverrideStd[0], &aHostRawStd[0], sizeof(aGuestOverrideStd));
1757 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aGuestOverrideStd[0], RT_ELEMENTS(aGuestOverrideStd), pOverrideCfg);
1758
1759 CPUMCPUID aGuestOverrideExt[2];
1760 memcpy(&aGuestOverrideExt[0], &aHostRawExt[0], sizeof(aGuestOverrideExt));
1761 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aGuestOverrideExt[0], RT_ELEMENTS(aGuestOverrideExt), pOverrideCfg);
1762
1763 pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/HostCPUID");
1764 CPUMCPUID aHostOverrideStd[2];
1765 memcpy(&aHostOverrideStd[0], &aHostRawStd[0], sizeof(aHostOverrideStd));
1766 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aHostOverrideStd[0], RT_ELEMENTS(aHostOverrideStd), pOverrideCfg);
1767
1768 CPUMCPUID aHostOverrideExt[2];
1769 memcpy(&aHostOverrideExt[0], &aHostRawExt[0], sizeof(aHostOverrideExt));
1770 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aHostOverrideExt[0], RT_ELEMENTS(aHostOverrideExt), pOverrideCfg);
1771
1772 /*
1773 * This can be skipped.
1774 */
1775 bool fStrictCpuIdChecks;
1776 CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM"), "StrictCpuIdChecks", &fStrictCpuIdChecks, true);
1777
1778
1779
1780 /*
1781 * For raw-mode we'll require that the CPUs are very similar since we don't
1782 * intercept CPUID instructions for user mode applications.
1783 */
1784 if (!HWACCMIsEnabled(pVM))
1785 {
1786 /* CPUID(0) */
1787 CPUID_CHECK_RET( aHostRawStd[0].ebx == aRawStd[0].ebx
1788 && aHostRawStd[0].ecx == aRawStd[0].ecx
1789 && aHostRawStd[0].edx == aRawStd[0].edx,
1790 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1791 &aHostRawStd[0].ebx, &aHostRawStd[0].edx, &aHostRawStd[0].ecx,
1792 &aRawStd[0].ebx, &aRawStd[0].edx, &aRawStd[0].ecx));
1793 CPUID_CHECK2_WRN("Std CPUID max leaf", aHostRawStd[0].eax, aRawStd[0].eax);
1794 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3);
1795 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1796
1797 bool const fIntel = ASMIsIntelCpuEx(aRawStd[0].ebx, aRawStd[0].ecx, aRawStd[0].edx);
1798
1799 /* CPUID(1).eax */
1800 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawStd[1].eax), ASMGetCpuFamily(aRawStd[1].eax));
1801 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawStd[1].eax, fIntel), ASMGetCpuModel(aRawStd[1].eax, fIntel));
1802 CPUID_CHECK2_WRN("CPU type", (aHostRawStd[1].eax >> 12) & 3, (aRawStd[1].eax >> 12) & 3 );
1803
1804 /* CPUID(1).ebx - completely ignore CPU count and APIC ID. */
1805 CPUID_CHECK2_RET("CPU brand ID", aHostRawStd[1].ebx & 0xff, aRawStd[1].ebx & 0xff);
1806 CPUID_CHECK2_WRN("CLFLUSH chunk count", (aHostRawStd[1].ebx >> 8) & 0xff, (aRawStd[1].ebx >> 8) & 0xff);
1807
1808 /* CPUID(1).ecx */
1809 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3);
1810 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL);
1811 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64);
1812 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1813 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS);
1814 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_VMX);
1815 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_SMX);
1816 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_EST);
1817 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TM2);
1818 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3);
1819 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID);
1820 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1821 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA);
1822 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16);
1823 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);
1824 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM);
1825 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1826 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1827 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DCA);
1828 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1);
1829 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2);
1830 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1831 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE);
1832 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT);
1833 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1834 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES);
1835 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE);
1836 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE);
1837 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX);
1838 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1839 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1840 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_HVP);
1841
1842 /* CPUID(1).edx */
1843 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1844 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1845 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE);
1846 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1847 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC);
1848 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR);
1849 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1850 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1851 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8);
1852 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1853 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1854 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1855 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1856 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1857 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1858 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV);
1859 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1860 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1861 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1862 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH);
1863 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1864 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_DS);
1865 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_ACPI);
1866 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX);
1867 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR);
1868 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE);
1869 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2);
1870 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SS);
1871 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_HTT);
1872 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_TM);
1873 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/);
1874 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PBE);
1875
1876 /* CPUID(2) - config, mostly about caches. ignore. */
1877 /* CPUID(3) - processor serial number. ignore. */
1878 /* CPUID(4) - config, cache and topology - takes ECX as input. ignore. */
1879 /* CPUID(5) - mwait/monitor config. ignore. */
1880 /* CPUID(6) - power management. ignore. */
1881 /* CPUID(7) - ???. ignore. */
1882 /* CPUID(8) - ???. ignore. */
1883 /* CPUID(9) - DCA. ignore for now. */
1884 /* CPUID(a) - PeMo info. ignore for now. */
1885 /* CPUID(b) - topology info - takes ECX as input. ignore. */
1886
1887 /* CPUID(d) - XCR0 stuff - takes ECX as input. We only warn about the main level (ECX=0) for now. */
1888 CPUID_CHECK_WRN( aRawStd[0].eax < UINT32_C(0x0000000d)
1889 || aHostRawStd[0].eax >= UINT32_C(0x0000000d),
1890 ("CPUM: Standard leaf D was present on saved state host, not present on current.\n"));
1891 if ( aRawStd[0].eax >= UINT32_C(0x0000000d)
1892 && aHostRawStd[0].eax >= UINT32_C(0x0000000d))
1893 {
1894 CPUID_CHECK2_WRN("Valid low XCR0 bits", aHostRawStd[0xd].eax, aRawStd[0xd].eax);
1895 CPUID_CHECK2_WRN("Valid high XCR0 bits", aHostRawStd[0xd].edx, aRawStd[0xd].edx);
1896 CPUID_CHECK2_WRN("Current XSAVE/XRSTOR area size", aHostRawStd[0xd].ebx, aRawStd[0xd].ebx);
1897 CPUID_CHECK2_WRN("Max XSAVE/XRSTOR area size", aHostRawStd[0xd].ecx, aRawStd[0xd].ecx);
1898 }
1899
1900 /* CPUID(0x80000000) - same as CPUID(0) except for eax.
1901 Note! Intel have/is marking many of the fields here as reserved. We
1902 will verify them as if it's an AMD CPU. */
1903 CPUID_CHECK_RET( (aHostRawExt[0].eax >= UINT32_C(0x80000001) && aHostRawExt[0].eax <= UINT32_C(0x8000007f))
1904 || !(aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f)),
1905 (N_("Extended leaves was present on saved state host, but is missing on the current\n")));
1906 if (aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f))
1907 {
1908 CPUID_CHECK_RET( aHostRawExt[0].ebx == aRawExt[0].ebx
1909 && aHostRawExt[0].ecx == aRawExt[0].ecx
1910 && aHostRawExt[0].edx == aRawExt[0].edx,
1911 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1912 &aHostRawExt[0].ebx, &aHostRawExt[0].edx, &aHostRawExt[0].ecx,
1913 &aRawExt[0].ebx, &aRawExt[0].edx, &aRawExt[0].ecx));
1914 CPUID_CHECK2_WRN("Ext CPUID max leaf", aHostRawExt[0].eax, aRawExt[0].eax);
1915
1916 /* CPUID(0x80000001).eax - same as CPUID(0).eax. */
1917 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawExt[1].eax), ASMGetCpuFamily(aRawExt[1].eax));
1918 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawExt[1].eax, fIntel), ASMGetCpuModel(aRawExt[1].eax, fIntel));
1919 CPUID_CHECK2_WRN("CPU type", (aHostRawExt[1].eax >> 12) & 3, (aRawExt[1].eax >> 12) & 3 );
1920 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3 );
1921 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1922
1923 /* CPUID(0x80000001).ebx - Brand ID (maybe), just warn if things differs. */
1924 CPUID_CHECK2_WRN("CPU BrandID", aHostRawExt[1].ebx & 0xffff, aRawExt[1].ebx & 0xffff);
1925 CPUID_CHECK2_WRN("Reserved bits 16:27", (aHostRawExt[1].ebx >> 16) & 0xfff, (aRawExt[1].ebx >> 16) & 0xfff);
1926 CPUID_CHECK2_WRN("PkgType", (aHostRawExt[1].ebx >> 28) & 0xf, (aRawExt[1].ebx >> 28) & 0xf);
1927
1928 /* CPUID(0x80000001).ecx */
1929 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
1930 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL);
1931 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM);
1932 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);
1933 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L);
1934 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM);
1935 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A);
1936 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);
1937 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);
1938 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW);
1939 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS);
1940 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5);
1941 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT);
1942 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT);
1943 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1944 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1945 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1946 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1947 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1948 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1949 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1950 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1951 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1952 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1953 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1954 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1955 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1956 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1957 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1958 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1959 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1960 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1961
1962 /* CPUID(0x80000001).edx */
1963 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FPU);
1964 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_VME);
1965 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_DE);
1966 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE);
1967 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_TSC);
1968 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MSR);
1969 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAE);
1970 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCE);
1971 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CX8);
1972 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_APIC);
1973 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1974 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP);
1975 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MTRR);
1976 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PGE);
1977 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCA);
1978 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CMOV);
1979 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAT);
1980 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE36);
1981 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1982 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1983 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1984 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(21) /*reserved*/);
1985 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1986 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MMX);
1987 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FXSR);
1988 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1989 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1990 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1991 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(28) /*reserved*/);
1992 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1993 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1994 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1995
1996 /** @todo verify the rest as well. */
1997 }
1998 }
1999
2000
2001
2002 /*
2003 * Verify that we can support the features already exposed to the guest on
2004 * this host.
2005 *
2006 * Most of the features we're emulating requires intercepting instruction
2007 * and doing it the slow way, so there is no need to warn when they aren't
2008 * present in the host CPU. Thus we use IGN instead of EMU on these.
2009 *
2010 * Trailing comments:
2011 * "EMU" - Possible to emulate, could be lots of work and very slow.
2012 * "EMU?" - Can this be emulated?
2013 */
2014 /* CPUID(1).ecx */
2015 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3); // -> EMU
2016 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL); // -> EMU?
2017 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64); // -> EMU?
2018 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
2019 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS); // -> EMU?
2020 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_VMX); // -> EMU
2021 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SMX); // -> EMU
2022 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_EST); // -> EMU
2023 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TM2); // -> EMU?
2024 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3); // -> EMU
2025 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID); // -> EMU
2026 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
2027 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA); // -> EMU? what's this?
2028 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16); // -> EMU?
2029 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);//-> EMU
2030 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM); // -> EMU
2031 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
2032 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
2033 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DCA); // -> EMU?
2034 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1); // -> EMU
2035 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2); // -> EMU
2036 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
2037 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE); // -> EMU
2038 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT); // -> EMU
2039 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
2040 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES); // -> EMU
2041 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE); // -> EMU
2042 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE); // -> EMU
2043 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX); // -> EMU?
2044 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
2045 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
2046 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_HVP); // Normally not set by host
2047
2048 /* CPUID(1).edx */
2049 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
2050 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
2051 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE); // -> EMU?
2052 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
2053 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
2054 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
2055 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
2056 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
2057 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
2058 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
2059 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
2060 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
2061 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
2062 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
2063 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
2064 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
2065 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
2066 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
2067 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
2068 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH); // -> EMU
2069 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
2070 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DS); // -> EMU?
2071 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_ACPI); // -> EMU?
2072 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
2073 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
2074 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE); // -> EMU
2075 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2); // -> EMU
2076 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SS); // -> EMU?
2077 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_HTT); // -> EMU?
2078 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TM); // -> EMU?
2079 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/); // -> EMU
2080 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PBE); // -> EMU?
2081
2082 /* CPUID(0x80000000). */
2083 if ( aGuestCpuIdExt[0].eax >= UINT32_C(0x80000001)
2084 && aGuestCpuIdExt[0].eax < UINT32_C(0x8000007f))
2085 {
2086 /** @todo deal with no 0x80000001 on the host. */
2087 bool const fHostAmd = ASMIsAmdCpuEx(aHostRawStd[0].ebx, aHostRawStd[0].ecx, aHostRawStd[0].edx);
2088 bool const fGuestAmd = ASMIsAmdCpuEx(aGuestCpuIdExt[0].ebx, aGuestCpuIdExt[0].ecx, aGuestCpuIdExt[0].edx);
2089
2090 /* CPUID(0x80000001).ecx */
2091 CPUID_GST_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF); // -> EMU
2092 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL); // -> EMU
2093 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM); // -> EMU
2094 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);// ???
2095 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L); // -> EMU
2096 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM); // -> EMU
2097 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A); // -> EMU
2098 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);//-> EMU
2099 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);// -> EMU
2100 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW); // -> EMU?
2101 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS); // -> EMU
2102 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5); // -> EMU
2103 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT); // -> EMU
2104 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT); // -> EMU
2105 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
2106 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
2107 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
2108 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
2109 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
2110 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
2111 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
2112 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
2113 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
2114 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
2115 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
2116 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
2117 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
2118 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
2119 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
2120 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
2121 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
2122 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
2123
2124 /* CPUID(0x80000001).edx */
2125 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FPU, X86_CPUID_FEATURE_EDX_FPU); // -> EMU
2126 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_VME, X86_CPUID_FEATURE_EDX_VME); // -> EMU
2127 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_DE, X86_CPUID_FEATURE_EDX_DE); // -> EMU
2128 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE, X86_CPUID_FEATURE_EDX_PSE);
2129 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_TSC, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
2130 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MSR, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
2131 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_PAE, X86_CPUID_FEATURE_EDX_PAE);
2132 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCE, X86_CPUID_FEATURE_EDX_MCE);
2133 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CX8, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
2134 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_APIC, X86_CPUID_FEATURE_EDX_APIC);
2135 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(10) /*reserved*/);
2136 CPUID_GST_FEATURE_IGN( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP); // Intel: long mode only.
2137 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MTRR, X86_CPUID_FEATURE_EDX_MTRR);
2138 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PGE, X86_CPUID_FEATURE_EDX_PGE);
2139 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCA, X86_CPUID_FEATURE_EDX_MCA);
2140 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CMOV, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
2141 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PAT, X86_CPUID_FEATURE_EDX_PAT);
2142 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE36, X86_CPUID_FEATURE_EDX_PSE36);
2143 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(18) /*reserved*/);
2144 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(19) /*reserved*/);
2145 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
2146 CPUID_GST_FEATURE_WRN( Ext, edx, RT_BIT_32(21) /*reserved*/);
2147 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
2148 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MMX, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
2149 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FXSR, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
2150 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
2151 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
2152 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
2153 CPUID_GST_FEATURE_IGN( Ext, edx, RT_BIT_32(28) /*reserved*/);
2154 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
2155 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
2156 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
2157 }
2158
2159 /*
2160 * We're good, commit the CPU ID leaves.
2161 */
2162 memcpy(&pVM->cpum.s.aGuestCpuIdStd[0], &aGuestCpuIdStd[0], sizeof(aGuestCpuIdStd));
2163 memcpy(&pVM->cpum.s.aGuestCpuIdExt[0], &aGuestCpuIdExt[0], sizeof(aGuestCpuIdExt));
2164 memcpy(&pVM->cpum.s.aGuestCpuIdCentaur[0], &aGuestCpuIdCentaur[0], sizeof(aGuestCpuIdCentaur));
2165 pVM->cpum.s.GuestCpuIdDef = GuestCpuIdDef;
2166
2167#undef CPUID_CHECK_RET
2168#undef CPUID_CHECK_WRN
2169#undef CPUID_CHECK2_RET
2170#undef CPUID_CHECK2_WRN
2171#undef CPUID_RAW_FEATURE_RET
2172#undef CPUID_RAW_FEATURE_WRN
2173#undef CPUID_RAW_FEATURE_IGN
2174#undef CPUID_GST_FEATURE_RET
2175#undef CPUID_GST_FEATURE_WRN
2176#undef CPUID_GST_FEATURE_EMU
2177#undef CPUID_GST_FEATURE_IGN
2178#undef CPUID_GST_FEATURE2_RET
2179#undef CPUID_GST_FEATURE2_WRN
2180#undef CPUID_GST_FEATURE2_EMU
2181#undef CPUID_GST_FEATURE2_IGN
2182#undef CPUID_GST_AMD_FEATURE_RET
2183#undef CPUID_GST_AMD_FEATURE_WRN
2184#undef CPUID_GST_AMD_FEATURE_EMU
2185#undef CPUID_GST_AMD_FEATURE_IGN
2186
2187 return VINF_SUCCESS;
2188}
2189
2190
2191/**
2192 * Pass 0 live exec callback.
2193 *
2194 * @returns VINF_SSM_DONT_CALL_AGAIN.
2195 * @param pVM Pointer to the VM.
2196 * @param pSSM The saved state handle.
2197 * @param uPass The pass (0).
2198 */
2199static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
2200{
2201 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
2202 cpumR3SaveCpuId(pVM, pSSM);
2203 return VINF_SSM_DONT_CALL_AGAIN;
2204}
2205
2206
2207/**
2208 * Execute state save operation.
2209 *
2210 * @returns VBox status code.
2211 * @param pVM Pointer to the VM.
2212 * @param pSSM SSM operation handle.
2213 */
2214static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
2215{
2216 /*
2217 * Save.
2218 */
2219 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2220 {
2221 PVMCPU pVCpu = &pVM->aCpus[i];
2222#ifdef CPUM_WITH_CHANGED_CPUMCTX
2223 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED,
2224 g_aCpumCtxFields, NULL);
2225#else
2226 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), SSMSTRUCT_FLAGS_MEM_BAND_AID,
2227 g_aCpumCtxFields, NULL);
2228#endif
2229 }
2230
2231 SSMR3PutU32(pSSM, pVM->cCpus);
2232 SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
2233 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2234 {
2235 PVMCPU pVCpu = &pVM->aCpus[i];
2236
2237#ifdef CPUM_WITH_CHANGED_CPUMCTX
2238 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest), SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED,
2239 g_aCpumCtxFields, NULL);
2240#else
2241 SSMR3PutStructEx(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest), SSMSTRUCT_FLAGS_MEM_BAND_AID,
2242 g_aCpumCtxFields, NULL);
2243#endif
2244 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
2245 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
2246 AssertCompileSizeAlignment(pVM->aCpus[i].cpum.s.GuestMsrs.msr, sizeof(uint64_t));
2247 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVM->aCpus[i].cpum.s.GuestMsrs.msr));
2248 }
2249
2250 cpumR3SaveCpuId(pVM, pSSM);
2251 return VINF_SUCCESS;
2252}
2253
2254
2255/**
2256 * @copydoc FNSSMINTLOADPREP
2257 */
2258static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2259{
2260 NOREF(pSSM);
2261 pVM->cpum.s.fPendingRestore = true;
2262 return VINF_SUCCESS;
2263}
2264
2265
2266/**
2267 * @copydoc FNSSMINTLOADEXEC
2268 */
2269static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2270{
2271 /*
2272 * Validate version.
2273 */
2274 if ( uVersion != CPUM_SAVED_STATE_VERSION
2275 && uVersion != CPUM_SAVED_STATE_VERSION_MEM
2276 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2277 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2278 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2279 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2280 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2281 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2282 {
2283 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2284 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2285 }
2286
2287 if (uPass == SSM_PASS_FINAL)
2288 {
2289 /*
2290 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2291 * really old SSM file versions.)
2292 */
2293 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2294 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2295 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2296 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
2297
2298 PCSSMFIELD paCpumCtxFields = g_aCpumCtxFields;
2299 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2300 paCpumCtxFields = g_aCpumCtxFieldsV16;
2301 uint32_t fLoad = 0;
2302 if (uVersion <= CPUM_SAVED_STATE_VERSION_MEM)
2303#ifdef CPUM_WITH_CHANGED_CPUMCTX
2304 fLoad = SSMSTRUCT_FLAGS_MEM_BAND_AID_RELAXED;
2305#else
2306 fLoad = SSMSTRUCT_FLAGS_MEM_BAND_AID;
2307#endif
2308
2309 /*
2310 * Restore.
2311 */
2312 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2313 {
2314 PVMCPU pVCpu = &pVM->aCpus[i];
2315 uint64_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2316 uint64_t uRSP = pVCpu->cpum.s.Hyper.rsp; /* see VMMR3Relocate(). */
2317 SSMR3GetStructEx(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper), fLoad, paCpumCtxFields, NULL);
2318 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2319 pVCpu->cpum.s.Hyper.rsp = uRSP;
2320 }
2321
2322 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2323 {
2324 uint32_t cCpus;
2325 int rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2326 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2327 VERR_SSM_UNEXPECTED_DATA);
2328 }
2329 AssertLogRelMsgReturn( uVersion > CPUM_SAVED_STATE_VERSION_VER2_0
2330 || pVM->cCpus == 1,
2331 ("cCpus=%u\n", pVM->cCpus),
2332 VERR_SSM_UNEXPECTED_DATA);
2333
2334 uint32_t cbMsrs = 0;
2335 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2336 {
2337 int rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2338 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2339 VERR_SSM_UNEXPECTED_DATA);
2340 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2341 VERR_SSM_UNEXPECTED_DATA);
2342 }
2343
2344 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2345 {
2346 SSMR3GetStructEx(pSSM, &pVM->aCpus[i].cpum.s.Guest, sizeof(pVM->aCpus[i].cpum.s.Guest), fLoad,
2347 paCpumCtxFields, NULL);
2348 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fUseFlags);
2349 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fChanged);
2350 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2351 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsrs.au64[0], cbMsrs);
2352 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2353 {
2354 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2355 SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2356 }
2357 }
2358
2359 /* Older states does not set CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID for
2360 raw-mode guest, so we have to do it ourselves. */
2361 if ( uVersion <= CPUM_SAVED_STATE_VERSION_VER3_2
2362 && !HWACCMIsEnabled(pVM))
2363 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2364 pVM->aCpus[iCpu].cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2365 }
2366
2367 pVM->cpum.s.fPendingRestore = false;
2368
2369 /*
2370 * Guest CPUIDs.
2371 */
2372 if (uVersion > CPUM_SAVED_STATE_VERSION_VER3_0)
2373 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
2374
2375 /** @todo Merge the code below into cpumR3LoadCpuId when we've found out what is
2376 * actually required. */
2377
2378 /*
2379 * Restore the CPUID leaves.
2380 *
2381 * Note that we support restoring less than the current amount of standard
2382 * leaves because we've been allowed more is newer version of VBox.
2383 */
2384 uint32_t cElements;
2385 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2386 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
2387 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2388 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
2389
2390 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2391 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
2392 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2393 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
2394
2395 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2396 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
2397 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2398 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
2399
2400 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
2401
2402 /*
2403 * Check that the basic cpuid id information is unchanged.
2404 */
2405 /** @todo we should check the 64 bits capabilities too! */
2406 uint32_t au32CpuId[8] = {0,0,0,0, 0,0,0,0};
2407 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
2408 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
2409 uint32_t au32CpuIdSaved[8];
2410 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
2411 if (RT_SUCCESS(rc))
2412 {
2413 /* Ignore CPU stepping. */
2414 au32CpuId[4] &= 0xfffffff0;
2415 au32CpuIdSaved[4] &= 0xfffffff0;
2416
2417 /* Ignore APIC ID (AMD specs). */
2418 au32CpuId[5] &= ~0xff000000;
2419 au32CpuIdSaved[5] &= ~0xff000000;
2420
2421 /* Ignore the number of Logical CPUs (AMD specs). */
2422 au32CpuId[5] &= ~0x00ff0000;
2423 au32CpuIdSaved[5] &= ~0x00ff0000;
2424
2425 /* Ignore some advanced capability bits, that we don't expose to the guest. */
2426 au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2427 | X86_CPUID_FEATURE_ECX_VMX
2428 | X86_CPUID_FEATURE_ECX_SMX
2429 | X86_CPUID_FEATURE_ECX_EST
2430 | X86_CPUID_FEATURE_ECX_TM2
2431 | X86_CPUID_FEATURE_ECX_CNTXID
2432 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2433 | X86_CPUID_FEATURE_ECX_PDCM
2434 | X86_CPUID_FEATURE_ECX_DCA
2435 | X86_CPUID_FEATURE_ECX_X2APIC
2436 );
2437 au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2438 | X86_CPUID_FEATURE_ECX_VMX
2439 | X86_CPUID_FEATURE_ECX_SMX
2440 | X86_CPUID_FEATURE_ECX_EST
2441 | X86_CPUID_FEATURE_ECX_TM2
2442 | X86_CPUID_FEATURE_ECX_CNTXID
2443 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2444 | X86_CPUID_FEATURE_ECX_PDCM
2445 | X86_CPUID_FEATURE_ECX_DCA
2446 | X86_CPUID_FEATURE_ECX_X2APIC
2447 );
2448
2449 /* Make sure we don't forget to update the masks when enabling
2450 * features in the future.
2451 */
2452 AssertRelease(!(pVM->cpum.s.aGuestCpuIdStd[1].ecx &
2453 ( X86_CPUID_FEATURE_ECX_DTES64
2454 | X86_CPUID_FEATURE_ECX_VMX
2455 | X86_CPUID_FEATURE_ECX_SMX
2456 | X86_CPUID_FEATURE_ECX_EST
2457 | X86_CPUID_FEATURE_ECX_TM2
2458 | X86_CPUID_FEATURE_ECX_CNTXID
2459 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2460 | X86_CPUID_FEATURE_ECX_PDCM
2461 | X86_CPUID_FEATURE_ECX_DCA
2462 | X86_CPUID_FEATURE_ECX_X2APIC
2463 )));
2464 /* do the compare */
2465 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
2466 {
2467 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
2468 LogRel(("cpumR3LoadExec: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
2469 "Saved=%.*Rhxs\n"
2470 "Real =%.*Rhxs\n",
2471 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2472 sizeof(au32CpuId), au32CpuId));
2473 else
2474 {
2475 LogRel(("cpumR3LoadExec: CpuId mismatch!\n"
2476 "Saved=%.*Rhxs\n"
2477 "Real =%.*Rhxs\n",
2478 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2479 sizeof(au32CpuId), au32CpuId));
2480 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
2481 }
2482 }
2483 }
2484
2485 return rc;
2486}
2487
2488
2489/**
2490 * @copydoc FNSSMINTLOADPREP
2491 */
2492static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2493{
2494 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2495 return VINF_SUCCESS;
2496
2497 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2498 if (pVM->cpum.s.fPendingRestore)
2499 {
2500 LogRel(("CPUM: Missing state!\n"));
2501 return VERR_INTERNAL_ERROR_2;
2502 }
2503
2504 /* Notify PGM of the NXE states in case they've changed. */
2505 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2506 PGMNotifyNxeChanged(&pVM->aCpus[iCpu], !!(pVM->aCpus[iCpu].cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2507 return VINF_SUCCESS;
2508}
2509
2510
2511/**
2512 * Checks if the CPUM state restore is still pending.
2513 *
2514 * @returns true / false.
2515 * @param pVM Pointer to the VM.
2516 */
2517VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2518{
2519 return pVM->cpum.s.fPendingRestore;
2520}
2521
2522
2523/**
2524 * Formats the EFLAGS value into mnemonics.
2525 *
2526 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2527 * @param efl The EFLAGS value.
2528 */
2529static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2530{
2531 /*
2532 * Format the flags.
2533 */
2534 static const struct
2535 {
2536 const char *pszSet; const char *pszClear; uint32_t fFlag;
2537 } s_aFlags[] =
2538 {
2539 { "vip",NULL, X86_EFL_VIP },
2540 { "vif",NULL, X86_EFL_VIF },
2541 { "ac", NULL, X86_EFL_AC },
2542 { "vm", NULL, X86_EFL_VM },
2543 { "rf", NULL, X86_EFL_RF },
2544 { "nt", NULL, X86_EFL_NT },
2545 { "ov", "nv", X86_EFL_OF },
2546 { "dn", "up", X86_EFL_DF },
2547 { "ei", "di", X86_EFL_IF },
2548 { "tf", NULL, X86_EFL_TF },
2549 { "nt", "pl", X86_EFL_SF },
2550 { "nz", "zr", X86_EFL_ZF },
2551 { "ac", "na", X86_EFL_AF },
2552 { "po", "pe", X86_EFL_PF },
2553 { "cy", "nc", X86_EFL_CF },
2554 };
2555 char *psz = pszEFlags;
2556 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2557 {
2558 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2559 if (pszAdd)
2560 {
2561 strcpy(psz, pszAdd);
2562 psz += strlen(pszAdd);
2563 *psz++ = ' ';
2564 }
2565 }
2566 psz[-1] = '\0';
2567}
2568
2569
2570/**
2571 * Formats a full register dump.
2572 *
2573 * @param pVM Pointer to the VM.
2574 * @param pCtx The context to format.
2575 * @param pCtxCore The context core to format.
2576 * @param pHlp Output functions.
2577 * @param enmType The dump type.
2578 * @param pszPrefix Register name prefix.
2579 */
2580static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
2581 const char *pszPrefix)
2582{
2583 NOREF(pVM);
2584
2585 /*
2586 * Format the EFLAGS.
2587 */
2588 uint32_t efl = pCtxCore->eflags.u32;
2589 char szEFlags[80];
2590 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2591
2592 /*
2593 * Format the registers.
2594 */
2595 switch (enmType)
2596 {
2597 case CPUMDUMPTYPE_TERSE:
2598 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2599 pHlp->pfnPrintf(pHlp,
2600 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2601 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2602 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2603 "%sr14=%016RX64 %sr15=%016RX64\n"
2604 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2605 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2606 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2607 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2608 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2609 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2610 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2611 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2612 else
2613 pHlp->pfnPrintf(pHlp,
2614 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2615 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2616 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2617 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2618 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2619 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2620 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, efl);
2621 break;
2622
2623 case CPUMDUMPTYPE_DEFAULT:
2624 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2625 pHlp->pfnPrintf(pHlp,
2626 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2627 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2628 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2629 "%sr14=%016RX64 %sr15=%016RX64\n"
2630 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2631 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2632 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2633 ,
2634 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2635 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2636 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2637 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2638 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2639 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2640 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2641 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2642 else
2643 pHlp->pfnPrintf(pHlp,
2644 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2645 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2646 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2647 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2648 ,
2649 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2650 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2651 pszPrefix, pCtxCore->cs.Sel, pszPrefix, pCtxCore->ss.Sel, pszPrefix, pCtxCore->ds.Sel, pszPrefix, pCtxCore->es.Sel,
2652 pszPrefix, pCtxCore->fs.Sel, pszPrefix, pCtxCore->gs.Sel, pszPrefix, pCtx->tr.Sel, pszPrefix, efl,
2653 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2654 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->ldtr.Sel);
2655 break;
2656
2657 case CPUMDUMPTYPE_VERBOSE:
2658 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2659 pHlp->pfnPrintf(pHlp,
2660 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2661 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2662 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2663 "%sr14=%016RX64 %sr15=%016RX64\n"
2664 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2665 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2666 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2667 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2668 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2669 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2670 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2671 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2672 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2673 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2674 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2675 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2676 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2677 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2678 ,
2679 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2680 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2681 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2682 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2683 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u,
2684 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u,
2685 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u,
2686 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u,
2687 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u,
2688 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u,
2689 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2690 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2691 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2692 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2693 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2694 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2695 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2696 else
2697 pHlp->pfnPrintf(pHlp,
2698 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2699 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2700 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2701 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2702 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2703 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2704 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2705 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2706 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2707 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2708 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2709 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2710 ,
2711 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2712 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2713 pszPrefix, pCtxCore->cs.Sel, pCtx->cs.u64Base, pCtx->cs.u32Limit, pCtx->cs.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2714 pszPrefix, pCtxCore->ds.Sel, pCtx->ds.u64Base, pCtx->ds.u32Limit, pCtx->ds.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2715 pszPrefix, pCtxCore->es.Sel, pCtx->es.u64Base, pCtx->es.u32Limit, pCtx->es.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2716 pszPrefix, pCtxCore->fs.Sel, pCtx->fs.u64Base, pCtx->fs.u32Limit, pCtx->fs.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2717 pszPrefix, pCtxCore->gs.Sel, pCtx->gs.u64Base, pCtx->gs.u32Limit, pCtx->gs.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2718 pszPrefix, pCtxCore->ss.Sel, pCtx->ss.u64Base, pCtx->ss.u32Limit, pCtx->ss.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2719 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2720 pszPrefix, pCtx->ldtr.Sel, pCtx->ldtr.u64Base, pCtx->ldtr.u32Limit, pCtx->ldtr.Attr.u,
2721 pszPrefix, pCtx->tr.Sel, pCtx->tr.u64Base, pCtx->tr.u32Limit, pCtx->tr.Attr.u,
2722 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2723
2724 pHlp->pfnPrintf(pHlp,
2725 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2726 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2727 ,
2728 pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW, pszPrefix, pCtx->fpu.FOP,
2729 pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK,
2730 pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsrvd1,
2731 pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2
2732 );
2733 unsigned iShift = (pCtx->fpu.FSW >> 11) & 7;
2734 for (unsigned iST = 0; iST < RT_ELEMENTS(pCtx->fpu.aRegs); iST++)
2735 {
2736 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pCtx->fpu.aRegs);
2737 unsigned uTag = pCtx->fpu.FTW & (1 << iFPR) ? 1 : 0;
2738 char chSign = pCtx->fpu.aRegs[0].au16[4] & 0x8000 ? '-' : '+';
2739 unsigned iInteger = (unsigned)(pCtx->fpu.aRegs[0].au64[0] >> 63);
2740 uint64_t u64Fraction = pCtx->fpu.aRegs[0].au64[0] & UINT64_C(0x7fffffffffffffff);
2741 unsigned uExponent = pCtx->fpu.aRegs[0].au16[4] & 0x7fff;
2742 /** @todo This isn't entirenly correct and needs more work! */
2743 pHlp->pfnPrintf(pHlp,
2744 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu ^ %u",
2745 pszPrefix, iST, pszPrefix, iFPR,
2746 pCtx->fpu.aRegs[0].au16[4], pCtx->fpu.aRegs[0].au32[1], pCtx->fpu.aRegs[0].au32[0],
2747 uTag, chSign, iInteger, u64Fraction, uExponent);
2748 if (pCtx->fpu.aRegs[0].au16[5] || pCtx->fpu.aRegs[0].au16[6] || pCtx->fpu.aRegs[0].au16[7])
2749 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2750 pCtx->fpu.aRegs[0].au16[5], pCtx->fpu.aRegs[0].au16[6], pCtx->fpu.aRegs[0].au16[7]);
2751 else
2752 pHlp->pfnPrintf(pHlp, "\n");
2753 }
2754 for (unsigned iXMM = 0; iXMM < RT_ELEMENTS(pCtx->fpu.aXMM); iXMM++)
2755 pHlp->pfnPrintf(pHlp,
2756 iXMM & 1
2757 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2758 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2759 pszPrefix, iXMM, iXMM < 10 ? " " : "",
2760 pCtx->fpu.aXMM[iXMM].au32[3],
2761 pCtx->fpu.aXMM[iXMM].au32[2],
2762 pCtx->fpu.aXMM[iXMM].au32[1],
2763 pCtx->fpu.aXMM[iXMM].au32[0]);
2764 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->fpu.au32RsrvdRest); i++)
2765 if (pCtx->fpu.au32RsrvdRest[i])
2766 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[i]=%RX32 (offset=%#x)\n",
2767 pszPrefix, i, pCtx->fpu.au32RsrvdRest[i], RT_OFFSETOF(X86FXSTATE, au32RsrvdRest[i]) );
2768
2769 pHlp->pfnPrintf(pHlp,
2770 "%sEFER =%016RX64\n"
2771 "%sPAT =%016RX64\n"
2772 "%sSTAR =%016RX64\n"
2773 "%sCSTAR =%016RX64\n"
2774 "%sLSTAR =%016RX64\n"
2775 "%sSFMASK =%016RX64\n"
2776 "%sKERNELGSBASE =%016RX64\n",
2777 pszPrefix, pCtx->msrEFER,
2778 pszPrefix, pCtx->msrPAT,
2779 pszPrefix, pCtx->msrSTAR,
2780 pszPrefix, pCtx->msrCSTAR,
2781 pszPrefix, pCtx->msrLSTAR,
2782 pszPrefix, pCtx->msrSFMASK,
2783 pszPrefix, pCtx->msrKERNELGSBASE);
2784 break;
2785 }
2786}
2787
2788
2789/**
2790 * Display all cpu states and any other cpum info.
2791 *
2792 * @param pVM Pointer to the VM.
2793 * @param pHlp The info helper functions.
2794 * @param pszArgs Arguments, ignored.
2795 */
2796static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2797{
2798 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2799 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2800 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2801 cpumR3InfoHost(pVM, pHlp, pszArgs);
2802}
2803
2804
2805/**
2806 * Parses the info argument.
2807 *
2808 * The argument starts with 'verbose', 'terse' or 'default' and then
2809 * continues with the comment string.
2810 *
2811 * @param pszArgs The pointer to the argument string.
2812 * @param penmType Where to store the dump type request.
2813 * @param ppszComment Where to store the pointer to the comment string.
2814 */
2815static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2816{
2817 if (!pszArgs)
2818 {
2819 *penmType = CPUMDUMPTYPE_DEFAULT;
2820 *ppszComment = "";
2821 }
2822 else
2823 {
2824 if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
2825 {
2826 pszArgs += 7;
2827 *penmType = CPUMDUMPTYPE_VERBOSE;
2828 }
2829 else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
2830 {
2831 pszArgs += 5;
2832 *penmType = CPUMDUMPTYPE_TERSE;
2833 }
2834 else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
2835 {
2836 pszArgs += 7;
2837 *penmType = CPUMDUMPTYPE_DEFAULT;
2838 }
2839 else
2840 *penmType = CPUMDUMPTYPE_DEFAULT;
2841 *ppszComment = RTStrStripL(pszArgs);
2842 }
2843}
2844
2845
2846/**
2847 * Display the guest cpu state.
2848 *
2849 * @param pVM Pointer to the VM.
2850 * @param pHlp The info helper functions.
2851 * @param pszArgs Arguments, ignored.
2852 */
2853static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2854{
2855 CPUMDUMPTYPE enmType;
2856 const char *pszComment;
2857 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2858
2859 /* @todo SMP support! */
2860 PVMCPU pVCpu = VMMGetCpu(pVM);
2861 if (!pVCpu)
2862 pVCpu = &pVM->aCpus[0];
2863
2864 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2865
2866 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2867 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2868}
2869
2870
2871/**
2872 * Display the current guest instruction
2873 *
2874 * @param pVM Pointer to the VM.
2875 * @param pHlp The info helper functions.
2876 * @param pszArgs Arguments, ignored.
2877 */
2878static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2879{
2880 NOREF(pszArgs);
2881
2882 /** @todo SMP support! */
2883 PVMCPU pVCpu = VMMGetCpu(pVM);
2884 if (!pVCpu)
2885 pVCpu = &pVM->aCpus[0];
2886
2887 char szInstruction[256];
2888 int rc = DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2889 if (RT_SUCCESS(rc))
2890 pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
2891}
2892
2893
2894/**
2895 * Display the hypervisor cpu state.
2896 *
2897 * @param pVM Pointer to the VM.
2898 * @param pHlp The info helper functions.
2899 * @param pszArgs Arguments, ignored.
2900 */
2901static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2902{
2903 CPUMDUMPTYPE enmType;
2904 const char *pszComment;
2905 /* @todo SMP */
2906 PVMCPU pVCpu = &pVM->aCpus[0];
2907
2908 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2909 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2910 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper), pHlp, enmType, ".");
2911 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2912}
2913
2914
2915/**
2916 * Display the host cpu state.
2917 *
2918 * @param pVM Pointer to the VM.
2919 * @param pHlp The info helper functions.
2920 * @param pszArgs Arguments, ignored.
2921 */
2922static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2923{
2924 CPUMDUMPTYPE enmType;
2925 const char *pszComment;
2926 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2927 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2928
2929 /*
2930 * Format the EFLAGS.
2931 */
2932 /* @todo SMP */
2933 PCPUMHOSTCTX pCtx = &pVM->aCpus[0].cpum.s.Host;
2934#if HC_ARCH_BITS == 32
2935 uint32_t efl = pCtx->eflags.u32;
2936#else
2937 uint64_t efl = pCtx->rflags;
2938#endif
2939 char szEFlags[80];
2940 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2941
2942 /*
2943 * Format the registers.
2944 */
2945#if HC_ARCH_BITS == 32
2946# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2947 if (!(pCtx->efer & MSR_K6_EFER_LMA))
2948# endif
2949 {
2950 pHlp->pfnPrintf(pHlp,
2951 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
2952 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
2953 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
2954 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
2955 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
2956 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2957 ,
2958 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
2959 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
2960 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
2961 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
2962 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
2963 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->ldtr,
2964 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2965 }
2966# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2967 else
2968# endif
2969#endif
2970#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2971 {
2972 pHlp->pfnPrintf(pHlp,
2973 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
2974 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
2975 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
2976 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
2977 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2978 "r14=%016RX64 r15=%016RX64\n"
2979 "iopl=%d %31s\n"
2980 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
2981 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
2982 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
2983 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
2984 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
2985 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
2986 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2987 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
2988 ,
2989 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
2990 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
2991 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
2992 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
2993 pCtx->r11, pCtx->r12, pCtx->r13,
2994 pCtx->r14, pCtx->r15,
2995 X86_EFL_GET_IOPL(efl), szEFlags,
2996 pCtx->cs, pCtx->ds, pCtx->es, pCtx->fs, pCtx->gs, efl,
2997 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
2998 pCtx->cr4, pCtx->ldtr, pCtx->tr,
2999 pCtx->dr0, pCtx->dr1, pCtx->dr2,
3000 pCtx->dr3, pCtx->dr6, pCtx->dr7,
3001 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
3002 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
3003 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
3004 }
3005#endif
3006}
3007
3008
3009/**
3010 * Get L1 cache / TLS associativity.
3011 */
3012static const char *getCacheAss(unsigned u, char *pszBuf)
3013{
3014 if (u == 0)
3015 return "res0 ";
3016 if (u == 1)
3017 return "direct";
3018 if (u == 255)
3019 return "fully";
3020 if (u >= 256)
3021 return "???";
3022
3023 RTStrPrintf(pszBuf, 16, "%d way", u);
3024 return pszBuf;
3025}
3026
3027
3028/**
3029 * Get L2 cache associativity.
3030 */
3031const char *getL2CacheAss(unsigned u)
3032{
3033 switch (u)
3034 {
3035 case 0: return "off ";
3036 case 1: return "direct";
3037 case 2: return "2 way ";
3038 case 3: return "res3 ";
3039 case 4: return "4 way ";
3040 case 5: return "res5 ";
3041 case 6: return "8 way ";
3042 case 7: return "res7 ";
3043 case 8: return "16 way";
3044 case 9: return "res9 ";
3045 case 10: return "res10 ";
3046 case 11: return "res11 ";
3047 case 12: return "res12 ";
3048 case 13: return "res13 ";
3049 case 14: return "res14 ";
3050 case 15: return "fully ";
3051 default: return "????";
3052 }
3053}
3054
3055
3056/**
3057 * Display the guest CpuId leaves.
3058 *
3059 * @param pVM Pointer to the VM.
3060 * @param pHlp The info helper functions.
3061 * @param pszArgs "terse", "default" or "verbose".
3062 */
3063static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
3064{
3065 /*
3066 * Parse the argument.
3067 */
3068 unsigned iVerbosity = 1;
3069 if (pszArgs)
3070 {
3071 pszArgs = RTStrStripL(pszArgs);
3072 if (!strcmp(pszArgs, "terse"))
3073 iVerbosity--;
3074 else if (!strcmp(pszArgs, "verbose"))
3075 iVerbosity++;
3076 }
3077
3078 /*
3079 * Start cracking.
3080 */
3081 CPUMCPUID Host;
3082 CPUMCPUID Guest;
3083 unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
3084
3085 pHlp->pfnPrintf(pHlp,
3086 " RAW Standard CPUIDs\n"
3087 " Function eax ebx ecx edx\n");
3088 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
3089 {
3090 Guest = pVM->cpum.s.aGuestCpuIdStd[i];
3091 ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3092
3093 pHlp->pfnPrintf(pHlp,
3094 "Gst: %08x %08x %08x %08x %08x%s\n"
3095 "Hst: %08x %08x %08x %08x\n",
3096 i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3097 i <= cStdMax ? "" : "*",
3098 Host.eax, Host.ebx, Host.ecx, Host.edx);
3099 }
3100
3101 /*
3102 * If verbose, decode it.
3103 */
3104 if (iVerbosity)
3105 {
3106 Guest = pVM->cpum.s.aGuestCpuIdStd[0];
3107 pHlp->pfnPrintf(pHlp,
3108 "Name: %.04s%.04s%.04s\n"
3109 "Supports: 0-%x\n",
3110 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
3111 }
3112
3113 /*
3114 * Get Features.
3115 */
3116 bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
3117 pVM->cpum.s.aGuestCpuIdStd[0].ecx,
3118 pVM->cpum.s.aGuestCpuIdStd[0].edx);
3119 if (cStdMax >= 1 && iVerbosity)
3120 {
3121 static const char * const s_apszTypes[4] = { "primary", "overdrive", "MP", "reserved" };
3122
3123 Guest = pVM->cpum.s.aGuestCpuIdStd[1];
3124 uint32_t uEAX = Guest.eax;
3125
3126 pHlp->pfnPrintf(pHlp,
3127 "Family: %d \tExtended: %d \tEffective: %d\n"
3128 "Model: %d \tExtended: %d \tEffective: %d\n"
3129 "Stepping: %d\n"
3130 "Type: %d (%s)\n"
3131 "APIC ID: %#04x\n"
3132 "Logical CPUs: %d\n"
3133 "CLFLUSH Size: %d\n"
3134 "Brand ID: %#04x\n",
3135 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
3136 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
3137 ASMGetCpuStepping(uEAX),
3138 (uEAX >> 12) & 3, s_apszTypes[(uEAX >> 12) & 3],
3139 (Guest.ebx >> 24) & 0xff,
3140 (Guest.ebx >> 16) & 0xff,
3141 (Guest.ebx >> 8) & 0xff,
3142 (Guest.ebx >> 0) & 0xff);
3143 if (iVerbosity == 1)
3144 {
3145 uint32_t uEDX = Guest.edx;
3146 pHlp->pfnPrintf(pHlp, "Features EDX: ");
3147 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
3148 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
3149 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
3150 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
3151 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
3152 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
3153 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
3154 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
3155 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
3156 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
3157 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
3158 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
3159 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
3160 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
3161 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
3162 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
3163 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
3164 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
3165 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
3166 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
3167 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
3168 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
3169 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
3170 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
3171 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
3172 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
3173 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
3174 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
3175 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
3176 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
3177 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
3178 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
3179 pHlp->pfnPrintf(pHlp, "\n");
3180
3181 uint32_t uECX = Guest.ecx;
3182 pHlp->pfnPrintf(pHlp, "Features ECX: ");
3183 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
3184 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " PCLMUL");
3185 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DTES64");
3186 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
3187 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
3188 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
3189 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SMX");
3190 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
3191 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
3192 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " SSSE3");
3193 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
3194 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
3195 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " FMA");
3196 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
3197 if (uECX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " TPRUPDATE");
3198 if (uECX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " PDCM");
3199 if (uECX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " 16");
3200 if (uECX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PCID");
3201 if (uECX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " DCA");
3202 if (uECX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " SSE4.1");
3203 if (uECX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " SSE4.2");
3204 if (uECX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " X2APIC");
3205 if (uECX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " MOVBE");
3206 if (uECX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " POPCNT");
3207 if (uECX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " TSCDEADL");
3208 if (uECX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " AES");
3209 if (uECX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " XSAVE");
3210 if (uECX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " OSXSAVE");
3211 if (uECX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " AVX");
3212 if (uECX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " 29");
3213 if (uECX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
3214 if (uECX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 31");
3215 pHlp->pfnPrintf(pHlp, "\n");
3216 }
3217 else
3218 {
3219 ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3220
3221 X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
3222 X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
3223 X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
3224 X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
3225
3226 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3227 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
3228 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
3229 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
3230 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
3231 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
3232 pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
3233 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
3234 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
3235 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
3236 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
3237 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
3238 pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
3239 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
3240 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
3241 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
3242 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
3243 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
3244 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
3245 pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
3246 pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
3247 pHlp->pfnPrintf(pHlp, "20 - Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
3248 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
3249 pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
3250 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
3251 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
3252 pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
3253 pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
3254 pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
3255 pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technology = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
3256 pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
3257 pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
3258 pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
3259
3260 pHlp->pfnPrintf(pHlp, "Supports SSE3 = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
3261 pHlp->pfnPrintf(pHlp, "PCLMULQDQ = %d (%d)\n", EcxGuest.u1PCLMULQDQ, EcxHost.u1PCLMULQDQ);
3262 pHlp->pfnPrintf(pHlp, "DS Area 64-bit layout = %d (%d)\n", EcxGuest.u1DTE64, EcxHost.u1DTE64);
3263 pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
3264 pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
3265 pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
3266 pHlp->pfnPrintf(pHlp, "SMX - Safer Mode Extensions = %d (%d)\n", EcxGuest.u1SMX, EcxHost.u1SMX);
3267 pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
3268 pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
3269 pHlp->pfnPrintf(pHlp, "Supplemental SSE3 instructions = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
3270 pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
3271 pHlp->pfnPrintf(pHlp, "11 - Reserved = %d (%d)\n", EcxGuest.u1Reserved1, EcxHost.u1Reserved1);
3272 pHlp->pfnPrintf(pHlp, "FMA extensions using YMM state = %d (%d)\n", EcxGuest.u1FMA, EcxHost.u1FMA);
3273 pHlp->pfnPrintf(pHlp, "CMPXCHG16B instruction = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
3274 pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
3275 pHlp->pfnPrintf(pHlp, "Perf/Debug Capability MSR = %d (%d)\n", EcxGuest.u1PDCM, EcxHost.u1PDCM);
3276 pHlp->pfnPrintf(pHlp, "16 - Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
3277 pHlp->pfnPrintf(pHlp, "PCID - Process-context identifiers = %d (%d)\n", EcxGuest.u1PCID, EcxHost.u1PCID);
3278 pHlp->pfnPrintf(pHlp, "DCA - Direct Cache Access = %d (%d)\n", EcxGuest.u1DCA, EcxHost.u1DCA);
3279 pHlp->pfnPrintf(pHlp, "SSE4.1 instruction extensions = %d (%d)\n", EcxGuest.u1SSE4_1, EcxHost.u1SSE4_1);
3280 pHlp->pfnPrintf(pHlp, "SSE4.2 instruction extensions = %d (%d)\n", EcxGuest.u1SSE4_2, EcxHost.u1SSE4_2);
3281 pHlp->pfnPrintf(pHlp, "Supports the x2APIC extensions = %d (%d)\n", EcxGuest.u1x2APIC, EcxHost.u1x2APIC);
3282 pHlp->pfnPrintf(pHlp, "MOVBE instruction = %d (%d)\n", EcxGuest.u1MOVBE, EcxHost.u1MOVBE);
3283 pHlp->pfnPrintf(pHlp, "POPCNT instruction = %d (%d)\n", EcxGuest.u1POPCNT, EcxHost.u1POPCNT);
3284 pHlp->pfnPrintf(pHlp, "TSC-Deadline LAPIC timer mode = %d (%d)\n", EcxGuest.u1TSCDEADLINE,EcxHost.u1TSCDEADLINE);
3285 pHlp->pfnPrintf(pHlp, "AESNI instruction extensions = %d (%d)\n", EcxGuest.u1AES, EcxHost.u1AES);
3286 pHlp->pfnPrintf(pHlp, "XSAVE/XRSTOR extended state feature = %d (%d)\n", EcxGuest.u1XSAVE, EcxHost.u1XSAVE);
3287 pHlp->pfnPrintf(pHlp, "Supports OSXSAVE = %d (%d)\n", EcxGuest.u1OSXSAVE, EcxHost.u1OSXSAVE);
3288 pHlp->pfnPrintf(pHlp, "AVX instruction extensions = %d (%d)\n", EcxGuest.u1AVX, EcxHost.u1AVX);
3289 pHlp->pfnPrintf(pHlp, "29/30 - Reserved = %#x (%#x)\n",EcxGuest.u2Reserved3, EcxHost.u2Reserved3);
3290 pHlp->pfnPrintf(pHlp, "Hypervisor Present (we're a guest) = %d (%d)\n", EcxGuest.u1HVP, EcxHost.u1HVP);
3291 }
3292 }
3293 if (cStdMax >= 2 && iVerbosity)
3294 {
3295 /** @todo */
3296 }
3297
3298 /*
3299 * Extended.
3300 * Implemented after AMD specs.
3301 */
3302 unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
3303
3304 pHlp->pfnPrintf(pHlp,
3305 "\n"
3306 " RAW Extended CPUIDs\n"
3307 " Function eax ebx ecx edx\n");
3308 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
3309 {
3310 Guest = pVM->cpum.s.aGuestCpuIdExt[i];
3311 ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3312
3313 pHlp->pfnPrintf(pHlp,
3314 "Gst: %08x %08x %08x %08x %08x%s\n"
3315 "Hst: %08x %08x %08x %08x\n",
3316 0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3317 i <= cExtMax ? "" : "*",
3318 Host.eax, Host.ebx, Host.ecx, Host.edx);
3319 }
3320
3321 /*
3322 * Understandable output
3323 */
3324 if (iVerbosity)
3325 {
3326 Guest = pVM->cpum.s.aGuestCpuIdExt[0];
3327 pHlp->pfnPrintf(pHlp,
3328 "Ext Name: %.4s%.4s%.4s\n"
3329 "Ext Supports: 0x80000000-%#010x\n",
3330 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
3331 }
3332
3333 if (iVerbosity && cExtMax >= 1)
3334 {
3335 Guest = pVM->cpum.s.aGuestCpuIdExt[1];
3336 uint32_t uEAX = Guest.eax;
3337 pHlp->pfnPrintf(pHlp,
3338 "Family: %d \tExtended: %d \tEffective: %d\n"
3339 "Model: %d \tExtended: %d \tEffective: %d\n"
3340 "Stepping: %d\n"
3341 "Brand ID: %#05x\n",
3342 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
3343 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
3344 ASMGetCpuStepping(uEAX),
3345 Guest.ebx & 0xfff);
3346
3347 if (iVerbosity == 1)
3348 {
3349 uint32_t uEDX = Guest.edx;
3350 pHlp->pfnPrintf(pHlp, "Features EDX: ");
3351 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
3352 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
3353 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
3354 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
3355 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
3356 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
3357 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
3358 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
3359 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
3360 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
3361 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
3362 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
3363 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
3364 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
3365 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
3366 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
3367 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
3368 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
3369 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
3370 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
3371 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
3372 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
3373 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
3374 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
3375 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
3376 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
3377 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
3378 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
3379 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
3380 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
3381 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
3382 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
3383 pHlp->pfnPrintf(pHlp, "\n");
3384
3385 uint32_t uECX = Guest.ecx;
3386 pHlp->pfnPrintf(pHlp, "Features ECX: ");
3387 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
3388 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
3389 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
3390 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
3391 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
3392 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
3393 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
3394 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
3395 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
3396 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
3397 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
3398 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
3399 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
3400 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
3401 for (unsigned iBit = 5; iBit < 32; iBit++)
3402 if (uECX & RT_BIT(iBit))
3403 pHlp->pfnPrintf(pHlp, " %d", iBit);
3404 pHlp->pfnPrintf(pHlp, "\n");
3405 }
3406 else
3407 {
3408 ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3409
3410 uint32_t uEdxGst = Guest.edx;
3411 uint32_t uEdxHst = Host.edx;
3412 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3413 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3414 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3415 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3416 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3417 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3418 pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3419 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3420 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3421 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3422 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3423 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3424 pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3425 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3426 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3427 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
3428 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
3429 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
3430 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
3431 pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
3432 pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
3433 pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
3434 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
3435 pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
3436 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
3437 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
3438 pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
3439 pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
3440 pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
3441 pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
3442 pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
3443 pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
3444 pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
3445
3446 uint32_t uEcxGst = Guest.ecx;
3447 uint32_t uEcxHst = Host.ecx;
3448 pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
3449 pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
3450 pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
3451 pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
3452 pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
3453 pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
3454 pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
3455 pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
3456 pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
3457 pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
3458 pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
3459 pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
3460 pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
3461 pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
3462 pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
3463 }
3464 }
3465
3466 if (iVerbosity && cExtMax >= 2)
3467 {
3468 char szString[4*4*3+1] = {0};
3469 uint32_t *pu32 = (uint32_t *)szString;
3470 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
3471 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
3472 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
3473 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
3474 if (cExtMax >= 3)
3475 {
3476 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
3477 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
3478 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
3479 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
3480 }
3481 if (cExtMax >= 4)
3482 {
3483 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
3484 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
3485 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
3486 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
3487 }
3488 pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
3489 }
3490
3491 if (iVerbosity && cExtMax >= 5)
3492 {
3493 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
3494 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
3495 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
3496 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
3497 char sz1[32];
3498 char sz2[32];
3499
3500 pHlp->pfnPrintf(pHlp,
3501 "TLB 2/4M Instr/Uni: %s %3d entries\n"
3502 "TLB 2/4M Data: %s %3d entries\n",
3503 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
3504 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
3505 pHlp->pfnPrintf(pHlp,
3506 "TLB 4K Instr/Uni: %s %3d entries\n"
3507 "TLB 4K Data: %s %3d entries\n",
3508 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
3509 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
3510 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
3511 "L1 Instr Cache Lines Per Tag: %d\n"
3512 "L1 Instr Cache Associativity: %s\n"
3513 "L1 Instr Cache Size: %d KB\n",
3514 (uEDX >> 0) & 0xff,
3515 (uEDX >> 8) & 0xff,
3516 getCacheAss((uEDX >> 16) & 0xff, sz1),
3517 (uEDX >> 24) & 0xff);
3518 pHlp->pfnPrintf(pHlp,
3519 "L1 Data Cache Line Size: %d bytes\n"
3520 "L1 Data Cache Lines Per Tag: %d\n"
3521 "L1 Data Cache Associativity: %s\n"
3522 "L1 Data Cache Size: %d KB\n",
3523 (uECX >> 0) & 0xff,
3524 (uECX >> 8) & 0xff,
3525 getCacheAss((uECX >> 16) & 0xff, sz1),
3526 (uECX >> 24) & 0xff);
3527 }
3528
3529 if (iVerbosity && cExtMax >= 6)
3530 {
3531 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
3532 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
3533 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
3534
3535 pHlp->pfnPrintf(pHlp,
3536 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
3537 "L2 TLB 2/4M Data: %s %4d entries\n",
3538 getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
3539 getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
3540 pHlp->pfnPrintf(pHlp,
3541 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
3542 "L2 TLB 4K Data: %s %4d entries\n",
3543 getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
3544 getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
3545 pHlp->pfnPrintf(pHlp,
3546 "L2 Cache Line Size: %d bytes\n"
3547 "L2 Cache Lines Per Tag: %d\n"
3548 "L2 Cache Associativity: %s\n"
3549 "L2 Cache Size: %d KB\n",
3550 (uEDX >> 0) & 0xff,
3551 (uEDX >> 8) & 0xf,
3552 getL2CacheAss((uEDX >> 12) & 0xf),
3553 (uEDX >> 16) & 0xffff);
3554 }
3555
3556 if (iVerbosity && cExtMax >= 7)
3557 {
3558 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
3559
3560 pHlp->pfnPrintf(pHlp, "APM Features: ");
3561 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
3562 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
3563 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
3564 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
3565 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
3566 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
3567 for (unsigned iBit = 6; iBit < 32; iBit++)
3568 if (uEDX & RT_BIT(iBit))
3569 pHlp->pfnPrintf(pHlp, " %d", iBit);
3570 pHlp->pfnPrintf(pHlp, "\n");
3571 }
3572
3573 if (iVerbosity && cExtMax >= 8)
3574 {
3575 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
3576 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
3577
3578 pHlp->pfnPrintf(pHlp,
3579 "Physical Address Width: %d bits\n"
3580 "Virtual Address Width: %d bits\n"
3581 "Guest Physical Address Width: %d bits\n",
3582 (uEAX >> 0) & 0xff,
3583 (uEAX >> 8) & 0xff,
3584 (uEAX >> 16) & 0xff);
3585 pHlp->pfnPrintf(pHlp,
3586 "Physical Core Count: %d\n",
3587 (uECX >> 0) & 0xff);
3588 }
3589
3590
3591 /*
3592 * Centaur.
3593 */
3594 unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
3595
3596 pHlp->pfnPrintf(pHlp,
3597 "\n"
3598 " RAW Centaur CPUIDs\n"
3599 " Function eax ebx ecx edx\n");
3600 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
3601 {
3602 Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
3603 ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3604
3605 pHlp->pfnPrintf(pHlp,
3606 "Gst: %08x %08x %08x %08x %08x%s\n"
3607 "Hst: %08x %08x %08x %08x\n",
3608 0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3609 i <= cCentaurMax ? "" : "*",
3610 Host.eax, Host.ebx, Host.ecx, Host.edx);
3611 }
3612
3613 /*
3614 * Understandable output
3615 */
3616 if (iVerbosity)
3617 {
3618 Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
3619 pHlp->pfnPrintf(pHlp,
3620 "Centaur Supports: 0xc0000000-%#010x\n",
3621 Guest.eax);
3622 }
3623
3624 if (iVerbosity && cCentaurMax >= 1)
3625 {
3626 ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3627 uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
3628 uint32_t uEdxHst = Host.edx;
3629
3630 if (iVerbosity == 1)
3631 {
3632 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
3633 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
3634 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
3635 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
3636 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
3637 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
3638 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
3639 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
3640 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
3641 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3642 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
3643 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
3644 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
3645 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
3646 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
3647 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
3648 for (unsigned iBit = 14; iBit < 32; iBit++)
3649 if (uEdxGst & RT_BIT(iBit))
3650 pHlp->pfnPrintf(pHlp, " %d", iBit);
3651 pHlp->pfnPrintf(pHlp, "\n");
3652 }
3653 else
3654 {
3655 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3656 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3657 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3658 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3659 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3660 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3661 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3662 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3663 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3664 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3665 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3666 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3667 pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3668 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3669 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3670 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3671 for (unsigned iBit = 14; iBit < 32; iBit++)
3672 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
3673 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
3674 pHlp->pfnPrintf(pHlp, "\n");
3675 }
3676 }
3677}
3678
3679
3680/**
3681 * Structure used when disassembling and instructions in DBGF.
3682 * This is used so the reader function can get the stuff it needs.
3683 */
3684typedef struct CPUMDISASSTATE
3685{
3686 /** Pointer to the CPU structure. */
3687 PDISCPUSTATE pCpu;
3688 /** Pointer to the VM. */
3689 PVM pVM;
3690 /** Pointer to the VMCPU. */
3691 PVMCPU pVCpu;
3692 /** Pointer to the first byte in the segment. */
3693 RTGCUINTPTR GCPtrSegBase;
3694 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3695 RTGCUINTPTR GCPtrSegEnd;
3696 /** The size of the segment minus 1. */
3697 RTGCUINTPTR cbSegLimit;
3698 /** Pointer to the current page - R3 Ptr. */
3699 void const *pvPageR3;
3700 /** Pointer to the current page - GC Ptr. */
3701 RTGCPTR pvPageGC;
3702 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3703 PGMPAGEMAPLOCK PageMapLock;
3704 /** Whether the PageMapLock is valid or not. */
3705 bool fLocked;
3706 /** 64 bits mode or not. */
3707 bool f64Bits;
3708} CPUMDISASSTATE, *PCPUMDISASSTATE;
3709
3710
3711/**
3712 * @callback_method_impl{FNDISREADBYTES}
3713 */
3714static DECLCALLBACK(int) cpumR3DisasInstrRead(PDISCPUSTATE pDis, uint8_t offInstr, uint8_t cbMinRead, uint8_t cbMaxRead)
3715{
3716 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pDis->pvUser;
3717 for (;;)
3718 {
3719 RTGCUINTPTR GCPtr = pDis->uInstrAddr + offInstr + pState->GCPtrSegBase;
3720
3721 /*
3722 * Need to update the page translation?
3723 */
3724 if ( !pState->pvPageR3
3725 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3726 {
3727 int rc = VINF_SUCCESS;
3728
3729 /* translate the address */
3730 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3731 if ( MMHyperIsInsideArea(pState->pVM, pState->pvPageGC)
3732 && !HWACCMIsEnabled(pState->pVM))
3733 {
3734 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3735 if (!pState->pvPageR3)
3736 rc = VERR_INVALID_POINTER;
3737 }
3738 else
3739 {
3740 /* Release mapping lock previously acquired. */
3741 if (pState->fLocked)
3742 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3743 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3744 pState->fLocked = RT_SUCCESS_NP(rc);
3745 }
3746 if (RT_FAILURE(rc))
3747 {
3748 pState->pvPageR3 = NULL;
3749 return rc;
3750 }
3751 }
3752
3753 /*
3754 * Check the segment limit.
3755 */
3756 if (!pState->f64Bits && pDis->uInstrAddr + offInstr > pState->cbSegLimit)
3757 return VERR_OUT_OF_SELECTOR_BOUNDS;
3758
3759 /*
3760 * Calc how much we can read.
3761 */
3762 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3763 if (!pState->f64Bits)
3764 {
3765 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3766 if (cb > cbSeg && cbSeg)
3767 cb = cbSeg;
3768 }
3769 if (cb > cbMaxRead)
3770 cb = cbMaxRead;
3771
3772 /*
3773 * Read and advance or exit.
3774 */
3775 memcpy(&pDis->abInstr[offInstr], (uint8_t *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3776 offInstr += (uint8_t)cb;
3777 if (cb >= cbMinRead)
3778 {
3779 pDis->cbCachedInstr = offInstr;
3780 return VINF_SUCCESS;
3781 }
3782 cbMinRead -= (uint8_t)cb;
3783 cbMaxRead -= (uint8_t)cb;
3784 }
3785}
3786
3787
3788/**
3789 * Disassemble an instruction and return the information in the provided structure.
3790 *
3791 * @returns VBox status code.
3792 * @param pVM Pointer to the VM.
3793 * @param pVCpu Pointer to the VMCPU.
3794 * @param pCtx Pointer to the guest CPU context.
3795 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3796 * @param pCpu Disassembly state.
3797 * @param pszPrefix String prefix for logging (debug only).
3798 *
3799 */
3800VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
3801{
3802 CPUMDISASSTATE State;
3803 int rc;
3804
3805 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3806 State.pCpu = pCpu;
3807 State.pvPageGC = 0;
3808 State.pvPageR3 = NULL;
3809 State.pVM = pVM;
3810 State.pVCpu = pVCpu;
3811 State.fLocked = false;
3812 State.f64Bits = false;
3813
3814 /*
3815 * Get selector information.
3816 */
3817 DISCPUMODE enmDisCpuMode;
3818 if ( (pCtx->cr0 & X86_CR0_PE)
3819 && pCtx->eflags.Bits.u1VM == 0)
3820 {
3821 if (CPUMAreHiddenSelRegsValid(pVCpu))
3822 {
3823 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->cs.Attr.n.u1Long;
3824 State.GCPtrSegBase = pCtx->cs.u64Base;
3825 State.GCPtrSegEnd = pCtx->cs.u32Limit + 1 + (RTGCUINTPTR)pCtx->cs.u64Base;
3826 State.cbSegLimit = pCtx->cs.u32Limit;
3827 enmDisCpuMode = (State.f64Bits)
3828 ? DISCPUMODE_64BIT
3829 : pCtx->cs.Attr.n.u1DefBig
3830 ? DISCPUMODE_32BIT
3831 : DISCPUMODE_16BIT;
3832 }
3833 else
3834 {
3835 DBGFSELINFO SelInfo;
3836
3837 rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs.Sel, &SelInfo);
3838 if (RT_FAILURE(rc))
3839 {
3840 AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%RGv rc=%d\n", pCtx->cs.Sel, GCPtrPC, rc));
3841 return rc;
3842 }
3843
3844 /*
3845 * Validate the selector.
3846 */
3847 rc = DBGFR3SelInfoValidateCS(&SelInfo, pCtx->ss.Sel);
3848 if (RT_FAILURE(rc))
3849 {
3850 AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%RGv rc=%d\n", pCtx->cs.Sel, GCPtrPC, rc));
3851 return rc;
3852 }
3853 State.GCPtrSegBase = SelInfo.GCPtrBase;
3854 State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
3855 State.cbSegLimit = SelInfo.cbLimit;
3856 enmDisCpuMode = SelInfo.u.Raw.Gen.u1DefBig ? DISCPUMODE_32BIT : DISCPUMODE_16BIT;
3857 }
3858 }
3859 else
3860 {
3861 /* real or V86 mode */
3862 enmDisCpuMode = DISCPUMODE_16BIT;
3863 State.GCPtrSegBase = pCtx->cs.Sel * 16;
3864 State.GCPtrSegEnd = 0xFFFFFFFF;
3865 State.cbSegLimit = 0xFFFFFFFF;
3866 }
3867
3868 /*
3869 * Disassemble the instruction.
3870 */
3871 uint32_t cbInstr;
3872#ifndef LOG_ENABLED
3873 rc = DISInstrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State, pCpu, &cbInstr);
3874 if (RT_SUCCESS(rc))
3875 {
3876#else
3877 char szOutput[160];
3878 rc = DISInstrToStrWithReader(GCPtrPC, enmDisCpuMode, cpumR3DisasInstrRead, &State,
3879 pCpu, &cbInstr, szOutput, sizeof(szOutput));
3880 if (RT_SUCCESS(rc))
3881 {
3882 /* log it */
3883 if (pszPrefix)
3884 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3885 else
3886 Log(("%s", szOutput));
3887#endif
3888 rc = VINF_SUCCESS;
3889 }
3890 else
3891 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs.Sel, GCPtrPC, rc));
3892
3893 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3894 if (State.fLocked)
3895 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3896
3897 return rc;
3898}
3899
3900
3901
3902/**
3903 * API for controlling a few of the CPU features found in CR4.
3904 *
3905 * Currently only X86_CR4_TSD is accepted as input.
3906 *
3907 * @returns VBox status code.
3908 *
3909 * @param pVM Pointer to the VM.
3910 * @param fOr The CR4 OR mask.
3911 * @param fAnd The CR4 AND mask.
3912 */
3913VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3914{
3915 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3916 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3917
3918 pVM->cpum.s.CR4.OrMask &= fAnd;
3919 pVM->cpum.s.CR4.OrMask |= fOr;
3920
3921 return VINF_SUCCESS;
3922}
3923
3924
3925/**
3926 * Gets a pointer to the array of standard CPUID leaves.
3927 *
3928 * CPUMR3GetGuestCpuIdStdMax() give the size of the array.
3929 *
3930 * @returns Pointer to the standard CPUID leaves (read-only).
3931 * @param pVM Pointer to the VM.
3932 * @remark Intended for PATM.
3933 */
3934VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdStdRCPtr(PVM pVM)
3935{
3936 return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
3937}
3938
3939
3940/**
3941 * Gets a pointer to the array of extended CPUID leaves.
3942 *
3943 * CPUMGetGuestCpuIdExtMax() give the size of the array.
3944 *
3945 * @returns Pointer to the extended CPUID leaves (read-only).
3946 * @param pVM Pointer to the VM.
3947 * @remark Intended for PATM.
3948 */
3949VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdExtRCPtr(PVM pVM)
3950{
3951 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
3952}
3953
3954
3955/**
3956 * Gets a pointer to the array of centaur CPUID leaves.
3957 *
3958 * CPUMGetGuestCpuIdCentaurMax() give the size of the array.
3959 *
3960 * @returns Pointer to the centaur CPUID leaves (read-only).
3961 * @param pVM Pointer to the VM.
3962 * @remark Intended for PATM.
3963 */
3964VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdCentaurRCPtr(PVM pVM)
3965{
3966 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
3967}
3968
3969
3970/**
3971 * Gets a pointer to the default CPUID leaf.
3972 *
3973 * @returns Pointer to the default CPUID leaf (read-only).
3974 * @param pVM Pointer to the VM.
3975 * @remark Intended for PATM.
3976 */
3977VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdDefRCPtr(PVM pVM)
3978{
3979 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
3980}
3981
3982
3983/**
3984 * Transforms the guest CPU state to raw-ring mode.
3985 *
3986 * This function will change the any of the cs and ss register with DPL=0 to DPL=1.
3987 *
3988 * @returns VBox status. (recompiler failure)
3989 * @param pVCpu Pointer to the VMCPU.
3990 * @param pCtxCore The context core (for trap usage).
3991 * @see @ref pg_raw
3992 */
3993VMMR3DECL(int) CPUMR3RawEnter(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore)
3994{
3995 PVM pVM = pVCpu->CTX_SUFF(pVM);
3996
3997 Assert(!pVCpu->cpum.s.fRawEntered);
3998 Assert(!pVCpu->cpum.s.fRemEntered);
3999 if (!pCtxCore)
4000 pCtxCore = CPUMCTX2CORE(&pVCpu->cpum.s.Guest);
4001
4002 /*
4003 * Are we in Ring-0?
4004 */
4005 if ( pCtxCore->ss.Sel && (pCtxCore->ss.Sel & X86_SEL_RPL) == 0
4006 && !pCtxCore->eflags.Bits.u1VM)
4007 {
4008 /*
4009 * Enter execution mode.
4010 */
4011 PATMRawEnter(pVM, pCtxCore);
4012
4013 /*
4014 * Set CPL to Ring-1.
4015 */
4016 pCtxCore->ss.Sel |= 1;
4017 if (pCtxCore->cs.Sel && (pCtxCore->cs.Sel & X86_SEL_RPL) == 0)
4018 pCtxCore->cs.Sel |= 1;
4019 }
4020 else
4021 {
4022 AssertMsg((pCtxCore->ss.Sel & X86_SEL_RPL) >= 2 || pCtxCore->eflags.Bits.u1VM,
4023 ("ring-1 code not supported\n"));
4024 /*
4025 * PATM takes care of IOPL and IF flags for Ring-3 and Ring-2 code as well.
4026 */
4027 PATMRawEnter(pVM, pCtxCore);
4028 }
4029
4030 /*
4031 * Invalidate the hidden registers.
4032 */
4033 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
4034
4035 /*
4036 * Assert sanity.
4037 */
4038 AssertMsg((pCtxCore->eflags.u32 & X86_EFL_IF), ("X86_EFL_IF is clear\n"));
4039 AssertReleaseMsg( pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss.Sel & X86_SEL_RPL)
4040 || pCtxCore->eflags.Bits.u1VM,
4041 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss.Sel & X86_SEL_RPL));
4042 Assert((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) == (X86_CR0_PG | X86_CR0_PE | X86_CR0_WP));
4043
4044 pCtxCore->eflags.u32 |= X86_EFL_IF; /* paranoia */
4045
4046 pVCpu->cpum.s.fRawEntered = true;
4047 return VINF_SUCCESS;
4048}
4049
4050
4051/**
4052 * Transforms the guest CPU state from raw-ring mode to correct values.
4053 *
4054 * This function will change any selector registers with DPL=1 to DPL=0.
4055 *
4056 * @returns Adjusted rc.
4057 * @param pVCpu Pointer to the VMCPU.
4058 * @param rc Raw mode return code
4059 * @param pCtxCore The context core (for trap usage).
4060 * @see @ref pg_raw
4061 */
4062VMMR3DECL(int) CPUMR3RawLeave(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, int rc)
4063{
4064 PVM pVM = pVCpu->CTX_SUFF(pVM);
4065
4066 /*
4067 * Don't leave if we've already left (in GC).
4068 */
4069 Assert(pVCpu->cpum.s.fRawEntered);
4070 Assert(!pVCpu->cpum.s.fRemEntered);
4071 if (!pVCpu->cpum.s.fRawEntered)
4072 return rc;
4073 pVCpu->cpum.s.fRawEntered = false;
4074
4075 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
4076 if (!pCtxCore)
4077 pCtxCore = CPUMCTX2CORE(pCtx);
4078 Assert(pCtxCore->eflags.Bits.u1VM || (pCtxCore->ss.Sel & X86_SEL_RPL));
4079 AssertMsg(pCtxCore->eflags.Bits.u1VM || pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss.Sel & X86_SEL_RPL),
4080 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss.Sel & X86_SEL_RPL));
4081
4082 /*
4083 * Are we executing in raw ring-1?
4084 */
4085 if ( (pCtxCore->ss.Sel & X86_SEL_RPL) == 1
4086 && !pCtxCore->eflags.Bits.u1VM)
4087 {
4088 /*
4089 * Leave execution mode.
4090 */
4091 PATMRawLeave(pVM, pCtxCore, rc);
4092 /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */
4093 /** @todo See what happens if we remove this. */
4094 if ((pCtxCore->ds.Sel & X86_SEL_RPL) == 1)
4095 pCtxCore->ds.Sel &= ~X86_SEL_RPL;
4096 if ((pCtxCore->es.Sel & X86_SEL_RPL) == 1)
4097 pCtxCore->es.Sel &= ~X86_SEL_RPL;
4098 if ((pCtxCore->fs.Sel & X86_SEL_RPL) == 1)
4099 pCtxCore->fs.Sel &= ~X86_SEL_RPL;
4100 if ((pCtxCore->gs.Sel & X86_SEL_RPL) == 1)
4101 pCtxCore->gs.Sel &= ~X86_SEL_RPL;
4102
4103 /*
4104 * Ring-1 selector => Ring-0.
4105 */
4106 pCtxCore->ss.Sel &= ~X86_SEL_RPL;
4107 if ((pCtxCore->cs.Sel & X86_SEL_RPL) == 1)
4108 pCtxCore->cs.Sel &= ~X86_SEL_RPL;
4109 }
4110 else
4111 {
4112 /*
4113 * PATM is taking care of the IOPL and IF flags for us.
4114 */
4115 PATMRawLeave(pVM, pCtxCore, rc);
4116 if (!pCtxCore->eflags.Bits.u1VM)
4117 {
4118 /** @todo See what happens if we remove this. */
4119 if ((pCtxCore->ds.Sel & X86_SEL_RPL) == 1)
4120 pCtxCore->ds.Sel &= ~X86_SEL_RPL;
4121 if ((pCtxCore->es.Sel & X86_SEL_RPL) == 1)
4122 pCtxCore->es.Sel &= ~X86_SEL_RPL;
4123 if ((pCtxCore->fs.Sel & X86_SEL_RPL) == 1)
4124 pCtxCore->fs.Sel &= ~X86_SEL_RPL;
4125 if ((pCtxCore->gs.Sel & X86_SEL_RPL) == 1)
4126 pCtxCore->gs.Sel &= ~X86_SEL_RPL;
4127 }
4128 }
4129
4130 return rc;
4131}
4132
4133
4134/**
4135 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
4136 *
4137 * Only REM should ever call this function!
4138 *
4139 * @returns The changed flags.
4140 * @param pVCpu Pointer to the VMCPU.
4141 * @param puCpl Where to return the current privilege level (CPL).
4142 */
4143VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
4144{
4145 Assert(!pVCpu->cpum.s.fRawEntered);
4146 Assert(!pVCpu->cpum.s.fRemEntered);
4147
4148 /*
4149 * Get the CPL first.
4150 */
4151 *puCpl = CPUMGetGuestCPL(pVCpu);
4152
4153 /*
4154 * Get and reset the flags, leaving CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID set.
4155 */
4156 uint32_t fFlags = pVCpu->cpum.s.fChanged;
4157 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID; /* leave it set */
4158
4159 /** @todo change the switcher to use the fChanged flags. */
4160 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
4161 {
4162 fFlags |= CPUM_CHANGED_FPU_REM;
4163 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
4164 }
4165
4166 pVCpu->cpum.s.fRemEntered = true;
4167 return fFlags;
4168}
4169
4170
4171/**
4172 * Leaves REM and works the CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID flag.
4173 *
4174 * @param pVCpu Pointer to the VMCPU.
4175 * @param fNoOutOfSyncSels This is @c false if there are out of sync
4176 * registers.
4177 */
4178VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
4179{
4180 Assert(!pVCpu->cpum.s.fRawEntered);
4181 Assert(pVCpu->cpum.s.fRemEntered);
4182
4183 if (fNoOutOfSyncSels)
4184 pVCpu->cpum.s.fChanged &= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
4185 else
4186 pVCpu->cpum.s.fChanged |= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
4187
4188 pVCpu->cpum.s.fRemEntered = false;
4189}
4190
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette