VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPool.cpp@ 91854

最後變更 在這個檔案從91854是 91854,由 vboxsync 提交於 3 年 前

VMM: Removed PGM_WITHOUT_MAPPINGS and associated mapping code. bugref:9517

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id Revision
檔案大小: 208.1 KB
 
1/* $Id: PGMAllPool.cpp 91854 2021-10-20 00:50:11Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2020 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_PGM_POOL
23#define VBOX_WITHOUT_PAGING_BIT_FIELDS /* 64-bit bitfields are just asking for trouble. See @bugref{9841} and others. */
24#include <VBox/vmm/pgm.h>
25#include <VBox/vmm/mm.h>
26#include <VBox/vmm/em.h>
27#include <VBox/vmm/cpum.h>
28#include "PGMInternal.h"
29#include <VBox/vmm/vmcc.h>
30#include "PGMInline.h"
31#include <VBox/disopcode.h>
32#include <VBox/vmm/hm_vmx.h>
33
34#include <VBox/log.h>
35#include <VBox/err.h>
36#include <iprt/asm.h>
37#include <iprt/asm-amd64-x86.h>
38#include <iprt/string.h>
39
40
41/*********************************************************************************************************************************
42* Internal Functions *
43*********************************************************************************************************************************/
44RT_C_DECLS_BEGIN
45#if 0 /* unused */
46DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
47DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
48#endif /* unused */
49static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
50static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
51static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
52static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
53#if defined(LOG_ENABLED) || defined(VBOX_STRICT)
54static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
55#endif
56#if 0 /*defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT)*/
57static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT);
58#endif
59
60int pgmPoolTrackFlushGCPhysPTsSlow(PVMCC pVM, PPGMPAGE pPhysPage);
61PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVMCC pVM, uint16_t *piPhysExt);
62void pgmPoolTrackPhysExtFree(PVMCC pVM, uint16_t iPhysExt);
63void pgmPoolTrackPhysExtFreeList(PVMCC pVM, uint16_t iPhysExt);
64
65RT_C_DECLS_END
66
67
68#if 0 /* unused */
69/**
70 * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
71 *
72 * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
73 * @param enmKind The page kind.
74 */
75DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
76{
77 switch (enmKind)
78 {
79 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
80 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
81 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
82 return true;
83 default:
84 return false;
85 }
86}
87#endif /* unused */
88
89
90/**
91 * Flushes a chain of pages sharing the same access monitor.
92 *
93 * @param pPool The pool.
94 * @param pPage A page in the chain.
95 */
96void pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
97{
98 LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
99
100 /*
101 * Find the list head.
102 */
103 uint16_t idx = pPage->idx;
104 if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
105 {
106 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
107 {
108 idx = pPage->iMonitoredPrev;
109 Assert(idx != pPage->idx);
110 pPage = &pPool->aPages[idx];
111 }
112 }
113
114 /*
115 * Iterate the list flushing each shadow page.
116 */
117 for (;;)
118 {
119 idx = pPage->iMonitoredNext;
120 Assert(idx != pPage->idx);
121 if (pPage->idx >= PGMPOOL_IDX_FIRST)
122 {
123 int rc2 = pgmPoolFlushPage(pPool, pPage);
124 AssertRC(rc2);
125 }
126 /* next */
127 if (idx == NIL_PGMPOOL_IDX)
128 break;
129 pPage = &pPool->aPages[idx];
130 }
131}
132
133
134/**
135 * Wrapper for getting the current context pointer to the entry being modified.
136 *
137 * @returns VBox status code suitable for scheduling.
138 * @param pVM The cross context VM structure.
139 * @param pvDst Destination address
140 * @param pvSrc Pointer to the mapping of @a GCPhysSrc or NULL depending
141 * on the context (e.g. \#PF in R0 & RC).
142 * @param GCPhysSrc The source guest physical address.
143 * @param cb Size of data to read
144 */
145DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVMCC pVM, void *pvDst, void const *pvSrc, RTGCPHYS GCPhysSrc, size_t cb)
146{
147#if defined(IN_RING3)
148 NOREF(pVM); NOREF(GCPhysSrc);
149 memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
150 return VINF_SUCCESS;
151#else
152 /** @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
153 NOREF(pvSrc);
154 return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
155#endif
156}
157
158
159/**
160 * Process shadow entries before they are changed by the guest.
161 *
162 * For PT entries we will clear them. For PD entries, we'll simply check
163 * for mapping conflicts and set the SyncCR3 FF if found.
164 *
165 * @param pVCpu The cross context virtual CPU structure.
166 * @param pPool The pool.
167 * @param pPage The head page.
168 * @param GCPhysFault The guest physical fault address.
169 * @param pvAddress Pointer to the mapping of @a GCPhysFault or NULL
170 * depending on the context (e.g. \#PF in R0 & RC).
171 * @param cbWrite Write size; might be zero if the caller knows we're not crossing entry boundaries
172 */
173static void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault,
174 void const *pvAddress, unsigned cbWrite)
175{
176 AssertMsg(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX, ("%u (idx=%u)\n", pPage->iMonitoredPrev, pPage->idx));
177 const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
178 PVMCC pVM = pPool->CTX_SUFF(pVM);
179 NOREF(pVCpu);
180
181 LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp cbWrite=%d\n",
182 (RTGCPTR)(CTXTYPE(RTGCPTR, uintptr_t, RTGCPTR))(uintptr_t)pvAddress, GCPhysFault, cbWrite));
183
184 for (;;)
185 {
186 union
187 {
188 void *pv;
189 PX86PT pPT;
190 PPGMSHWPTPAE pPTPae;
191 PX86PD pPD;
192 PX86PDPAE pPDPae;
193 PX86PDPT pPDPT;
194 PX86PML4 pPML4;
195 } uShw;
196
197 LogFlow(("pgmPoolMonitorChainChanging: page idx=%d phys=%RGp (next=%d) kind=%s write=%#x\n",
198 pPage->idx, pPage->GCPhys, pPage->iMonitoredNext, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
199
200 uShw.pv = NULL;
201 switch (pPage->enmKind)
202 {
203 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
204 {
205 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
206 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
207 const unsigned iShw = off / sizeof(X86PTE);
208 LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
209 X86PGUINT const uPde = uShw.pPT->a[iShw].u;
210 if (uPde & X86_PTE_P)
211 {
212 X86PTE GstPte;
213 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
214 AssertRC(rc);
215 Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uPde & X86_PTE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
216 pgmPoolTracDerefGCPhysHint(pPool, pPage, uPde & X86_PTE_PG_MASK, GstPte.u & X86_PTE_PG_MASK, iShw);
217 ASMAtomicWriteU32(&uShw.pPT->a[iShw].u, 0);
218 }
219 break;
220 }
221
222 /* page/2 sized */
223 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
224 {
225 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
226 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
227 if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
228 {
229 const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
230 LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
231 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
232 {
233 X86PTE GstPte;
234 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
235 AssertRC(rc);
236
237 Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
238 pgmPoolTracDerefGCPhysHint(pPool, pPage,
239 PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]),
240 GstPte.u & X86_PTE_PG_MASK,
241 iShw);
242 PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw], 0);
243 }
244 }
245 break;
246 }
247
248 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
249 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
250 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
251 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
252 {
253 unsigned iGst = off / sizeof(X86PDE);
254 unsigned iShwPdpt = iGst / 256;
255 unsigned iShw = (iGst % 256) * 2;
256 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
257
258 LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
259 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
260 if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
261 {
262 for (unsigned i = 0; i < 2; i++)
263 {
264 X86PGPAEUINT const uPde = uShw.pPDPae->a[iShw + i].u;
265 if (uPde & X86_PDE_P)
266 {
267 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw + i, uPde));
268 pgmPoolFree(pVM, uPde & X86_PDE_PAE_PG_MASK, pPage->idx, iShw + i);
269 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw + i].u, 0);
270 }
271
272 /* paranoia / a bit assumptive. */
273 if ( (off & 3)
274 && (off & 3) + cbWrite > 4)
275 {
276 const unsigned iShw2 = iShw + 2 + i;
277 if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
278 {
279 X86PGPAEUINT const uPde2 = uShw.pPDPae->a[iShw2].u;
280 if (uPde2 & X86_PDE_P)
281 {
282 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uPde2));
283 pgmPoolFree(pVM, uPde2 & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2);
284 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0);
285 }
286 }
287 }
288 }
289 }
290 break;
291 }
292
293 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
294 {
295 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
296 const unsigned iShw = off / sizeof(X86PTEPAE);
297 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPT));
298 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw]))
299 {
300 X86PTEPAE GstPte;
301 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
302 AssertRC(rc);
303
304 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]), GstPte.u & X86_PTE_PAE_PG_MASK));
305 pgmPoolTracDerefGCPhysHint(pPool, pPage,
306 PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw]),
307 GstPte.u & X86_PTE_PAE_PG_MASK,
308 iShw);
309 PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw], 0);
310 }
311
312 /* paranoia / a bit assumptive. */
313 if ( (off & 7)
314 && (off & 7) + cbWrite > sizeof(X86PTEPAE))
315 {
316 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
317 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
318
319 if (PGMSHWPTEPAE_IS_P(uShw.pPTPae->a[iShw2]))
320 {
321 X86PTEPAE GstPte;
322 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte,
323 pvAddress ? (uint8_t const *)pvAddress + sizeof(GstPte) : NULL,
324 GCPhysFault + sizeof(GstPte), sizeof(GstPte));
325 AssertRC(rc);
326 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw2]), GstPte.u & X86_PTE_PAE_PG_MASK));
327 pgmPoolTracDerefGCPhysHint(pPool, pPage,
328 PGMSHWPTEPAE_GET_HCPHYS(uShw.pPTPae->a[iShw2]),
329 GstPte.u & X86_PTE_PAE_PG_MASK,
330 iShw2);
331 PGMSHWPTEPAE_ATOMIC_SET(uShw.pPTPae->a[iShw2], 0);
332 }
333 }
334 break;
335 }
336
337 case PGMPOOLKIND_32BIT_PD:
338 {
339 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
340 const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
341
342 LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
343 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
344 X86PGUINT const uPde = uShw.pPD->a[iShw].u;
345 if (uPde & X86_PDE_P)
346 {
347 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uPde));
348 pgmPoolFree(pVM, uPde & X86_PDE_PG_MASK, pPage->idx, iShw);
349 ASMAtomicWriteU32(&uShw.pPD->a[iShw].u, 0);
350 }
351
352 /* paranoia / a bit assumptive. */
353 if ( (off & 3)
354 && (off & 3) + cbWrite > sizeof(X86PTE))
355 {
356 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
357 if ( iShw2 != iShw
358 && iShw2 < RT_ELEMENTS(uShw.pPD->a))
359 {
360 X86PGUINT const uPde2 = uShw.pPD->a[iShw2].u;
361 if (uPde2 & X86_PDE_P)
362 {
363 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uPde2));
364 pgmPoolFree(pVM, uPde2 & X86_PDE_PG_MASK, pPage->idx, iShw2);
365 ASMAtomicWriteU32(&uShw.pPD->a[iShw2].u, 0);
366 }
367 }
368 }
369#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). - not working any longer... */
370 if ( uShw.pPD->a[iShw].n.u1Present
371 && !VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
372 {
373 LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
374 pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
375 ASMAtomicWriteU32(&uShw.pPD->a[iShw].u, 0);
376 }
377#endif
378 break;
379 }
380
381 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
382 {
383 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
384 const unsigned iShw = off / sizeof(X86PDEPAE);
385 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
386
387 /*
388 * Causes trouble when the guest uses a PDE to refer to the whole page table level
389 * structure. (Invalidate here; faults later on when it tries to change the page
390 * table entries -> recheck; probably only applies to the RC case.)
391 */
392 X86PGPAEUINT const uPde = uShw.pPDPae->a[iShw].u;
393 if (uPde & X86_PDE_P)
394 {
395 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uPde));
396 pgmPoolFree(pVM, uPde & X86_PDE_PAE_PG_MASK, pPage->idx, iShw);
397 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw].u, 0);
398 }
399
400 /* paranoia / a bit assumptive. */
401 if ( (off & 7)
402 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
403 {
404 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
405 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
406
407 X86PGPAEUINT const uPde2 = uShw.pPDPae->a[iShw2].u;
408 if (uPde2 & X86_PDE_P)
409 {
410 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPde2));
411 pgmPoolFree(pVM, uPde2 & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2);
412 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0);
413 }
414 }
415 break;
416 }
417
418 case PGMPOOLKIND_PAE_PDPT:
419 {
420 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT));
421 /*
422 * Hopefully this doesn't happen very often:
423 * - touching unused parts of the page
424 * - messing with the bits of pd pointers without changing the physical address
425 */
426 /* PDPT roots are not page aligned; 32 byte only! */
427 const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
428
429 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
430 const unsigned iShw = offPdpt / sizeof(X86PDPE);
431 if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
432 {
433 X86PGPAEUINT const uPdpe = uShw.pPDPT->a[iShw].u;
434 if (uPdpe & X86_PDPE_P)
435 {
436 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
437 pgmPoolFree(pVM, uPdpe & X86_PDPE_PG_MASK, pPage->idx, iShw);
438 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw].u, 0);
439 }
440
441 /* paranoia / a bit assumptive. */
442 if ( (offPdpt & 7)
443 && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
444 {
445 const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
446 if ( iShw2 != iShw
447 && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
448 {
449 X86PGPAEUINT const uPdpe2 = uShw.pPDPT->a[iShw2].u;
450 if (uPdpe2 & X86_PDPE_P)
451 {
452 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
453 pgmPoolFree(pVM, uPdpe2 & X86_PDPE_PG_MASK, pPage->idx, iShw2);
454 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw2].u, 0);
455 }
456 }
457 }
458 }
459 break;
460 }
461
462 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
463 {
464 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPD));
465 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
466 const unsigned iShw = off / sizeof(X86PDEPAE);
467 X86PGPAEUINT const uPde = uShw.pPDPae->a[iShw].u;
468 if (uPde & X86_PDE_P)
469 {
470 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uPde));
471 pgmPoolFree(pVM, uPde & X86_PDE_PAE_PG_MASK, pPage->idx, iShw);
472 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw].u, 0);
473 }
474
475 /* paranoia / a bit assumptive. */
476 if ( (off & 7)
477 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
478 {
479 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
480 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
481 X86PGPAEUINT const uPde2 = uShw.pPDPae->a[iShw2].u;
482 if (uPde2 & X86_PDE_P)
483 {
484 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPde2));
485 pgmPoolFree(pVM, uPde2 & X86_PDE_PAE_PG_MASK, pPage->idx, iShw2);
486 ASMAtomicWriteU64(&uShw.pPDPae->a[iShw2].u, 0);
487 }
488 }
489 break;
490 }
491
492 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
493 {
494 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPDPT));
495 /*
496 * Hopefully this doesn't happen very often:
497 * - messing with the bits of pd pointers without changing the physical address
498 */
499 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
500 const unsigned iShw = off / sizeof(X86PDPE);
501 X86PGPAEUINT const uPdpe = uShw.pPDPT->a[iShw].u;
502 if (uPdpe & X86_PDPE_P)
503 {
504 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uPdpe));
505 pgmPoolFree(pVM, uPdpe & X86_PDPE_PG_MASK, pPage->idx, iShw);
506 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw].u, 0);
507 }
508 /* paranoia / a bit assumptive. */
509 if ( (off & 7)
510 && (off & 7) + cbWrite > sizeof(X86PDPE))
511 {
512 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
513 X86PGPAEUINT const uPdpe2 = uShw.pPDPT->a[iShw2].u;
514 if (uPdpe2 & X86_PDPE_P)
515 {
516 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPdpe2));
517 pgmPoolFree(pVM, uPdpe2 & X86_PDPE_PG_MASK, pPage->idx, iShw2);
518 ASMAtomicWriteU64(&uShw.pPDPT->a[iShw2].u, 0);
519 }
520 }
521 break;
522 }
523
524 case PGMPOOLKIND_64BIT_PML4:
525 {
526 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FaultPML4));
527 /*
528 * Hopefully this doesn't happen very often:
529 * - messing with the bits of pd pointers without changing the physical address
530 */
531 uShw.pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
532 const unsigned iShw = off / sizeof(X86PDPE);
533 X86PGPAEUINT const uPml4e = uShw.pPML4->a[iShw].u;
534 if (uPml4e & X86_PML4E_P)
535 {
536 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uPml4e));
537 pgmPoolFree(pVM, uPml4e & X86_PML4E_PG_MASK, pPage->idx, iShw);
538 ASMAtomicWriteU64(&uShw.pPML4->a[iShw].u, 0);
539 }
540 /* paranoia / a bit assumptive. */
541 if ( (off & 7)
542 && (off & 7) + cbWrite > sizeof(X86PDPE))
543 {
544 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
545 X86PGPAEUINT const uPml4e2 = uShw.pPML4->a[iShw2].u;
546 if (uPml4e2 & X86_PML4E_P)
547 {
548 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uPml4e2));
549 pgmPoolFree(pVM, uPml4e2 & X86_PML4E_PG_MASK, pPage->idx, iShw2);
550 ASMAtomicWriteU64(&uShw.pPML4->a[iShw2].u, 0);
551 }
552 }
553 break;
554 }
555
556 default:
557 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
558 }
559 PGM_DYNMAP_UNUSED_HINT_VM(pVM, uShw.pv);
560
561 /* next */
562 if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
563 return;
564 pPage = &pPool->aPages[pPage->iMonitoredNext];
565 }
566}
567
568#ifndef IN_RING3
569
570/**
571 * Checks if a access could be a fork operation in progress.
572 *
573 * Meaning, that the guest is setting up the parent process for Copy-On-Write.
574 *
575 * @returns true if it's likely that we're forking, otherwise false.
576 * @param pPool The pool.
577 * @param pDis The disassembled instruction.
578 * @param offFault The access offset.
579 */
580DECLINLINE(bool) pgmRZPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pDis, unsigned offFault)
581{
582 /*
583 * i386 linux is using btr to clear X86_PTE_RW.
584 * The functions involved are (2.6.16 source inspection):
585 * clear_bit
586 * ptep_set_wrprotect
587 * copy_one_pte
588 * copy_pte_range
589 * copy_pmd_range
590 * copy_pud_range
591 * copy_page_range
592 * dup_mmap
593 * dup_mm
594 * copy_mm
595 * copy_process
596 * do_fork
597 */
598 if ( pDis->pCurInstr->uOpcode == OP_BTR
599 && !(offFault & 4)
600 /** @todo Validate that the bit index is X86_PTE_RW. */
601 )
602 {
603 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,Fork)); RT_NOREF_PV(pPool);
604 return true;
605 }
606 return false;
607}
608
609
610/**
611 * Determine whether the page is likely to have been reused.
612 *
613 * @returns true if we consider the page as being reused for a different purpose.
614 * @returns false if we consider it to still be a paging page.
615 * @param pVM The cross context VM structure.
616 * @param pVCpu The cross context virtual CPU structure.
617 * @param pRegFrame Trap register frame.
618 * @param pDis The disassembly info for the faulting instruction.
619 * @param pvFault The fault address.
620 * @param pPage The pool page being accessed.
621 *
622 * @remark The REP prefix check is left to the caller because of STOSD/W.
623 */
624DECLINLINE(bool) pgmRZPoolMonitorIsReused(PVMCC pVM, PVMCPUCC pVCpu, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, RTGCPTR pvFault,
625 PPGMPOOLPAGE pPage)
626{
627 /* Locked (CR3, PDPTR*4) should not be reusable. Considering them as
628 such may cause loops booting tst-ubuntu-15_10-64-efi, ++. */
629 if (pPage->cLocked)
630 {
631 Log2(("pgmRZPoolMonitorIsReused: %RGv (%p) can't have been resued, because it's locked!\n", pvFault, pPage));
632 return false;
633 }
634
635 /** @todo could make this general, faulting close to rsp should be a safe reuse heuristic. */
636 if ( HMHasPendingIrq(pVM)
637 && pRegFrame->rsp - pvFault < 32)
638 {
639 /* Fault caused by stack writes while trying to inject an interrupt event. */
640 Log(("pgmRZPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
641 return true;
642 }
643
644 LogFlow(("Reused instr %RGv %d at %RGv param1.fUse=%llx param1.reg=%d\n", pRegFrame->rip, pDis->pCurInstr->uOpcode, pvFault, pDis->Param1.fUse, pDis->Param1.Base.idxGenReg));
645
646 /* Non-supervisor mode write means it's used for something else. */
647 if (CPUMGetGuestCPL(pVCpu) == 3)
648 return true;
649
650 switch (pDis->pCurInstr->uOpcode)
651 {
652 /* call implies the actual push of the return address faulted */
653 case OP_CALL:
654 Log4(("pgmRZPoolMonitorIsReused: CALL\n"));
655 return true;
656 case OP_PUSH:
657 Log4(("pgmRZPoolMonitorIsReused: PUSH\n"));
658 return true;
659 case OP_PUSHF:
660 Log4(("pgmRZPoolMonitorIsReused: PUSHF\n"));
661 return true;
662 case OP_PUSHA:
663 Log4(("pgmRZPoolMonitorIsReused: PUSHA\n"));
664 return true;
665 case OP_FXSAVE:
666 Log4(("pgmRZPoolMonitorIsReused: FXSAVE\n"));
667 return true;
668 case OP_MOVNTI: /* solaris - block_zero_no_xmm */
669 Log4(("pgmRZPoolMonitorIsReused: MOVNTI\n"));
670 return true;
671 case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
672 Log4(("pgmRZPoolMonitorIsReused: MOVNTDQ\n"));
673 return true;
674 case OP_MOVSWD:
675 case OP_STOSWD:
676 if ( pDis->fPrefix == (DISPREFIX_REP|DISPREFIX_REX)
677 && pRegFrame->rcx >= 0x40
678 )
679 {
680 Assert(pDis->uCpuMode == DISCPUMODE_64BIT);
681
682 Log(("pgmRZPoolMonitorIsReused: OP_STOSQ\n"));
683 return true;
684 }
685 break;
686
687 default:
688 /*
689 * Anything having ESP on the left side means stack writes.
690 */
691 if ( ( (pDis->Param1.fUse & DISUSE_REG_GEN32)
692 || (pDis->Param1.fUse & DISUSE_REG_GEN64))
693 && (pDis->Param1.Base.idxGenReg == DISGREG_ESP))
694 {
695 Log4(("pgmRZPoolMonitorIsReused: ESP\n"));
696 return true;
697 }
698 break;
699 }
700
701 /*
702 * Page table updates are very very unlikely to be crossing page boundraries,
703 * and we don't want to deal with that in pgmPoolMonitorChainChanging and such.
704 */
705 uint32_t const cbWrite = DISGetParamSize(pDis, &pDis->Param1);
706 if ( (((uintptr_t)pvFault + cbWrite) >> X86_PAGE_SHIFT) != ((uintptr_t)pvFault >> X86_PAGE_SHIFT) )
707 {
708 Log4(("pgmRZPoolMonitorIsReused: cross page write\n"));
709 return true;
710 }
711
712 /*
713 * Nobody does an unaligned 8 byte write to a page table, right.
714 */
715 if (cbWrite >= 8 && ((uintptr_t)pvFault & 7) != 0)
716 {
717 Log4(("pgmRZPoolMonitorIsReused: Unaligned 8+ byte write\n"));
718 return true;
719 }
720
721 return false;
722}
723
724
725/**
726 * Flushes the page being accessed.
727 *
728 * @returns VBox status code suitable for scheduling.
729 * @param pVM The cross context VM structure.
730 * @param pVCpu The cross context virtual CPU structure.
731 * @param pPool The pool.
732 * @param pPage The pool page (head).
733 * @param pDis The disassembly of the write instruction.
734 * @param pRegFrame The trap register frame.
735 * @param GCPhysFault The fault address as guest physical address.
736 * @param pvFault The fault address.
737 * @todo VBOXSTRICTRC
738 */
739static int pgmRZPoolAccessPfHandlerFlush(PVMCC pVM, PVMCPUCC pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
740 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
741{
742 NOREF(pVM); NOREF(GCPhysFault);
743
744 /*
745 * First, do the flushing.
746 */
747 pgmPoolMonitorChainFlush(pPool, pPage);
748
749 /*
750 * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection).
751 * Must do this in raw mode (!); XP boot will fail otherwise.
752 */
753 int rc = VINF_SUCCESS;
754 VBOXSTRICTRC rc2 = EMInterpretInstructionDisasState(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_ALL);
755 if (rc2 == VINF_SUCCESS)
756 { /* do nothing */ }
757 else if (rc2 == VINF_EM_RESCHEDULE)
758 {
759 rc = VBOXSTRICTRC_VAL(rc2);
760# ifndef IN_RING3
761 VMCPU_FF_SET(pVCpu, VMCPU_FF_TO_R3);
762# endif
763 }
764 else if (rc2 == VERR_EM_INTERPRETER)
765 {
766 rc = VINF_EM_RAW_EMULATE_INSTR;
767 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,EmulateInstr));
768 }
769 else if (RT_FAILURE_NP(rc2))
770 rc = VBOXSTRICTRC_VAL(rc2);
771 else
772 AssertMsgFailed(("%Rrc\n", VBOXSTRICTRC_VAL(rc2))); /* ASSUMES no complicated stuff here. */
773
774 LogFlow(("pgmRZPoolAccessPfHandlerFlush: returns %Rrc (flushed)\n", rc));
775 return rc;
776}
777
778
779/**
780 * Handles the STOSD write accesses.
781 *
782 * @returns VBox status code suitable for scheduling.
783 * @param pVM The cross context VM structure.
784 * @param pPool The pool.
785 * @param pPage The pool page (head).
786 * @param pDis The disassembly of the write instruction.
787 * @param pRegFrame The trap register frame.
788 * @param GCPhysFault The fault address as guest physical address.
789 * @param pvFault The fault address.
790 */
791DECLINLINE(int) pgmRZPoolAccessPfHandlerSTOSD(PVMCC pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
792 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
793{
794 unsigned uIncrement = pDis->Param1.cb;
795 NOREF(pVM);
796
797 Assert(pDis->uCpuMode == DISCPUMODE_32BIT || pDis->uCpuMode == DISCPUMODE_64BIT);
798 Assert(pRegFrame->rcx <= 0x20);
799
800# ifdef VBOX_STRICT
801 if (pDis->uOpMode == DISCPUMODE_32BIT)
802 Assert(uIncrement == 4);
803 else
804 Assert(uIncrement == 8);
805# endif
806
807 Log3(("pgmRZPoolAccessPfHandlerSTOSD\n"));
808
809 /*
810 * Increment the modification counter and insert it into the list
811 * of modified pages the first time.
812 */
813 if (!pPage->cModifications++)
814 pgmPoolMonitorModifiedInsert(pPool, pPage);
815
816 /*
817 * Execute REP STOSD.
818 *
819 * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
820 * write situation, meaning that it's safe to write here.
821 */
822 PVMCPUCC pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
823 RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
824 while (pRegFrame->rcx)
825 {
826 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, uIncrement);
827 PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->rax, uIncrement);
828 pu32 += uIncrement;
829 GCPhysFault += uIncrement;
830 pRegFrame->rdi += uIncrement;
831 pRegFrame->rcx--;
832 }
833 pRegFrame->rip += pDis->cbInstr;
834
835 LogFlow(("pgmRZPoolAccessPfHandlerSTOSD: returns\n"));
836 return VINF_SUCCESS;
837}
838
839
840/**
841 * Handles the simple write accesses.
842 *
843 * @returns VBox status code suitable for scheduling.
844 * @param pVM The cross context VM structure.
845 * @param pVCpu The cross context virtual CPU structure.
846 * @param pPool The pool.
847 * @param pPage The pool page (head).
848 * @param pDis The disassembly of the write instruction.
849 * @param pRegFrame The trap register frame.
850 * @param GCPhysFault The fault address as guest physical address.
851 * @param pvFault The fault address.
852 * @param pfReused Reused state (in/out)
853 */
854DECLINLINE(int) pgmRZPoolAccessPfHandlerSimple(PVMCC pVM, PVMCPUCC pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
855 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault, bool *pfReused)
856{
857 Log3(("pgmRZPoolAccessPfHandlerSimple\n"));
858 NOREF(pVM);
859 NOREF(pfReused); /* initialized by caller */
860
861 /*
862 * Increment the modification counter and insert it into the list
863 * of modified pages the first time.
864 */
865 if (!pPage->cModifications++)
866 pgmPoolMonitorModifiedInsert(pPool, pPage);
867
868 /*
869 * Clear all the pages. ASSUMES that pvFault is readable.
870 */
871 uint32_t cbWrite = DISGetParamSize(pDis, &pDis->Param1);
872 if (cbWrite <= 8)
873 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, cbWrite);
874 else if (cbWrite <= 16)
875 {
876 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, NULL, 8);
877 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault + 8, NULL, cbWrite - 8);
878 }
879 else
880 {
881 Assert(cbWrite <= 32);
882 for (uint32_t off = 0; off < cbWrite; off += 8)
883 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault + off, NULL, RT_MIN(8, cbWrite - off));
884 }
885
886 /*
887 * Interpret the instruction.
888 */
889 VBOXSTRICTRC rc = EMInterpretInstructionDisasState(pVCpu, pDis, pRegFrame, pvFault, EMCODETYPE_ALL);
890 if (RT_SUCCESS(rc))
891 AssertMsg(rc == VINF_SUCCESS, ("%Rrc\n", VBOXSTRICTRC_VAL(rc))); /* ASSUMES no complicated stuff here. */
892 else if (rc == VERR_EM_INTERPRETER)
893 {
894 LogFlow(("pgmRZPoolAccessPfHandlerSimple: Interpretation failed for %04x:%RGv - opcode=%d\n",
895 pRegFrame->cs.Sel, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->uOpcode));
896 rc = VINF_EM_RAW_EMULATE_INSTR;
897 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitorPf,EmulateInstr));
898 }
899
900# if 0 /* experimental code */
901 if (rc == VINF_SUCCESS)
902 {
903 switch (pPage->enmKind)
904 {
905 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
906 {
907 X86PTEPAE GstPte;
908 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvFault, GCPhysFault, sizeof(GstPte));
909 AssertRC(rc);
910
911 /* Check the new value written by the guest. If present and with a bogus physical address, then
912 * it's fairly safe to assume the guest is reusing the PT.
913 */
914 if (GstPte.n.u1Present)
915 {
916 RTHCPHYS HCPhys = -1;
917 int rc = PGMPhysGCPhys2HCPhys(pVM, GstPte.u & X86_PTE_PAE_PG_MASK, &HCPhys);
918 if (rc != VINF_SUCCESS)
919 {
920 *pfReused = true;
921 STAM_COUNTER_INC(&pPool->StatForceFlushReused);
922 }
923 }
924 break;
925 }
926 }
927 }
928# endif
929
930 LogFlow(("pgmRZPoolAccessPfHandlerSimple: returns %Rrc\n", VBOXSTRICTRC_VAL(rc)));
931 return VBOXSTRICTRC_VAL(rc);
932}
933
934
935/**
936 * @callback_method_impl{FNPGMRZPHYSPFHANDLER,
937 * \#PF access handler callback for page table pages.}
938 *
939 * @remarks The @a pvUser argument points to the PGMPOOLPAGE.
940 */
941DECLEXPORT(VBOXSTRICTRC) pgmRZPoolAccessPfHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame,
942 RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
943{
944 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorRZ, a);
945 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
946 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
947 unsigned cMaxModifications;
948 bool fForcedFlush = false;
949 NOREF(uErrorCode);
950
951 LogFlow(("pgmRZPoolAccessPfHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
952
953 PGM_LOCK_VOID(pVM);
954 if (PHYS_PAGE_ADDRESS(GCPhysFault) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
955 {
956 /* Pool page changed while we were waiting for the lock; ignore. */
957 Log(("CPU%d: pgmRZPoolAccessPfHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhysFault), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
958 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZHandled, a);
959 PGM_UNLOCK(pVM);
960 return VINF_SUCCESS;
961 }
962# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
963 if (pPage->fDirty)
964 {
965 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_TLB_FLUSH));
966 PGM_UNLOCK(pVM);
967 return VINF_SUCCESS; /* SMP guest case where we were blocking on the pgm lock while the same page was being marked dirty. */
968 }
969# endif
970
971# if 0 /* test code defined(VBOX_STRICT) && defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) */
972 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
973 {
974 void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
975 void *pvGst;
976 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
977 pgmPoolTrackCheckPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst);
978 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
979 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
980 }
981# endif
982
983 /*
984 * Disassemble the faulting instruction.
985 */
986 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
987 int rc = EMInterpretDisasCurrent(pVM, pVCpu, pDis, NULL);
988 if (RT_UNLIKELY(rc != VINF_SUCCESS))
989 {
990 AssertMsg(rc == VERR_PAGE_NOT_PRESENT || rc == VERR_PAGE_TABLE_NOT_PRESENT, ("Unexpected rc %d\n", rc));
991 PGM_UNLOCK(pVM);
992 return rc;
993 }
994
995 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
996
997 /*
998 * We should ALWAYS have the list head as user parameter. This
999 * is because we use that page to record the changes.
1000 */
1001 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1002
1003# ifdef IN_RING0
1004 /* Maximum nr of modifications depends on the page type. */
1005 if ( pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1006 || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
1007 cMaxModifications = 4;
1008 else
1009 cMaxModifications = 24;
1010# else
1011 cMaxModifications = 48;
1012# endif
1013
1014 /*
1015 * Incremental page table updates should weigh more than random ones.
1016 * (Only applies when started from offset 0)
1017 */
1018 pVCpu->pgm.s.cPoolAccessHandler++;
1019 if ( pPage->GCPtrLastAccessHandlerRip >= pRegFrame->rip - 0x40 /* observed loops in Windows 7 x64 */
1020 && pPage->GCPtrLastAccessHandlerRip < pRegFrame->rip + 0x40
1021 && pvFault == (pPage->GCPtrLastAccessHandlerFault + pDis->Param1.cb)
1022 && pVCpu->pgm.s.cPoolAccessHandler == pPage->cLastAccessHandler + 1)
1023 {
1024 Log(("Possible page reuse cMods=%d -> %d (locked=%d type=%s)\n", pPage->cModifications, pPage->cModifications * 2, pgmPoolIsPageLocked(pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
1025 Assert(pPage->cModifications < 32000);
1026 pPage->cModifications = pPage->cModifications * 2;
1027 pPage->GCPtrLastAccessHandlerFault = pvFault;
1028 pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler;
1029 if (pPage->cModifications >= cMaxModifications)
1030 {
1031 STAM_COUNTER_INC(&pPool->StatMonitorPfRZFlushReinit);
1032 fForcedFlush = true;
1033 }
1034 }
1035
1036 if (pPage->cModifications >= cMaxModifications)
1037 Log(("Mod overflow %RGv cMods=%d (locked=%d type=%s)\n", pvFault, pPage->cModifications, pgmPoolIsPageLocked(pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
1038
1039 /*
1040 * Check if it's worth dealing with.
1041 */
1042 bool fReused = false;
1043 bool fNotReusedNotForking = false;
1044 if ( ( pPage->cModifications < cMaxModifications /** @todo \#define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
1045 || pgmPoolIsPageLocked(pPage)
1046 )
1047 && !(fReused = pgmRZPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault, pPage))
1048 && !pgmRZPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
1049 {
1050 /*
1051 * Simple instructions, no REP prefix.
1052 */
1053 if (!(pDis->fPrefix & (DISPREFIX_REP | DISPREFIX_REPNE)))
1054 {
1055 rc = pgmRZPoolAccessPfHandlerSimple(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault, &fReused);
1056 if (fReused)
1057 goto flushPage;
1058
1059 /* A mov instruction to change the first page table entry will be remembered so we can detect
1060 * full page table changes early on. This will reduce the amount of unnecessary traps we'll take.
1061 */
1062 if ( rc == VINF_SUCCESS
1063 && !pPage->cLocked /* only applies to unlocked pages as we can't free locked ones (e.g. cr3 root). */
1064 && pDis->pCurInstr->uOpcode == OP_MOV
1065 && (pvFault & PAGE_OFFSET_MASK) == 0)
1066 {
1067 pPage->GCPtrLastAccessHandlerFault = pvFault;
1068 pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler;
1069 pPage->GCPtrLastAccessHandlerRip = pRegFrame->rip;
1070 /* Make sure we don't kick out a page too quickly. */
1071 if (pPage->cModifications > 8)
1072 pPage->cModifications = 2;
1073 }
1074 else if (pPage->GCPtrLastAccessHandlerFault == pvFault)
1075 {
1076 /* ignore the 2nd write to this page table entry. */
1077 pPage->cLastAccessHandler = pVCpu->pgm.s.cPoolAccessHandler;
1078 }
1079 else
1080 {
1081 pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR;
1082 pPage->GCPtrLastAccessHandlerRip = 0;
1083 }
1084
1085 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZHandled, a);
1086 PGM_UNLOCK(pVM);
1087 return rc;
1088 }
1089
1090 /*
1091 * Windows is frequently doing small memset() operations (netio test 4k+).
1092 * We have to deal with these or we'll kill the cache and performance.
1093 */
1094 if ( pDis->pCurInstr->uOpcode == OP_STOSWD
1095 && !pRegFrame->eflags.Bits.u1DF
1096 && pDis->uOpMode == pDis->uCpuMode
1097 && pDis->uAddrMode == pDis->uCpuMode)
1098 {
1099 bool fValidStosd = false;
1100
1101 if ( pDis->uCpuMode == DISCPUMODE_32BIT
1102 && pDis->fPrefix == DISPREFIX_REP
1103 && pRegFrame->ecx <= 0x20
1104 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1105 && !((uintptr_t)pvFault & 3)
1106 && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
1107 )
1108 {
1109 fValidStosd = true;
1110 pRegFrame->rcx &= 0xffffffff; /* paranoia */
1111 }
1112 else
1113 if ( pDis->uCpuMode == DISCPUMODE_64BIT
1114 && pDis->fPrefix == (DISPREFIX_REP | DISPREFIX_REX)
1115 && pRegFrame->rcx <= 0x20
1116 && pRegFrame->rcx * 8 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1117 && !((uintptr_t)pvFault & 7)
1118 && (pRegFrame->rax == 0 || pRegFrame->rax == 0x80) /* the two values observed. */
1119 )
1120 {
1121 fValidStosd = true;
1122 }
1123
1124 if (fValidStosd)
1125 {
1126 rc = pgmRZPoolAccessPfHandlerSTOSD(pVM, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1127 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZRepStosd, a);
1128 PGM_UNLOCK(pVM);
1129 return rc;
1130 }
1131 }
1132
1133 /* REP prefix, don't bother. */
1134 STAM_COUNTER_INC(&pPool->StatMonitorPfRZRepPrefix);
1135 Log4(("pgmRZPoolAccessPfHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
1136 pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->uOpcode, pDis->fPrefix));
1137 fNotReusedNotForking = true;
1138 }
1139
1140# if defined(PGMPOOL_WITH_OPTIMIZED_DIRTY_PT) && defined(IN_RING0)
1141 /* E.g. Windows 7 x64 initializes page tables and touches some pages in the table during the process. This
1142 * leads to pgm pool trashing and an excessive amount of write faults due to page monitoring.
1143 */
1144 if ( pPage->cModifications >= cMaxModifications
1145 && !fForcedFlush
1146 && (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
1147 && ( fNotReusedNotForking
1148 || ( !pgmRZPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault, pPage)
1149 && !pgmRZPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
1150 )
1151 )
1152 {
1153 Assert(!pgmPoolIsPageLocked(pPage));
1154 Assert(pPage->fDirty == false);
1155
1156 /* Flush any monitored duplicates as we will disable write protection. */
1157 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
1158 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1159 {
1160 PPGMPOOLPAGE pPageHead = pPage;
1161
1162 /* Find the monitor head. */
1163 while (pPageHead->iMonitoredPrev != NIL_PGMPOOL_IDX)
1164 pPageHead = &pPool->aPages[pPageHead->iMonitoredPrev];
1165
1166 while (pPageHead)
1167 {
1168 unsigned idxNext = pPageHead->iMonitoredNext;
1169
1170 if (pPageHead != pPage)
1171 {
1172 STAM_COUNTER_INC(&pPool->StatDirtyPageDupFlush);
1173 Log(("Flush duplicate page idx=%d GCPhys=%RGp type=%s\n", pPageHead->idx, pPageHead->GCPhys, pgmPoolPoolKindToStr(pPageHead->enmKind)));
1174 int rc2 = pgmPoolFlushPage(pPool, pPageHead);
1175 AssertRC(rc2);
1176 }
1177
1178 if (idxNext == NIL_PGMPOOL_IDX)
1179 break;
1180
1181 pPageHead = &pPool->aPages[idxNext];
1182 }
1183 }
1184
1185 /* The flushing above might fail for locked pages, so double check. */
1186 if ( pPage->iMonitoredNext == NIL_PGMPOOL_IDX
1187 && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
1188 {
1189 pgmPoolAddDirtyPage(pVM, pPool, pPage);
1190
1191 /* Temporarily allow write access to the page table again. */
1192 rc = PGMHandlerPhysicalPageTempOff(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK, pPage->GCPhys & PAGE_BASE_GC_MASK);
1193 if (rc == VINF_SUCCESS)
1194 {
1195 rc = PGMShwMakePageWritable(pVCpu, pvFault, PGM_MK_PG_IS_WRITE_FAULT);
1196 AssertMsg(rc == VINF_SUCCESS
1197 /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
1198 || rc == VERR_PAGE_TABLE_NOT_PRESENT
1199 || rc == VERR_PAGE_NOT_PRESENT,
1200 ("PGMShwModifyPage -> GCPtr=%RGv rc=%d\n", pvFault, rc));
1201# ifdef VBOX_STRICT
1202 pPage->GCPtrDirtyFault = pvFault;
1203# endif
1204
1205 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, a);
1206 PGM_UNLOCK(pVM);
1207 return rc;
1208 }
1209 }
1210 }
1211# endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT && IN_RING0 */
1212
1213 STAM_COUNTER_INC(&pPool->StatMonitorPfRZFlushModOverflow);
1214flushPage:
1215 /*
1216 * Not worth it, so flush it.
1217 *
1218 * If we considered it to be reused, don't go back to ring-3
1219 * to emulate failed instructions since we usually cannot
1220 * interpret then. This may be a bit risky, in which case
1221 * the reuse detection must be fixed.
1222 */
1223 rc = pgmRZPoolAccessPfHandlerFlush(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1224 if ( rc == VINF_EM_RAW_EMULATE_INSTR
1225 && fReused)
1226 {
1227 /* Make sure that the current instruction still has shadow page backing, otherwise we'll end up in a loop. */
1228 if (PGMShwGetPage(pVCpu, pRegFrame->rip, NULL, NULL) == VINF_SUCCESS)
1229 rc = VINF_SUCCESS; /* safe to restart the instruction. */
1230 }
1231 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->StatMonitorPfRZ, &pPool->StatMonitorPfRZFlushPage, a);
1232 PGM_UNLOCK(pVM);
1233 return rc;
1234}
1235
1236#endif /* !IN_RING3 */
1237
1238/**
1239 * @callback_method_impl{FNPGMPHYSHANDLER,
1240 * Access handler for shadowed page table pages.}
1241 *
1242 * @remarks Only uses the VINF_PGM_HANDLER_DO_DEFAULT status.
1243 */
1244PGM_ALL_CB2_DECL(VBOXSTRICTRC)
1245pgmPoolAccessHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhys, void *pvPhys, void *pvBuf, size_t cbBuf,
1246 PGMACCESSTYPE enmAccessType, PGMACCESSORIGIN enmOrigin, void *pvUser)
1247{
1248 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1249 STAM_PROFILE_START(&pPool->CTX_SUFF_Z(StatMonitor), a);
1250 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
1251 LogFlow(("PGM_ALL_CB_DECL: GCPhys=%RGp %p:{.Core=%RHp, .idx=%d, .GCPhys=%RGp, .enmType=%d}\n",
1252 GCPhys, pPage, pPage->Core.Key, pPage->idx, pPage->GCPhys, pPage->enmKind));
1253
1254 NOREF(pvPhys); NOREF(pvBuf); NOREF(enmAccessType);
1255
1256 PGM_LOCK_VOID(pVM);
1257
1258#ifdef VBOX_WITH_STATISTICS
1259 /*
1260 * Collect stats on the access.
1261 */
1262 AssertCompile(RT_ELEMENTS(pPool->CTX_MID_Z(aStatMonitor,Sizes)) == 19);
1263 if (cbBuf <= 16 && cbBuf > 0)
1264 STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[cbBuf - 1]);
1265 else if (cbBuf >= 17 && cbBuf < 32)
1266 STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[16]);
1267 else if (cbBuf >= 32 && cbBuf < 64)
1268 STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[17]);
1269 else if (cbBuf >= 64)
1270 STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Sizes)[18]);
1271
1272 uint8_t cbAlign;
1273 switch (pPage->enmKind)
1274 {
1275 default:
1276 cbAlign = 7;
1277 break;
1278 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1279 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1280 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1281 case PGMPOOLKIND_32BIT_PD:
1282 case PGMPOOLKIND_32BIT_PD_PHYS:
1283 cbAlign = 3;
1284 break;
1285 }
1286 AssertCompile(RT_ELEMENTS(pPool->CTX_MID_Z(aStatMonitor,Misaligned)) == 7);
1287 if ((uint8_t)GCPhys & cbAlign)
1288 STAM_COUNTER_INC(&pPool->CTX_MID_Z(aStatMonitor,Misaligned)[((uint8_t)GCPhys & cbAlign) - 1]);
1289#endif
1290
1291 /*
1292 * Make sure the pool page wasn't modified by a different CPU.
1293 */
1294 if (PHYS_PAGE_ADDRESS(GCPhys) == PHYS_PAGE_ADDRESS(pPage->GCPhys))
1295 {
1296 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
1297
1298 /* The max modification count before flushing depends on the context and page type. */
1299#ifdef IN_RING3
1300 uint16_t const cMaxModifications = 96; /* it's cheaper here, right? */
1301#else
1302 uint16_t cMaxModifications;
1303 if ( pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1304 || pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
1305 cMaxModifications = 4;
1306 else
1307 cMaxModifications = 24;
1308#endif
1309
1310 /*
1311 * We don't have to be very sophisticated about this since there are relativly few calls here.
1312 * However, we must try our best to detect any non-cpu accesses (disk / networking).
1313 */
1314 if ( ( pPage->cModifications < cMaxModifications
1315 || pgmPoolIsPageLocked(pPage) )
1316 && enmOrigin != PGMACCESSORIGIN_DEVICE
1317 && cbBuf <= 16)
1318 {
1319 /* Clear the shadow entry. */
1320 if (!pPage->cModifications++)
1321 pgmPoolMonitorModifiedInsert(pPool, pPage);
1322
1323 if (cbBuf <= 8)
1324 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvBuf, (uint32_t)cbBuf);
1325 else
1326 {
1327 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys, pvBuf, 8);
1328 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhys + 8, (uint8_t *)pvBuf + 8, (uint32_t)cbBuf - 8);
1329 }
1330 }
1331 else
1332 pgmPoolMonitorChainFlush(pPool, pPage);
1333
1334 STAM_PROFILE_STOP_EX(&pPool->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
1335 }
1336 else
1337 Log(("CPU%d: PGM_ALL_CB_DECL pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhys), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
1338 PGM_UNLOCK(pVM);
1339 return VINF_PGM_HANDLER_DO_DEFAULT;
1340}
1341
1342
1343#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1344
1345# if defined(VBOX_STRICT) && !defined(IN_RING3)
1346
1347/**
1348 * Check references to guest physical memory in a PAE / PAE page table.
1349 *
1350 * @param pPool The pool.
1351 * @param pPage The page.
1352 * @param pShwPT The shadow page table (mapping of the page).
1353 * @param pGstPT The guest page table.
1354 */
1355static void pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT)
1356{
1357 unsigned cErrors = 0;
1358 int LastRc = -1; /* initialized to shut up gcc */
1359 unsigned LastPTE = ~0U; /* initialized to shut up gcc */
1360 RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */
1361 PVMCC pVM = pPool->CTX_SUFF(pVM);
1362
1363# ifdef VBOX_STRICT
1364 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1365 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1366# endif
1367 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1368 {
1369 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1370 {
1371 RTHCPHYS HCPhys = NIL_RTHCPHYS;
1372 int rc = PGMPhysGCPhys2HCPhys(pVM, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1373 if ( rc != VINF_SUCCESS
1374 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) != HCPhys)
1375 {
1376 Log(("rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1377 LastPTE = i;
1378 LastRc = rc;
1379 LastHCPhys = HCPhys;
1380 cErrors++;
1381
1382 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
1383 rc = PGMPhysGCPhys2HCPhys(pVM, pPage->GCPhys, &HCPhysPT);
1384 AssertRC(rc);
1385
1386 for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++)
1387 {
1388 PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage];
1389
1390 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1391 {
1392 PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pTempPage);
1393
1394 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1395 {
1396 if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[j])
1397 && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[j]) == HCPhysPT)
1398 {
1399 Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[j])));
1400 }
1401 }
1402
1403 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pShwPT2);
1404 }
1405 }
1406 }
1407 }
1408 }
1409 AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[LastPTE]), LastHCPhys));
1410}
1411
1412
1413/**
1414 * Check references to guest physical memory in a PAE / 32-bit page table.
1415 *
1416 * @param pPool The pool.
1417 * @param pPage The page.
1418 * @param pShwPT The shadow page table (mapping of the page).
1419 * @param pGstPT The guest page table.
1420 */
1421static void pgmPoolTrackCheckPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT)
1422{
1423 unsigned cErrors = 0;
1424 int LastRc = -1; /* initialized to shut up gcc */
1425 unsigned LastPTE = ~0U; /* initialized to shut up gcc */
1426 RTHCPHYS LastHCPhys = NIL_RTHCPHYS; /* initialized to shut up gcc */
1427 PVMCC pVM = pPool->CTX_SUFF(pVM);
1428
1429# ifdef VBOX_STRICT
1430 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1431 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1432# endif
1433 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1434 {
1435 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1436 {
1437 RTHCPHYS HCPhys = NIL_RTHCPHYS;
1438 int rc = PGMPhysGCPhys2HCPhys(pVM, pGstPT->a[i].u & X86_PTE_PG_MASK, &HCPhys);
1439 if ( rc != VINF_SUCCESS
1440 || PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) != HCPhys)
1441 {
1442 Log(("rc=%d idx=%d guest %x shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1443 LastPTE = i;
1444 LastRc = rc;
1445 LastHCPhys = HCPhys;
1446 cErrors++;
1447
1448 RTHCPHYS HCPhysPT = NIL_RTHCPHYS;
1449 rc = PGMPhysGCPhys2HCPhys(pVM, pPage->GCPhys, &HCPhysPT);
1450 AssertRC(rc);
1451
1452 for (unsigned iPage = 0; iPage < pPool->cCurPages; iPage++)
1453 {
1454 PPGMPOOLPAGE pTempPage = &pPool->aPages[iPage];
1455
1456 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_32BIT_PT)
1457 {
1458 PPGMSHWPTPAE pShwPT2 = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pTempPage);
1459
1460 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1461 {
1462 if ( PGMSHWPTEPAE_IS_P_RW(pShwPT2->a[j])
1463 && PGMSHWPTEPAE_GET_HCPHYS(pShwPT2->a[j]) == HCPhysPT)
1464 {
1465 Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, PGMSHWPTEPAE_GET_LOG(pShwPT->a[j]), PGMSHWPTEPAE_GET_LOG(pShwPT2->a[j])));
1466 }
1467 }
1468
1469 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pShwPT2);
1470 }
1471 }
1472 }
1473 }
1474 }
1475 AssertMsg(!cErrors, ("cErrors=%d: last rc=%d idx=%d guest %x shw=%RX64 vs %RHp\n", cErrors, LastRc, LastPTE, pGstPT->a[LastPTE].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[LastPTE]), LastHCPhys));
1476}
1477
1478# endif /* VBOX_STRICT && !IN_RING3 */
1479
1480/**
1481 * Clear references to guest physical memory in a PAE / PAE page table.
1482 *
1483 * @returns nr of changed PTEs
1484 * @param pPool The pool.
1485 * @param pPage The page.
1486 * @param pShwPT The shadow page table (mapping of the page).
1487 * @param pGstPT The guest page table.
1488 * @param pOldGstPT The old cached guest page table.
1489 * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE
1490 * @param pfFlush Flush reused page table (out)
1491 */
1492DECLINLINE(unsigned) pgmPoolTrackFlushPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT,
1493 PCX86PTPAE pOldGstPT, bool fAllowRemoval, bool *pfFlush)
1494{
1495 unsigned cChanged = 0;
1496
1497# ifdef VBOX_STRICT
1498 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1499 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1500# endif
1501 *pfFlush = false;
1502
1503 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1504 {
1505 /* Check the new value written by the guest. If present and with a bogus physical address, then
1506 * it's fairly safe to assume the guest is reusing the PT.
1507 */
1508 if ( fAllowRemoval
1509 && (pGstPT->a[i].u & X86_PTE_P))
1510 {
1511 if (!PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK))
1512 {
1513 *pfFlush = true;
1514 return ++cChanged;
1515 }
1516 }
1517 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1518 {
1519 /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */
1520 if ((pGstPT->a[i].u & X86_PTE_PAE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK))
1521 {
1522# ifdef VBOX_STRICT
1523 RTHCPHYS HCPhys = NIL_RTGCPHYS;
1524 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1525 AssertMsg(rc == VINF_SUCCESS && PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) == HCPhys, ("rc=%d guest %RX64 old %RX64 shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1526# endif
1527 uint64_t uHostAttr = PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
1528 bool fHostRW = !!(PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & X86_PTE_RW);
1529 uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
1530 bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW);
1531
1532 if ( uHostAttr == uGuestAttr
1533 && fHostRW <= fGuestRW)
1534 continue;
1535 }
1536 cChanged++;
1537 /* Something was changed, so flush it. */
1538 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%RX64\n",
1539 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
1540 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK, i);
1541 PGMSHWPTEPAE_ATOMIC_SET(pShwPT->a[i], 0);
1542 }
1543 }
1544 return cChanged;
1545}
1546
1547
1548/**
1549 * Clear references to guest physical memory in a PAE / PAE page table.
1550 *
1551 * @returns nr of changed PTEs
1552 * @param pPool The pool.
1553 * @param pPage The page.
1554 * @param pShwPT The shadow page table (mapping of the page).
1555 * @param pGstPT The guest page table.
1556 * @param pOldGstPT The old cached guest page table.
1557 * @param fAllowRemoval Bail out as soon as we encounter an invalid PTE
1558 * @param pfFlush Flush reused page table (out)
1559 */
1560DECLINLINE(unsigned) pgmPoolTrackFlushPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT,
1561 PCX86PT pOldGstPT, bool fAllowRemoval, bool *pfFlush)
1562{
1563 unsigned cChanged = 0;
1564
1565# ifdef VBOX_STRICT
1566 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1567 AssertMsg(!PGMSHWPTEPAE_IS_P(pShwPT->a[i]), ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), pPage->iFirstPresent));
1568# endif
1569 *pfFlush = false;
1570
1571 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1572 {
1573 /* Check the new value written by the guest. If present and with a bogus physical address, then
1574 * it's fairly safe to assume the guest is reusing the PT. */
1575 if (fAllowRemoval)
1576 {
1577 X86PGUINT const uPte = pGstPT->a[i].u;
1578 if ( (uPte & X86_PTE_P)
1579 && !PGMPhysIsGCPhysValid(pPool->CTX_SUFF(pVM), uPte & X86_PTE_PG_MASK))
1580 {
1581 *pfFlush = true;
1582 return ++cChanged;
1583 }
1584 }
1585 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
1586 {
1587 /* If the old cached PTE is identical, then there's no need to flush the shadow copy. */
1588 if ((pGstPT->a[i].u & X86_PTE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PG_MASK))
1589 {
1590# ifdef VBOX_STRICT
1591 RTHCPHYS HCPhys = NIL_RTGCPHYS;
1592 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PG_MASK, &HCPhys);
1593 AssertMsg(rc == VINF_SUCCESS && PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]) == HCPhys, ("rc=%d guest %x old %x shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, PGMSHWPTEPAE_GET_LOG(pShwPT->a[i]), HCPhys));
1594# endif
1595 uint64_t uHostAttr = PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G);
1596 bool fHostRW = !!(PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & X86_PTE_RW);
1597 uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G);
1598 bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW);
1599
1600 if ( uHostAttr == uGuestAttr
1601 && fHostRW <= fGuestRW)
1602 continue;
1603 }
1604 cChanged++;
1605 /* Something was changed, so flush it. */
1606 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%x\n",
1607 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PG_MASK));
1608 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pOldGstPT->a[i].u & X86_PTE_PG_MASK, i);
1609 PGMSHWPTEPAE_ATOMIC_SET(pShwPT->a[i], 0);
1610 }
1611 }
1612 return cChanged;
1613}
1614
1615
1616/**
1617 * Flush a dirty page
1618 *
1619 * @param pVM The cross context VM structure.
1620 * @param pPool The pool.
1621 * @param idxSlot Dirty array slot index
1622 * @param fAllowRemoval Allow a reused page table to be removed
1623 */
1624static void pgmPoolFlushDirtyPage(PVMCC pVM, PPGMPOOL pPool, unsigned idxSlot, bool fAllowRemoval = false)
1625{
1626 AssertCompile(RT_ELEMENTS(pPool->aidxDirtyPages) == RT_ELEMENTS(pPool->aDirtyPages));
1627
1628 Assert(idxSlot < RT_ELEMENTS(pPool->aDirtyPages));
1629 unsigned idxPage = pPool->aidxDirtyPages[idxSlot];
1630 if (idxPage == NIL_PGMPOOL_IDX)
1631 return;
1632
1633 PPGMPOOLPAGE pPage = &pPool->aPages[idxPage];
1634 Assert(pPage->idx == idxPage);
1635 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1636
1637 AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, idxSlot));
1638 Log(("Flush dirty page %RGp cMods=%d\n", pPage->GCPhys, pPage->cModifications));
1639
1640 /* First write protect the page again to catch all write accesses. (before checking for changes -> SMP) */
1641 int rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys & PAGE_BASE_GC_MASK);
1642 Assert(rc == VINF_SUCCESS);
1643 pPage->fDirty = false;
1644
1645# ifdef VBOX_STRICT
1646 uint64_t fFlags = 0;
1647 RTHCPHYS HCPhys;
1648 rc = PGMShwGetPage(VMMGetCpu(pVM), pPage->GCPtrDirtyFault, &fFlags, &HCPhys);
1649 AssertMsg( ( rc == VINF_SUCCESS
1650 && (!(fFlags & X86_PTE_RW) || HCPhys != pPage->Core.Key))
1651 /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
1652 || rc == VERR_PAGE_TABLE_NOT_PRESENT
1653 || rc == VERR_PAGE_NOT_PRESENT,
1654 ("PGMShwGetPage -> GCPtr=%RGv rc=%d flags=%RX64\n", pPage->GCPtrDirtyFault, rc, fFlags));
1655# endif
1656
1657 /* Flush those PTEs that have changed. */
1658 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
1659 void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage);
1660 void *pvGst;
1661 rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1662 bool fFlush;
1663 unsigned cChanges;
1664
1665 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1666 cChanges = pgmPoolTrackFlushPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst,
1667 (PCX86PTPAE)&pPool->aDirtyPages[idxSlot].aPage[0], fAllowRemoval, &fFlush);
1668 else
1669 cChanges = pgmPoolTrackFlushPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst,
1670 (PCX86PT)&pPool->aDirtyPages[idxSlot].aPage[0], fAllowRemoval, &fFlush);
1671
1672 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
1673 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
1674 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
1675 /* Note: we might want to consider keeping the dirty page active in case there were many changes. */
1676
1677 /* This page is likely to be modified again, so reduce the nr of modifications just a bit here. */
1678 Assert(pPage->cModifications);
1679 if (cChanges < 4)
1680 pPage->cModifications = 1; /* must use > 0 here */
1681 else
1682 pPage->cModifications = RT_MAX(1, pPage->cModifications / 2);
1683
1684 STAM_COUNTER_INC(&pPool->StatResetDirtyPages);
1685 if (pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages))
1686 pPool->idxFreeDirtyPage = idxSlot;
1687
1688 pPool->cDirtyPages--;
1689 pPool->aidxDirtyPages[idxSlot] = NIL_PGMPOOL_IDX;
1690 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1691 if (fFlush)
1692 {
1693 Assert(fAllowRemoval);
1694 Log(("Flush reused page table!\n"));
1695 pgmPoolFlushPage(pPool, pPage);
1696 STAM_COUNTER_INC(&pPool->StatForceFlushReused);
1697 }
1698 else
1699 Log(("Removed dirty page %RGp cMods=%d cChanges=%d\n", pPage->GCPhys, pPage->cModifications, cChanges));
1700}
1701
1702
1703# ifndef IN_RING3
1704/**
1705 * Add a new dirty page
1706 *
1707 * @param pVM The cross context VM structure.
1708 * @param pPool The pool.
1709 * @param pPage The page.
1710 */
1711void pgmPoolAddDirtyPage(PVMCC pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1712{
1713 PGM_LOCK_ASSERT_OWNER(pVM);
1714 AssertCompile(RT_ELEMENTS(pPool->aDirtyPages) == 8 || RT_ELEMENTS(pPool->aDirtyPages) == 16);
1715 Assert(!pPage->fDirty);
1716
1717 unsigned idxFree = pPool->idxFreeDirtyPage;
1718 Assert(idxFree < RT_ELEMENTS(pPool->aDirtyPages));
1719 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1720
1721 if (pPool->cDirtyPages >= RT_ELEMENTS(pPool->aDirtyPages))
1722 {
1723 STAM_COUNTER_INC(&pPool->StatDirtyPageOverFlowFlush);
1724 pgmPoolFlushDirtyPage(pVM, pPool, idxFree, true /* allow removal of reused page tables*/);
1725 }
1726 Assert(pPool->cDirtyPages < RT_ELEMENTS(pPool->aDirtyPages));
1727 AssertMsg(pPool->aidxDirtyPages[idxFree] == NIL_PGMPOOL_IDX, ("idxFree=%d cDirtyPages=%d\n", idxFree, pPool->cDirtyPages));
1728
1729 Log(("Add dirty page %RGp (slot=%d)\n", pPage->GCPhys, idxFree));
1730
1731 /*
1732 * Make a copy of the guest page table as we require valid GCPhys addresses
1733 * when removing references to physical pages.
1734 * (The HCPhys linear lookup is *extremely* expensive!)
1735 */
1736 void *pvGst;
1737 int rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1738 memcpy(&pPool->aDirtyPages[idxFree].aPage[0], pvGst, (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT) ? PAGE_SIZE : PAGE_SIZE/2);
1739# ifdef VBOX_STRICT
1740 void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage);
1741 if (pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1742 pgmPoolTrackCheckPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst);
1743 else
1744 pgmPoolTrackCheckPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst);
1745 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
1746# endif
1747 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
1748
1749 STAM_COUNTER_INC(&pPool->StatDirtyPage);
1750 pPage->fDirty = true;
1751 pPage->idxDirtyEntry = (uint8_t)idxFree; Assert(pPage->idxDirtyEntry == idxFree);
1752 pPool->aidxDirtyPages[idxFree] = pPage->idx;
1753 pPool->cDirtyPages++;
1754
1755 pPool->idxFreeDirtyPage = (pPool->idxFreeDirtyPage + 1) & (RT_ELEMENTS(pPool->aDirtyPages) - 1);
1756 if ( pPool->cDirtyPages < RT_ELEMENTS(pPool->aDirtyPages)
1757 && pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1758 {
1759 unsigned i;
1760 for (i = 1; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1761 {
1762 idxFree = (pPool->idxFreeDirtyPage + i) & (RT_ELEMENTS(pPool->aDirtyPages) - 1);
1763 if (pPool->aidxDirtyPages[idxFree] == NIL_PGMPOOL_IDX)
1764 {
1765 pPool->idxFreeDirtyPage = idxFree;
1766 break;
1767 }
1768 }
1769 Assert(i != RT_ELEMENTS(pPool->aDirtyPages));
1770 }
1771
1772 Assert(pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages) || pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX);
1773
1774 /*
1775 * Clear all references to this shadow table. See @bugref{7298}.
1776 */
1777 pgmPoolTrackClearPageUsers(pPool, pPage);
1778}
1779# endif /* !IN_RING3 */
1780
1781
1782/**
1783 * Check if the specified page is dirty (not write monitored)
1784 *
1785 * @return dirty or not
1786 * @param pVM The cross context VM structure.
1787 * @param GCPhys Guest physical address
1788 */
1789bool pgmPoolIsDirtyPageSlow(PVMCC pVM, RTGCPHYS GCPhys)
1790{
1791 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1792 PGM_LOCK_ASSERT_OWNER(pVM);
1793 if (!pPool->cDirtyPages)
1794 return false;
1795
1796 GCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
1797
1798 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1799 {
1800 unsigned idxPage = pPool->aidxDirtyPages[i];
1801 if (idxPage != NIL_PGMPOOL_IDX)
1802 {
1803 PPGMPOOLPAGE pPage = &pPool->aPages[idxPage];
1804 if (pPage->GCPhys == GCPhys)
1805 return true;
1806 }
1807 }
1808 return false;
1809}
1810
1811
1812/**
1813 * Reset all dirty pages by reinstating page monitoring.
1814 *
1815 * @param pVM The cross context VM structure.
1816 */
1817void pgmPoolResetDirtyPages(PVMCC pVM)
1818{
1819 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1820 PGM_LOCK_ASSERT_OWNER(pVM);
1821 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1822
1823 if (!pPool->cDirtyPages)
1824 return;
1825
1826 Log(("pgmPoolResetDirtyPages\n"));
1827 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1828 pgmPoolFlushDirtyPage(pVM, pPool, i, true /* allow removal of reused page tables*/);
1829
1830 pPool->idxFreeDirtyPage = 0;
1831 if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aDirtyPages)
1832 && pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1833 {
1834 unsigned i;
1835 for (i = 1; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1836 {
1837 if (pPool->aidxDirtyPages[i] == NIL_PGMPOOL_IDX)
1838 {
1839 pPool->idxFreeDirtyPage = i;
1840 break;
1841 }
1842 }
1843 AssertMsg(i != RT_ELEMENTS(pPool->aDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages));
1844 }
1845
1846 Assert(pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX || pPool->cDirtyPages == RT_ELEMENTS(pPool->aDirtyPages));
1847 return;
1848}
1849
1850
1851/**
1852 * Invalidate the PT entry for the specified page
1853 *
1854 * @param pVM The cross context VM structure.
1855 * @param GCPtrPage Guest page to invalidate
1856 */
1857void pgmPoolResetDirtyPage(PVMCC pVM, RTGCPTR GCPtrPage)
1858{
1859 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1860 PGM_LOCK_ASSERT_OWNER(pVM);
1861 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1862
1863 if (!pPool->cDirtyPages)
1864 return;
1865
1866 Log(("pgmPoolResetDirtyPage %RGv\n", GCPtrPage)); RT_NOREF_PV(GCPtrPage);
1867 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1868 {
1869 /** @todo What was intended here??? This looks incomplete... */
1870 }
1871}
1872
1873
1874/**
1875 * Reset all dirty pages by reinstating page monitoring.
1876 *
1877 * @param pVM The cross context VM structure.
1878 * @param GCPhysPT Physical address of the page table
1879 */
1880void pgmPoolInvalidateDirtyPage(PVMCC pVM, RTGCPHYS GCPhysPT)
1881{
1882 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1883 PGM_LOCK_ASSERT_OWNER(pVM);
1884 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aDirtyPages));
1885 unsigned idxDirtyPage = RT_ELEMENTS(pPool->aDirtyPages);
1886
1887 if (!pPool->cDirtyPages)
1888 return;
1889
1890 GCPhysPT = GCPhysPT & ~(RTGCPHYS)PAGE_OFFSET_MASK;
1891
1892 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1893 {
1894 unsigned idxPage = pPool->aidxDirtyPages[i];
1895 if (idxPage != NIL_PGMPOOL_IDX)
1896 {
1897 PPGMPOOLPAGE pPage = &pPool->aPages[idxPage];
1898 if (pPage->GCPhys == GCPhysPT)
1899 {
1900 idxDirtyPage = i;
1901 break;
1902 }
1903 }
1904 }
1905
1906 if (idxDirtyPage != RT_ELEMENTS(pPool->aDirtyPages))
1907 {
1908 pgmPoolFlushDirtyPage(pVM, pPool, idxDirtyPage, true /* allow removal of reused page tables*/);
1909 if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aDirtyPages)
1910 && pPool->aidxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1911 {
1912 unsigned i;
1913 for (i = 0; i < RT_ELEMENTS(pPool->aDirtyPages); i++)
1914 {
1915 if (pPool->aidxDirtyPages[i] == NIL_PGMPOOL_IDX)
1916 {
1917 pPool->idxFreeDirtyPage = i;
1918 break;
1919 }
1920 }
1921 AssertMsg(i != RT_ELEMENTS(pPool->aDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages));
1922 }
1923 }
1924}
1925
1926#endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */
1927
1928/**
1929 * Inserts a page into the GCPhys hash table.
1930 *
1931 * @param pPool The pool.
1932 * @param pPage The page.
1933 */
1934DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1935{
1936 Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
1937 Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1938 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1939 pPage->iNext = pPool->aiHash[iHash];
1940 pPool->aiHash[iHash] = pPage->idx;
1941}
1942
1943
1944/**
1945 * Removes a page from the GCPhys hash table.
1946 *
1947 * @param pPool The pool.
1948 * @param pPage The page.
1949 */
1950DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1951{
1952 Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
1953 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1954 if (pPool->aiHash[iHash] == pPage->idx)
1955 pPool->aiHash[iHash] = pPage->iNext;
1956 else
1957 {
1958 uint16_t iPrev = pPool->aiHash[iHash];
1959 for (;;)
1960 {
1961 const int16_t i = pPool->aPages[iPrev].iNext;
1962 if (i == pPage->idx)
1963 {
1964 pPool->aPages[iPrev].iNext = pPage->iNext;
1965 break;
1966 }
1967 if (i == NIL_PGMPOOL_IDX)
1968 {
1969 AssertReleaseMsgFailed(("GCPhys=%RGp idx=%d\n", pPage->GCPhys, pPage->idx));
1970 break;
1971 }
1972 iPrev = i;
1973 }
1974 }
1975 pPage->iNext = NIL_PGMPOOL_IDX;
1976}
1977
1978
1979/**
1980 * Frees up one cache page.
1981 *
1982 * @returns VBox status code.
1983 * @retval VINF_SUCCESS on success.
1984 * @param pPool The pool.
1985 * @param iUser The user index.
1986 */
1987static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
1988{
1989 const PVMCC pVM = pPool->CTX_SUFF(pVM);
1990 Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
1991 STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
1992
1993 /*
1994 * Select one page from the tail of the age list.
1995 */
1996 PPGMPOOLPAGE pPage;
1997 for (unsigned iLoop = 0; ; iLoop++)
1998 {
1999 uint16_t iToFree = pPool->iAgeTail;
2000 if (iToFree == iUser && iUser != NIL_PGMPOOL_IDX)
2001 iToFree = pPool->aPages[iToFree].iAgePrev;
2002/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
2003 if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
2004 {
2005 uint16_t i = pPool->aPages[iToFree].iAgePrev;
2006 for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
2007 {
2008 if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
2009 continue;
2010 iToFree = i;
2011 break;
2012 }
2013 }
2014*/
2015 Assert(iToFree != iUser);
2016 AssertReleaseMsg(iToFree != NIL_PGMPOOL_IDX,
2017 ("iToFree=%#x (iAgeTail=%#x) iUser=%#x iLoop=%u - pPool=%p LB %#zx\n",
2018 iToFree, pPool->iAgeTail, iUser, iLoop, pPool,
2019 RT_UOFFSETOF_DYN(PGMPOOL, aPages[pPool->cMaxPages])
2020 + pPool->cMaxUsers * sizeof(PGMPOOLUSER)
2021 + pPool->cMaxPhysExts * sizeof(PGMPOOLPHYSEXT) ));
2022
2023 pPage = &pPool->aPages[iToFree];
2024
2025 /*
2026 * Reject any attempts at flushing the currently active shadow CR3 mapping.
2027 * Call pgmPoolCacheUsed to move the page to the head of the age list.
2028 */
2029 if ( !pgmPoolIsPageLocked(pPage)
2030 && pPage->idx >= PGMPOOL_IDX_FIRST /* paranoia (#6349) */)
2031 break;
2032 LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n"));
2033 pgmPoolCacheUsed(pPool, pPage);
2034 AssertLogRelReturn(iLoop < 8192, VERR_PGM_POOL_TOO_MANY_LOOPS);
2035 }
2036
2037 /*
2038 * Found a usable page, flush it and return.
2039 */
2040 int rc = pgmPoolFlushPage(pPool, pPage);
2041 /* This flush was initiated by us and not the guest, so explicitly flush the TLB. */
2042 /** @todo find out why this is necessary; pgmPoolFlushPage should trigger a flush if one is really needed. */
2043 if (rc == VINF_SUCCESS)
2044 PGM_INVL_ALL_VCPU_TLBS(pVM);
2045 return rc;
2046}
2047
2048
2049/**
2050 * Checks if a kind mismatch is really a page being reused
2051 * or if it's just normal remappings.
2052 *
2053 * @returns true if reused and the cached page (enmKind1) should be flushed
2054 * @returns false if not reused.
2055 * @param enmKind1 The kind of the cached page.
2056 * @param enmKind2 The kind of the requested page.
2057 */
2058static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
2059{
2060 switch (enmKind1)
2061 {
2062 /*
2063 * Never reuse them. There is no remapping in non-paging mode.
2064 */
2065 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2066 case PGMPOOLKIND_32BIT_PD_PHYS:
2067 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2068 case PGMPOOLKIND_PAE_PD_PHYS:
2069 case PGMPOOLKIND_PAE_PDPT_PHYS:
2070 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2071 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2072 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2073 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2074 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2075 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
2076 return false;
2077
2078 /*
2079 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
2080 */
2081 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2082 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2083 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2084 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2085 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2086 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2087 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2088 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2089 case PGMPOOLKIND_32BIT_PD:
2090 case PGMPOOLKIND_PAE_PDPT:
2091 switch (enmKind2)
2092 {
2093 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2094 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2095 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2096 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2097 case PGMPOOLKIND_64BIT_PML4:
2098 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2099 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2100 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2101 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2102 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2103 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2104 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2105 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2106 return true;
2107 default:
2108 return false;
2109 }
2110
2111 /*
2112 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
2113 */
2114 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2115 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2116 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2117 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2118 case PGMPOOLKIND_64BIT_PML4:
2119 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2120 switch (enmKind2)
2121 {
2122 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2123 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2124 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2125 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2126 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2127 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2128 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2129 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2130 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2131 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2132 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2133 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2134 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2135 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2136 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2137 return true;
2138 default:
2139 return false;
2140 }
2141
2142 /*
2143 * These cannot be flushed, and it's common to reuse the PDs as PTs.
2144 */
2145 case PGMPOOLKIND_ROOT_NESTED:
2146 return false;
2147
2148 default:
2149 AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
2150 }
2151}
2152
2153
2154/**
2155 * Attempts to satisfy a pgmPoolAlloc request from the cache.
2156 *
2157 * @returns VBox status code.
2158 * @retval VINF_PGM_CACHED_PAGE on success.
2159 * @retval VERR_FILE_NOT_FOUND if not found.
2160 * @param pPool The pool.
2161 * @param GCPhys The GC physical address of the page we're gonna shadow.
2162 * @param enmKind The kind of mapping.
2163 * @param enmAccess Access type for the mapping (only relevant for big pages)
2164 * @param fA20Enabled Whether the CPU has the A20 gate enabled.
2165 * @param iUser The shadow page pool index of the user table. This is
2166 * NIL_PGMPOOL_IDX for root pages.
2167 * @param iUserTable The index into the user table (shadowed). Ignored if
2168 * root page
2169 * @param ppPage Where to store the pointer to the page.
2170 */
2171static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, bool fA20Enabled,
2172 uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
2173{
2174 /*
2175 * Look up the GCPhys in the hash.
2176 */
2177 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
2178 Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%d iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
2179 if (i != NIL_PGMPOOL_IDX)
2180 {
2181 do
2182 {
2183 PPGMPOOLPAGE pPage = &pPool->aPages[i];
2184 Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
2185 if (pPage->GCPhys == GCPhys)
2186 {
2187 if ( (PGMPOOLKIND)pPage->enmKind == enmKind
2188 && (PGMPOOLACCESS)pPage->enmAccess == enmAccess
2189 && pPage->fA20Enabled == fA20Enabled)
2190 {
2191 /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
2192 * doesn't flush it in case there are no more free use records.
2193 */
2194 pgmPoolCacheUsed(pPool, pPage);
2195
2196 int rc = VINF_SUCCESS;
2197 if (iUser != NIL_PGMPOOL_IDX)
2198 rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
2199 if (RT_SUCCESS(rc))
2200 {
2201 Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
2202 *ppPage = pPage;
2203 if (pPage->cModifications)
2204 pPage->cModifications = 1; /* reset counter (can't use 0, or else it will be reinserted in the modified list) */
2205 STAM_COUNTER_INC(&pPool->StatCacheHits);
2206 return VINF_PGM_CACHED_PAGE;
2207 }
2208 return rc;
2209 }
2210
2211 if ((PGMPOOLKIND)pPage->enmKind != enmKind)
2212 {
2213 /*
2214 * The kind is different. In some cases we should now flush the page
2215 * as it has been reused, but in most cases this is normal remapping
2216 * of PDs as PT or big pages using the GCPhys field in a slightly
2217 * different way than the other kinds.
2218 */
2219 if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
2220 {
2221 STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
2222 pgmPoolFlushPage(pPool, pPage);
2223 break;
2224 }
2225 }
2226 }
2227
2228 /* next */
2229 i = pPage->iNext;
2230 } while (i != NIL_PGMPOOL_IDX);
2231 }
2232
2233 Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
2234 STAM_COUNTER_INC(&pPool->StatCacheMisses);
2235 return VERR_FILE_NOT_FOUND;
2236}
2237
2238
2239/**
2240 * Inserts a page into the cache.
2241 *
2242 * @param pPool The pool.
2243 * @param pPage The cached page.
2244 * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
2245 */
2246static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
2247{
2248 /*
2249 * Insert into the GCPhys hash if the page is fit for that.
2250 */
2251 Assert(!pPage->fCached);
2252 if (fCanBeCached)
2253 {
2254 pPage->fCached = true;
2255 pgmPoolHashInsert(pPool, pPage);
2256 Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
2257 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
2258 STAM_COUNTER_INC(&pPool->StatCacheCacheable);
2259 }
2260 else
2261 {
2262 Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
2263 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
2264 STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
2265 }
2266
2267 /*
2268 * Insert at the head of the age list.
2269 */
2270 pPage->iAgePrev = NIL_PGMPOOL_IDX;
2271 pPage->iAgeNext = pPool->iAgeHead;
2272 if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
2273 pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
2274 else
2275 pPool->iAgeTail = pPage->idx;
2276 pPool->iAgeHead = pPage->idx;
2277}
2278
2279
2280/**
2281 * Flushes a cached page.
2282 *
2283 * @param pPool The pool.
2284 * @param pPage The cached page.
2285 */
2286static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2287{
2288 Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
2289
2290 /*
2291 * Remove the page from the hash.
2292 */
2293 if (pPage->fCached)
2294 {
2295 pPage->fCached = false;
2296 pgmPoolHashRemove(pPool, pPage);
2297 }
2298 else
2299 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
2300
2301 /*
2302 * Remove it from the age list.
2303 */
2304 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
2305 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
2306 else
2307 pPool->iAgeTail = pPage->iAgePrev;
2308 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
2309 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
2310 else
2311 pPool->iAgeHead = pPage->iAgeNext;
2312 pPage->iAgeNext = NIL_PGMPOOL_IDX;
2313 pPage->iAgePrev = NIL_PGMPOOL_IDX;
2314}
2315
2316
2317/**
2318 * Looks for pages sharing the monitor.
2319 *
2320 * @returns Pointer to the head page.
2321 * @returns NULL if not found.
2322 * @param pPool The Pool
2323 * @param pNewPage The page which is going to be monitored.
2324 */
2325static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
2326{
2327 /*
2328 * Look up the GCPhys in the hash.
2329 */
2330 RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
2331 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
2332 if (i == NIL_PGMPOOL_IDX)
2333 return NULL;
2334 do
2335 {
2336 PPGMPOOLPAGE pPage = &pPool->aPages[i];
2337 if ( pPage->GCPhys - GCPhys < PAGE_SIZE
2338 && pPage != pNewPage)
2339 {
2340 switch (pPage->enmKind)
2341 {
2342 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2343 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2344 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2345 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2346 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2347 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2348 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2349 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2350 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2351 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2352 case PGMPOOLKIND_64BIT_PML4:
2353 case PGMPOOLKIND_32BIT_PD:
2354 case PGMPOOLKIND_PAE_PDPT:
2355 {
2356 /* find the head */
2357 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
2358 {
2359 Assert(pPage->iMonitoredPrev != pPage->idx);
2360 pPage = &pPool->aPages[pPage->iMonitoredPrev];
2361 }
2362 return pPage;
2363 }
2364
2365 /* ignore, no monitoring. */
2366 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2367 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2368 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2369 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2370 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2371 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2372 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2373 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2374 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2375 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2376 case PGMPOOLKIND_ROOT_NESTED:
2377 case PGMPOOLKIND_PAE_PD_PHYS:
2378 case PGMPOOLKIND_PAE_PDPT_PHYS:
2379 case PGMPOOLKIND_32BIT_PD_PHYS:
2380 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2381 break;
2382 default:
2383 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
2384 }
2385 }
2386
2387 /* next */
2388 i = pPage->iNext;
2389 } while (i != NIL_PGMPOOL_IDX);
2390 return NULL;
2391}
2392
2393
2394/**
2395 * Enabled write monitoring of a guest page.
2396 *
2397 * @returns VBox status code.
2398 * @retval VINF_SUCCESS on success.
2399 * @param pPool The pool.
2400 * @param pPage The cached page.
2401 */
2402static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2403{
2404 LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK));
2405
2406 /*
2407 * Filter out the relevant kinds.
2408 */
2409 switch (pPage->enmKind)
2410 {
2411 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2412 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2413 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2414 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2415 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2416 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2417 case PGMPOOLKIND_64BIT_PML4:
2418 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2419 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2420 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2421 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2422 case PGMPOOLKIND_32BIT_PD:
2423 case PGMPOOLKIND_PAE_PDPT:
2424 break;
2425
2426 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2427 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2428 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2429 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2430 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2431 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2432 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2433 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2434 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2435 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2436 case PGMPOOLKIND_ROOT_NESTED:
2437 /* Nothing to monitor here. */
2438 return VINF_SUCCESS;
2439
2440 case PGMPOOLKIND_32BIT_PD_PHYS:
2441 case PGMPOOLKIND_PAE_PDPT_PHYS:
2442 case PGMPOOLKIND_PAE_PD_PHYS:
2443 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2444 /* Nothing to monitor here. */
2445 return VINF_SUCCESS;
2446 default:
2447 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
2448 }
2449
2450 /*
2451 * Install handler.
2452 */
2453 int rc;
2454 PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
2455 if (pPageHead)
2456 {
2457 Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
2458 Assert(pPageHead->iMonitoredPrev != pPage->idx);
2459
2460#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2461 if (pPageHead->fDirty)
2462 pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPageHead->idxDirtyEntry, false /* do not remove */);
2463#endif
2464
2465 pPage->iMonitoredPrev = pPageHead->idx;
2466 pPage->iMonitoredNext = pPageHead->iMonitoredNext;
2467 if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
2468 pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
2469 pPageHead->iMonitoredNext = pPage->idx;
2470 rc = VINF_SUCCESS;
2471 }
2472 else
2473 {
2474 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
2475 PVMCC pVM = pPool->CTX_SUFF(pVM);
2476 const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
2477 rc = PGMHandlerPhysicalRegister(pVM, GCPhysPage, GCPhysPage + PAGE_OFFSET_MASK, pPool->hAccessHandlerType,
2478 MMHyperCCToR3(pVM, pPage), MMHyperCCToR0(pVM, pPage), MMHyperCCToRC(pVM, pPage),
2479 NIL_RTR3PTR /*pszDesc*/);
2480 /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
2481 * the heap size should suffice. */
2482 AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc));
2483 PVMCPU pVCpu = VMMGetCpu(pVM);
2484 AssertFatalMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3), ("fSyncFlags=%x syncff=%d\n", pVCpu->pgm.s.fSyncFlags, VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3)));
2485 }
2486 pPage->fMonitored = true;
2487 return rc;
2488}
2489
2490
2491/**
2492 * Disables write monitoring of a guest page.
2493 *
2494 * @returns VBox status code.
2495 * @retval VINF_SUCCESS on success.
2496 * @param pPool The pool.
2497 * @param pPage The cached page.
2498 */
2499static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2500{
2501 /*
2502 * Filter out the relevant kinds.
2503 */
2504 switch (pPage->enmKind)
2505 {
2506 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2507 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2508 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2509 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2510 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2511 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2512 case PGMPOOLKIND_64BIT_PML4:
2513 case PGMPOOLKIND_32BIT_PD:
2514 case PGMPOOLKIND_PAE_PDPT:
2515 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2516 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2517 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2518 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2519 break;
2520
2521 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2522 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2523 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2524 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2525 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2526 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2527 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2528 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2529 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2530 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2531 case PGMPOOLKIND_ROOT_NESTED:
2532 case PGMPOOLKIND_PAE_PD_PHYS:
2533 case PGMPOOLKIND_PAE_PDPT_PHYS:
2534 case PGMPOOLKIND_32BIT_PD_PHYS:
2535 /* Nothing to monitor here. */
2536 Assert(!pPage->fMonitored);
2537 return VINF_SUCCESS;
2538
2539 default:
2540 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
2541 }
2542 Assert(pPage->fMonitored);
2543
2544 /*
2545 * Remove the page from the monitored list or uninstall it if last.
2546 */
2547 const PVMCC pVM = pPool->CTX_SUFF(pVM);
2548 int rc;
2549 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
2550 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
2551 {
2552 if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
2553 {
2554 PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
2555 pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
2556 rc = PGMHandlerPhysicalChangeUserArgs(pVM, pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK,
2557 MMHyperCCToR3(pVM, pNewHead), MMHyperCCToR0(pVM, pNewHead));
2558
2559 AssertFatalRCSuccess(rc);
2560 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
2561 }
2562 else
2563 {
2564 pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
2565 if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
2566 {
2567 pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
2568 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
2569 }
2570 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
2571 rc = VINF_SUCCESS;
2572 }
2573 }
2574 else
2575 {
2576 rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK);
2577 AssertFatalRC(rc);
2578 PVMCPU pVCpu = VMMGetCpu(pVM);
2579 AssertFatalMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3),
2580 ("%#x %#x\n", pVCpu->pgm.s.fSyncFlags, pVM->fGlobalForcedActions));
2581 }
2582 pPage->fMonitored = false;
2583
2584 /*
2585 * Remove it from the list of modified pages (if in it).
2586 */
2587 pgmPoolMonitorModifiedRemove(pPool, pPage);
2588
2589 return rc;
2590}
2591
2592
2593/**
2594 * Inserts the page into the list of modified pages.
2595 *
2596 * @param pPool The pool.
2597 * @param pPage The page.
2598 */
2599void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2600{
2601 Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
2602 AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
2603 && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
2604 && pPool->iModifiedHead != pPage->idx,
2605 ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
2606 pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
2607 pPool->iModifiedHead, pPool->cModifiedPages));
2608
2609 pPage->iModifiedNext = pPool->iModifiedHead;
2610 if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
2611 pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
2612 pPool->iModifiedHead = pPage->idx;
2613 pPool->cModifiedPages++;
2614#ifdef VBOX_WITH_STATISTICS
2615 if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
2616 pPool->cModifiedPagesHigh = pPool->cModifiedPages;
2617#endif
2618}
2619
2620
2621/**
2622 * Removes the page from the list of modified pages and resets the
2623 * modification counter.
2624 *
2625 * @param pPool The pool.
2626 * @param pPage The page which is believed to be in the list of modified pages.
2627 */
2628static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2629{
2630 Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
2631 if (pPool->iModifiedHead == pPage->idx)
2632 {
2633 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
2634 pPool->iModifiedHead = pPage->iModifiedNext;
2635 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
2636 {
2637 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
2638 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2639 }
2640 pPool->cModifiedPages--;
2641 }
2642 else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
2643 {
2644 pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
2645 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
2646 {
2647 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
2648 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2649 }
2650 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2651 pPool->cModifiedPages--;
2652 }
2653 else
2654 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
2655 pPage->cModifications = 0;
2656}
2657
2658
2659/**
2660 * Zaps the list of modified pages, resetting their modification counters in the process.
2661 *
2662 * @param pVM The cross context VM structure.
2663 */
2664static void pgmPoolMonitorModifiedClearAll(PVMCC pVM)
2665{
2666 PGM_LOCK_VOID(pVM);
2667 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2668 LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
2669
2670 unsigned cPages = 0; NOREF(cPages);
2671
2672#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2673 pgmPoolResetDirtyPages(pVM);
2674#endif
2675
2676 uint16_t idx = pPool->iModifiedHead;
2677 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2678 while (idx != NIL_PGMPOOL_IDX)
2679 {
2680 PPGMPOOLPAGE pPage = &pPool->aPages[idx];
2681 idx = pPage->iModifiedNext;
2682 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2683 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2684 pPage->cModifications = 0;
2685 Assert(++cPages);
2686 }
2687 AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
2688 pPool->cModifiedPages = 0;
2689 PGM_UNLOCK(pVM);
2690}
2691
2692
2693/**
2694 * Handle SyncCR3 pool tasks
2695 *
2696 * @returns VBox status code.
2697 * @retval VINF_SUCCESS if successfully added.
2698 * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
2699 * @param pVCpu The cross context virtual CPU structure.
2700 * @remark Should only be used when monitoring is available, thus placed in
2701 * the PGMPOOL_WITH_MONITORING \#ifdef.
2702 */
2703int pgmPoolSyncCR3(PVMCPUCC pVCpu)
2704{
2705 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
2706 LogFlow(("pgmPoolSyncCR3 fSyncFlags=%x\n", pVCpu->pgm.s.fSyncFlags));
2707
2708 /*
2709 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2710 * Occasionally we will have to clear all the shadow page tables because we wanted
2711 * to monitor a page which was mapped by too many shadowed page tables. This operation
2712 * sometimes referred to as a 'lightweight flush'.
2713 */
2714# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
2715 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2716 pgmR3PoolClearAll(pVM, false /*fFlushRemTlb*/);
2717# else /* !IN_RING3 */
2718 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2719 {
2720 Log(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2721 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
2722
2723 /* Make sure all other VCPUs return to ring 3. */
2724 if (pVM->cCpus > 1)
2725 {
2726 VM_FF_SET(pVM, VM_FF_PGM_POOL_FLUSH_PENDING);
2727 PGM_INVL_ALL_VCPU_TLBS(pVM);
2728 }
2729 return VINF_PGM_SYNC_CR3;
2730 }
2731# endif /* !IN_RING3 */
2732 else
2733 {
2734 pgmPoolMonitorModifiedClearAll(pVM);
2735
2736 /* pgmPoolMonitorModifiedClearAll can cause a pgm pool flush (dirty page clearing), so make sure we handle this! */
2737 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2738 {
2739 Log(("pgmPoolMonitorModifiedClearAll caused a pgm flush -> call pgmPoolSyncCR3 again!\n"));
2740 return pgmPoolSyncCR3(pVCpu);
2741 }
2742 }
2743 return VINF_SUCCESS;
2744}
2745
2746
2747/**
2748 * Frees up at least one user entry.
2749 *
2750 * @returns VBox status code.
2751 * @retval VINF_SUCCESS if successfully added.
2752 *
2753 * @param pPool The pool.
2754 * @param iUser The user index.
2755 */
2756static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
2757{
2758 STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
2759 /*
2760 * Just free cached pages in a braindead fashion.
2761 */
2762 /** @todo walk the age list backwards and free the first with usage. */
2763 int rc = VINF_SUCCESS;
2764 do
2765 {
2766 int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
2767 if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
2768 rc = rc2;
2769 } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
2770 return rc;
2771}
2772
2773
2774/**
2775 * Inserts a page into the cache.
2776 *
2777 * This will create user node for the page, insert it into the GCPhys
2778 * hash, and insert it into the age list.
2779 *
2780 * @returns VBox status code.
2781 * @retval VINF_SUCCESS if successfully added.
2782 *
2783 * @param pPool The pool.
2784 * @param pPage The cached page.
2785 * @param GCPhys The GC physical address of the page we're gonna shadow.
2786 * @param iUser The user index.
2787 * @param iUserTable The user table index.
2788 */
2789DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
2790{
2791 int rc = VINF_SUCCESS;
2792 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2793
2794 LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser=%d iUserTable=%x\n", GCPhys, iUser, iUserTable)); RT_NOREF_PV(GCPhys);
2795
2796 if (iUser != NIL_PGMPOOL_IDX)
2797 {
2798#ifdef VBOX_STRICT
2799 /*
2800 * Check that the entry doesn't already exists.
2801 */
2802 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2803 {
2804 uint16_t i = pPage->iUserHead;
2805 do
2806 {
2807 Assert(i < pPool->cMaxUsers);
2808 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2809 i = paUsers[i].iNext;
2810 } while (i != NIL_PGMPOOL_USER_INDEX);
2811 }
2812#endif
2813
2814 /*
2815 * Find free a user node.
2816 */
2817 uint16_t i = pPool->iUserFreeHead;
2818 if (i == NIL_PGMPOOL_USER_INDEX)
2819 {
2820 rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2821 if (RT_FAILURE(rc))
2822 return rc;
2823 i = pPool->iUserFreeHead;
2824 }
2825
2826 /*
2827 * Unlink the user node from the free list,
2828 * initialize and insert it into the user list.
2829 */
2830 pPool->iUserFreeHead = paUsers[i].iNext;
2831 paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
2832 paUsers[i].iUser = iUser;
2833 paUsers[i].iUserTable = iUserTable;
2834 pPage->iUserHead = i;
2835 }
2836 else
2837 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
2838
2839
2840 /*
2841 * Insert into cache and enable monitoring of the guest page if enabled.
2842 *
2843 * Until we implement caching of all levels, including the CR3 one, we'll
2844 * have to make sure we don't try monitor & cache any recursive reuse of
2845 * a monitored CR3 page. Because all windows versions are doing this we'll
2846 * have to be able to do combined access monitoring, CR3 + PT and
2847 * PD + PT (guest PAE).
2848 *
2849 * Update:
2850 * We're now cooperating with the CR3 monitor if an uncachable page is found.
2851 */
2852 const bool fCanBeMonitored = true;
2853 pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
2854 if (fCanBeMonitored)
2855 {
2856 rc = pgmPoolMonitorInsert(pPool, pPage);
2857 AssertRC(rc);
2858 }
2859 return rc;
2860}
2861
2862
2863/**
2864 * Adds a user reference to a page.
2865 *
2866 * This will move the page to the head of the
2867 *
2868 * @returns VBox status code.
2869 * @retval VINF_SUCCESS if successfully added.
2870 *
2871 * @param pPool The pool.
2872 * @param pPage The cached page.
2873 * @param iUser The user index.
2874 * @param iUserTable The user table.
2875 */
2876static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2877{
2878 Log3(("pgmPoolTrackAddUser: GCPhys=%RGp iUser=%x iUserTable=%x\n", pPage->GCPhys, iUser, iUserTable));
2879 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2880 Assert(iUser != NIL_PGMPOOL_IDX);
2881
2882# ifdef VBOX_STRICT
2883 /*
2884 * Check that the entry doesn't already exists. We only allow multiple
2885 * users of top-level paging structures (SHW_POOL_ROOT_IDX).
2886 */
2887 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2888 {
2889 uint16_t i = pPage->iUserHead;
2890 do
2891 {
2892 Assert(i < pPool->cMaxUsers);
2893 /** @todo this assertion looks odd... Shouldn't it be && here? */
2894 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2895 i = paUsers[i].iNext;
2896 } while (i != NIL_PGMPOOL_USER_INDEX);
2897 }
2898# endif
2899
2900 /*
2901 * Allocate a user node.
2902 */
2903 uint16_t i = pPool->iUserFreeHead;
2904 if (i == NIL_PGMPOOL_USER_INDEX)
2905 {
2906 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2907 if (RT_FAILURE(rc))
2908 return rc;
2909 i = pPool->iUserFreeHead;
2910 }
2911 pPool->iUserFreeHead = paUsers[i].iNext;
2912
2913 /*
2914 * Initialize the user node and insert it.
2915 */
2916 paUsers[i].iNext = pPage->iUserHead;
2917 paUsers[i].iUser = iUser;
2918 paUsers[i].iUserTable = iUserTable;
2919 pPage->iUserHead = i;
2920
2921# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2922 if (pPage->fDirty)
2923 pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPage->idxDirtyEntry, false /* do not remove */);
2924# endif
2925
2926 /*
2927 * Tell the cache to update its replacement stats for this page.
2928 */
2929 pgmPoolCacheUsed(pPool, pPage);
2930 return VINF_SUCCESS;
2931}
2932
2933
2934/**
2935 * Frees a user record associated with a page.
2936 *
2937 * This does not clear the entry in the user table, it simply replaces the
2938 * user record to the chain of free records.
2939 *
2940 * @param pPool The pool.
2941 * @param pPage The shadow page.
2942 * @param iUser The shadow page pool index of the user table.
2943 * @param iUserTable The index into the user table (shadowed).
2944 *
2945 * @remarks Don't call this for root pages.
2946 */
2947static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2948{
2949 Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
2950 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2951 Assert(iUser != NIL_PGMPOOL_IDX);
2952
2953 /*
2954 * Unlink and free the specified user entry.
2955 */
2956
2957 /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
2958 uint16_t i = pPage->iUserHead;
2959 if ( i != NIL_PGMPOOL_USER_INDEX
2960 && paUsers[i].iUser == iUser
2961 && paUsers[i].iUserTable == iUserTable)
2962 {
2963 pPage->iUserHead = paUsers[i].iNext;
2964
2965 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2966 paUsers[i].iNext = pPool->iUserFreeHead;
2967 pPool->iUserFreeHead = i;
2968 return;
2969 }
2970
2971 /* General: Linear search. */
2972 uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
2973 while (i != NIL_PGMPOOL_USER_INDEX)
2974 {
2975 if ( paUsers[i].iUser == iUser
2976 && paUsers[i].iUserTable == iUserTable)
2977 {
2978 if (iPrev != NIL_PGMPOOL_USER_INDEX)
2979 paUsers[iPrev].iNext = paUsers[i].iNext;
2980 else
2981 pPage->iUserHead = paUsers[i].iNext;
2982
2983 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2984 paUsers[i].iNext = pPool->iUserFreeHead;
2985 pPool->iUserFreeHead = i;
2986 return;
2987 }
2988 iPrev = i;
2989 i = paUsers[i].iNext;
2990 }
2991
2992 /* Fatal: didn't find it */
2993 AssertFatalMsgFailed(("Didn't find the user entry! iUser=%d iUserTable=%#x GCPhys=%RGp\n",
2994 iUser, iUserTable, pPage->GCPhys));
2995}
2996
2997
2998#if 0 /* unused */
2999/**
3000 * Gets the entry size of a shadow table.
3001 *
3002 * @param enmKind The kind of page.
3003 *
3004 * @returns The size of the entry in bytes. That is, 4 or 8.
3005 * @returns If the kind is not for a table, an assertion is raised and 0 is
3006 * returned.
3007 */
3008DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
3009{
3010 switch (enmKind)
3011 {
3012 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3013 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3014 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3015 case PGMPOOLKIND_32BIT_PD:
3016 case PGMPOOLKIND_32BIT_PD_PHYS:
3017 return 4;
3018
3019 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3020 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3021 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3022 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3023 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3024 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3025 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3026 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3027 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3028 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3029 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3030 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3031 case PGMPOOLKIND_64BIT_PML4:
3032 case PGMPOOLKIND_PAE_PDPT:
3033 case PGMPOOLKIND_ROOT_NESTED:
3034 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3035 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3036 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3037 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3038 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3039 case PGMPOOLKIND_PAE_PD_PHYS:
3040 case PGMPOOLKIND_PAE_PDPT_PHYS:
3041 return 8;
3042
3043 default:
3044 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
3045 }
3046}
3047#endif /* unused */
3048
3049#if 0 /* unused */
3050/**
3051 * Gets the entry size of a guest table.
3052 *
3053 * @param enmKind The kind of page.
3054 *
3055 * @returns The size of the entry in bytes. That is, 0, 4 or 8.
3056 * @returns If the kind is not for a table, an assertion is raised and 0 is
3057 * returned.
3058 */
3059DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
3060{
3061 switch (enmKind)
3062 {
3063 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3064 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3065 case PGMPOOLKIND_32BIT_PD:
3066 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3067 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3068 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3069 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3070 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3071 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3072 return 4;
3073
3074 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3075 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3076 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3077 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3078 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3079 case PGMPOOLKIND_64BIT_PML4:
3080 case PGMPOOLKIND_PAE_PDPT:
3081 return 8;
3082
3083 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3084 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3085 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3086 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3087 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3088 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3089 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3090 case PGMPOOLKIND_ROOT_NESTED:
3091 case PGMPOOLKIND_PAE_PD_PHYS:
3092 case PGMPOOLKIND_PAE_PDPT_PHYS:
3093 case PGMPOOLKIND_32BIT_PD_PHYS:
3094 /** @todo can we return 0? (nobody is calling this...) */
3095 AssertFailed();
3096 return 0;
3097
3098 default:
3099 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
3100 }
3101}
3102#endif /* unused */
3103
3104
3105/**
3106 * Checks one shadow page table entry for a mapping of a physical page.
3107 *
3108 * @returns true / false indicating removal of all relevant PTEs
3109 *
3110 * @param pVM The cross context VM structure.
3111 * @param pPhysPage The guest page in question.
3112 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3113 * @param iShw The shadow page table.
3114 * @param iPte Page table entry or NIL_PGMPOOL_PHYSEXT_IDX_PTE if unknown
3115 */
3116static bool pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw, uint16_t iPte)
3117{
3118 LogFlow(("pgmPoolTrackFlushGCPhysPTInt: pPhysPage=%RHp iShw=%d iPte=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw, iPte));
3119 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3120 bool fRet = false;
3121
3122 /*
3123 * Assert sanity.
3124 */
3125 Assert(iPte != NIL_PGMPOOL_PHYSEXT_IDX_PTE);
3126 AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
3127 PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
3128
3129 /*
3130 * Then, clear the actual mappings to the page in the shadow PT.
3131 */
3132 switch (pPage->enmKind)
3133 {
3134 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3135 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3136 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3137 {
3138 const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3139 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3140 uint32_t u32AndMask = 0;
3141 uint32_t u32OrMask = 0;
3142
3143 if (!fFlushPTEs)
3144 {
3145 switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage))
3146 {
3147 case PGM_PAGE_HNDL_PHYS_STATE_NONE: /* No handler installed. */
3148 case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /* Monitoring is temporarily disabled. */
3149 u32OrMask = X86_PTE_RW;
3150 u32AndMask = UINT32_MAX;
3151 fRet = true;
3152 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3153 break;
3154
3155 case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /* Write access is monitored. */
3156 u32OrMask = 0;
3157 u32AndMask = ~X86_PTE_RW;
3158 fRet = true;
3159 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3160 break;
3161 default:
3162 /* (shouldn't be here, will assert below) */
3163 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3164 break;
3165 }
3166 }
3167 else
3168 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3169
3170 /* Update the counter if we're removing references. */
3171 if (!u32AndMask)
3172 {
3173 Assert(pPage->cPresent);
3174 Assert(pPool->cPresent);
3175 pPage->cPresent--;
3176 pPool->cPresent--;
3177 }
3178
3179 if ((pPT->a[iPte].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3180 {
3181 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32\n", iPte, pPT->a[iPte]));
3182 X86PTE Pte;
3183 Pte.u = (pPT->a[iPte].u & u32AndMask) | u32OrMask;
3184 if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY)
3185 Pte.u &= ~(X86PGUINT)X86_PTE_RW; /* need to disallow writes when dirty bit tracking is still active. */
3186 ASMAtomicWriteU32(&pPT->a[iPte].u, Pte.u);
3187 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3188 return fRet;
3189 }
3190#ifdef LOG_ENABLED
3191 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3192 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPT->a); i++)
3193 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3194 {
3195 Log(("i=%d cFound=%d\n", i, ++cFound));
3196 }
3197#endif
3198 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d u32=%RX32 poolkind=%x\n", pPage->iFirstPresent, pPage->cPresent, u32, pPage->enmKind));
3199 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);*/
3200 break;
3201 }
3202
3203 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3204 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3205 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3206 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3207 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3208 case PGMPOOLKIND_EPT_PT_FOR_PHYS: /* physical mask the same as PAE; RW bit as well; be careful! */
3209 {
3210 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3211 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3212 uint64_t u64OrMask = 0;
3213 uint64_t u64AndMask = 0;
3214
3215 if (!fFlushPTEs)
3216 {
3217 switch (PGM_PAGE_GET_HNDL_PHYS_STATE(pPhysPage))
3218 {
3219 case PGM_PAGE_HNDL_PHYS_STATE_NONE: /* No handler installed. */
3220 case PGM_PAGE_HNDL_PHYS_STATE_DISABLED: /* Monitoring is temporarily disabled. */
3221 u64OrMask = X86_PTE_RW;
3222 u64AndMask = UINT64_MAX;
3223 fRet = true;
3224 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3225 break;
3226
3227 case PGM_PAGE_HNDL_PHYS_STATE_WRITE: /* Write access is monitored. */
3228 u64OrMask = 0;
3229 u64AndMask = ~(uint64_t)X86_PTE_RW;
3230 fRet = true;
3231 STAM_COUNTER_INC(&pPool->StatTrackFlushEntryKeep);
3232 break;
3233
3234 default:
3235 /* (shouldn't be here, will assert below) */
3236 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3237 break;
3238 }
3239 }
3240 else
3241 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3242
3243 /* Update the counter if we're removing references. */
3244 if (!u64AndMask)
3245 {
3246 Assert(pPage->cPresent);
3247 Assert(pPool->cPresent);
3248 pPage->cPresent--;
3249 pPool->cPresent--;
3250 }
3251
3252 if ((PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == u64)
3253 {
3254 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64\n", iPte, PGMSHWPTEPAE_GET_LOG(pPT->a[iPte])));
3255 X86PTEPAE Pte;
3256 Pte.u = (PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & u64AndMask) | u64OrMask;
3257 if (Pte.u & PGM_PTFLAGS_TRACK_DIRTY)
3258 Pte.u &= ~(X86PGPAEUINT)X86_PTE_RW; /* need to disallow writes when dirty bit tracking is still active. */
3259
3260 PGMSHWPTEPAE_ATOMIC_SET(pPT->a[iPte], Pte.u);
3261 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3262 return fRet;
3263 }
3264#ifdef LOG_ENABLED
3265 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3266 Log(("Found %RX64 expected %RX64\n", PGMSHWPTEPAE_GET_U(pPT->a[iPte]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX), u64));
3267 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPT->a); i++)
3268 if ((PGMSHWPTEPAE_GET_U(pPT->a[i]) & (X86_PTE_PAE_PG_MASK | X86_PTE_P | X86_PTE_PAE_MBZ_MASK_NX)) == u64)
3269 Log(("i=%d cFound=%d\n", i, ++cFound));
3270#endif
3271 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d u64=%RX64 poolkind=%x iPte=%d PT=%RX64\n", pPage->iFirstPresent, pPage->cPresent, u64, pPage->enmKind, iPte, PGMSHWPTEPAE_GET_LOG(pPT->a[iPte])));
3272 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);*/
3273 break;
3274 }
3275
3276#ifdef PGM_WITH_LARGE_PAGES
3277 /* Large page case only. */
3278 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3279 {
3280 Assert(pVM->pgm.s.fNestedPaging);
3281
3282 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS;
3283 PEPTPD pPD = (PEPTPD)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3284
3285 if ((pPD->a[iPte].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3286 {
3287 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64\n", iPte, pPD->a[iPte]));
3288 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3289 pPD->a[iPte].u = 0;
3290 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);
3291
3292 /* Update the counter as we're removing references. */
3293 Assert(pPage->cPresent);
3294 Assert(pPool->cPresent);
3295 pPage->cPresent--;
3296 pPool->cPresent--;
3297
3298 return fRet;
3299 }
3300# ifdef LOG_ENABLED
3301 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3302 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPD->a); i++)
3303 if ((pPD->a[i].u & (EPT_PDE2M_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3304 Log(("i=%d cFound=%d\n", i, ++cFound));
3305# endif
3306 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3307 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);*/
3308 break;
3309 }
3310
3311 /* AMD-V nested paging */ /** @todo merge with EPT as we only check the parts that are identical. */
3312 case PGMPOOLKIND_PAE_PD_PHYS:
3313 {
3314 Assert(pVM->pgm.s.fNestedPaging);
3315
3316 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PDE4M_P | X86_PDE4M_PS;
3317 PX86PDPAE pPD = (PX86PDPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3318
3319 if ((pPD->a[iPte].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3320 {
3321 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pde=%RX64\n", iPte, pPD->a[iPte]));
3322 STAM_COUNTER_INC(&pPool->StatTrackFlushEntry);
3323 pPD->a[iPte].u = 0;
3324 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);
3325
3326 /* Update the counter as we're removing references. */
3327 Assert(pPage->cPresent);
3328 Assert(pPool->cPresent);
3329 pPage->cPresent--;
3330 pPool->cPresent--;
3331 return fRet;
3332 }
3333# ifdef LOG_ENABLED
3334 Log(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3335 for (unsigned i = 0, cFound = 0; i < RT_ELEMENTS(pPD->a); i++)
3336 if ((pPD->a[i].u & (X86_PDE2M_PAE_PG_MASK | X86_PDE4M_P | X86_PDE4M_PS)) == u64)
3337 Log(("i=%d cFound=%d\n", i, ++cFound));
3338# endif
3339 AssertFatalMsgFailed(("iFirstPresent=%d cPresent=%d\n", pPage->iFirstPresent, pPage->cPresent));
3340 /*PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPD);*/
3341 break;
3342 }
3343#endif /* PGM_WITH_LARGE_PAGES */
3344
3345 default:
3346 AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
3347 }
3348
3349 /* not reached. */
3350#ifndef _MSC_VER
3351 return fRet;
3352#endif
3353}
3354
3355
3356/**
3357 * Scans one shadow page table for mappings of a physical page.
3358 *
3359 * @param pVM The cross context VM structure.
3360 * @param pPhysPage The guest page in question.
3361 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3362 * @param iShw The shadow page table.
3363 */
3364static void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iShw)
3365{
3366 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3367
3368 /* We should only come here with when there's only one reference to this physical page. */
3369 Assert(PGMPOOL_TD_GET_CREFS(PGM_PAGE_GET_TRACKING(pPhysPage)) == 1);
3370
3371 Log2(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%RHp iShw=%d\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iShw));
3372 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
3373 bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, iShw, PGM_PAGE_GET_PTE_INDEX(pPhysPage));
3374 if (!fKeptPTEs)
3375 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
3376 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
3377}
3378
3379
3380/**
3381 * Flushes a list of shadow page tables mapping the same physical page.
3382 *
3383 * @param pVM The cross context VM structure.
3384 * @param pPhysPage The guest page in question.
3385 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3386 * @param iPhysExt The physical cross reference extent list to flush.
3387 */
3388static void pgmPoolTrackFlushGCPhysPTs(PVMCC pVM, PPGMPAGE pPhysPage, bool fFlushPTEs, uint16_t iPhysExt)
3389{
3390 PGM_LOCK_ASSERT_OWNER(pVM);
3391 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3392 bool fKeepList = false;
3393
3394 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
3395 Log2(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%RHp iPhysExt=%u\n", PGM_PAGE_GET_HCPHYS(pPhysPage), iPhysExt));
3396
3397 const uint16_t iPhysExtStart = iPhysExt;
3398 PPGMPOOLPHYSEXT pPhysExt;
3399 do
3400 {
3401 Assert(iPhysExt < pPool->cMaxPhysExts);
3402 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3403 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3404 {
3405 if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
3406 {
3407 bool fKeptPTEs = pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, fFlushPTEs, pPhysExt->aidx[i], pPhysExt->apte[i]);
3408 if (!fKeptPTEs)
3409 {
3410 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3411 pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
3412 }
3413 else
3414 fKeepList = true;
3415 }
3416 }
3417 /* next */
3418 iPhysExt = pPhysExt->iNext;
3419 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3420
3421 if (!fKeepList)
3422 {
3423 /* insert the list into the free list and clear the ram range entry. */
3424 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3425 pPool->iPhysExtFreeHead = iPhysExtStart;
3426 /* Invalidate the tracking data. */
3427 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
3428 }
3429
3430 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
3431}
3432
3433
3434/**
3435 * Flushes all shadow page table mappings of the given guest page.
3436 *
3437 * This is typically called when the host page backing the guest one has been
3438 * replaced or when the page protection was changed due to a guest access
3439 * caught by the monitoring.
3440 *
3441 * @returns VBox status code.
3442 * @retval VINF_SUCCESS if all references has been successfully cleared.
3443 * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page
3444 * pool cleaning. FF and sync flags are set.
3445 *
3446 * @param pVM The cross context VM structure.
3447 * @param GCPhysPage GC physical address of the page in question
3448 * @param pPhysPage The guest page in question.
3449 * @param fFlushPTEs Flush PTEs or allow them to be updated (e.g. in case of an RW bit change)
3450 * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
3451 * flushed, it is NOT touched if this isn't necessary.
3452 * The caller MUST initialized this to @a false.
3453 */
3454int pgmPoolTrackUpdateGCPhys(PVMCC pVM, RTGCPHYS GCPhysPage, PPGMPAGE pPhysPage, bool fFlushPTEs, bool *pfFlushTLBs)
3455{
3456 PVMCPUCC pVCpu = VMMGetCpu(pVM);
3457 PGM_LOCK_VOID(pVM);
3458 int rc = VINF_SUCCESS;
3459
3460#ifdef PGM_WITH_LARGE_PAGES
3461 /* Is this page part of a large page? */
3462 if (PGM_PAGE_GET_PDE_TYPE(pPhysPage) == PGM_PAGE_PDE_TYPE_PDE)
3463 {
3464 RTGCPHYS GCPhysBase = GCPhysPage & X86_PDE2M_PAE_PG_MASK;
3465 GCPhysPage &= X86_PDE_PAE_PG_MASK;
3466
3467 /* Fetch the large page base. */
3468 PPGMPAGE pLargePage;
3469 if (GCPhysBase != GCPhysPage)
3470 {
3471 pLargePage = pgmPhysGetPage(pVM, GCPhysBase);
3472 AssertFatal(pLargePage);
3473 }
3474 else
3475 pLargePage = pPhysPage;
3476
3477 Log(("pgmPoolTrackUpdateGCPhys: update large page PDE for %RGp (%RGp)\n", GCPhysBase, GCPhysPage));
3478
3479 if (PGM_PAGE_GET_PDE_TYPE(pLargePage) == PGM_PAGE_PDE_TYPE_PDE)
3480 {
3481 /* Mark the large page as disabled as we need to break it up to change a single page in the 2 MB range. */
3482 PGM_PAGE_SET_PDE_TYPE(pVM, pLargePage, PGM_PAGE_PDE_TYPE_PDE_DISABLED);
3483 pVM->pgm.s.cLargePagesDisabled++;
3484
3485 /* Update the base as that *only* that one has a reference and there's only one PDE to clear. */
3486 rc = pgmPoolTrackUpdateGCPhys(pVM, GCPhysBase, pLargePage, fFlushPTEs, pfFlushTLBs);
3487
3488 *pfFlushTLBs = true;
3489 PGM_UNLOCK(pVM);
3490 return rc;
3491 }
3492 }
3493#else
3494 NOREF(GCPhysPage);
3495#endif /* PGM_WITH_LARGE_PAGES */
3496
3497 const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
3498 if (u16)
3499 {
3500 /*
3501 * The zero page is currently screwing up the tracking and we'll
3502 * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
3503 * is defined, zero pages won't normally be mapped. Some kind of solution
3504 * will be needed for this problem of course, but it will have to wait...
3505 */
3506 if ( PGM_PAGE_IS_ZERO(pPhysPage)
3507 || PGM_PAGE_IS_BALLOONED(pPhysPage))
3508 rc = VINF_PGM_GCPHYS_ALIASED;
3509 else
3510 {
3511 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3512 {
3513 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
3514 pgmPoolTrackFlushGCPhysPT(pVM,
3515 pPhysPage,
3516 fFlushPTEs,
3517 PGMPOOL_TD_GET_IDX(u16));
3518 }
3519 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3520 pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, fFlushPTEs, PGMPOOL_TD_GET_IDX(u16));
3521 else
3522 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
3523 *pfFlushTLBs = true;
3524 }
3525 }
3526
3527 if (rc == VINF_PGM_GCPHYS_ALIASED)
3528 {
3529 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3530 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3531 rc = VINF_PGM_SYNC_CR3;
3532 }
3533 PGM_UNLOCK(pVM);
3534 return rc;
3535}
3536
3537
3538/**
3539 * Scans all shadow page tables for mappings of a physical page.
3540 *
3541 * This may be slow, but it's most likely more efficient than cleaning
3542 * out the entire page pool / cache.
3543 *
3544 * @returns VBox status code.
3545 * @retval VINF_SUCCESS if all references has been successfully cleared.
3546 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
3547 * a page pool cleaning.
3548 *
3549 * @param pVM The cross context VM structure.
3550 * @param pPhysPage The guest page in question.
3551 */
3552int pgmPoolTrackFlushGCPhysPTsSlow(PVMCC pVM, PPGMPAGE pPhysPage)
3553{
3554 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3555 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3556 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
3557 pPool->cUsedPages, pPool->cPresent, pPhysPage));
3558
3559 /*
3560 * There is a limit to what makes sense.
3561 */
3562 if ( pPool->cPresent > 1024
3563 && pVM->cCpus == 1)
3564 {
3565 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
3566 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3567 return VINF_PGM_GCPHYS_ALIASED;
3568 }
3569
3570 /*
3571 * Iterate all the pages until we've encountered all that in use.
3572 * This is simple but not quite optimal solution.
3573 */
3574 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage);
3575 unsigned cLeft = pPool->cUsedPages;
3576 unsigned iPage = pPool->cCurPages;
3577 while (--iPage >= PGMPOOL_IDX_FIRST)
3578 {
3579 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
3580 if ( pPage->GCPhys != NIL_RTGCPHYS
3581 && pPage->cPresent)
3582 {
3583 switch (pPage->enmKind)
3584 {
3585 /*
3586 * We only care about shadow page tables.
3587 */
3588 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3589 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3590 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3591 {
3592 const uint32_t u32 = (uint32_t)u64;
3593 unsigned cPresent = pPage->cPresent;
3594 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3595 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3596 {
3597 const X86PGUINT uPte = pPT->a[i].u;
3598 if (uPte & X86_PTE_P)
3599 {
3600 if ((uPte & X86_PTE_PG_MASK) == u32)
3601 {
3602 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
3603 ASMAtomicWriteU32(&pPT->a[i].u, 0);
3604
3605 /* Update the counter as we're removing references. */
3606 Assert(pPage->cPresent);
3607 Assert(pPool->cPresent);
3608 pPage->cPresent--;
3609 pPool->cPresent--;
3610 }
3611 if (!--cPresent)
3612 break;
3613 }
3614 }
3615 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3616 break;
3617 }
3618
3619 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3620 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3621 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3622 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3623 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3624 {
3625 unsigned cPresent = pPage->cPresent;
3626 PPGMSHWPTPAE pPT = (PPGMSHWPTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3627 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3628 if (PGMSHWPTEPAE_IS_P(pPT->a[i]))
3629 {
3630 if ((PGMSHWPTEPAE_GET_U(pPT->a[i]) & X86_PTE_PAE_PG_MASK) == u64)
3631 {
3632 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
3633 PGMSHWPTEPAE_ATOMIC_SET(pPT->a[i], 0); /// @todo why not atomic?
3634
3635 /* Update the counter as we're removing references. */
3636 Assert(pPage->cPresent);
3637 Assert(pPool->cPresent);
3638 pPage->cPresent--;
3639 pPool->cPresent--;
3640 }
3641 if (!--cPresent)
3642 break;
3643 }
3644 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3645 break;
3646 }
3647
3648 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3649 {
3650 unsigned cPresent = pPage->cPresent;
3651 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3652 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3653 {
3654 X86PGPAEUINT const uPte = pPT->a[i].u;
3655 if (uPte & EPT_E_READ)
3656 {
3657 if ((uPte & EPT_PTE_PG_MASK) == u64)
3658 {
3659 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
3660 ASMAtomicWriteU64(&pPT->a[i].u, 0);
3661
3662 /* Update the counter as we're removing references. */
3663 Assert(pPage->cPresent);
3664 Assert(pPool->cPresent);
3665 pPage->cPresent--;
3666 pPool->cPresent--;
3667 }
3668 if (!--cPresent)
3669 break;
3670 }
3671 }
3672 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pPT);
3673 break;
3674 }
3675 }
3676
3677 if (!--cLeft)
3678 break;
3679 }
3680 }
3681
3682 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
3683 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3684
3685 /*
3686 * There is a limit to what makes sense. The above search is very expensive, so force a pgm pool flush.
3687 */
3688 if (pPool->cPresent > 1024)
3689 {
3690 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
3691 return VINF_PGM_GCPHYS_ALIASED;
3692 }
3693
3694 return VINF_SUCCESS;
3695}
3696
3697
3698/**
3699 * Clears the user entry in a user table.
3700 *
3701 * This is used to remove all references to a page when flushing it.
3702 */
3703static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
3704{
3705 Assert(pUser->iUser != NIL_PGMPOOL_IDX);
3706 Assert(pUser->iUser < pPool->cCurPages);
3707 uint32_t iUserTable = pUser->iUserTable;
3708
3709 /*
3710 * Map the user page. Ignore references made by fictitious pages.
3711 */
3712 PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
3713 LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
3714 union
3715 {
3716 uint64_t *pau64;
3717 uint32_t *pau32;
3718 } u;
3719 if (pUserPage->idx < PGMPOOL_IDX_FIRST)
3720 {
3721 Assert(!pUserPage->pvPageR3);
3722 return;
3723 }
3724 u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
3725
3726
3727 /* Safety precaution in case we change the paging for other modes too in the future. */
3728 Assert(!pgmPoolIsPageLocked(pPage)); RT_NOREF_PV(pPage);
3729
3730#ifdef VBOX_STRICT
3731 /*
3732 * Some sanity checks.
3733 */
3734 switch (pUserPage->enmKind)
3735 {
3736 case PGMPOOLKIND_32BIT_PD:
3737 case PGMPOOLKIND_32BIT_PD_PHYS:
3738 Assert(iUserTable < X86_PG_ENTRIES);
3739 break;
3740 case PGMPOOLKIND_PAE_PDPT:
3741 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3742 case PGMPOOLKIND_PAE_PDPT_PHYS:
3743 Assert(iUserTable < 4);
3744 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3745 break;
3746 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3747 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3748 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3749 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3750 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3751 case PGMPOOLKIND_PAE_PD_PHYS:
3752 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3753 break;
3754 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3755 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3756 break;
3757 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3758 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3759 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3760 break;
3761 case PGMPOOLKIND_64BIT_PML4:
3762 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3763 /* GCPhys >> PAGE_SHIFT is the index here */
3764 break;
3765 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3766 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3767 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3768 break;
3769
3770 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3771 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3772 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3773 break;
3774
3775 case PGMPOOLKIND_ROOT_NESTED:
3776 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3777 break;
3778
3779 default:
3780 AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
3781 break;
3782 }
3783#endif /* VBOX_STRICT */
3784
3785 /*
3786 * Clear the entry in the user page.
3787 */
3788 switch (pUserPage->enmKind)
3789 {
3790 /* 32-bit entries */
3791 case PGMPOOLKIND_32BIT_PD:
3792 case PGMPOOLKIND_32BIT_PD_PHYS:
3793 ASMAtomicWriteU32(&u.pau32[iUserTable], 0);
3794 break;
3795
3796 /* 64-bit entries */
3797 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3798 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3799 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3800 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3801 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3802 case PGMPOOLKIND_PAE_PD_PHYS:
3803 case PGMPOOLKIND_PAE_PDPT_PHYS:
3804 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3805 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3806 case PGMPOOLKIND_64BIT_PML4:
3807 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3808 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3809 case PGMPOOLKIND_PAE_PDPT:
3810 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3811 case PGMPOOLKIND_ROOT_NESTED:
3812 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3813 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3814 ASMAtomicWriteU64(&u.pau64[iUserTable], 0);
3815 break;
3816
3817 default:
3818 AssertFatalMsgFailed(("enmKind=%d iUser=%d iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
3819 }
3820 PGM_DYNMAP_UNUSED_HINT_VM(pPool->CTX_SUFF(pVM), u.pau64);
3821}
3822
3823
3824/**
3825 * Clears all users of a page.
3826 */
3827static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3828{
3829 /*
3830 * Free all the user records.
3831 */
3832 LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
3833
3834 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
3835 uint16_t i = pPage->iUserHead;
3836 while (i != NIL_PGMPOOL_USER_INDEX)
3837 {
3838 /* Clear enter in user table. */
3839 pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
3840
3841 /* Free it. */
3842 const uint16_t iNext = paUsers[i].iNext;
3843 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3844 paUsers[i].iNext = pPool->iUserFreeHead;
3845 pPool->iUserFreeHead = i;
3846
3847 /* Next. */
3848 i = iNext;
3849 }
3850 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3851}
3852
3853
3854/**
3855 * Allocates a new physical cross reference extent.
3856 *
3857 * @returns Pointer to the allocated extent on success. NULL if we're out of them.
3858 * @param pVM The cross context VM structure.
3859 * @param piPhysExt Where to store the phys ext index.
3860 */
3861PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVMCC pVM, uint16_t *piPhysExt)
3862{
3863 PGM_LOCK_ASSERT_OWNER(pVM);
3864 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3865 uint16_t iPhysExt = pPool->iPhysExtFreeHead;
3866 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3867 {
3868 STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
3869 return NULL;
3870 }
3871 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3872 pPool->iPhysExtFreeHead = pPhysExt->iNext;
3873 pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3874 *piPhysExt = iPhysExt;
3875 return pPhysExt;
3876}
3877
3878
3879/**
3880 * Frees a physical cross reference extent.
3881 *
3882 * @param pVM The cross context VM structure.
3883 * @param iPhysExt The extent to free.
3884 */
3885void pgmPoolTrackPhysExtFree(PVMCC pVM, uint16_t iPhysExt)
3886{
3887 PGM_LOCK_ASSERT_OWNER(pVM);
3888 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3889 Assert(iPhysExt < pPool->cMaxPhysExts);
3890 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3891 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3892 {
3893 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3894 pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
3895 }
3896 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3897 pPool->iPhysExtFreeHead = iPhysExt;
3898}
3899
3900
3901/**
3902 * Frees a physical cross reference extent.
3903 *
3904 * @param pVM The cross context VM structure.
3905 * @param iPhysExt The extent to free.
3906 */
3907void pgmPoolTrackPhysExtFreeList(PVMCC pVM, uint16_t iPhysExt)
3908{
3909 PGM_LOCK_ASSERT_OWNER(pVM);
3910 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3911
3912 const uint16_t iPhysExtStart = iPhysExt;
3913 PPGMPOOLPHYSEXT pPhysExt;
3914 do
3915 {
3916 Assert(iPhysExt < pPool->cMaxPhysExts);
3917 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3918 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3919 {
3920 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3921 pPhysExt->apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
3922 }
3923
3924 /* next */
3925 iPhysExt = pPhysExt->iNext;
3926 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3927
3928 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3929 pPool->iPhysExtFreeHead = iPhysExtStart;
3930}
3931
3932
3933/**
3934 * Insert a reference into a list of physical cross reference extents.
3935 *
3936 * @returns The new tracking data for PGMPAGE.
3937 *
3938 * @param pVM The cross context VM structure.
3939 * @param iPhysExt The physical extent index of the list head.
3940 * @param iShwPT The shadow page table index.
3941 * @param iPte Page table entry
3942 *
3943 */
3944static uint16_t pgmPoolTrackPhysExtInsert(PVMCC pVM, uint16_t iPhysExt, uint16_t iShwPT, uint16_t iPte)
3945{
3946 PGM_LOCK_ASSERT_OWNER(pVM);
3947 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3948 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3949
3950 /*
3951 * Special common cases.
3952 */
3953 if (paPhysExts[iPhysExt].aidx[1] == NIL_PGMPOOL_IDX)
3954 {
3955 paPhysExts[iPhysExt].aidx[1] = iShwPT;
3956 paPhysExts[iPhysExt].apte[1] = iPte;
3957 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackAliasedMany);
3958 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,%d pte %d,}\n", iPhysExt, iShwPT, iPte));
3959 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3960 }
3961 if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
3962 {
3963 paPhysExts[iPhysExt].aidx[2] = iShwPT;
3964 paPhysExts[iPhysExt].apte[2] = iPte;
3965 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackAliasedMany);
3966 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,,%d pte %d}\n", iPhysExt, iShwPT, iPte));
3967 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3968 }
3969 AssertCompile(RT_ELEMENTS(paPhysExts[iPhysExt].aidx) == 3);
3970
3971 /*
3972 * General treatment.
3973 */
3974 const uint16_t iPhysExtStart = iPhysExt;
3975 unsigned cMax = 15;
3976 for (;;)
3977 {
3978 Assert(iPhysExt < pPool->cMaxPhysExts);
3979 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3980 if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
3981 {
3982 paPhysExts[iPhysExt].aidx[i] = iShwPT;
3983 paPhysExts[iPhysExt].apte[i] = iPte;
3984 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackAliasedMany);
3985 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{%d pte %d} i=%d cMax=%d\n", iPhysExt, iShwPT, iPte, i, cMax));
3986 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
3987 }
3988 if (!--cMax)
3989 {
3990 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackOverflows);
3991 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3992 LogFlow(("pgmPoolTrackPhysExtInsert: overflow (1) iShwPT=%d\n", iShwPT));
3993 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3994 }
3995
3996 /* advance */
3997 iPhysExt = paPhysExts[iPhysExt].iNext;
3998 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3999 break;
4000 }
4001
4002 /*
4003 * Add another extent to the list.
4004 */
4005 PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
4006 if (!pNew)
4007 {
4008 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackNoExtentsLeft);
4009 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
4010 LogFlow(("pgmPoolTrackPhysExtInsert: pgmPoolTrackPhysExtAlloc failed iShwPT=%d\n", iShwPT));
4011 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
4012 }
4013 pNew->iNext = iPhysExtStart;
4014 pNew->aidx[0] = iShwPT;
4015 pNew->apte[0] = iPte;
4016 LogFlow(("pgmPoolTrackPhysExtInsert: added new extent %d:{%d pte %d}->%d\n", iPhysExt, iShwPT, iPte, iPhysExtStart));
4017 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
4018}
4019
4020
4021/**
4022 * Add a reference to guest physical page where extents are in use.
4023 *
4024 * @returns The new tracking data for PGMPAGE.
4025 *
4026 * @param pVM The cross context VM structure.
4027 * @param pPhysPage Pointer to the aPages entry in the ram range.
4028 * @param u16 The ram range flags (top 16-bits).
4029 * @param iShwPT The shadow page table index.
4030 * @param iPte Page table entry
4031 */
4032uint16_t pgmPoolTrackPhysExtAddref(PVMCC pVM, PPGMPAGE pPhysPage, uint16_t u16, uint16_t iShwPT, uint16_t iPte)
4033{
4034 PGM_LOCK_VOID(pVM);
4035 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
4036 {
4037 /*
4038 * Convert to extent list.
4039 */
4040 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
4041 uint16_t iPhysExt;
4042 PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
4043 if (pPhysExt)
4044 {
4045 LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
4046 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackAliased);
4047 pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
4048 pPhysExt->apte[0] = PGM_PAGE_GET_PTE_INDEX(pPhysPage);
4049 pPhysExt->aidx[1] = iShwPT;
4050 pPhysExt->apte[1] = iPte;
4051 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
4052 }
4053 else
4054 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
4055 }
4056 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
4057 {
4058 /*
4059 * Insert into the extent list.
4060 */
4061 u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT, iPte);
4062 }
4063 else
4064 STAM_COUNTER_INC(&pVM->pgm.s.Stats.StatTrackAliasedLots);
4065 PGM_UNLOCK(pVM);
4066 return u16;
4067}
4068
4069
4070/**
4071 * Clear references to guest physical memory.
4072 *
4073 * @param pPool The pool.
4074 * @param pPage The page.
4075 * @param pPhysPage Pointer to the aPages entry in the ram range.
4076 * @param iPte Shadow PTE index
4077 */
4078void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage, uint16_t iPte)
4079{
4080 PVMCC pVM = pPool->CTX_SUFF(pVM);
4081 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
4082 AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
4083
4084 uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
4085 if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
4086 {
4087 PGM_LOCK_VOID(pVM);
4088
4089 uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
4090 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
4091 do
4092 {
4093 Assert(iPhysExt < pPool->cMaxPhysExts);
4094
4095 /*
4096 * Look for the shadow page and check if it's all freed.
4097 */
4098 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
4099 {
4100 if ( paPhysExts[iPhysExt].aidx[i] == pPage->idx
4101 && paPhysExts[iPhysExt].apte[i] == iPte)
4102 {
4103 paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
4104 paPhysExts[iPhysExt].apte[i] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
4105
4106 for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
4107 if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
4108 {
4109 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
4110 PGM_UNLOCK(pVM);
4111 return;
4112 }
4113
4114 /* we can free the node. */
4115 const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
4116 if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
4117 && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
4118 {
4119 /* lonely node */
4120 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
4121 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
4122 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, 0);
4123 }
4124 else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
4125 {
4126 /* head */
4127 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
4128 PGM_PAGE_SET_TRACKING(pVM, pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
4129 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
4130 }
4131 else
4132 {
4133 /* in list */
4134 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d in list\n", pPhysPage, pPage->idx));
4135 paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
4136 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
4137 }
4138 iPhysExt = iPhysExtNext;
4139 PGM_UNLOCK(pVM);
4140 return;
4141 }
4142 }
4143
4144 /* next */
4145 iPhysExtPrev = iPhysExt;
4146 iPhysExt = paPhysExts[iPhysExt].iNext;
4147 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
4148
4149 PGM_UNLOCK(pVM);
4150 AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
4151 }
4152 else /* nothing to do */
4153 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
4154}
4155
4156/**
4157 * Clear references to guest physical memory.
4158 *
4159 * This is the same as pgmPoolTracDerefGCPhysHint except that the guest
4160 * physical address is assumed to be correct, so the linear search can be
4161 * skipped and we can assert at an earlier point.
4162 *
4163 * @param pPool The pool.
4164 * @param pPage The page.
4165 * @param HCPhys The host physical address corresponding to the guest page.
4166 * @param GCPhys The guest physical address corresponding to HCPhys.
4167 * @param iPte Shadow PTE index
4168 */
4169static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys, uint16_t iPte)
4170{
4171 /*
4172 * Lookup the page and check if it checks out before derefing it.
4173 */
4174 PVMCC pVM = pPool->CTX_SUFF(pVM);
4175 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhys);
4176 if (pPhysPage)
4177 {
4178 Assert(PGM_PAGE_GET_HCPHYS(pPhysPage));
4179#ifdef LOG_ENABLED
4180 RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(pPhysPage);
4181 Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
4182#endif
4183 if (PGM_PAGE_GET_HCPHYS(pPhysPage) == HCPhys)
4184 {
4185 Assert(pPage->cPresent);
4186 Assert(pPool->cPresent);
4187 pPage->cPresent--;
4188 pPool->cPresent--;
4189 pgmTrackDerefGCPhys(pPool, pPage, pPhysPage, iPte);
4190 return;
4191 }
4192
4193 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp; found page has HCPhys=%RHp\n",
4194 HCPhys, GCPhys, PGM_PAGE_GET_HCPHYS(pPhysPage)));
4195 }
4196 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
4197}
4198
4199
4200/**
4201 * Clear references to guest physical memory.
4202 *
4203 * @param pPool The pool.
4204 * @param pPage The page.
4205 * @param HCPhys The host physical address corresponding to the guest page.
4206 * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
4207 * @param iPte Shadow pte index
4208 */
4209void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint, uint16_t iPte)
4210{
4211 Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
4212
4213 /*
4214 * Try the hint first.
4215 */
4216 RTHCPHYS HCPhysHinted;
4217 PVMCC pVM = pPool->CTX_SUFF(pVM);
4218 PPGMPAGE pPhysPage = pgmPhysGetPage(pVM, GCPhysHint);
4219 if (pPhysPage)
4220 {
4221 HCPhysHinted = PGM_PAGE_GET_HCPHYS(pPhysPage);
4222 Assert(HCPhysHinted);
4223 if (HCPhysHinted == HCPhys)
4224 {
4225 Assert(pPage->cPresent);
4226 Assert(pPool->cPresent);
4227 pPage->cPresent--;
4228 pPool->cPresent--;
4229 pgmTrackDerefGCPhys(pPool, pPage, pPhysPage, iPte);
4230 return;
4231 }
4232 }
4233 else
4234 HCPhysHinted = UINT64_C(0xdeadbeefdeadbeef);
4235
4236 /*
4237 * Damn, the hint didn't work. We'll have to do an expensive linear search.
4238 */
4239 STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
4240 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRangesX);
4241 while (pRam)
4242 {
4243 unsigned iPage = pRam->cb >> PAGE_SHIFT;
4244 while (iPage-- > 0)
4245 {
4246 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
4247 {
4248 Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
4249 HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
4250 Assert(pPage->cPresent);
4251 Assert(pPool->cPresent);
4252 pPage->cPresent--;
4253 pPool->cPresent--;
4254 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage], iPte);
4255 return;
4256 }
4257 }
4258 pRam = pRam->CTX_SUFF(pNext);
4259 }
4260
4261 AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp (Hinted page has HCPhys = %RHp)\n", HCPhys, GCPhysHint, HCPhysHinted));
4262}
4263
4264
4265/**
4266 * Clear references to guest physical memory in a 32-bit / 32-bit page table.
4267 *
4268 * @param pPool The pool.
4269 * @param pPage The page.
4270 * @param pShwPT The shadow page table (mapping of the page).
4271 * @param pGstPT The guest page table.
4272 */
4273DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
4274{
4275 RTGCPHYS32 const fPgMask = pPage->fA20Enabled ? X86_PTE_PG_MASK : X86_PTE_PG_MASK & ~RT_BIT_32(20);
4276 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4277 {
4278 const X86PGUINT uPte = pShwPT->a[i].u;
4279 Assert(!(uPte & RT_BIT_32(10)));
4280 if (uPte & X86_PTE_P)
4281 {
4282 Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
4283 i, uPte & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
4284 pgmPoolTracDerefGCPhysHint(pPool, pPage, uPte & X86_PTE_PG_MASK, pGstPT->a[i].u & fPgMask, i);
4285 if (!pPage->cPresent)
4286 break;
4287 }
4288 }
4289}
4290
4291
4292/**
4293 * Clear references to guest physical memory in a PAE / 32-bit page table.
4294 *
4295 * @param pPool The pool.
4296 * @param pPage The page.
4297 * @param pShwPT The shadow page table (mapping of the page).
4298 * @param pGstPT The guest page table (just a half one).
4299 */
4300DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PT pGstPT)
4301{
4302 RTGCPHYS32 const fPgMask = pPage->fA20Enabled ? X86_PTE_PG_MASK : X86_PTE_PG_MASK & ~RT_BIT_32(20);
4303 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4304 {
4305 Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0
4306 || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000));
4307 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
4308 {
4309 Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
4310 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & X86_PTE_PG_MASK));
4311 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & fPgMask, i);
4312 if (!pPage->cPresent)
4313 break;
4314 }
4315 }
4316}
4317
4318
4319/**
4320 * Clear references to guest physical memory in a PAE / PAE page table.
4321 *
4322 * @param pPool The pool.
4323 * @param pPage The page.
4324 * @param pShwPT The shadow page table (mapping of the page).
4325 * @param pGstPT The guest page table.
4326 */
4327DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT, PCX86PTPAE pGstPT)
4328{
4329 RTGCPHYS const fPgMask = pPage->fA20Enabled ? X86_PTE_PAE_PG_MASK : X86_PTE_PAE_PG_MASK & ~RT_BIT_64(20);
4330 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4331 {
4332 Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0
4333 || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000));
4334 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
4335 {
4336 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
4337 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
4338 pgmPoolTracDerefGCPhysHint(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), pGstPT->a[i].u & fPgMask, i);
4339 if (!pPage->cPresent)
4340 break;
4341 }
4342 }
4343}
4344
4345
4346/**
4347 * Clear references to guest physical memory in a 32-bit / 4MB page table.
4348 *
4349 * @param pPool The pool.
4350 * @param pPage The page.
4351 * @param pShwPT The shadow page table (mapping of the page).
4352 */
4353DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
4354{
4355 RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20);
4356 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4357 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4358 {
4359 const X86PGUINT uPte = pShwPT->a[i].u;
4360 Assert(!(uPte & RT_BIT_32(10)));
4361 if (uPte & X86_PTE_P)
4362 {
4363 Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
4364 i, uPte & X86_PTE_PG_MASK, GCPhys));
4365 pgmPoolTracDerefGCPhys(pPool, pPage, uPte & X86_PTE_PG_MASK, GCPhys & GCPhysA20Mask, i);
4366 if (!pPage->cPresent)
4367 break;
4368 }
4369 }
4370}
4371
4372
4373/**
4374 * Clear references to guest physical memory in a PAE / 2/4MB page table.
4375 *
4376 * @param pPool The pool.
4377 * @param pPage The page.
4378 * @param pShwPT The shadow page table (mapping of the page).
4379 */
4380DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMSHWPTPAE pShwPT)
4381{
4382 RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20);
4383 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4384 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4385 {
4386 Assert( (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == 0
4387 || (PGMSHWPTEPAE_GET_U(pShwPT->a[i]) & UINT64_C(0x7ff0000000000400)) == UINT64_C(0x7ff0000000000000));
4388 if (PGMSHWPTEPAE_IS_P(pShwPT->a[i]))
4389 {
4390 Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
4391 i, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), GCPhys));
4392 pgmPoolTracDerefGCPhys(pPool, pPage, PGMSHWPTEPAE_GET_HCPHYS(pShwPT->a[i]), GCPhys & GCPhysA20Mask, i);
4393 if (!pPage->cPresent)
4394 break;
4395 }
4396 }
4397}
4398
4399
4400/**
4401 * Clear references to shadowed pages in an EPT page table.
4402 *
4403 * @param pPool The pool.
4404 * @param pPage The page.
4405 * @param pShwPT The shadow page directory pointer table (mapping of the
4406 * page).
4407 */
4408DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
4409{
4410 RTGCPHYS const GCPhysA20Mask = pPage->fA20Enabled ? UINT64_MAX : ~RT_BIT_64(20);
4411 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4412 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4413 {
4414 X86PGPAEUINT const uPte = pShwPT->a[i].u;
4415 Assert((uPte & UINT64_C(0xfff0000000000f80)) == 0);
4416 if (uPte & EPT_E_READ)
4417 {
4418 Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
4419 i, uPte & EPT_PTE_PG_MASK, pPage->GCPhys));
4420 pgmPoolTracDerefGCPhys(pPool, pPage, uPte & EPT_PTE_PG_MASK, GCPhys & GCPhysA20Mask, i);
4421 if (!pPage->cPresent)
4422 break;
4423 }
4424 }
4425}
4426
4427
4428/**
4429 * Clear references to shadowed pages in a 32 bits page directory.
4430 *
4431 * @param pPool The pool.
4432 * @param pPage The page.
4433 * @param pShwPD The shadow page directory (mapping of the page).
4434 */
4435DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
4436{
4437 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4438 {
4439 X86PGUINT const uPde = pShwPD->a[i].u;
4440 if (uPde & X86_PDE_P)
4441 {
4442 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
4443 if (pSubPage)
4444 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4445 else
4446 AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
4447 }
4448 }
4449}
4450
4451
4452/**
4453 * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
4454 *
4455 * @param pPool The pool.
4456 * @param pPage The page.
4457 * @param pShwPD The shadow page directory (mapping of the page).
4458 */
4459DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
4460{
4461 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4462 {
4463 X86PGPAEUINT const uPde = pShwPD->a[i].u;
4464 if (uPde & X86_PDE_P)
4465 {
4466#ifdef PGM_WITH_LARGE_PAGES
4467 if (uPde & X86_PDE_PS)
4468 {
4469 Log4(("pgmPoolTrackDerefPDPae: i=%d pde=%RX64 GCPhys=%RX64\n",
4470 i, uPde & X86_PDE2M_PAE_PG_MASK, pPage->GCPhys));
4471 pgmPoolTracDerefGCPhys(pPool, pPage, uPde & X86_PDE2M_PAE_PG_MASK,
4472 pPage->GCPhys + i * 2 * _1M /* pPage->GCPhys = base address of the memory described by the PD */,
4473 i);
4474 }
4475 else
4476#endif
4477 {
4478 Assert((uPde & (X86_PDE_PAE_MBZ_MASK_NX | UINT64_C(0x7ff0000000000000))) == 0);
4479 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPde & X86_PDE_PAE_PG_MASK);
4480 if (pSubPage)
4481 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4482 else
4483 AssertFatalMsgFailed(("%RX64\n", uPde & X86_PDE_PAE_PG_MASK));
4484 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4485 }
4486 }
4487 }
4488}
4489
4490
4491/**
4492 * Clear references to shadowed pages in a PAE page directory pointer table.
4493 *
4494 * @param pPool The pool.
4495 * @param pPage The page.
4496 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4497 */
4498DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
4499{
4500 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4501 {
4502 X86PGPAEUINT const uPdpe = pShwPDPT->a[i].u;
4503 Assert((uPdpe & (X86_PDPE_PAE_MBZ_MASK | UINT64_C(0x7ff0000000000200))) == 0);
4504 if (uPdpe & X86_PDPE_P)
4505 {
4506 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPdpe & X86_PDPE_PG_MASK);
4507 if (pSubPage)
4508 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4509 else
4510 AssertFatalMsgFailed(("%RX64\n", uPdpe & X86_PDPE_PG_MASK));
4511 }
4512 }
4513}
4514
4515
4516/**
4517 * Clear references to shadowed pages in a 64-bit page directory pointer table.
4518 *
4519 * @param pPool The pool.
4520 * @param pPage The page.
4521 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4522 */
4523DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
4524{
4525 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
4526 {
4527 X86PGPAEUINT const uPdpe = pShwPDPT->a[i].u;
4528 Assert((uPdpe & (X86_PDPE_LM_MBZ_MASK_NX | UINT64_C(0x7ff0000000000200))) == 0);
4529 if (uPdpe & X86_PDPE_P)
4530 {
4531 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPdpe & X86_PDPE_PG_MASK);
4532 if (pSubPage)
4533 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4534 else
4535 AssertFatalMsgFailed(("%RX64\n", uPdpe & X86_PDPE_PG_MASK));
4536 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4537 }
4538 }
4539}
4540
4541
4542/**
4543 * Clear references to shadowed pages in a 64-bit level 4 page table.
4544 *
4545 * @param pPool The pool.
4546 * @param pPage The page.
4547 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
4548 */
4549DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
4550{
4551 for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
4552 {
4553 X86PGPAEUINT const uPml4e = pShwPML4->a[i].u;
4554 Assert((uPml4e & (X86_PML4E_MBZ_MASK_NX | UINT64_C(0x7ff0000000000200))) == 0);
4555 if (uPml4e & X86_PML4E_P)
4556 {
4557 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPml4e & X86_PDPE_PG_MASK);
4558 if (pSubPage)
4559 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4560 else
4561 AssertFatalMsgFailed(("%RX64\n", uPml4e & X86_PML4E_PG_MASK));
4562 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4563 }
4564 }
4565}
4566
4567
4568/**
4569 * Clear references to shadowed pages in an EPT page directory.
4570 *
4571 * @param pPool The pool.
4572 * @param pPage The page.
4573 * @param pShwPD The shadow page directory (mapping of the page).
4574 */
4575DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
4576{
4577 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4578 {
4579 X86PGPAEUINT const uPde = pShwPD->a[i].u;
4580 Assert((uPde & UINT64_C(0xfff0000000000f80)) == 0);
4581 if (uPde & EPT_E_READ)
4582 {
4583#ifdef PGM_WITH_LARGE_PAGES
4584 if (uPde & EPT_E_LEAF)
4585 {
4586 Log4(("pgmPoolTrackDerefPDEPT: i=%d pde=%RX64 GCPhys=%RX64\n",
4587 i, uPde & EPT_PDE2M_PG_MASK, pPage->GCPhys));
4588 pgmPoolTracDerefGCPhys(pPool, pPage, uPde & EPT_PDE2M_PG_MASK,
4589 pPage->GCPhys + i * 2 * _1M /* pPage->GCPhys = base address of the memory described by the PD */,
4590 i);
4591 }
4592 else
4593#endif
4594 {
4595 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPde & EPT_PDE_PG_MASK);
4596 if (pSubPage)
4597 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4598 else
4599 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
4600 }
4601 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4602 }
4603 }
4604}
4605
4606
4607/**
4608 * Clear references to shadowed pages in an EPT page directory pointer table.
4609 *
4610 * @param pPool The pool.
4611 * @param pPage The page.
4612 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4613 */
4614DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
4615{
4616 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
4617 {
4618 X86PGPAEUINT const uPdpe = pShwPDPT->a[i].u;
4619 Assert((uPdpe & UINT64_C(0xfff0000000000f80)) == 0);
4620 if (uPdpe & EPT_E_READ)
4621 {
4622 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, uPdpe & EPT_PDPTE_PG_MASK);
4623 if (pSubPage)
4624 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4625 else
4626 AssertFatalMsgFailed(("%RX64\n", uPdpe & EPT_PDPTE_PG_MASK));
4627 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4628 }
4629 }
4630}
4631
4632
4633/**
4634 * Clears all references made by this page.
4635 *
4636 * This includes other shadow pages and GC physical addresses.
4637 *
4638 * @param pPool The pool.
4639 * @param pPage The page.
4640 */
4641static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4642{
4643 /*
4644 * Map the shadow page and take action according to the page kind.
4645 */
4646 PVMCC pVM = pPool->CTX_SUFF(pVM);
4647 void *pvShw = PGMPOOL_PAGE_2_PTR(pVM, pPage);
4648 switch (pPage->enmKind)
4649 {
4650 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4651 {
4652 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4653 void *pvGst;
4654 int rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4655 pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
4656 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
4657 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4658 break;
4659 }
4660
4661 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4662 {
4663 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4664 void *pvGst;
4665 int rc = PGM_GCPHYS_2_PTR_EX(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4666 pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PT)pvGst);
4667 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
4668 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4669 break;
4670 }
4671
4672 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4673 {
4674 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4675 void *pvGst;
4676 int rc = PGM_GCPHYS_2_PTR(pVM, pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4677 pgmPoolTrackDerefPTPaePae(pPool, pPage, (PPGMSHWPTPAE)pvShw, (PCX86PTPAE)pvGst);
4678 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvGst);
4679 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4680 break;
4681 }
4682
4683 case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
4684 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4685 {
4686 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4687 pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
4688 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4689 break;
4690 }
4691
4692 case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
4693 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4694 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4695 {
4696 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4697 pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PPGMSHWPTPAE)pvShw);
4698 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4699 break;
4700 }
4701
4702 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4703 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4704 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4705 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4706 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4707 case PGMPOOLKIND_PAE_PD_PHYS:
4708 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4709 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4710 pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
4711 break;
4712
4713 case PGMPOOLKIND_32BIT_PD_PHYS:
4714 case PGMPOOLKIND_32BIT_PD:
4715 pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
4716 break;
4717
4718 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4719 case PGMPOOLKIND_PAE_PDPT:
4720 case PGMPOOLKIND_PAE_PDPT_PHYS:
4721 pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
4722 break;
4723
4724 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4725 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4726 pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
4727 break;
4728
4729 case PGMPOOLKIND_64BIT_PML4:
4730 pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
4731 break;
4732
4733 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4734 pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
4735 break;
4736
4737 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4738 pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
4739 break;
4740
4741 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4742 pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
4743 break;
4744
4745 default:
4746 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
4747 }
4748
4749 /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
4750 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4751 ASMMemZeroPage(pvShw);
4752 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4753 pPage->fZeroed = true;
4754 Assert(!pPage->cPresent);
4755 PGM_DYNMAP_UNUSED_HINT_VM(pVM, pvShw);
4756}
4757
4758
4759/**
4760 * Flushes a pool page.
4761 *
4762 * This moves the page to the free list after removing all user references to it.
4763 *
4764 * @returns VBox status code.
4765 * @retval VINF_SUCCESS on success.
4766 * @param pPool The pool.
4767 * @param pPage The shadow page.
4768 * @param fFlush Flush the TLBS when required (should only be false in very specific use cases!!)
4769 */
4770int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fFlush)
4771{
4772 PVMCC pVM = pPool->CTX_SUFF(pVM);
4773 bool fFlushRequired = false;
4774
4775 int rc = VINF_SUCCESS;
4776 STAM_PROFILE_START(&pPool->StatFlushPage, f);
4777 LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
4778 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
4779
4780 /*
4781 * Reject any attempts at flushing any of the special root pages (shall
4782 * not happen).
4783 */
4784 AssertMsgReturn(pPage->idx >= PGMPOOL_IDX_FIRST,
4785 ("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n",
4786 pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx),
4787 VINF_SUCCESS);
4788
4789 PGM_LOCK_VOID(pVM);
4790
4791 /*
4792 * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
4793 */
4794 if (pgmPoolIsPageLocked(pPage))
4795 {
4796 AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
4797 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
4798 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
4799 || pPage->enmKind == PGMPOOLKIND_32BIT_PD
4800 || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4801 || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
4802 || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
4803 || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
4804 || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD
4805 || pPage->enmKind == PGMPOOLKIND_ROOT_NESTED,
4806 ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind));
4807 Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
4808 PGM_UNLOCK(pVM);
4809 return VINF_SUCCESS;
4810 }
4811
4812 /*
4813 * Mark the page as being in need of an ASMMemZeroPage().
4814 */
4815 pPage->fZeroed = false;
4816
4817#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4818 if (pPage->fDirty)
4819 pgmPoolFlushDirtyPage(pVM, pPool, pPage->idxDirtyEntry, false /* do not remove */);
4820#endif
4821
4822 /* If there are any users of this table, then we *must* issue a tlb flush on all VCPUs. */
4823 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
4824 fFlushRequired = true;
4825
4826 /*
4827 * Clear the page.
4828 */
4829 pgmPoolTrackClearPageUsers(pPool, pPage);
4830 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
4831 pgmPoolTrackDeref(pPool, pPage);
4832 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
4833
4834 /*
4835 * Flush it from the cache.
4836 */
4837 pgmPoolCacheFlushPage(pPool, pPage);
4838
4839 /*
4840 * Deregistering the monitoring.
4841 */
4842 if (pPage->fMonitored)
4843 rc = pgmPoolMonitorFlush(pPool, pPage);
4844
4845 /*
4846 * Free the page.
4847 */
4848 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
4849 pPage->iNext = pPool->iFreeHead;
4850 pPool->iFreeHead = pPage->idx;
4851 pPage->enmKind = PGMPOOLKIND_FREE;
4852 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4853 pPage->GCPhys = NIL_RTGCPHYS;
4854 pPage->fReusedFlushPending = false;
4855
4856 pPool->cUsedPages--;
4857
4858 /* Flush the TLBs of all VCPUs if required. */
4859 if ( fFlushRequired
4860 && fFlush)
4861 {
4862 PGM_INVL_ALL_VCPU_TLBS(pVM);
4863 }
4864
4865 PGM_UNLOCK(pVM);
4866 STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
4867 return rc;
4868}
4869
4870
4871/**
4872 * Frees a usage of a pool page.
4873 *
4874 * The caller is responsible to updating the user table so that it no longer
4875 * references the shadow page.
4876 *
4877 * @param pPool The pool.
4878 * @param pPage The shadow page.
4879 * @param iUser The shadow page pool index of the user table.
4880 * NIL_PGMPOOL_IDX for root pages.
4881 * @param iUserTable The index into the user table (shadowed). Ignored if
4882 * root page.
4883 */
4884void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
4885{
4886 PVMCC pVM = pPool->CTX_SUFF(pVM);
4887
4888 STAM_PROFILE_START(&pPool->StatFree, a);
4889 LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%d iUserTable=%#x\n",
4890 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
4891 AssertReturnVoid(pPage->idx >= PGMPOOL_IDX_FIRST); /* paranoia (#6349) */
4892
4893 PGM_LOCK_VOID(pVM);
4894 if (iUser != NIL_PGMPOOL_IDX)
4895 pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
4896 if (!pPage->fCached)
4897 pgmPoolFlushPage(pPool, pPage);
4898 PGM_UNLOCK(pVM);
4899 STAM_PROFILE_STOP(&pPool->StatFree, a);
4900}
4901
4902
4903/**
4904 * Makes one or more free page free.
4905 *
4906 * @returns VBox status code.
4907 * @retval VINF_SUCCESS on success.
4908 *
4909 * @param pPool The pool.
4910 * @param enmKind Page table kind
4911 * @param iUser The user of the page.
4912 */
4913static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
4914{
4915 PVMCC pVM = pPool->CTX_SUFF(pVM);
4916 LogFlow(("pgmPoolMakeMoreFreePages: enmKind=%d iUser=%d\n", enmKind, iUser));
4917 NOREF(enmKind);
4918
4919 /*
4920 * If the pool isn't full grown yet, expand it.
4921 */
4922 if (pPool->cCurPages < pPool->cMaxPages)
4923 {
4924 STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
4925#ifdef IN_RING3
4926 int rc = PGMR3PoolGrow(pVM, VMMGetCpu(pVM));
4927#else
4928 int rc = PGMR0PoolGrow(pVM, VMMGetCpuId(pVM));
4929#endif
4930 if (RT_FAILURE(rc))
4931 return rc;
4932 STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
4933 if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
4934 return VINF_SUCCESS;
4935 }
4936
4937 /*
4938 * Free one cached page.
4939 */
4940 return pgmPoolCacheFreeOne(pPool, iUser);
4941}
4942
4943
4944/**
4945 * Allocates a page from the pool.
4946 *
4947 * This page may actually be a cached page and not in need of any processing
4948 * on the callers part.
4949 *
4950 * @returns VBox status code.
4951 * @retval VINF_SUCCESS if a NEW page was allocated.
4952 * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
4953 *
4954 * @param pVM The cross context VM structure.
4955 * @param GCPhys The GC physical address of the page we're gonna shadow.
4956 * For 4MB and 2MB PD entries, it's the first address the
4957 * shadow PT is covering.
4958 * @param enmKind The kind of mapping.
4959 * @param enmAccess Access type for the mapping (only relevant for big pages)
4960 * @param fA20Enabled Whether the A20 gate is enabled or not.
4961 * @param iUser The shadow page pool index of the user table. Root
4962 * pages should pass NIL_PGMPOOL_IDX.
4963 * @param iUserTable The index into the user table (shadowed). Ignored for
4964 * root pages (iUser == NIL_PGMPOOL_IDX).
4965 * @param fLockPage Lock the page
4966 * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
4967 */
4968int pgmPoolAlloc(PVMCC pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, bool fA20Enabled,
4969 uint16_t iUser, uint32_t iUserTable, bool fLockPage, PPPGMPOOLPAGE ppPage)
4970{
4971 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4972 STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
4973 LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%d iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
4974 *ppPage = NULL;
4975 /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
4976 * (TRPMR3SyncIDT) because of FF priority. Try fix that?
4977 * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)); */
4978
4979 PGM_LOCK_VOID(pVM);
4980
4981 if (pPool->fCacheEnabled)
4982 {
4983 int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, enmAccess, fA20Enabled, iUser, iUserTable, ppPage);
4984 if (RT_SUCCESS(rc2))
4985 {
4986 if (fLockPage)
4987 pgmPoolLockPage(pPool, *ppPage);
4988 PGM_UNLOCK(pVM);
4989 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4990 LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
4991 return rc2;
4992 }
4993 }
4994
4995 /*
4996 * Allocate a new one.
4997 */
4998 int rc = VINF_SUCCESS;
4999 uint16_t iNew = pPool->iFreeHead;
5000 if (iNew == NIL_PGMPOOL_IDX)
5001 {
5002 rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
5003 if (RT_FAILURE(rc))
5004 {
5005 PGM_UNLOCK(pVM);
5006 Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
5007 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
5008 return rc;
5009 }
5010 iNew = pPool->iFreeHead;
5011 AssertReleaseMsgReturn(iNew != NIL_PGMPOOL_IDX, ("iNew=%#x\n", iNew), VERR_PGM_POOL_IPE);
5012 }
5013
5014 /* unlink the free head */
5015 PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
5016 pPool->iFreeHead = pPage->iNext;
5017 pPage->iNext = NIL_PGMPOOL_IDX;
5018
5019 /*
5020 * Initialize it.
5021 */
5022 pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
5023 pPage->enmKind = enmKind;
5024 pPage->enmAccess = enmAccess;
5025 pPage->GCPhys = GCPhys;
5026 pPage->fA20Enabled = fA20Enabled;
5027 pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
5028 pPage->fMonitored = false;
5029 pPage->fCached = false;
5030 pPage->fDirty = false;
5031 pPage->fReusedFlushPending = false;
5032 pPage->cModifications = 0;
5033 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
5034 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
5035 pPage->cPresent = 0;
5036 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
5037 pPage->idxDirtyEntry = 0;
5038 pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR;
5039 pPage->GCPtrLastAccessHandlerRip = NIL_RTGCPTR;
5040 pPage->cLastAccessHandler = 0;
5041 pPage->cLocked = 0;
5042# ifdef VBOX_STRICT
5043 pPage->GCPtrDirtyFault = NIL_RTGCPTR;
5044# endif
5045
5046 /*
5047 * Insert into the tracking and cache. If this fails, free the page.
5048 */
5049 int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
5050 if (RT_FAILURE(rc3))
5051 {
5052 pPool->cUsedPages--;
5053 pPage->enmKind = PGMPOOLKIND_FREE;
5054 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
5055 pPage->GCPhys = NIL_RTGCPHYS;
5056 pPage->iNext = pPool->iFreeHead;
5057 pPool->iFreeHead = pPage->idx;
5058 PGM_UNLOCK(pVM);
5059 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
5060 Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
5061 return rc3;
5062 }
5063
5064 /*
5065 * Commit the allocation, clear the page and return.
5066 */
5067#ifdef VBOX_WITH_STATISTICS
5068 if (pPool->cUsedPages > pPool->cUsedPagesHigh)
5069 pPool->cUsedPagesHigh = pPool->cUsedPages;
5070#endif
5071
5072 if (!pPage->fZeroed)
5073 {
5074 STAM_PROFILE_START(&pPool->StatZeroPage, z);
5075 void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
5076 ASMMemZeroPage(pv);
5077 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
5078 }
5079
5080 *ppPage = pPage;
5081 if (fLockPage)
5082 pgmPoolLockPage(pPool, pPage);
5083 PGM_UNLOCK(pVM);
5084 LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
5085 rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
5086 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
5087 return rc;
5088}
5089
5090
5091/**
5092 * Frees a usage of a pool page.
5093 *
5094 * @param pVM The cross context VM structure.
5095 * @param HCPhys The HC physical address of the shadow page.
5096 * @param iUser The shadow page pool index of the user table.
5097 * NIL_PGMPOOL_IDX if root page.
5098 * @param iUserTable The index into the user table (shadowed). Ignored if
5099 * root page.
5100 */
5101void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
5102{
5103 LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%d iUserTable=%#x\n", HCPhys, iUser, iUserTable));
5104 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5105 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
5106}
5107
5108
5109/**
5110 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
5111 *
5112 * @returns Pointer to the shadow page structure.
5113 * @param pPool The pool.
5114 * @param HCPhys The HC physical address of the shadow page.
5115 */
5116PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
5117{
5118 PGM_LOCK_ASSERT_OWNER(pPool->CTX_SUFF(pVM));
5119
5120 /*
5121 * Look up the page.
5122 */
5123 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
5124
5125 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
5126 return pPage;
5127}
5128
5129
5130/**
5131 * Internal worker for finding a page for debugging purposes, no assertions.
5132 *
5133 * @returns Pointer to the shadow page structure. NULL on if not found.
5134 * @param pPool The pool.
5135 * @param HCPhys The HC physical address of the shadow page.
5136 */
5137PPGMPOOLPAGE pgmPoolQueryPageForDbg(PPGMPOOL pPool, RTHCPHYS HCPhys)
5138{
5139 PGM_LOCK_ASSERT_OWNER(pPool->CTX_SUFF(pVM));
5140 return (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
5141}
5142
5143
5144/**
5145 * Internal worker for PGM_HCPHYS_2_PTR.
5146 *
5147 * @returns VBox status code.
5148 * @param pVM The cross context VM structure.
5149 * @param HCPhys The HC physical address of the shadow page.
5150 * @param ppv Where to return the address.
5151 */
5152int pgmPoolHCPhys2Ptr(PVM pVM, RTHCPHYS HCPhys, void **ppv)
5153{
5154 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pVM->pgm.s.CTX_SUFF(pPool)->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
5155 AssertMsgReturn(pPage && pPage->enmKind != PGMPOOLKIND_FREE,
5156 ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0),
5157 VERR_PGM_POOL_GET_PAGE_FAILED);
5158 *ppv = (uint8_t *)pPage->CTX_SUFF(pvPage) + (HCPhys & PAGE_OFFSET_MASK);
5159 return VINF_SUCCESS;
5160}
5161
5162#ifdef IN_RING3 /* currently only used in ring 3; save some space in the R0 & GC modules (left it here as we might need it elsewhere later on) */
5163
5164/**
5165 * Flush the specified page if present
5166 *
5167 * @param pVM The cross context VM structure.
5168 * @param GCPhys Guest physical address of the page to flush
5169 */
5170void pgmPoolFlushPageByGCPhys(PVM pVM, RTGCPHYS GCPhys)
5171{
5172 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5173
5174 VM_ASSERT_EMT(pVM);
5175
5176 /*
5177 * Look up the GCPhys in the hash.
5178 */
5179 GCPhys = GCPhys & ~(RTGCPHYS)PAGE_OFFSET_MASK;
5180 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
5181 if (i == NIL_PGMPOOL_IDX)
5182 return;
5183
5184 do
5185 {
5186 PPGMPOOLPAGE pPage = &pPool->aPages[i];
5187 if (pPage->GCPhys - GCPhys < PAGE_SIZE)
5188 {
5189 switch (pPage->enmKind)
5190 {
5191 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
5192 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
5193 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
5194 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
5195 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
5196 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
5197 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
5198 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
5199 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
5200 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
5201 case PGMPOOLKIND_64BIT_PML4:
5202 case PGMPOOLKIND_32BIT_PD:
5203 case PGMPOOLKIND_PAE_PDPT:
5204 {
5205 Log(("PGMPoolFlushPage: found pgm pool pages for %RGp\n", GCPhys));
5206# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5207 if (pPage->fDirty)
5208 STAM_COUNTER_INC(&pPool->StatForceFlushDirtyPage);
5209 else
5210# endif
5211 STAM_COUNTER_INC(&pPool->StatForceFlushPage);
5212 Assert(!pgmPoolIsPageLocked(pPage));
5213 pgmPoolMonitorChainFlush(pPool, pPage);
5214 return;
5215 }
5216
5217 /* ignore, no monitoring. */
5218 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
5219 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
5220 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
5221 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
5222 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
5223 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
5224 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
5225 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
5226 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
5227 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
5228 case PGMPOOLKIND_ROOT_NESTED:
5229 case PGMPOOLKIND_PAE_PD_PHYS:
5230 case PGMPOOLKIND_PAE_PDPT_PHYS:
5231 case PGMPOOLKIND_32BIT_PD_PHYS:
5232 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
5233 break;
5234
5235 default:
5236 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
5237 }
5238 }
5239
5240 /* next */
5241 i = pPage->iNext;
5242 } while (i != NIL_PGMPOOL_IDX);
5243 return;
5244}
5245
5246
5247/**
5248 * Reset CPU on hot plugging.
5249 *
5250 * @param pVM The cross context VM structure.
5251 * @param pVCpu The cross context virtual CPU structure.
5252 */
5253void pgmR3PoolResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
5254{
5255 pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
5256
5257 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
5258 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5259 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
5260}
5261
5262
5263/**
5264 * Flushes the entire cache.
5265 *
5266 * It will assert a global CR3 flush (FF) and assumes the caller is aware of
5267 * this and execute this CR3 flush.
5268 *
5269 * @param pVM The cross context VM structure.
5270 */
5271void pgmR3PoolReset(PVM pVM)
5272{
5273 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
5274
5275 PGM_LOCK_ASSERT_OWNER(pVM);
5276 STAM_PROFILE_START(&pPool->StatR3Reset, a);
5277 LogFlow(("pgmR3PoolReset:\n"));
5278
5279 /*
5280 * If there are no pages in the pool, there is nothing to do.
5281 */
5282 if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
5283 {
5284 STAM_PROFILE_STOP(&pPool->StatR3Reset, a);
5285 return;
5286 }
5287
5288 /*
5289 * Exit the shadow mode since we're going to clear everything,
5290 * including the root page.
5291 */
5292 VMCC_FOR_EACH_VMCPU(pVM)
5293 pgmR3ExitShadowModeBeforePoolFlush(pVCpu);
5294 VMCC_FOR_EACH_VMCPU_END(pVM);
5295
5296
5297 /*
5298 * Nuke the free list and reinsert all pages into it.
5299 */
5300 for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
5301 {
5302 PPGMPOOLPAGE pPage = &pPool->aPages[i];
5303
5304 if (pPage->fMonitored)
5305 pgmPoolMonitorFlush(pPool, pPage);
5306 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
5307 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
5308 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
5309 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
5310 pPage->GCPhys = NIL_RTGCPHYS;
5311 pPage->enmKind = PGMPOOLKIND_FREE;
5312 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
5313 Assert(pPage->idx == i);
5314 pPage->iNext = i + 1;
5315 pPage->fA20Enabled = true;
5316 pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
5317 pPage->fSeenNonGlobal = false;
5318 pPage->fMonitored = false;
5319 pPage->fDirty = false;
5320 pPage->fCached = false;
5321 pPage->fReusedFlushPending = false;
5322 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
5323 pPage->cPresent = 0;
5324 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
5325 pPage->cModifications = 0;
5326 pPage->iAgeNext = NIL_PGMPOOL_IDX;
5327 pPage->iAgePrev = NIL_PGMPOOL_IDX;
5328 pPage->idxDirtyEntry = 0;
5329 pPage->GCPtrLastAccessHandlerRip = NIL_RTGCPTR;
5330 pPage->GCPtrLastAccessHandlerFault = NIL_RTGCPTR;
5331 pPage->cLastAccessHandler = 0;
5332 pPage->cLocked = 0;
5333# ifdef VBOX_STRICT
5334 pPage->GCPtrDirtyFault = NIL_RTGCPTR;
5335# endif
5336 }
5337 pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
5338 pPool->iFreeHead = PGMPOOL_IDX_FIRST;
5339 pPool->cUsedPages = 0;
5340
5341 /*
5342 * Zap and reinitialize the user records.
5343 */
5344 pPool->cPresent = 0;
5345 pPool->iUserFreeHead = 0;
5346 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
5347 const unsigned cMaxUsers = pPool->cMaxUsers;
5348 for (unsigned i = 0; i < cMaxUsers; i++)
5349 {
5350 paUsers[i].iNext = i + 1;
5351 paUsers[i].iUser = NIL_PGMPOOL_IDX;
5352 paUsers[i].iUserTable = 0xfffffffe;
5353 }
5354 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
5355
5356 /*
5357 * Clear all the GCPhys links and rebuild the phys ext free list.
5358 */
5359 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRangesX);
5360 pRam;
5361 pRam = pRam->CTX_SUFF(pNext))
5362 {
5363 unsigned iPage = pRam->cb >> PAGE_SHIFT;
5364 while (iPage-- > 0)
5365 PGM_PAGE_SET_TRACKING(pVM, &pRam->aPages[iPage], 0);
5366 }
5367
5368 pPool->iPhysExtFreeHead = 0;
5369 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
5370 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
5371 for (unsigned i = 0; i < cMaxPhysExts; i++)
5372 {
5373 paPhysExts[i].iNext = i + 1;
5374 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
5375 paPhysExts[i].apte[0] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
5376 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
5377 paPhysExts[i].apte[1] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
5378 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
5379 paPhysExts[i].apte[2] = NIL_PGMPOOL_PHYSEXT_IDX_PTE;
5380 }
5381 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
5382
5383 /*
5384 * Just zap the modified list.
5385 */
5386 pPool->cModifiedPages = 0;
5387 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
5388
5389 /*
5390 * Clear the GCPhys hash and the age list.
5391 */
5392 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
5393 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
5394 pPool->iAgeHead = NIL_PGMPOOL_IDX;
5395 pPool->iAgeTail = NIL_PGMPOOL_IDX;
5396
5397# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5398 /* Clear all dirty pages. */
5399 pPool->idxFreeDirtyPage = 0;
5400 pPool->cDirtyPages = 0;
5401 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aidxDirtyPages); i++)
5402 pPool->aidxDirtyPages[i] = NIL_PGMPOOL_IDX;
5403# endif
5404
5405 /*
5406 * Reinsert active pages into the hash and ensure monitoring chains are correct.
5407 */
5408 VMCC_FOR_EACH_VMCPU(pVM)
5409 {
5410 /*
5411 * Re-enter the shadowing mode and assert Sync CR3 FF.
5412 */
5413 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
5414 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5415 VMCPU_FF_SET(pVCpu, VMCPU_FF_TLB_FLUSH);
5416 }
5417 VMCC_FOR_EACH_VMCPU_END(pVM);
5418
5419 STAM_PROFILE_STOP(&pPool->StatR3Reset, a);
5420}
5421
5422#endif /* IN_RING3 */
5423
5424#if defined(LOG_ENABLED) || defined(VBOX_STRICT)
5425/**
5426 * Stringifies a PGMPOOLKIND value.
5427 */
5428static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
5429{
5430 switch ((PGMPOOLKIND)enmKind)
5431 {
5432 case PGMPOOLKIND_INVALID:
5433 return "PGMPOOLKIND_INVALID";
5434 case PGMPOOLKIND_FREE:
5435 return "PGMPOOLKIND_FREE";
5436 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
5437 return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
5438 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
5439 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
5440 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
5441 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
5442 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
5443 return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
5444 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
5445 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
5446 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
5447 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
5448 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
5449 return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
5450 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
5451 return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
5452 case PGMPOOLKIND_32BIT_PD:
5453 return "PGMPOOLKIND_32BIT_PD";
5454 case PGMPOOLKIND_32BIT_PD_PHYS:
5455 return "PGMPOOLKIND_32BIT_PD_PHYS";
5456 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
5457 return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
5458 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
5459 return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
5460 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
5461 return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
5462 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
5463 return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
5464 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
5465 return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
5466 case PGMPOOLKIND_PAE_PD_PHYS:
5467 return "PGMPOOLKIND_PAE_PD_PHYS";
5468 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
5469 return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
5470 case PGMPOOLKIND_PAE_PDPT:
5471 return "PGMPOOLKIND_PAE_PDPT";
5472 case PGMPOOLKIND_PAE_PDPT_PHYS:
5473 return "PGMPOOLKIND_PAE_PDPT_PHYS";
5474 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
5475 return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
5476 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
5477 return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
5478 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
5479 return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
5480 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
5481 return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
5482 case PGMPOOLKIND_64BIT_PML4:
5483 return "PGMPOOLKIND_64BIT_PML4";
5484 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
5485 return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
5486 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
5487 return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
5488 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
5489 return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
5490 case PGMPOOLKIND_ROOT_NESTED:
5491 return "PGMPOOLKIND_ROOT_NESTED";
5492 }
5493 return "Unknown kind!";
5494}
5495#endif /* LOG_ENABLED || VBOX_STRICT */
5496
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette