VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMR0/VMMR0.cpp@ 90297

最後變更 在這個檔案從90297是 90190,由 vboxsync 提交於 4 年 前

VMM/VMMR0: Disabled the unnecessary VERR_VMM_CONTEXT_HOOK_STILL_ENABLED check. Some related guru report adjustments. bugref:10064 ticketref:20090 ticketref:20456

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id Revision
檔案大小: 103.8 KB
 
1/* $Id: VMMR0.cpp 90190 2021-07-14 16:50:45Z vboxsync $ */
2/** @file
3 * VMM - Host Context Ring 0.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_VMM
23#include <VBox/vmm/vmm.h>
24#include <VBox/sup.h>
25#include <VBox/vmm/iom.h>
26#include <VBox/vmm/trpm.h>
27#include <VBox/vmm/cpum.h>
28#include <VBox/vmm/pdmapi.h>
29#include <VBox/vmm/pgm.h>
30#ifdef VBOX_WITH_NEM_R0
31# include <VBox/vmm/nem.h>
32#endif
33#include <VBox/vmm/em.h>
34#include <VBox/vmm/stam.h>
35#include <VBox/vmm/tm.h>
36#include "VMMInternal.h"
37#include <VBox/vmm/vmcc.h>
38#include <VBox/vmm/gvm.h>
39#ifdef VBOX_WITH_PCI_PASSTHROUGH
40# include <VBox/vmm/pdmpci.h>
41#endif
42#include <VBox/vmm/apic.h>
43
44#include <VBox/vmm/gvmm.h>
45#include <VBox/vmm/gmm.h>
46#include <VBox/vmm/gim.h>
47#include <VBox/intnet.h>
48#include <VBox/vmm/hm.h>
49#include <VBox/param.h>
50#include <VBox/err.h>
51#include <VBox/version.h>
52#include <VBox/log.h>
53
54#include <iprt/asm-amd64-x86.h>
55#include <iprt/assert.h>
56#include <iprt/crc.h>
57#include <iprt/mp.h>
58#include <iprt/once.h>
59#include <iprt/stdarg.h>
60#include <iprt/string.h>
61#include <iprt/thread.h>
62#include <iprt/timer.h>
63#include <iprt/time.h>
64
65#include "dtrace/VBoxVMM.h"
66
67
68#if defined(_MSC_VER) && defined(RT_ARCH_AMD64) /** @todo check this with with VC7! */
69# pragma intrinsic(_AddressOfReturnAddress)
70#endif
71
72#if defined(RT_OS_DARWIN) && ARCH_BITS == 32
73# error "32-bit darwin is no longer supported. Go back to 4.3 or earlier!"
74#endif
75
76
77
78/*********************************************************************************************************************************
79* Defined Constants And Macros *
80*********************************************************************************************************************************/
81/** @def VMM_CHECK_SMAP_SETUP
82 * SMAP check setup. */
83/** @def VMM_CHECK_SMAP_CHECK
84 * Checks that the AC flag is set if SMAP is enabled. If AC is not set,
85 * it will be logged and @a a_BadExpr is executed. */
86/** @def VMM_CHECK_SMAP_CHECK2
87 * Checks that the AC flag is set if SMAP is enabled. If AC is not set, it will
88 * be logged, written to the VMs assertion text buffer, and @a a_BadExpr is
89 * executed. */
90#if (defined(VBOX_STRICT) || 1) && !defined(VBOX_WITH_RAM_IN_KERNEL)
91# define VMM_CHECK_SMAP_SETUP() uint32_t const fKernelFeatures = SUPR0GetKernelFeatures()
92# define VMM_CHECK_SMAP_CHECK(a_BadExpr) \
93 do { \
94 if (fKernelFeatures & SUPKERNELFEATURES_SMAP) \
95 { \
96 RTCCUINTREG fEflCheck = ASMGetFlags(); \
97 if (RT_LIKELY(fEflCheck & X86_EFL_AC)) \
98 { /* likely */ } \
99 else \
100 { \
101 SUPR0Printf("%s, line %d: EFLAGS.AC is clear! (%#x)\n", __FUNCTION__, __LINE__, (uint32_t)fEflCheck); \
102 a_BadExpr; \
103 } \
104 } \
105 } while (0)
106# define VMM_CHECK_SMAP_CHECK2(a_pGVM, a_BadExpr) \
107 do { \
108 if (fKernelFeatures & SUPKERNELFEATURES_SMAP) \
109 { \
110 RTCCUINTREG fEflCheck = ASMGetFlags(); \
111 if (RT_LIKELY(fEflCheck & X86_EFL_AC)) \
112 { /* likely */ } \
113 else if (a_pGVM) \
114 { \
115 SUPR0BadContext((a_pGVM)->pSession, __FILE__, __LINE__, "EFLAGS.AC is zero!"); \
116 RTStrPrintf((a_pGVM)->vmm.s.szRing0AssertMsg1, sizeof((a_pGVM)->vmm.s.szRing0AssertMsg1), \
117 "%s, line %d: EFLAGS.AC is clear! (%#x)\n", __FUNCTION__, __LINE__, (uint32_t)fEflCheck); \
118 a_BadExpr; \
119 } \
120 else \
121 { \
122 SUPR0Printf("%s, line %d: EFLAGS.AC is clear! (%#x)\n", __FUNCTION__, __LINE__, (uint32_t)fEflCheck); \
123 a_BadExpr; \
124 } \
125 } \
126 } while (0)
127#else
128# define VMM_CHECK_SMAP_SETUP() uint32_t const fKernelFeatures = 0
129# define VMM_CHECK_SMAP_CHECK(a_BadExpr) NOREF(fKernelFeatures)
130# define VMM_CHECK_SMAP_CHECK2(a_pGVM, a_BadExpr) NOREF(fKernelFeatures)
131#endif
132
133
134/*********************************************************************************************************************************
135* Internal Functions *
136*********************************************************************************************************************************/
137RT_C_DECLS_BEGIN
138#if defined(RT_ARCH_X86) && (defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD))
139extern uint64_t __udivdi3(uint64_t, uint64_t);
140extern uint64_t __umoddi3(uint64_t, uint64_t);
141#endif
142RT_C_DECLS_END
143
144
145/*********************************************************************************************************************************
146* Global Variables *
147*********************************************************************************************************************************/
148/** Drag in necessary library bits.
149 * The runtime lives here (in VMMR0.r0) and VBoxDD*R0.r0 links against us. */
150struct CLANG11WEIRDNOTHROW { PFNRT pfn; } g_VMMR0Deps[] =
151{
152 { (PFNRT)RTCrc32 },
153 { (PFNRT)RTOnce },
154#if defined(RT_ARCH_X86) && (defined(RT_OS_SOLARIS) || defined(RT_OS_FREEBSD))
155 { (PFNRT)__udivdi3 },
156 { (PFNRT)__umoddi3 },
157#endif
158 { NULL }
159};
160
161#ifdef RT_OS_SOLARIS
162/* Dependency information for the native solaris loader. */
163extern "C" { char _depends_on[] = "vboxdrv"; }
164#endif
165
166
167/**
168 * Initialize the module.
169 * This is called when we're first loaded.
170 *
171 * @returns 0 on success.
172 * @returns VBox status on failure.
173 * @param hMod Image handle for use in APIs.
174 */
175DECLEXPORT(int) ModuleInit(void *hMod)
176{
177 VMM_CHECK_SMAP_SETUP();
178 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
179
180#ifdef VBOX_WITH_DTRACE_R0
181 /*
182 * The first thing to do is register the static tracepoints.
183 * (Deregistration is automatic.)
184 */
185 int rc2 = SUPR0TracerRegisterModule(hMod, &g_VTGObjHeader);
186 if (RT_FAILURE(rc2))
187 return rc2;
188#endif
189 LogFlow(("ModuleInit:\n"));
190
191#ifdef VBOX_WITH_64ON32_CMOS_DEBUG
192 /*
193 * Display the CMOS debug code.
194 */
195 ASMOutU8(0x72, 0x03);
196 uint8_t bDebugCode = ASMInU8(0x73);
197 LogRel(("CMOS Debug Code: %#x (%d)\n", bDebugCode, bDebugCode));
198 RTLogComPrintf("CMOS Debug Code: %#x (%d)\n", bDebugCode, bDebugCode);
199#endif
200
201 /*
202 * Initialize the VMM, GVMM, GMM, HM, PGM (Darwin) and INTNET.
203 */
204 int rc = vmmInitFormatTypes();
205 if (RT_SUCCESS(rc))
206 {
207 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
208 rc = GVMMR0Init();
209 if (RT_SUCCESS(rc))
210 {
211 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
212 rc = GMMR0Init();
213 if (RT_SUCCESS(rc))
214 {
215 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
216 rc = HMR0Init();
217 if (RT_SUCCESS(rc))
218 {
219 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
220
221 PDMR0Init(hMod);
222 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
223
224 rc = PGMRegisterStringFormatTypes();
225 if (RT_SUCCESS(rc))
226 {
227 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
228#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
229 rc = PGMR0DynMapInit();
230#endif
231 if (RT_SUCCESS(rc))
232 {
233 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
234 rc = IntNetR0Init();
235 if (RT_SUCCESS(rc))
236 {
237#ifdef VBOX_WITH_PCI_PASSTHROUGH
238 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
239 rc = PciRawR0Init();
240#endif
241 if (RT_SUCCESS(rc))
242 {
243 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
244 rc = CPUMR0ModuleInit();
245 if (RT_SUCCESS(rc))
246 {
247#ifdef VBOX_WITH_TRIPLE_FAULT_HACK
248 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
249 rc = vmmR0TripleFaultHackInit();
250 if (RT_SUCCESS(rc))
251#endif
252 {
253 VMM_CHECK_SMAP_CHECK(rc = VERR_VMM_SMAP_BUT_AC_CLEAR);
254 if (RT_SUCCESS(rc))
255 {
256 LogFlow(("ModuleInit: returns success\n"));
257 return VINF_SUCCESS;
258 }
259 }
260
261 /*
262 * Bail out.
263 */
264#ifdef VBOX_WITH_TRIPLE_FAULT_HACK
265 vmmR0TripleFaultHackTerm();
266#endif
267 }
268 else
269 LogRel(("ModuleInit: CPUMR0ModuleInit -> %Rrc\n", rc));
270#ifdef VBOX_WITH_PCI_PASSTHROUGH
271 PciRawR0Term();
272#endif
273 }
274 else
275 LogRel(("ModuleInit: PciRawR0Init -> %Rrc\n", rc));
276 IntNetR0Term();
277 }
278 else
279 LogRel(("ModuleInit: IntNetR0Init -> %Rrc\n", rc));
280#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
281 PGMR0DynMapTerm();
282#endif
283 }
284 else
285 LogRel(("ModuleInit: PGMR0DynMapInit -> %Rrc\n", rc));
286 PGMDeregisterStringFormatTypes();
287 }
288 else
289 LogRel(("ModuleInit: PGMRegisterStringFormatTypes -> %Rrc\n", rc));
290 HMR0Term();
291 }
292 else
293 LogRel(("ModuleInit: HMR0Init -> %Rrc\n", rc));
294 GMMR0Term();
295 }
296 else
297 LogRel(("ModuleInit: GMMR0Init -> %Rrc\n", rc));
298 GVMMR0Term();
299 }
300 else
301 LogRel(("ModuleInit: GVMMR0Init -> %Rrc\n", rc));
302 vmmTermFormatTypes();
303 }
304 else
305 LogRel(("ModuleInit: vmmInitFormatTypes -> %Rrc\n", rc));
306
307 LogFlow(("ModuleInit: failed %Rrc\n", rc));
308 return rc;
309}
310
311
312/**
313 * Terminate the module.
314 * This is called when we're finally unloaded.
315 *
316 * @param hMod Image handle for use in APIs.
317 */
318DECLEXPORT(void) ModuleTerm(void *hMod)
319{
320 NOREF(hMod);
321 LogFlow(("ModuleTerm:\n"));
322
323 /*
324 * Terminate the CPUM module (Local APIC cleanup).
325 */
326 CPUMR0ModuleTerm();
327
328 /*
329 * Terminate the internal network service.
330 */
331 IntNetR0Term();
332
333 /*
334 * PGM (Darwin), HM and PciRaw global cleanup.
335 */
336#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
337 PGMR0DynMapTerm();
338#endif
339#ifdef VBOX_WITH_PCI_PASSTHROUGH
340 PciRawR0Term();
341#endif
342 PGMDeregisterStringFormatTypes();
343 HMR0Term();
344#ifdef VBOX_WITH_TRIPLE_FAULT_HACK
345 vmmR0TripleFaultHackTerm();
346#endif
347
348 /*
349 * Destroy the GMM and GVMM instances.
350 */
351 GMMR0Term();
352 GVMMR0Term();
353
354 vmmTermFormatTypes();
355
356 LogFlow(("ModuleTerm: returns\n"));
357}
358
359
360/**
361 * Initiates the R0 driver for a particular VM instance.
362 *
363 * @returns VBox status code.
364 *
365 * @param pGVM The global (ring-0) VM structure.
366 * @param uSvnRev The SVN revision of the ring-3 part.
367 * @param uBuildType Build type indicator.
368 * @thread EMT(0)
369 */
370static int vmmR0InitVM(PGVM pGVM, uint32_t uSvnRev, uint32_t uBuildType)
371{
372 VMM_CHECK_SMAP_SETUP();
373 VMM_CHECK_SMAP_CHECK(return VERR_VMM_SMAP_BUT_AC_CLEAR);
374
375 /*
376 * Match the SVN revisions and build type.
377 */
378 if (uSvnRev != VMMGetSvnRev())
379 {
380 LogRel(("VMMR0InitVM: Revision mismatch, r3=%d r0=%d\n", uSvnRev, VMMGetSvnRev()));
381 SUPR0Printf("VMMR0InitVM: Revision mismatch, r3=%d r0=%d\n", uSvnRev, VMMGetSvnRev());
382 return VERR_VMM_R0_VERSION_MISMATCH;
383 }
384 if (uBuildType != vmmGetBuildType())
385 {
386 LogRel(("VMMR0InitVM: Build type mismatch, r3=%#x r0=%#x\n", uBuildType, vmmGetBuildType()));
387 SUPR0Printf("VMMR0InitVM: Build type mismatch, r3=%#x r0=%#x\n", uBuildType, vmmGetBuildType());
388 return VERR_VMM_R0_VERSION_MISMATCH;
389 }
390
391 int rc = GVMMR0ValidateGVMandEMT(pGVM, 0 /*idCpu*/);
392 if (RT_FAILURE(rc))
393 return rc;
394
395#ifdef LOG_ENABLED
396 /*
397 * Register the EMT R0 logger instance for VCPU 0.
398 */
399 PVMCPUCC pVCpu = VMCC_GET_CPU_0(pGVM);
400
401 PVMMR0LOGGER pR0Logger = pVCpu->vmm.s.pR0LoggerR0;
402 if (pR0Logger)
403 {
404# if 0 /* testing of the logger. */
405 LogCom(("vmmR0InitVM: before %p\n", RTLogDefaultInstance()));
406 LogCom(("vmmR0InitVM: pfnFlush=%p actual=%p\n", pR0Logger->Logger.pfnFlush, vmmR0LoggerFlush));
407 LogCom(("vmmR0InitVM: pfnLogger=%p actual=%p\n", pR0Logger->Logger.pfnLogger, vmmR0LoggerWrapper));
408 LogCom(("vmmR0InitVM: offScratch=%d fFlags=%#x fDestFlags=%#x\n", pR0Logger->Logger.offScratch, pR0Logger->Logger.fFlags, pR0Logger->Logger.fDestFlags));
409
410 RTLogSetDefaultInstanceThread(&pR0Logger->Logger, (uintptr_t)pGVM->pSession);
411 LogCom(("vmmR0InitVM: after %p reg\n", RTLogDefaultInstance()));
412 RTLogSetDefaultInstanceThread(NULL, pGVM->pSession);
413 LogCom(("vmmR0InitVM: after %p dereg\n", RTLogDefaultInstance()));
414
415 pR0Logger->Logger.pfnLogger("hello ring-0 logger\n");
416 LogCom(("vmmR0InitVM: returned successfully from direct logger call.\n"));
417 pR0Logger->Logger.pfnFlush(&pR0Logger->Logger);
418 LogCom(("vmmR0InitVM: returned successfully from direct flush call.\n"));
419
420 RTLogSetDefaultInstanceThread(&pR0Logger->Logger, (uintptr_t)pGVM->pSession);
421 LogCom(("vmmR0InitVM: after %p reg2\n", RTLogDefaultInstance()));
422 pR0Logger->Logger.pfnLogger("hello ring-0 logger\n");
423 LogCom(("vmmR0InitVM: returned successfully from direct logger call (2). offScratch=%d\n", pR0Logger->Logger.offScratch));
424 RTLogSetDefaultInstanceThread(NULL, pGVM->pSession);
425 LogCom(("vmmR0InitVM: after %p dereg2\n", RTLogDefaultInstance()));
426
427 RTLogLoggerEx(&pR0Logger->Logger, 0, ~0U, "hello ring-0 logger (RTLogLoggerEx)\n");
428 LogCom(("vmmR0InitVM: RTLogLoggerEx returned fine offScratch=%d\n", pR0Logger->Logger.offScratch));
429
430 RTLogSetDefaultInstanceThread(&pR0Logger->Logger, (uintptr_t)pGVM->pSession);
431 RTLogPrintf("hello ring-0 logger (RTLogPrintf)\n");
432 LogCom(("vmmR0InitVM: RTLogPrintf returned fine offScratch=%d\n", pR0Logger->Logger.offScratch));
433# endif
434 Log(("Switching to per-thread logging instance %p (key=%p)\n", &pR0Logger->Logger, pGVM->pSession));
435 RTLogSetDefaultInstanceThread(&pR0Logger->Logger, (uintptr_t)pGVM->pSession);
436 pR0Logger->fRegistered = true;
437 }
438#endif /* LOG_ENABLED */
439
440 /*
441 * Check if the host supports high resolution timers or not.
442 */
443 if ( pGVM->vmm.s.fUsePeriodicPreemptionTimers
444 && !RTTimerCanDoHighResolution())
445 pGVM->vmm.s.fUsePeriodicPreemptionTimers = false;
446
447 /*
448 * Initialize the per VM data for GVMM and GMM.
449 */
450 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
451 rc = GVMMR0InitVM(pGVM);
452 if (RT_SUCCESS(rc))
453 {
454 /*
455 * Init HM, CPUM and PGM (Darwin only).
456 */
457 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
458 rc = HMR0InitVM(pGVM);
459 if (RT_SUCCESS(rc))
460 VMM_CHECK_SMAP_CHECK2(pGVM, rc = VERR_VMM_RING0_ASSERTION); /* CPUR0InitVM will otherwise panic the host */
461 if (RT_SUCCESS(rc))
462 {
463 rc = CPUMR0InitVM(pGVM);
464 if (RT_SUCCESS(rc))
465 {
466 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
467 rc = PGMR0InitVM(pGVM);
468 if (RT_SUCCESS(rc))
469 {
470 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
471 rc = EMR0InitVM(pGVM);
472 if (RT_SUCCESS(rc))
473 {
474 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
475#ifdef VBOX_WITH_PCI_PASSTHROUGH
476 rc = PciRawR0InitVM(pGVM);
477#endif
478 if (RT_SUCCESS(rc))
479 {
480 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
481 rc = GIMR0InitVM(pGVM);
482 if (RT_SUCCESS(rc))
483 {
484 VMM_CHECK_SMAP_CHECK2(pGVM, rc = VERR_VMM_RING0_ASSERTION);
485 if (RT_SUCCESS(rc))
486 {
487 GVMMR0DoneInitVM(pGVM);
488
489 /*
490 * Collect a bit of info for the VM release log.
491 */
492 pGVM->vmm.s.fIsPreemptPendingApiTrusty = RTThreadPreemptIsPendingTrusty();
493 pGVM->vmm.s.fIsPreemptPossible = RTThreadPreemptIsPossible();;
494
495 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
496 return rc;
497 }
498
499 /* bail out*/
500 GIMR0TermVM(pGVM);
501 }
502#ifdef VBOX_WITH_PCI_PASSTHROUGH
503 PciRawR0TermVM(pGVM);
504#endif
505 }
506 }
507 }
508 }
509 HMR0TermVM(pGVM);
510 }
511 }
512
513 RTLogSetDefaultInstanceThread(NULL, (uintptr_t)pGVM->pSession);
514 return rc;
515}
516
517
518/**
519 * Does EMT specific VM initialization.
520 *
521 * @returns VBox status code.
522 * @param pGVM The ring-0 VM structure.
523 * @param idCpu The EMT that's calling.
524 */
525static int vmmR0InitVMEmt(PGVM pGVM, VMCPUID idCpu)
526{
527 /* Paranoia (caller checked these already). */
528 AssertReturn(idCpu < pGVM->cCpus, VERR_INVALID_CPU_ID);
529 AssertReturn(pGVM->aCpus[idCpu].hEMT == RTThreadNativeSelf(), VERR_INVALID_CPU_ID);
530
531#ifdef LOG_ENABLED
532 /*
533 * Registration of ring 0 loggers.
534 */
535 PVMCPUCC pVCpu = &pGVM->aCpus[idCpu];
536 PVMMR0LOGGER pR0Logger = pVCpu->vmm.s.pR0LoggerR0;
537 if ( pR0Logger
538 && !pR0Logger->fRegistered)
539 {
540 RTLogSetDefaultInstanceThread(&pR0Logger->Logger, (uintptr_t)pGVM->pSession);
541 pR0Logger->fRegistered = true;
542 }
543#endif
544
545 return VINF_SUCCESS;
546}
547
548
549
550/**
551 * Terminates the R0 bits for a particular VM instance.
552 *
553 * This is normally called by ring-3 as part of the VM termination process, but
554 * may alternatively be called during the support driver session cleanup when
555 * the VM object is destroyed (see GVMM).
556 *
557 * @returns VBox status code.
558 *
559 * @param pGVM The global (ring-0) VM structure.
560 * @param idCpu Set to 0 if EMT(0) or NIL_VMCPUID if session cleanup
561 * thread.
562 * @thread EMT(0) or session clean up thread.
563 */
564VMMR0_INT_DECL(int) VMMR0TermVM(PGVM pGVM, VMCPUID idCpu)
565{
566 /*
567 * Check EMT(0) claim if we're called from userland.
568 */
569 if (idCpu != NIL_VMCPUID)
570 {
571 AssertReturn(idCpu == 0, VERR_INVALID_CPU_ID);
572 int rc = GVMMR0ValidateGVMandEMT(pGVM, idCpu);
573 if (RT_FAILURE(rc))
574 return rc;
575 }
576
577#ifdef VBOX_WITH_PCI_PASSTHROUGH
578 PciRawR0TermVM(pGVM);
579#endif
580
581 /*
582 * Tell GVMM what we're up to and check that we only do this once.
583 */
584 if (GVMMR0DoingTermVM(pGVM))
585 {
586 GIMR0TermVM(pGVM);
587
588 /** @todo I wish to call PGMR0PhysFlushHandyPages(pGVM, &pGVM->aCpus[idCpu])
589 * here to make sure we don't leak any shared pages if we crash... */
590#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
591 PGMR0DynMapTermVM(pGVM);
592#endif
593 HMR0TermVM(pGVM);
594 }
595
596 /*
597 * Deregister the logger.
598 */
599 RTLogSetDefaultInstanceThread(NULL, (uintptr_t)pGVM->pSession);
600 return VINF_SUCCESS;
601}
602
603
604/**
605 * An interrupt or unhalt force flag is set, deal with it.
606 *
607 * @returns VINF_SUCCESS (or VINF_EM_HALT).
608 * @param pVCpu The cross context virtual CPU structure.
609 * @param uMWait Result from EMMonitorWaitIsActive().
610 * @param enmInterruptibility Guest CPU interruptbility level.
611 */
612static int vmmR0DoHaltInterrupt(PVMCPUCC pVCpu, unsigned uMWait, CPUMINTERRUPTIBILITY enmInterruptibility)
613{
614 Assert(!TRPMHasTrap(pVCpu));
615 Assert( enmInterruptibility > CPUMINTERRUPTIBILITY_INVALID
616 && enmInterruptibility < CPUMINTERRUPTIBILITY_END);
617
618 /*
619 * Pending interrupts w/o any SMIs or NMIs? That the usual case.
620 */
621 if ( VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC)
622 && !VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI | VMCPU_FF_INTERRUPT_NMI))
623 {
624 if (enmInterruptibility <= CPUMINTERRUPTIBILITY_UNRESTRAINED)
625 {
626 uint8_t u8Interrupt = 0;
627 int rc = PDMGetInterrupt(pVCpu, &u8Interrupt);
628 Log(("vmmR0DoHaltInterrupt: CPU%d u8Interrupt=%d (%#x) rc=%Rrc\n", pVCpu->idCpu, u8Interrupt, u8Interrupt, rc));
629 if (RT_SUCCESS(rc))
630 {
631 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_UNHALT);
632
633 rc = TRPMAssertTrap(pVCpu, u8Interrupt, TRPM_HARDWARE_INT);
634 AssertRCSuccess(rc);
635 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltExec);
636 return rc;
637 }
638 }
639 }
640 /*
641 * SMI is not implemented yet, at least not here.
642 */
643 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_SMI))
644 {
645 Log12(("vmmR0DoHaltInterrupt: CPU%d failed #3\n", pVCpu->idCpu));
646 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltToR3);
647 return VINF_EM_HALT;
648 }
649 /*
650 * NMI.
651 */
652 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NMI))
653 {
654 if (enmInterruptibility < CPUMINTERRUPTIBILITY_NMI_INHIBIT)
655 {
656 /** @todo later. */
657 Log12(("vmmR0DoHaltInterrupt: CPU%d failed #2 (uMWait=%u enmInt=%d)\n", pVCpu->idCpu, uMWait, enmInterruptibility));
658 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltToR3);
659 return VINF_EM_HALT;
660 }
661 }
662 /*
663 * Nested-guest virtual interrupt.
664 */
665 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST))
666 {
667 if (enmInterruptibility < CPUMINTERRUPTIBILITY_VIRT_INT_DISABLED)
668 {
669 /** @todo NSTVMX: NSTSVM: Remember, we might have to check and perform VM-exits
670 * here before injecting the virtual interrupt. See emR3ForcedActions
671 * for details. */
672 Log12(("vmmR0DoHaltInterrupt: CPU%d failed #1 (uMWait=%u enmInt=%d)\n", pVCpu->idCpu, uMWait, enmInterruptibility));
673 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltToR3);
674 return VINF_EM_HALT;
675 }
676 }
677
678 if (VMCPU_FF_TEST_AND_CLEAR(pVCpu, VMCPU_FF_UNHALT))
679 {
680 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltExec);
681 Log11(("vmmR0DoHaltInterrupt: CPU%d success VINF_SUCCESS (UNHALT)\n", pVCpu->idCpu));
682 return VINF_SUCCESS;
683 }
684 if (uMWait > 1)
685 {
686 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltExec);
687 Log11(("vmmR0DoHaltInterrupt: CPU%d success VINF_SUCCESS (uMWait=%u > 1)\n", pVCpu->idCpu, uMWait));
688 return VINF_SUCCESS;
689 }
690
691 Log12(("vmmR0DoHaltInterrupt: CPU%d failed #0 (uMWait=%u enmInt=%d)\n", pVCpu->idCpu, uMWait, enmInterruptibility));
692 STAM_REL_COUNTER_INC(&pVCpu->vmm.s.StatR0HaltToR3);
693 return VINF_EM_HALT;
694}
695
696
697/**
698 * This does one round of vmR3HaltGlobal1Halt().
699 *
700 * The rational here is that we'll reduce latency in interrupt situations if we
701 * don't go to ring-3 immediately on a VINF_EM_HALT (guest executed HLT or
702 * MWAIT), but do one round of blocking here instead and hope the interrupt is
703 * raised in the meanwhile.
704 *
705 * If we go to ring-3 we'll quit the inner HM/NEM loop in EM and end up in the
706 * outer loop, which will then call VMR3WaitHalted() and that in turn will do a
707 * ring-0 call (unless we're too close to a timer event). When the interrupt
708 * wakes us up, we'll return from ring-0 and EM will by instinct do a
709 * rescheduling (because of raw-mode) before it resumes the HM/NEM loop and gets
710 * back to VMMR0EntryFast().
711 *
712 * @returns VINF_SUCCESS or VINF_EM_HALT.
713 * @param pGVM The ring-0 VM structure.
714 * @param pGVCpu The ring-0 virtual CPU structure.
715 *
716 * @todo r=bird: All the blocking/waiting and EMT managment should move out of
717 * the VM module, probably to VMM. Then this would be more weird wrt
718 * parameters and statistics.
719 */
720static int vmmR0DoHalt(PGVM pGVM, PGVMCPU pGVCpu)
721{
722 /*
723 * Do spin stat historization.
724 */
725 if (++pGVCpu->vmm.s.cR0Halts & 0xff)
726 { /* likely */ }
727 else if (pGVCpu->vmm.s.cR0HaltsSucceeded > pGVCpu->vmm.s.cR0HaltsToRing3)
728 {
729 pGVCpu->vmm.s.cR0HaltsSucceeded = 2;
730 pGVCpu->vmm.s.cR0HaltsToRing3 = 0;
731 }
732 else
733 {
734 pGVCpu->vmm.s.cR0HaltsSucceeded = 0;
735 pGVCpu->vmm.s.cR0HaltsToRing3 = 2;
736 }
737
738 /*
739 * Flags that makes us go to ring-3.
740 */
741 uint32_t const fVmFFs = VM_FF_TM_VIRTUAL_SYNC | VM_FF_PDM_QUEUES | VM_FF_PDM_DMA
742 | VM_FF_DBGF | VM_FF_REQUEST | VM_FF_CHECK_VM_STATE
743 | VM_FF_RESET | VM_FF_EMT_RENDEZVOUS | VM_FF_PGM_NEED_HANDY_PAGES
744 | VM_FF_PGM_NO_MEMORY | VM_FF_DEBUG_SUSPEND;
745 uint64_t const fCpuFFs = VMCPU_FF_TIMER | VMCPU_FF_PDM_CRITSECT | VMCPU_FF_IEM
746 | VMCPU_FF_REQUEST | VMCPU_FF_DBGF | VMCPU_FF_HM_UPDATE_CR3
747 | VMCPU_FF_HM_UPDATE_PAE_PDPES | VMCPU_FF_PGM_SYNC_CR3 | VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL
748 | VMCPU_FF_TO_R3 | VMCPU_FF_IOM;
749
750 /*
751 * Check preconditions.
752 */
753 unsigned const uMWait = EMMonitorWaitIsActive(pGVCpu);
754 CPUMINTERRUPTIBILITY const enmInterruptibility = CPUMGetGuestInterruptibility(pGVCpu);
755 if ( pGVCpu->vmm.s.fMayHaltInRing0
756 && !TRPMHasTrap(pGVCpu)
757 && ( enmInterruptibility == CPUMINTERRUPTIBILITY_UNRESTRAINED
758 || uMWait > 1))
759 {
760 if ( !VM_FF_IS_ANY_SET(pGVM, fVmFFs)
761 && !VMCPU_FF_IS_ANY_SET(pGVCpu, fCpuFFs))
762 {
763 /*
764 * Interrupts pending already?
765 */
766 if (VMCPU_FF_TEST_AND_CLEAR(pGVCpu, VMCPU_FF_UPDATE_APIC))
767 APICUpdatePendingInterrupts(pGVCpu);
768
769 /*
770 * Flags that wake up from the halted state.
771 */
772 uint64_t const fIntMask = VMCPU_FF_INTERRUPT_APIC | VMCPU_FF_INTERRUPT_PIC | VMCPU_FF_INTERRUPT_NESTED_GUEST
773 | VMCPU_FF_INTERRUPT_NMI | VMCPU_FF_INTERRUPT_SMI | VMCPU_FF_UNHALT;
774
775 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fIntMask))
776 return vmmR0DoHaltInterrupt(pGVCpu, uMWait, enmInterruptibility);
777 ASMNopPause();
778
779 /*
780 * Check out how long till the next timer event.
781 */
782 uint64_t u64Delta;
783 uint64_t u64GipTime = TMTimerPollGIP(pGVM, pGVCpu, &u64Delta);
784
785 if ( !VM_FF_IS_ANY_SET(pGVM, fVmFFs)
786 && !VMCPU_FF_IS_ANY_SET(pGVCpu, fCpuFFs))
787 {
788 if (VMCPU_FF_TEST_AND_CLEAR(pGVCpu, VMCPU_FF_UPDATE_APIC))
789 APICUpdatePendingInterrupts(pGVCpu);
790
791 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fIntMask))
792 return vmmR0DoHaltInterrupt(pGVCpu, uMWait, enmInterruptibility);
793
794 /*
795 * Wait if there is enough time to the next timer event.
796 */
797 if (u64Delta >= pGVCpu->vmm.s.cNsSpinBlockThreshold)
798 {
799 /* If there are few other CPU cores around, we will procrastinate a
800 little before going to sleep, hoping for some device raising an
801 interrupt or similar. Though, the best thing here would be to
802 dynamically adjust the spin count according to its usfulness or
803 something... */
804 if ( pGVCpu->vmm.s.cR0HaltsSucceeded > pGVCpu->vmm.s.cR0HaltsToRing3
805 && RTMpGetOnlineCount() >= 4)
806 {
807 /** @todo Figure out how we can skip this if it hasn't help recently...
808 * @bugref{9172#c12} */
809 uint32_t cSpinLoops = 42;
810 while (cSpinLoops-- > 0)
811 {
812 ASMNopPause();
813 if (VMCPU_FF_TEST_AND_CLEAR(pGVCpu, VMCPU_FF_UPDATE_APIC))
814 APICUpdatePendingInterrupts(pGVCpu);
815 ASMNopPause();
816 if (VM_FF_IS_ANY_SET(pGVM, fVmFFs))
817 {
818 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3FromSpin);
819 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3);
820 return VINF_EM_HALT;
821 }
822 ASMNopPause();
823 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fCpuFFs))
824 {
825 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3FromSpin);
826 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3);
827 return VINF_EM_HALT;
828 }
829 ASMNopPause();
830 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fIntMask))
831 {
832 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltExecFromSpin);
833 return vmmR0DoHaltInterrupt(pGVCpu, uMWait, enmInterruptibility);
834 }
835 ASMNopPause();
836 }
837 }
838
839 /*
840 * We have to set the state to VMCPUSTATE_STARTED_HALTED here so ring-3
841 * knows when to notify us (cannot access VMINTUSERPERVMCPU::fWait from here).
842 * After changing the state we must recheck the force flags of course.
843 */
844 if (VMCPU_CMPXCHG_STATE(pGVCpu, VMCPUSTATE_STARTED_HALTED, VMCPUSTATE_STARTED))
845 {
846 if ( !VM_FF_IS_ANY_SET(pGVM, fVmFFs)
847 && !VMCPU_FF_IS_ANY_SET(pGVCpu, fCpuFFs))
848 {
849 if (VMCPU_FF_TEST_AND_CLEAR(pGVCpu, VMCPU_FF_UPDATE_APIC))
850 APICUpdatePendingInterrupts(pGVCpu);
851
852 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fIntMask))
853 {
854 VMCPU_CMPXCHG_STATE(pGVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_HALTED);
855 return vmmR0DoHaltInterrupt(pGVCpu, uMWait, enmInterruptibility);
856 }
857
858 /* Okay, block! */
859 uint64_t const u64StartSchedHalt = RTTimeNanoTS();
860 int rc = GVMMR0SchedHalt(pGVM, pGVCpu, u64GipTime);
861 uint64_t const u64EndSchedHalt = RTTimeNanoTS();
862 uint64_t const cNsElapsedSchedHalt = u64EndSchedHalt - u64StartSchedHalt;
863 Log10(("vmmR0DoHalt: CPU%d: halted %llu ns\n", pGVCpu->idCpu, cNsElapsedSchedHalt));
864
865 VMCPU_CMPXCHG_STATE(pGVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_HALTED);
866 STAM_REL_PROFILE_ADD_PERIOD(&pGVCpu->vmm.s.StatR0HaltBlock, cNsElapsedSchedHalt);
867 if ( rc == VINF_SUCCESS
868 || rc == VERR_INTERRUPTED)
869 {
870 /* Keep some stats like ring-3 does. */
871 int64_t const cNsOverslept = u64EndSchedHalt - u64GipTime;
872 if (cNsOverslept > 50000)
873 STAM_REL_PROFILE_ADD_PERIOD(&pGVCpu->vmm.s.StatR0HaltBlockOverslept, cNsOverslept);
874 else if (cNsOverslept < -50000)
875 STAM_REL_PROFILE_ADD_PERIOD(&pGVCpu->vmm.s.StatR0HaltBlockInsomnia, cNsElapsedSchedHalt);
876 else
877 STAM_REL_PROFILE_ADD_PERIOD(&pGVCpu->vmm.s.StatR0HaltBlockOnTime, cNsElapsedSchedHalt);
878
879 /*
880 * Recheck whether we can resume execution or have to go to ring-3.
881 */
882 if ( !VM_FF_IS_ANY_SET(pGVM, fVmFFs)
883 && !VMCPU_FF_IS_ANY_SET(pGVCpu, fCpuFFs))
884 {
885 if (VMCPU_FF_TEST_AND_CLEAR(pGVCpu, VMCPU_FF_UPDATE_APIC))
886 APICUpdatePendingInterrupts(pGVCpu);
887 if (VMCPU_FF_IS_ANY_SET(pGVCpu, fIntMask))
888 {
889 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltExecFromBlock);
890 return vmmR0DoHaltInterrupt(pGVCpu, uMWait, enmInterruptibility);
891 }
892 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3PostNoInt);
893 Log12(("vmmR0DoHalt: CPU%d post #2 - No pending interrupt\n", pGVCpu->idCpu));
894 }
895 else
896 {
897 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3PostPendingFF);
898 Log12(("vmmR0DoHalt: CPU%d post #1 - Pending FF\n", pGVCpu->idCpu));
899 }
900 }
901 else
902 {
903 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3Other);
904 Log12(("vmmR0DoHalt: CPU%d GVMMR0SchedHalt failed: %Rrc\n", pGVCpu->idCpu, rc));
905 }
906 }
907 else
908 {
909 VMCPU_CMPXCHG_STATE(pGVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_HALTED);
910 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3PendingFF);
911 Log12(("vmmR0DoHalt: CPU%d failed #5 - Pending FF\n", pGVCpu->idCpu));
912 }
913 }
914 else
915 {
916 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3Other);
917 Log12(("vmmR0DoHalt: CPU%d failed #4 - enmState=%d\n", pGVCpu->idCpu, VMCPU_GET_STATE(pGVCpu)));
918 }
919 }
920 else
921 {
922 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3SmallDelta);
923 Log12(("vmmR0DoHalt: CPU%d failed #3 - delta too small: %RU64\n", pGVCpu->idCpu, u64Delta));
924 }
925 }
926 else
927 {
928 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3PendingFF);
929 Log12(("vmmR0DoHalt: CPU%d failed #2 - Pending FF\n", pGVCpu->idCpu));
930 }
931 }
932 else
933 {
934 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3PendingFF);
935 Log12(("vmmR0DoHalt: CPU%d failed #1 - Pending FF\n", pGVCpu->idCpu));
936 }
937 }
938 else
939 {
940 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3Other);
941 Log12(("vmmR0DoHalt: CPU%d failed #0 - fMayHaltInRing0=%d TRPMHasTrap=%d enmInt=%d uMWait=%u\n",
942 pGVCpu->idCpu, pGVCpu->vmm.s.fMayHaltInRing0, TRPMHasTrap(pGVCpu), enmInterruptibility, uMWait));
943 }
944
945 STAM_REL_COUNTER_INC(&pGVCpu->vmm.s.StatR0HaltToR3);
946 return VINF_EM_HALT;
947}
948
949
950/**
951 * VMM ring-0 thread-context callback.
952 *
953 * This does common HM state updating and calls the HM-specific thread-context
954 * callback.
955 *
956 * @param enmEvent The thread-context event.
957 * @param pvUser Opaque pointer to the VMCPU.
958 *
959 * @thread EMT(pvUser)
960 */
961static DECLCALLBACK(void) vmmR0ThreadCtxCallback(RTTHREADCTXEVENT enmEvent, void *pvUser)
962{
963 PVMCPUCC pVCpu = (PVMCPUCC)pvUser;
964
965 switch (enmEvent)
966 {
967 case RTTHREADCTXEVENT_IN:
968 {
969 /*
970 * Linux may call us with preemption enabled (really!) but technically we
971 * cannot get preempted here, otherwise we end up in an infinite recursion
972 * scenario (i.e. preempted in resume hook -> preempt hook -> resume hook...
973 * ad infinitum). Let's just disable preemption for now...
974 */
975 /** @todo r=bird: I don't believe the above. The linux code is clearly enabling
976 * preemption after doing the callout (one or two functions up the
977 * call chain). */
978 /** @todo r=ramshankar: See @bugref{5313#c30}. */
979 RTTHREADPREEMPTSTATE ParanoidPreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
980 RTThreadPreemptDisable(&ParanoidPreemptState);
981
982 /* We need to update the VCPU <-> host CPU mapping. */
983 RTCPUID idHostCpu;
984 uint32_t iHostCpuSet = RTMpCurSetIndexAndId(&idHostCpu);
985 pVCpu->iHostCpuSet = iHostCpuSet;
986 ASMAtomicWriteU32(&pVCpu->idHostCpu, idHostCpu);
987
988 /* In the very unlikely event that the GIP delta for the CPU we're
989 rescheduled needs calculating, try force a return to ring-3.
990 We unfortunately cannot do the measurements right here. */
991 if (RT_UNLIKELY(SUPIsTscDeltaAvailableForCpuSetIndex(iHostCpuSet)))
992 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
993
994 /* Invoke the HM-specific thread-context callback. */
995 HMR0ThreadCtxCallback(enmEvent, pvUser);
996
997 /* Restore preemption. */
998 RTThreadPreemptRestore(&ParanoidPreemptState);
999 break;
1000 }
1001
1002 case RTTHREADCTXEVENT_OUT:
1003 {
1004 /* Invoke the HM-specific thread-context callback. */
1005 HMR0ThreadCtxCallback(enmEvent, pvUser);
1006
1007 /*
1008 * Sigh. See VMMGetCpu() used by VMCPU_ASSERT_EMT(). We cannot let several VCPUs
1009 * have the same host CPU associated with it.
1010 */
1011 pVCpu->iHostCpuSet = UINT32_MAX;
1012 ASMAtomicWriteU32(&pVCpu->idHostCpu, NIL_RTCPUID);
1013 break;
1014 }
1015
1016 default:
1017 /* Invoke the HM-specific thread-context callback. */
1018 HMR0ThreadCtxCallback(enmEvent, pvUser);
1019 break;
1020 }
1021}
1022
1023
1024/**
1025 * Creates thread switching hook for the current EMT thread.
1026 *
1027 * This is called by GVMMR0CreateVM and GVMMR0RegisterVCpu. If the host
1028 * platform does not implement switcher hooks, no hooks will be create and the
1029 * member set to NIL_RTTHREADCTXHOOK.
1030 *
1031 * @returns VBox status code.
1032 * @param pVCpu The cross context virtual CPU structure.
1033 * @thread EMT(pVCpu)
1034 */
1035VMMR0_INT_DECL(int) VMMR0ThreadCtxHookCreateForEmt(PVMCPUCC pVCpu)
1036{
1037 VMCPU_ASSERT_EMT(pVCpu);
1038 Assert(pVCpu->vmm.s.hCtxHook == NIL_RTTHREADCTXHOOK);
1039
1040#if 1 /* To disable this stuff change to zero. */
1041 int rc = RTThreadCtxHookCreate(&pVCpu->vmm.s.hCtxHook, 0, vmmR0ThreadCtxCallback, pVCpu);
1042 if (RT_SUCCESS(rc))
1043 return rc;
1044#else
1045 RT_NOREF(vmmR0ThreadCtxCallback);
1046 int rc = VERR_NOT_SUPPORTED;
1047#endif
1048
1049 pVCpu->vmm.s.hCtxHook = NIL_RTTHREADCTXHOOK;
1050 if (rc == VERR_NOT_SUPPORTED)
1051 return VINF_SUCCESS;
1052
1053 LogRelMax(32, ("RTThreadCtxHookCreate failed! rc=%Rrc pVCpu=%p idCpu=%RU32\n", rc, pVCpu, pVCpu->idCpu));
1054 return VINF_SUCCESS; /* Just ignore it, we can live without context hooks. */
1055}
1056
1057
1058/**
1059 * Destroys the thread switching hook for the specified VCPU.
1060 *
1061 * @param pVCpu The cross context virtual CPU structure.
1062 * @remarks Can be called from any thread.
1063 */
1064VMMR0_INT_DECL(void) VMMR0ThreadCtxHookDestroyForEmt(PVMCPUCC pVCpu)
1065{
1066 int rc = RTThreadCtxHookDestroy(pVCpu->vmm.s.hCtxHook);
1067 AssertRC(rc);
1068 pVCpu->vmm.s.hCtxHook = NIL_RTTHREADCTXHOOK;
1069}
1070
1071
1072/**
1073 * Disables the thread switching hook for this VCPU (if we got one).
1074 *
1075 * @param pVCpu The cross context virtual CPU structure.
1076 * @thread EMT(pVCpu)
1077 *
1078 * @remarks This also clears VMCPU::idHostCpu, so the mapping is invalid after
1079 * this call. This means you have to be careful with what you do!
1080 */
1081VMMR0_INT_DECL(void) VMMR0ThreadCtxHookDisable(PVMCPUCC pVCpu)
1082{
1083 /*
1084 * Clear the VCPU <-> host CPU mapping as we've left HM context.
1085 * @bugref{7726#c19} explains the need for this trick:
1086 *
1087 * VMXR0CallRing3Callback/SVMR0CallRing3Callback &
1088 * hmR0VmxLeaveSession/hmR0SvmLeaveSession disables context hooks during
1089 * longjmp & normal return to ring-3, which opens a window where we may be
1090 * rescheduled without changing VMCPUID::idHostCpu and cause confusion if
1091 * the CPU starts executing a different EMT. Both functions first disables
1092 * preemption and then calls HMR0LeaveCpu which invalids idHostCpu, leaving
1093 * an opening for getting preempted.
1094 */
1095 /** @todo Make HM not need this API! Then we could leave the hooks enabled
1096 * all the time. */
1097 /** @todo move this into the context hook disabling if(). */
1098 ASMAtomicWriteU32(&pVCpu->idHostCpu, NIL_RTCPUID);
1099
1100 /*
1101 * Disable the context hook, if we got one.
1102 */
1103 if (pVCpu->vmm.s.hCtxHook != NIL_RTTHREADCTXHOOK)
1104 {
1105 Assert(!RTThreadPreemptIsEnabled(NIL_RTTHREAD));
1106 int rc = RTThreadCtxHookDisable(pVCpu->vmm.s.hCtxHook);
1107 AssertRC(rc);
1108 }
1109}
1110
1111
1112/**
1113 * Internal version of VMMR0ThreadCtxHooksAreRegistered.
1114 *
1115 * @returns true if registered, false otherwise.
1116 * @param pVCpu The cross context virtual CPU structure.
1117 */
1118DECLINLINE(bool) vmmR0ThreadCtxHookIsEnabled(PVMCPUCC pVCpu)
1119{
1120 return RTThreadCtxHookIsEnabled(pVCpu->vmm.s.hCtxHook);
1121}
1122
1123
1124/**
1125 * Whether thread-context hooks are registered for this VCPU.
1126 *
1127 * @returns true if registered, false otherwise.
1128 * @param pVCpu The cross context virtual CPU structure.
1129 */
1130VMMR0_INT_DECL(bool) VMMR0ThreadCtxHookIsEnabled(PVMCPUCC pVCpu)
1131{
1132 return vmmR0ThreadCtxHookIsEnabled(pVCpu);
1133}
1134
1135
1136/**
1137 * Returns the ring-0 release logger instance.
1138 *
1139 * @returns Pointer to release logger, NULL if not configured.
1140 * @param pVCpu The cross context virtual CPU structure of the caller.
1141 * @thread EMT(pVCpu)
1142 */
1143VMMR0_INT_DECL(PRTLOGGER) VMMR0GetReleaseLogger(PVMCPUCC pVCpu)
1144{
1145 PVMMR0LOGGER pLogger = pVCpu->vmm.s.pR0RelLoggerR0;
1146 if (pLogger)
1147 return &pLogger->Logger;
1148 return NULL;
1149}
1150
1151
1152#ifdef VBOX_WITH_STATISTICS
1153/**
1154 * Record return code statistics
1155 * @param pVM The cross context VM structure.
1156 * @param pVCpu The cross context virtual CPU structure.
1157 * @param rc The status code.
1158 */
1159static void vmmR0RecordRC(PVMCC pVM, PVMCPUCC pVCpu, int rc)
1160{
1161 /*
1162 * Collect statistics.
1163 */
1164 switch (rc)
1165 {
1166 case VINF_SUCCESS:
1167 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetNormal);
1168 break;
1169 case VINF_EM_RAW_INTERRUPT:
1170 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetInterrupt);
1171 break;
1172 case VINF_EM_RAW_INTERRUPT_HYPER:
1173 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetInterruptHyper);
1174 break;
1175 case VINF_EM_RAW_GUEST_TRAP:
1176 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetGuestTrap);
1177 break;
1178 case VINF_EM_RAW_RING_SWITCH:
1179 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetRingSwitch);
1180 break;
1181 case VINF_EM_RAW_RING_SWITCH_INT:
1182 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetRingSwitchInt);
1183 break;
1184 case VINF_EM_RAW_STALE_SELECTOR:
1185 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetStaleSelector);
1186 break;
1187 case VINF_EM_RAW_IRET_TRAP:
1188 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetIRETTrap);
1189 break;
1190 case VINF_IOM_R3_IOPORT_READ:
1191 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetIORead);
1192 break;
1193 case VINF_IOM_R3_IOPORT_WRITE:
1194 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetIOWrite);
1195 break;
1196 case VINF_IOM_R3_IOPORT_COMMIT_WRITE:
1197 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetIOCommitWrite);
1198 break;
1199 case VINF_IOM_R3_MMIO_READ:
1200 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIORead);
1201 break;
1202 case VINF_IOM_R3_MMIO_WRITE:
1203 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIOWrite);
1204 break;
1205 case VINF_IOM_R3_MMIO_COMMIT_WRITE:
1206 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIOCommitWrite);
1207 break;
1208 case VINF_IOM_R3_MMIO_READ_WRITE:
1209 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIOReadWrite);
1210 break;
1211 case VINF_PATM_HC_MMIO_PATCH_READ:
1212 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIOPatchRead);
1213 break;
1214 case VINF_PATM_HC_MMIO_PATCH_WRITE:
1215 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMMIOPatchWrite);
1216 break;
1217 case VINF_CPUM_R3_MSR_READ:
1218 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMSRRead);
1219 break;
1220 case VINF_CPUM_R3_MSR_WRITE:
1221 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMSRWrite);
1222 break;
1223 case VINF_EM_RAW_EMULATE_INSTR:
1224 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetEmulate);
1225 break;
1226 case VINF_PATCH_EMULATE_INSTR:
1227 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchEmulate);
1228 break;
1229 case VINF_EM_RAW_EMULATE_INSTR_LDT_FAULT:
1230 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetLDTFault);
1231 break;
1232 case VINF_EM_RAW_EMULATE_INSTR_GDT_FAULT:
1233 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetGDTFault);
1234 break;
1235 case VINF_EM_RAW_EMULATE_INSTR_IDT_FAULT:
1236 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetIDTFault);
1237 break;
1238 case VINF_EM_RAW_EMULATE_INSTR_TSS_FAULT:
1239 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetTSSFault);
1240 break;
1241 case VINF_CSAM_PENDING_ACTION:
1242 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetCSAMTask);
1243 break;
1244 case VINF_PGM_SYNC_CR3:
1245 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetSyncCR3);
1246 break;
1247 case VINF_PATM_PATCH_INT3:
1248 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchInt3);
1249 break;
1250 case VINF_PATM_PATCH_TRAP_PF:
1251 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchPF);
1252 break;
1253 case VINF_PATM_PATCH_TRAP_GP:
1254 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchGP);
1255 break;
1256 case VINF_PATM_PENDING_IRQ_AFTER_IRET:
1257 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchIretIRQ);
1258 break;
1259 case VINF_EM_RESCHEDULE_REM:
1260 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetRescheduleREM);
1261 break;
1262 case VINF_EM_RAW_TO_R3:
1263 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Total);
1264 if (VM_FF_IS_SET(pVM, VM_FF_TM_VIRTUAL_SYNC))
1265 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3TMVirt);
1266 else if (VM_FF_IS_SET(pVM, VM_FF_PGM_NEED_HANDY_PAGES))
1267 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3HandyPages);
1268 else if (VM_FF_IS_SET(pVM, VM_FF_PDM_QUEUES))
1269 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3PDMQueues);
1270 else if (VM_FF_IS_SET(pVM, VM_FF_EMT_RENDEZVOUS))
1271 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Rendezvous);
1272 else if (VM_FF_IS_SET(pVM, VM_FF_PDM_DMA))
1273 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3DMA);
1274 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TIMER))
1275 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Timer);
1276 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PDM_CRITSECT))
1277 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3CritSect);
1278 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TO_R3))
1279 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3FF);
1280 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IEM))
1281 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Iem);
1282 else if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_IOM))
1283 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Iom);
1284 else
1285 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetToR3Unknown);
1286 break;
1287
1288 case VINF_EM_RAW_TIMER_PENDING:
1289 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetTimerPending);
1290 break;
1291 case VINF_EM_RAW_INTERRUPT_PENDING:
1292 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetInterruptPending);
1293 break;
1294 case VINF_VMM_CALL_HOST:
1295 switch (pVCpu->vmm.s.enmCallRing3Operation)
1296 {
1297 case VMMCALLRING3_PDM_CRIT_SECT_ENTER:
1298 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallPDMCritSectEnter);
1299 break;
1300 case VMMCALLRING3_PDM_LOCK:
1301 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallPDMLock);
1302 break;
1303 case VMMCALLRING3_PGM_POOL_GROW:
1304 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallPGMPoolGrow);
1305 break;
1306 case VMMCALLRING3_PGM_LOCK:
1307 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallPGMLock);
1308 break;
1309 case VMMCALLRING3_PGM_MAP_CHUNK:
1310 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallPGMMapChunk);
1311 break;
1312 case VMMCALLRING3_PGM_ALLOCATE_HANDY_PAGES:
1313 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallPGMAllocHandy);
1314 break;
1315 case VMMCALLRING3_VMM_LOGGER_FLUSH:
1316 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallLogFlush);
1317 break;
1318 case VMMCALLRING3_VM_SET_ERROR:
1319 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallVMSetError);
1320 break;
1321 case VMMCALLRING3_VM_SET_RUNTIME_ERROR:
1322 STAM_COUNTER_INC(&pVM->vmm.s.StatRZCallVMSetRuntimeError);
1323 break;
1324 case VMMCALLRING3_VM_R0_ASSERTION:
1325 default:
1326 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetCallRing3);
1327 break;
1328 }
1329 break;
1330 case VINF_PATM_DUPLICATE_FUNCTION:
1331 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPATMDuplicateFn);
1332 break;
1333 case VINF_PGM_CHANGE_MODE:
1334 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPGMChangeMode);
1335 break;
1336 case VINF_PGM_POOL_FLUSH_PENDING:
1337 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPGMFlushPending);
1338 break;
1339 case VINF_EM_PENDING_REQUEST:
1340 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPendingRequest);
1341 break;
1342 case VINF_EM_HM_PATCH_TPR_INSTR:
1343 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetPatchTPR);
1344 break;
1345 default:
1346 STAM_COUNTER_INC(&pVM->vmm.s.StatRZRetMisc);
1347 break;
1348 }
1349}
1350#endif /* VBOX_WITH_STATISTICS */
1351
1352
1353/**
1354 * The Ring 0 entry point, called by the fast-ioctl path.
1355 *
1356 * @param pGVM The global (ring-0) VM structure.
1357 * @param pVMIgnored The cross context VM structure. The return code is
1358 * stored in pVM->vmm.s.iLastGZRc.
1359 * @param idCpu The Virtual CPU ID of the calling EMT.
1360 * @param enmOperation Which operation to execute.
1361 * @remarks Assume called with interrupts _enabled_.
1362 */
1363VMMR0DECL(void) VMMR0EntryFast(PGVM pGVM, PVMCC pVMIgnored, VMCPUID idCpu, VMMR0OPERATION enmOperation)
1364{
1365 RT_NOREF(pVMIgnored);
1366
1367 /*
1368 * Validation.
1369 */
1370 if ( idCpu < pGVM->cCpus
1371 && pGVM->cCpus == pGVM->cCpusUnsafe)
1372 { /*likely*/ }
1373 else
1374 {
1375 SUPR0Printf("VMMR0EntryFast: Bad idCpu=%#x cCpus=%#x cCpusUnsafe=%#x\n", idCpu, pGVM->cCpus, pGVM->cCpusUnsafe);
1376 return;
1377 }
1378
1379 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
1380 RTNATIVETHREAD const hNativeThread = RTThreadNativeSelf();
1381 if (RT_LIKELY( pGVCpu->hEMT == hNativeThread
1382 && pGVCpu->hNativeThreadR0 == hNativeThread))
1383 { /* likely */ }
1384 else
1385 {
1386 SUPR0Printf("VMMR0EntryFast: Bad thread idCpu=%#x hNativeSelf=%p pGVCpu->hEmt=%p pGVCpu->hNativeThreadR0=%p\n",
1387 idCpu, hNativeThread, pGVCpu->hEMT, pGVCpu->hNativeThreadR0);
1388 return;
1389 }
1390
1391 /*
1392 * SMAP fun.
1393 */
1394 VMM_CHECK_SMAP_SETUP();
1395 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1396
1397 /*
1398 * Perform requested operation.
1399 */
1400 switch (enmOperation)
1401 {
1402 /*
1403 * Run guest code using the available hardware acceleration technology.
1404 */
1405 case VMMR0_DO_HM_RUN:
1406 {
1407 for (;;) /* hlt loop */
1408 {
1409 /*
1410 * Disable preemption.
1411 */
1412 Assert(!vmmR0ThreadCtxHookIsEnabled(pGVCpu));
1413 RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER;
1414 RTThreadPreemptDisable(&PreemptState);
1415
1416 /*
1417 * Get the host CPU identifiers, make sure they are valid and that
1418 * we've got a TSC delta for the CPU.
1419 */
1420 RTCPUID idHostCpu;
1421 uint32_t iHostCpuSet = RTMpCurSetIndexAndId(&idHostCpu);
1422 if (RT_LIKELY( iHostCpuSet < RTCPUSET_MAX_CPUS
1423 && SUPIsTscDeltaAvailableForCpuSetIndex(iHostCpuSet)))
1424 {
1425 pGVCpu->iHostCpuSet = iHostCpuSet;
1426 ASMAtomicWriteU32(&pGVCpu->idHostCpu, idHostCpu);
1427
1428 /*
1429 * Update the periodic preemption timer if it's active.
1430 */
1431 if (pGVM->vmm.s.fUsePeriodicPreemptionTimers)
1432 GVMMR0SchedUpdatePeriodicPreemptionTimer(pGVM, pGVCpu->idHostCpu, TMCalcHostTimerFrequency(pGVM, pGVCpu));
1433 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1434
1435#ifdef VMM_R0_TOUCH_FPU
1436 /*
1437 * Make sure we've got the FPU state loaded so and we don't need to clear
1438 * CR0.TS and get out of sync with the host kernel when loading the guest
1439 * FPU state. @ref sec_cpum_fpu (CPUM.cpp) and @bugref{4053}.
1440 */
1441 CPUMR0TouchHostFpu();
1442#endif
1443 int rc;
1444 bool fPreemptRestored = false;
1445 if (!HMR0SuspendPending())
1446 {
1447 /*
1448 * Enable the context switching hook.
1449 */
1450 if (pGVCpu->vmm.s.hCtxHook != NIL_RTTHREADCTXHOOK)
1451 {
1452 Assert(!RTThreadCtxHookIsEnabled(pGVCpu->vmm.s.hCtxHook));
1453 int rc2 = RTThreadCtxHookEnable(pGVCpu->vmm.s.hCtxHook); AssertRC(rc2);
1454 }
1455
1456 /*
1457 * Enter HM context.
1458 */
1459 rc = HMR0Enter(pGVCpu);
1460 if (RT_SUCCESS(rc))
1461 {
1462 VMCPU_SET_STATE(pGVCpu, VMCPUSTATE_STARTED_HM);
1463
1464 /*
1465 * When preemption hooks are in place, enable preemption now that
1466 * we're in HM context.
1467 */
1468 if (vmmR0ThreadCtxHookIsEnabled(pGVCpu))
1469 {
1470 fPreemptRestored = true;
1471 RTThreadPreemptRestore(&PreemptState);
1472 }
1473
1474 /*
1475 * Setup the longjmp machinery and execute guest code (calls HMR0RunGuestCode).
1476 */
1477 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1478 rc = vmmR0CallRing3SetJmp(&pGVCpu->vmm.s.CallRing3JmpBufR0, HMR0RunGuestCode, pGVM, pGVCpu);
1479 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1480
1481 /*
1482 * Assert sanity on the way out. Using manual assertions code here as normal
1483 * assertions are going to panic the host since we're outside the setjmp/longjmp zone.
1484 */
1485 if (RT_UNLIKELY( VMCPU_GET_STATE(pGVCpu) != VMCPUSTATE_STARTED_HM
1486 && RT_SUCCESS_NP(rc)
1487 && rc != VINF_VMM_CALL_HOST ))
1488 {
1489 pGVM->vmm.s.szRing0AssertMsg1[0] = '\0';
1490 RTStrPrintf(pGVM->vmm.s.szRing0AssertMsg2, sizeof(pGVM->vmm.s.szRing0AssertMsg2),
1491 "Got VMCPU state %d expected %d.\n", VMCPU_GET_STATE(pGVCpu), VMCPUSTATE_STARTED_HM);
1492 rc = VERR_VMM_WRONG_HM_VMCPU_STATE;
1493 }
1494#if 0
1495 /** @todo Get rid of this. HM shouldn't disable the context hook. */
1496 else if (RT_UNLIKELY(vmmR0ThreadCtxHookIsEnabled(pGVCpu)))
1497 {
1498 pGVM->vmm.s.szRing0AssertMsg1[0] = '\0';
1499 RTStrPrintf(pGVM->vmm.s.szRing0AssertMsg2, sizeof(pGVM->vmm.s.szRing0AssertMsg2),
1500 "Thread-context hooks still enabled! VCPU=%p Id=%u rc=%d.\n", pGVCpu, pGVCpu->idCpu, rc);
1501 rc = VERR_VMM_CONTEXT_HOOK_STILL_ENABLED;
1502 }
1503#endif
1504
1505 VMCPU_SET_STATE(pGVCpu, VMCPUSTATE_STARTED);
1506 }
1507 STAM_COUNTER_INC(&pGVM->vmm.s.StatRunGC);
1508
1509 /*
1510 * Invalidate the host CPU identifiers before we disable the context
1511 * hook / restore preemption.
1512 */
1513 pGVCpu->iHostCpuSet = UINT32_MAX;
1514 ASMAtomicWriteU32(&pGVCpu->idHostCpu, NIL_RTCPUID);
1515
1516 /*
1517 * Disable context hooks. Due to unresolved cleanup issues, we
1518 * cannot leave the hooks enabled when we return to ring-3.
1519 *
1520 * Note! At the moment HM may also have disabled the hook
1521 * when we get here, but the IPRT API handles that.
1522 */
1523 if (pGVCpu->vmm.s.hCtxHook != NIL_RTTHREADCTXHOOK)
1524 {
1525 ASMAtomicWriteU32(&pGVCpu->idHostCpu, NIL_RTCPUID);
1526 RTThreadCtxHookDisable(pGVCpu->vmm.s.hCtxHook);
1527 }
1528 }
1529 /*
1530 * The system is about to go into suspend mode; go back to ring 3.
1531 */
1532 else
1533 {
1534 rc = VINF_EM_RAW_INTERRUPT;
1535 pGVCpu->iHostCpuSet = UINT32_MAX;
1536 ASMAtomicWriteU32(&pGVCpu->idHostCpu, NIL_RTCPUID);
1537 }
1538
1539 /** @todo When HM stops messing with the context hook state, we'll disable
1540 * preemption again before the RTThreadCtxHookDisable call. */
1541 if (!fPreemptRestored)
1542 RTThreadPreemptRestore(&PreemptState);
1543
1544 pGVCpu->vmm.s.iLastGZRc = rc;
1545
1546 /* Fire dtrace probe and collect statistics. */
1547 VBOXVMM_R0_VMM_RETURN_TO_RING3_HM(pGVCpu, CPUMQueryGuestCtxPtr(pGVCpu), rc);
1548#ifdef VBOX_WITH_STATISTICS
1549 vmmR0RecordRC(pGVM, pGVCpu, rc);
1550#endif
1551 /*
1552 * If this is a halt.
1553 */
1554 if (rc != VINF_EM_HALT)
1555 { /* we're not in a hurry for a HLT, so prefer this path */ }
1556 else
1557 {
1558 pGVCpu->vmm.s.iLastGZRc = rc = vmmR0DoHalt(pGVM, pGVCpu);
1559 if (rc == VINF_SUCCESS)
1560 {
1561 pGVCpu->vmm.s.cR0HaltsSucceeded++;
1562 continue;
1563 }
1564 pGVCpu->vmm.s.cR0HaltsToRing3++;
1565 }
1566 }
1567 /*
1568 * Invalid CPU set index or TSC delta in need of measuring.
1569 */
1570 else
1571 {
1572 pGVCpu->iHostCpuSet = UINT32_MAX;
1573 ASMAtomicWriteU32(&pGVCpu->idHostCpu, NIL_RTCPUID);
1574 RTThreadPreemptRestore(&PreemptState);
1575 if (iHostCpuSet < RTCPUSET_MAX_CPUS)
1576 {
1577 int rc = SUPR0TscDeltaMeasureBySetIndex(pGVM->pSession, iHostCpuSet, 0 /*fFlags*/,
1578 2 /*cMsWaitRetry*/, 5*RT_MS_1SEC /*cMsWaitThread*/,
1579 0 /*default cTries*/);
1580 if (RT_SUCCESS(rc) || rc == VERR_CPU_OFFLINE)
1581 pGVCpu->vmm.s.iLastGZRc = VINF_EM_RAW_TO_R3;
1582 else
1583 pGVCpu->vmm.s.iLastGZRc = rc;
1584 }
1585 else
1586 pGVCpu->vmm.s.iLastGZRc = VERR_INVALID_CPU_INDEX;
1587 }
1588 break;
1589
1590 } /* halt loop. */
1591 break;
1592 }
1593
1594#ifdef VBOX_WITH_NEM_R0
1595# if defined(RT_ARCH_AMD64) && defined(RT_OS_WINDOWS)
1596 case VMMR0_DO_NEM_RUN:
1597 {
1598 /*
1599 * Setup the longjmp machinery and execute guest code (calls NEMR0RunGuestCode).
1600 */
1601 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1602# ifdef VBOXSTRICTRC_STRICT_ENABLED
1603 int rc = vmmR0CallRing3SetJmp2(&pGVCpu->vmm.s.CallRing3JmpBufR0, (PFNVMMR0SETJMP2)NEMR0RunGuestCode, pGVM, idCpu);
1604# else
1605 int rc = vmmR0CallRing3SetJmp2(&pGVCpu->vmm.s.CallRing3JmpBufR0, NEMR0RunGuestCode, pGVM, idCpu);
1606# endif
1607 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1608 STAM_COUNTER_INC(&pGVM->vmm.s.StatRunGC);
1609
1610 pGVCpu->vmm.s.iLastGZRc = rc;
1611
1612 /*
1613 * Fire dtrace probe and collect statistics.
1614 */
1615 VBOXVMM_R0_VMM_RETURN_TO_RING3_NEM(pGVCpu, CPUMQueryGuestCtxPtr(pGVCpu), rc);
1616# ifdef VBOX_WITH_STATISTICS
1617 vmmR0RecordRC(pGVM, pGVCpu, rc);
1618# endif
1619 break;
1620 }
1621# endif
1622#endif
1623
1624 /*
1625 * For profiling.
1626 */
1627 case VMMR0_DO_NOP:
1628 pGVCpu->vmm.s.iLastGZRc = VINF_SUCCESS;
1629 break;
1630
1631 /*
1632 * Shouldn't happen.
1633 */
1634 default:
1635 AssertMsgFailed(("%#x\n", enmOperation));
1636 pGVCpu->vmm.s.iLastGZRc = VERR_NOT_SUPPORTED;
1637 break;
1638 }
1639 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1640}
1641
1642
1643/**
1644 * Validates a session or VM session argument.
1645 *
1646 * @returns true / false accordingly.
1647 * @param pGVM The global (ring-0) VM structure.
1648 * @param pClaimedSession The session claim to validate.
1649 * @param pSession The session argument.
1650 */
1651DECLINLINE(bool) vmmR0IsValidSession(PGVM pGVM, PSUPDRVSESSION pClaimedSession, PSUPDRVSESSION pSession)
1652{
1653 /* This must be set! */
1654 if (!pSession)
1655 return false;
1656
1657 /* Only one out of the two. */
1658 if (pGVM && pClaimedSession)
1659 return false;
1660 if (pGVM)
1661 pClaimedSession = pGVM->pSession;
1662 return pClaimedSession == pSession;
1663}
1664
1665
1666/**
1667 * VMMR0EntryEx worker function, either called directly or when ever possible
1668 * called thru a longjmp so we can exit safely on failure.
1669 *
1670 * @returns VBox status code.
1671 * @param pGVM The global (ring-0) VM structure.
1672 * @param idCpu Virtual CPU ID argument. Must be NIL_VMCPUID if pVM
1673 * is NIL_RTR0PTR, and may be NIL_VMCPUID if it isn't
1674 * @param enmOperation Which operation to execute.
1675 * @param pReqHdr This points to a SUPVMMR0REQHDR packet. Optional.
1676 * The support driver validates this if it's present.
1677 * @param u64Arg Some simple constant argument.
1678 * @param pSession The session of the caller.
1679 *
1680 * @remarks Assume called with interrupts _enabled_.
1681 */
1682DECL_NO_INLINE(static, int) vmmR0EntryExWorker(PGVM pGVM, VMCPUID idCpu, VMMR0OPERATION enmOperation,
1683 PSUPVMMR0REQHDR pReqHdr, uint64_t u64Arg, PSUPDRVSESSION pSession)
1684{
1685 /*
1686 * Validate pGVM and idCpu for consistency and validity.
1687 */
1688 if (pGVM != NULL)
1689 {
1690 if (RT_LIKELY(((uintptr_t)pGVM & PAGE_OFFSET_MASK) == 0))
1691 { /* likely */ }
1692 else
1693 {
1694 SUPR0Printf("vmmR0EntryExWorker: Invalid pGVM=%p! (op=%d)\n", pGVM, enmOperation);
1695 return VERR_INVALID_POINTER;
1696 }
1697
1698 if (RT_LIKELY(idCpu == NIL_VMCPUID || idCpu < pGVM->cCpus))
1699 { /* likely */ }
1700 else
1701 {
1702 SUPR0Printf("vmmR0EntryExWorker: Invalid idCpu %#x (cCpus=%#x)\n", idCpu, pGVM->cCpus);
1703 return VERR_INVALID_PARAMETER;
1704 }
1705
1706 if (RT_LIKELY( pGVM->enmVMState >= VMSTATE_CREATING
1707 && pGVM->enmVMState <= VMSTATE_TERMINATED
1708 && pGVM->pSession == pSession
1709 && pGVM->pSelf == pGVM))
1710 { /* likely */ }
1711 else
1712 {
1713 SUPR0Printf("vmmR0EntryExWorker: Invalid pGVM=%p:{.enmVMState=%d, .cCpus=%#x, .pSession=%p(==%p), .pSelf=%p(==%p)}! (op=%d)\n",
1714 pGVM, pGVM->enmVMState, pGVM->cCpus, pGVM->pSession, pSession, pGVM->pSelf, pGVM, enmOperation);
1715 return VERR_INVALID_POINTER;
1716 }
1717 }
1718 else if (RT_LIKELY(idCpu == NIL_VMCPUID))
1719 { /* likely */ }
1720 else
1721 {
1722 SUPR0Printf("vmmR0EntryExWorker: Invalid idCpu=%u\n", idCpu);
1723 return VERR_INVALID_PARAMETER;
1724 }
1725
1726 /*
1727 * SMAP fun.
1728 */
1729 VMM_CHECK_SMAP_SETUP();
1730 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
1731
1732 /*
1733 * Process the request.
1734 */
1735 int rc;
1736 switch (enmOperation)
1737 {
1738 /*
1739 * GVM requests
1740 */
1741 case VMMR0_DO_GVMM_CREATE_VM:
1742 if (pGVM == NULL && u64Arg == 0 && idCpu == NIL_VMCPUID)
1743 rc = GVMMR0CreateVMReq((PGVMMCREATEVMREQ)pReqHdr, pSession);
1744 else
1745 rc = VERR_INVALID_PARAMETER;
1746 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
1747 break;
1748
1749 case VMMR0_DO_GVMM_DESTROY_VM:
1750 if (pReqHdr == NULL && u64Arg == 0)
1751 rc = GVMMR0DestroyVM(pGVM);
1752 else
1753 rc = VERR_INVALID_PARAMETER;
1754 VMM_CHECK_SMAP_CHECK(RT_NOTHING);
1755 break;
1756
1757 case VMMR0_DO_GVMM_REGISTER_VMCPU:
1758 if (pGVM != NULL)
1759 rc = GVMMR0RegisterVCpu(pGVM, idCpu);
1760 else
1761 rc = VERR_INVALID_PARAMETER;
1762 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1763 break;
1764
1765 case VMMR0_DO_GVMM_DEREGISTER_VMCPU:
1766 if (pGVM != NULL)
1767 rc = GVMMR0DeregisterVCpu(pGVM, idCpu);
1768 else
1769 rc = VERR_INVALID_PARAMETER;
1770 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1771 break;
1772
1773 case VMMR0_DO_GVMM_SCHED_HALT:
1774 if (pReqHdr)
1775 return VERR_INVALID_PARAMETER;
1776 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1777 rc = GVMMR0SchedHaltReq(pGVM, idCpu, u64Arg);
1778 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1779 break;
1780
1781 case VMMR0_DO_GVMM_SCHED_WAKE_UP:
1782 if (pReqHdr || u64Arg)
1783 return VERR_INVALID_PARAMETER;
1784 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1785 rc = GVMMR0SchedWakeUp(pGVM, idCpu);
1786 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1787 break;
1788
1789 case VMMR0_DO_GVMM_SCHED_POKE:
1790 if (pReqHdr || u64Arg)
1791 return VERR_INVALID_PARAMETER;
1792 rc = GVMMR0SchedPoke(pGVM, idCpu);
1793 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1794 break;
1795
1796 case VMMR0_DO_GVMM_SCHED_WAKE_UP_AND_POKE_CPUS:
1797 if (u64Arg)
1798 return VERR_INVALID_PARAMETER;
1799 rc = GVMMR0SchedWakeUpAndPokeCpusReq(pGVM, (PGVMMSCHEDWAKEUPANDPOKECPUSREQ)pReqHdr);
1800 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1801 break;
1802
1803 case VMMR0_DO_GVMM_SCHED_POLL:
1804 if (pReqHdr || u64Arg > 1)
1805 return VERR_INVALID_PARAMETER;
1806 rc = GVMMR0SchedPoll(pGVM, idCpu, !!u64Arg);
1807 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1808 break;
1809
1810 case VMMR0_DO_GVMM_QUERY_STATISTICS:
1811 if (u64Arg)
1812 return VERR_INVALID_PARAMETER;
1813 rc = GVMMR0QueryStatisticsReq(pGVM, (PGVMMQUERYSTATISTICSSREQ)pReqHdr, pSession);
1814 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1815 break;
1816
1817 case VMMR0_DO_GVMM_RESET_STATISTICS:
1818 if (u64Arg)
1819 return VERR_INVALID_PARAMETER;
1820 rc = GVMMR0ResetStatisticsReq(pGVM, (PGVMMRESETSTATISTICSSREQ)pReqHdr, pSession);
1821 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1822 break;
1823
1824 /*
1825 * Initialize the R0 part of a VM instance.
1826 */
1827 case VMMR0_DO_VMMR0_INIT:
1828 rc = vmmR0InitVM(pGVM, RT_LODWORD(u64Arg), RT_HIDWORD(u64Arg));
1829 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1830 break;
1831
1832 /*
1833 * Does EMT specific ring-0 init.
1834 */
1835 case VMMR0_DO_VMMR0_INIT_EMT:
1836 rc = vmmR0InitVMEmt(pGVM, idCpu);
1837 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1838 break;
1839
1840 /*
1841 * Terminate the R0 part of a VM instance.
1842 */
1843 case VMMR0_DO_VMMR0_TERM:
1844 rc = VMMR0TermVM(pGVM, 0 /*idCpu*/);
1845 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1846 break;
1847
1848 /*
1849 * Attempt to enable hm mode and check the current setting.
1850 */
1851 case VMMR0_DO_HM_ENABLE:
1852 rc = HMR0EnableAllCpus(pGVM);
1853 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1854 break;
1855
1856 /*
1857 * Setup the hardware accelerated session.
1858 */
1859 case VMMR0_DO_HM_SETUP_VM:
1860 rc = HMR0SetupVM(pGVM);
1861 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1862 break;
1863
1864 /*
1865 * PGM wrappers.
1866 */
1867 case VMMR0_DO_PGM_ALLOCATE_HANDY_PAGES:
1868 if (idCpu == NIL_VMCPUID)
1869 return VERR_INVALID_CPU_ID;
1870 rc = PGMR0PhysAllocateHandyPages(pGVM, idCpu);
1871 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1872 break;
1873
1874 case VMMR0_DO_PGM_FLUSH_HANDY_PAGES:
1875 if (idCpu == NIL_VMCPUID)
1876 return VERR_INVALID_CPU_ID;
1877 rc = PGMR0PhysFlushHandyPages(pGVM, idCpu);
1878 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1879 break;
1880
1881 case VMMR0_DO_PGM_ALLOCATE_LARGE_HANDY_PAGE:
1882 if (idCpu == NIL_VMCPUID)
1883 return VERR_INVALID_CPU_ID;
1884 rc = PGMR0PhysAllocateLargeHandyPage(pGVM, idCpu);
1885 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1886 break;
1887
1888 case VMMR0_DO_PGM_PHYS_SETUP_IOMMU:
1889 if (idCpu != 0)
1890 return VERR_INVALID_CPU_ID;
1891 rc = PGMR0PhysSetupIoMmu(pGVM);
1892 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1893 break;
1894
1895 case VMMR0_DO_PGM_POOL_GROW:
1896 if (idCpu == NIL_VMCPUID)
1897 return VERR_INVALID_CPU_ID;
1898 rc = PGMR0PoolGrow(pGVM);
1899 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1900 break;
1901
1902 /*
1903 * GMM wrappers.
1904 */
1905 case VMMR0_DO_GMM_INITIAL_RESERVATION:
1906 if (u64Arg)
1907 return VERR_INVALID_PARAMETER;
1908 rc = GMMR0InitialReservationReq(pGVM, idCpu, (PGMMINITIALRESERVATIONREQ)pReqHdr);
1909 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1910 break;
1911
1912 case VMMR0_DO_GMM_UPDATE_RESERVATION:
1913 if (u64Arg)
1914 return VERR_INVALID_PARAMETER;
1915 rc = GMMR0UpdateReservationReq(pGVM, idCpu, (PGMMUPDATERESERVATIONREQ)pReqHdr);
1916 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1917 break;
1918
1919 case VMMR0_DO_GMM_ALLOCATE_PAGES:
1920 if (u64Arg)
1921 return VERR_INVALID_PARAMETER;
1922 rc = GMMR0AllocatePagesReq(pGVM, idCpu, (PGMMALLOCATEPAGESREQ)pReqHdr);
1923 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1924 break;
1925
1926 case VMMR0_DO_GMM_FREE_PAGES:
1927 if (u64Arg)
1928 return VERR_INVALID_PARAMETER;
1929 rc = GMMR0FreePagesReq(pGVM, idCpu, (PGMMFREEPAGESREQ)pReqHdr);
1930 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1931 break;
1932
1933 case VMMR0_DO_GMM_FREE_LARGE_PAGE:
1934 if (u64Arg)
1935 return VERR_INVALID_PARAMETER;
1936 rc = GMMR0FreeLargePageReq(pGVM, idCpu, (PGMMFREELARGEPAGEREQ)pReqHdr);
1937 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1938 break;
1939
1940 case VMMR0_DO_GMM_QUERY_HYPERVISOR_MEM_STATS:
1941 if (u64Arg)
1942 return VERR_INVALID_PARAMETER;
1943 rc = GMMR0QueryHypervisorMemoryStatsReq((PGMMMEMSTATSREQ)pReqHdr);
1944 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1945 break;
1946
1947 case VMMR0_DO_GMM_QUERY_MEM_STATS:
1948 if (idCpu == NIL_VMCPUID)
1949 return VERR_INVALID_CPU_ID;
1950 if (u64Arg)
1951 return VERR_INVALID_PARAMETER;
1952 rc = GMMR0QueryMemoryStatsReq(pGVM, idCpu, (PGMMMEMSTATSREQ)pReqHdr);
1953 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1954 break;
1955
1956 case VMMR0_DO_GMM_BALLOONED_PAGES:
1957 if (u64Arg)
1958 return VERR_INVALID_PARAMETER;
1959 rc = GMMR0BalloonedPagesReq(pGVM, idCpu, (PGMMBALLOONEDPAGESREQ)pReqHdr);
1960 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1961 break;
1962
1963 case VMMR0_DO_GMM_MAP_UNMAP_CHUNK:
1964 if (u64Arg)
1965 return VERR_INVALID_PARAMETER;
1966 rc = GMMR0MapUnmapChunkReq(pGVM, (PGMMMAPUNMAPCHUNKREQ)pReqHdr);
1967 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1968 break;
1969
1970 case VMMR0_DO_GMM_SEED_CHUNK:
1971 if (pReqHdr)
1972 return VERR_INVALID_PARAMETER;
1973 rc = GMMR0SeedChunk(pGVM, idCpu, (RTR3PTR)u64Arg);
1974 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1975 break;
1976
1977 case VMMR0_DO_GMM_REGISTER_SHARED_MODULE:
1978 if (idCpu == NIL_VMCPUID)
1979 return VERR_INVALID_CPU_ID;
1980 if (u64Arg)
1981 return VERR_INVALID_PARAMETER;
1982 rc = GMMR0RegisterSharedModuleReq(pGVM, idCpu, (PGMMREGISTERSHAREDMODULEREQ)pReqHdr);
1983 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1984 break;
1985
1986 case VMMR0_DO_GMM_UNREGISTER_SHARED_MODULE:
1987 if (idCpu == NIL_VMCPUID)
1988 return VERR_INVALID_CPU_ID;
1989 if (u64Arg)
1990 return VERR_INVALID_PARAMETER;
1991 rc = GMMR0UnregisterSharedModuleReq(pGVM, idCpu, (PGMMUNREGISTERSHAREDMODULEREQ)pReqHdr);
1992 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
1993 break;
1994
1995 case VMMR0_DO_GMM_RESET_SHARED_MODULES:
1996 if (idCpu == NIL_VMCPUID)
1997 return VERR_INVALID_CPU_ID;
1998 if ( u64Arg
1999 || pReqHdr)
2000 return VERR_INVALID_PARAMETER;
2001 rc = GMMR0ResetSharedModules(pGVM, idCpu);
2002 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2003 break;
2004
2005#ifdef VBOX_WITH_PAGE_SHARING
2006 case VMMR0_DO_GMM_CHECK_SHARED_MODULES:
2007 {
2008 if (idCpu == NIL_VMCPUID)
2009 return VERR_INVALID_CPU_ID;
2010 if ( u64Arg
2011 || pReqHdr)
2012 return VERR_INVALID_PARAMETER;
2013 rc = GMMR0CheckSharedModules(pGVM, idCpu);
2014 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2015 break;
2016 }
2017#endif
2018
2019#if defined(VBOX_STRICT) && HC_ARCH_BITS == 64
2020 case VMMR0_DO_GMM_FIND_DUPLICATE_PAGE:
2021 if (u64Arg)
2022 return VERR_INVALID_PARAMETER;
2023 rc = GMMR0FindDuplicatePageReq(pGVM, (PGMMFINDDUPLICATEPAGEREQ)pReqHdr);
2024 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2025 break;
2026#endif
2027
2028 case VMMR0_DO_GMM_QUERY_STATISTICS:
2029 if (u64Arg)
2030 return VERR_INVALID_PARAMETER;
2031 rc = GMMR0QueryStatisticsReq(pGVM, (PGMMQUERYSTATISTICSSREQ)pReqHdr);
2032 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2033 break;
2034
2035 case VMMR0_DO_GMM_RESET_STATISTICS:
2036 if (u64Arg)
2037 return VERR_INVALID_PARAMETER;
2038 rc = GMMR0ResetStatisticsReq(pGVM, (PGMMRESETSTATISTICSSREQ)pReqHdr);
2039 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2040 break;
2041
2042 /*
2043 * A quick GCFGM mock-up.
2044 */
2045 /** @todo GCFGM with proper access control, ring-3 management interface and all that. */
2046 case VMMR0_DO_GCFGM_SET_VALUE:
2047 case VMMR0_DO_GCFGM_QUERY_VALUE:
2048 {
2049 if (pGVM || !pReqHdr || u64Arg || idCpu != NIL_VMCPUID)
2050 return VERR_INVALID_PARAMETER;
2051 PGCFGMVALUEREQ pReq = (PGCFGMVALUEREQ)pReqHdr;
2052 if (pReq->Hdr.cbReq != sizeof(*pReq))
2053 return VERR_INVALID_PARAMETER;
2054 if (enmOperation == VMMR0_DO_GCFGM_SET_VALUE)
2055 {
2056 rc = GVMMR0SetConfig(pReq->pSession, &pReq->szName[0], pReq->u64Value);
2057 //if (rc == VERR_CFGM_VALUE_NOT_FOUND)
2058 // rc = GMMR0SetConfig(pReq->pSession, &pReq->szName[0], pReq->u64Value);
2059 }
2060 else
2061 {
2062 rc = GVMMR0QueryConfig(pReq->pSession, &pReq->szName[0], &pReq->u64Value);
2063 //if (rc == VERR_CFGM_VALUE_NOT_FOUND)
2064 // rc = GMMR0QueryConfig(pReq->pSession, &pReq->szName[0], &pReq->u64Value);
2065 }
2066 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2067 break;
2068 }
2069
2070 /*
2071 * PDM Wrappers.
2072 */
2073 case VMMR0_DO_PDM_DRIVER_CALL_REQ_HANDLER:
2074 {
2075 if (!pReqHdr || u64Arg || idCpu != NIL_VMCPUID)
2076 return VERR_INVALID_PARAMETER;
2077 rc = PDMR0DriverCallReqHandler(pGVM, (PPDMDRIVERCALLREQHANDLERREQ)pReqHdr);
2078 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2079 break;
2080 }
2081
2082 case VMMR0_DO_PDM_DEVICE_CREATE:
2083 {
2084 if (!pReqHdr || u64Arg || idCpu != 0)
2085 return VERR_INVALID_PARAMETER;
2086 rc = PDMR0DeviceCreateReqHandler(pGVM, (PPDMDEVICECREATEREQ)pReqHdr);
2087 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2088 break;
2089 }
2090
2091 case VMMR0_DO_PDM_DEVICE_GEN_CALL:
2092 {
2093 if (!pReqHdr || u64Arg)
2094 return VERR_INVALID_PARAMETER;
2095 rc = PDMR0DeviceGenCallReqHandler(pGVM, (PPDMDEVICEGENCALLREQ)pReqHdr, idCpu);
2096 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2097 break;
2098 }
2099
2100 /** @todo Remove the once all devices has been converted to new style! @bugref{9218} */
2101 case VMMR0_DO_PDM_DEVICE_COMPAT_SET_CRITSECT:
2102 {
2103 if (!pReqHdr || u64Arg || idCpu != 0)
2104 return VERR_INVALID_PARAMETER;
2105 rc = PDMR0DeviceCompatSetCritSectReqHandler(pGVM, (PPDMDEVICECOMPATSETCRITSECTREQ)pReqHdr);
2106 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2107 break;
2108 }
2109
2110 /*
2111 * Requests to the internal networking service.
2112 */
2113 case VMMR0_DO_INTNET_OPEN:
2114 {
2115 PINTNETOPENREQ pReq = (PINTNETOPENREQ)pReqHdr;
2116 if (u64Arg || !pReq || !vmmR0IsValidSession(pGVM, pReq->pSession, pSession) || idCpu != NIL_VMCPUID)
2117 return VERR_INVALID_PARAMETER;
2118 rc = IntNetR0OpenReq(pSession, pReq);
2119 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2120 break;
2121 }
2122
2123 case VMMR0_DO_INTNET_IF_CLOSE:
2124 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFCLOSEREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2125 return VERR_INVALID_PARAMETER;
2126 rc = IntNetR0IfCloseReq(pSession, (PINTNETIFCLOSEREQ)pReqHdr);
2127 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2128 break;
2129
2130
2131 case VMMR0_DO_INTNET_IF_GET_BUFFER_PTRS:
2132 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFGETBUFFERPTRSREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2133 return VERR_INVALID_PARAMETER;
2134 rc = IntNetR0IfGetBufferPtrsReq(pSession, (PINTNETIFGETBUFFERPTRSREQ)pReqHdr);
2135 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2136 break;
2137
2138 case VMMR0_DO_INTNET_IF_SET_PROMISCUOUS_MODE:
2139 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFSETPROMISCUOUSMODEREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2140 return VERR_INVALID_PARAMETER;
2141 rc = IntNetR0IfSetPromiscuousModeReq(pSession, (PINTNETIFSETPROMISCUOUSMODEREQ)pReqHdr);
2142 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2143 break;
2144
2145 case VMMR0_DO_INTNET_IF_SET_MAC_ADDRESS:
2146 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFSETMACADDRESSREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2147 return VERR_INVALID_PARAMETER;
2148 rc = IntNetR0IfSetMacAddressReq(pSession, (PINTNETIFSETMACADDRESSREQ)pReqHdr);
2149 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2150 break;
2151
2152 case VMMR0_DO_INTNET_IF_SET_ACTIVE:
2153 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFSETACTIVEREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2154 return VERR_INVALID_PARAMETER;
2155 rc = IntNetR0IfSetActiveReq(pSession, (PINTNETIFSETACTIVEREQ)pReqHdr);
2156 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2157 break;
2158
2159 case VMMR0_DO_INTNET_IF_SEND:
2160 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFSENDREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2161 return VERR_INVALID_PARAMETER;
2162 rc = IntNetR0IfSendReq(pSession, (PINTNETIFSENDREQ)pReqHdr);
2163 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2164 break;
2165
2166 case VMMR0_DO_INTNET_IF_WAIT:
2167 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFWAITREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2168 return VERR_INVALID_PARAMETER;
2169 rc = IntNetR0IfWaitReq(pSession, (PINTNETIFWAITREQ)pReqHdr);
2170 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2171 break;
2172
2173 case VMMR0_DO_INTNET_IF_ABORT_WAIT:
2174 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PINTNETIFWAITREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2175 return VERR_INVALID_PARAMETER;
2176 rc = IntNetR0IfAbortWaitReq(pSession, (PINTNETIFABORTWAITREQ)pReqHdr);
2177 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2178 break;
2179
2180#if 0 //def VBOX_WITH_PCI_PASSTHROUGH
2181 /*
2182 * Requests to host PCI driver service.
2183 */
2184 case VMMR0_DO_PCIRAW_REQ:
2185 if (u64Arg || !pReqHdr || !vmmR0IsValidSession(pGVM, ((PPCIRAWSENDREQ)pReqHdr)->pSession, pSession) || idCpu != NIL_VMCPUID)
2186 return VERR_INVALID_PARAMETER;
2187 rc = PciRawR0ProcessReq(pGVM, pSession, (PPCIRAWSENDREQ)pReqHdr);
2188 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2189 break;
2190#endif
2191
2192 /*
2193 * NEM requests.
2194 */
2195#ifdef VBOX_WITH_NEM_R0
2196# if defined(RT_ARCH_AMD64) && defined(RT_OS_WINDOWS)
2197 case VMMR0_DO_NEM_INIT_VM:
2198 if (u64Arg || pReqHdr || idCpu != 0)
2199 return VERR_INVALID_PARAMETER;
2200 rc = NEMR0InitVM(pGVM);
2201 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2202 break;
2203
2204 case VMMR0_DO_NEM_INIT_VM_PART_2:
2205 if (u64Arg || pReqHdr || idCpu != 0)
2206 return VERR_INVALID_PARAMETER;
2207 rc = NEMR0InitVMPart2(pGVM);
2208 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2209 break;
2210
2211 case VMMR0_DO_NEM_MAP_PAGES:
2212 if (u64Arg || pReqHdr || idCpu == NIL_VMCPUID)
2213 return VERR_INVALID_PARAMETER;
2214 rc = NEMR0MapPages(pGVM, idCpu);
2215 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2216 break;
2217
2218 case VMMR0_DO_NEM_UNMAP_PAGES:
2219 if (u64Arg || pReqHdr || idCpu == NIL_VMCPUID)
2220 return VERR_INVALID_PARAMETER;
2221 rc = NEMR0UnmapPages(pGVM, idCpu);
2222 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2223 break;
2224
2225 case VMMR0_DO_NEM_EXPORT_STATE:
2226 if (u64Arg || pReqHdr || idCpu == NIL_VMCPUID)
2227 return VERR_INVALID_PARAMETER;
2228 rc = NEMR0ExportState(pGVM, idCpu);
2229 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2230 break;
2231
2232 case VMMR0_DO_NEM_IMPORT_STATE:
2233 if (pReqHdr || idCpu == NIL_VMCPUID)
2234 return VERR_INVALID_PARAMETER;
2235 rc = NEMR0ImportState(pGVM, idCpu, u64Arg);
2236 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2237 break;
2238
2239 case VMMR0_DO_NEM_QUERY_CPU_TICK:
2240 if (u64Arg || pReqHdr || idCpu == NIL_VMCPUID)
2241 return VERR_INVALID_PARAMETER;
2242 rc = NEMR0QueryCpuTick(pGVM, idCpu);
2243 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2244 break;
2245
2246 case VMMR0_DO_NEM_RESUME_CPU_TICK_ON_ALL:
2247 if (pReqHdr || idCpu == NIL_VMCPUID)
2248 return VERR_INVALID_PARAMETER;
2249 rc = NEMR0ResumeCpuTickOnAll(pGVM, idCpu, u64Arg);
2250 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2251 break;
2252
2253 case VMMR0_DO_NEM_UPDATE_STATISTICS:
2254 if (u64Arg || pReqHdr)
2255 return VERR_INVALID_PARAMETER;
2256 rc = NEMR0UpdateStatistics(pGVM, idCpu);
2257 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2258 break;
2259
2260# if 1 && defined(DEBUG_bird)
2261 case VMMR0_DO_NEM_EXPERIMENT:
2262 if (pReqHdr)
2263 return VERR_INVALID_PARAMETER;
2264 rc = NEMR0DoExperiment(pGVM, idCpu, u64Arg);
2265 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2266 break;
2267# endif
2268# endif
2269#endif
2270
2271 /*
2272 * IOM requests.
2273 */
2274 case VMMR0_DO_IOM_GROW_IO_PORTS:
2275 {
2276 if (pReqHdr || idCpu != 0)
2277 return VERR_INVALID_PARAMETER;
2278 rc = IOMR0IoPortGrowRegistrationTables(pGVM, u64Arg);
2279 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2280 break;
2281 }
2282
2283 case VMMR0_DO_IOM_GROW_IO_PORT_STATS:
2284 {
2285 if (pReqHdr || idCpu != 0)
2286 return VERR_INVALID_PARAMETER;
2287 rc = IOMR0IoPortGrowStatisticsTable(pGVM, u64Arg);
2288 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2289 break;
2290 }
2291
2292 case VMMR0_DO_IOM_GROW_MMIO_REGS:
2293 {
2294 if (pReqHdr || idCpu != 0)
2295 return VERR_INVALID_PARAMETER;
2296 rc = IOMR0MmioGrowRegistrationTables(pGVM, u64Arg);
2297 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2298 break;
2299 }
2300
2301 case VMMR0_DO_IOM_GROW_MMIO_STATS:
2302 {
2303 if (pReqHdr || idCpu != 0)
2304 return VERR_INVALID_PARAMETER;
2305 rc = IOMR0MmioGrowStatisticsTable(pGVM, u64Arg);
2306 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2307 break;
2308 }
2309
2310 case VMMR0_DO_IOM_SYNC_STATS_INDICES:
2311 {
2312 if (pReqHdr || idCpu != 0)
2313 return VERR_INVALID_PARAMETER;
2314 rc = IOMR0IoPortSyncStatisticsIndices(pGVM);
2315 if (RT_SUCCESS(rc))
2316 rc = IOMR0MmioSyncStatisticsIndices(pGVM);
2317 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2318 break;
2319 }
2320
2321 /*
2322 * DBGF requests.
2323 */
2324#ifdef VBOX_WITH_DBGF_TRACING
2325 case VMMR0_DO_DBGF_TRACER_CREATE:
2326 {
2327 if (!pReqHdr || u64Arg || idCpu != 0)
2328 return VERR_INVALID_PARAMETER;
2329 rc = DBGFR0TracerCreateReqHandler(pGVM, (PDBGFTRACERCREATEREQ)pReqHdr);
2330 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2331 break;
2332 }
2333
2334 case VMMR0_DO_DBGF_TRACER_CALL_REQ_HANDLER:
2335 {
2336 if (!pReqHdr || u64Arg)
2337 return VERR_INVALID_PARAMETER;
2338# if 0 /** @todo */
2339 rc = DBGFR0TracerGenCallReqHandler(pGVM, (PDBGFTRACERGENCALLREQ)pReqHdr, idCpu);
2340# else
2341 rc = VERR_NOT_IMPLEMENTED;
2342# endif
2343 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2344 break;
2345 }
2346#endif
2347
2348 case VMMR0_DO_DBGF_BP_INIT:
2349 {
2350 if (!pReqHdr || u64Arg || idCpu != 0)
2351 return VERR_INVALID_PARAMETER;
2352 rc = DBGFR0BpInitReqHandler(pGVM, (PDBGFBPINITREQ)pReqHdr);
2353 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2354 break;
2355 }
2356
2357 case VMMR0_DO_DBGF_BP_CHUNK_ALLOC:
2358 {
2359 if (!pReqHdr || u64Arg || idCpu != 0)
2360 return VERR_INVALID_PARAMETER;
2361 rc = DBGFR0BpChunkAllocReqHandler(pGVM, (PDBGFBPCHUNKALLOCREQ)pReqHdr);
2362 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2363 break;
2364 }
2365
2366 case VMMR0_DO_DBGF_BP_L2_TBL_CHUNK_ALLOC:
2367 {
2368 if (!pReqHdr || u64Arg || idCpu != 0)
2369 return VERR_INVALID_PARAMETER;
2370 rc = DBGFR0BpL2TblChunkAllocReqHandler(pGVM, (PDBGFBPL2TBLCHUNKALLOCREQ)pReqHdr);
2371 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2372 break;
2373 }
2374
2375 case VMMR0_DO_DBGF_BP_OWNER_INIT:
2376 {
2377 if (!pReqHdr || u64Arg || idCpu != 0)
2378 return VERR_INVALID_PARAMETER;
2379 rc = DBGFR0BpOwnerInitReqHandler(pGVM, (PDBGFBPOWNERINITREQ)pReqHdr);
2380 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2381 break;
2382 }
2383
2384 case VMMR0_DO_DBGF_BP_PORTIO_INIT:
2385 {
2386 if (!pReqHdr || u64Arg || idCpu != 0)
2387 return VERR_INVALID_PARAMETER;
2388 rc = DBGFR0BpPortIoInitReqHandler(pGVM, (PDBGFBPINITREQ)pReqHdr);
2389 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2390 break;
2391 }
2392
2393
2394 /*
2395 * TM requests.
2396 */
2397 case VMMR0_DO_TM_GROW_TIMER_QUEUE:
2398 {
2399 if (pReqHdr || idCpu == NIL_VMCPUID)
2400 return VERR_INVALID_PARAMETER;
2401 rc = TMR0TimerQueueGrow(pGVM, RT_HI_U32(u64Arg), RT_LO_U32(u64Arg));
2402 VMM_CHECK_SMAP_CHECK2(pGVM, RT_NOTHING);
2403 break;
2404 }
2405
2406 /*
2407 * For profiling.
2408 */
2409 case VMMR0_DO_NOP:
2410 case VMMR0_DO_SLOW_NOP:
2411 return VINF_SUCCESS;
2412
2413 /*
2414 * For testing Ring-0 APIs invoked in this environment.
2415 */
2416 case VMMR0_DO_TESTS:
2417 /** @todo make new test */
2418 return VINF_SUCCESS;
2419
2420 default:
2421 /*
2422 * We're returning VERR_NOT_SUPPORT here so we've got something else
2423 * than -1 which the interrupt gate glue code might return.
2424 */
2425 Log(("operation %#x is not supported\n", enmOperation));
2426 return VERR_NOT_SUPPORTED;
2427 }
2428 return rc;
2429}
2430
2431
2432/**
2433 * This is just a longjmp wrapper function for VMMR0EntryEx calls.
2434 *
2435 * @returns VBox status code.
2436 * @param pvArgs The argument package
2437 */
2438static DECLCALLBACK(int) vmmR0EntryExWrapper(void *pvArgs)
2439{
2440 PGVMCPU pGVCpu = (PGVMCPU)pvArgs;
2441 return vmmR0EntryExWorker(pGVCpu->vmmr0.s.pGVM,
2442 pGVCpu->vmmr0.s.idCpu,
2443 pGVCpu->vmmr0.s.enmOperation,
2444 pGVCpu->vmmr0.s.pReq,
2445 pGVCpu->vmmr0.s.u64Arg,
2446 pGVCpu->vmmr0.s.pSession);
2447}
2448
2449
2450/**
2451 * The Ring 0 entry point, called by the support library (SUP).
2452 *
2453 * @returns VBox status code.
2454 * @param pGVM The global (ring-0) VM structure.
2455 * @param pVM The cross context VM structure.
2456 * @param idCpu Virtual CPU ID argument. Must be NIL_VMCPUID if pVM
2457 * is NIL_RTR0PTR, and may be NIL_VMCPUID if it isn't
2458 * @param enmOperation Which operation to execute.
2459 * @param pReq Pointer to the SUPVMMR0REQHDR packet. Optional.
2460 * @param u64Arg Some simple constant argument.
2461 * @param pSession The session of the caller.
2462 * @remarks Assume called with interrupts _enabled_.
2463 */
2464VMMR0DECL(int) VMMR0EntryEx(PGVM pGVM, PVMCC pVM, VMCPUID idCpu, VMMR0OPERATION enmOperation,
2465 PSUPVMMR0REQHDR pReq, uint64_t u64Arg, PSUPDRVSESSION pSession)
2466{
2467 /*
2468 * Requests that should only happen on the EMT thread will be
2469 * wrapped in a setjmp so we can assert without causing trouble.
2470 */
2471 if ( pVM != NULL
2472 && pGVM != NULL
2473 && pVM == pGVM /** @todo drop pVM or pGVM */
2474 && idCpu < pGVM->cCpus
2475 && pGVM->pSession == pSession
2476 && pGVM->pSelf == pVM)
2477 {
2478 switch (enmOperation)
2479 {
2480 /* These might/will be called before VMMR3Init. */
2481 case VMMR0_DO_GMM_INITIAL_RESERVATION:
2482 case VMMR0_DO_GMM_UPDATE_RESERVATION:
2483 case VMMR0_DO_GMM_ALLOCATE_PAGES:
2484 case VMMR0_DO_GMM_FREE_PAGES:
2485 case VMMR0_DO_GMM_BALLOONED_PAGES:
2486 /* On the mac we might not have a valid jmp buf, so check these as well. */
2487 case VMMR0_DO_VMMR0_INIT:
2488 case VMMR0_DO_VMMR0_TERM:
2489
2490 case VMMR0_DO_PDM_DEVICE_CREATE:
2491 case VMMR0_DO_PDM_DEVICE_GEN_CALL:
2492 case VMMR0_DO_IOM_GROW_IO_PORTS:
2493 case VMMR0_DO_IOM_GROW_IO_PORT_STATS:
2494 case VMMR0_DO_DBGF_BP_INIT:
2495 case VMMR0_DO_DBGF_BP_CHUNK_ALLOC:
2496 case VMMR0_DO_DBGF_BP_L2_TBL_CHUNK_ALLOC:
2497 {
2498 PGVMCPU pGVCpu = &pGVM->aCpus[idCpu];
2499 RTNATIVETHREAD hNativeThread = RTThreadNativeSelf();
2500 if (RT_LIKELY( pGVCpu->hEMT == hNativeThread
2501 && pGVCpu->hNativeThreadR0 == hNativeThread))
2502 {
2503 if (!pGVCpu->vmm.s.CallRing3JmpBufR0.pvSavedStack)
2504 break;
2505
2506 pGVCpu->vmmr0.s.pGVM = pGVM;
2507 pGVCpu->vmmr0.s.idCpu = idCpu;
2508 pGVCpu->vmmr0.s.enmOperation = enmOperation;
2509 pGVCpu->vmmr0.s.pReq = pReq;
2510 pGVCpu->vmmr0.s.u64Arg = u64Arg;
2511 pGVCpu->vmmr0.s.pSession = pSession;
2512 return vmmR0CallRing3SetJmpEx(&pGVCpu->vmm.s.CallRing3JmpBufR0, vmmR0EntryExWrapper, pGVCpu,
2513 ((uintptr_t)u64Arg << 16) | (uintptr_t)enmOperation);
2514 }
2515 return VERR_VM_THREAD_NOT_EMT;
2516 }
2517
2518 default:
2519 case VMMR0_DO_PGM_POOL_GROW:
2520 break;
2521 }
2522 }
2523 return vmmR0EntryExWorker(pGVM, idCpu, enmOperation, pReq, u64Arg, pSession);
2524}
2525
2526
2527/**
2528 * Checks whether we've armed the ring-0 long jump machinery.
2529 *
2530 * @returns @c true / @c false
2531 * @param pVCpu The cross context virtual CPU structure.
2532 * @thread EMT
2533 * @sa VMMIsLongJumpArmed
2534 */
2535VMMR0_INT_DECL(bool) VMMR0IsLongJumpArmed(PVMCPUCC pVCpu)
2536{
2537#ifdef RT_ARCH_X86
2538 return pVCpu->vmm.s.CallRing3JmpBufR0.eip
2539 && !pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call;
2540#else
2541 return pVCpu->vmm.s.CallRing3JmpBufR0.rip
2542 && !pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call;
2543#endif
2544}
2545
2546
2547/**
2548 * Checks whether we've done a ring-3 long jump.
2549 *
2550 * @returns @c true / @c false
2551 * @param pVCpu The cross context virtual CPU structure.
2552 * @thread EMT
2553 */
2554VMMR0_INT_DECL(bool) VMMR0IsInRing3LongJump(PVMCPUCC pVCpu)
2555{
2556 return pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call;
2557}
2558
2559
2560/**
2561 * Internal R0 logger worker: Flush logger.
2562 *
2563 * @param pLogger The logger instance to flush.
2564 * @remark This function must be exported!
2565 */
2566VMMR0DECL(void) vmmR0LoggerFlush(PRTLOGGER pLogger)
2567{
2568#ifdef LOG_ENABLED
2569 /*
2570 * Convert the pLogger into a VM handle and 'call' back to Ring-3.
2571 * (This is a bit paranoid code.)
2572 */
2573 PVMMR0LOGGER pR0Logger = (PVMMR0LOGGER)((uintptr_t)pLogger - RT_UOFFSETOF(VMMR0LOGGER, Logger));
2574 if ( !VALID_PTR(pR0Logger)
2575 || !VALID_PTR(pR0Logger + 1)
2576 || pLogger->u32Magic != RTLOGGER_MAGIC)
2577 {
2578# ifdef DEBUG
2579 SUPR0Printf("vmmR0LoggerFlush: pLogger=%p!\n", pLogger);
2580# endif
2581 return;
2582 }
2583 if (pR0Logger->fFlushingDisabled)
2584 return; /* quietly */
2585
2586 PVMCC pVM = pR0Logger->pVM;
2587 if ( !VALID_PTR(pVM)
2588 || pVM->pSelf != pVM)
2589 {
2590# ifdef DEBUG
2591 SUPR0Printf("vmmR0LoggerFlush: pVM=%p! pSelf=%p! pLogger=%p\n", pVM, pVM->pSelf, pLogger);
2592# endif
2593 return;
2594 }
2595
2596 PVMCPUCC pVCpu = VMMGetCpu(pVM);
2597 if (pVCpu)
2598 {
2599 /*
2600 * Check that the jump buffer is armed.
2601 */
2602# ifdef RT_ARCH_X86
2603 if ( !pVCpu->vmm.s.CallRing3JmpBufR0.eip
2604 || pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call)
2605# else
2606 if ( !pVCpu->vmm.s.CallRing3JmpBufR0.rip
2607 || pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call)
2608# endif
2609 {
2610# ifdef DEBUG
2611 SUPR0Printf("vmmR0LoggerFlush: Jump buffer isn't armed!\n");
2612# endif
2613 return;
2614 }
2615 VMMRZCallRing3(pVM, pVCpu, VMMCALLRING3_VMM_LOGGER_FLUSH, 0);
2616 }
2617# ifdef DEBUG
2618 else
2619 SUPR0Printf("vmmR0LoggerFlush: invalid VCPU context!\n");
2620# endif
2621#else
2622 NOREF(pLogger);
2623#endif /* LOG_ENABLED */
2624}
2625
2626#ifdef LOG_ENABLED
2627
2628/**
2629 * Disables flushing of the ring-0 debug log.
2630 *
2631 * @param pVCpu The cross context virtual CPU structure.
2632 */
2633VMMR0_INT_DECL(void) VMMR0LogFlushDisable(PVMCPUCC pVCpu)
2634{
2635 if (pVCpu->vmm.s.pR0LoggerR0)
2636 pVCpu->vmm.s.pR0LoggerR0->fFlushingDisabled = true;
2637 if (pVCpu->vmm.s.pR0RelLoggerR0)
2638 pVCpu->vmm.s.pR0RelLoggerR0->fFlushingDisabled = true;
2639}
2640
2641
2642/**
2643 * Enables flushing of the ring-0 debug log.
2644 *
2645 * @param pVCpu The cross context virtual CPU structure.
2646 */
2647VMMR0_INT_DECL(void) VMMR0LogFlushEnable(PVMCPUCC pVCpu)
2648{
2649 if (pVCpu->vmm.s.pR0LoggerR0)
2650 pVCpu->vmm.s.pR0LoggerR0->fFlushingDisabled = false;
2651 if (pVCpu->vmm.s.pR0RelLoggerR0)
2652 pVCpu->vmm.s.pR0RelLoggerR0->fFlushingDisabled = false;
2653}
2654
2655
2656/**
2657 * Checks if log flushing is disabled or not.
2658 *
2659 * @param pVCpu The cross context virtual CPU structure.
2660 */
2661VMMR0_INT_DECL(bool) VMMR0IsLogFlushDisabled(PVMCPUCC pVCpu)
2662{
2663 if (pVCpu->vmm.s.pR0LoggerR0)
2664 return pVCpu->vmm.s.pR0LoggerR0->fFlushingDisabled;
2665 if (pVCpu->vmm.s.pR0RelLoggerR0)
2666 return pVCpu->vmm.s.pR0RelLoggerR0->fFlushingDisabled;
2667 return true;
2668}
2669
2670#endif /* LOG_ENABLED */
2671
2672/*
2673 * Override RTLogRelGetDefaultInstanceEx so we can do LogRel to VBox.log from EMTs in ring-0.
2674 */
2675DECLEXPORT(PRTLOGGER) RTLogRelGetDefaultInstanceEx(uint32_t fFlagsAndGroup)
2676{
2677 PGVMCPU pGVCpu = GVMMR0GetGVCpuByEMT(NIL_RTNATIVETHREAD);
2678 if (pGVCpu)
2679 {
2680 PVMCPUCC pVCpu = pGVCpu;
2681 if (RT_VALID_PTR(pVCpu))
2682 {
2683 PVMMR0LOGGER pVmmLogger = pVCpu->vmm.s.pR0RelLoggerR0;
2684 if (RT_VALID_PTR(pVmmLogger))
2685 {
2686 if ( pVmmLogger->fCreated
2687 && pVmmLogger->pVM == pGVCpu->pGVM)
2688 {
2689 if (pVmmLogger->Logger.fFlags & RTLOGFLAGS_DISABLED)
2690 return NULL;
2691 uint16_t const fFlags = RT_LO_U16(fFlagsAndGroup);
2692 uint16_t const iGroup = RT_HI_U16(fFlagsAndGroup);
2693 if ( iGroup != UINT16_MAX
2694 && ( ( pVmmLogger->Logger.afGroups[iGroup < pVmmLogger->Logger.cGroups ? iGroup : 0]
2695 & (fFlags | (uint32_t)RTLOGGRPFLAGS_ENABLED))
2696 != (fFlags | (uint32_t)RTLOGGRPFLAGS_ENABLED)))
2697 return NULL;
2698 return &pVmmLogger->Logger;
2699 }
2700 }
2701 }
2702 }
2703 return SUPR0GetDefaultLogRelInstanceEx(fFlagsAndGroup);
2704}
2705
2706
2707/*
2708 * Jump back to ring-3 if we're the EMT and the longjmp is armed.
2709 *
2710 * @returns true if the breakpoint should be hit, false if it should be ignored.
2711 */
2712DECLEXPORT(bool) RTCALL RTAssertShouldPanic(void)
2713{
2714#if 0
2715 return true;
2716#else
2717 PVMCC pVM = GVMMR0GetVMByEMT(NIL_RTNATIVETHREAD);
2718 if (pVM)
2719 {
2720 PVMCPUCC pVCpu = VMMGetCpu(pVM);
2721
2722 if (pVCpu)
2723 {
2724# ifdef RT_ARCH_X86
2725 if ( pVCpu->vmm.s.CallRing3JmpBufR0.eip
2726 && !pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call)
2727# else
2728 if ( pVCpu->vmm.s.CallRing3JmpBufR0.rip
2729 && !pVCpu->vmm.s.CallRing3JmpBufR0.fInRing3Call)
2730# endif
2731 {
2732 int rc = VMMRZCallRing3(pVM, pVCpu, VMMCALLRING3_VM_R0_ASSERTION, 0);
2733 return RT_FAILURE_NP(rc);
2734 }
2735 }
2736 }
2737# ifdef RT_OS_LINUX
2738 return true;
2739# else
2740 return false;
2741# endif
2742#endif
2743}
2744
2745
2746/*
2747 * Override this so we can push it up to ring-3.
2748 */
2749DECLEXPORT(void) RTCALL RTAssertMsg1Weak(const char *pszExpr, unsigned uLine, const char *pszFile, const char *pszFunction)
2750{
2751 /*
2752 * To the log.
2753 */
2754 LogAlways(("\n!!R0-Assertion Failed!!\n"
2755 "Expression: %s\n"
2756 "Location : %s(%d) %s\n",
2757 pszExpr, pszFile, uLine, pszFunction));
2758
2759 /*
2760 * To the global VMM buffer.
2761 */
2762 PVMCC pVM = GVMMR0GetVMByEMT(NIL_RTNATIVETHREAD);
2763 if (pVM)
2764 RTStrPrintf(pVM->vmm.s.szRing0AssertMsg1, sizeof(pVM->vmm.s.szRing0AssertMsg1),
2765 "\n!!R0-Assertion Failed!!\n"
2766 "Expression: %.*s\n"
2767 "Location : %s(%d) %s\n",
2768 sizeof(pVM->vmm.s.szRing0AssertMsg1) / 4 * 3, pszExpr,
2769 pszFile, uLine, pszFunction);
2770
2771 /*
2772 * Continue the normal way.
2773 */
2774 RTAssertMsg1(pszExpr, uLine, pszFile, pszFunction);
2775}
2776
2777
2778/**
2779 * Callback for RTLogFormatV which writes to the ring-3 log port.
2780 * See PFNLOGOUTPUT() for details.
2781 */
2782static DECLCALLBACK(size_t) rtLogOutput(void *pv, const char *pachChars, size_t cbChars)
2783{
2784 for (size_t i = 0; i < cbChars; i++)
2785 {
2786 LogAlways(("%c", pachChars[i])); NOREF(pachChars);
2787 }
2788
2789 NOREF(pv);
2790 return cbChars;
2791}
2792
2793
2794/*
2795 * Override this so we can push it up to ring-3.
2796 */
2797DECLEXPORT(void) RTCALL RTAssertMsg2WeakV(const char *pszFormat, va_list va)
2798{
2799 va_list vaCopy;
2800
2801 /*
2802 * Push the message to the loggers.
2803 */
2804 PRTLOGGER pLog = RTLogGetDefaultInstance(); /* Don't initialize it here... */
2805 if (pLog)
2806 {
2807 va_copy(vaCopy, va);
2808 RTLogFormatV(rtLogOutput, pLog, pszFormat, vaCopy);
2809 va_end(vaCopy);
2810 }
2811 pLog = RTLogRelGetDefaultInstance();
2812 if (pLog)
2813 {
2814 va_copy(vaCopy, va);
2815 RTLogFormatV(rtLogOutput, pLog, pszFormat, vaCopy);
2816 va_end(vaCopy);
2817 }
2818
2819 /*
2820 * Push it to the global VMM buffer.
2821 */
2822 PVMCC pVM = GVMMR0GetVMByEMT(NIL_RTNATIVETHREAD);
2823 if (pVM)
2824 {
2825 va_copy(vaCopy, va);
2826 RTStrPrintfV(pVM->vmm.s.szRing0AssertMsg2, sizeof(pVM->vmm.s.szRing0AssertMsg2), pszFormat, vaCopy);
2827 va_end(vaCopy);
2828 }
2829
2830 /*
2831 * Continue the normal way.
2832 */
2833 RTAssertMsg2V(pszFormat, va);
2834}
2835
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette