VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR3/CPUM.cpp@ 40170

最後變更 在這個檔案從40170是 40170,由 vboxsync 提交於 13 年 前

MSRs and MTRRs, CPUM saved state changed. (linux 2.4.31 seems to ignore the capabilites when it comes to fixed MTRRs.)

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id
檔案大小: 190.1 KB
 
1/* $Id: CPUM.cpp 40170 2012-02-17 14:22:26Z vboxsync $ */
2/** @file
3 * CPUM - CPU Monitor / Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2010 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18/** @page pg_cpum CPUM - CPU Monitor / Manager
19 *
20 * The CPU Monitor / Manager keeps track of all the CPU registers. It is
21 * also responsible for lazy FPU handling and some of the context loading
22 * in raw mode.
23 *
24 * There are three CPU contexts, the most important one is the guest one (GC).
25 * When running in raw-mode (RC) there is a special hyper context for the VMM
26 * part that floats around inside the guest address space. When running in
27 * raw-mode, CPUM also maintains a host context for saving and restoring
28 * registers across world switches. This latter is done in cooperation with the
29 * world switcher (@see pg_vmm).
30 *
31 * @see grp_cpum
32 */
33
34/*******************************************************************************
35* Header Files *
36*******************************************************************************/
37#define LOG_GROUP LOG_GROUP_CPUM
38#include <VBox/vmm/cpum.h>
39#include <VBox/vmm/cpumdis.h>
40#include <VBox/vmm/pgm.h>
41#include <VBox/vmm/mm.h>
42#include <VBox/vmm/selm.h>
43#include <VBox/vmm/dbgf.h>
44#include <VBox/vmm/patm.h>
45#include <VBox/vmm/hwaccm.h>
46#include <VBox/vmm/ssm.h>
47#include "CPUMInternal.h"
48#include <VBox/vmm/vm.h>
49
50#include <VBox/param.h>
51#include <VBox/dis.h>
52#include <VBox/err.h>
53#include <VBox/log.h>
54#include <iprt/assert.h>
55#include <iprt/asm-amd64-x86.h>
56#include <iprt/string.h>
57#include <iprt/mp.h>
58#include <iprt/cpuset.h>
59#include "internal/pgm.h"
60
61
62/*******************************************************************************
63* Defined Constants And Macros *
64*******************************************************************************/
65/** The current saved state version. */
66#define CPUM_SAVED_STATE_VERSION 13
67/** The saved state version before introducing the MSR size field. */
68#define CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE 12
69/** The saved state version of 3.2, 3.1 and 3.3 trunk before the hidden
70 * selector register change (CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID). */
71#define CPUM_SAVED_STATE_VERSION_VER3_2 11
72/** The saved state version of 3.0 and 3.1 trunk before the teleportation
73 * changes. */
74#define CPUM_SAVED_STATE_VERSION_VER3_0 10
75/** The saved state version for the 2.1 trunk before the MSR changes. */
76#define CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR 9
77/** The saved state version of 2.0, used for backwards compatibility. */
78#define CPUM_SAVED_STATE_VERSION_VER2_0 8
79/** The saved state version of 1.6, used for backwards compatibility. */
80#define CPUM_SAVED_STATE_VERSION_VER1_6 6
81
82
83/*******************************************************************************
84* Structures and Typedefs *
85*******************************************************************************/
86
87/**
88 * What kind of cpu info dump to perform.
89 */
90typedef enum CPUMDUMPTYPE
91{
92 CPUMDUMPTYPE_TERSE,
93 CPUMDUMPTYPE_DEFAULT,
94 CPUMDUMPTYPE_VERBOSE
95} CPUMDUMPTYPE;
96/** Pointer to a cpu info dump type. */
97typedef CPUMDUMPTYPE *PCPUMDUMPTYPE;
98
99
100/*******************************************************************************
101* Internal Functions *
102*******************************************************************************/
103static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX);
104static int cpumR3CpuIdInit(PVM pVM);
105static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass);
106static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM);
107static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM);
108static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass);
109static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM);
110static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
111static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
112static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
113static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
114static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
115static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
116
117
118/**
119 * Initializes the CPUM.
120 *
121 * @returns VBox status code.
122 * @param pVM The VM to operate on.
123 */
124VMMR3DECL(int) CPUMR3Init(PVM pVM)
125{
126 LogFlow(("CPUMR3Init\n"));
127
128 /*
129 * Assert alignment and sizes.
130 */
131 AssertCompileMemberAlignment(VM, cpum.s, 32);
132 AssertCompile(sizeof(pVM->cpum.s) <= sizeof(pVM->cpum.padding));
133 AssertCompileSizeAlignment(CPUMCTX, 64);
134 AssertCompileSizeAlignment(CPUMCTXMSRS, 64);
135 AssertCompileSizeAlignment(CPUMHOSTCTX, 64);
136 AssertCompileMemberAlignment(VM, cpum, 64);
137 AssertCompileMemberAlignment(VM, aCpus, 64);
138 AssertCompileMemberAlignment(VMCPU, cpum.s, 64);
139 AssertCompileMemberSizeAlignment(VM, aCpus[0].cpum.s, 64);
140
141 /* Calculate the offset from CPUM to CPUMCPU for the first CPU. */
142 pVM->cpum.s.offCPUMCPU0 = RT_OFFSETOF(VM, aCpus[0].cpum) - RT_OFFSETOF(VM, cpum);
143 Assert((uintptr_t)&pVM->cpum + pVM->cpum.s.offCPUMCPU0 == (uintptr_t)&pVM->aCpus[0].cpum);
144
145 /* Calculate the offset from CPUMCPU to CPUM. */
146 for (VMCPUID i = 0; i < pVM->cCpus; i++)
147 {
148 PVMCPU pVCpu = &pVM->aCpus[i];
149
150 /*
151 * Setup any fixed pointers and offsets.
152 */
153 pVCpu->cpum.s.pHyperCoreR3 = CPUMCTX2CORE(&pVCpu->cpum.s.Hyper);
154 pVCpu->cpum.s.pHyperCoreR0 = VM_R0_ADDR(pVM, CPUMCTX2CORE(&pVCpu->cpum.s.Hyper));
155
156 pVCpu->cpum.s.offCPUM = RT_OFFSETOF(VM, aCpus[i].cpum) - RT_OFFSETOF(VM, cpum);
157 Assert((uintptr_t)&pVCpu->cpum - pVCpu->cpum.s.offCPUM == (uintptr_t)&pVM->cpum);
158 }
159
160 /*
161 * Check that the CPU supports the minimum features we require.
162 */
163 if (!ASMHasCpuId())
164 {
165 Log(("The CPU doesn't support CPUID!\n"));
166 return VERR_UNSUPPORTED_CPU;
167 }
168 ASMCpuId_ECX_EDX(1, &pVM->cpum.s.CPUFeatures.ecx, &pVM->cpum.s.CPUFeatures.edx);
169 ASMCpuId_ECX_EDX(0x80000001, &pVM->cpum.s.CPUFeaturesExt.ecx, &pVM->cpum.s.CPUFeaturesExt.edx);
170
171 /* Setup the CR4 AND and OR masks used in the switcher */
172 /* Depends on the presence of FXSAVE(SSE) support on the host CPU */
173 if (!pVM->cpum.s.CPUFeatures.edx.u1FXSR)
174 {
175 Log(("The CPU doesn't support FXSAVE/FXRSTOR!\n"));
176 /* No FXSAVE implies no SSE */
177 pVM->cpum.s.CR4.AndMask = X86_CR4_PVI | X86_CR4_VME;
178 pVM->cpum.s.CR4.OrMask = 0;
179 }
180 else
181 {
182 pVM->cpum.s.CR4.AndMask = X86_CR4_OSXMMEEXCPT | X86_CR4_PVI | X86_CR4_VME;
183 pVM->cpum.s.CR4.OrMask = X86_CR4_OSFSXR;
184 }
185
186 if (!pVM->cpum.s.CPUFeatures.edx.u1MMX)
187 {
188 Log(("The CPU doesn't support MMX!\n"));
189 return VERR_UNSUPPORTED_CPU;
190 }
191 if (!pVM->cpum.s.CPUFeatures.edx.u1TSC)
192 {
193 Log(("The CPU doesn't support TSC!\n"));
194 return VERR_UNSUPPORTED_CPU;
195 }
196 /* Bogus on AMD? */
197 if (!pVM->cpum.s.CPUFeatures.edx.u1SEP)
198 Log(("The CPU doesn't support SYSENTER/SYSEXIT!\n"));
199
200 /*
201 * Detect the host CPU vendor.
202 * (The guest CPU vendor is re-detected later on.)
203 */
204 uint32_t uEAX, uEBX, uECX, uEDX;
205 ASMCpuId(0, &uEAX, &uEBX, &uECX, &uEDX);
206 pVM->cpum.s.enmHostCpuVendor = cpumR3DetectVendor(uEAX, uEBX, uECX, uEDX);
207 pVM->cpum.s.enmGuestCpuVendor = pVM->cpum.s.enmHostCpuVendor;
208
209 /*
210 * Setup hypervisor startup values.
211 */
212
213 /*
214 * Register saved state data item.
215 */
216 int rc = SSMR3RegisterInternal(pVM, "cpum", 1, CPUM_SAVED_STATE_VERSION, sizeof(CPUM),
217 NULL, cpumR3LiveExec, NULL,
218 NULL, cpumR3SaveExec, NULL,
219 cpumR3LoadPrep, cpumR3LoadExec, cpumR3LoadDone);
220 if (RT_FAILURE(rc))
221 return rc;
222
223 /*
224 * Register info handlers and registers with the debugger facility.
225 */
226 DBGFR3InfoRegisterInternal(pVM, "cpum", "Displays the all the cpu states.", &cpumR3InfoAll);
227 DBGFR3InfoRegisterInternal(pVM, "cpumguest", "Displays the guest cpu state.", &cpumR3InfoGuest);
228 DBGFR3InfoRegisterInternal(pVM, "cpumhyper", "Displays the hypervisor cpu state.", &cpumR3InfoHyper);
229 DBGFR3InfoRegisterInternal(pVM, "cpumhost", "Displays the host cpu state.", &cpumR3InfoHost);
230 DBGFR3InfoRegisterInternal(pVM, "cpuid", "Displays the guest cpuid leaves.", &cpumR3CpuIdInfo);
231 DBGFR3InfoRegisterInternal(pVM, "cpumguestinstr", "Displays the current guest instruction.", &cpumR3InfoGuestInstr);
232
233 rc = cpumR3DbgInit(pVM);
234 if (RT_FAILURE(rc))
235 return rc;
236
237 /*
238 * Initialize the Guest CPUID state.
239 */
240 rc = cpumR3CpuIdInit(pVM);
241 if (RT_FAILURE(rc))
242 return rc;
243 CPUMR3Reset(pVM);
244 return VINF_SUCCESS;
245}
246
247
248/**
249 * Detect the CPU vendor give n the
250 *
251 * @returns The vendor.
252 * @param uEAX EAX from CPUID(0).
253 * @param uEBX EBX from CPUID(0).
254 * @param uECX ECX from CPUID(0).
255 * @param uEDX EDX from CPUID(0).
256 */
257static CPUMCPUVENDOR cpumR3DetectVendor(uint32_t uEAX, uint32_t uEBX, uint32_t uECX, uint32_t uEDX)
258{
259 if ( uEAX >= 1
260 && uEBX == X86_CPUID_VENDOR_AMD_EBX
261 && uECX == X86_CPUID_VENDOR_AMD_ECX
262 && uEDX == X86_CPUID_VENDOR_AMD_EDX)
263 return CPUMCPUVENDOR_AMD;
264
265 if ( uEAX >= 1
266 && uEBX == X86_CPUID_VENDOR_INTEL_EBX
267 && uECX == X86_CPUID_VENDOR_INTEL_ECX
268 && uEDX == X86_CPUID_VENDOR_INTEL_EDX)
269 return CPUMCPUVENDOR_INTEL;
270
271 /** @todo detect the other buggers... */
272 return CPUMCPUVENDOR_UNKNOWN;
273}
274
275
276/**
277 * Fetches overrides for a CPUID leaf.
278 *
279 * @returns VBox status code.
280 * @param pLeaf The leaf to load the overrides into.
281 * @param pCfgNode The CFGM node containing the overrides
282 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
283 * @param iLeaf The CPUID leaf number.
284 */
285static int cpumR3CpuIdFetchLeafOverride(PCPUMCPUID pLeaf, PCFGMNODE pCfgNode, uint32_t iLeaf)
286{
287 PCFGMNODE pLeafNode = CFGMR3GetChildF(pCfgNode, "%RX32", iLeaf);
288 if (pLeafNode)
289 {
290 uint32_t u32;
291 int rc = CFGMR3QueryU32(pLeafNode, "eax", &u32);
292 if (RT_SUCCESS(rc))
293 pLeaf->eax = u32;
294 else
295 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
296
297 rc = CFGMR3QueryU32(pLeafNode, "ebx", &u32);
298 if (RT_SUCCESS(rc))
299 pLeaf->ebx = u32;
300 else
301 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
302
303 rc = CFGMR3QueryU32(pLeafNode, "ecx", &u32);
304 if (RT_SUCCESS(rc))
305 pLeaf->ecx = u32;
306 else
307 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
308
309 rc = CFGMR3QueryU32(pLeafNode, "edx", &u32);
310 if (RT_SUCCESS(rc))
311 pLeaf->edx = u32;
312 else
313 AssertReturn(rc == VERR_CFGM_VALUE_NOT_FOUND, rc);
314
315 }
316 return VINF_SUCCESS;
317}
318
319
320/**
321 * Load the overrides for a set of CPUID leaves.
322 *
323 * @returns VBox status code.
324 * @param paLeaves The leaf array.
325 * @param cLeaves The number of leaves.
326 * @param uStart The start leaf number.
327 * @param pCfgNode The CFGM node containing the overrides
328 * (/CPUM/HostCPUID/ or /CPUM/CPUID/).
329 */
330static int cpumR3CpuIdInitLoadOverrideSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
331{
332 for (uint32_t i = 0; i < cLeaves; i++)
333 {
334 int rc = cpumR3CpuIdFetchLeafOverride(&paLeaves[i], pCfgNode, uStart + i);
335 if (RT_FAILURE(rc))
336 return rc;
337 }
338
339 return VINF_SUCCESS;
340}
341
342/**
343 * Init a set of host CPUID leaves.
344 *
345 * @returns VBox status code.
346 * @param paLeaves The leaf array.
347 * @param cLeaves The number of leaves.
348 * @param uStart The start leaf number.
349 * @param pCfgNode The /CPUM/HostCPUID/ node.
350 */
351static int cpumR3CpuIdInitHostSet(uint32_t uStart, PCPUMCPUID paLeaves, uint32_t cLeaves, PCFGMNODE pCfgNode)
352{
353 /* Using the ECX variant for all of them can't hurt... */
354 for (uint32_t i = 0; i < cLeaves; i++)
355 ASMCpuId_Idx_ECX(uStart + i, 0, &paLeaves[i].eax, &paLeaves[i].ebx, &paLeaves[i].ecx, &paLeaves[i].edx);
356
357 /* Load CPUID leaf override; we currently don't care if the user
358 specifies features the host CPU doesn't support. */
359 return cpumR3CpuIdInitLoadOverrideSet(uStart, paLeaves, cLeaves, pCfgNode);
360}
361
362
363/**
364 * Initializes the emulated CPU's cpuid information.
365 *
366 * @returns VBox status code.
367 * @param pVM The VM to operate on.
368 */
369static int cpumR3CpuIdInit(PVM pVM)
370{
371 PCPUM pCPUM = &pVM->cpum.s;
372 PCFGMNODE pCpumCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM");
373 uint32_t i;
374 int rc;
375
376#define PORTABLE_CLEAR_BITS_WHEN(Lvl, LeafSuffReg, FeatNm, fMask, uValue) \
377 if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fMask)) == (uValue) ) \
378 { \
379 LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: %#x -> 0\n", pCPUM->aGuestCpuId##LeafSuffReg & (fMask))); \
380 pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fMask); \
381 }
382#define PORTABLE_DISABLE_FEATURE_BIT(Lvl, LeafSuffReg, FeatNm, fBitMask) \
383 if (pCPUM->u8PortableCpuIdLevel >= (Lvl) && (pCPUM->aGuestCpuId##LeafSuffReg & (fBitMask)) ) \
384 { \
385 LogRel(("PortableCpuId: " #LeafSuffReg "[" #FeatNm "]: 1 -> 0\n")); \
386 pCPUM->aGuestCpuId##LeafSuffReg &= ~(uint32_t)(fBitMask); \
387 }
388
389 /*
390 * Read the configuration.
391 */
392 /** @cfgm{CPUM/SyntheticCpu, boolean, false}
393 * Enables the Synthetic CPU. The Vendor ID and Processor Name are
394 * completely overridden by VirtualBox custom strings. Some
395 * CPUID information is withheld, like the cache info. */
396 rc = CFGMR3QueryBoolDef(pCpumCfg, "SyntheticCpu", &pCPUM->fSyntheticCpu, false);
397 AssertRCReturn(rc, rc);
398
399 /** @cfgm{CPUM/PortableCpuIdLevel, 8-bit, 0, 3, 0}
400 * When non-zero CPUID features that could cause portability issues will be
401 * stripped. The higher the value the more features gets stripped. Higher
402 * values should only be used when older CPUs are involved since it may
403 * harm performance and maybe also cause problems with specific guests. */
404 rc = CFGMR3QueryU8Def(pCpumCfg, "PortableCpuIdLevel", &pCPUM->u8PortableCpuIdLevel, 0);
405 AssertRCReturn(rc, rc);
406
407 AssertLogRelReturn(!pCPUM->fSyntheticCpu || !pCPUM->u8PortableCpuIdLevel, VERR_CPUM_INCOMPATIBLE_CONFIG);
408
409 /*
410 * Get the host CPUID leaves and redetect the guest CPU vendor (could've
411 * been overridden).
412 */
413 /** @cfgm{CPUM/HostCPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
414 * Overrides the host CPUID leaf values used for calculating the guest CPUID
415 * leaves. This can be used to preserve the CPUID values when moving a VM
416 * to a different machine. Another use is restricting (or extending) the
417 * feature set exposed to the guest. */
418 PCFGMNODE pHostOverrideCfg = CFGMR3GetChild(pCpumCfg, "HostCPUID");
419 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pHostOverrideCfg);
420 AssertRCReturn(rc, rc);
421 rc = cpumR3CpuIdInitHostSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pHostOverrideCfg);
422 AssertRCReturn(rc, rc);
423 rc = cpumR3CpuIdInitHostSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pHostOverrideCfg);
424 AssertRCReturn(rc, rc);
425
426 pCPUM->enmGuestCpuVendor = cpumR3DetectVendor(pCPUM->aGuestCpuIdStd[0].eax, pCPUM->aGuestCpuIdStd[0].ebx,
427 pCPUM->aGuestCpuIdStd[0].ecx, pCPUM->aGuestCpuIdStd[0].edx);
428
429 /*
430 * Determine the default leaf.
431 *
432 * Intel returns values of the highest standard function, while AMD
433 * returns zeros. VIA on the other hand seems to returning nothing or
434 * perhaps some random garbage, we don't try to duplicate this behavior.
435 */
436 ASMCpuId(pCPUM->aGuestCpuIdStd[0].eax + 10, /** @todo r=bird: Use the host value here in case of overrides and more than 10 leaves being stripped already. */
437 &pCPUM->GuestCpuIdDef.eax, &pCPUM->GuestCpuIdDef.ebx,
438 &pCPUM->GuestCpuIdDef.ecx, &pCPUM->GuestCpuIdDef.edx);
439
440
441 /* Cpuid 1 & 0x80000001:
442 * Only report features we can support.
443 *
444 * Note! When enabling new features the Synthetic CPU and Portable CPUID
445 * options may require adjusting (i.e. stripping what was enabled).
446 */
447 pCPUM->aGuestCpuIdStd[1].edx &= X86_CPUID_FEATURE_EDX_FPU
448 | X86_CPUID_FEATURE_EDX_VME
449 | X86_CPUID_FEATURE_EDX_DE
450 | X86_CPUID_FEATURE_EDX_PSE
451 | X86_CPUID_FEATURE_EDX_TSC
452 | X86_CPUID_FEATURE_EDX_MSR
453 //| X86_CPUID_FEATURE_EDX_PAE - set later if configured.
454 | X86_CPUID_FEATURE_EDX_MCE
455 | X86_CPUID_FEATURE_EDX_CX8
456 //| X86_CPUID_FEATURE_EDX_APIC - set by the APIC device if present.
457 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
458 //| X86_CPUID_FEATURE_EDX_SEP
459 | X86_CPUID_FEATURE_EDX_MTRR
460 | X86_CPUID_FEATURE_EDX_PGE
461 | X86_CPUID_FEATURE_EDX_MCA
462 | X86_CPUID_FEATURE_EDX_CMOV
463 | X86_CPUID_FEATURE_EDX_PAT
464 | X86_CPUID_FEATURE_EDX_PSE36
465 //| X86_CPUID_FEATURE_EDX_PSN - no serial number.
466 | X86_CPUID_FEATURE_EDX_CLFSH
467 //| X86_CPUID_FEATURE_EDX_DS - no debug store.
468 //| X86_CPUID_FEATURE_EDX_ACPI - not virtualized yet.
469 | X86_CPUID_FEATURE_EDX_MMX
470 | X86_CPUID_FEATURE_EDX_FXSR
471 | X86_CPUID_FEATURE_EDX_SSE
472 | X86_CPUID_FEATURE_EDX_SSE2
473 //| X86_CPUID_FEATURE_EDX_SS - no self snoop.
474 //| X86_CPUID_FEATURE_EDX_HTT - no hyperthreading.
475 //| X86_CPUID_FEATURE_EDX_TM - no thermal monitor.
476 //| X86_CPUID_FEATURE_EDX_PBE - no pending break enabled.
477 | 0;
478 pCPUM->aGuestCpuIdStd[1].ecx &= 0
479 | X86_CPUID_FEATURE_ECX_SSE3
480 /* Can't properly emulate monitor & mwait with guest SMP; force the guest to use hlt for idling VCPUs. */
481 | ((pVM->cCpus == 1) ? X86_CPUID_FEATURE_ECX_MONITOR : 0)
482 //| X86_CPUID_FEATURE_ECX_CPLDS - no CPL qualified debug store.
483 //| X86_CPUID_FEATURE_ECX_VMX - not virtualized.
484 //| X86_CPUID_FEATURE_ECX_EST - no extended speed step.
485 //| X86_CPUID_FEATURE_ECX_TM2 - no thermal monitor 2.
486 | X86_CPUID_FEATURE_ECX_SSSE3
487 //| X86_CPUID_FEATURE_ECX_CNTXID - no L1 context id (MSR++).
488 //| X86_CPUID_FEATURE_ECX_CX16 - no cmpxchg16b
489 /* ECX Bit 14 - xTPR Update Control. Processor supports changing IA32_MISC_ENABLES[bit 23]. */
490 //| X86_CPUID_FEATURE_ECX_TPRUPDATE
491 /* ECX Bit 21 - x2APIC support - not yet. */
492 // | X86_CPUID_FEATURE_ECX_X2APIC
493 /* ECX Bit 23 - POPCNT instruction. */
494 //| X86_CPUID_FEATURE_ECX_POPCNT
495 | 0;
496 if (pCPUM->u8PortableCpuIdLevel > 0)
497 {
498 PORTABLE_CLEAR_BITS_WHEN(1, Std[1].eax, ProcessorType, (UINT32_C(3) << 12), (UINT32_C(2) << 12));
499 PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSSE3, X86_CPUID_FEATURE_ECX_SSSE3);
500 PORTABLE_DISABLE_FEATURE_BIT(1, Std[1].ecx, SSE3, X86_CPUID_FEATURE_ECX_SSE3);
501 PORTABLE_DISABLE_FEATURE_BIT(2, Std[1].edx, SSE2, X86_CPUID_FEATURE_EDX_SSE2);
502 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, SSE, X86_CPUID_FEATURE_EDX_SSE);
503 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CLFSH, X86_CPUID_FEATURE_EDX_CLFSH);
504 PORTABLE_DISABLE_FEATURE_BIT(3, Std[1].edx, CMOV, X86_CPUID_FEATURE_EDX_CMOV);
505
506 Assert(!(pCPUM->aGuestCpuIdStd[1].edx & ( X86_CPUID_FEATURE_EDX_SEP
507 | X86_CPUID_FEATURE_EDX_PSN
508 | X86_CPUID_FEATURE_EDX_DS
509 | X86_CPUID_FEATURE_EDX_ACPI
510 | X86_CPUID_FEATURE_EDX_SS
511 | X86_CPUID_FEATURE_EDX_TM
512 | X86_CPUID_FEATURE_EDX_PBE
513 )));
514 Assert(!(pCPUM->aGuestCpuIdStd[1].ecx & ( X86_CPUID_FEATURE_ECX_PCLMUL
515 | X86_CPUID_FEATURE_ECX_DTES64
516 | X86_CPUID_FEATURE_ECX_CPLDS
517 | X86_CPUID_FEATURE_ECX_VMX
518 | X86_CPUID_FEATURE_ECX_SMX
519 | X86_CPUID_FEATURE_ECX_EST
520 | X86_CPUID_FEATURE_ECX_TM2
521 | X86_CPUID_FEATURE_ECX_CNTXID
522 | X86_CPUID_FEATURE_ECX_FMA
523 | X86_CPUID_FEATURE_ECX_CX16
524 | X86_CPUID_FEATURE_ECX_TPRUPDATE
525 | X86_CPUID_FEATURE_ECX_PDCM
526 | X86_CPUID_FEATURE_ECX_DCA
527 | X86_CPUID_FEATURE_ECX_MOVBE
528 | X86_CPUID_FEATURE_ECX_AES
529 | X86_CPUID_FEATURE_ECX_POPCNT
530 | X86_CPUID_FEATURE_ECX_XSAVE
531 | X86_CPUID_FEATURE_ECX_OSXSAVE
532 | X86_CPUID_FEATURE_ECX_AVX
533 )));
534 }
535
536 /* Cpuid 0x80000001:
537 * Only report features we can support.
538 *
539 * Note! When enabling new features the Synthetic CPU and Portable CPUID
540 * options may require adjusting (i.e. stripping what was enabled).
541 *
542 * ASSUMES that this is ALWAYS the AMD defined feature set if present.
543 */
544 pCPUM->aGuestCpuIdExt[1].edx &= X86_CPUID_AMD_FEATURE_EDX_FPU
545 | X86_CPUID_AMD_FEATURE_EDX_VME
546 | X86_CPUID_AMD_FEATURE_EDX_DE
547 | X86_CPUID_AMD_FEATURE_EDX_PSE
548 | X86_CPUID_AMD_FEATURE_EDX_TSC
549 | X86_CPUID_AMD_FEATURE_EDX_MSR //?? this means AMD MSRs..
550 //| X86_CPUID_AMD_FEATURE_EDX_PAE - not implemented yet.
551 //| X86_CPUID_AMD_FEATURE_EDX_MCE - not virtualized yet.
552 | X86_CPUID_AMD_FEATURE_EDX_CX8
553 //| X86_CPUID_AMD_FEATURE_EDX_APIC - set by the APIC device if present.
554 /* Note! we don't report sysenter/sysexit support due to our inability to keep the IOPL part of eflags in sync while in ring 1 (see #1757) */
555 //| X86_CPUID_AMD_FEATURE_EDX_SEP
556 | X86_CPUID_AMD_FEATURE_EDX_MTRR
557 | X86_CPUID_AMD_FEATURE_EDX_PGE
558 | X86_CPUID_AMD_FEATURE_EDX_MCA
559 | X86_CPUID_AMD_FEATURE_EDX_CMOV
560 | X86_CPUID_AMD_FEATURE_EDX_PAT
561 | X86_CPUID_AMD_FEATURE_EDX_PSE36
562 //| X86_CPUID_AMD_FEATURE_EDX_NX - not virtualized, requires PAE.
563 //| X86_CPUID_AMD_FEATURE_EDX_AXMMX
564 | X86_CPUID_AMD_FEATURE_EDX_MMX
565 | X86_CPUID_AMD_FEATURE_EDX_FXSR
566 | X86_CPUID_AMD_FEATURE_EDX_FFXSR
567 //| X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
568 //| X86_CPUID_AMD_FEATURE_EDX_RDTSCP - AMD only; turned on when necessary
569 //| X86_CPUID_AMD_FEATURE_EDX_LONG_MODE - turned on when necessary
570 | X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX
571 | X86_CPUID_AMD_FEATURE_EDX_3DNOW
572 | 0;
573 pCPUM->aGuestCpuIdExt[1].ecx &= 0
574 //| X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF
575 //| X86_CPUID_AMD_FEATURE_ECX_CMPL
576 //| X86_CPUID_AMD_FEATURE_ECX_SVM - not virtualized.
577 //| X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
578 /* Note: This could prevent teleporting from AMD to Intel CPUs! */
579 | X86_CPUID_AMD_FEATURE_ECX_CR8L /* expose lock mov cr0 = mov cr8 hack for guests that can use this feature to access the TPR. */
580 //| X86_CPUID_AMD_FEATURE_ECX_ABM
581 //| X86_CPUID_AMD_FEATURE_ECX_SSE4A
582 //| X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
583 //| X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
584 //| X86_CPUID_AMD_FEATURE_ECX_OSVW
585 //| X86_CPUID_AMD_FEATURE_ECX_IBS
586 //| X86_CPUID_AMD_FEATURE_ECX_SSE5
587 //| X86_CPUID_AMD_FEATURE_ECX_SKINIT
588 //| X86_CPUID_AMD_FEATURE_ECX_WDT
589 | 0;
590 if (pCPUM->u8PortableCpuIdLevel > 0)
591 {
592 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].ecx, CR8L, X86_CPUID_AMD_FEATURE_ECX_CR8L);
593 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
594 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, 3DNOW_EX, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
595 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, FFXSR, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
596 PORTABLE_DISABLE_FEATURE_BIT(1, Ext[1].edx, RDTSCP, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
597 PORTABLE_DISABLE_FEATURE_BIT(2, Ext[1].ecx, LAHF_SAHF, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
598 PORTABLE_DISABLE_FEATURE_BIT(3, Ext[1].ecx, CMOV, X86_CPUID_AMD_FEATURE_EDX_CMOV);
599
600 Assert(!(pCPUM->aGuestCpuIdExt[1].ecx & ( X86_CPUID_AMD_FEATURE_ECX_CMPL
601 | X86_CPUID_AMD_FEATURE_ECX_SVM
602 | X86_CPUID_AMD_FEATURE_ECX_EXT_APIC
603 | X86_CPUID_AMD_FEATURE_ECX_CR8L
604 | X86_CPUID_AMD_FEATURE_ECX_ABM
605 | X86_CPUID_AMD_FEATURE_ECX_SSE4A
606 | X86_CPUID_AMD_FEATURE_ECX_MISALNSSE
607 | X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF
608 | X86_CPUID_AMD_FEATURE_ECX_OSVW
609 | X86_CPUID_AMD_FEATURE_ECX_IBS
610 | X86_CPUID_AMD_FEATURE_ECX_SSE5
611 | X86_CPUID_AMD_FEATURE_ECX_SKINIT
612 | X86_CPUID_AMD_FEATURE_ECX_WDT
613 | UINT32_C(0xffffc000)
614 )));
615 Assert(!(pCPUM->aGuestCpuIdExt[1].edx & ( RT_BIT(10)
616 | X86_CPUID_AMD_FEATURE_EDX_SEP
617 | RT_BIT(18)
618 | RT_BIT(19)
619 | RT_BIT(21)
620 | X86_CPUID_AMD_FEATURE_EDX_AXMMX
621 | X86_CPUID_AMD_FEATURE_EDX_PAGE1GB
622 | RT_BIT(28)
623 )));
624 }
625
626 /*
627 * Apply the Synthetic CPU modifications. (TODO: move this up)
628 */
629 if (pCPUM->fSyntheticCpu)
630 {
631 static const char s_szVendor[13] = "VirtualBox ";
632 static const char s_szProcessor[48] = "VirtualBox SPARCx86 Processor v1000 "; /* includes null terminator */
633
634 pCPUM->enmGuestCpuVendor = CPUMCPUVENDOR_SYNTHETIC;
635
636 /* Limit the nr of standard leaves; 5 for monitor/mwait */
637 pCPUM->aGuestCpuIdStd[0].eax = RT_MIN(pCPUM->aGuestCpuIdStd[0].eax, 5);
638
639 /* 0: Vendor */
640 pCPUM->aGuestCpuIdStd[0].ebx = pCPUM->aGuestCpuIdExt[0].ebx = ((uint32_t *)s_szVendor)[0];
641 pCPUM->aGuestCpuIdStd[0].ecx = pCPUM->aGuestCpuIdExt[0].ecx = ((uint32_t *)s_szVendor)[2];
642 pCPUM->aGuestCpuIdStd[0].edx = pCPUM->aGuestCpuIdExt[0].edx = ((uint32_t *)s_szVendor)[1];
643
644 /* 1.eax: Version information. family : model : stepping */
645 pCPUM->aGuestCpuIdStd[1].eax = (0xf << 8) + (0x1 << 4) + 1;
646
647 /* Leaves 2 - 4 are Intel only - zero them out */
648 memset(&pCPUM->aGuestCpuIdStd[2], 0, sizeof(pCPUM->aGuestCpuIdStd[2]));
649 memset(&pCPUM->aGuestCpuIdStd[3], 0, sizeof(pCPUM->aGuestCpuIdStd[3]));
650 memset(&pCPUM->aGuestCpuIdStd[4], 0, sizeof(pCPUM->aGuestCpuIdStd[4]));
651
652 /* Leaf 5 = monitor/mwait */
653
654 /* Limit the nr of extended leaves: 0x80000008 to include the max virtual and physical address size (64 bits guests). */
655 pCPUM->aGuestCpuIdExt[0].eax = RT_MIN(pCPUM->aGuestCpuIdExt[0].eax, 0x80000008);
656 /* AMD only - set to zero. */
657 pCPUM->aGuestCpuIdExt[0].ebx = pCPUM->aGuestCpuIdExt[0].ecx = pCPUM->aGuestCpuIdExt[0].edx = 0;
658
659 /* 0x800000001: AMD only; shared feature bits are set dynamically. */
660 memset(&pCPUM->aGuestCpuIdExt[1], 0, sizeof(pCPUM->aGuestCpuIdExt[1]));
661
662 /* 0x800000002-4: Processor Name String Identifier. */
663 pCPUM->aGuestCpuIdExt[2].eax = ((uint32_t *)s_szProcessor)[0];
664 pCPUM->aGuestCpuIdExt[2].ebx = ((uint32_t *)s_szProcessor)[1];
665 pCPUM->aGuestCpuIdExt[2].ecx = ((uint32_t *)s_szProcessor)[2];
666 pCPUM->aGuestCpuIdExt[2].edx = ((uint32_t *)s_szProcessor)[3];
667 pCPUM->aGuestCpuIdExt[3].eax = ((uint32_t *)s_szProcessor)[4];
668 pCPUM->aGuestCpuIdExt[3].ebx = ((uint32_t *)s_szProcessor)[5];
669 pCPUM->aGuestCpuIdExt[3].ecx = ((uint32_t *)s_szProcessor)[6];
670 pCPUM->aGuestCpuIdExt[3].edx = ((uint32_t *)s_szProcessor)[7];
671 pCPUM->aGuestCpuIdExt[4].eax = ((uint32_t *)s_szProcessor)[8];
672 pCPUM->aGuestCpuIdExt[4].ebx = ((uint32_t *)s_szProcessor)[9];
673 pCPUM->aGuestCpuIdExt[4].ecx = ((uint32_t *)s_szProcessor)[10];
674 pCPUM->aGuestCpuIdExt[4].edx = ((uint32_t *)s_szProcessor)[11];
675
676 /* 0x800000005-7 - reserved -> zero */
677 memset(&pCPUM->aGuestCpuIdExt[5], 0, sizeof(pCPUM->aGuestCpuIdExt[5]));
678 memset(&pCPUM->aGuestCpuIdExt[6], 0, sizeof(pCPUM->aGuestCpuIdExt[6]));
679 memset(&pCPUM->aGuestCpuIdExt[7], 0, sizeof(pCPUM->aGuestCpuIdExt[7]));
680
681 /* 0x800000008: only the max virtual and physical address size. */
682 pCPUM->aGuestCpuIdExt[8].ecx = pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
683 }
684
685 /*
686 * Hide HTT, multicode, SMP, whatever.
687 * (APIC-ID := 0 and #LogCpus := 0)
688 */
689 pCPUM->aGuestCpuIdStd[1].ebx &= 0x0000ffff;
690#ifdef VBOX_WITH_MULTI_CORE
691 if ( pCPUM->enmGuestCpuVendor != CPUMCPUVENDOR_SYNTHETIC
692 && pVM->cCpus > 1)
693 {
694 /* If CPUID Fn0000_0001_EDX[HTT] = 1 then LogicalProcessorCount is the number of threads per CPU core times the number of CPU cores per processor */
695 pCPUM->aGuestCpuIdStd[1].ebx |= (pVM->cCpus << 16);
696 pCPUM->aGuestCpuIdStd[1].edx |= X86_CPUID_FEATURE_EDX_HTT; /* necessary for hyper-threading *or* multi-core CPUs */
697 }
698#endif
699
700 /* Cpuid 2:
701 * Intel: Cache and TLB information
702 * AMD: Reserved
703 * Safe to expose; restrict the number of calls to 1 for the portable case.
704 */
705 if ( pCPUM->u8PortableCpuIdLevel > 0
706 && pCPUM->aGuestCpuIdStd[0].eax >= 2
707 && (pCPUM->aGuestCpuIdStd[2].eax & 0xff) > 1)
708 {
709 LogRel(("PortableCpuId: Std[2].al: %d -> 1\n", pCPUM->aGuestCpuIdStd[2].eax & 0xff));
710 pCPUM->aGuestCpuIdStd[2].eax &= UINT32_C(0xfffffffe);
711 }
712
713 /* Cpuid 3:
714 * Intel: EAX, EBX - reserved (transmeta uses these)
715 * ECX, EDX - Processor Serial Number if available, otherwise reserved
716 * AMD: Reserved
717 * Safe to expose
718 */
719 if (!(pCPUM->aGuestCpuIdStd[1].edx & X86_CPUID_FEATURE_EDX_PSN))
720 {
721 pCPUM->aGuestCpuIdStd[3].ecx = pCPUM->aGuestCpuIdStd[3].edx = 0;
722 if (pCPUM->u8PortableCpuIdLevel > 0)
723 pCPUM->aGuestCpuIdStd[3].eax = pCPUM->aGuestCpuIdStd[3].ebx = 0;
724 }
725
726 /* Cpuid 4:
727 * Intel: Deterministic Cache Parameters Leaf
728 * Note: Depends on the ECX input! -> Feeling rather lazy now, so we just return 0
729 * AMD: Reserved
730 * Safe to expose, except for EAX:
731 * Bits 25-14: Maximum number of addressable IDs for logical processors sharing this cache (see note)**
732 * Bits 31-26: Maximum number of processor cores in this physical package**
733 * Note: These SMP values are constant regardless of ECX
734 */
735 pCPUM->aGuestCpuIdStd[4].ecx = pCPUM->aGuestCpuIdStd[4].edx = 0;
736 pCPUM->aGuestCpuIdStd[4].eax = pCPUM->aGuestCpuIdStd[4].ebx = 0;
737#ifdef VBOX_WITH_MULTI_CORE
738 if ( pVM->cCpus > 1
739 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_INTEL)
740 {
741 AssertReturn(pVM->cCpus <= 64, VERR_TOO_MANY_CPUS);
742 /* One logical processor with possibly multiple cores. */
743 /* See http://www.intel.com/Assets/PDF/appnote/241618.pdf p. 29 */
744 pCPUM->aGuestCpuIdStd[4].eax |= ((pVM->cCpus - 1) << 26); /* 6 bits only -> 64 cores! */
745 }
746#endif
747
748 /* Cpuid 5: Monitor/mwait Leaf
749 * Intel: ECX, EDX - reserved
750 * EAX, EBX - Smallest and largest monitor line size
751 * AMD: EDX - reserved
752 * EAX, EBX - Smallest and largest monitor line size
753 * ECX - extensions (ignored for now)
754 * Safe to expose
755 */
756 if (!(pCPUM->aGuestCpuIdStd[1].ecx & X86_CPUID_FEATURE_ECX_MONITOR))
757 pCPUM->aGuestCpuIdStd[5].eax = pCPUM->aGuestCpuIdStd[5].ebx = 0;
758
759 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
760 /** @cfgm{/CPUM/MWaitExtensions, boolean, false}
761 * Expose MWAIT extended features to the guest. For now we expose
762 * just MWAIT break on interrupt feature (bit 1).
763 */
764 bool fMWaitExtensions;
765 rc = CFGMR3QueryBoolDef(pCpumCfg, "MWaitExtensions", &fMWaitExtensions, false); AssertRCReturn(rc, rc);
766 if (fMWaitExtensions)
767 {
768 pCPUM->aGuestCpuIdStd[5].ecx = X86_CPUID_MWAIT_ECX_EXT | X86_CPUID_MWAIT_ECX_BREAKIRQIF0;
769 /* @todo: for now we just expose host's MWAIT C-states, although conceptually
770 it shall be part of our power management virtualization model */
771#if 0
772 /* MWAIT sub C-states */
773 pCPUM->aGuestCpuIdStd[5].edx =
774 (0 << 0) /* 0 in C0 */ |
775 (2 << 4) /* 2 in C1 */ |
776 (2 << 8) /* 2 in C2 */ |
777 (2 << 12) /* 2 in C3 */ |
778 (0 << 16) /* 0 in C4 */
779 ;
780#endif
781 }
782 else
783 pCPUM->aGuestCpuIdStd[5].ecx = pCPUM->aGuestCpuIdStd[5].edx = 0;
784
785 /* Cpuid 0x800000005 & 0x800000006 contain information about L1, L2 & L3 cache and TLB identifiers.
786 * Safe to pass on to the guest.
787 *
788 * Intel: 0x800000005 reserved
789 * 0x800000006 L2 cache information
790 * AMD: 0x800000005 L1 cache information
791 * 0x800000006 L2/L3 cache information
792 */
793
794 /* Cpuid 0x800000007:
795 * AMD: EAX, EBX, ECX - reserved
796 * EDX: Advanced Power Management Information
797 * Intel: Reserved
798 */
799 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000007))
800 {
801 Assert(pVM->cpum.s.enmGuestCpuVendor != CPUMCPUVENDOR_INVALID);
802
803 pCPUM->aGuestCpuIdExt[7].eax = pCPUM->aGuestCpuIdExt[7].ebx = pCPUM->aGuestCpuIdExt[7].ecx = 0;
804
805 if (pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
806 {
807 /* Only expose the TSC invariant capability bit to the guest. */
808 pCPUM->aGuestCpuIdExt[7].edx &= 0
809 //| X86_CPUID_AMD_ADVPOWER_EDX_TS
810 //| X86_CPUID_AMD_ADVPOWER_EDX_FID
811 //| X86_CPUID_AMD_ADVPOWER_EDX_VID
812 //| X86_CPUID_AMD_ADVPOWER_EDX_TTP
813 //| X86_CPUID_AMD_ADVPOWER_EDX_TM
814 //| X86_CPUID_AMD_ADVPOWER_EDX_STC
815 //| X86_CPUID_AMD_ADVPOWER_EDX_MC
816 //| X86_CPUID_AMD_ADVPOWER_EDX_HWPSTATE
817#if 0 /* We don't expose X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR, because newer
818 * Linux kernels blindly assume that the AMD performance counters work
819 * if this is set for 64 bits guests. (Can't really find a CPUID feature
820 * bit for them though.) */
821 | X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR
822#endif
823 | 0;
824 }
825 else
826 pCPUM->aGuestCpuIdExt[7].edx = 0;
827 }
828
829 /* Cpuid 0x800000008:
830 * AMD: EBX, EDX - reserved
831 * EAX: Virtual/Physical/Guest address Size
832 * ECX: Number of cores + APICIdCoreIdSize
833 * Intel: EAX: Virtual/Physical address Size
834 * EBX, ECX, EDX - reserved
835 */
836 if (pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000008))
837 {
838 /* Only expose the virtual and physical address sizes to the guest. */
839 pCPUM->aGuestCpuIdExt[8].eax &= UINT32_C(0x0000ffff);
840 pCPUM->aGuestCpuIdExt[8].ebx = pCPUM->aGuestCpuIdExt[8].edx = 0; /* reserved */
841 /* Set APICIdCoreIdSize to zero (use legacy method to determine the number of cores per cpu)
842 * NC (0-7) Number of cores; 0 equals 1 core */
843 pCPUM->aGuestCpuIdExt[8].ecx = 0;
844#ifdef VBOX_WITH_MULTI_CORE
845 if ( pVM->cCpus > 1
846 && pVM->cpum.s.enmGuestCpuVendor == CPUMCPUVENDOR_AMD)
847 {
848 /* Legacy method to determine the number of cores. */
849 pCPUM->aGuestCpuIdExt[1].ecx |= X86_CPUID_AMD_FEATURE_ECX_CMPL;
850 pCPUM->aGuestCpuIdExt[8].ecx |= (pVM->cCpus - 1); /* NC: Number of CPU cores - 1; 8 bits */
851 }
852#endif
853 }
854
855 /** @cfgm{/CPUM/NT4LeafLimit, boolean, false}
856 * Limit the number of standard CPUID leaves to 0..3 to prevent NT4 from
857 * bugchecking with MULTIPROCESSOR_CONFIGURATION_NOT_SUPPORTED (0x3e).
858 * This option corresponds somewhat to IA32_MISC_ENABLES.BOOT_NT4[bit 22].
859 */
860 bool fNt4LeafLimit;
861 rc = CFGMR3QueryBoolDef(pCpumCfg, "NT4LeafLimit", &fNt4LeafLimit, false); AssertRCReturn(rc, rc);
862 if (fNt4LeafLimit)
863 pCPUM->aGuestCpuIdStd[0].eax = 3; /** @todo r=bird: shouldn't we check if pCPUM->aGuestCpuIdStd[0].eax > 3 before setting it 3 here? */
864
865 /*
866 * Limit it the number of entries and fill the remaining with the defaults.
867 *
868 * The limits are masking off stuff about power saving and similar, this
869 * is perhaps a bit crudely done as there is probably some relatively harmless
870 * info too in these leaves (like words about having a constant TSC).
871 */
872 if (pCPUM->aGuestCpuIdStd[0].eax > 5)
873 pCPUM->aGuestCpuIdStd[0].eax = 5;
874 for (i = pCPUM->aGuestCpuIdStd[0].eax + 1; i < RT_ELEMENTS(pCPUM->aGuestCpuIdStd); i++)
875 pCPUM->aGuestCpuIdStd[i] = pCPUM->GuestCpuIdDef;
876
877 if (pCPUM->aGuestCpuIdExt[0].eax > UINT32_C(0x80000008))
878 pCPUM->aGuestCpuIdExt[0].eax = UINT32_C(0x80000008);
879 for (i = pCPUM->aGuestCpuIdExt[0].eax >= UINT32_C(0x80000000)
880 ? pCPUM->aGuestCpuIdExt[0].eax - UINT32_C(0x80000000) + 1
881 : 0;
882 i < RT_ELEMENTS(pCPUM->aGuestCpuIdExt);
883 i++)
884 pCPUM->aGuestCpuIdExt[i] = pCPUM->GuestCpuIdDef;
885
886 /*
887 * Centaur stuff (VIA).
888 *
889 * The important part here (we think) is to make sure the 0xc0000000
890 * function returns 0xc0000001. As for the features, we don't currently
891 * let on about any of those... 0xc0000002 seems to be some
892 * temperature/hz/++ stuff, include it as well (static).
893 */
894 if ( pCPUM->aGuestCpuIdCentaur[0].eax >= UINT32_C(0xc0000000)
895 && pCPUM->aGuestCpuIdCentaur[0].eax <= UINT32_C(0xc0000004))
896 {
897 pCPUM->aGuestCpuIdCentaur[0].eax = RT_MIN(pCPUM->aGuestCpuIdCentaur[0].eax, UINT32_C(0xc0000002));
898 pCPUM->aGuestCpuIdCentaur[1].edx = 0; /* all features hidden */
899 for (i = pCPUM->aGuestCpuIdCentaur[0].eax - UINT32_C(0xc0000000);
900 i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur);
901 i++)
902 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
903 }
904 else
905 for (i = 0; i < RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur); i++)
906 pCPUM->aGuestCpuIdCentaur[i] = pCPUM->GuestCpuIdDef;
907
908
909 /*
910 * Load CPUID overrides from configuration.
911 * Note: Kind of redundant now, but allows unchanged overrides
912 */
913 /** @cfgm{CPUM/CPUID/[000000xx|800000xx|c000000x]/[eax|ebx|ecx|edx],32-bit}
914 * Overrides the CPUID leaf values. */
915 PCFGMNODE pOverrideCfg = CFGMR3GetChild(pCpumCfg, "CPUID");
916 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &pCPUM->aGuestCpuIdStd[0], RT_ELEMENTS(pCPUM->aGuestCpuIdStd), pOverrideCfg);
917 AssertRCReturn(rc, rc);
918 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &pCPUM->aGuestCpuIdExt[0], RT_ELEMENTS(pCPUM->aGuestCpuIdExt), pOverrideCfg);
919 AssertRCReturn(rc, rc);
920 rc = cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0xc0000000), &pCPUM->aGuestCpuIdCentaur[0], RT_ELEMENTS(pCPUM->aGuestCpuIdCentaur), pOverrideCfg);
921 AssertRCReturn(rc, rc);
922
923 /*
924 * Check if PAE was explicitely enabled by the user.
925 */
926 bool fEnable;
927 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "EnablePAE", &fEnable, false); AssertRCReturn(rc, rc);
928 if (fEnable)
929 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_PAE);
930
931 /*
932 * We don't normally enable NX for raw-mode, so give the user a chance to
933 * force it on.
934 */
935 rc = CFGMR3QueryBoolDef(pCpumCfg, "EnableNX", &fEnable, false); AssertRCReturn(rc, rc);
936 if (fEnable)
937 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_NXE);
938
939 /*
940 * We don't enable the Hypervisor Present bit by default, but it may
941 * be needed by some guests.
942 */
943 rc = CFGMR3QueryBoolDef(pCpumCfg, "EnableHVP", &fEnable, false); AssertRCReturn(rc, rc);
944 if (fEnable)
945 CPUMSetGuestCpuIdFeature(pVM, CPUMCPUIDFEATURE_HVP);
946 /*
947 * Log the cpuid and we're good.
948 */
949 bool fOldBuffered = RTLogRelSetBuffering(true /*fBuffered*/);
950 RTCPUSET OnlineSet;
951 LogRel(("Logical host processors: %u present, %u max, %u online, online mask: %016RX64\n",
952 (unsigned)RTMpGetPresentCount(), (unsigned)RTMpGetCount(), (unsigned)RTMpGetOnlineCount(),
953 RTCpuSetToU64(RTMpGetOnlineSet(&OnlineSet)) ));
954 LogRel(("************************* CPUID dump ************************\n"));
955 DBGFR3Info(pVM, "cpuid", "verbose", DBGFR3InfoLogRelHlp());
956 LogRel(("\n"));
957 DBGFR3InfoLog(pVM, "cpuid", "verbose"); /* macro */
958 RTLogRelSetBuffering(fOldBuffered);
959 LogRel(("******************** End of CPUID dump **********************\n"));
960
961#undef PORTABLE_DISABLE_FEATURE_BIT
962#undef PORTABLE_CLEAR_BITS_WHEN
963
964 return VINF_SUCCESS;
965}
966
967
968/**
969 * Applies relocations to data and code managed by this
970 * component. This function will be called at init and
971 * whenever the VMM need to relocate it self inside the GC.
972 *
973 * The CPUM will update the addresses used by the switcher.
974 *
975 * @param pVM The VM.
976 */
977VMMR3DECL(void) CPUMR3Relocate(PVM pVM)
978{
979 LogFlow(("CPUMR3Relocate\n"));
980 for (VMCPUID i = 0; i < pVM->cCpus; i++)
981 {
982 /*
983 * Switcher pointers.
984 */
985 PVMCPU pVCpu = &pVM->aCpus[i];
986 pVCpu->cpum.s.pHyperCoreRC = MMHyperCCToRC(pVM, pVCpu->cpum.s.pHyperCoreR3);
987 Assert(pVCpu->cpum.s.pHyperCoreRC != NIL_RTRCPTR);
988
989 }
990}
991
992
993/**
994 * Apply late CPUM property changes based on the fHWVirtEx setting
995 *
996 * @param pVM The VM to operate on.
997 * @param fHWVirtExEnabled HWVirtEx enabled/disabled
998 */
999VMMR3DECL(void) CPUMR3SetHWVirtEx(PVM pVM, bool fHWVirtExEnabled)
1000{
1001 /*
1002 * Workaround for missing cpuid(0) patches when leaf 4 returns GuestCpuIdDef:
1003 * If we miss to patch a cpuid(0).eax then Linux tries to determine the number
1004 * of processors from (cpuid(4).eax >> 26) + 1.
1005 *
1006 * Note: this code is obsolete, but let's keep it here for reference.
1007 * Purpose is valid when we artificially cap the max std id to less than 4.
1008 */
1009 if (!fHWVirtExEnabled)
1010 {
1011 Assert( pVM->cpum.s.aGuestCpuIdStd[4].eax == 0
1012 || pVM->cpum.s.aGuestCpuIdStd[0].eax < 0x4);
1013 pVM->cpum.s.aGuestCpuIdStd[4].eax = 0;
1014 }
1015}
1016
1017/**
1018 * Terminates the CPUM.
1019 *
1020 * Termination means cleaning up and freeing all resources,
1021 * the VM it self is at this point powered off or suspended.
1022 *
1023 * @returns VBox status code.
1024 * @param pVM The VM to operate on.
1025 */
1026VMMR3DECL(int) CPUMR3Term(PVM pVM)
1027{
1028#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1029 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1030 {
1031 PVMCPU pVCpu = &pVM->aCpus[i];
1032 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1033
1034 memset(pVCpu->cpum.s.aMagic, 0, sizeof(pVCpu->cpum.s.aMagic));
1035 pVCpu->cpum.s.uMagic = 0;
1036 pCtx->dr[5] = 0;
1037 }
1038#else
1039 NOREF(pVM);
1040#endif
1041 return VINF_SUCCESS;
1042}
1043
1044
1045/**
1046 * Resets a virtual CPU.
1047 *
1048 * Used by CPUMR3Reset and CPU hot plugging.
1049 *
1050 * @param pVCpu The virtual CPU handle.
1051 */
1052VMMR3DECL(void) CPUMR3ResetCpu(PVMCPU pVCpu)
1053{
1054 /** @todo anything different for VCPU > 0? */
1055 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
1056
1057 /*
1058 * Initialize everything to ZERO first.
1059 */
1060 uint32_t fUseFlags = pVCpu->cpum.s.fUseFlags & ~CPUM_USED_FPU_SINCE_REM;
1061 memset(pCtx, 0, sizeof(*pCtx));
1062 pVCpu->cpum.s.fUseFlags = fUseFlags;
1063
1064 pCtx->cr0 = X86_CR0_CD | X86_CR0_NW | X86_CR0_ET; //0x60000010
1065 pCtx->eip = 0x0000fff0;
1066 pCtx->edx = 0x00000600; /* P6 processor */
1067 pCtx->eflags.Bits.u1Reserved0 = 1;
1068
1069 pCtx->cs = 0xf000;
1070 pCtx->csHid.u64Base = UINT64_C(0xffff0000);
1071 pCtx->csHid.u32Limit = 0x0000ffff;
1072 pCtx->csHid.Attr.n.u1DescType = 1; /* code/data segment */
1073 pCtx->csHid.Attr.n.u1Present = 1;
1074 pCtx->csHid.Attr.n.u4Type = X86_SEL_TYPE_READ | X86_SEL_TYPE_CODE;
1075
1076 pCtx->dsHid.u32Limit = 0x0000ffff;
1077 pCtx->dsHid.Attr.n.u1DescType = 1; /* code/data segment */
1078 pCtx->dsHid.Attr.n.u1Present = 1;
1079 pCtx->dsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1080
1081 pCtx->esHid.u32Limit = 0x0000ffff;
1082 pCtx->esHid.Attr.n.u1DescType = 1; /* code/data segment */
1083 pCtx->esHid.Attr.n.u1Present = 1;
1084 pCtx->esHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1085
1086 pCtx->fsHid.u32Limit = 0x0000ffff;
1087 pCtx->fsHid.Attr.n.u1DescType = 1; /* code/data segment */
1088 pCtx->fsHid.Attr.n.u1Present = 1;
1089 pCtx->fsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1090
1091 pCtx->gsHid.u32Limit = 0x0000ffff;
1092 pCtx->gsHid.Attr.n.u1DescType = 1; /* code/data segment */
1093 pCtx->gsHid.Attr.n.u1Present = 1;
1094 pCtx->gsHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1095
1096 pCtx->ssHid.u32Limit = 0x0000ffff;
1097 pCtx->ssHid.Attr.n.u1Present = 1;
1098 pCtx->ssHid.Attr.n.u1DescType = 1; /* code/data segment */
1099 pCtx->ssHid.Attr.n.u4Type = X86_SEL_TYPE_RW;
1100
1101 pCtx->idtr.cbIdt = 0xffff;
1102 pCtx->gdtr.cbGdt = 0xffff;
1103
1104 pCtx->ldtrHid.u32Limit = 0xffff;
1105 pCtx->ldtrHid.Attr.n.u1Present = 1;
1106 pCtx->ldtrHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_LDT;
1107
1108 pCtx->trHid.u32Limit = 0xffff;
1109 pCtx->trHid.Attr.n.u1Present = 1;
1110 pCtx->trHid.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY; /* Deduction, not properly documented by Intel. */
1111
1112 pCtx->dr[6] = X86_DR6_INIT_VAL;
1113 pCtx->dr[7] = X86_DR7_INIT_VAL;
1114
1115 pCtx->fpu.FTW = 0x00; /* All empty (abbridged tag reg edition). */
1116 pCtx->fpu.FCW = 0x37f;
1117
1118 /* Intel 64 and IA-32 Architectures Software Developer's Manual Volume 3A, Table 8-1.
1119 IA-32 Processor States Following Power-up, Reset, or INIT */
1120 pCtx->fpu.MXCSR = 0x1F80;
1121 pCtx->fpu.MXCSR_MASK = 0xffff; /** @todo REM always changed this for us. Should probably check if the HW really
1122 supports all bits, since a zero value here should be read as 0xffbf. */
1123
1124 /* Init PAT MSR */
1125 pCtx->msrPAT = UINT64_C(0x0007040600070406); /** @todo correct? */
1126
1127 /* Reset EFER; see AMD64 Architecture Programmer's Manual Volume 2: Table 14-1. Initial Processor State
1128 * The Intel docs don't mention it.
1129 */
1130 pCtx->msrEFER = 0;
1131}
1132
1133
1134/**
1135 * Resets the CPU.
1136 *
1137 * @returns VINF_SUCCESS.
1138 * @param pVM The VM handle.
1139 */
1140VMMR3DECL(void) CPUMR3Reset(PVM pVM)
1141{
1142 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1143 {
1144 CPUMR3ResetCpu(&pVM->aCpus[i]);
1145
1146#ifdef VBOX_WITH_CRASHDUMP_MAGIC
1147 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(&pVM->aCpus[i]);
1148
1149 /* Magic marker for searching in crash dumps. */
1150 strcpy((char *)pVM->aCpus[i].cpum.s.aMagic, "CPUMCPU Magic");
1151 pVM->aCpus[i].cpum.s.uMagic = UINT64_C(0xDEADBEEFDEADBEEF);
1152 pCtx->dr[5] = UINT64_C(0xDEADBEEFDEADBEEF);
1153#endif
1154 }
1155}
1156
1157
1158/**
1159 * Called both in pass 0 and the final pass.
1160 *
1161 * @param pVM The VM handle.
1162 * @param pSSM The saved state handle.
1163 */
1164static void cpumR3SaveCpuId(PVM pVM, PSSMHANDLE pSSM)
1165{
1166 /*
1167 * Save all the CPU ID leaves here so we can check them for compatibility
1168 * upon loading.
1169 */
1170 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd));
1171 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], sizeof(pVM->cpum.s.aGuestCpuIdStd));
1172
1173 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt));
1174 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
1175
1176 SSMR3PutU32(pSSM, RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur));
1177 SSMR3PutMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
1178
1179 SSMR3PutMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
1180
1181 /*
1182 * Save a good portion of the raw CPU IDs as well as they may come in
1183 * handy when validating features for raw mode.
1184 */
1185 CPUMCPUID aRawStd[16];
1186 for (unsigned i = 0; i < RT_ELEMENTS(aRawStd); i++)
1187 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1188 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawStd));
1189 SSMR3PutMem(pSSM, &aRawStd[0], sizeof(aRawStd));
1190
1191 CPUMCPUID aRawExt[32];
1192 for (unsigned i = 0; i < RT_ELEMENTS(aRawExt); i++)
1193 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1194 SSMR3PutU32(pSSM, RT_ELEMENTS(aRawExt));
1195 SSMR3PutMem(pSSM, &aRawExt[0], sizeof(aRawExt));
1196}
1197
1198
1199/**
1200 * Loads the CPU ID leaves saved by pass 0.
1201 *
1202 * @returns VBox status code.
1203 * @param pVM The VM handle.
1204 * @param pSSM The saved state handle.
1205 * @param uVersion The format version.
1206 */
1207static int cpumR3LoadCpuId(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion)
1208{
1209 AssertMsgReturn(uVersion >= CPUM_SAVED_STATE_VERSION_VER3_2, ("%u\n", uVersion), VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION);
1210
1211 /*
1212 * Define a bunch of macros for simplifying the code.
1213 */
1214 /* Generic expression + failure message. */
1215#define CPUID_CHECK_RET(expr, fmt) \
1216 do { \
1217 if (!(expr)) \
1218 { \
1219 char *pszMsg = RTStrAPrintf2 fmt; /* lack of variadic macros sucks */ \
1220 if (fStrictCpuIdChecks) \
1221 { \
1222 int rcCpuid = SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, "%s", pszMsg); \
1223 RTStrFree(pszMsg); \
1224 return rcCpuid; \
1225 } \
1226 LogRel(("CPUM: %s\n", pszMsg)); \
1227 RTStrFree(pszMsg); \
1228 } \
1229 } while (0)
1230#define CPUID_CHECK_WRN(expr, fmt) \
1231 do { \
1232 if (!(expr)) \
1233 LogRel(fmt); \
1234 } while (0)
1235
1236 /* For comparing two values and bitch if they differs. */
1237#define CPUID_CHECK2_RET(what, host, saved) \
1238 do { \
1239 if ((host) != (saved)) \
1240 { \
1241 if (fStrictCpuIdChecks) \
1242 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1243 N_(#what " mismatch: host=%#x saved=%#x"), (host), (saved)); \
1244 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1245 } \
1246 } while (0)
1247#define CPUID_CHECK2_WRN(what, host, saved) \
1248 do { \
1249 if ((host) != (saved)) \
1250 LogRel(("CPUM: " #what " differs: host=%#x saved=%#x\n", (host), (saved))); \
1251 } while (0)
1252
1253 /* For checking raw cpu features (raw mode). */
1254#define CPUID_RAW_FEATURE_RET(set, reg, bit) \
1255 do { \
1256 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1257 { \
1258 if (fStrictCpuIdChecks) \
1259 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1260 N_(#bit " mismatch: host=%d saved=%d"), \
1261 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) ); \
1262 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1263 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1264 } \
1265 } while (0)
1266#define CPUID_RAW_FEATURE_WRN(set, reg, bit) \
1267 do { \
1268 if ((aHostRaw##set [1].reg & bit) != (aRaw##set [1].reg & bit)) \
1269 LogRel(("CPUM: " #bit" differs: host=%d saved=%d\n", \
1270 !!(aHostRaw##set [1].reg & (bit)), !!(aRaw##set [1].reg & (bit)) )); \
1271 } while (0)
1272#define CPUID_RAW_FEATURE_IGN(set, reg, bit) do { } while (0)
1273
1274 /* For checking guest features. */
1275#define CPUID_GST_FEATURE_RET(set, reg, bit) \
1276 do { \
1277 if ( (aGuestCpuId##set [1].reg & bit) \
1278 && !(aHostRaw##set [1].reg & bit) \
1279 && !(aHostOverride##set [1].reg & bit) \
1280 && !(aGuestOverride##set [1].reg & bit) \
1281 ) \
1282 { \
1283 if (fStrictCpuIdChecks) \
1284 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1285 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1286 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1287 } \
1288 } while (0)
1289#define CPUID_GST_FEATURE_WRN(set, reg, bit) \
1290 do { \
1291 if ( (aGuestCpuId##set [1].reg & bit) \
1292 && !(aHostRaw##set [1].reg & bit) \
1293 && !(aHostOverride##set [1].reg & bit) \
1294 && !(aGuestOverride##set [1].reg & bit) \
1295 ) \
1296 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1297 } while (0)
1298#define CPUID_GST_FEATURE_EMU(set, reg, bit) \
1299 do { \
1300 if ( (aGuestCpuId##set [1].reg & bit) \
1301 && !(aHostRaw##set [1].reg & bit) \
1302 && !(aHostOverride##set [1].reg & bit) \
1303 && !(aGuestOverride##set [1].reg & bit) \
1304 ) \
1305 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1306 } while (0)
1307#define CPUID_GST_FEATURE_IGN(set, reg, bit) do { } while (0)
1308
1309 /* For checking guest features if AMD guest CPU. */
1310#define CPUID_GST_AMD_FEATURE_RET(set, reg, bit) \
1311 do { \
1312 if ( (aGuestCpuId##set [1].reg & bit) \
1313 && fGuestAmd \
1314 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1315 && !(aHostOverride##set [1].reg & bit) \
1316 && !(aGuestOverride##set [1].reg & bit) \
1317 ) \
1318 { \
1319 if (fStrictCpuIdChecks) \
1320 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1321 N_(#bit " is not supported by the host but has already exposed to the guest")); \
1322 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1323 } \
1324 } while (0)
1325#define CPUID_GST_AMD_FEATURE_WRN(set, reg, bit) \
1326 do { \
1327 if ( (aGuestCpuId##set [1].reg & bit) \
1328 && fGuestAmd \
1329 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1330 && !(aHostOverride##set [1].reg & bit) \
1331 && !(aGuestOverride##set [1].reg & bit) \
1332 ) \
1333 LogRel(("CPUM: " #bit " is not supported by the host but has already exposed to the guest\n")); \
1334 } while (0)
1335#define CPUID_GST_AMD_FEATURE_EMU(set, reg, bit) \
1336 do { \
1337 if ( (aGuestCpuId##set [1].reg & bit) \
1338 && fGuestAmd \
1339 && (!fGuestAmd || !(aHostRaw##set [1].reg & bit)) \
1340 && !(aHostOverride##set [1].reg & bit) \
1341 && !(aGuestOverride##set [1].reg & bit) \
1342 ) \
1343 LogRel(("CPUM: Warning - " #bit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1344 } while (0)
1345#define CPUID_GST_AMD_FEATURE_IGN(set, reg, bit) do { } while (0)
1346
1347 /* For checking AMD features which have a corresponding bit in the standard
1348 range. (Intel defines very few bits in the extended feature sets.) */
1349#define CPUID_GST_FEATURE2_RET(reg, ExtBit, StdBit) \
1350 do { \
1351 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1352 && !(fHostAmd \
1353 ? aHostRawExt[1].reg & (ExtBit) \
1354 : aHostRawStd[1].reg & (StdBit)) \
1355 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1356 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1357 ) \
1358 { \
1359 if (fStrictCpuIdChecks) \
1360 return SSMR3SetLoadError(pSSM, VERR_SSM_LOAD_CPUID_MISMATCH, RT_SRC_POS, \
1361 N_(#ExtBit " is not supported by the host but has already exposed to the guest")); \
1362 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1363 } \
1364 } while (0)
1365#define CPUID_GST_FEATURE2_WRN(reg, ExtBit, StdBit) \
1366 do { \
1367 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1368 && !(fHostAmd \
1369 ? aHostRawExt[1].reg & (ExtBit) \
1370 : aHostRawStd[1].reg & (StdBit)) \
1371 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1372 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1373 ) \
1374 LogRel(("CPUM: " #ExtBit " is not supported by the host but has already exposed to the guest\n")); \
1375 } while (0)
1376#define CPUID_GST_FEATURE2_EMU(reg, ExtBit, StdBit) \
1377 do { \
1378 if ( (aGuestCpuIdExt [1].reg & (ExtBit)) \
1379 && !(fHostAmd \
1380 ? aHostRawExt[1].reg & (ExtBit) \
1381 : aHostRawStd[1].reg & (StdBit)) \
1382 && !(aHostOverrideExt[1].reg & (ExtBit)) \
1383 && !(aGuestOverrideExt[1].reg & (ExtBit)) \
1384 ) \
1385 LogRel(("CPUM: Warning - " #ExtBit " is not supported by the host but already exposed to the guest. This may impact performance.\n")); \
1386 } while (0)
1387#define CPUID_GST_FEATURE2_IGN(reg, ExtBit, StdBit) do { } while (0)
1388
1389 /*
1390 * Load them into stack buffers first.
1391 */
1392 CPUMCPUID aGuestCpuIdStd[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd)];
1393 uint32_t cGuestCpuIdStd;
1394 int rc = SSMR3GetU32(pSSM, &cGuestCpuIdStd); AssertRCReturn(rc, rc);
1395 if (cGuestCpuIdStd > RT_ELEMENTS(aGuestCpuIdStd))
1396 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1397 SSMR3GetMem(pSSM, &aGuestCpuIdStd[0], cGuestCpuIdStd * sizeof(aGuestCpuIdStd[0]));
1398
1399 CPUMCPUID aGuestCpuIdExt[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt)];
1400 uint32_t cGuestCpuIdExt;
1401 rc = SSMR3GetU32(pSSM, &cGuestCpuIdExt); AssertRCReturn(rc, rc);
1402 if (cGuestCpuIdExt > RT_ELEMENTS(aGuestCpuIdExt))
1403 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1404 SSMR3GetMem(pSSM, &aGuestCpuIdExt[0], cGuestCpuIdExt * sizeof(aGuestCpuIdExt[0]));
1405
1406 CPUMCPUID aGuestCpuIdCentaur[RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur)];
1407 uint32_t cGuestCpuIdCentaur;
1408 rc = SSMR3GetU32(pSSM, &cGuestCpuIdCentaur); AssertRCReturn(rc, rc);
1409 if (cGuestCpuIdCentaur > RT_ELEMENTS(aGuestCpuIdCentaur))
1410 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1411 SSMR3GetMem(pSSM, &aGuestCpuIdCentaur[0], cGuestCpuIdCentaur * sizeof(aGuestCpuIdCentaur[0]));
1412
1413 CPUMCPUID GuestCpuIdDef;
1414 rc = SSMR3GetMem(pSSM, &GuestCpuIdDef, sizeof(GuestCpuIdDef));
1415 AssertRCReturn(rc, rc);
1416
1417 CPUMCPUID aRawStd[16];
1418 uint32_t cRawStd;
1419 rc = SSMR3GetU32(pSSM, &cRawStd); AssertRCReturn(rc, rc);
1420 if (cRawStd > RT_ELEMENTS(aRawStd))
1421 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1422 SSMR3GetMem(pSSM, &aRawStd[0], cRawStd * sizeof(aRawStd[0]));
1423
1424 CPUMCPUID aRawExt[32];
1425 uint32_t cRawExt;
1426 rc = SSMR3GetU32(pSSM, &cRawExt); AssertRCReturn(rc, rc);
1427 if (cRawExt > RT_ELEMENTS(aRawExt))
1428 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
1429 rc = SSMR3GetMem(pSSM, &aRawExt[0], cRawExt * sizeof(aRawExt[0]));
1430 AssertRCReturn(rc, rc);
1431
1432 /*
1433 * Note that we support restoring less than the current amount of standard
1434 * leaves because we've been allowed more is newer version of VBox.
1435 *
1436 * So, pad new entries with the default.
1437 */
1438 for (uint32_t i = cGuestCpuIdStd; i < RT_ELEMENTS(aGuestCpuIdStd); i++)
1439 aGuestCpuIdStd[i] = GuestCpuIdDef;
1440
1441 for (uint32_t i = cGuestCpuIdExt; i < RT_ELEMENTS(aGuestCpuIdExt); i++)
1442 aGuestCpuIdExt[i] = GuestCpuIdDef;
1443
1444 for (uint32_t i = cGuestCpuIdCentaur; i < RT_ELEMENTS(aGuestCpuIdCentaur); i++)
1445 aGuestCpuIdCentaur[i] = GuestCpuIdDef;
1446
1447 for (uint32_t i = cRawStd; i < RT_ELEMENTS(aRawStd); i++)
1448 ASMCpuId(i, &aRawStd[i].eax, &aRawStd[i].ebx, &aRawStd[i].ecx, &aRawStd[i].edx);
1449
1450 for (uint32_t i = cRawExt; i < RT_ELEMENTS(aRawExt); i++)
1451 ASMCpuId(i | UINT32_C(0x80000000), &aRawExt[i].eax, &aRawExt[i].ebx, &aRawExt[i].ecx, &aRawExt[i].edx);
1452
1453 /*
1454 * Get the raw CPU IDs for the current host.
1455 */
1456 CPUMCPUID aHostRawStd[16];
1457 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawStd); i++)
1458 ASMCpuId(i, &aHostRawStd[i].eax, &aHostRawStd[i].ebx, &aHostRawStd[i].ecx, &aHostRawStd[i].edx);
1459
1460 CPUMCPUID aHostRawExt[32];
1461 for (unsigned i = 0; i < RT_ELEMENTS(aHostRawExt); i++)
1462 ASMCpuId(i | UINT32_C(0x80000000), &aHostRawExt[i].eax, &aHostRawExt[i].ebx, &aHostRawExt[i].ecx, &aHostRawExt[i].edx);
1463
1464 /*
1465 * Get the host and guest overrides so we don't reject the state because
1466 * some feature was enabled thru these interfaces.
1467 * Note! We currently only need the feature leaves, so skip rest.
1468 */
1469 PCFGMNODE pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/CPUID");
1470 CPUMCPUID aGuestOverrideStd[2];
1471 memcpy(&aGuestOverrideStd[0], &aHostRawStd[0], sizeof(aGuestOverrideStd));
1472 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aGuestOverrideStd[0], RT_ELEMENTS(aGuestOverrideStd), pOverrideCfg);
1473
1474 CPUMCPUID aGuestOverrideExt[2];
1475 memcpy(&aGuestOverrideExt[0], &aHostRawExt[0], sizeof(aGuestOverrideExt));
1476 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aGuestOverrideExt[0], RT_ELEMENTS(aGuestOverrideExt), pOverrideCfg);
1477
1478 pOverrideCfg = CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM/HostCPUID");
1479 CPUMCPUID aHostOverrideStd[2];
1480 memcpy(&aHostOverrideStd[0], &aHostRawStd[0], sizeof(aHostOverrideStd));
1481 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x00000000), &aHostOverrideStd[0], RT_ELEMENTS(aHostOverrideStd), pOverrideCfg);
1482
1483 CPUMCPUID aHostOverrideExt[2];
1484 memcpy(&aHostOverrideExt[0], &aHostRawExt[0], sizeof(aHostOverrideExt));
1485 cpumR3CpuIdInitLoadOverrideSet(UINT32_C(0x80000000), &aHostOverrideExt[0], RT_ELEMENTS(aHostOverrideExt), pOverrideCfg);
1486
1487 /*
1488 * This can be skipped.
1489 */
1490 bool fStrictCpuIdChecks;
1491 CFGMR3QueryBoolDef(CFGMR3GetChild(CFGMR3GetRoot(pVM), "CPUM"), "StrictCpuIdChecks", &fStrictCpuIdChecks, true);
1492
1493
1494
1495 /*
1496 * For raw-mode we'll require that the CPUs are very similar since we don't
1497 * intercept CPUID instructions for user mode applications.
1498 */
1499 if (!HWACCMIsEnabled(pVM))
1500 {
1501 /* CPUID(0) */
1502 CPUID_CHECK_RET( aHostRawStd[0].ebx == aRawStd[0].ebx
1503 && aHostRawStd[0].ecx == aRawStd[0].ecx
1504 && aHostRawStd[0].edx == aRawStd[0].edx,
1505 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1506 &aHostRawStd[0].ebx, &aHostRawStd[0].edx, &aHostRawStd[0].ecx,
1507 &aRawStd[0].ebx, &aRawStd[0].edx, &aRawStd[0].ecx));
1508 CPUID_CHECK2_WRN("Std CPUID max leaf", aHostRawStd[0].eax, aRawStd[0].eax);
1509 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3);
1510 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1511
1512 bool const fIntel = ASMIsIntelCpuEx(aRawStd[0].ebx, aRawStd[0].ecx, aRawStd[0].edx);
1513
1514 /* CPUID(1).eax */
1515 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawStd[1].eax), ASMGetCpuFamily(aRawStd[1].eax));
1516 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawStd[1].eax, fIntel), ASMGetCpuModel(aRawStd[1].eax, fIntel));
1517 CPUID_CHECK2_WRN("CPU type", (aHostRawStd[1].eax >> 12) & 3, (aRawStd[1].eax >> 12) & 3 );
1518
1519 /* CPUID(1).ebx - completely ignore CPU count and APIC ID. */
1520 CPUID_CHECK2_RET("CPU brand ID", aHostRawStd[1].ebx & 0xff, aRawStd[1].ebx & 0xff);
1521 CPUID_CHECK2_WRN("CLFLUSH chunk count", (aHostRawStd[1].ebx >> 8) & 0xff, (aRawStd[1].ebx >> 8) & 0xff);
1522
1523 /* CPUID(1).ecx */
1524 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3);
1525 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL);
1526 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64);
1527 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1528 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS);
1529 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_VMX);
1530 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_SMX);
1531 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_EST);
1532 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TM2);
1533 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3);
1534 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID);
1535 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1536 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA);
1537 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16);
1538 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);
1539 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM);
1540 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1541 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1542 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_DCA);
1543 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1);
1544 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2);
1545 CPUID_RAW_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1546 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE);
1547 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT);
1548 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1549 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES);
1550 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE);
1551 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE);
1552 CPUID_RAW_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX);
1553 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1554 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1555 CPUID_RAW_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1556
1557 /* CPUID(1).edx */
1558 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1559 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1560 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE);
1561 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1562 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC);
1563 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR);
1564 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1565 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1566 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8);
1567 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1568 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1569 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1570 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1571 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1572 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1573 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV);
1574 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1575 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1576 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1577 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH);
1578 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1579 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_DS);
1580 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_ACPI);
1581 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX);
1582 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR);
1583 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE);
1584 CPUID_RAW_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2);
1585 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SS);
1586 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_HTT);
1587 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_TM);
1588 CPUID_RAW_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/);
1589 CPUID_RAW_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PBE);
1590
1591 /* CPUID(2) - config, mostly about caches. ignore. */
1592 /* CPUID(3) - processor serial number. ignore. */
1593 /* CPUID(4) - config, cache and topology - takes ECX as input. ignore. */
1594 /* CPUID(5) - mwait/monitor config. ignore. */
1595 /* CPUID(6) - power management. ignore. */
1596 /* CPUID(7) - ???. ignore. */
1597 /* CPUID(8) - ???. ignore. */
1598 /* CPUID(9) - DCA. ignore for now. */
1599 /* CPUID(a) - PeMo info. ignore for now. */
1600 /* CPUID(b) - topology info - takes ECX as input. ignore. */
1601
1602 /* CPUID(d) - XCR0 stuff - takes ECX as input. We only warn about the main level (ECX=0) for now. */
1603 CPUID_CHECK_WRN( aRawStd[0].eax < UINT32_C(0x0000000d)
1604 || aHostRawStd[0].eax >= UINT32_C(0x0000000d),
1605 ("CPUM: Standard leaf D was present on saved state host, not present on current.\n"));
1606 if ( aRawStd[0].eax >= UINT32_C(0x0000000d)
1607 && aHostRawStd[0].eax >= UINT32_C(0x0000000d))
1608 {
1609 CPUID_CHECK2_WRN("Valid low XCR0 bits", aHostRawStd[0xd].eax, aRawStd[0xd].eax);
1610 CPUID_CHECK2_WRN("Valid high XCR0 bits", aHostRawStd[0xd].edx, aRawStd[0xd].edx);
1611 CPUID_CHECK2_WRN("Current XSAVE/XRSTOR area size", aHostRawStd[0xd].ebx, aRawStd[0xd].ebx);
1612 CPUID_CHECK2_WRN("Max XSAVE/XRSTOR area size", aHostRawStd[0xd].ecx, aRawStd[0xd].ecx);
1613 }
1614
1615 /* CPUID(0x80000000) - same as CPUID(0) except for eax.
1616 Note! Intel have/is marking many of the fields here as reserved. We
1617 will verify them as if it's an AMD CPU. */
1618 CPUID_CHECK_RET( (aHostRawExt[0].eax >= UINT32_C(0x80000001) && aHostRawExt[0].eax <= UINT32_C(0x8000007f))
1619 || !(aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f)),
1620 (N_("Extended leaves was present on saved state host, but is missing on the current\n")));
1621 if (aRawExt[0].eax >= UINT32_C(0x80000001) && aRawExt[0].eax <= UINT32_C(0x8000007f))
1622 {
1623 CPUID_CHECK_RET( aHostRawExt[0].ebx == aRawExt[0].ebx
1624 && aHostRawExt[0].ecx == aRawExt[0].ecx
1625 && aHostRawExt[0].edx == aRawExt[0].edx,
1626 (N_("CPU vendor mismatch: host='%.4s%.4s%.4s' saved='%.4s%.4s%.4s'"),
1627 &aHostRawExt[0].ebx, &aHostRawExt[0].edx, &aHostRawExt[0].ecx,
1628 &aRawExt[0].ebx, &aRawExt[0].edx, &aRawExt[0].ecx));
1629 CPUID_CHECK2_WRN("Ext CPUID max leaf", aHostRawExt[0].eax, aRawExt[0].eax);
1630
1631 /* CPUID(0x80000001).eax - same as CPUID(0).eax. */
1632 CPUID_CHECK2_RET("CPU family", ASMGetCpuFamily(aHostRawExt[1].eax), ASMGetCpuFamily(aRawExt[1].eax));
1633 CPUID_CHECK2_RET("CPU model", ASMGetCpuModel(aHostRawExt[1].eax, fIntel), ASMGetCpuModel(aRawExt[1].eax, fIntel));
1634 CPUID_CHECK2_WRN("CPU type", (aHostRawExt[1].eax >> 12) & 3, (aRawExt[1].eax >> 12) & 3 );
1635 CPUID_CHECK2_WRN("Reserved bits 15:14", (aHostRawExt[1].eax >> 14) & 3, (aRawExt[1].eax >> 14) & 3 );
1636 CPUID_CHECK2_WRN("Reserved bits 31:28", aHostRawExt[1].eax >> 28, aRawExt[1].eax >> 28);
1637
1638 /* CPUID(0x80000001).ebx - Brand ID (maybe), just warn if things differs. */
1639 CPUID_CHECK2_WRN("CPU BrandID", aHostRawExt[1].ebx & 0xffff, aRawExt[1].ebx & 0xffff);
1640 CPUID_CHECK2_WRN("Reserved bits 16:27", (aHostRawExt[1].ebx >> 16) & 0xfff, (aRawExt[1].ebx >> 16) & 0xfff);
1641 CPUID_CHECK2_WRN("PkgType", (aHostRawExt[1].ebx >> 28) & 0xf, (aRawExt[1].ebx >> 28) & 0xf);
1642
1643 /* CPUID(0x80000001).ecx */
1644 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF);
1645 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL);
1646 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM);
1647 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);
1648 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L);
1649 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM);
1650 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A);
1651 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);
1652 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);
1653 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW);
1654 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS);
1655 CPUID_RAW_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5);
1656 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT);
1657 CPUID_RAW_FEATURE_IGN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT);
1658 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1659 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1660 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1661 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1662 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1663 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1664 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1665 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1666 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1667 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1668 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1669 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1670 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1671 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1672 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1673 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1674 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1675 CPUID_RAW_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1676
1677 /* CPUID(0x80000001).edx */
1678 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FPU);
1679 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_VME);
1680 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_DE);
1681 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE);
1682 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_TSC);
1683 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MSR);
1684 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAE);
1685 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCE);
1686 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CX8);
1687 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_APIC);
1688 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1689 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP);
1690 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MTRR);
1691 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PGE);
1692 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MCA);
1693 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_CMOV);
1694 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAT);
1695 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PSE36);
1696 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1697 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1698 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1699 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(21) /*reserved*/);
1700 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1701 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_MMX);
1702 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FXSR);
1703 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1704 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1705 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1706 CPUID_RAW_FEATURE_IGN(Ext, edx, RT_BIT_32(28) /*reserved*/);
1707 CPUID_RAW_FEATURE_IGN(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1708 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1709 CPUID_RAW_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1710
1711 /** @todo verify the rest as well. */
1712 }
1713 }
1714
1715
1716
1717 /*
1718 * Verify that we can support the features already exposed to the guest on
1719 * this host.
1720 *
1721 * Most of the features we're emulating requires intercepting instruction
1722 * and doing it the slow way, so there is no need to warn when they aren't
1723 * present in the host CPU. Thus we use IGN instead of EMU on these.
1724 *
1725 * Trailing comments:
1726 * "EMU" - Possible to emulate, could be lots of work and very slow.
1727 * "EMU?" - Can this be emulated?
1728 */
1729 /* CPUID(1).ecx */
1730 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE3); // -> EMU
1731 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PCLMUL); // -> EMU?
1732 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DTES64); // -> EMU?
1733 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_MONITOR);
1734 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CPLDS); // -> EMU?
1735 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_VMX); // -> EMU
1736 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SMX); // -> EMU
1737 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_EST); // -> EMU
1738 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TM2); // -> EMU?
1739 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSSE3); // -> EMU
1740 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CNTXID); // -> EMU
1741 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(11) /*reserved*/ );
1742 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_FMA); // -> EMU? what's this?
1743 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_CX16); // -> EMU?
1744 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_TPRUPDATE);//-> EMU
1745 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_PDCM); // -> EMU
1746 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(16) /*reserved*/);
1747 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(17) /*reserved*/);
1748 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_DCA); // -> EMU?
1749 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_1); // -> EMU
1750 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_SSE4_2); // -> EMU
1751 CPUID_GST_FEATURE_IGN(Std, ecx, X86_CPUID_FEATURE_ECX_X2APIC);
1752 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_MOVBE); // -> EMU
1753 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_POPCNT); // -> EMU
1754 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(24) /*reserved*/);
1755 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AES); // -> EMU
1756 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_XSAVE); // -> EMU
1757 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_OSXSAVE); // -> EMU
1758 CPUID_GST_FEATURE_RET(Std, ecx, X86_CPUID_FEATURE_ECX_AVX); // -> EMU?
1759 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(29) /*reserved*/);
1760 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(30) /*reserved*/);
1761 CPUID_GST_FEATURE_RET(Std, ecx, RT_BIT_32(31) /*reserved*/);
1762
1763 /* CPUID(1).edx */
1764 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FPU);
1765 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_VME);
1766 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DE); // -> EMU?
1767 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE);
1768 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1769 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1770 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PAE);
1771 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCE);
1772 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1773 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_APIC);
1774 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(10) /*reserved*/);
1775 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_SEP);
1776 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MTRR);
1777 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PGE);
1778 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_MCA);
1779 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1780 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PAT);
1781 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSE36);
1782 CPUID_GST_FEATURE_IGN(Std, edx, X86_CPUID_FEATURE_EDX_PSN);
1783 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_CLFSH); // -> EMU
1784 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(20) /*reserved*/);
1785 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_DS); // -> EMU?
1786 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_ACPI); // -> EMU?
1787 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1788 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1789 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE); // -> EMU
1790 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SSE2); // -> EMU
1791 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_SS); // -> EMU?
1792 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_HTT); // -> EMU?
1793 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_TM); // -> EMU?
1794 CPUID_GST_FEATURE_RET(Std, edx, RT_BIT_32(30) /*JMPE/IA64*/); // -> EMU
1795 CPUID_GST_FEATURE_RET(Std, edx, X86_CPUID_FEATURE_EDX_PBE); // -> EMU?
1796
1797 /* CPUID(0x80000000). */
1798 if ( aGuestCpuIdExt[0].eax >= UINT32_C(0x80000001)
1799 && aGuestCpuIdExt[0].eax < UINT32_C(0x8000007f))
1800 {
1801 /** @todo deal with no 0x80000001 on the host. */
1802 bool const fHostAmd = ASMIsAmdCpuEx(aHostRawStd[0].ebx, aHostRawStd[0].ecx, aHostRawStd[0].edx);
1803 bool const fGuestAmd = ASMIsAmdCpuEx(aGuestCpuIdExt[0].ebx, aGuestCpuIdExt[0].ecx, aGuestCpuIdExt[0].edx);
1804
1805 /* CPUID(0x80000001).ecx */
1806 CPUID_GST_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_LAHF_SAHF); // -> EMU
1807 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CMPL); // -> EMU
1808 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SVM); // -> EMU
1809 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_EXT_APIC);// ???
1810 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_CR8L); // -> EMU
1811 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_ABM); // -> EMU
1812 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE4A); // -> EMU
1813 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_MISALNSSE);//-> EMU
1814 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_3DNOWPRF);// -> EMU
1815 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_OSVW); // -> EMU?
1816 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_IBS); // -> EMU
1817 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SSE5); // -> EMU
1818 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_SKINIT); // -> EMU
1819 CPUID_GST_AMD_FEATURE_RET(Ext, ecx, X86_CPUID_AMD_FEATURE_ECX_WDT); // -> EMU
1820 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(14));
1821 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(15));
1822 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(16));
1823 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(17));
1824 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(18));
1825 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(19));
1826 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(20));
1827 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(21));
1828 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(22));
1829 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(23));
1830 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(24));
1831 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(25));
1832 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(26));
1833 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(27));
1834 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(28));
1835 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(29));
1836 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(30));
1837 CPUID_GST_AMD_FEATURE_WRN(Ext, ecx, RT_BIT_32(31));
1838
1839 /* CPUID(0x80000001).edx */
1840 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FPU, X86_CPUID_FEATURE_EDX_FPU); // -> EMU
1841 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_VME, X86_CPUID_FEATURE_EDX_VME); // -> EMU
1842 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_DE, X86_CPUID_FEATURE_EDX_DE); // -> EMU
1843 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE, X86_CPUID_FEATURE_EDX_PSE);
1844 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_TSC, X86_CPUID_FEATURE_EDX_TSC); // -> EMU
1845 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MSR, X86_CPUID_FEATURE_EDX_MSR); // -> EMU
1846 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_PAE, X86_CPUID_FEATURE_EDX_PAE);
1847 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCE, X86_CPUID_FEATURE_EDX_MCE);
1848 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CX8, X86_CPUID_FEATURE_EDX_CX8); // -> EMU?
1849 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_APIC, X86_CPUID_FEATURE_EDX_APIC);
1850 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(10) /*reserved*/);
1851 CPUID_GST_FEATURE_IGN( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_SEP); // Intel: long mode only.
1852 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MTRR, X86_CPUID_FEATURE_EDX_MTRR);
1853 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PGE, X86_CPUID_FEATURE_EDX_PGE);
1854 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_MCA, X86_CPUID_FEATURE_EDX_MCA);
1855 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_CMOV, X86_CPUID_FEATURE_EDX_CMOV); // -> EMU
1856 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PAT, X86_CPUID_FEATURE_EDX_PAT);
1857 CPUID_GST_FEATURE2_IGN( edx, X86_CPUID_AMD_FEATURE_EDX_PSE36, X86_CPUID_FEATURE_EDX_PSE36);
1858 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(18) /*reserved*/);
1859 CPUID_GST_AMD_FEATURE_WRN(Ext, edx, RT_BIT_32(19) /*reserved*/);
1860 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_NX);
1861 CPUID_GST_FEATURE_WRN( Ext, edx, RT_BIT_32(21) /*reserved*/);
1862 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_AXMMX);
1863 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_MMX, X86_CPUID_FEATURE_EDX_MMX); // -> EMU
1864 CPUID_GST_FEATURE2_RET( edx, X86_CPUID_AMD_FEATURE_EDX_FXSR, X86_CPUID_FEATURE_EDX_FXSR); // -> EMU
1865 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_FFXSR);
1866 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_PAGE1GB);
1867 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_RDTSCP);
1868 CPUID_GST_FEATURE_IGN( Ext, edx, RT_BIT_32(28) /*reserved*/);
1869 CPUID_GST_FEATURE_RET( Ext, edx, X86_CPUID_AMD_FEATURE_EDX_LONG_MODE);
1870 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW_EX);
1871 CPUID_GST_AMD_FEATURE_RET(Ext, edx, X86_CPUID_AMD_FEATURE_EDX_3DNOW);
1872 }
1873
1874 /*
1875 * We're good, commit the CPU ID leaves.
1876 */
1877 memcpy(&pVM->cpum.s.aGuestCpuIdStd[0], &aGuestCpuIdStd[0], sizeof(aGuestCpuIdStd));
1878 memcpy(&pVM->cpum.s.aGuestCpuIdExt[0], &aGuestCpuIdExt[0], sizeof(aGuestCpuIdExt));
1879 memcpy(&pVM->cpum.s.aGuestCpuIdCentaur[0], &aGuestCpuIdCentaur[0], sizeof(aGuestCpuIdCentaur));
1880 pVM->cpum.s.GuestCpuIdDef = GuestCpuIdDef;
1881
1882#undef CPUID_CHECK_RET
1883#undef CPUID_CHECK_WRN
1884#undef CPUID_CHECK2_RET
1885#undef CPUID_CHECK2_WRN
1886#undef CPUID_RAW_FEATURE_RET
1887#undef CPUID_RAW_FEATURE_WRN
1888#undef CPUID_RAW_FEATURE_IGN
1889#undef CPUID_GST_FEATURE_RET
1890#undef CPUID_GST_FEATURE_WRN
1891#undef CPUID_GST_FEATURE_EMU
1892#undef CPUID_GST_FEATURE_IGN
1893#undef CPUID_GST_FEATURE2_RET
1894#undef CPUID_GST_FEATURE2_WRN
1895#undef CPUID_GST_FEATURE2_EMU
1896#undef CPUID_GST_FEATURE2_IGN
1897#undef CPUID_GST_AMD_FEATURE_RET
1898#undef CPUID_GST_AMD_FEATURE_WRN
1899#undef CPUID_GST_AMD_FEATURE_EMU
1900#undef CPUID_GST_AMD_FEATURE_IGN
1901
1902 return VINF_SUCCESS;
1903}
1904
1905
1906/**
1907 * Pass 0 live exec callback.
1908 *
1909 * @returns VINF_SSM_DONT_CALL_AGAIN.
1910 * @param pVM The VM handle.
1911 * @param pSSM The saved state handle.
1912 * @param uPass The pass (0).
1913 */
1914static DECLCALLBACK(int) cpumR3LiveExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uPass)
1915{
1916 AssertReturn(uPass == 0, VERR_SSM_UNEXPECTED_PASS);
1917 cpumR3SaveCpuId(pVM, pSSM);
1918 return VINF_SSM_DONT_CALL_AGAIN;
1919}
1920
1921
1922/**
1923 * Execute state save operation.
1924 *
1925 * @returns VBox status code.
1926 * @param pVM VM Handle.
1927 * @param pSSM SSM operation handle.
1928 */
1929static DECLCALLBACK(int) cpumR3SaveExec(PVM pVM, PSSMHANDLE pSSM)
1930{
1931 /*
1932 * Save.
1933 */
1934 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1935 {
1936 PVMCPU pVCpu = &pVM->aCpus[i];
1937
1938 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
1939 }
1940
1941 SSMR3PutU32(pSSM, pVM->cCpus);
1942 SSMR3PutU32(pSSM, sizeof(pVM->aCpus[0].cpum.s.GuestMsrs.msr));
1943 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1944 {
1945 PVMCPU pVCpu = &pVM->aCpus[i];
1946
1947 SSMR3PutMem(pSSM, &pVCpu->cpum.s.Guest, sizeof(pVCpu->cpum.s.Guest));
1948 SSMR3PutU32(pSSM, pVCpu->cpum.s.fUseFlags);
1949 SSMR3PutU32(pSSM, pVCpu->cpum.s.fChanged);
1950 AssertCompileSizeAlignment(pVM->aCpus[i].cpum.s.GuestMsrs.msr, sizeof(uint64_t));
1951 SSMR3PutMem(pSSM, &pVCpu->cpum.s.GuestMsrs, sizeof(pVM->aCpus[i].cpum.s.GuestMsrs.msr));
1952 }
1953
1954 cpumR3SaveCpuId(pVM, pSSM);
1955 return VINF_SUCCESS;
1956}
1957
1958
1959/**
1960 * Load a version 1.6 CPUMCTX structure.
1961 *
1962 * @returns VBox status code.
1963 * @param pVM VM Handle.
1964 * @param pCpumctx16 Version 1.6 CPUMCTX
1965 */
1966static void cpumR3LoadCPUM1_6(PVM pVM, CPUMCTX_VER1_6 *pCpumctx16)
1967{
1968#define CPUMCTX16_LOADREG(RegName) \
1969 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName;
1970
1971#define CPUMCTX16_LOADDRXREG(RegName) \
1972 pVM->aCpus[0].cpum.s.Guest.dr[RegName] = pCpumctx16->dr##RegName;
1973
1974#define CPUMCTX16_LOADHIDREG(RegName) \
1975 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u64Base = pCpumctx16->RegName##Hid.u32Base; \
1976 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.u32Limit = pCpumctx16->RegName##Hid.u32Limit; \
1977 pVM->aCpus[0].cpum.s.Guest.RegName##Hid.Attr = pCpumctx16->RegName##Hid.Attr;
1978
1979#define CPUMCTX16_LOADSEGREG(RegName) \
1980 pVM->aCpus[0].cpum.s.Guest.RegName = pCpumctx16->RegName; \
1981 CPUMCTX16_LOADHIDREG(RegName);
1982
1983 pVM->aCpus[0].cpum.s.Guest.fpu = pCpumctx16->fpu;
1984
1985 CPUMCTX16_LOADREG(rax);
1986 CPUMCTX16_LOADREG(rbx);
1987 CPUMCTX16_LOADREG(rcx);
1988 CPUMCTX16_LOADREG(rdx);
1989 CPUMCTX16_LOADREG(rdi);
1990 CPUMCTX16_LOADREG(rsi);
1991 CPUMCTX16_LOADREG(rbp);
1992 CPUMCTX16_LOADREG(esp);
1993 CPUMCTX16_LOADREG(rip);
1994 CPUMCTX16_LOADREG(rflags);
1995
1996 CPUMCTX16_LOADSEGREG(cs);
1997 CPUMCTX16_LOADSEGREG(ds);
1998 CPUMCTX16_LOADSEGREG(es);
1999 CPUMCTX16_LOADSEGREG(fs);
2000 CPUMCTX16_LOADSEGREG(gs);
2001 CPUMCTX16_LOADSEGREG(ss);
2002
2003 CPUMCTX16_LOADREG(r8);
2004 CPUMCTX16_LOADREG(r9);
2005 CPUMCTX16_LOADREG(r10);
2006 CPUMCTX16_LOADREG(r11);
2007 CPUMCTX16_LOADREG(r12);
2008 CPUMCTX16_LOADREG(r13);
2009 CPUMCTX16_LOADREG(r14);
2010 CPUMCTX16_LOADREG(r15);
2011
2012 CPUMCTX16_LOADREG(cr0);
2013 CPUMCTX16_LOADREG(cr2);
2014 CPUMCTX16_LOADREG(cr3);
2015 CPUMCTX16_LOADREG(cr4);
2016
2017 CPUMCTX16_LOADDRXREG(0);
2018 CPUMCTX16_LOADDRXREG(1);
2019 CPUMCTX16_LOADDRXREG(2);
2020 CPUMCTX16_LOADDRXREG(3);
2021 CPUMCTX16_LOADDRXREG(4);
2022 CPUMCTX16_LOADDRXREG(5);
2023 CPUMCTX16_LOADDRXREG(6);
2024 CPUMCTX16_LOADDRXREG(7);
2025
2026 pVM->aCpus[0].cpum.s.Guest.gdtr.cbGdt = pCpumctx16->gdtr.cbGdt;
2027 pVM->aCpus[0].cpum.s.Guest.gdtr.pGdt = pCpumctx16->gdtr.pGdt;
2028 pVM->aCpus[0].cpum.s.Guest.idtr.cbIdt = pCpumctx16->idtr.cbIdt;
2029 pVM->aCpus[0].cpum.s.Guest.idtr.pIdt = pCpumctx16->idtr.pIdt;
2030
2031 CPUMCTX16_LOADREG(ldtr);
2032 CPUMCTX16_LOADREG(tr);
2033
2034 pVM->aCpus[0].cpum.s.Guest.SysEnter = pCpumctx16->SysEnter;
2035
2036 CPUMCTX16_LOADREG(msrEFER);
2037 CPUMCTX16_LOADREG(msrSTAR);
2038 CPUMCTX16_LOADREG(msrPAT);
2039 CPUMCTX16_LOADREG(msrLSTAR);
2040 CPUMCTX16_LOADREG(msrCSTAR);
2041 CPUMCTX16_LOADREG(msrSFMASK);
2042 CPUMCTX16_LOADREG(msrKERNELGSBASE);
2043
2044 CPUMCTX16_LOADHIDREG(ldtr);
2045 CPUMCTX16_LOADHIDREG(tr);
2046
2047#undef CPUMCTX16_LOADSEGREG
2048#undef CPUMCTX16_LOADHIDREG
2049#undef CPUMCTX16_LOADDRXREG
2050#undef CPUMCTX16_LOADREG
2051}
2052
2053
2054/**
2055 * @copydoc FNSSMINTLOADPREP
2056 */
2057static DECLCALLBACK(int) cpumR3LoadPrep(PVM pVM, PSSMHANDLE pSSM)
2058{
2059 NOREF(pSSM);
2060 pVM->cpum.s.fPendingRestore = true;
2061 return VINF_SUCCESS;
2062}
2063
2064
2065/**
2066 * @copydoc FNSSMINTLOADEXEC
2067 */
2068static DECLCALLBACK(int) cpumR3LoadExec(PVM pVM, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
2069{
2070 /*
2071 * Validate version.
2072 */
2073 if ( uVersion != CPUM_SAVED_STATE_VERSION
2074 && uVersion != CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE
2075 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_2
2076 && uVersion != CPUM_SAVED_STATE_VERSION_VER3_0
2077 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR
2078 && uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2079 && uVersion != CPUM_SAVED_STATE_VERSION_VER1_6)
2080 {
2081 AssertMsgFailed(("cpumR3LoadExec: Invalid version uVersion=%d!\n", uVersion));
2082 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
2083 }
2084
2085 if (uPass == SSM_PASS_FINAL)
2086 {
2087 /*
2088 * Set the size of RTGCPTR for SSMR3GetGCPtr. (Only necessary for
2089 * really old SSM file versions.)
2090 */
2091 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2092 SSMR3HandleSetGCPtrSize(pSSM, sizeof(RTGCPTR32));
2093 else if (uVersion <= CPUM_SAVED_STATE_VERSION_VER3_0)
2094 SSMR3HandleSetGCPtrSize(pSSM, HC_ARCH_BITS == 32 ? sizeof(RTGCPTR32) : sizeof(RTGCPTR));
2095
2096 /*
2097 * Restore.
2098 */
2099 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2100 {
2101 PVMCPU pVCpu = &pVM->aCpus[i];
2102 uint32_t uCR3 = pVCpu->cpum.s.Hyper.cr3;
2103 uint32_t uESP = pVCpu->cpum.s.Hyper.esp; /* see VMMR3Relocate(). */
2104
2105 SSMR3GetMem(pSSM, &pVCpu->cpum.s.Hyper, sizeof(pVCpu->cpum.s.Hyper));
2106 pVCpu->cpum.s.Hyper.cr3 = uCR3;
2107 pVCpu->cpum.s.Hyper.esp = uESP;
2108 }
2109
2110 if (uVersion == CPUM_SAVED_STATE_VERSION_VER1_6)
2111 {
2112 CPUMCTX_VER1_6 cpumctx16;
2113 memset(&pVM->aCpus[0].cpum.s.Guest, 0, sizeof(pVM->aCpus[0].cpum.s.Guest));
2114 SSMR3GetMem(pSSM, &cpumctx16, sizeof(cpumctx16));
2115
2116 /* Save the old cpumctx state into the new one. */
2117 cpumR3LoadCPUM1_6(pVM, &cpumctx16);
2118
2119 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fUseFlags);
2120 SSMR3GetU32(pSSM, &pVM->aCpus[0].cpum.s.fChanged);
2121 }
2122 else
2123 {
2124 if (uVersion >= CPUM_SAVED_STATE_VERSION_VER2_1_NOMSR)
2125 {
2126 uint32_t cCpus;
2127 int rc = SSMR3GetU32(pSSM, &cCpus); AssertRCReturn(rc, rc);
2128 AssertLogRelMsgReturn(cCpus == pVM->cCpus, ("Mismatching CPU counts: saved: %u; configured: %u \n", cCpus, pVM->cCpus),
2129 VERR_SSM_UNEXPECTED_DATA);
2130 }
2131 AssertLogRelMsgReturn( uVersion != CPUM_SAVED_STATE_VERSION_VER2_0
2132 || pVM->cCpus == 1,
2133 ("cCpus=%u\n", pVM->cCpus),
2134 VERR_SSM_UNEXPECTED_DATA);
2135
2136 uint32_t cbMsrs = 0;
2137 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2138 {
2139 int rc = SSMR3GetU32(pSSM, &cbMsrs); AssertRCReturn(rc, rc);
2140 AssertLogRelMsgReturn(RT_ALIGN(cbMsrs, sizeof(uint64_t)) == cbMsrs, ("Size of MSRs is misaligned: %#x\n", cbMsrs),
2141 VERR_SSM_UNEXPECTED_DATA);
2142 AssertLogRelMsgReturn(cbMsrs <= sizeof(CPUMCTXMSRS) && cbMsrs > 0, ("Size of MSRs is out of range: %#x\n", cbMsrs),
2143 VERR_SSM_UNEXPECTED_DATA);
2144 }
2145
2146 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2147 {
2148 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.Guest, sizeof(pVM->aCpus[i].cpum.s.Guest));
2149 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fUseFlags);
2150 SSMR3GetU32(pSSM, &pVM->aCpus[i].cpum.s.fChanged);
2151 if (uVersion > CPUM_SAVED_STATE_VERSION_NO_MSR_SIZE)
2152 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsrs.au64[0], cbMsrs);
2153 else if (uVersion >= CPUM_SAVED_STATE_VERSION_VER3_0)
2154 {
2155 SSMR3GetMem(pSSM, &pVM->aCpus[i].cpum.s.GuestMsrs.au64[0], 2 * sizeof(uint64_t)); /* Restore two MSRs. */
2156 SSMR3Skip(pSSM, 62 * sizeof(uint64_t));
2157 }
2158 }
2159 }
2160
2161 /* Older states does not set CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID for
2162 raw-mode guest, so we have to do it ourselves. */
2163 if ( uVersion <= CPUM_SAVED_STATE_VERSION_VER3_2
2164 && !HWACCMIsEnabled(pVM))
2165 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2166 pVM->aCpus[iCpu].cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
2167 }
2168
2169 pVM->cpum.s.fPendingRestore = false;
2170
2171 /*
2172 * Guest CPUIDs.
2173 */
2174 if (uVersion > CPUM_SAVED_STATE_VERSION_VER3_0)
2175 return cpumR3LoadCpuId(pVM, pSSM, uVersion);
2176
2177 /** @todo Merge the code below into cpumR3LoadCpuId when we've found out what is
2178 * actually required. */
2179
2180 /*
2181 * Restore the CPUID leaves.
2182 *
2183 * Note that we support restoring less than the current amount of standard
2184 * leaves because we've been allowed more is newer version of VBox.
2185 */
2186 uint32_t cElements;
2187 int rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2188 if (cElements > RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd))
2189 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2190 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdStd[0], cElements*sizeof(pVM->cpum.s.aGuestCpuIdStd[0]));
2191
2192 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2193 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt))
2194 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2195 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdExt[0], sizeof(pVM->cpum.s.aGuestCpuIdExt));
2196
2197 rc = SSMR3GetU32(pSSM, &cElements); AssertRCReturn(rc, rc);
2198 if (cElements != RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur))
2199 return VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
2200 SSMR3GetMem(pSSM, &pVM->cpum.s.aGuestCpuIdCentaur[0], sizeof(pVM->cpum.s.aGuestCpuIdCentaur));
2201
2202 SSMR3GetMem(pSSM, &pVM->cpum.s.GuestCpuIdDef, sizeof(pVM->cpum.s.GuestCpuIdDef));
2203
2204 /*
2205 * Check that the basic cpuid id information is unchanged.
2206 */
2207 /** @todo we should check the 64 bits capabilities too! */
2208 uint32_t au32CpuId[8] = {0,0,0,0, 0,0,0,0};
2209 ASMCpuId(0, &au32CpuId[0], &au32CpuId[1], &au32CpuId[2], &au32CpuId[3]);
2210 ASMCpuId(1, &au32CpuId[4], &au32CpuId[5], &au32CpuId[6], &au32CpuId[7]);
2211 uint32_t au32CpuIdSaved[8];
2212 rc = SSMR3GetMem(pSSM, &au32CpuIdSaved[0], sizeof(au32CpuIdSaved));
2213 if (RT_SUCCESS(rc))
2214 {
2215 /* Ignore CPU stepping. */
2216 au32CpuId[4] &= 0xfffffff0;
2217 au32CpuIdSaved[4] &= 0xfffffff0;
2218
2219 /* Ignore APIC ID (AMD specs). */
2220 au32CpuId[5] &= ~0xff000000;
2221 au32CpuIdSaved[5] &= ~0xff000000;
2222
2223 /* Ignore the number of Logical CPUs (AMD specs). */
2224 au32CpuId[5] &= ~0x00ff0000;
2225 au32CpuIdSaved[5] &= ~0x00ff0000;
2226
2227 /* Ignore some advanced capability bits, that we don't expose to the guest. */
2228 au32CpuId[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2229 | X86_CPUID_FEATURE_ECX_VMX
2230 | X86_CPUID_FEATURE_ECX_SMX
2231 | X86_CPUID_FEATURE_ECX_EST
2232 | X86_CPUID_FEATURE_ECX_TM2
2233 | X86_CPUID_FEATURE_ECX_CNTXID
2234 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2235 | X86_CPUID_FEATURE_ECX_PDCM
2236 | X86_CPUID_FEATURE_ECX_DCA
2237 | X86_CPUID_FEATURE_ECX_X2APIC
2238 );
2239 au32CpuIdSaved[6] &= ~( X86_CPUID_FEATURE_ECX_DTES64
2240 | X86_CPUID_FEATURE_ECX_VMX
2241 | X86_CPUID_FEATURE_ECX_SMX
2242 | X86_CPUID_FEATURE_ECX_EST
2243 | X86_CPUID_FEATURE_ECX_TM2
2244 | X86_CPUID_FEATURE_ECX_CNTXID
2245 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2246 | X86_CPUID_FEATURE_ECX_PDCM
2247 | X86_CPUID_FEATURE_ECX_DCA
2248 | X86_CPUID_FEATURE_ECX_X2APIC
2249 );
2250
2251 /* Make sure we don't forget to update the masks when enabling
2252 * features in the future.
2253 */
2254 AssertRelease(!(pVM->cpum.s.aGuestCpuIdStd[1].ecx &
2255 ( X86_CPUID_FEATURE_ECX_DTES64
2256 | X86_CPUID_FEATURE_ECX_VMX
2257 | X86_CPUID_FEATURE_ECX_SMX
2258 | X86_CPUID_FEATURE_ECX_EST
2259 | X86_CPUID_FEATURE_ECX_TM2
2260 | X86_CPUID_FEATURE_ECX_CNTXID
2261 | X86_CPUID_FEATURE_ECX_TPRUPDATE
2262 | X86_CPUID_FEATURE_ECX_PDCM
2263 | X86_CPUID_FEATURE_ECX_DCA
2264 | X86_CPUID_FEATURE_ECX_X2APIC
2265 )));
2266 /* do the compare */
2267 if (memcmp(au32CpuIdSaved, au32CpuId, sizeof(au32CpuIdSaved)))
2268 {
2269 if (SSMR3HandleGetAfter(pSSM) == SSMAFTER_DEBUG_IT)
2270 LogRel(("cpumR3LoadExec: CpuId mismatch! (ignored due to SSMAFTER_DEBUG_IT)\n"
2271 "Saved=%.*Rhxs\n"
2272 "Real =%.*Rhxs\n",
2273 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2274 sizeof(au32CpuId), au32CpuId));
2275 else
2276 {
2277 LogRel(("cpumR3LoadExec: CpuId mismatch!\n"
2278 "Saved=%.*Rhxs\n"
2279 "Real =%.*Rhxs\n",
2280 sizeof(au32CpuIdSaved), au32CpuIdSaved,
2281 sizeof(au32CpuId), au32CpuId));
2282 rc = VERR_SSM_LOAD_CPUID_MISMATCH;
2283 }
2284 }
2285 }
2286
2287 return rc;
2288}
2289
2290
2291/**
2292 * @copydoc FNSSMINTLOADPREP
2293 */
2294static DECLCALLBACK(int) cpumR3LoadDone(PVM pVM, PSSMHANDLE pSSM)
2295{
2296 if (RT_FAILURE(SSMR3HandleGetStatus(pSSM)))
2297 return VINF_SUCCESS;
2298
2299 /* just check this since we can. */ /** @todo Add a SSM unit flag for indicating that it's mandatory during a restore. */
2300 if (pVM->cpum.s.fPendingRestore)
2301 {
2302 LogRel(("CPUM: Missing state!\n"));
2303 return VERR_INTERNAL_ERROR_2;
2304 }
2305
2306 /* Notify PGM of the NXE states in case they've changed. */
2307 for (VMCPUID iCpu = 0; iCpu < pVM->cCpus; iCpu++)
2308 PGMNotifyNxeChanged(&pVM->aCpus[iCpu], !!(pVM->aCpus[iCpu].cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE));
2309 return VINF_SUCCESS;
2310}
2311
2312
2313/**
2314 * Checks if the CPUM state restore is still pending.
2315 *
2316 * @returns true / false.
2317 * @param pVM The VM handle.
2318 */
2319VMMDECL(bool) CPUMR3IsStateRestorePending(PVM pVM)
2320{
2321 return pVM->cpum.s.fPendingRestore;
2322}
2323
2324
2325/**
2326 * Formats the EFLAGS value into mnemonics.
2327 *
2328 * @param pszEFlags Where to write the mnemonics. (Assumes sufficient buffer space.)
2329 * @param efl The EFLAGS value.
2330 */
2331static void cpumR3InfoFormatFlags(char *pszEFlags, uint32_t efl)
2332{
2333 /*
2334 * Format the flags.
2335 */
2336 static const struct
2337 {
2338 const char *pszSet; const char *pszClear; uint32_t fFlag;
2339 } s_aFlags[] =
2340 {
2341 { "vip",NULL, X86_EFL_VIP },
2342 { "vif",NULL, X86_EFL_VIF },
2343 { "ac", NULL, X86_EFL_AC },
2344 { "vm", NULL, X86_EFL_VM },
2345 { "rf", NULL, X86_EFL_RF },
2346 { "nt", NULL, X86_EFL_NT },
2347 { "ov", "nv", X86_EFL_OF },
2348 { "dn", "up", X86_EFL_DF },
2349 { "ei", "di", X86_EFL_IF },
2350 { "tf", NULL, X86_EFL_TF },
2351 { "nt", "pl", X86_EFL_SF },
2352 { "nz", "zr", X86_EFL_ZF },
2353 { "ac", "na", X86_EFL_AF },
2354 { "po", "pe", X86_EFL_PF },
2355 { "cy", "nc", X86_EFL_CF },
2356 };
2357 char *psz = pszEFlags;
2358 for (unsigned i = 0; i < RT_ELEMENTS(s_aFlags); i++)
2359 {
2360 const char *pszAdd = s_aFlags[i].fFlag & efl ? s_aFlags[i].pszSet : s_aFlags[i].pszClear;
2361 if (pszAdd)
2362 {
2363 strcpy(psz, pszAdd);
2364 psz += strlen(pszAdd);
2365 *psz++ = ' ';
2366 }
2367 }
2368 psz[-1] = '\0';
2369}
2370
2371
2372/**
2373 * Formats a full register dump.
2374 *
2375 * @param pVM VM Handle.
2376 * @param pCtx The context to format.
2377 * @param pCtxCore The context core to format.
2378 * @param pHlp Output functions.
2379 * @param enmType The dump type.
2380 * @param pszPrefix Register name prefix.
2381 */
2382static void cpumR3InfoOne(PVM pVM, PCPUMCTX pCtx, PCCPUMCTXCORE pCtxCore, PCDBGFINFOHLP pHlp, CPUMDUMPTYPE enmType,
2383 const char *pszPrefix)
2384{
2385 NOREF(pVM);
2386
2387 /*
2388 * Format the EFLAGS.
2389 */
2390 uint32_t efl = pCtxCore->eflags.u32;
2391 char szEFlags[80];
2392 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2393
2394 /*
2395 * Format the registers.
2396 */
2397 switch (enmType)
2398 {
2399 case CPUMDUMPTYPE_TERSE:
2400 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2401 pHlp->pfnPrintf(pHlp,
2402 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2403 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2404 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2405 "%sr14=%016RX64 %sr15=%016RX64\n"
2406 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2407 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2408 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2409 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2410 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2411 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2412 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2413 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2414 else
2415 pHlp->pfnPrintf(pHlp,
2416 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2417 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2418 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %seflags=%08x\n",
2419 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2420 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2421 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2422 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, efl);
2423 break;
2424
2425 case CPUMDUMPTYPE_DEFAULT:
2426 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2427 pHlp->pfnPrintf(pHlp,
2428 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2429 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2430 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2431 "%sr14=%016RX64 %sr15=%016RX64\n"
2432 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2433 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2434 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%016RX64:%04x %sldtr=%04x\n"
2435 ,
2436 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2437 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2438 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2439 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2440 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2441 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2442 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2443 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2444 else
2445 pHlp->pfnPrintf(pHlp,
2446 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2447 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2448 "%scs=%04x %sss=%04x %sds=%04x %ses=%04x %sfs=%04x %sgs=%04x %str=%04x %seflags=%08x\n"
2449 "%scr0=%08RX64 %scr2=%08RX64 %scr3=%08RX64 %scr4=%08RX64 %sgdtr=%08RX64:%04x %sldtr=%04x\n"
2450 ,
2451 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2452 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2453 pszPrefix, (RTSEL)pCtxCore->cs, pszPrefix, (RTSEL)pCtxCore->ss, pszPrefix, (RTSEL)pCtxCore->ds, pszPrefix, (RTSEL)pCtxCore->es,
2454 pszPrefix, (RTSEL)pCtxCore->fs, pszPrefix, (RTSEL)pCtxCore->gs, pszPrefix, (RTSEL)pCtx->tr, pszPrefix, efl,
2455 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2456 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, (RTSEL)pCtx->ldtr);
2457 break;
2458
2459 case CPUMDUMPTYPE_VERBOSE:
2460 if (CPUMIsGuestIn64BitCodeEx(pCtx))
2461 pHlp->pfnPrintf(pHlp,
2462 "%srax=%016RX64 %srbx=%016RX64 %srcx=%016RX64 %srdx=%016RX64\n"
2463 "%srsi=%016RX64 %srdi=%016RX64 %sr8 =%016RX64 %sr9 =%016RX64\n"
2464 "%sr10=%016RX64 %sr11=%016RX64 %sr12=%016RX64 %sr13=%016RX64\n"
2465 "%sr14=%016RX64 %sr15=%016RX64\n"
2466 "%srip=%016RX64 %srsp=%016RX64 %srbp=%016RX64 %siopl=%d %*s\n"
2467 "%scs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2468 "%sds={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2469 "%ses={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2470 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2471 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2472 "%sss={%04x base=%016RX64 limit=%08x flags=%08x}\n"
2473 "%scr0=%016RX64 %scr2=%016RX64 %scr3=%016RX64 %scr4=%016RX64\n"
2474 "%sdr0=%016RX64 %sdr1=%016RX64 %sdr2=%016RX64 %sdr3=%016RX64\n"
2475 "%sdr4=%016RX64 %sdr5=%016RX64 %sdr6=%016RX64 %sdr7=%016RX64\n"
2476 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2477 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2478 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2479 "%sSysEnter={cs=%04llx eip=%016RX64 esp=%016RX64}\n"
2480 ,
2481 pszPrefix, pCtxCore->rax, pszPrefix, pCtxCore->rbx, pszPrefix, pCtxCore->rcx, pszPrefix, pCtxCore->rdx, pszPrefix, pCtxCore->rsi, pszPrefix, pCtxCore->rdi,
2482 pszPrefix, pCtxCore->r8, pszPrefix, pCtxCore->r9, pszPrefix, pCtxCore->r10, pszPrefix, pCtxCore->r11, pszPrefix, pCtxCore->r12, pszPrefix, pCtxCore->r13,
2483 pszPrefix, pCtxCore->r14, pszPrefix, pCtxCore->r15,
2484 pszPrefix, pCtxCore->rip, pszPrefix, pCtxCore->rsp, pszPrefix, pCtxCore->rbp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2485 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u,
2486 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u,
2487 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u,
2488 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u,
2489 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u,
2490 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u,
2491 pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2492 pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1], pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2493 pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5], pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2494 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2495 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2496 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2497 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2498 else
2499 pHlp->pfnPrintf(pHlp,
2500 "%seax=%08x %sebx=%08x %secx=%08x %sedx=%08x %sesi=%08x %sedi=%08x\n"
2501 "%seip=%08x %sesp=%08x %sebp=%08x %siopl=%d %*s\n"
2502 "%scs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr0=%08RX64 %sdr1=%08RX64\n"
2503 "%sds={%04x base=%016RX64 limit=%08x flags=%08x} %sdr2=%08RX64 %sdr3=%08RX64\n"
2504 "%ses={%04x base=%016RX64 limit=%08x flags=%08x} %sdr4=%08RX64 %sdr5=%08RX64\n"
2505 "%sfs={%04x base=%016RX64 limit=%08x flags=%08x} %sdr6=%08RX64 %sdr7=%08RX64\n"
2506 "%sgs={%04x base=%016RX64 limit=%08x flags=%08x} %scr0=%08RX64 %scr2=%08RX64\n"
2507 "%sss={%04x base=%016RX64 limit=%08x flags=%08x} %scr3=%08RX64 %scr4=%08RX64\n"
2508 "%sgdtr=%016RX64:%04x %sidtr=%016RX64:%04x %seflags=%08x\n"
2509 "%sldtr={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2510 "%str ={%04x base=%08RX64 limit=%08x flags=%08x}\n"
2511 "%sSysEnter={cs=%04llx eip=%08llx esp=%08llx}\n"
2512 ,
2513 pszPrefix, pCtxCore->eax, pszPrefix, pCtxCore->ebx, pszPrefix, pCtxCore->ecx, pszPrefix, pCtxCore->edx, pszPrefix, pCtxCore->esi, pszPrefix, pCtxCore->edi,
2514 pszPrefix, pCtxCore->eip, pszPrefix, pCtxCore->esp, pszPrefix, pCtxCore->ebp, pszPrefix, X86_EFL_GET_IOPL(efl), *pszPrefix ? 33 : 31, szEFlags,
2515 pszPrefix, (RTSEL)pCtxCore->cs, pCtx->csHid.u64Base, pCtx->csHid.u32Limit, pCtx->csHid.Attr.u, pszPrefix, pCtx->dr[0], pszPrefix, pCtx->dr[1],
2516 pszPrefix, (RTSEL)pCtxCore->ds, pCtx->dsHid.u64Base, pCtx->dsHid.u32Limit, pCtx->dsHid.Attr.u, pszPrefix, pCtx->dr[2], pszPrefix, pCtx->dr[3],
2517 pszPrefix, (RTSEL)pCtxCore->es, pCtx->esHid.u64Base, pCtx->esHid.u32Limit, pCtx->esHid.Attr.u, pszPrefix, pCtx->dr[4], pszPrefix, pCtx->dr[5],
2518 pszPrefix, (RTSEL)pCtxCore->fs, pCtx->fsHid.u64Base, pCtx->fsHid.u32Limit, pCtx->fsHid.Attr.u, pszPrefix, pCtx->dr[6], pszPrefix, pCtx->dr[7],
2519 pszPrefix, (RTSEL)pCtxCore->gs, pCtx->gsHid.u64Base, pCtx->gsHid.u32Limit, pCtx->gsHid.Attr.u, pszPrefix, pCtx->cr0, pszPrefix, pCtx->cr2,
2520 pszPrefix, (RTSEL)pCtxCore->ss, pCtx->ssHid.u64Base, pCtx->ssHid.u32Limit, pCtx->ssHid.Attr.u, pszPrefix, pCtx->cr3, pszPrefix, pCtx->cr4,
2521 pszPrefix, pCtx->gdtr.pGdt, pCtx->gdtr.cbGdt, pszPrefix, pCtx->idtr.pIdt, pCtx->idtr.cbIdt, pszPrefix, efl,
2522 pszPrefix, (RTSEL)pCtx->ldtr, pCtx->ldtrHid.u64Base, pCtx->ldtrHid.u32Limit, pCtx->ldtrHid.Attr.u,
2523 pszPrefix, (RTSEL)pCtx->tr, pCtx->trHid.u64Base, pCtx->trHid.u32Limit, pCtx->trHid.Attr.u,
2524 pszPrefix, pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2525
2526 pHlp->pfnPrintf(pHlp,
2527 "%sFCW=%04x %sFSW=%04x %sFTW=%04x %sFOP=%04x %sMXCSR=%08x %sMXCSR_MASK=%08x\n"
2528 "%sFPUIP=%08x %sCS=%04x %sRsrvd1=%04x %sFPUDP=%08x %sDS=%04x %sRsvrd2=%04x\n"
2529 ,
2530 pszPrefix, pCtx->fpu.FCW, pszPrefix, pCtx->fpu.FSW, pszPrefix, pCtx->fpu.FTW, pszPrefix, pCtx->fpu.FOP,
2531 pszPrefix, pCtx->fpu.MXCSR, pszPrefix, pCtx->fpu.MXCSR_MASK,
2532 pszPrefix, pCtx->fpu.FPUIP, pszPrefix, pCtx->fpu.CS, pszPrefix, pCtx->fpu.Rsrvd1,
2533 pszPrefix, pCtx->fpu.FPUDP, pszPrefix, pCtx->fpu.DS, pszPrefix, pCtx->fpu.Rsrvd2
2534 );
2535 unsigned iShift = (pCtx->fpu.FSW >> 11) & 7;
2536 for (unsigned iST = 0; iST < RT_ELEMENTS(pCtx->fpu.aRegs); iST++)
2537 {
2538 unsigned iFPR = (iST + iShift) % RT_ELEMENTS(pCtx->fpu.aRegs);
2539 unsigned uTag = pCtx->fpu.FTW & (1 << iFPR) ? 1 : 0;
2540 char chSign = pCtx->fpu.aRegs[0].au16[4] & 0x8000 ? '-' : '+';
2541 unsigned iInteger = (unsigned)(pCtx->fpu.aRegs[0].au64[0] >> 63);
2542 uint64_t u64Fraction = pCtx->fpu.aRegs[0].au64[0] & UINT64_C(0x7fffffffffffffff);
2543 unsigned uExponent = pCtx->fpu.aRegs[0].au16[4] & 0x7fff;
2544 /** @todo This isn't entirenly correct and needs more work! */
2545 pHlp->pfnPrintf(pHlp,
2546 "%sST(%u)=%sFPR%u={%04RX16'%08RX32'%08RX32} t%d %c%u.%022llu ^ %u",
2547 pszPrefix, iST, pszPrefix, iFPR,
2548 pCtx->fpu.aRegs[0].au16[4], pCtx->fpu.aRegs[0].au32[1], pCtx->fpu.aRegs[0].au32[0],
2549 uTag, chSign, iInteger, u64Fraction, uExponent);
2550 if (pCtx->fpu.aRegs[0].au16[5] || pCtx->fpu.aRegs[0].au16[6] || pCtx->fpu.aRegs[0].au16[7])
2551 pHlp->pfnPrintf(pHlp, " res={%04RX16,%04RX16,%04RX16}\n",
2552 pCtx->fpu.aRegs[0].au16[5], pCtx->fpu.aRegs[0].au16[6], pCtx->fpu.aRegs[0].au16[7]);
2553 else
2554 pHlp->pfnPrintf(pHlp, "\n");
2555 }
2556 for (unsigned iXMM = 0; iXMM < RT_ELEMENTS(pCtx->fpu.aXMM); iXMM++)
2557 pHlp->pfnPrintf(pHlp,
2558 iXMM & 1
2559 ? "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32\n"
2560 : "%sXMM%u%s=%08RX32'%08RX32'%08RX32'%08RX32 ",
2561 pszPrefix, iXMM, iXMM < 10 ? " " : "",
2562 pCtx->fpu.aXMM[iXMM].au32[3],
2563 pCtx->fpu.aXMM[iXMM].au32[2],
2564 pCtx->fpu.aXMM[iXMM].au32[1],
2565 pCtx->fpu.aXMM[iXMM].au32[0]);
2566 for (unsigned i = 0; i < RT_ELEMENTS(pCtx->fpu.au32RsrvdRest); i++)
2567 if (pCtx->fpu.au32RsrvdRest[i])
2568 pHlp->pfnPrintf(pHlp, "%sRsrvdRest[i]=%RX32 (offset=%#x)\n",
2569 pszPrefix, i, pCtx->fpu.au32RsrvdRest[i], RT_OFFSETOF(X86FXSTATE, au32RsrvdRest[i]) );
2570
2571 pHlp->pfnPrintf(pHlp,
2572 "%sEFER =%016RX64\n"
2573 "%sPAT =%016RX64\n"
2574 "%sSTAR =%016RX64\n"
2575 "%sCSTAR =%016RX64\n"
2576 "%sLSTAR =%016RX64\n"
2577 "%sSFMASK =%016RX64\n"
2578 "%sKERNELGSBASE =%016RX64\n",
2579 pszPrefix, pCtx->msrEFER,
2580 pszPrefix, pCtx->msrPAT,
2581 pszPrefix, pCtx->msrSTAR,
2582 pszPrefix, pCtx->msrCSTAR,
2583 pszPrefix, pCtx->msrLSTAR,
2584 pszPrefix, pCtx->msrSFMASK,
2585 pszPrefix, pCtx->msrKERNELGSBASE);
2586 break;
2587 }
2588}
2589
2590
2591/**
2592 * Display all cpu states and any other cpum info.
2593 *
2594 * @param pVM VM Handle.
2595 * @param pHlp The info helper functions.
2596 * @param pszArgs Arguments, ignored.
2597 */
2598static DECLCALLBACK(void) cpumR3InfoAll(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2599{
2600 cpumR3InfoGuest(pVM, pHlp, pszArgs);
2601 cpumR3InfoGuestInstr(pVM, pHlp, pszArgs);
2602 cpumR3InfoHyper(pVM, pHlp, pszArgs);
2603 cpumR3InfoHost(pVM, pHlp, pszArgs);
2604}
2605
2606
2607/**
2608 * Parses the info argument.
2609 *
2610 * The argument starts with 'verbose', 'terse' or 'default' and then
2611 * continues with the comment string.
2612 *
2613 * @param pszArgs The pointer to the argument string.
2614 * @param penmType Where to store the dump type request.
2615 * @param ppszComment Where to store the pointer to the comment string.
2616 */
2617static void cpumR3InfoParseArg(const char *pszArgs, CPUMDUMPTYPE *penmType, const char **ppszComment)
2618{
2619 if (!pszArgs)
2620 {
2621 *penmType = CPUMDUMPTYPE_DEFAULT;
2622 *ppszComment = "";
2623 }
2624 else
2625 {
2626 if (!strncmp(pszArgs, "verbose", sizeof("verbose") - 1))
2627 {
2628 pszArgs += 5;
2629 *penmType = CPUMDUMPTYPE_VERBOSE;
2630 }
2631 else if (!strncmp(pszArgs, "terse", sizeof("terse") - 1))
2632 {
2633 pszArgs += 5;
2634 *penmType = CPUMDUMPTYPE_TERSE;
2635 }
2636 else if (!strncmp(pszArgs, "default", sizeof("default") - 1))
2637 {
2638 pszArgs += 7;
2639 *penmType = CPUMDUMPTYPE_DEFAULT;
2640 }
2641 else
2642 *penmType = CPUMDUMPTYPE_DEFAULT;
2643 *ppszComment = RTStrStripL(pszArgs);
2644 }
2645}
2646
2647
2648/**
2649 * Display the guest cpu state.
2650 *
2651 * @param pVM VM Handle.
2652 * @param pHlp The info helper functions.
2653 * @param pszArgs Arguments, ignored.
2654 */
2655static DECLCALLBACK(void) cpumR3InfoGuest(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2656{
2657 CPUMDUMPTYPE enmType;
2658 const char *pszComment;
2659 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2660
2661 /* @todo SMP support! */
2662 PVMCPU pVCpu = VMMGetCpu(pVM);
2663 if (!pVCpu)
2664 pVCpu = &pVM->aCpus[0];
2665
2666 pHlp->pfnPrintf(pHlp, "Guest CPUM (VCPU %d) state: %s\n", pVCpu->idCpu, pszComment);
2667
2668 PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
2669 cpumR3InfoOne(pVM, pCtx, CPUMCTX2CORE(pCtx), pHlp, enmType, "");
2670}
2671
2672
2673/**
2674 * Display the current guest instruction
2675 *
2676 * @param pVM VM Handle.
2677 * @param pHlp The info helper functions.
2678 * @param pszArgs Arguments, ignored.
2679 */
2680static DECLCALLBACK(void) cpumR3InfoGuestInstr(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2681{
2682 NOREF(pszArgs);
2683
2684 /** @todo SMP support! */
2685 PVMCPU pVCpu = VMMGetCpu(pVM);
2686 if (!pVCpu)
2687 pVCpu = &pVM->aCpus[0];
2688
2689 char szInstruction[256];
2690 int rc = DBGFR3DisasInstrCurrent(pVCpu, szInstruction, sizeof(szInstruction));
2691 if (RT_SUCCESS(rc))
2692 pHlp->pfnPrintf(pHlp, "\nCPUM: %s\n\n", szInstruction);
2693}
2694
2695
2696/**
2697 * Display the hypervisor cpu state.
2698 *
2699 * @param pVM VM Handle.
2700 * @param pHlp The info helper functions.
2701 * @param pszArgs Arguments, ignored.
2702 */
2703static DECLCALLBACK(void) cpumR3InfoHyper(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2704{
2705 CPUMDUMPTYPE enmType;
2706 const char *pszComment;
2707 /* @todo SMP */
2708 PVMCPU pVCpu = &pVM->aCpus[0];
2709
2710 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2711 pHlp->pfnPrintf(pHlp, "Hypervisor CPUM state: %s\n", pszComment);
2712 cpumR3InfoOne(pVM, &pVCpu->cpum.s.Hyper, pVCpu->cpum.s.pHyperCoreR3, pHlp, enmType, ".");
2713 pHlp->pfnPrintf(pHlp, "CR4OrMask=%#x CR4AndMask=%#x\n", pVM->cpum.s.CR4.OrMask, pVM->cpum.s.CR4.AndMask);
2714}
2715
2716
2717/**
2718 * Display the host cpu state.
2719 *
2720 * @param pVM VM Handle.
2721 * @param pHlp The info helper functions.
2722 * @param pszArgs Arguments, ignored.
2723 */
2724static DECLCALLBACK(void) cpumR3InfoHost(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2725{
2726 CPUMDUMPTYPE enmType;
2727 const char *pszComment;
2728 cpumR3InfoParseArg(pszArgs, &enmType, &pszComment);
2729 pHlp->pfnPrintf(pHlp, "Host CPUM state: %s\n", pszComment);
2730
2731 /*
2732 * Format the EFLAGS.
2733 */
2734 /* @todo SMP */
2735 PCPUMHOSTCTX pCtx = &pVM->aCpus[0].cpum.s.Host;
2736#if HC_ARCH_BITS == 32
2737 uint32_t efl = pCtx->eflags.u32;
2738#else
2739 uint64_t efl = pCtx->rflags;
2740#endif
2741 char szEFlags[80];
2742 cpumR3InfoFormatFlags(&szEFlags[0], efl);
2743
2744 /*
2745 * Format the registers.
2746 */
2747#if HC_ARCH_BITS == 32
2748# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2749 if (!(pCtx->efer & MSR_K6_EFER_LMA))
2750# endif
2751 {
2752 pHlp->pfnPrintf(pHlp,
2753 "eax=xxxxxxxx ebx=%08x ecx=xxxxxxxx edx=xxxxxxxx esi=%08x edi=%08x\n"
2754 "eip=xxxxxxxx esp=%08x ebp=%08x iopl=%d %31s\n"
2755 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08x\n"
2756 "cr0=%08RX64 cr2=xxxxxxxx cr3=%08RX64 cr4=%08RX64 gdtr=%08x:%04x ldtr=%04x\n"
2757 "dr[0]=%08RX64 dr[1]=%08RX64x dr[2]=%08RX64 dr[3]=%08RX64x dr[6]=%08RX64 dr[7]=%08RX64\n"
2758 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2759 ,
2760 /*pCtx->eax,*/ pCtx->ebx, /*pCtx->ecx, pCtx->edx,*/ pCtx->esi, pCtx->edi,
2761 /*pCtx->eip,*/ pCtx->esp, pCtx->ebp, X86_EFL_GET_IOPL(efl), szEFlags,
2762 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2763 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3, pCtx->cr4,
2764 pCtx->dr0, pCtx->dr1, pCtx->dr2, pCtx->dr3, pCtx->dr6, pCtx->dr7,
2765 (uint32_t)pCtx->gdtr.uAddr, pCtx->gdtr.cb, (RTSEL)pCtx->ldtr,
2766 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp);
2767 }
2768# ifdef VBOX_WITH_HYBRID_32BIT_KERNEL
2769 else
2770# endif
2771#endif
2772#if HC_ARCH_BITS == 64 || defined(VBOX_WITH_HYBRID_32BIT_KERNEL)
2773 {
2774 pHlp->pfnPrintf(pHlp,
2775 "rax=xxxxxxxxxxxxxxxx rbx=%016RX64 rcx=xxxxxxxxxxxxxxxx\n"
2776 "rdx=xxxxxxxxxxxxxxxx rsi=%016RX64 rdi=%016RX64\n"
2777 "rip=xxxxxxxxxxxxxxxx rsp=%016RX64 rbp=%016RX64\n"
2778 " r8=xxxxxxxxxxxxxxxx r9=xxxxxxxxxxxxxxxx r10=%016RX64\n"
2779 "r11=%016RX64 r12=%016RX64 r13=%016RX64\n"
2780 "r14=%016RX64 r15=%016RX64\n"
2781 "iopl=%d %31s\n"
2782 "cs=%04x ds=%04x es=%04x fs=%04x gs=%04x eflags=%08RX64\n"
2783 "cr0=%016RX64 cr2=xxxxxxxxxxxxxxxx cr3=%016RX64\n"
2784 "cr4=%016RX64 ldtr=%04x tr=%04x\n"
2785 "dr[0]=%016RX64 dr[1]=%016RX64 dr[2]=%016RX64\n"
2786 "dr[3]=%016RX64 dr[6]=%016RX64 dr[7]=%016RX64\n"
2787 "gdtr=%016RX64:%04x idtr=%016RX64:%04x\n"
2788 "SysEnter={cs=%04x eip=%08x esp=%08x}\n"
2789 "FSbase=%016RX64 GSbase=%016RX64 efer=%08RX64\n"
2790 ,
2791 /*pCtx->rax,*/ pCtx->rbx, /*pCtx->rcx,
2792 pCtx->rdx,*/ pCtx->rsi, pCtx->rdi,
2793 /*pCtx->rip,*/ pCtx->rsp, pCtx->rbp,
2794 /*pCtx->r8, pCtx->r9,*/ pCtx->r10,
2795 pCtx->r11, pCtx->r12, pCtx->r13,
2796 pCtx->r14, pCtx->r15,
2797 X86_EFL_GET_IOPL(efl), szEFlags,
2798 (RTSEL)pCtx->cs, (RTSEL)pCtx->ds, (RTSEL)pCtx->es, (RTSEL)pCtx->fs, (RTSEL)pCtx->gs, efl,
2799 pCtx->cr0, /*pCtx->cr2,*/ pCtx->cr3,
2800 pCtx->cr4, pCtx->ldtr, pCtx->tr,
2801 pCtx->dr0, pCtx->dr1, pCtx->dr2,
2802 pCtx->dr3, pCtx->dr6, pCtx->dr7,
2803 pCtx->gdtr.uAddr, pCtx->gdtr.cb, pCtx->idtr.uAddr, pCtx->idtr.cb,
2804 pCtx->SysEnter.cs, pCtx->SysEnter.eip, pCtx->SysEnter.esp,
2805 pCtx->FSbase, pCtx->GSbase, pCtx->efer);
2806 }
2807#endif
2808}
2809
2810
2811/**
2812 * Get L1 cache / TLS associativity.
2813 */
2814static const char *getCacheAss(unsigned u, char *pszBuf)
2815{
2816 if (u == 0)
2817 return "res0 ";
2818 if (u == 1)
2819 return "direct";
2820 if (u == 255)
2821 return "fully";
2822 if (u >= 256)
2823 return "???";
2824
2825 RTStrPrintf(pszBuf, 16, "%d way", u);
2826 return pszBuf;
2827}
2828
2829
2830/**
2831 * Get L2 cache associativity.
2832 */
2833const char *getL2CacheAss(unsigned u)
2834{
2835 switch (u)
2836 {
2837 case 0: return "off ";
2838 case 1: return "direct";
2839 case 2: return "2 way ";
2840 case 3: return "res3 ";
2841 case 4: return "4 way ";
2842 case 5: return "res5 ";
2843 case 6: return "8 way ";
2844 case 7: return "res7 ";
2845 case 8: return "16 way";
2846 case 9: return "res9 ";
2847 case 10: return "res10 ";
2848 case 11: return "res11 ";
2849 case 12: return "res12 ";
2850 case 13: return "res13 ";
2851 case 14: return "res14 ";
2852 case 15: return "fully ";
2853 default: return "????";
2854 }
2855}
2856
2857
2858/**
2859 * Display the guest CpuId leaves.
2860 *
2861 * @param pVM VM Handle.
2862 * @param pHlp The info helper functions.
2863 * @param pszArgs "terse", "default" or "verbose".
2864 */
2865static DECLCALLBACK(void) cpumR3CpuIdInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2866{
2867 /*
2868 * Parse the argument.
2869 */
2870 unsigned iVerbosity = 1;
2871 if (pszArgs)
2872 {
2873 pszArgs = RTStrStripL(pszArgs);
2874 if (!strcmp(pszArgs, "terse"))
2875 iVerbosity--;
2876 else if (!strcmp(pszArgs, "verbose"))
2877 iVerbosity++;
2878 }
2879
2880 /*
2881 * Start cracking.
2882 */
2883 CPUMCPUID Host;
2884 CPUMCPUID Guest;
2885 unsigned cStdMax = pVM->cpum.s.aGuestCpuIdStd[0].eax;
2886
2887 pHlp->pfnPrintf(pHlp,
2888 " RAW Standard CPUIDs\n"
2889 " Function eax ebx ecx edx\n");
2890 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdStd); i++)
2891 {
2892 Guest = pVM->cpum.s.aGuestCpuIdStd[i];
2893 ASMCpuId_Idx_ECX(i, 0, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
2894
2895 pHlp->pfnPrintf(pHlp,
2896 "Gst: %08x %08x %08x %08x %08x%s\n"
2897 "Hst: %08x %08x %08x %08x\n",
2898 i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
2899 i <= cStdMax ? "" : "*",
2900 Host.eax, Host.ebx, Host.ecx, Host.edx);
2901 }
2902
2903 /*
2904 * If verbose, decode it.
2905 */
2906 if (iVerbosity)
2907 {
2908 Guest = pVM->cpum.s.aGuestCpuIdStd[0];
2909 pHlp->pfnPrintf(pHlp,
2910 "Name: %.04s%.04s%.04s\n"
2911 "Supports: 0-%x\n",
2912 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
2913 }
2914
2915 /*
2916 * Get Features.
2917 */
2918 bool const fIntel = ASMIsIntelCpuEx(pVM->cpum.s.aGuestCpuIdStd[0].ebx,
2919 pVM->cpum.s.aGuestCpuIdStd[0].ecx,
2920 pVM->cpum.s.aGuestCpuIdStd[0].edx);
2921 if (cStdMax >= 1 && iVerbosity)
2922 {
2923 static const char * const s_apszTypes[4] = { "primary", "overdrive", "MP", "reserved" };
2924
2925 Guest = pVM->cpum.s.aGuestCpuIdStd[1];
2926 uint32_t uEAX = Guest.eax;
2927
2928 pHlp->pfnPrintf(pHlp,
2929 "Family: %d \tExtended: %d \tEffective: %d\n"
2930 "Model: %d \tExtended: %d \tEffective: %d\n"
2931 "Stepping: %d\n"
2932 "Type: %d (%s)\n"
2933 "APIC ID: %#04x\n"
2934 "Logical CPUs: %d\n"
2935 "CLFLUSH Size: %d\n"
2936 "Brand ID: %#04x\n",
2937 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
2938 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
2939 ASMGetCpuStepping(uEAX),
2940 (uEAX >> 12) & 3, s_apszTypes[(uEAX >> 12) & 3],
2941 (Guest.ebx >> 24) & 0xff,
2942 (Guest.ebx >> 16) & 0xff,
2943 (Guest.ebx >> 8) & 0xff,
2944 (Guest.ebx >> 0) & 0xff);
2945 if (iVerbosity == 1)
2946 {
2947 uint32_t uEDX = Guest.edx;
2948 pHlp->pfnPrintf(pHlp, "Features EDX: ");
2949 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
2950 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
2951 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
2952 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
2953 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
2954 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
2955 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
2956 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
2957 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
2958 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
2959 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
2960 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SEP");
2961 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
2962 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
2963 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
2964 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
2965 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
2966 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
2967 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " PSN");
2968 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " CLFSH");
2969 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " 20");
2970 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " DS");
2971 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ACPI");
2972 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
2973 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
2974 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " SSE");
2975 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " SSE2");
2976 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " SS");
2977 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " HTT");
2978 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " TM");
2979 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
2980 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " PBE");
2981 pHlp->pfnPrintf(pHlp, "\n");
2982
2983 uint32_t uECX = Guest.ecx;
2984 pHlp->pfnPrintf(pHlp, "Features ECX: ");
2985 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " SSE3");
2986 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " PCLMUL");
2987 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DTES64");
2988 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " MONITOR");
2989 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " DS-CPL");
2990 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " VMX");
2991 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SMX");
2992 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " EST");
2993 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " TM2");
2994 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " SSSE3");
2995 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " CNXT-ID");
2996 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " 11");
2997 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " FMA");
2998 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " CX16");
2999 if (uECX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " TPRUPDATE");
3000 if (uECX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " PDCM");
3001 if (uECX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " 16");
3002 if (uECX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PCID");
3003 if (uECX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " DCA");
3004 if (uECX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " SSE4.1");
3005 if (uECX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " SSE4.2");
3006 if (uECX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " X2APIC");
3007 if (uECX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " MOVBE");
3008 if (uECX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " POPCNT");
3009 if (uECX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " TSCDEADL");
3010 if (uECX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " AES");
3011 if (uECX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " XSAVE");
3012 if (uECX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " OSXSAVE");
3013 if (uECX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " AVX");
3014 if (uECX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " 29");
3015 if (uECX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " 30");
3016 if (uECX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 31");
3017 pHlp->pfnPrintf(pHlp, "\n");
3018 }
3019 else
3020 {
3021 ASMCpuId(1, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3022
3023 X86CPUIDFEATEDX EdxHost = *(PX86CPUIDFEATEDX)&Host.edx;
3024 X86CPUIDFEATECX EcxHost = *(PX86CPUIDFEATECX)&Host.ecx;
3025 X86CPUIDFEATEDX EdxGuest = *(PX86CPUIDFEATEDX)&Guest.edx;
3026 X86CPUIDFEATECX EcxGuest = *(PX86CPUIDFEATECX)&Guest.ecx;
3027
3028 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3029 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", EdxGuest.u1FPU, EdxHost.u1FPU);
3030 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", EdxGuest.u1VME, EdxHost.u1VME);
3031 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", EdxGuest.u1DE, EdxHost.u1DE);
3032 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", EdxGuest.u1PSE, EdxHost.u1PSE);
3033 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", EdxGuest.u1TSC, EdxHost.u1TSC);
3034 pHlp->pfnPrintf(pHlp, "MSR - Model Specific Registers = %d (%d)\n", EdxGuest.u1MSR, EdxHost.u1MSR);
3035 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", EdxGuest.u1PAE, EdxHost.u1PAE);
3036 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", EdxGuest.u1MCE, EdxHost.u1MCE);
3037 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", EdxGuest.u1CX8, EdxHost.u1CX8);
3038 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", EdxGuest.u1APIC, EdxHost.u1APIC);
3039 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", EdxGuest.u1Reserved1, EdxHost.u1Reserved1);
3040 pHlp->pfnPrintf(pHlp, "SEP - SYSENTER and SYSEXIT = %d (%d)\n", EdxGuest.u1SEP, EdxHost.u1SEP);
3041 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", EdxGuest.u1MTRR, EdxHost.u1MTRR);
3042 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", EdxGuest.u1PGE, EdxHost.u1PGE);
3043 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", EdxGuest.u1MCA, EdxHost.u1MCA);
3044 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", EdxGuest.u1CMOV, EdxHost.u1CMOV);
3045 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", EdxGuest.u1PAT, EdxHost.u1PAT);
3046 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", EdxGuest.u1PSE36, EdxHost.u1PSE36);
3047 pHlp->pfnPrintf(pHlp, "PSN - Processor Serial Number = %d (%d)\n", EdxGuest.u1PSN, EdxHost.u1PSN);
3048 pHlp->pfnPrintf(pHlp, "CLFSH - CLFLUSH Instruction. = %d (%d)\n", EdxGuest.u1CLFSH, EdxHost.u1CLFSH);
3049 pHlp->pfnPrintf(pHlp, "20 - Reserved = %d (%d)\n", EdxGuest.u1Reserved2, EdxHost.u1Reserved2);
3050 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", EdxGuest.u1DS, EdxHost.u1DS);
3051 pHlp->pfnPrintf(pHlp, "ACPI - Thermal Mon. & Soft. Clock Ctrl.= %d (%d)\n", EdxGuest.u1ACPI, EdxHost.u1ACPI);
3052 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", EdxGuest.u1MMX, EdxHost.u1MMX);
3053 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", EdxGuest.u1FXSR, EdxHost.u1FXSR);
3054 pHlp->pfnPrintf(pHlp, "SSE - SSE Support = %d (%d)\n", EdxGuest.u1SSE, EdxHost.u1SSE);
3055 pHlp->pfnPrintf(pHlp, "SSE2 - SSE2 Support = %d (%d)\n", EdxGuest.u1SSE2, EdxHost.u1SSE2);
3056 pHlp->pfnPrintf(pHlp, "SS - Self Snoop = %d (%d)\n", EdxGuest.u1SS, EdxHost.u1SS);
3057 pHlp->pfnPrintf(pHlp, "HTT - Hyper-Threading Technology = %d (%d)\n", EdxGuest.u1HTT, EdxHost.u1HTT);
3058 pHlp->pfnPrintf(pHlp, "TM - Thermal Monitor = %d (%d)\n", EdxGuest.u1TM, EdxHost.u1TM);
3059 pHlp->pfnPrintf(pHlp, "30 - Reserved = %d (%d)\n", EdxGuest.u1Reserved3, EdxHost.u1Reserved3);
3060 pHlp->pfnPrintf(pHlp, "PBE - Pending Break Enable = %d (%d)\n", EdxGuest.u1PBE, EdxHost.u1PBE);
3061
3062 pHlp->pfnPrintf(pHlp, "Supports SSE3 = %d (%d)\n", EcxGuest.u1SSE3, EcxHost.u1SSE3);
3063 pHlp->pfnPrintf(pHlp, "PCLMULQDQ = %d (%d)\n", EcxGuest.u1PCLMULQDQ, EcxHost.u1PCLMULQDQ);
3064 pHlp->pfnPrintf(pHlp, "DS Area 64-bit layout = %d (%d)\n", EcxGuest.u1DTE64, EcxHost.u1DTE64);
3065 pHlp->pfnPrintf(pHlp, "Supports MONITOR/MWAIT = %d (%d)\n", EcxGuest.u1Monitor, EcxHost.u1Monitor);
3066 pHlp->pfnPrintf(pHlp, "CPL-DS - CPL Qualified Debug Store = %d (%d)\n", EcxGuest.u1CPLDS, EcxHost.u1CPLDS);
3067 pHlp->pfnPrintf(pHlp, "VMX - Virtual Machine Technology = %d (%d)\n", EcxGuest.u1VMX, EcxHost.u1VMX);
3068 pHlp->pfnPrintf(pHlp, "SMX - Safer Mode Extensions = %d (%d)\n", EcxGuest.u1SMX, EcxHost.u1SMX);
3069 pHlp->pfnPrintf(pHlp, "Enhanced SpeedStep Technology = %d (%d)\n", EcxGuest.u1EST, EcxHost.u1EST);
3070 pHlp->pfnPrintf(pHlp, "Terminal Monitor 2 = %d (%d)\n", EcxGuest.u1TM2, EcxHost.u1TM2);
3071 pHlp->pfnPrintf(pHlp, "Supplemental SSE3 instructions = %d (%d)\n", EcxGuest.u1SSSE3, EcxHost.u1SSSE3);
3072 pHlp->pfnPrintf(pHlp, "L1 Context ID = %d (%d)\n", EcxGuest.u1CNTXID, EcxHost.u1CNTXID);
3073 pHlp->pfnPrintf(pHlp, "11 - Reserved = %d (%d)\n", EcxGuest.u1Reserved1, EcxHost.u1Reserved1);
3074 pHlp->pfnPrintf(pHlp, "FMA extensions using YMM state = %d (%d)\n", EcxGuest.u1FMA, EcxHost.u1FMA);
3075 pHlp->pfnPrintf(pHlp, "CMPXCHG16B instruction = %d (%d)\n", EcxGuest.u1CX16, EcxHost.u1CX16);
3076 pHlp->pfnPrintf(pHlp, "xTPR Update Control = %d (%d)\n", EcxGuest.u1TPRUpdate, EcxHost.u1TPRUpdate);
3077 pHlp->pfnPrintf(pHlp, "Perf/Debug Capability MSR = %d (%d)\n", EcxGuest.u1PDCM, EcxHost.u1PDCM);
3078 pHlp->pfnPrintf(pHlp, "16 - Reserved = %d (%d)\n", EcxGuest.u1Reserved2, EcxHost.u1Reserved2);
3079 pHlp->pfnPrintf(pHlp, "PCID - Process-context identifiers = %d (%d)\n", EcxGuest.u1PCID, EcxHost.u1PCID);
3080 pHlp->pfnPrintf(pHlp, "DCA - Direct Cache Access = %d (%d)\n", EcxGuest.u1DCA, EcxHost.u1DCA);
3081 pHlp->pfnPrintf(pHlp, "SSE4.1 instruction extensions = %d (%d)\n", EcxGuest.u1SSE4_1, EcxHost.u1SSE4_1);
3082 pHlp->pfnPrintf(pHlp, "SSE4.2 instruction extensions = %d (%d)\n", EcxGuest.u1SSE4_2, EcxHost.u1SSE4_2);
3083 pHlp->pfnPrintf(pHlp, "Supports the x2APIC extensions = %d (%d)\n", EcxGuest.u1x2APIC, EcxHost.u1x2APIC);
3084 pHlp->pfnPrintf(pHlp, "MOVBE instruction = %d (%d)\n", EcxGuest.u1MOVBE, EcxHost.u1MOVBE);
3085 pHlp->pfnPrintf(pHlp, "POPCNT instruction = %d (%d)\n", EcxGuest.u1POPCNT, EcxHost.u1POPCNT);
3086 pHlp->pfnPrintf(pHlp, "TSC-Deadline LAPIC timer mode = %d (%d)\n", EcxGuest.u1TSCDEADLINE,EcxHost.u1TSCDEADLINE);
3087 pHlp->pfnPrintf(pHlp, "AESNI instruction extensions = %d (%d)\n", EcxGuest.u1AES, EcxHost.u1AES);
3088 pHlp->pfnPrintf(pHlp, "XSAVE/XRSTOR extended state feature = %d (%d)\n", EcxGuest.u1XSAVE, EcxHost.u1XSAVE);
3089 pHlp->pfnPrintf(pHlp, "Supports OSXSAVE = %d (%d)\n", EcxGuest.u1OSXSAVE, EcxHost.u1OSXSAVE);
3090 pHlp->pfnPrintf(pHlp, "AVX instruction extensions = %d (%d)\n", EcxGuest.u1AVX, EcxHost.u1AVX);
3091 pHlp->pfnPrintf(pHlp, "29/30 - Reserved = %#x (%#x)\n",EcxGuest.u2Reserved3, EcxHost.u2Reserved3);
3092 pHlp->pfnPrintf(pHlp, "Hypervisor Present (we're a guest) = %d (%d)\n", EcxGuest.u1HVP, EcxHost.u1HVP);
3093 }
3094 }
3095 if (cStdMax >= 2 && iVerbosity)
3096 {
3097 /** @todo */
3098 }
3099
3100 /*
3101 * Extended.
3102 * Implemented after AMD specs.
3103 */
3104 unsigned cExtMax = pVM->cpum.s.aGuestCpuIdExt[0].eax & 0xffff;
3105
3106 pHlp->pfnPrintf(pHlp,
3107 "\n"
3108 " RAW Extended CPUIDs\n"
3109 " Function eax ebx ecx edx\n");
3110 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdExt); i++)
3111 {
3112 Guest = pVM->cpum.s.aGuestCpuIdExt[i];
3113 ASMCpuId(0x80000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3114
3115 pHlp->pfnPrintf(pHlp,
3116 "Gst: %08x %08x %08x %08x %08x%s\n"
3117 "Hst: %08x %08x %08x %08x\n",
3118 0x80000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3119 i <= cExtMax ? "" : "*",
3120 Host.eax, Host.ebx, Host.ecx, Host.edx);
3121 }
3122
3123 /*
3124 * Understandable output
3125 */
3126 if (iVerbosity)
3127 {
3128 Guest = pVM->cpum.s.aGuestCpuIdExt[0];
3129 pHlp->pfnPrintf(pHlp,
3130 "Ext Name: %.4s%.4s%.4s\n"
3131 "Ext Supports: 0x80000000-%#010x\n",
3132 &Guest.ebx, &Guest.edx, &Guest.ecx, Guest.eax);
3133 }
3134
3135 if (iVerbosity && cExtMax >= 1)
3136 {
3137 Guest = pVM->cpum.s.aGuestCpuIdExt[1];
3138 uint32_t uEAX = Guest.eax;
3139 pHlp->pfnPrintf(pHlp,
3140 "Family: %d \tExtended: %d \tEffective: %d\n"
3141 "Model: %d \tExtended: %d \tEffective: %d\n"
3142 "Stepping: %d\n"
3143 "Brand ID: %#05x\n",
3144 (uEAX >> 8) & 0xf, (uEAX >> 20) & 0x7f, ASMGetCpuFamily(uEAX),
3145 (uEAX >> 4) & 0xf, (uEAX >> 16) & 0x0f, ASMGetCpuModel(uEAX, fIntel),
3146 ASMGetCpuStepping(uEAX),
3147 Guest.ebx & 0xfff);
3148
3149 if (iVerbosity == 1)
3150 {
3151 uint32_t uEDX = Guest.edx;
3152 pHlp->pfnPrintf(pHlp, "Features EDX: ");
3153 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " FPU");
3154 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " VME");
3155 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " DE");
3156 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " PSE");
3157 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TSC");
3158 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " MSR");
3159 if (uEDX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " PAE");
3160 if (uEDX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MCE");
3161 if (uEDX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " CX8");
3162 if (uEDX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " APIC");
3163 if (uEDX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " 10");
3164 if (uEDX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SCR");
3165 if (uEDX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " MTRR");
3166 if (uEDX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PGE");
3167 if (uEDX & RT_BIT(14)) pHlp->pfnPrintf(pHlp, " MCA");
3168 if (uEDX & RT_BIT(15)) pHlp->pfnPrintf(pHlp, " CMOV");
3169 if (uEDX & RT_BIT(16)) pHlp->pfnPrintf(pHlp, " PAT");
3170 if (uEDX & RT_BIT(17)) pHlp->pfnPrintf(pHlp, " PSE36");
3171 if (uEDX & RT_BIT(18)) pHlp->pfnPrintf(pHlp, " 18");
3172 if (uEDX & RT_BIT(19)) pHlp->pfnPrintf(pHlp, " 19");
3173 if (uEDX & RT_BIT(20)) pHlp->pfnPrintf(pHlp, " NX");
3174 if (uEDX & RT_BIT(21)) pHlp->pfnPrintf(pHlp, " 21");
3175 if (uEDX & RT_BIT(22)) pHlp->pfnPrintf(pHlp, " ExtMMX");
3176 if (uEDX & RT_BIT(23)) pHlp->pfnPrintf(pHlp, " MMX");
3177 if (uEDX & RT_BIT(24)) pHlp->pfnPrintf(pHlp, " FXSR");
3178 if (uEDX & RT_BIT(25)) pHlp->pfnPrintf(pHlp, " FastFXSR");
3179 if (uEDX & RT_BIT(26)) pHlp->pfnPrintf(pHlp, " Page1GB");
3180 if (uEDX & RT_BIT(27)) pHlp->pfnPrintf(pHlp, " RDTSCP");
3181 if (uEDX & RT_BIT(28)) pHlp->pfnPrintf(pHlp, " 28");
3182 if (uEDX & RT_BIT(29)) pHlp->pfnPrintf(pHlp, " LongMode");
3183 if (uEDX & RT_BIT(30)) pHlp->pfnPrintf(pHlp, " Ext3DNow");
3184 if (uEDX & RT_BIT(31)) pHlp->pfnPrintf(pHlp, " 3DNow");
3185 pHlp->pfnPrintf(pHlp, "\n");
3186
3187 uint32_t uECX = Guest.ecx;
3188 pHlp->pfnPrintf(pHlp, "Features ECX: ");
3189 if (uECX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " LAHF/SAHF");
3190 if (uECX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " CMPL");
3191 if (uECX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " SVM");
3192 if (uECX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " ExtAPIC");
3193 if (uECX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " CR8L");
3194 if (uECX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " ABM");
3195 if (uECX & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " SSE4A");
3196 if (uECX & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " MISALNSSE");
3197 if (uECX & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " 3DNOWPRF");
3198 if (uECX & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " OSVW");
3199 if (uECX & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " IBS");
3200 if (uECX & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " SSE5");
3201 if (uECX & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " SKINIT");
3202 if (uECX & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " WDT");
3203 for (unsigned iBit = 5; iBit < 32; iBit++)
3204 if (uECX & RT_BIT(iBit))
3205 pHlp->pfnPrintf(pHlp, " %d", iBit);
3206 pHlp->pfnPrintf(pHlp, "\n");
3207 }
3208 else
3209 {
3210 ASMCpuId(0x80000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3211
3212 uint32_t uEdxGst = Guest.edx;
3213 uint32_t uEdxHst = Host.edx;
3214 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3215 pHlp->pfnPrintf(pHlp, "FPU - x87 FPU on Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3216 pHlp->pfnPrintf(pHlp, "VME - Virtual 8086 Mode Enhancements = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3217 pHlp->pfnPrintf(pHlp, "DE - Debugging extensions = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3218 pHlp->pfnPrintf(pHlp, "PSE - Page Size Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3219 pHlp->pfnPrintf(pHlp, "TSC - Time Stamp Counter = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3220 pHlp->pfnPrintf(pHlp, "MSR - K86 Model Specific Registers = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3221 pHlp->pfnPrintf(pHlp, "PAE - Physical Address Extension = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3222 pHlp->pfnPrintf(pHlp, "MCE - Machine Check Exception = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3223 pHlp->pfnPrintf(pHlp, "CX8 - CMPXCHG8B instruction = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3224 pHlp->pfnPrintf(pHlp, "APIC - APIC On-Chip = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3225 pHlp->pfnPrintf(pHlp, "10 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3226 pHlp->pfnPrintf(pHlp, "SEP - SYSCALL and SYSRET = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3227 pHlp->pfnPrintf(pHlp, "MTRR - Memory Type Range Registers = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3228 pHlp->pfnPrintf(pHlp, "PGE - PTE Global Bit = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3229 pHlp->pfnPrintf(pHlp, "MCA - Machine Check Architecture = %d (%d)\n", !!(uEdxGst & RT_BIT(14)), !!(uEdxHst & RT_BIT(14)));
3230 pHlp->pfnPrintf(pHlp, "CMOV - Conditional Move Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(15)), !!(uEdxHst & RT_BIT(15)));
3231 pHlp->pfnPrintf(pHlp, "PAT - Page Attribute Table = %d (%d)\n", !!(uEdxGst & RT_BIT(16)), !!(uEdxHst & RT_BIT(16)));
3232 pHlp->pfnPrintf(pHlp, "PSE-36 - 36-bit Page Size Extention = %d (%d)\n", !!(uEdxGst & RT_BIT(17)), !!(uEdxHst & RT_BIT(17)));
3233 pHlp->pfnPrintf(pHlp, "18 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(18)), !!(uEdxHst & RT_BIT(18)));
3234 pHlp->pfnPrintf(pHlp, "19 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(19)), !!(uEdxHst & RT_BIT(19)));
3235 pHlp->pfnPrintf(pHlp, "NX - No-Execute Page Protection = %d (%d)\n", !!(uEdxGst & RT_BIT(20)), !!(uEdxHst & RT_BIT(20)));
3236 pHlp->pfnPrintf(pHlp, "DS - Debug Store = %d (%d)\n", !!(uEdxGst & RT_BIT(21)), !!(uEdxHst & RT_BIT(21)));
3237 pHlp->pfnPrintf(pHlp, "AXMMX - AMD Extensions to MMX Instr. = %d (%d)\n", !!(uEdxGst & RT_BIT(22)), !!(uEdxHst & RT_BIT(22)));
3238 pHlp->pfnPrintf(pHlp, "MMX - Intel MMX Technology = %d (%d)\n", !!(uEdxGst & RT_BIT(23)), !!(uEdxHst & RT_BIT(23)));
3239 pHlp->pfnPrintf(pHlp, "FXSR - FXSAVE and FXRSTOR Instructions = %d (%d)\n", !!(uEdxGst & RT_BIT(24)), !!(uEdxHst & RT_BIT(24)));
3240 pHlp->pfnPrintf(pHlp, "25 - AMD fast FXSAVE and FXRSTOR Instr.= %d (%d)\n", !!(uEdxGst & RT_BIT(25)), !!(uEdxHst & RT_BIT(25)));
3241 pHlp->pfnPrintf(pHlp, "26 - 1 GB large page support = %d (%d)\n", !!(uEdxGst & RT_BIT(26)), !!(uEdxHst & RT_BIT(26)));
3242 pHlp->pfnPrintf(pHlp, "27 - RDTSCP instruction = %d (%d)\n", !!(uEdxGst & RT_BIT(27)), !!(uEdxHst & RT_BIT(27)));
3243 pHlp->pfnPrintf(pHlp, "28 - Reserved = %d (%d)\n", !!(uEdxGst & RT_BIT(28)), !!(uEdxHst & RT_BIT(28)));
3244 pHlp->pfnPrintf(pHlp, "29 - AMD Long Mode = %d (%d)\n", !!(uEdxGst & RT_BIT(29)), !!(uEdxHst & RT_BIT(29)));
3245 pHlp->pfnPrintf(pHlp, "30 - AMD Extensions to 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(30)), !!(uEdxHst & RT_BIT(30)));
3246 pHlp->pfnPrintf(pHlp, "31 - AMD 3DNow = %d (%d)\n", !!(uEdxGst & RT_BIT(31)), !!(uEdxHst & RT_BIT(31)));
3247
3248 uint32_t uEcxGst = Guest.ecx;
3249 uint32_t uEcxHst = Host.ecx;
3250 pHlp->pfnPrintf(pHlp, "LahfSahf - LAHF/SAHF in 64-bit mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 0)), !!(uEcxHst & RT_BIT( 0)));
3251 pHlp->pfnPrintf(pHlp, "CmpLegacy - Core MP legacy mode (depr) = %d (%d)\n", !!(uEcxGst & RT_BIT( 1)), !!(uEcxHst & RT_BIT( 1)));
3252 pHlp->pfnPrintf(pHlp, "SVM - AMD VM Extensions = %d (%d)\n", !!(uEcxGst & RT_BIT( 2)), !!(uEcxHst & RT_BIT( 2)));
3253 pHlp->pfnPrintf(pHlp, "APIC registers starting at 0x400 = %d (%d)\n", !!(uEcxGst & RT_BIT( 3)), !!(uEcxHst & RT_BIT( 3)));
3254 pHlp->pfnPrintf(pHlp, "AltMovCR8 - LOCK MOV CR0 means MOV CR8 = %d (%d)\n", !!(uEcxGst & RT_BIT( 4)), !!(uEcxHst & RT_BIT( 4)));
3255 pHlp->pfnPrintf(pHlp, "Advanced bit manipulation = %d (%d)\n", !!(uEcxGst & RT_BIT( 5)), !!(uEcxHst & RT_BIT( 5)));
3256 pHlp->pfnPrintf(pHlp, "SSE4A instruction support = %d (%d)\n", !!(uEcxGst & RT_BIT( 6)), !!(uEcxHst & RT_BIT( 6)));
3257 pHlp->pfnPrintf(pHlp, "Misaligned SSE mode = %d (%d)\n", !!(uEcxGst & RT_BIT( 7)), !!(uEcxHst & RT_BIT( 7)));
3258 pHlp->pfnPrintf(pHlp, "PREFETCH and PREFETCHW instruction = %d (%d)\n", !!(uEcxGst & RT_BIT( 8)), !!(uEcxHst & RT_BIT( 8)));
3259 pHlp->pfnPrintf(pHlp, "OS visible workaround = %d (%d)\n", !!(uEcxGst & RT_BIT( 9)), !!(uEcxHst & RT_BIT( 9)));
3260 pHlp->pfnPrintf(pHlp, "Instruction based sampling = %d (%d)\n", !!(uEcxGst & RT_BIT(10)), !!(uEcxHst & RT_BIT(10)));
3261 pHlp->pfnPrintf(pHlp, "SSE5 support = %d (%d)\n", !!(uEcxGst & RT_BIT(11)), !!(uEcxHst & RT_BIT(11)));
3262 pHlp->pfnPrintf(pHlp, "SKINIT, STGI, and DEV support = %d (%d)\n", !!(uEcxGst & RT_BIT(12)), !!(uEcxHst & RT_BIT(12)));
3263 pHlp->pfnPrintf(pHlp, "Watchdog timer support. = %d (%d)\n", !!(uEcxGst & RT_BIT(13)), !!(uEcxHst & RT_BIT(13)));
3264 pHlp->pfnPrintf(pHlp, "31:14 - Reserved = %#x (%#x)\n", uEcxGst >> 14, uEcxHst >> 14);
3265 }
3266 }
3267
3268 if (iVerbosity && cExtMax >= 2)
3269 {
3270 char szString[4*4*3+1] = {0};
3271 uint32_t *pu32 = (uint32_t *)szString;
3272 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].eax;
3273 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ebx;
3274 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].ecx;
3275 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[2].edx;
3276 if (cExtMax >= 3)
3277 {
3278 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].eax;
3279 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ebx;
3280 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].ecx;
3281 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[3].edx;
3282 }
3283 if (cExtMax >= 4)
3284 {
3285 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].eax;
3286 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ebx;
3287 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].ecx;
3288 *pu32++ = pVM->cpum.s.aGuestCpuIdExt[4].edx;
3289 }
3290 pHlp->pfnPrintf(pHlp, "Full Name: %s\n", szString);
3291 }
3292
3293 if (iVerbosity && cExtMax >= 5)
3294 {
3295 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[5].eax;
3296 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[5].ebx;
3297 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[5].ecx;
3298 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[5].edx;
3299 char sz1[32];
3300 char sz2[32];
3301
3302 pHlp->pfnPrintf(pHlp,
3303 "TLB 2/4M Instr/Uni: %s %3d entries\n"
3304 "TLB 2/4M Data: %s %3d entries\n",
3305 getCacheAss((uEAX >> 8) & 0xff, sz1), (uEAX >> 0) & 0xff,
3306 getCacheAss((uEAX >> 24) & 0xff, sz2), (uEAX >> 16) & 0xff);
3307 pHlp->pfnPrintf(pHlp,
3308 "TLB 4K Instr/Uni: %s %3d entries\n"
3309 "TLB 4K Data: %s %3d entries\n",
3310 getCacheAss((uEBX >> 8) & 0xff, sz1), (uEBX >> 0) & 0xff,
3311 getCacheAss((uEBX >> 24) & 0xff, sz2), (uEBX >> 16) & 0xff);
3312 pHlp->pfnPrintf(pHlp, "L1 Instr Cache Line Size: %d bytes\n"
3313 "L1 Instr Cache Lines Per Tag: %d\n"
3314 "L1 Instr Cache Associativity: %s\n"
3315 "L1 Instr Cache Size: %d KB\n",
3316 (uEDX >> 0) & 0xff,
3317 (uEDX >> 8) & 0xff,
3318 getCacheAss((uEDX >> 16) & 0xff, sz1),
3319 (uEDX >> 24) & 0xff);
3320 pHlp->pfnPrintf(pHlp,
3321 "L1 Data Cache Line Size: %d bytes\n"
3322 "L1 Data Cache Lines Per Tag: %d\n"
3323 "L1 Data Cache Associativity: %s\n"
3324 "L1 Data Cache Size: %d KB\n",
3325 (uECX >> 0) & 0xff,
3326 (uECX >> 8) & 0xff,
3327 getCacheAss((uECX >> 16) & 0xff, sz1),
3328 (uECX >> 24) & 0xff);
3329 }
3330
3331 if (iVerbosity && cExtMax >= 6)
3332 {
3333 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[6].eax;
3334 uint32_t uEBX = pVM->cpum.s.aGuestCpuIdExt[6].ebx;
3335 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[6].edx;
3336
3337 pHlp->pfnPrintf(pHlp,
3338 "L2 TLB 2/4M Instr/Uni: %s %4d entries\n"
3339 "L2 TLB 2/4M Data: %s %4d entries\n",
3340 getL2CacheAss((uEAX >> 12) & 0xf), (uEAX >> 0) & 0xfff,
3341 getL2CacheAss((uEAX >> 28) & 0xf), (uEAX >> 16) & 0xfff);
3342 pHlp->pfnPrintf(pHlp,
3343 "L2 TLB 4K Instr/Uni: %s %4d entries\n"
3344 "L2 TLB 4K Data: %s %4d entries\n",
3345 getL2CacheAss((uEBX >> 12) & 0xf), (uEBX >> 0) & 0xfff,
3346 getL2CacheAss((uEBX >> 28) & 0xf), (uEBX >> 16) & 0xfff);
3347 pHlp->pfnPrintf(pHlp,
3348 "L2 Cache Line Size: %d bytes\n"
3349 "L2 Cache Lines Per Tag: %d\n"
3350 "L2 Cache Associativity: %s\n"
3351 "L2 Cache Size: %d KB\n",
3352 (uEDX >> 0) & 0xff,
3353 (uEDX >> 8) & 0xf,
3354 getL2CacheAss((uEDX >> 12) & 0xf),
3355 (uEDX >> 16) & 0xffff);
3356 }
3357
3358 if (iVerbosity && cExtMax >= 7)
3359 {
3360 uint32_t uEDX = pVM->cpum.s.aGuestCpuIdExt[7].edx;
3361
3362 pHlp->pfnPrintf(pHlp, "APM Features: ");
3363 if (uEDX & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " TS");
3364 if (uEDX & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " FID");
3365 if (uEDX & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " VID");
3366 if (uEDX & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " TTP");
3367 if (uEDX & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " TM");
3368 if (uEDX & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " STC");
3369 for (unsigned iBit = 6; iBit < 32; iBit++)
3370 if (uEDX & RT_BIT(iBit))
3371 pHlp->pfnPrintf(pHlp, " %d", iBit);
3372 pHlp->pfnPrintf(pHlp, "\n");
3373 }
3374
3375 if (iVerbosity && cExtMax >= 8)
3376 {
3377 uint32_t uEAX = pVM->cpum.s.aGuestCpuIdExt[8].eax;
3378 uint32_t uECX = pVM->cpum.s.aGuestCpuIdExt[8].ecx;
3379
3380 pHlp->pfnPrintf(pHlp,
3381 "Physical Address Width: %d bits\n"
3382 "Virtual Address Width: %d bits\n"
3383 "Guest Physical Address Width: %d bits\n",
3384 (uEAX >> 0) & 0xff,
3385 (uEAX >> 8) & 0xff,
3386 (uEAX >> 16) & 0xff);
3387 pHlp->pfnPrintf(pHlp,
3388 "Physical Core Count: %d\n",
3389 (uECX >> 0) & 0xff);
3390 }
3391
3392
3393 /*
3394 * Centaur.
3395 */
3396 unsigned cCentaurMax = pVM->cpum.s.aGuestCpuIdCentaur[0].eax & 0xffff;
3397
3398 pHlp->pfnPrintf(pHlp,
3399 "\n"
3400 " RAW Centaur CPUIDs\n"
3401 " Function eax ebx ecx edx\n");
3402 for (unsigned i = 0; i < RT_ELEMENTS(pVM->cpum.s.aGuestCpuIdCentaur); i++)
3403 {
3404 Guest = pVM->cpum.s.aGuestCpuIdCentaur[i];
3405 ASMCpuId(0xc0000000 | i, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3406
3407 pHlp->pfnPrintf(pHlp,
3408 "Gst: %08x %08x %08x %08x %08x%s\n"
3409 "Hst: %08x %08x %08x %08x\n",
3410 0xc0000000 | i, Guest.eax, Guest.ebx, Guest.ecx, Guest.edx,
3411 i <= cCentaurMax ? "" : "*",
3412 Host.eax, Host.ebx, Host.ecx, Host.edx);
3413 }
3414
3415 /*
3416 * Understandable output
3417 */
3418 if (iVerbosity)
3419 {
3420 Guest = pVM->cpum.s.aGuestCpuIdCentaur[0];
3421 pHlp->pfnPrintf(pHlp,
3422 "Centaur Supports: 0xc0000000-%#010x\n",
3423 Guest.eax);
3424 }
3425
3426 if (iVerbosity && cCentaurMax >= 1)
3427 {
3428 ASMCpuId(0xc0000001, &Host.eax, &Host.ebx, &Host.ecx, &Host.edx);
3429 uint32_t uEdxGst = pVM->cpum.s.aGuestCpuIdExt[1].edx;
3430 uint32_t uEdxHst = Host.edx;
3431
3432 if (iVerbosity == 1)
3433 {
3434 pHlp->pfnPrintf(pHlp, "Centaur Features EDX: ");
3435 if (uEdxGst & RT_BIT(0)) pHlp->pfnPrintf(pHlp, " AIS");
3436 if (uEdxGst & RT_BIT(1)) pHlp->pfnPrintf(pHlp, " AIS-E");
3437 if (uEdxGst & RT_BIT(2)) pHlp->pfnPrintf(pHlp, " RNG");
3438 if (uEdxGst & RT_BIT(3)) pHlp->pfnPrintf(pHlp, " RNG-E");
3439 if (uEdxGst & RT_BIT(4)) pHlp->pfnPrintf(pHlp, " LH");
3440 if (uEdxGst & RT_BIT(5)) pHlp->pfnPrintf(pHlp, " FEMMS");
3441 if (uEdxGst & RT_BIT(6)) pHlp->pfnPrintf(pHlp, " ACE");
3442 if (uEdxGst & RT_BIT(7)) pHlp->pfnPrintf(pHlp, " ACE-E");
3443 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3444 if (uEdxGst & RT_BIT(8)) pHlp->pfnPrintf(pHlp, " ACE2");
3445 if (uEdxGst & RT_BIT(9)) pHlp->pfnPrintf(pHlp, " ACE2-E");
3446 if (uEdxGst & RT_BIT(10)) pHlp->pfnPrintf(pHlp, " PHE");
3447 if (uEdxGst & RT_BIT(11)) pHlp->pfnPrintf(pHlp, " PHE-E");
3448 if (uEdxGst & RT_BIT(12)) pHlp->pfnPrintf(pHlp, " PMM");
3449 if (uEdxGst & RT_BIT(13)) pHlp->pfnPrintf(pHlp, " PMM-E");
3450 for (unsigned iBit = 14; iBit < 32; iBit++)
3451 if (uEdxGst & RT_BIT(iBit))
3452 pHlp->pfnPrintf(pHlp, " %d", iBit);
3453 pHlp->pfnPrintf(pHlp, "\n");
3454 }
3455 else
3456 {
3457 pHlp->pfnPrintf(pHlp, "Mnemonic - Description = guest (host)\n");
3458 pHlp->pfnPrintf(pHlp, "AIS - Alternate Instruction Set = %d (%d)\n", !!(uEdxGst & RT_BIT( 0)), !!(uEdxHst & RT_BIT( 0)));
3459 pHlp->pfnPrintf(pHlp, "AIS-E - AIS enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 1)), !!(uEdxHst & RT_BIT( 1)));
3460 pHlp->pfnPrintf(pHlp, "RNG - Random Number Generator = %d (%d)\n", !!(uEdxGst & RT_BIT( 2)), !!(uEdxHst & RT_BIT( 2)));
3461 pHlp->pfnPrintf(pHlp, "RNG-E - RNG enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 3)), !!(uEdxHst & RT_BIT( 3)));
3462 pHlp->pfnPrintf(pHlp, "LH - LongHaul MSR 0000_110Ah = %d (%d)\n", !!(uEdxGst & RT_BIT( 4)), !!(uEdxHst & RT_BIT( 4)));
3463 pHlp->pfnPrintf(pHlp, "FEMMS - FEMMS = %d (%d)\n", !!(uEdxGst & RT_BIT( 5)), !!(uEdxHst & RT_BIT( 5)));
3464 pHlp->pfnPrintf(pHlp, "ACE - Advanced Cryptography Engine = %d (%d)\n", !!(uEdxGst & RT_BIT( 6)), !!(uEdxHst & RT_BIT( 6)));
3465 pHlp->pfnPrintf(pHlp, "ACE-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 7)), !!(uEdxHst & RT_BIT( 7)));
3466 /* possibly indicating MM/HE and MM/HE-E on older chips... */
3467 pHlp->pfnPrintf(pHlp, "ACE2 - Advanced Cryptography Engine 2 = %d (%d)\n", !!(uEdxGst & RT_BIT( 8)), !!(uEdxHst & RT_BIT( 8)));
3468 pHlp->pfnPrintf(pHlp, "ACE2-E - ACE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT( 9)), !!(uEdxHst & RT_BIT( 9)));
3469 pHlp->pfnPrintf(pHlp, "PHE - Hash Engine = %d (%d)\n", !!(uEdxGst & RT_BIT(10)), !!(uEdxHst & RT_BIT(10)));
3470 pHlp->pfnPrintf(pHlp, "PHE-E - PHE enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(11)), !!(uEdxHst & RT_BIT(11)));
3471 pHlp->pfnPrintf(pHlp, "PMM - Montgomery Multiplier = %d (%d)\n", !!(uEdxGst & RT_BIT(12)), !!(uEdxHst & RT_BIT(12)));
3472 pHlp->pfnPrintf(pHlp, "PMM-E - PMM enabled = %d (%d)\n", !!(uEdxGst & RT_BIT(13)), !!(uEdxHst & RT_BIT(13)));
3473 for (unsigned iBit = 14; iBit < 32; iBit++)
3474 if ((uEdxGst | uEdxHst) & RT_BIT(iBit))
3475 pHlp->pfnPrintf(pHlp, "Bit %d = %d (%d)\n", !!(uEdxGst & RT_BIT(iBit)), !!(uEdxHst & RT_BIT(iBit)));
3476 pHlp->pfnPrintf(pHlp, "\n");
3477 }
3478 }
3479}
3480
3481
3482/**
3483 * Structure used when disassembling and instructions in DBGF.
3484 * This is used so the reader function can get the stuff it needs.
3485 */
3486typedef struct CPUMDISASSTATE
3487{
3488 /** Pointer to the CPU structure. */
3489 PDISCPUSTATE pCpu;
3490 /** The VM handle. */
3491 PVM pVM;
3492 /** The VMCPU handle. */
3493 PVMCPU pVCpu;
3494 /** Pointer to the first byte in the segment. */
3495 RTGCUINTPTR GCPtrSegBase;
3496 /** Pointer to the byte after the end of the segment. (might have wrapped!) */
3497 RTGCUINTPTR GCPtrSegEnd;
3498 /** The size of the segment minus 1. */
3499 RTGCUINTPTR cbSegLimit;
3500 /** Pointer to the current page - R3 Ptr. */
3501 void const *pvPageR3;
3502 /** Pointer to the current page - GC Ptr. */
3503 RTGCPTR pvPageGC;
3504 /** The lock information that PGMPhysReleasePageMappingLock needs. */
3505 PGMPAGEMAPLOCK PageMapLock;
3506 /** Whether the PageMapLock is valid or not. */
3507 bool fLocked;
3508 /** 64 bits mode or not. */
3509 bool f64Bits;
3510} CPUMDISASSTATE, *PCPUMDISASSTATE;
3511
3512
3513/**
3514 * Instruction reader.
3515 *
3516 * @returns VBox status code.
3517 * @param PtrSrc Address to read from.
3518 * In our case this is relative to the selector pointed to by the 2nd user argument of uDisCpu.
3519 * @param pu8Dst Where to store the bytes.
3520 * @param cbRead Number of bytes to read.
3521 * @param uDisCpu Pointer to the disassembler cpu state.
3522 * In this context it's always pointer to the Core of a DBGFDISASSTATE.
3523 */
3524static DECLCALLBACK(int) cpumR3DisasInstrRead(RTUINTPTR PtrSrc, uint8_t *pu8Dst, unsigned cbRead, void *uDisCpu)
3525{
3526 PDISCPUSTATE pCpu = (PDISCPUSTATE)uDisCpu;
3527 PCPUMDISASSTATE pState = (PCPUMDISASSTATE)pCpu->apvUserData[0];
3528 Assert(cbRead > 0);
3529 for (;;)
3530 {
3531 RTGCUINTPTR GCPtr = PtrSrc + pState->GCPtrSegBase;
3532
3533 /* Need to update the page translation? */
3534 if ( !pState->pvPageR3
3535 || (GCPtr >> PAGE_SHIFT) != (pState->pvPageGC >> PAGE_SHIFT))
3536 {
3537 int rc = VINF_SUCCESS;
3538
3539 /* translate the address */
3540 pState->pvPageGC = GCPtr & PAGE_BASE_GC_MASK;
3541 if ( MMHyperIsInsideArea(pState->pVM, pState->pvPageGC)
3542 && !HWACCMIsEnabled(pState->pVM))
3543 {
3544 pState->pvPageR3 = MMHyperRCToR3(pState->pVM, (RTRCPTR)pState->pvPageGC);
3545 if (!pState->pvPageR3)
3546 rc = VERR_INVALID_POINTER;
3547 }
3548 else
3549 {
3550 /* Release mapping lock previously acquired. */
3551 if (pState->fLocked)
3552 PGMPhysReleasePageMappingLock(pState->pVM, &pState->PageMapLock);
3553 rc = PGMPhysGCPtr2CCPtrReadOnly(pState->pVCpu, pState->pvPageGC, &pState->pvPageR3, &pState->PageMapLock);
3554 pState->fLocked = RT_SUCCESS_NP(rc);
3555 }
3556 if (RT_FAILURE(rc))
3557 {
3558 pState->pvPageR3 = NULL;
3559 return rc;
3560 }
3561 }
3562
3563 /* check the segment limit */
3564 if (!pState->f64Bits && PtrSrc > pState->cbSegLimit)
3565 return VERR_OUT_OF_SELECTOR_BOUNDS;
3566
3567 /* calc how much we can read */
3568 uint32_t cb = PAGE_SIZE - (GCPtr & PAGE_OFFSET_MASK);
3569 if (!pState->f64Bits)
3570 {
3571 RTGCUINTPTR cbSeg = pState->GCPtrSegEnd - GCPtr;
3572 if (cb > cbSeg && cbSeg)
3573 cb = cbSeg;
3574 }
3575 if (cb > cbRead)
3576 cb = cbRead;
3577
3578 /* read and advance */
3579 memcpy(pu8Dst, (char *)pState->pvPageR3 + (GCPtr & PAGE_OFFSET_MASK), cb);
3580 cbRead -= cb;
3581 if (!cbRead)
3582 return VINF_SUCCESS;
3583 pu8Dst += cb;
3584 PtrSrc += cb;
3585 }
3586}
3587
3588
3589/**
3590 * Disassemble an instruction and return the information in the provided structure.
3591 *
3592 * @returns VBox status code.
3593 * @param pVM VM Handle
3594 * @param pVCpu VMCPU Handle
3595 * @param pCtx CPU context
3596 * @param GCPtrPC Program counter (relative to CS) to disassemble from.
3597 * @param pCpu Disassembly state
3598 * @param pszPrefix String prefix for logging (debug only)
3599 *
3600 */
3601VMMR3DECL(int) CPUMR3DisasmInstrCPU(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR GCPtrPC, PDISCPUSTATE pCpu, const char *pszPrefix)
3602{
3603 CPUMDISASSTATE State;
3604 int rc;
3605
3606 const PGMMODE enmMode = PGMGetGuestMode(pVCpu);
3607 State.pCpu = pCpu;
3608 State.pvPageGC = 0;
3609 State.pvPageR3 = NULL;
3610 State.pVM = pVM;
3611 State.pVCpu = pVCpu;
3612 State.fLocked = false;
3613 State.f64Bits = false;
3614
3615 /*
3616 * Get selector information.
3617 */
3618 if ( (pCtx->cr0 & X86_CR0_PE)
3619 && pCtx->eflags.Bits.u1VM == 0)
3620 {
3621 if (CPUMAreHiddenSelRegsValid(pVCpu))
3622 {
3623 State.f64Bits = enmMode >= PGMMODE_AMD64 && pCtx->csHid.Attr.n.u1Long;
3624 State.GCPtrSegBase = pCtx->csHid.u64Base;
3625 State.GCPtrSegEnd = pCtx->csHid.u32Limit + 1 + (RTGCUINTPTR)pCtx->csHid.u64Base;
3626 State.cbSegLimit = pCtx->csHid.u32Limit;
3627 pCpu->mode = (State.f64Bits)
3628 ? CPUMODE_64BIT
3629 : pCtx->csHid.Attr.n.u1DefBig
3630 ? CPUMODE_32BIT
3631 : CPUMODE_16BIT;
3632 }
3633 else
3634 {
3635 DBGFSELINFO SelInfo;
3636
3637 rc = SELMR3GetShadowSelectorInfo(pVM, pCtx->cs, &SelInfo);
3638 if (RT_FAILURE(rc))
3639 {
3640 AssertMsgFailed(("SELMR3GetShadowSelectorInfo failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3641 return rc;
3642 }
3643
3644 /*
3645 * Validate the selector.
3646 */
3647 rc = DBGFR3SelInfoValidateCS(&SelInfo, pCtx->ss);
3648 if (RT_FAILURE(rc))
3649 {
3650 AssertMsgFailed(("SELMSelInfoValidateCS failed for %04X:%RGv rc=%d\n", pCtx->cs, GCPtrPC, rc));
3651 return rc;
3652 }
3653 State.GCPtrSegBase = SelInfo.GCPtrBase;
3654 State.GCPtrSegEnd = SelInfo.cbLimit + 1 + (RTGCUINTPTR)SelInfo.GCPtrBase;
3655 State.cbSegLimit = SelInfo.cbLimit;
3656 pCpu->mode = SelInfo.u.Raw.Gen.u1DefBig ? CPUMODE_32BIT : CPUMODE_16BIT;
3657 }
3658 }
3659 else
3660 {
3661 /* real or V86 mode */
3662 pCpu->mode = CPUMODE_16BIT;
3663 State.GCPtrSegBase = pCtx->cs * 16;
3664 State.GCPtrSegEnd = 0xFFFFFFFF;
3665 State.cbSegLimit = 0xFFFFFFFF;
3666 }
3667
3668 /*
3669 * Disassemble the instruction.
3670 */
3671 pCpu->pfnReadBytes = cpumR3DisasInstrRead;
3672 pCpu->apvUserData[0] = &State;
3673
3674 uint32_t cbInstr;
3675#ifndef LOG_ENABLED
3676 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, NULL);
3677 if (RT_SUCCESS(rc))
3678 {
3679#else
3680 char szOutput[160];
3681 rc = DISInstr(pCpu, GCPtrPC, 0, &cbInstr, &szOutput[0]);
3682 if (RT_SUCCESS(rc))
3683 {
3684 /* log it */
3685 if (pszPrefix)
3686 Log(("%s-CPU%d: %s", pszPrefix, pVCpu->idCpu, szOutput));
3687 else
3688 Log(("%s", szOutput));
3689#endif
3690 rc = VINF_SUCCESS;
3691 }
3692 else
3693 Log(("CPUMR3DisasmInstrCPU: DISInstr failed for %04X:%RGv rc=%Rrc\n", pCtx->cs, GCPtrPC, rc));
3694
3695 /* Release mapping lock acquired in cpumR3DisasInstrRead. */
3696 if (State.fLocked)
3697 PGMPhysReleasePageMappingLock(pVM, &State.PageMapLock);
3698
3699 return rc;
3700}
3701
3702#ifdef DEBUG
3703
3704/**
3705 * Disassemble an instruction and dump it to the log
3706 *
3707 * @returns VBox status code.
3708 * @param pVM VM Handle
3709 * @param pVCpu VMCPU Handle
3710 * @param pCtx CPU context
3711 * @param pc GC instruction pointer
3712 * @param pszPrefix String prefix for logging
3713 *
3714 * @deprecated Use DBGFR3DisasInstrCurrentLog().
3715 */
3716VMMR3DECL(void) CPUMR3DisasmInstr(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx, RTGCPTR pc, const char *pszPrefix)
3717{
3718 DISCPUSTATE Cpu;
3719 CPUMR3DisasmInstrCPU(pVM, pVCpu, pCtx, pc, &Cpu, pszPrefix);
3720}
3721
3722
3723/**
3724 * Debug helper - Saves guest context on raw mode entry (for fatal dump)
3725 *
3726 * @internal
3727 */
3728VMMR3DECL(void) CPUMR3SaveEntryCtx(PVM pVM)
3729{
3730 /** @todo SMP support!! */
3731 pVM->cpum.s.GuestEntry = *CPUMQueryGuestCtxPtr(VMMGetCpu(pVM));
3732}
3733
3734#endif /* DEBUG */
3735
3736/**
3737 * API for controlling a few of the CPU features found in CR4.
3738 *
3739 * Currently only X86_CR4_TSD is accepted as input.
3740 *
3741 * @returns VBox status code.
3742 *
3743 * @param pVM The VM handle.
3744 * @param fOr The CR4 OR mask.
3745 * @param fAnd The CR4 AND mask.
3746 */
3747VMMR3DECL(int) CPUMR3SetCR4Feature(PVM pVM, RTHCUINTREG fOr, RTHCUINTREG fAnd)
3748{
3749 AssertMsgReturn(!(fOr & ~(X86_CR4_TSD)), ("%#x\n", fOr), VERR_INVALID_PARAMETER);
3750 AssertMsgReturn((fAnd & ~(X86_CR4_TSD)) == ~(X86_CR4_TSD), ("%#x\n", fAnd), VERR_INVALID_PARAMETER);
3751
3752 pVM->cpum.s.CR4.OrMask &= fAnd;
3753 pVM->cpum.s.CR4.OrMask |= fOr;
3754
3755 return VINF_SUCCESS;
3756}
3757
3758
3759/**
3760 * Gets a pointer to the array of standard CPUID leaves.
3761 *
3762 * CPUMR3GetGuestCpuIdStdMax() give the size of the array.
3763 *
3764 * @returns Pointer to the standard CPUID leaves (read-only).
3765 * @param pVM The VM handle.
3766 * @remark Intended for PATM.
3767 */
3768VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdStdRCPtr(PVM pVM)
3769{
3770 return RCPTRTYPE(PCCPUMCPUID)VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdStd[0]);
3771}
3772
3773
3774/**
3775 * Gets a pointer to the array of extended CPUID leaves.
3776 *
3777 * CPUMGetGuestCpuIdExtMax() give the size of the array.
3778 *
3779 * @returns Pointer to the extended CPUID leaves (read-only).
3780 * @param pVM The VM handle.
3781 * @remark Intended for PATM.
3782 */
3783VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdExtRCPtr(PVM pVM)
3784{
3785 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdExt[0]);
3786}
3787
3788
3789/**
3790 * Gets a pointer to the array of centaur CPUID leaves.
3791 *
3792 * CPUMGetGuestCpuIdCentaurMax() give the size of the array.
3793 *
3794 * @returns Pointer to the centaur CPUID leaves (read-only).
3795 * @param pVM The VM handle.
3796 * @remark Intended for PATM.
3797 */
3798VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdCentaurRCPtr(PVM pVM)
3799{
3800 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.aGuestCpuIdCentaur[0]);
3801}
3802
3803
3804/**
3805 * Gets a pointer to the default CPUID leaf.
3806 *
3807 * @returns Pointer to the default CPUID leaf (read-only).
3808 * @param pVM The VM handle.
3809 * @remark Intended for PATM.
3810 */
3811VMMR3DECL(RCPTRTYPE(PCCPUMCPUID)) CPUMR3GetGuestCpuIdDefRCPtr(PVM pVM)
3812{
3813 return (RCPTRTYPE(PCCPUMCPUID))VM_RC_ADDR(pVM, &pVM->cpum.s.GuestCpuIdDef);
3814}
3815
3816
3817/**
3818 * Transforms the guest CPU state to raw-ring mode.
3819 *
3820 * This function will change the any of the cs and ss register with DPL=0 to DPL=1.
3821 *
3822 * @returns VBox status. (recompiler failure)
3823 * @param pVCpu The VMCPU handle.
3824 * @param pCtxCore The context core (for trap usage).
3825 * @see @ref pg_raw
3826 */
3827VMMR3DECL(int) CPUMR3RawEnter(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore)
3828{
3829 PVM pVM = pVCpu->CTX_SUFF(pVM);
3830
3831 Assert(!pVCpu->cpum.s.fRawEntered);
3832 Assert(!pVCpu->cpum.s.fRemEntered);
3833 if (!pCtxCore)
3834 pCtxCore = CPUMCTX2CORE(&pVCpu->cpum.s.Guest);
3835
3836 /*
3837 * Are we in Ring-0?
3838 */
3839 if ( pCtxCore->ss && (pCtxCore->ss & X86_SEL_RPL) == 0
3840 && !pCtxCore->eflags.Bits.u1VM)
3841 {
3842 /*
3843 * Enter execution mode.
3844 */
3845 PATMRawEnter(pVM, pCtxCore);
3846
3847 /*
3848 * Set CPL to Ring-1.
3849 */
3850 pCtxCore->ss |= 1;
3851 if (pCtxCore->cs && (pCtxCore->cs & X86_SEL_RPL) == 0)
3852 pCtxCore->cs |= 1;
3853 }
3854 else
3855 {
3856 AssertMsg((pCtxCore->ss & X86_SEL_RPL) >= 2 || pCtxCore->eflags.Bits.u1VM,
3857 ("ring-1 code not supported\n"));
3858 /*
3859 * PATM takes care of IOPL and IF flags for Ring-3 and Ring-2 code as well.
3860 */
3861 PATMRawEnter(pVM, pCtxCore);
3862 }
3863
3864 /*
3865 * Invalidate the hidden registers.
3866 */
3867 pVCpu->cpum.s.fChanged |= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
3868
3869 /*
3870 * Assert sanity.
3871 */
3872 AssertMsg((pCtxCore->eflags.u32 & X86_EFL_IF), ("X86_EFL_IF is clear\n"));
3873 AssertReleaseMsg( pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL)
3874 || pCtxCore->eflags.Bits.u1VM,
3875 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
3876 Assert((pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)) == (X86_CR0_PG | X86_CR0_PE | X86_CR0_WP));
3877
3878 pCtxCore->eflags.u32 |= X86_EFL_IF; /* paranoia */
3879
3880 pVCpu->cpum.s.fRawEntered = true;
3881 return VINF_SUCCESS;
3882}
3883
3884
3885/**
3886 * Transforms the guest CPU state from raw-ring mode to correct values.
3887 *
3888 * This function will change any selector registers with DPL=1 to DPL=0.
3889 *
3890 * @returns Adjusted rc.
3891 * @param pVCpu The VMCPU handle.
3892 * @param rc Raw mode return code
3893 * @param pCtxCore The context core (for trap usage).
3894 * @see @ref pg_raw
3895 */
3896VMMR3DECL(int) CPUMR3RawLeave(PVMCPU pVCpu, PCPUMCTXCORE pCtxCore, int rc)
3897{
3898 PVM pVM = pVCpu->CTX_SUFF(pVM);
3899
3900 /*
3901 * Don't leave if we've already left (in GC).
3902 */
3903 Assert(pVCpu->cpum.s.fRawEntered);
3904 Assert(!pVCpu->cpum.s.fRemEntered);
3905 if (!pVCpu->cpum.s.fRawEntered)
3906 return rc;
3907 pVCpu->cpum.s.fRawEntered = false;
3908
3909 PCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
3910 if (!pCtxCore)
3911 pCtxCore = CPUMCTX2CORE(pCtx);
3912 Assert(pCtxCore->eflags.Bits.u1VM || (pCtxCore->ss & X86_SEL_RPL));
3913 AssertMsg(pCtxCore->eflags.Bits.u1VM || pCtxCore->eflags.Bits.u2IOPL < (unsigned)(pCtxCore->ss & X86_SEL_RPL),
3914 ("X86_EFL_IOPL=%d CPL=%d\n", pCtxCore->eflags.Bits.u2IOPL, pCtxCore->ss & X86_SEL_RPL));
3915
3916 /*
3917 * Are we executing in raw ring-1?
3918 */
3919 if ( (pCtxCore->ss & X86_SEL_RPL) == 1
3920 && !pCtxCore->eflags.Bits.u1VM)
3921 {
3922 /*
3923 * Leave execution mode.
3924 */
3925 PATMRawLeave(pVM, pCtxCore, rc);
3926 /* Not quite sure if this is really required, but shouldn't harm (too much anyways). */
3927 /** @todo See what happens if we remove this. */
3928 if ((pCtxCore->ds & X86_SEL_RPL) == 1)
3929 pCtxCore->ds &= ~X86_SEL_RPL;
3930 if ((pCtxCore->es & X86_SEL_RPL) == 1)
3931 pCtxCore->es &= ~X86_SEL_RPL;
3932 if ((pCtxCore->fs & X86_SEL_RPL) == 1)
3933 pCtxCore->fs &= ~X86_SEL_RPL;
3934 if ((pCtxCore->gs & X86_SEL_RPL) == 1)
3935 pCtxCore->gs &= ~X86_SEL_RPL;
3936
3937 /*
3938 * Ring-1 selector => Ring-0.
3939 */
3940 pCtxCore->ss &= ~X86_SEL_RPL;
3941 if ((pCtxCore->cs & X86_SEL_RPL) == 1)
3942 pCtxCore->cs &= ~X86_SEL_RPL;
3943 }
3944 else
3945 {
3946 /*
3947 * PATM is taking care of the IOPL and IF flags for us.
3948 */
3949 PATMRawLeave(pVM, pCtxCore, rc);
3950 if (!pCtxCore->eflags.Bits.u1VM)
3951 {
3952 /** @todo See what happens if we remove this. */
3953 if ((pCtxCore->ds & X86_SEL_RPL) == 1)
3954 pCtxCore->ds &= ~X86_SEL_RPL;
3955 if ((pCtxCore->es & X86_SEL_RPL) == 1)
3956 pCtxCore->es &= ~X86_SEL_RPL;
3957 if ((pCtxCore->fs & X86_SEL_RPL) == 1)
3958 pCtxCore->fs &= ~X86_SEL_RPL;
3959 if ((pCtxCore->gs & X86_SEL_RPL) == 1)
3960 pCtxCore->gs &= ~X86_SEL_RPL;
3961 }
3962 }
3963
3964 return rc;
3965}
3966
3967
3968/**
3969 * Enters REM, gets and resets the changed flags (CPUM_CHANGED_*).
3970 *
3971 * Only REM should ever call this function!
3972 *
3973 * @returns The changed flags.
3974 * @param pVCpu The VMCPU handle.
3975 * @param puCpl Where to return the current privilege level (CPL).
3976 */
3977VMMR3DECL(uint32_t) CPUMR3RemEnter(PVMCPU pVCpu, uint32_t *puCpl)
3978{
3979 Assert(!pVCpu->cpum.s.fRawEntered);
3980 Assert(!pVCpu->cpum.s.fRemEntered);
3981
3982 /*
3983 * Get the CPL first.
3984 */
3985 *puCpl = CPUMGetGuestCPL(pVCpu, CPUMCTX2CORE(&pVCpu->cpum.s.Guest));
3986
3987 /*
3988 * Get and reset the flags, leaving CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID set.
3989 */
3990 uint32_t fFlags = pVCpu->cpum.s.fChanged;
3991 pVCpu->cpum.s.fChanged &= CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID; /* leave it set */
3992
3993 /** @todo change the switcher to use the fChanged flags. */
3994 if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_SINCE_REM)
3995 {
3996 fFlags |= CPUM_CHANGED_FPU_REM;
3997 pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_FPU_SINCE_REM;
3998 }
3999
4000 pVCpu->cpum.s.fRemEntered = true;
4001 return fFlags;
4002}
4003
4004
4005/**
4006 * Leaves REM and works the CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID flag.
4007 *
4008 * @param pVCpu The virtual CPU handle.
4009 * @param fNoOutOfSyncSels This is @c false if there are out of sync
4010 * registers.
4011 */
4012VMMR3DECL(void) CPUMR3RemLeave(PVMCPU pVCpu, bool fNoOutOfSyncSels)
4013{
4014 Assert(!pVCpu->cpum.s.fRawEntered);
4015 Assert(pVCpu->cpum.s.fRemEntered);
4016
4017 if (fNoOutOfSyncSels)
4018 pVCpu->cpum.s.fChanged &= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
4019 else
4020 pVCpu->cpum.s.fChanged |= ~CPUM_CHANGED_HIDDEN_SEL_REGS_INVALID;
4021
4022 pVCpu->cpum.s.fRemEntered = false;
4023}
4024
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette