VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPool.cpp@ 22788

最後變更 在這個檔案從22788是 22788,由 vboxsync 提交於 16 年 前

Minor pgm pool optimizations.

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id
檔案大小: 188.9 KB
 
1/* $Id: PGMAllPool.cpp 22788 2009-09-04 15:37:07Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_POOL
27#include <VBox/pgm.h>
28#include <VBox/mm.h>
29#include <VBox/em.h>
30#include <VBox/cpum.h>
31#ifdef IN_RC
32# include <VBox/patm.h>
33#endif
34#include "PGMInternal.h"
35#include <VBox/vm.h>
36#include <VBox/disopcode.h>
37#include <VBox/hwacc_vmx.h>
38
39#include <VBox/log.h>
40#include <VBox/err.h>
41#include <iprt/asm.h>
42#include <iprt/string.h>
43
44
45/*******************************************************************************
46* Internal Functions *
47*******************************************************************************/
48RT_C_DECLS_BEGIN
49static void pgmPoolFlushAllInt(PPGMPOOL pPool);
50#ifdef PGMPOOL_WITH_USER_TRACKING
51DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
52DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
53static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
54#endif
55#ifdef PGMPOOL_WITH_CACHE
56static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
57#endif
58#ifdef PGMPOOL_WITH_MONITORING
59static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
60#endif
61#ifndef IN_RING3
62DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser);
63#endif
64#ifdef LOG_ENABLED
65static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
66#endif
67
68void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
69void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
70int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
71PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
72void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
73void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
74
75RT_C_DECLS_END
76
77
78/**
79 * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
80 *
81 * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
82 * @param enmKind The page kind.
83 */
84DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
85{
86 switch (enmKind)
87 {
88 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
89 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
90 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
91 return true;
92 default:
93 return false;
94 }
95}
96
97/** @def PGMPOOL_PAGE_2_LOCKED_PTR
98 * Maps a pool page pool into the current context and lock it (RC only).
99 *
100 * @returns VBox status code.
101 * @param pVM The VM handle.
102 * @param pPage The pool page.
103 *
104 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
105 * small page window employeed by that function. Be careful.
106 * @remark There is no need to assert on the result.
107 */
108#if defined(IN_RC)
109DECLINLINE(void *) PGMPOOL_PAGE_2_LOCKED_PTR(PVM pVM, PPGMPOOLPAGE pPage)
110{
111 void *pv = pgmPoolMapPageInlined(&pVM->pgm.s, pPage);
112
113 /* Make sure the dynamic mapping will not be reused. */
114 if (pv)
115 PGMDynLockHCPage(pVM, (uint8_t *)pv);
116
117 return pv;
118}
119#else
120# define PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage) PGMPOOL_PAGE_2_PTR(pVM, pPage)
121#endif
122
123/** @def PGMPOOL_UNLOCK_PTR
124 * Unlock a previously locked dynamic caching (RC only).
125 *
126 * @returns VBox status code.
127 * @param pVM The VM handle.
128 * @param pPage The pool page.
129 *
130 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
131 * small page window employeed by that function. Be careful.
132 * @remark There is no need to assert on the result.
133 */
134#if defined(IN_RC)
135DECLINLINE(void) PGMPOOL_UNLOCK_PTR(PVM pVM, void *pvPage)
136{
137 if (pvPage)
138 PGMDynUnlockHCPage(pVM, (uint8_t *)pvPage);
139}
140#else
141# define PGMPOOL_UNLOCK_PTR(pVM, pPage) do {} while (0)
142#endif
143
144
145#ifdef PGMPOOL_WITH_MONITORING
146/**
147 * Determin the size of a write instruction.
148 * @returns number of bytes written.
149 * @param pDis The disassembler state.
150 */
151static unsigned pgmPoolDisasWriteSize(PDISCPUSTATE pDis)
152{
153 /*
154 * This is very crude and possibly wrong for some opcodes,
155 * but since it's not really supposed to be called we can
156 * probably live with that.
157 */
158 return DISGetParamSize(pDis, &pDis->param1);
159}
160
161
162/**
163 * Flushes a chain of pages sharing the same access monitor.
164 *
165 * @returns VBox status code suitable for scheduling.
166 * @param pPool The pool.
167 * @param pPage A page in the chain.
168 */
169int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
170{
171 LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
172
173 /*
174 * Find the list head.
175 */
176 uint16_t idx = pPage->idx;
177 if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
178 {
179 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
180 {
181 idx = pPage->iMonitoredPrev;
182 Assert(idx != pPage->idx);
183 pPage = &pPool->aPages[idx];
184 }
185 }
186
187 /*
188 * Iterate the list flushing each shadow page.
189 */
190 int rc = VINF_SUCCESS;
191 for (;;)
192 {
193 idx = pPage->iMonitoredNext;
194 Assert(idx != pPage->idx);
195 if (pPage->idx >= PGMPOOL_IDX_FIRST)
196 {
197 int rc2 = pgmPoolFlushPage(pPool, pPage);
198 AssertRC(rc2);
199 }
200 /* next */
201 if (idx == NIL_PGMPOOL_IDX)
202 break;
203 pPage = &pPool->aPages[idx];
204 }
205 return rc;
206}
207
208
209/**
210 * Wrapper for getting the current context pointer to the entry being modified.
211 *
212 * @returns VBox status code suitable for scheduling.
213 * @param pVM VM Handle.
214 * @param pvDst Destination address
215 * @param pvSrc Source guest virtual address.
216 * @param GCPhysSrc The source guest physical address.
217 * @param cb Size of data to read
218 */
219DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVM pVM, void *pvDst, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvSrc, RTGCPHYS GCPhysSrc, size_t cb)
220{
221#if defined(IN_RING3)
222 memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
223 return VINF_SUCCESS;
224#else
225 /* @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
226 return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
227#endif
228}
229
230/**
231 * Process shadow entries before they are changed by the guest.
232 *
233 * For PT entries we will clear them. For PD entries, we'll simply check
234 * for mapping conflicts and set the SyncCR3 FF if found.
235 *
236 * @param pVCpu VMCPU handle
237 * @param pPool The pool.
238 * @param pPage The head page.
239 * @param GCPhysFault The guest physical fault address.
240 * @param uAddress In R0 and GC this is the guest context fault address (flat).
241 * In R3 this is the host context 'fault' address.
242 * @param pDis The disassembler state for figuring out the write size.
243 * This need not be specified if the caller knows we won't do cross entry accesses.
244 */
245void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, PDISCPUSTATE pDis)
246{
247 AssertMsg(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX, ("%#x (idx=%#x)\n", pPage->iMonitoredPrev, pPage->idx));
248 const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
249 const unsigned cbWrite = pDis ? pgmPoolDisasWriteSize(pDis) : 0;
250 PVM pVM = pPool->CTX_SUFF(pVM);
251
252 LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp cbWrite=%d\n", (RTGCPTR)pvAddress, GCPhysFault, cbWrite));
253
254 for (;;)
255 {
256 union
257 {
258 void *pv;
259 PX86PT pPT;
260 PX86PTPAE pPTPae;
261 PX86PD pPD;
262 PX86PDPAE pPDPae;
263 PX86PDPT pPDPT;
264 PX86PML4 pPML4;
265 } uShw;
266
267 LogFlow(("pgmPoolMonitorChainChanging: page idx=%d phys=%RGp (next=%d) kind=%s\n", pPage->idx, pPage->GCPhys, pPage->iMonitoredNext, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
268
269 uShw.pv = NULL;
270 switch (pPage->enmKind)
271 {
272 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
273 {
274 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
275 const unsigned iShw = off / sizeof(X86PTE);
276 LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
277 if (uShw.pPT->a[iShw].n.u1Present)
278 {
279# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
280 X86PTE GstPte;
281
282 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
283 AssertRC(rc);
284 Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
285 pgmPoolTracDerefGCPhysHint(pPool, pPage,
286 uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK,
287 GstPte.u & X86_PTE_PG_MASK);
288# endif
289 ASMAtomicWriteSize(&uShw.pPT->a[iShw], 0);
290 }
291 break;
292 }
293
294 /* page/2 sized */
295 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
296 {
297 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
298 if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
299 {
300 const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
301 LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
302 if (uShw.pPTPae->a[iShw].n.u1Present)
303 {
304# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
305 X86PTE GstPte;
306 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
307 AssertRC(rc);
308
309 Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
310 pgmPoolTracDerefGCPhysHint(pPool, pPage,
311 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
312 GstPte.u & X86_PTE_PG_MASK);
313# endif
314 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw], 0);
315 }
316 }
317 break;
318 }
319
320 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
321 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
322 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
323 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
324 {
325 unsigned iGst = off / sizeof(X86PDE);
326 unsigned iShwPdpt = iGst / 256;
327 unsigned iShw = (iGst % 256) * 2;
328 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
329
330 LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
331 if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
332 {
333 for (unsigned i = 0; i < 2; i++)
334 {
335# ifndef IN_RING0
336 if ((uShw.pPDPae->a[iShw + i].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
337 {
338 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
339 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
340 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw=%#x!\n", iShwPdpt, iShw+i));
341 break;
342 }
343 else
344# endif /* !IN_RING0 */
345 if (uShw.pPDPae->a[iShw+i].n.u1Present)
346 {
347 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw+i, uShw.pPDPae->a[iShw+i].u));
348 pgmPoolFree(pVM,
349 uShw.pPDPae->a[iShw+i].u & X86_PDE_PAE_PG_MASK,
350 pPage->idx,
351 iShw + i);
352 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw+i], 0);
353 }
354
355 /* paranoia / a bit assumptive. */
356 if ( pDis
357 && (off & 3)
358 && (off & 3) + cbWrite > 4)
359 {
360 const unsigned iShw2 = iShw + 2 + i;
361 if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
362 {
363# ifndef IN_RING0
364 if ((uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
365 {
366 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
367 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
368 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw2=%#x!\n", iShwPdpt, iShw2));
369 break;
370 }
371 else
372# endif /* !IN_RING0 */
373 if (uShw.pPDPae->a[iShw2].n.u1Present)
374 {
375 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
376 pgmPoolFree(pVM,
377 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
378 pPage->idx,
379 iShw2);
380 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
381 }
382 }
383 }
384 }
385 }
386 break;
387 }
388
389 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
390 {
391 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
392 const unsigned iShw = off / sizeof(X86PTEPAE);
393 if (uShw.pPTPae->a[iShw].n.u1Present)
394 {
395# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
396 X86PTEPAE GstPte;
397 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
398 AssertRC(rc);
399
400 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
401 pgmPoolTracDerefGCPhysHint(pPool, pPage,
402 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
403 GstPte.u & X86_PTE_PAE_PG_MASK);
404# endif
405 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw].u, 0);
406 }
407
408 /* paranoia / a bit assumptive. */
409 if ( pDis
410 && (off & 7)
411 && (off & 7) + cbWrite > sizeof(X86PTEPAE))
412 {
413 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
414 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
415
416 if (uShw.pPTPae->a[iShw2].n.u1Present)
417 {
418# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
419 X86PTEPAE GstPte;
420# ifdef IN_RING3
421 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, (RTHCPTR)((RTHCUINTPTR)pvAddress + sizeof(GstPte)), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
422# else
423 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress + sizeof(GstPte), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
424# endif
425 AssertRC(rc);
426 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
427 pgmPoolTracDerefGCPhysHint(pPool, pPage,
428 uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK,
429 GstPte.u & X86_PTE_PAE_PG_MASK);
430# endif
431 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw2].u ,0);
432 }
433 }
434 break;
435 }
436
437 case PGMPOOLKIND_32BIT_PD:
438 {
439 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
440 const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
441
442 LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
443# ifndef IN_RING0
444 if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING)
445 {
446 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
447 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
448 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
449 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
450 break;
451 }
452# endif /* !IN_RING0 */
453# ifndef IN_RING0
454 else
455# endif /* !IN_RING0 */
456 {
457 if (uShw.pPD->a[iShw].n.u1Present)
458 {
459 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
460 pgmPoolFree(pVM,
461 uShw.pPD->a[iShw].u & X86_PDE_PAE_PG_MASK,
462 pPage->idx,
463 iShw);
464 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
465 }
466 }
467 /* paranoia / a bit assumptive. */
468 if ( pDis
469 && (off & 3)
470 && (off & 3) + cbWrite > sizeof(X86PTE))
471 {
472 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
473 if ( iShw2 != iShw
474 && iShw2 < RT_ELEMENTS(uShw.pPD->a))
475 {
476# ifndef IN_RING0
477 if (uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING)
478 {
479 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
480 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
481 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
482 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
483 break;
484 }
485# endif /* !IN_RING0 */
486# ifndef IN_RING0
487 else
488# endif /* !IN_RING0 */
489 {
490 if (uShw.pPD->a[iShw2].n.u1Present)
491 {
492 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPD->a[iShw2].u));
493 pgmPoolFree(pVM,
494 uShw.pPD->a[iShw2].u & X86_PDE_PAE_PG_MASK,
495 pPage->idx,
496 iShw2);
497 ASMAtomicWriteSize(&uShw.pPD->a[iShw2].u, 0);
498 }
499 }
500 }
501 }
502#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */
503 if ( uShw.pPD->a[iShw].n.u1Present
504 && !VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
505 {
506 LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
507# ifdef IN_RC /* TLB load - we're pushing things a bit... */
508 ASMProbeReadByte(pvAddress);
509# endif
510 pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
511 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
512 }
513#endif
514 break;
515 }
516
517 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
518 {
519 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
520 const unsigned iShw = off / sizeof(X86PDEPAE);
521#ifndef IN_RING0
522 if (uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING)
523 {
524 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
525 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
526 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
527 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
528 break;
529 }
530#endif /* !IN_RING0 */
531 /*
532 * Causes trouble when the guest uses a PDE to refer to the whole page table level
533 * structure. (Invalidate here; faults later on when it tries to change the page
534 * table entries -> recheck; probably only applies to the RC case.)
535 */
536# ifndef IN_RING0
537 else
538# endif /* !IN_RING0 */
539 {
540 if (uShw.pPDPae->a[iShw].n.u1Present)
541 {
542 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
543 pgmPoolFree(pVM,
544 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
545 pPage->idx,
546 iShw);
547 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
548 }
549 }
550 /* paranoia / a bit assumptive. */
551 if ( pDis
552 && (off & 7)
553 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
554 {
555 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
556 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
557
558#ifndef IN_RING0
559 if ( iShw2 != iShw
560 && uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING)
561 {
562 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
563 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
564 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
565 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
566 break;
567 }
568#endif /* !IN_RING0 */
569# ifndef IN_RING0
570 else
571# endif /* !IN_RING0 */
572 if (uShw.pPDPae->a[iShw2].n.u1Present)
573 {
574 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
575 pgmPoolFree(pVM,
576 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
577 pPage->idx,
578 iShw2);
579 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
580 }
581 }
582 break;
583 }
584
585 case PGMPOOLKIND_PAE_PDPT:
586 {
587 /*
588 * Hopefully this doesn't happen very often:
589 * - touching unused parts of the page
590 * - messing with the bits of pd pointers without changing the physical address
591 */
592 /* PDPT roots are not page aligned; 32 byte only! */
593 const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
594
595 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
596 const unsigned iShw = offPdpt / sizeof(X86PDPE);
597 if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
598 {
599# ifndef IN_RING0
600 if (uShw.pPDPT->a[iShw].u & PGM_PLXFLAGS_MAPPING)
601 {
602 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
603 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
604 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
605 LogFlow(("pgmPoolMonitorChainChanging: Detected pdpt conflict at iShw=%#x!\n", iShw));
606 break;
607 }
608# endif /* !IN_RING0 */
609# ifndef IN_RING0
610 else
611# endif /* !IN_RING0 */
612 if (uShw.pPDPT->a[iShw].n.u1Present)
613 {
614 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
615 pgmPoolFree(pVM,
616 uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK,
617 pPage->idx,
618 iShw);
619 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
620 }
621
622 /* paranoia / a bit assumptive. */
623 if ( pDis
624 && (offPdpt & 7)
625 && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
626 {
627 const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
628 if ( iShw2 != iShw
629 && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
630 {
631# ifndef IN_RING0
632 if (uShw.pPDPT->a[iShw2].u & PGM_PLXFLAGS_MAPPING)
633 {
634 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
635 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
636 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
637 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
638 break;
639 }
640# endif /* !IN_RING0 */
641# ifndef IN_RING0
642 else
643# endif /* !IN_RING0 */
644 if (uShw.pPDPT->a[iShw2].n.u1Present)
645 {
646 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
647 pgmPoolFree(pVM,
648 uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK,
649 pPage->idx,
650 iShw2);
651 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
652 }
653 }
654 }
655 }
656 break;
657 }
658
659#ifndef IN_RC
660 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
661 {
662 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
663 const unsigned iShw = off / sizeof(X86PDEPAE);
664 Assert(!(uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING));
665 if (uShw.pPDPae->a[iShw].n.u1Present)
666 {
667 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
668 pgmPoolFree(pVM,
669 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
670 pPage->idx,
671 iShw);
672 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
673 }
674 /* paranoia / a bit assumptive. */
675 if ( pDis
676 && (off & 7)
677 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
678 {
679 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
680 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
681
682 Assert(!(uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING));
683 if (uShw.pPDPae->a[iShw2].n.u1Present)
684 {
685 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
686 pgmPoolFree(pVM,
687 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
688 pPage->idx,
689 iShw2);
690 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
691 }
692 }
693 break;
694 }
695
696 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
697 {
698 /*
699 * Hopefully this doesn't happen very often:
700 * - messing with the bits of pd pointers without changing the physical address
701 */
702 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
703 {
704 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
705 const unsigned iShw = off / sizeof(X86PDPE);
706 if (uShw.pPDPT->a[iShw].n.u1Present)
707 {
708 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
709 pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw);
710 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
711 }
712 /* paranoia / a bit assumptive. */
713 if ( pDis
714 && (off & 7)
715 && (off & 7) + cbWrite > sizeof(X86PDPE))
716 {
717 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
718 if (uShw.pPDPT->a[iShw2].n.u1Present)
719 {
720 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
721 pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2);
722 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
723 }
724 }
725 }
726 break;
727 }
728
729 case PGMPOOLKIND_64BIT_PML4:
730 {
731 /*
732 * Hopefully this doesn't happen very often:
733 * - messing with the bits of pd pointers without changing the physical address
734 */
735 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
736 {
737 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
738 const unsigned iShw = off / sizeof(X86PDPE);
739 if (uShw.pPML4->a[iShw].n.u1Present)
740 {
741 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPML4->a[iShw].u));
742 pgmPoolFree(pVM, uShw.pPML4->a[iShw].u & X86_PML4E_PG_MASK, pPage->idx, iShw);
743 ASMAtomicWriteSize(&uShw.pPML4->a[iShw].u, 0);
744 }
745 /* paranoia / a bit assumptive. */
746 if ( pDis
747 && (off & 7)
748 && (off & 7) + cbWrite > sizeof(X86PDPE))
749 {
750 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
751 if (uShw.pPML4->a[iShw2].n.u1Present)
752 {
753 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPML4->a[iShw2].u));
754 pgmPoolFree(pVM, uShw.pPML4->a[iShw2].u & X86_PML4E_PG_MASK, pPage->idx, iShw2);
755 ASMAtomicWriteSize(&uShw.pPML4->a[iShw2].u, 0);
756 }
757 }
758 }
759 break;
760 }
761#endif /* IN_RING0 */
762
763 default:
764 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
765 }
766 PGMPOOL_UNLOCK_PTR(pVM, uShw.pv);
767
768 /* next */
769 if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
770 return;
771 pPage = &pPool->aPages[pPage->iMonitoredNext];
772 }
773}
774
775# ifndef IN_RING3
776/**
777 * Checks if a access could be a fork operation in progress.
778 *
779 * Meaning, that the guest is setting up the parent process for Copy-On-Write.
780 *
781 * @returns true if it's likly that we're forking, otherwise false.
782 * @param pPool The pool.
783 * @param pDis The disassembled instruction.
784 * @param offFault The access offset.
785 */
786DECLINLINE(bool) pgmPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pDis, unsigned offFault)
787{
788 /*
789 * i386 linux is using btr to clear X86_PTE_RW.
790 * The functions involved are (2.6.16 source inspection):
791 * clear_bit
792 * ptep_set_wrprotect
793 * copy_one_pte
794 * copy_pte_range
795 * copy_pmd_range
796 * copy_pud_range
797 * copy_page_range
798 * dup_mmap
799 * dup_mm
800 * copy_mm
801 * copy_process
802 * do_fork
803 */
804 if ( pDis->pCurInstr->opcode == OP_BTR
805 && !(offFault & 4)
806 /** @todo Validate that the bit index is X86_PTE_RW. */
807 )
808 {
809 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,Fork));
810 return true;
811 }
812 return false;
813}
814
815
816/**
817 * Determine whether the page is likely to have been reused.
818 *
819 * @returns true if we consider the page as being reused for a different purpose.
820 * @returns false if we consider it to still be a paging page.
821 * @param pVM VM Handle.
822 * @param pVCpu VMCPU Handle.
823 * @param pRegFrame Trap register frame.
824 * @param pDis The disassembly info for the faulting instruction.
825 * @param pvFault The fault address.
826 *
827 * @remark The REP prefix check is left to the caller because of STOSD/W.
828 */
829DECLINLINE(bool) pgmPoolMonitorIsReused(PVM pVM, PVMCPU pVCpu, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pDis, RTGCPTR pvFault)
830{
831#ifndef IN_RC
832 /** @todo could make this general, faulting close to rsp should be a safe reuse heuristic. */
833 if ( HWACCMHasPendingIrq(pVM)
834 && (pRegFrame->rsp - pvFault) < 32)
835 {
836 /* Fault caused by stack writes while trying to inject an interrupt event. */
837 Log(("pgmPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
838 return true;
839 }
840#else
841 NOREF(pVM); NOREF(pvFault);
842#endif
843
844 LogFlow(("Reused instr %RGv %d at %RGv param1.flags=%x param1.reg=%d\n", pRegFrame->rip, pDis->pCurInstr->opcode, pvFault, pDis->param1.flags, pDis->param1.base.reg_gen));
845
846 /* Non-supervisor mode write means it's used for something else. */
847 if (CPUMGetGuestCPL(pVCpu, pRegFrame) != 0)
848 return true;
849
850 switch (pDis->pCurInstr->opcode)
851 {
852 /* call implies the actual push of the return address faulted */
853 case OP_CALL:
854 Log4(("pgmPoolMonitorIsReused: CALL\n"));
855 return true;
856 case OP_PUSH:
857 Log4(("pgmPoolMonitorIsReused: PUSH\n"));
858 return true;
859 case OP_PUSHF:
860 Log4(("pgmPoolMonitorIsReused: PUSHF\n"));
861 return true;
862 case OP_PUSHA:
863 Log4(("pgmPoolMonitorIsReused: PUSHA\n"));
864 return true;
865 case OP_FXSAVE:
866 Log4(("pgmPoolMonitorIsReused: FXSAVE\n"));
867 return true;
868 case OP_MOVNTI: /* solaris - block_zero_no_xmm */
869 Log4(("pgmPoolMonitorIsReused: MOVNTI\n"));
870 return true;
871 case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
872 Log4(("pgmPoolMonitorIsReused: MOVNTDQ\n"));
873 return true;
874 case OP_MOVSWD:
875 case OP_STOSWD:
876 if ( pDis->prefix == (PREFIX_REP|PREFIX_REX)
877 && pRegFrame->rcx >= 0x40
878 )
879 {
880 Assert(pDis->mode == CPUMODE_64BIT);
881
882 Log(("pgmPoolMonitorIsReused: OP_STOSQ\n"));
883 return true;
884 }
885 return false;
886 }
887 if ( ( (pDis->param1.flags & USE_REG_GEN32)
888 || (pDis->param1.flags & USE_REG_GEN64))
889 && (pDis->param1.base.reg_gen == USE_REG_ESP))
890 {
891 Log4(("pgmPoolMonitorIsReused: ESP\n"));
892 return true;
893 }
894
895 return false;
896}
897
898/**
899 * Flushes the page being accessed.
900 *
901 * @returns VBox status code suitable for scheduling.
902 * @param pVM The VM handle.
903 * @param pVCpu The VMCPU handle.
904 * @param pPool The pool.
905 * @param pPage The pool page (head).
906 * @param pDis The disassembly of the write instruction.
907 * @param pRegFrame The trap register frame.
908 * @param GCPhysFault The fault address as guest physical address.
909 * @param pvFault The fault address.
910 */
911static int pgmPoolAccessHandlerFlush(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
912 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
913{
914 /*
915 * First, do the flushing.
916 */
917 int rc = pgmPoolMonitorChainFlush(pPool, pPage);
918
919 /*
920 * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection). Must do this in raw mode (!); XP boot will fail otherwise
921 */
922 uint32_t cbWritten;
923 int rc2 = EMInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, &cbWritten);
924 if (RT_SUCCESS(rc2))
925 pRegFrame->rip += pDis->opsize;
926 else if (rc2 == VERR_EM_INTERPRETER)
927 {
928#ifdef IN_RC
929 if (PATMIsPatchGCAddr(pVM, (RTRCPTR)pRegFrame->eip))
930 {
931 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv, ignoring.\n",
932 pRegFrame->cs, (RTGCPTR)pRegFrame->eip));
933 rc = VINF_SUCCESS;
934 STAM_COUNTER_INC(&pPool->StatMonitorRZIntrFailPatch2);
935 }
936 else
937#endif
938 {
939 rc = VINF_EM_RAW_EMULATE_INSTR;
940 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
941 }
942 }
943 else
944 rc = rc2;
945
946 /* See use in pgmPoolAccessHandlerSimple(). */
947 PGM_INVL_VCPU_TLBS(pVCpu);
948 LogFlow(("pgmPoolAccessHandlerPT: returns %Rrc (flushed)\n", rc));
949 return rc;
950}
951
952/**
953 * Handles the STOSD write accesses.
954 *
955 * @returns VBox status code suitable for scheduling.
956 * @param pVM The VM handle.
957 * @param pPool The pool.
958 * @param pPage The pool page (head).
959 * @param pDis The disassembly of the write instruction.
960 * @param pRegFrame The trap register frame.
961 * @param GCPhysFault The fault address as guest physical address.
962 * @param pvFault The fault address.
963 */
964DECLINLINE(int) pgmPoolAccessHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
965 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
966{
967 unsigned uIncrement = pDis->param1.size;
968
969 Assert(pDis->mode == CPUMODE_32BIT || pDis->mode == CPUMODE_64BIT);
970 Assert(pRegFrame->rcx <= 0x20);
971
972#ifdef VBOX_STRICT
973 if (pDis->opmode == CPUMODE_32BIT)
974 Assert(uIncrement == 4);
975 else
976 Assert(uIncrement == 8);
977#endif
978
979 Log3(("pgmPoolAccessHandlerSTOSD\n"));
980
981 /*
982 * Increment the modification counter and insert it into the list
983 * of modified pages the first time.
984 */
985 if (!pPage->cModifications++)
986 pgmPoolMonitorModifiedInsert(pPool, pPage);
987
988 /*
989 * Execute REP STOSD.
990 *
991 * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
992 * write situation, meaning that it's safe to write here.
993 */
994 PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
995 RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
996 while (pRegFrame->rcx)
997 {
998#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
999 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
1000 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
1001 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
1002#else
1003 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
1004#endif
1005#ifdef IN_RC
1006 *(uint32_t *)pu32 = pRegFrame->eax;
1007#else
1008 PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->rax, uIncrement);
1009#endif
1010 pu32 += uIncrement;
1011 GCPhysFault += uIncrement;
1012 pRegFrame->rdi += uIncrement;
1013 pRegFrame->rcx--;
1014 }
1015 pRegFrame->rip += pDis->opsize;
1016
1017#ifdef IN_RC
1018 /* See use in pgmPoolAccessHandlerSimple(). */
1019 PGM_INVL_VCPU_TLBS(pVCpu);
1020#endif
1021
1022 LogFlow(("pgmPoolAccessHandlerSTOSD: returns\n"));
1023 return VINF_SUCCESS;
1024}
1025
1026
1027/**
1028 * Handles the simple write accesses.
1029 *
1030 * @returns VBox status code suitable for scheduling.
1031 * @param pVM The VM handle.
1032 * @param pVCpu The VMCPU handle.
1033 * @param pPool The pool.
1034 * @param pPage The pool page (head).
1035 * @param pDis The disassembly of the write instruction.
1036 * @param pRegFrame The trap register frame.
1037 * @param GCPhysFault The fault address as guest physical address.
1038 * @param pvFault The fault address.
1039 * @param pfReused Reused state (out)
1040 */
1041DECLINLINE(int) pgmPoolAccessHandlerSimple(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pDis,
1042 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault, bool *pfReused)
1043{
1044 Log3(("pgmPoolAccessHandlerSimple\n"));
1045 /*
1046 * Increment the modification counter and insert it into the list
1047 * of modified pages the first time.
1048 */
1049 if (!pPage->cModifications++)
1050 pgmPoolMonitorModifiedInsert(pPool, pPage);
1051
1052 /*
1053 * Clear all the pages. ASSUMES that pvFault is readable.
1054 */
1055#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1056 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
1057 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pDis);
1058 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
1059#else
1060 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pDis);
1061#endif
1062
1063 /*
1064 * Interpret the instruction.
1065 */
1066 uint32_t cb;
1067 int rc = EMInterpretInstructionCPU(pVM, pVCpu, pDis, pRegFrame, pvFault, &cb);
1068 if (RT_SUCCESS(rc))
1069 pRegFrame->rip += pDis->opsize;
1070 else if (rc == VERR_EM_INTERPRETER)
1071 {
1072 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for %04x:%RGv - opcode=%d\n",
1073 pRegFrame->cs, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->opcode));
1074 rc = VINF_EM_RAW_EMULATE_INSTR;
1075 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
1076 }
1077
1078#if 0 /* experimental code */
1079 if (rc == VINF_SUCCESS)
1080 {
1081 switch (pPage->enmKind)
1082 {
1083 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1084 {
1085 X86PTEPAE GstPte;
1086 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvFault, GCPhysFault, sizeof(GstPte));
1087 AssertRC(rc);
1088
1089 /* Check the new value written by the guest. If present and with a bogus physical address, then
1090 * it's fairly safe to assume the guest is reusing the PT.
1091 */
1092 if (GstPte.n.u1Present)
1093 {
1094 RTHCPHYS HCPhys = -1;
1095 int rc = PGMPhysGCPhys2HCPhys(pVM, GstPte.u & X86_PTE_PAE_PG_MASK, &HCPhys);
1096 if (rc != VINF_SUCCESS)
1097 {
1098 *pfReused = true;
1099 STAM_COUNTER_INC(&pPool->StatForceFlushReused);
1100 }
1101 }
1102 break;
1103 }
1104 }
1105 }
1106#endif
1107
1108#ifdef IN_RC
1109 /*
1110 * Quick hack, with logging enabled we're getting stale
1111 * code TLBs but no data TLB for EIP and crash in EMInterpretDisasOne.
1112 * Flushing here is BAD and expensive, I think EMInterpretDisasOne will
1113 * have to be fixed to support this. But that'll have to wait till next week.
1114 *
1115 * An alternative is to keep track of the changed PTEs together with the
1116 * GCPhys from the guest PT. This may proove expensive though.
1117 *
1118 * At the moment, it's VITAL that it's done AFTER the instruction interpreting
1119 * because we need the stale TLBs in some cases (XP boot). This MUST be fixed properly!
1120 */
1121 PGM_INVL_VCPU_TLBS(pVCpu);
1122#endif
1123
1124 LogFlow(("pgmPoolAccessHandlerSimple: returns %Rrc cb=%d\n", rc, cb));
1125 return rc;
1126}
1127
1128/**
1129 * \#PF Handler callback for PT write accesses.
1130 *
1131 * @returns VBox status code (appropriate for GC return).
1132 * @param pVM VM Handle.
1133 * @param uErrorCode CPU Error code.
1134 * @param pRegFrame Trap register frame.
1135 * NULL on DMA and other non CPU access.
1136 * @param pvFault The fault address (cr2).
1137 * @param GCPhysFault The GC physical address corresponding to pvFault.
1138 * @param pvUser User argument.
1139 */
1140DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
1141{
1142 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1143 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1144 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
1145 PVMCPU pVCpu = VMMGetCpu(pVM);
1146 unsigned cMaxModifications;
1147 bool fForcedFlush = false;
1148
1149 LogFlow(("pgmPoolAccessHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
1150
1151 pgmLock(pVM);
1152 if (PHYS_PAGE_ADDRESS(GCPhysFault) != PHYS_PAGE_ADDRESS(pPage->GCPhys))
1153 {
1154 /* Pool page changed while we were waiting for the lock; ignore. */
1155 Log(("CPU%d: pgmPoolAccessHandler pgm pool page for %RGp changed (to %RGp) while waiting!\n", pVCpu->idCpu, PHYS_PAGE_ADDRESS(GCPhysFault), PHYS_PAGE_ADDRESS(pPage->GCPhys)));
1156 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1157 pgmUnlock(pVM);
1158 return VINF_SUCCESS;
1159 }
1160
1161 /*
1162 * Disassemble the faulting instruction.
1163 */
1164 PDISCPUSTATE pDis = &pVCpu->pgm.s.DisState;
1165 int rc = EMInterpretDisasOne(pVM, pVCpu, pRegFrame, pDis, NULL);
1166 AssertReturnStmt(rc == VINF_SUCCESS, pgmUnlock(pVM), rc);
1167
1168 Assert(pPage->enmKind != PGMPOOLKIND_FREE);
1169
1170 /*
1171 * We should ALWAYS have the list head as user parameter. This
1172 * is because we use that page to record the changes.
1173 */
1174 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1175#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1176 Assert(!pPage->fDirty);
1177#endif
1178
1179 /* Maximum nr of modifications depends on the guest mode. */
1180 if (pDis->mode == CPUMODE_32BIT)
1181 cMaxModifications = 48;
1182 else
1183 cMaxModifications = 24;
1184
1185 /*
1186 * Incremental page table updates should weight more than random ones.
1187 * (Only applies when started from offset 0)
1188 */
1189 pVCpu->pgm.s.cPoolAccessHandler++;
1190 if ( pPage->pvLastAccessHandlerRip >= pRegFrame->rip - 0x40 /* observed loops in Windows 7 x64 */
1191 && pPage->pvLastAccessHandlerRip < pRegFrame->rip + 0x40
1192 && pvFault == (pPage->pvLastAccessHandlerFault + pDis->param1.size)
1193 && pVCpu->pgm.s.cPoolAccessHandler == (pPage->cLastAccessHandlerCount + 1))
1194 {
1195 Log(("Possible page reuse cMods=%d -> %d (locked=%d type=%s)\n", pPage->cModifications, pPage->cModifications * 2, pgmPoolIsPageLocked(&pVM->pgm.s, pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
1196 pPage->cModifications = pPage->cModifications * 2;
1197 pPage->pvLastAccessHandlerFault = pvFault;
1198 pPage->cLastAccessHandlerCount = pVCpu->pgm.s.cPoolAccessHandler;
1199 if (pPage->cModifications >= cMaxModifications)
1200 {
1201 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FlushReinit));
1202 fForcedFlush = true;
1203 }
1204 }
1205
1206 if (pPage->cModifications >= cMaxModifications)
1207 Log(("Mod overflow %VGv cMods=%d (locked=%d type=%s)\n", pvFault, pPage->cModifications, pgmPoolIsPageLocked(&pVM->pgm.s, pPage), pgmPoolPoolKindToStr(pPage->enmKind)));
1208
1209 /*
1210 * Check if it's worth dealing with.
1211 */
1212 bool fReused = false;
1213 bool fNotReusedNotForking = false;
1214 if ( ( pPage->cModifications < cMaxModifications /** @todo #define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
1215 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
1216 )
1217 && !(fReused = pgmPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault))
1218 && !pgmPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
1219 {
1220 /*
1221 * Simple instructions, no REP prefix.
1222 */
1223 if (!(pDis->prefix & (PREFIX_REP | PREFIX_REPNE)))
1224 {
1225 rc = pgmPoolAccessHandlerSimple(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault, &fReused);
1226 if (fReused)
1227 goto flushPage;
1228
1229 /* A mov instruction to change the first page table entry will be remembered so we can detect
1230 * full page table changes early on. This will reduce the amount of unnecessary traps we'll take.
1231 */
1232 if ( rc == VINF_SUCCESS
1233 && pDis->pCurInstr->opcode == OP_MOV
1234 && (pvFault & PAGE_OFFSET_MASK) == 0)
1235 {
1236 pPage->pvLastAccessHandlerFault = pvFault;
1237 pPage->cLastAccessHandlerCount = pVCpu->pgm.s.cPoolAccessHandler;
1238 pPage->pvLastAccessHandlerRip = pRegFrame->rip;
1239 /* Make sure we don't kick out a page too quickly. */
1240 if (pPage->cModifications > 8)
1241 pPage->cModifications = 2;
1242 }
1243 else
1244 if (pPage->pvLastAccessHandlerFault == pvFault)
1245 {
1246 /* ignore the 2nd write to this page table entry. */
1247 pPage->cLastAccessHandlerCount = pVCpu->pgm.s.cPoolAccessHandler;
1248 }
1249 else
1250 {
1251 pPage->pvLastAccessHandlerFault = 0;
1252 pPage->pvLastAccessHandlerRip = 0;
1253 }
1254
1255 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1256 pgmUnlock(pVM);
1257 return rc;
1258 }
1259
1260 /*
1261 * Windows is frequently doing small memset() operations (netio test 4k+).
1262 * We have to deal with these or we'll kill the cache and performance.
1263 */
1264 if ( pDis->pCurInstr->opcode == OP_STOSWD
1265 && !pRegFrame->eflags.Bits.u1DF
1266 && pDis->opmode == pDis->mode
1267 && pDis->addrmode == pDis->mode)
1268 {
1269 bool fValidStosd = false;
1270
1271 if ( pDis->mode == CPUMODE_32BIT
1272 && pDis->prefix == PREFIX_REP
1273 && pRegFrame->ecx <= 0x20
1274 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1275 && !((uintptr_t)pvFault & 3)
1276 && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
1277 )
1278 {
1279 fValidStosd = true;
1280 pRegFrame->rcx &= 0xffffffff; /* paranoia */
1281 }
1282 else
1283 if ( pDis->mode == CPUMODE_64BIT
1284 && pDis->prefix == (PREFIX_REP | PREFIX_REX)
1285 && pRegFrame->rcx <= 0x20
1286 && pRegFrame->rcx * 8 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1287 && !((uintptr_t)pvFault & 7)
1288 && (pRegFrame->rax == 0 || pRegFrame->rax == 0x80) /* the two values observed. */
1289 )
1290 {
1291 fValidStosd = true;
1292 }
1293
1294 if (fValidStosd)
1295 {
1296 rc = pgmPoolAccessHandlerSTOSD(pVM, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1297 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,RepStosd), a);
1298 pgmUnlock(pVM);
1299 return rc;
1300 }
1301 }
1302
1303 /* REP prefix, don't bother. */
1304 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,RepPrefix));
1305 Log4(("pgmPoolAccessHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
1306 pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, pDis->pCurInstr->opcode, pDis->prefix));
1307 fNotReusedNotForking = true;
1308 }
1309
1310#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1311 /* E.g. Windows 7 x64 initializes page tables and touches some pages in the table during the process. This
1312 * leads to pgm pool trashing and an excessive amount of write faults due to page monitoring.
1313 */
1314 if ( pPage->cModifications >= cMaxModifications
1315 && !fForcedFlush
1316 && pPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1317 && ( fNotReusedNotForking
1318 || ( !pgmPoolMonitorIsReused(pVM, pVCpu, pRegFrame, pDis, pvFault)
1319 && !pgmPoolMonitorIsForking(pPool, pDis, GCPhysFault & PAGE_OFFSET_MASK))
1320 )
1321 )
1322 {
1323 Assert(!pgmPoolIsPageLocked(&pVM->pgm.s, pPage));
1324 Assert(pPage->fDirty == false);
1325
1326 /* Flush any monitored duplicates as we will disable write protection. */
1327 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
1328 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1329 {
1330 PPGMPOOLPAGE pPageHead = pPage;
1331
1332 /* Find the monitor head. */
1333 while (pPageHead->iMonitoredPrev != NIL_PGMPOOL_IDX)
1334 pPageHead = &pPool->aPages[pPageHead->iMonitoredPrev];
1335
1336 while (pPageHead)
1337 {
1338 unsigned idxNext = pPageHead->iMonitoredNext;
1339
1340 if (pPageHead != pPage)
1341 {
1342 STAM_COUNTER_INC(&pPool->StatDirtyPageDupFlush);
1343 Log(("Flush duplicate page idx=%d GCPhys=%RGp type=%s\n", pPageHead->idx, pPageHead->GCPhys, pgmPoolPoolKindToStr(pPageHead->enmKind)));
1344 int rc2 = pgmPoolFlushPage(pPool, pPageHead);
1345 AssertRC(rc2);
1346 }
1347
1348 if (idxNext == NIL_PGMPOOL_IDX)
1349 break;
1350
1351 pPageHead = &pPool->aPages[idxNext];
1352 }
1353 }
1354
1355 /* The flushing above might fail for locked pages, so double check. */
1356 if ( pPage->iMonitoredNext == NIL_PGMPOOL_IDX
1357 && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
1358 {
1359 /* Temporarily allow write access to the page table again. */
1360 rc = PGMHandlerPhysicalPageTempOff(pVM, pPage->GCPhys, pPage->GCPhys);
1361 if (rc == VINF_SUCCESS)
1362 {
1363 rc = PGMShwModifyPage(pVCpu, pvFault, 1, X86_PTE_RW, ~(uint64_t)X86_PTE_RW);
1364 AssertMsg(rc == VINF_SUCCESS
1365 /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
1366 || rc == VERR_PAGE_TABLE_NOT_PRESENT
1367 || rc == VERR_PAGE_NOT_PRESENT,
1368 ("PGMShwModifyPage -> GCPtr=%RGv rc=%d\n", pvFault, rc));
1369
1370 pgmPoolAddDirtyPage(pVM, pPool, pPage);
1371 pPage->pvDirtyFault = pvFault;
1372
1373 STAM_PROFILE_STOP(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1374 pgmUnlock(pVM);
1375 return rc;
1376 }
1377 }
1378 }
1379#endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */
1380
1381 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,FlushModOverflow));
1382flushPage:
1383 /*
1384 * Not worth it, so flush it.
1385 *
1386 * If we considered it to be reused, don't go back to ring-3
1387 * to emulate failed instructions since we usually cannot
1388 * interpret then. This may be a bit risky, in which case
1389 * the reuse detection must be fixed.
1390 */
1391 rc = pgmPoolAccessHandlerFlush(pVM, pVCpu, pPool, pPage, pDis, pRegFrame, GCPhysFault, pvFault);
1392 if (rc == VINF_EM_RAW_EMULATE_INSTR && fReused)
1393 rc = VINF_SUCCESS;
1394 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
1395 pgmUnlock(pVM);
1396 return rc;
1397}
1398
1399# endif /* !IN_RING3 */
1400
1401# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
1402
1403# ifdef VBOX_STRICT
1404/**
1405 * Check references to guest physical memory in a PAE / PAE page table.
1406 *
1407 * @param pPool The pool.
1408 * @param pPage The page.
1409 * @param pShwPT The shadow page table (mapping of the page).
1410 * @param pGstPT The guest page table.
1411 */
1412DECLINLINE(void) pgmPoolTrackCheckPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT)
1413{
1414 unsigned cErrors = 0;
1415#ifdef VBOX_STRICT
1416 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1417 AssertMsg(!pShwPT->a[i].n.u1Present, ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, pShwPT->a[i].u, pPage->iFirstPresent));
1418#endif
1419 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1420 {
1421 if (pShwPT->a[i].n.u1Present)
1422 {
1423 RTHCPHYS HCPhys = -1;
1424 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1425 if ( rc != VINF_SUCCESS
1426 || (pShwPT->a[i].u & X86_PTE_PAE_PG_MASK) != HCPhys)
1427 {
1428 RTHCPHYS HCPhysPT = -1;
1429 Log(("rc=%d idx=%d guest %RX64 shw=%RX64 vs %RHp\n", rc, i, pGstPT->a[i].u, pShwPT->a[i].u, HCPhys));
1430 cErrors++;
1431
1432 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pPage->GCPhys, &HCPhysPT);
1433 AssertRC(rc);
1434
1435 for (unsigned i = 0; i < pPool->cCurPages; i++)
1436 {
1437 PPGMPOOLPAGE pTempPage = &pPool->aPages[i];
1438
1439 if (pTempPage->enmKind == PGMPOOLKIND_PAE_PT_FOR_PAE_PT)
1440 {
1441 PX86PTPAE pShwPT2 = (PX86PTPAE)PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pTempPage);
1442
1443 for (unsigned j = 0; j < RT_ELEMENTS(pShwPT->a); j++)
1444 {
1445 if ( pShwPT2->a[j].n.u1Present
1446 && pShwPT2->a[j].n.u1Write
1447 && ((pShwPT2->a[j].u & X86_PTE_PAE_PG_MASK) == HCPhysPT))
1448 {
1449 Log(("GCPhys=%RGp idx=%d %RX64 vs %RX64\n", pTempPage->GCPhys, j, pShwPT->a[j].u, pShwPT2->a[j].u));
1450 }
1451 }
1452 }
1453 }
1454 }
1455 }
1456 }
1457 Assert(!cErrors);
1458}
1459# endif /* VBOX_STRICT */
1460
1461/**
1462 * Clear references to guest physical memory in a PAE / PAE page table.
1463 *
1464 * @returns nr of changed PTEs
1465 * @param pPool The pool.
1466 * @param pPage The page.
1467 * @param pShwPT The shadow page table (mapping of the page).
1468 * @param pGstPT The guest page table.
1469 * @param pOldGstPT The old cached guest page table.
1470 */
1471DECLINLINE(unsigned) pgmPoolTrackFlushPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT, PCX86PTPAE pOldGstPT)
1472{
1473 unsigned cChanged = 0;
1474
1475#ifdef VBOX_STRICT
1476 for (unsigned i = 0; i < RT_MIN(RT_ELEMENTS(pShwPT->a), pPage->iFirstPresent); i++)
1477 AssertMsg(!pShwPT->a[i].n.u1Present, ("Unexpected PTE: idx=%d %RX64 (first=%d)\n", i, pShwPT->a[i].u, pPage->iFirstPresent));
1478#endif
1479 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
1480 {
1481 if (pShwPT->a[i].n.u1Present)
1482 {
1483 /* The the old cached PTE is identical, then there's no need to flush the shadow copy. */
1484 if ((pGstPT->a[i].u & X86_PTE_PAE_PG_MASK) == (pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK))
1485 {
1486#ifdef VBOX_STRICT
1487 RTHCPHYS HCPhys = -1;
1488 int rc = PGMPhysGCPhys2HCPhys(pPool->CTX_SUFF(pVM), pGstPT->a[i].u & X86_PTE_PAE_PG_MASK, &HCPhys);
1489 AssertMsg(rc == VINF_SUCCESS && (pShwPT->a[i].u & X86_PTE_PAE_PG_MASK) == HCPhys, ("rc=%d guest %RX64 old %RX64 shw=%RX64 vs %RHp\n", rc, pGstPT->a[i].u, pOldGstPT->a[i].u, pShwPT->a[i].u, HCPhys));
1490#endif
1491 uint64_t uHostAttr = pShwPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
1492 bool fHostRW = !!(pShwPT->a[i].u & X86_PTE_RW);
1493 uint64_t uGuestAttr = pGstPT->a[i].u & (X86_PTE_P | X86_PTE_US | X86_PTE_A | X86_PTE_D | X86_PTE_G | X86_PTE_PAE_NX);
1494 bool fGuestRW = !!(pGstPT->a[i].u & X86_PTE_RW);
1495
1496 if ( uHostAttr == uGuestAttr
1497 && fHostRW <= fGuestRW)
1498 continue;
1499 }
1500 cChanged++;
1501 /* Something was changed, so flush it. */
1502 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX64 hint=%RX64\n",
1503 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
1504 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pOldGstPT->a[i].u & X86_PTE_PAE_PG_MASK);
1505 ASMAtomicWriteSize(&pShwPT->a[i].u, 0);
1506 }
1507 }
1508 return cChanged;
1509}
1510
1511
1512/**
1513 * Flush a dirty page
1514 *
1515 * @param pVM VM Handle.
1516 * @param pPool The pool.
1517 * @param idxSlot Dirty array slot index
1518 * @param fForceRemoval Force removal from the dirty page list
1519 */
1520static void pgmPoolFlushDirtyPage(PVM pVM, PPGMPOOL pPool, unsigned idxSlot, bool fForceRemoval = false)
1521{
1522 PPGMPOOLPAGE pPage;
1523 unsigned idxPage;
1524
1525 Assert(idxSlot < RT_ELEMENTS(pPool->aIdxDirtyPages));
1526 if (pPool->aIdxDirtyPages[idxSlot] == NIL_PGMPOOL_IDX)
1527 return;
1528
1529 idxPage = pPool->aIdxDirtyPages[idxSlot];
1530 AssertRelease(idxPage != NIL_PGMPOOL_IDX);
1531 pPage = &pPool->aPages[idxPage];
1532 Assert(pPage->idx == idxPage);
1533 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1534
1535 AssertMsg(pPage->fDirty, ("Page %RGp (slot=%d) not marked dirty!", pPage->GCPhys, idxSlot));
1536 Log(("Flush dirty page %RGp cMods=%d\n", pPage->GCPhys, pPage->cModifications));
1537
1538 /* Flush those PTEs that have changed. */
1539 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
1540 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
1541 void *pvGst;
1542 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1543 unsigned cChanges = pgmPoolTrackFlushPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst, (PCX86PTPAE)&pPool->aDirtyPages[idxSlot][0]);
1544 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
1545
1546 /** Note: we might want to consider keeping the dirty page active in case there were many changes. */
1547
1548 /* Write protect the page again to catch all write accesses. */
1549 rc = PGMHandlerPhysicalReset(pVM, pPage->GCPhys);
1550 Assert(rc == VINF_SUCCESS);
1551 pPage->fDirty = false;
1552
1553#ifdef VBOX_STRICT
1554 uint64_t fFlags = 0;
1555 RTHCPHYS HCPhys;
1556 rc = PGMShwGetPage(VMMGetCpu(pVM), pPage->pvDirtyFault, &fFlags, &HCPhys);
1557 AssertMsg( ( rc == VINF_SUCCESS
1558 && (!(fFlags & X86_PTE_RW) || HCPhys != pPage->Core.Key))
1559 /* In the SMP case the page table might be removed while we wait for the PGM lock in the trap handler. */
1560 || rc == VERR_PAGE_TABLE_NOT_PRESENT
1561 || rc == VERR_PAGE_NOT_PRESENT,
1562 ("PGMShwGetPage -> GCPtr=%RGv rc=%d flags=%RX64\n", pPage->pvDirtyFault, rc, fFlags));
1563#endif
1564
1565 /* This page is likely to be modified again, so reduce the nr of modifications just a bit here. */
1566 Assert(pPage->cModifications);
1567 if (cChanges < 4)
1568 pPage->cModifications = 1; /* must use > 0 here */
1569 else
1570 pPage->cModifications = RT_MAX(1, pPage->cModifications / 2);
1571
1572 STAM_COUNTER_INC(&pPool->StatResetDirtyPages);
1573 if (pPool->cDirtyPages == RT_ELEMENTS(pPool->aIdxDirtyPages))
1574 pPool->idxFreeDirtyPage = idxSlot;
1575
1576 pPool->cDirtyPages--;
1577 pPool->aIdxDirtyPages[idxSlot] = NIL_PGMPOOL_IDX;
1578 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aIdxDirtyPages));
1579 Log(("Removed dirty page %RGp cMods=%d\n", pPage->GCPhys, pPage->cModifications));
1580}
1581
1582# ifndef IN_RING3
1583/**
1584 * Add a new dirty page
1585 *
1586 * @param pVM VM Handle.
1587 * @param pPool The pool.
1588 * @param pPage The page.
1589 */
1590void pgmPoolAddDirtyPage(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1591{
1592 unsigned idxFree;
1593
1594 Assert(PGMIsLocked(pVM));
1595 AssertCompile(RT_ELEMENTS(pPool->aIdxDirtyPages) == 8 || RT_ELEMENTS(pPool->aIdxDirtyPages) == 16);
1596 Assert(!pPage->fDirty);
1597
1598 idxFree = pPool->idxFreeDirtyPage;
1599 Assert(idxFree < RT_ELEMENTS(pPool->aIdxDirtyPages));
1600 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX && pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1601
1602 if (pPool->cDirtyPages >= RT_ELEMENTS(pPool->aIdxDirtyPages))
1603 {
1604 STAM_COUNTER_INC(&pPool->StatDirtyPageOverFlowFlush);
1605 pgmPoolFlushDirtyPage(pVM, pPool, idxFree, true /* force removal */);
1606 }
1607 Assert(pPool->cDirtyPages < RT_ELEMENTS(pPool->aIdxDirtyPages));
1608 AssertMsg(pPool->aIdxDirtyPages[idxFree] == NIL_PGMPOOL_IDX, ("idxFree=%d cDirtyPages=%d\n", idxFree, pPool->cDirtyPages));
1609
1610 Log(("Add dirty page %RGp (slot=%d)\n", pPage->GCPhys, idxFree));
1611
1612 /* Make a copy of the guest page table as we require valid GCPhys addresses when removing
1613 * references to physical pages. (the HCPhys linear lookup is *extremely* expensive!)
1614 */
1615 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
1616 void *pvGst;
1617 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
1618 memcpy(&pPool->aDirtyPages[idxFree][0], pvGst, PAGE_SIZE);
1619#ifdef VBOX_STRICT
1620 pgmPoolTrackCheckPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
1621#endif
1622
1623 STAM_COUNTER_INC(&pPool->StatDirtyPage);
1624 pPage->fDirty = true;
1625 pPage->idxDirty = idxFree;
1626 pPool->aIdxDirtyPages[idxFree] = pPage->idx;
1627 pPool->cDirtyPages++;
1628
1629 pPool->idxFreeDirtyPage = (pPool->idxFreeDirtyPage + 1) & (RT_ELEMENTS(pPool->aIdxDirtyPages) - 1);
1630 if ( pPool->cDirtyPages < RT_ELEMENTS(pPool->aIdxDirtyPages)
1631 && pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1632 {
1633 unsigned i;
1634 for (i = 1; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
1635 {
1636 idxFree = (pPool->idxFreeDirtyPage + i) & (RT_ELEMENTS(pPool->aIdxDirtyPages) - 1);
1637 if (pPool->aIdxDirtyPages[idxFree] == NIL_PGMPOOL_IDX)
1638 {
1639 pPool->idxFreeDirtyPage = idxFree;
1640 break;
1641 }
1642 }
1643 Assert(i != RT_ELEMENTS(pPool->aIdxDirtyPages));
1644 }
1645
1646 Assert(pPool->cDirtyPages == RT_ELEMENTS(pPool->aIdxDirtyPages) || pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX);
1647 return;
1648}
1649# endif /* !IN_RING3 */
1650
1651/**
1652 * Check if the specified page is dirty (not write monitored)
1653 *
1654 * @return dirty or not
1655 * @param pVM VM Handle.
1656 * @param GCPhys Guest physical address
1657 */
1658bool pgmPoolIsDirtyPage(PVM pVM, RTGCPHYS GCPhys)
1659{
1660 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1661 Assert(PGMIsLocked(pVM));
1662 if (!pPool->cDirtyPages)
1663 return false;
1664
1665 GCPhys = GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1666
1667 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
1668 {
1669 if (pPool->aIdxDirtyPages[i] != NIL_PGMPOOL_IDX)
1670 {
1671 PPGMPOOLPAGE pPage;
1672 unsigned idxPage = pPool->aIdxDirtyPages[i];
1673
1674 pPage = &pPool->aPages[idxPage];
1675 if (pPage->GCPhys == GCPhys)
1676 return true;
1677 }
1678 }
1679 return false;
1680}
1681
1682/**
1683 * Reset all dirty pages by reinstating page monitoring.
1684 *
1685 * @param pVM VM Handle.
1686 * @param fForceRemoval Force removal of all dirty pages
1687 */
1688void pgmPoolResetDirtyPages(PVM pVM, bool fForceRemoval)
1689{
1690 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1691 Assert(PGMIsLocked(pVM));
1692 Assert(pPool->cDirtyPages <= RT_ELEMENTS(pPool->aIdxDirtyPages));
1693
1694 if (!pPool->cDirtyPages)
1695 return;
1696
1697 Log(("pgmPoolResetDirtyPages\n"));
1698 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
1699 pgmPoolFlushDirtyPage(pVM, pPool, i, fForceRemoval);
1700
1701 pPool->idxFreeDirtyPage = 0;
1702 if ( pPool->cDirtyPages != RT_ELEMENTS(pPool->aIdxDirtyPages)
1703 && pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] != NIL_PGMPOOL_IDX)
1704 {
1705 unsigned i;
1706 for (i = 1; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
1707 {
1708 if (pPool->aIdxDirtyPages[i] == NIL_PGMPOOL_IDX)
1709 {
1710 pPool->idxFreeDirtyPage = i;
1711 break;
1712 }
1713 }
1714 AssertMsg(i != RT_ELEMENTS(pPool->aIdxDirtyPages), ("cDirtyPages %d", pPool->cDirtyPages));
1715 }
1716
1717 Assert(pPool->aIdxDirtyPages[pPool->idxFreeDirtyPage] == NIL_PGMPOOL_IDX || pPool->cDirtyPages == RT_ELEMENTS(pPool->aIdxDirtyPages));
1718 return;
1719}
1720# endif /* PGMPOOL_WITH_OPTIMIZED_DIRTY_PT */
1721#endif /* PGMPOOL_WITH_MONITORING */
1722
1723#ifdef PGMPOOL_WITH_CACHE
1724
1725/**
1726 * Inserts a page into the GCPhys hash table.
1727 *
1728 * @param pPool The pool.
1729 * @param pPage The page.
1730 */
1731DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1732{
1733 Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
1734 Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1735 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1736 pPage->iNext = pPool->aiHash[iHash];
1737 pPool->aiHash[iHash] = pPage->idx;
1738}
1739
1740
1741/**
1742 * Removes a page from the GCPhys hash table.
1743 *
1744 * @param pPool The pool.
1745 * @param pPage The page.
1746 */
1747DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1748{
1749 Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
1750 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1751 if (pPool->aiHash[iHash] == pPage->idx)
1752 pPool->aiHash[iHash] = pPage->iNext;
1753 else
1754 {
1755 uint16_t iPrev = pPool->aiHash[iHash];
1756 for (;;)
1757 {
1758 const int16_t i = pPool->aPages[iPrev].iNext;
1759 if (i == pPage->idx)
1760 {
1761 pPool->aPages[iPrev].iNext = pPage->iNext;
1762 break;
1763 }
1764 if (i == NIL_PGMPOOL_IDX)
1765 {
1766 AssertReleaseMsgFailed(("GCPhys=%RGp idx=%#x\n", pPage->GCPhys, pPage->idx));
1767 break;
1768 }
1769 iPrev = i;
1770 }
1771 }
1772 pPage->iNext = NIL_PGMPOOL_IDX;
1773}
1774
1775
1776/**
1777 * Frees up one cache page.
1778 *
1779 * @returns VBox status code.
1780 * @retval VINF_SUCCESS on success.
1781 * @param pPool The pool.
1782 * @param iUser The user index.
1783 */
1784static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
1785{
1786#ifndef IN_RC
1787 const PVM pVM = pPool->CTX_SUFF(pVM);
1788#endif
1789 Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
1790 STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
1791
1792 /*
1793 * Select one page from the tail of the age list.
1794 */
1795 PPGMPOOLPAGE pPage;
1796 for (unsigned iLoop = 0; ; iLoop++)
1797 {
1798 uint16_t iToFree = pPool->iAgeTail;
1799 if (iToFree == iUser)
1800 iToFree = pPool->aPages[iToFree].iAgePrev;
1801/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
1802 if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
1803 {
1804 uint16_t i = pPool->aPages[iToFree].iAgePrev;
1805 for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
1806 {
1807 if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
1808 continue;
1809 iToFree = i;
1810 break;
1811 }
1812 }
1813*/
1814 Assert(iToFree != iUser);
1815 AssertRelease(iToFree != NIL_PGMPOOL_IDX);
1816 pPage = &pPool->aPages[iToFree];
1817
1818 /*
1819 * Reject any attempts at flushing the currently active shadow CR3 mapping.
1820 * Call pgmPoolCacheUsed to move the page to the head of the age list.
1821 */
1822 if (!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage))
1823 break;
1824 LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n"));
1825 pgmPoolCacheUsed(pPool, pPage);
1826 AssertLogRelReturn(iLoop < 8192, VERR_INTERNAL_ERROR);
1827 }
1828
1829 /*
1830 * Found a usable page, flush it and return.
1831 */
1832 return pgmPoolFlushPage(pPool, pPage);
1833}
1834
1835
1836/**
1837 * Checks if a kind mismatch is really a page being reused
1838 * or if it's just normal remappings.
1839 *
1840 * @returns true if reused and the cached page (enmKind1) should be flushed
1841 * @returns false if not reused.
1842 * @param enmKind1 The kind of the cached page.
1843 * @param enmKind2 The kind of the requested page.
1844 */
1845static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
1846{
1847 switch (enmKind1)
1848 {
1849 /*
1850 * Never reuse them. There is no remapping in non-paging mode.
1851 */
1852 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1853 case PGMPOOLKIND_32BIT_PD_PHYS:
1854 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1855 case PGMPOOLKIND_PAE_PD_PHYS:
1856 case PGMPOOLKIND_PAE_PDPT_PHYS:
1857 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1858 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1859 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1860 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1861 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1862 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
1863 return false;
1864
1865 /*
1866 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1867 */
1868 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1869 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1870 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1871 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1872 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1873 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1874 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1875 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1876 case PGMPOOLKIND_32BIT_PD:
1877 case PGMPOOLKIND_PAE_PDPT:
1878 switch (enmKind2)
1879 {
1880 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1881 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1882 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1883 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1884 case PGMPOOLKIND_64BIT_PML4:
1885 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1886 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1887 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1888 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1889 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1890 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1891 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1892 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1893 return true;
1894 default:
1895 return false;
1896 }
1897
1898 /*
1899 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1900 */
1901 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1902 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1903 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1904 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1905 case PGMPOOLKIND_64BIT_PML4:
1906 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1907 switch (enmKind2)
1908 {
1909 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1910 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1911 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1912 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1913 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1914 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1915 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1916 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1917 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1918 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1919 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1920 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1921 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1922 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1923 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1924 return true;
1925 default:
1926 return false;
1927 }
1928
1929 /*
1930 * These cannot be flushed, and it's common to reuse the PDs as PTs.
1931 */
1932 case PGMPOOLKIND_ROOT_NESTED:
1933 return false;
1934
1935 default:
1936 AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
1937 }
1938}
1939
1940
1941/**
1942 * Attempts to satisfy a pgmPoolAlloc request from the cache.
1943 *
1944 * @returns VBox status code.
1945 * @retval VINF_PGM_CACHED_PAGE on success.
1946 * @retval VERR_FILE_NOT_FOUND if not found.
1947 * @param pPool The pool.
1948 * @param GCPhys The GC physical address of the page we're gonna shadow.
1949 * @param enmKind The kind of mapping.
1950 * @param enmAccess Access type for the mapping (only relevant for big pages)
1951 * @param iUser The shadow page pool index of the user table.
1952 * @param iUserTable The index into the user table (shadowed).
1953 * @param ppPage Where to store the pointer to the page.
1954 */
1955static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
1956{
1957#ifndef IN_RC
1958 const PVM pVM = pPool->CTX_SUFF(pVM);
1959#endif
1960 /*
1961 * Look up the GCPhys in the hash.
1962 */
1963 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1964 Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%x iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
1965 if (i != NIL_PGMPOOL_IDX)
1966 {
1967 do
1968 {
1969 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1970 Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
1971 if (pPage->GCPhys == GCPhys)
1972 {
1973 if ( (PGMPOOLKIND)pPage->enmKind == enmKind
1974 && (PGMPOOLACCESS)pPage->enmAccess == enmAccess)
1975 {
1976 /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
1977 * doesn't flush it in case there are no more free use records.
1978 */
1979 pgmPoolCacheUsed(pPool, pPage);
1980
1981 int rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
1982 if (RT_SUCCESS(rc))
1983 {
1984 Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
1985 *ppPage = pPage;
1986 if (pPage->cModifications)
1987 pPage->cModifications = 1; /* reset counter (can't use 0, or else it will be reinserted in the modified list) */
1988 STAM_COUNTER_INC(&pPool->StatCacheHits);
1989 return VINF_PGM_CACHED_PAGE;
1990 }
1991 return rc;
1992 }
1993
1994 if ((PGMPOOLKIND)pPage->enmKind != enmKind)
1995 {
1996 /*
1997 * The kind is different. In some cases we should now flush the page
1998 * as it has been reused, but in most cases this is normal remapping
1999 * of PDs as PT or big pages using the GCPhys field in a slightly
2000 * different way than the other kinds.
2001 */
2002 if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
2003 {
2004 STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
2005 pgmPoolFlushPage(pPool, pPage);
2006 break;
2007 }
2008 }
2009 }
2010
2011 /* next */
2012 i = pPage->iNext;
2013 } while (i != NIL_PGMPOOL_IDX);
2014 }
2015
2016 Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
2017 STAM_COUNTER_INC(&pPool->StatCacheMisses);
2018 return VERR_FILE_NOT_FOUND;
2019}
2020
2021
2022/**
2023 * Inserts a page into the cache.
2024 *
2025 * @param pPool The pool.
2026 * @param pPage The cached page.
2027 * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
2028 */
2029static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
2030{
2031 /*
2032 * Insert into the GCPhys hash if the page is fit for that.
2033 */
2034 Assert(!pPage->fCached);
2035 if (fCanBeCached)
2036 {
2037 pPage->fCached = true;
2038 pgmPoolHashInsert(pPool, pPage);
2039 Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
2040 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
2041 STAM_COUNTER_INC(&pPool->StatCacheCacheable);
2042 }
2043 else
2044 {
2045 Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
2046 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
2047 STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
2048 }
2049
2050 /*
2051 * Insert at the head of the age list.
2052 */
2053 pPage->iAgePrev = NIL_PGMPOOL_IDX;
2054 pPage->iAgeNext = pPool->iAgeHead;
2055 if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
2056 pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
2057 else
2058 pPool->iAgeTail = pPage->idx;
2059 pPool->iAgeHead = pPage->idx;
2060}
2061
2062
2063/**
2064 * Flushes a cached page.
2065 *
2066 * @param pPool The pool.
2067 * @param pPage The cached page.
2068 */
2069static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2070{
2071 Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
2072
2073 /*
2074 * Remove the page from the hash.
2075 */
2076 if (pPage->fCached)
2077 {
2078 pPage->fCached = false;
2079 pgmPoolHashRemove(pPool, pPage);
2080 }
2081 else
2082 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
2083
2084 /*
2085 * Remove it from the age list.
2086 */
2087 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
2088 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
2089 else
2090 pPool->iAgeTail = pPage->iAgePrev;
2091 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
2092 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
2093 else
2094 pPool->iAgeHead = pPage->iAgeNext;
2095 pPage->iAgeNext = NIL_PGMPOOL_IDX;
2096 pPage->iAgePrev = NIL_PGMPOOL_IDX;
2097}
2098
2099#endif /* PGMPOOL_WITH_CACHE */
2100#ifdef PGMPOOL_WITH_MONITORING
2101
2102/**
2103 * Looks for pages sharing the monitor.
2104 *
2105 * @returns Pointer to the head page.
2106 * @returns NULL if not found.
2107 * @param pPool The Pool
2108 * @param pNewPage The page which is going to be monitored.
2109 */
2110static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
2111{
2112#ifdef PGMPOOL_WITH_CACHE
2113 /*
2114 * Look up the GCPhys in the hash.
2115 */
2116 RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
2117 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
2118 if (i == NIL_PGMPOOL_IDX)
2119 return NULL;
2120 do
2121 {
2122 PPGMPOOLPAGE pPage = &pPool->aPages[i];
2123 if ( pPage->GCPhys - GCPhys < PAGE_SIZE
2124 && pPage != pNewPage)
2125 {
2126 switch (pPage->enmKind)
2127 {
2128 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2129 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2130 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2131 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2132 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2133 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2134 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2135 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2136 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2137 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2138 case PGMPOOLKIND_64BIT_PML4:
2139 case PGMPOOLKIND_32BIT_PD:
2140 case PGMPOOLKIND_PAE_PDPT:
2141 {
2142 /* find the head */
2143 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
2144 {
2145 Assert(pPage->iMonitoredPrev != pPage->idx);
2146 pPage = &pPool->aPages[pPage->iMonitoredPrev];
2147 }
2148 return pPage;
2149 }
2150
2151 /* ignore, no monitoring. */
2152 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2153 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2154 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2155 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2156 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2157 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2158 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2159 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2160 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2161 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2162 case PGMPOOLKIND_ROOT_NESTED:
2163 case PGMPOOLKIND_PAE_PD_PHYS:
2164 case PGMPOOLKIND_PAE_PDPT_PHYS:
2165 case PGMPOOLKIND_32BIT_PD_PHYS:
2166 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2167 break;
2168 default:
2169 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
2170 }
2171 }
2172
2173 /* next */
2174 i = pPage->iNext;
2175 } while (i != NIL_PGMPOOL_IDX);
2176#endif
2177 return NULL;
2178}
2179
2180
2181/**
2182 * Enabled write monitoring of a guest page.
2183 *
2184 * @returns VBox status code.
2185 * @retval VINF_SUCCESS on success.
2186 * @param pPool The pool.
2187 * @param pPage The cached page.
2188 */
2189static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2190{
2191 LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1)));
2192
2193 /*
2194 * Filter out the relevant kinds.
2195 */
2196 switch (pPage->enmKind)
2197 {
2198 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2199 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2200 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2201 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2202 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2203 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2204 case PGMPOOLKIND_64BIT_PML4:
2205 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2206 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2207 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2208 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2209 case PGMPOOLKIND_32BIT_PD:
2210 case PGMPOOLKIND_PAE_PDPT:
2211 break;
2212
2213 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2214 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2215 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2216 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2217 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2218 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2219 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2220 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2221 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2222 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2223 case PGMPOOLKIND_ROOT_NESTED:
2224 /* Nothing to monitor here. */
2225 return VINF_SUCCESS;
2226
2227 case PGMPOOLKIND_32BIT_PD_PHYS:
2228 case PGMPOOLKIND_PAE_PDPT_PHYS:
2229 case PGMPOOLKIND_PAE_PD_PHYS:
2230 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2231 /* Nothing to monitor here. */
2232 return VINF_SUCCESS;
2233#ifdef PGMPOOL_WITH_MIXED_PT_CR3
2234 break;
2235#else
2236 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2237#endif
2238 default:
2239 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
2240 }
2241
2242 /*
2243 * Install handler.
2244 */
2245 int rc;
2246 PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
2247 if (pPageHead)
2248 {
2249 Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
2250 Assert(pPageHead->iMonitoredPrev != pPage->idx);
2251
2252#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2253 if (pPageHead->fDirty)
2254 pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPageHead->idxDirty, true /* force removal */);
2255#endif
2256
2257 pPage->iMonitoredPrev = pPageHead->idx;
2258 pPage->iMonitoredNext = pPageHead->iMonitoredNext;
2259 if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
2260 pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
2261 pPageHead->iMonitoredNext = pPage->idx;
2262 rc = VINF_SUCCESS;
2263 }
2264 else
2265 {
2266 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
2267 PVM pVM = pPool->CTX_SUFF(pVM);
2268 const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
2269 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
2270 GCPhysPage, GCPhysPage + (PAGE_SIZE - 1),
2271 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
2272 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
2273 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
2274 pPool->pszAccessHandler);
2275 /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
2276 * the heap size should suffice. */
2277 AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc));
2278 Assert(!(VMMGetCpu(pVM)->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3));
2279 }
2280 pPage->fMonitored = true;
2281 return rc;
2282}
2283
2284
2285/**
2286 * Disables write monitoring of a guest page.
2287 *
2288 * @returns VBox status code.
2289 * @retval VINF_SUCCESS on success.
2290 * @param pPool The pool.
2291 * @param pPage The cached page.
2292 */
2293static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2294{
2295 /*
2296 * Filter out the relevant kinds.
2297 */
2298 switch (pPage->enmKind)
2299 {
2300 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2301 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2302 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2303 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2304 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2305 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2306 case PGMPOOLKIND_64BIT_PML4:
2307 case PGMPOOLKIND_32BIT_PD:
2308 case PGMPOOLKIND_PAE_PDPT:
2309 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2310 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2311 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2312 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2313 break;
2314
2315 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2316 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2317 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2318 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2319 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2320 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2321 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2322 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2323 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2324 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2325 case PGMPOOLKIND_ROOT_NESTED:
2326 case PGMPOOLKIND_PAE_PD_PHYS:
2327 case PGMPOOLKIND_PAE_PDPT_PHYS:
2328 case PGMPOOLKIND_32BIT_PD_PHYS:
2329 /* Nothing to monitor here. */
2330 return VINF_SUCCESS;
2331
2332#ifdef PGMPOOL_WITH_MIXED_PT_CR3
2333 break;
2334#endif
2335 default:
2336 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
2337 }
2338
2339 /*
2340 * Remove the page from the monitored list or uninstall it if last.
2341 */
2342 const PVM pVM = pPool->CTX_SUFF(pVM);
2343 int rc;
2344 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
2345 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
2346 {
2347 if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
2348 {
2349 PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
2350 pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
2351 rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
2352 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pNewHead),
2353 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pNewHead),
2354 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pNewHead),
2355 pPool->pszAccessHandler);
2356 AssertFatalRCSuccess(rc);
2357 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
2358 }
2359 else
2360 {
2361 pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
2362 if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
2363 {
2364 pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
2365 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
2366 }
2367 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
2368 rc = VINF_SUCCESS;
2369 }
2370 }
2371 else
2372 {
2373 rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1));
2374 AssertFatalRC(rc);
2375#ifdef VBOX_STRICT
2376 PVMCPU pVCpu = VMMGetCpu(pVM);
2377#endif
2378 AssertMsg(!(pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3),
2379 ("%#x %#x\n", pVCpu->pgm.s.fSyncFlags, pVM->fGlobalForcedActions));
2380 }
2381 pPage->fMonitored = false;
2382
2383 /*
2384 * Remove it from the list of modified pages (if in it).
2385 */
2386 pgmPoolMonitorModifiedRemove(pPool, pPage);
2387
2388 return rc;
2389}
2390
2391
2392/**
2393 * Inserts the page into the list of modified pages.
2394 *
2395 * @param pPool The pool.
2396 * @param pPage The page.
2397 */
2398void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2399{
2400 Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
2401 AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
2402 && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
2403 && pPool->iModifiedHead != pPage->idx,
2404 ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
2405 pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
2406 pPool->iModifiedHead, pPool->cModifiedPages));
2407
2408 pPage->iModifiedNext = pPool->iModifiedHead;
2409 if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
2410 pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
2411 pPool->iModifiedHead = pPage->idx;
2412 pPool->cModifiedPages++;
2413#ifdef VBOX_WITH_STATISTICS
2414 if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
2415 pPool->cModifiedPagesHigh = pPool->cModifiedPages;
2416#endif
2417}
2418
2419
2420/**
2421 * Removes the page from the list of modified pages and resets the
2422 * moficiation counter.
2423 *
2424 * @param pPool The pool.
2425 * @param pPage The page which is believed to be in the list of modified pages.
2426 */
2427static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2428{
2429 Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
2430 if (pPool->iModifiedHead == pPage->idx)
2431 {
2432 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
2433 pPool->iModifiedHead = pPage->iModifiedNext;
2434 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
2435 {
2436 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
2437 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2438 }
2439 pPool->cModifiedPages--;
2440 }
2441 else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
2442 {
2443 pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
2444 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
2445 {
2446 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
2447 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2448 }
2449 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2450 pPool->cModifiedPages--;
2451 }
2452 else
2453 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
2454 pPage->cModifications = 0;
2455}
2456
2457
2458/**
2459 * Zaps the list of modified pages, resetting their modification counters in the process.
2460 *
2461 * @param pVM The VM handle.
2462 */
2463static void pgmPoolMonitorModifiedClearAll(PVM pVM)
2464{
2465 pgmLock(pVM);
2466 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2467 LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
2468
2469 unsigned cPages = 0; NOREF(cPages);
2470
2471#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2472 pgmPoolResetDirtyPages(pVM, true /* force removal. */);
2473#endif
2474
2475 uint16_t idx = pPool->iModifiedHead;
2476 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2477 while (idx != NIL_PGMPOOL_IDX)
2478 {
2479 PPGMPOOLPAGE pPage = &pPool->aPages[idx];
2480 idx = pPage->iModifiedNext;
2481 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2482 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2483 pPage->cModifications = 0;
2484 Assert(++cPages);
2485 }
2486 AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
2487 pPool->cModifiedPages = 0;
2488 pgmUnlock(pVM);
2489}
2490
2491
2492#ifdef IN_RING3
2493/**
2494 * Callback to clear all shadow pages and clear all modification counters.
2495 *
2496 * @returns VBox status code.
2497 * @param pVM The VM handle.
2498 * @param pVCpu The VMCPU for the EMT we're being called on. Unused.
2499 * @param pvUser Unused parameter.
2500 *
2501 * @remark Should only be used when monitoring is available, thus placed in
2502 * the PGMPOOL_WITH_MONITORING \#ifdef.
2503 */
2504DECLCALLBACK(int) pgmPoolClearAll(PVM pVM, PVMCPU pVCpu, void *pvUser)
2505{
2506 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2507 STAM_PROFILE_START(&pPool->StatClearAll, c);
2508 LogFlow(("pgmPoolClearAll: cUsedPages=%d\n", pPool->cUsedPages));
2509 NOREF(pvUser); NOREF(pVCpu);
2510
2511 pgmLock(pVM);
2512
2513#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2514 pgmPoolResetDirtyPages(pVM, true /* force removal. */);
2515#endif
2516
2517 /*
2518 * Iterate all the pages until we've encountered all that in use.
2519 * This is simple but not quite optimal solution.
2520 */
2521 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
2522 unsigned cLeft = pPool->cUsedPages;
2523 unsigned iPage = pPool->cCurPages;
2524 while (--iPage >= PGMPOOL_IDX_FIRST)
2525 {
2526 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2527 if (pPage->GCPhys != NIL_RTGCPHYS)
2528 {
2529 switch (pPage->enmKind)
2530 {
2531 /*
2532 * We only care about shadow page tables.
2533 */
2534 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2535 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2536 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2537 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2538 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2539 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2540 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2541 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2542 {
2543#ifdef PGMPOOL_WITH_USER_TRACKING
2544 if (pPage->cPresent)
2545#endif
2546 {
2547 void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
2548 STAM_PROFILE_START(&pPool->StatZeroPage, z);
2549 ASMMemZeroPage(pvShw);
2550 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
2551#ifdef PGMPOOL_WITH_USER_TRACKING
2552 pPage->cPresent = 0;
2553 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
2554#endif
2555 }
2556#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2557 else
2558 Assert(!pPage->fDirty);
2559#endif
2560 }
2561 /* fall thru */
2562
2563 default:
2564#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2565 Assert(!pPage->fDirty);
2566#endif
2567 Assert(!pPage->cModifications || ++cModifiedPages);
2568 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2569 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2570 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2571 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2572 pPage->cModifications = 0;
2573 break;
2574
2575 }
2576 if (!--cLeft)
2577 break;
2578 }
2579 }
2580
2581 /* swipe the special pages too. */
2582 for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
2583 {
2584 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2585 if (pPage->GCPhys != NIL_RTGCPHYS)
2586 {
2587 Assert(!pPage->cModifications || ++cModifiedPages);
2588 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2589 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2590 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2591 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2592 pPage->cModifications = 0;
2593 }
2594 }
2595
2596#ifndef DEBUG_michael
2597 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
2598#endif
2599 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2600 pPool->cModifiedPages = 0;
2601
2602#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2603 /*
2604 * Clear all the GCPhys links and rebuild the phys ext free list.
2605 */
2606 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
2607 pRam;
2608 pRam = pRam->CTX_SUFF(pNext))
2609 {
2610 unsigned iPage = pRam->cb >> PAGE_SHIFT;
2611 while (iPage-- > 0)
2612 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
2613 }
2614
2615 pPool->iPhysExtFreeHead = 0;
2616 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
2617 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
2618 for (unsigned i = 0; i < cMaxPhysExts; i++)
2619 {
2620 paPhysExts[i].iNext = i + 1;
2621 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
2622 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
2623 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
2624 }
2625 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
2626#endif
2627
2628#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2629 /* Clear all dirty pages. */
2630 pPool->idxFreeDirtyPage = 0;
2631 pPool->cDirtyPages = 0;
2632 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
2633 pPool->aIdxDirtyPages[i] = NIL_PGMPOOL_IDX;
2634#endif
2635
2636 /* Clear the PGM_SYNC_CLEAR_PGM_POOL flag on all VCPUs to prevent redundant flushes. */
2637 for (unsigned idCpu = 0; idCpu < pVM->cCPUs; idCpu++)
2638 {
2639 PVMCPU pVCpu = &pVM->aCpus[idCpu];
2640
2641 pVCpu->pgm.s.fSyncFlags &= ~PGM_SYNC_CLEAR_PGM_POOL;
2642 }
2643
2644 pPool->cPresent = 0;
2645 pgmUnlock(pVM);
2646 PGM_INVL_ALL_VCPU_TLBS(pVM);
2647 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
2648 return VINF_SUCCESS;
2649}
2650#endif /* IN_RING3 */
2651
2652
2653/**
2654 * Handle SyncCR3 pool tasks
2655 *
2656 * @returns VBox status code.
2657 * @retval VINF_SUCCESS if successfully added.
2658 * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
2659 * @param pVCpu The VMCPU handle.
2660 * @remark Should only be used when monitoring is available, thus placed in
2661 * the PGMPOOL_WITH_MONITORING #ifdef.
2662 */
2663int pgmPoolSyncCR3(PVMCPU pVCpu)
2664{
2665 PVM pVM = pVCpu->CTX_SUFF(pVM);
2666 LogFlow(("pgmPoolSyncCR3\n"));
2667
2668 /*
2669 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2670 * Occasionally we will have to clear all the shadow page tables because we wanted
2671 * to monitor a page which was mapped by too many shadowed page tables. This operation
2672 * sometimes refered to as a 'lightweight flush'.
2673 */
2674# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
2675 if (ASMBitTestAndClear(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_CLEAR_PGM_POOL_BIT))
2676 {
2677 int rc = VMMR3EmtRendezvous(pVM, VMMEMTRENDEZVOUS_FLAGS_TYPE_ONCE, pgmPoolClearAll, NULL);
2678 AssertRC(rc);
2679 }
2680# else /* !IN_RING3 */
2681 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)
2682 {
2683 LogFlow(("SyncCR3: PGM_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2684 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
2685 return VINF_PGM_SYNC_CR3;
2686 }
2687# endif /* !IN_RING3 */
2688 else
2689 pgmPoolMonitorModifiedClearAll(pVM);
2690
2691 return VINF_SUCCESS;
2692}
2693
2694#endif /* PGMPOOL_WITH_MONITORING */
2695#ifdef PGMPOOL_WITH_USER_TRACKING
2696
2697/**
2698 * Frees up at least one user entry.
2699 *
2700 * @returns VBox status code.
2701 * @retval VINF_SUCCESS if successfully added.
2702 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2703 * @param pPool The pool.
2704 * @param iUser The user index.
2705 */
2706static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
2707{
2708 STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
2709#ifdef PGMPOOL_WITH_CACHE
2710 /*
2711 * Just free cached pages in a braindead fashion.
2712 */
2713 /** @todo walk the age list backwards and free the first with usage. */
2714 int rc = VINF_SUCCESS;
2715 do
2716 {
2717 int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
2718 if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
2719 rc = rc2;
2720 } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
2721 return rc;
2722#else
2723 /*
2724 * Lazy approach.
2725 */
2726 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
2727 AssertCompileFailed();
2728 Assert(!CPUMIsGuestInLongMode(pVM));
2729 pgmPoolFlushAllInt(pPool);
2730 return VERR_PGM_POOL_FLUSHED;
2731#endif
2732}
2733
2734
2735/**
2736 * Inserts a page into the cache.
2737 *
2738 * This will create user node for the page, insert it into the GCPhys
2739 * hash, and insert it into the age list.
2740 *
2741 * @returns VBox status code.
2742 * @retval VINF_SUCCESS if successfully added.
2743 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2744 * @param pPool The pool.
2745 * @param pPage The cached page.
2746 * @param GCPhys The GC physical address of the page we're gonna shadow.
2747 * @param iUser The user index.
2748 * @param iUserTable The user table index.
2749 */
2750DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
2751{
2752 int rc = VINF_SUCCESS;
2753 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2754
2755 LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser %x iUserTable %x\n", GCPhys, iUser, iUserTable));
2756
2757#ifdef VBOX_STRICT
2758 /*
2759 * Check that the entry doesn't already exists.
2760 */
2761 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2762 {
2763 uint16_t i = pPage->iUserHead;
2764 do
2765 {
2766 Assert(i < pPool->cMaxUsers);
2767 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2768 i = paUsers[i].iNext;
2769 } while (i != NIL_PGMPOOL_USER_INDEX);
2770 }
2771#endif
2772
2773 /*
2774 * Find free a user node.
2775 */
2776 uint16_t i = pPool->iUserFreeHead;
2777 if (i == NIL_PGMPOOL_USER_INDEX)
2778 {
2779 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2780 if (RT_FAILURE(rc))
2781 return rc;
2782 i = pPool->iUserFreeHead;
2783 }
2784
2785 /*
2786 * Unlink the user node from the free list,
2787 * initialize and insert it into the user list.
2788 */
2789 pPool->iUserFreeHead = paUsers[i].iNext;
2790 paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
2791 paUsers[i].iUser = iUser;
2792 paUsers[i].iUserTable = iUserTable;
2793 pPage->iUserHead = i;
2794
2795 /*
2796 * Insert into cache and enable monitoring of the guest page if enabled.
2797 *
2798 * Until we implement caching of all levels, including the CR3 one, we'll
2799 * have to make sure we don't try monitor & cache any recursive reuse of
2800 * a monitored CR3 page. Because all windows versions are doing this we'll
2801 * have to be able to do combined access monitoring, CR3 + PT and
2802 * PD + PT (guest PAE).
2803 *
2804 * Update:
2805 * We're now cooperating with the CR3 monitor if an uncachable page is found.
2806 */
2807#if defined(PGMPOOL_WITH_MONITORING) || defined(PGMPOOL_WITH_CACHE)
2808# ifdef PGMPOOL_WITH_MIXED_PT_CR3
2809 const bool fCanBeMonitored = true;
2810# else
2811 bool fCanBeMonitored = pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored == NIL_RTGCPHYS
2812 || (GCPhys & X86_PTE_PAE_PG_MASK) != (pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored & X86_PTE_PAE_PG_MASK)
2813 || pgmPoolIsBigPage((PGMPOOLKIND)pPage->enmKind);
2814# endif
2815# ifdef PGMPOOL_WITH_CACHE
2816 pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
2817# endif
2818 if (fCanBeMonitored)
2819 {
2820# ifdef PGMPOOL_WITH_MONITORING
2821 rc = pgmPoolMonitorInsert(pPool, pPage);
2822 AssertRC(rc);
2823 }
2824# endif
2825#endif /* PGMPOOL_WITH_MONITORING */
2826 return rc;
2827}
2828
2829
2830# ifdef PGMPOOL_WITH_CACHE /* (only used when the cache is enabled.) */
2831/**
2832 * Adds a user reference to a page.
2833 *
2834 * This will move the page to the head of the
2835 *
2836 * @returns VBox status code.
2837 * @retval VINF_SUCCESS if successfully added.
2838 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2839 * @param pPool The pool.
2840 * @param pPage The cached page.
2841 * @param iUser The user index.
2842 * @param iUserTable The user table.
2843 */
2844static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2845{
2846 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2847
2848 Log3(("pgmPoolTrackAddUser GCPhys = %RGp iUser %x iUserTable %x\n", pPage->GCPhys, iUser, iUserTable));
2849
2850# ifdef VBOX_STRICT
2851 /*
2852 * Check that the entry doesn't already exists. We only allow multiple users of top-level paging structures (SHW_POOL_ROOT_IDX).
2853 */
2854 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2855 {
2856 uint16_t i = pPage->iUserHead;
2857 do
2858 {
2859 Assert(i < pPool->cMaxUsers);
2860 AssertMsg(iUser != PGMPOOL_IDX_PD || iUser != PGMPOOL_IDX_PDPT || iUser != PGMPOOL_IDX_NESTED_ROOT || iUser != PGMPOOL_IDX_AMD64_CR3 ||
2861 paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2862 i = paUsers[i].iNext;
2863 } while (i != NIL_PGMPOOL_USER_INDEX);
2864 }
2865# endif
2866
2867 /*
2868 * Allocate a user node.
2869 */
2870 uint16_t i = pPool->iUserFreeHead;
2871 if (i == NIL_PGMPOOL_USER_INDEX)
2872 {
2873 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2874 if (RT_FAILURE(rc))
2875 return rc;
2876 i = pPool->iUserFreeHead;
2877 }
2878 pPool->iUserFreeHead = paUsers[i].iNext;
2879
2880 /*
2881 * Initialize the user node and insert it.
2882 */
2883 paUsers[i].iNext = pPage->iUserHead;
2884 paUsers[i].iUser = iUser;
2885 paUsers[i].iUserTable = iUserTable;
2886 pPage->iUserHead = i;
2887
2888# ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
2889 if (pPage->fDirty)
2890 pgmPoolFlushDirtyPage(pPool->CTX_SUFF(pVM), pPool, pPage->idxDirty, true /* force removal */);
2891# endif
2892
2893# ifdef PGMPOOL_WITH_CACHE
2894 /*
2895 * Tell the cache to update its replacement stats for this page.
2896 */
2897 pgmPoolCacheUsed(pPool, pPage);
2898# endif
2899 return VINF_SUCCESS;
2900}
2901# endif /* PGMPOOL_WITH_CACHE */
2902
2903
2904/**
2905 * Frees a user record associated with a page.
2906 *
2907 * This does not clear the entry in the user table, it simply replaces the
2908 * user record to the chain of free records.
2909 *
2910 * @param pPool The pool.
2911 * @param HCPhys The HC physical address of the shadow page.
2912 * @param iUser The shadow page pool index of the user table.
2913 * @param iUserTable The index into the user table (shadowed).
2914 */
2915static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2916{
2917 /*
2918 * Unlink and free the specified user entry.
2919 */
2920 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2921
2922 Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
2923 /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
2924 uint16_t i = pPage->iUserHead;
2925 if ( i != NIL_PGMPOOL_USER_INDEX
2926 && paUsers[i].iUser == iUser
2927 && paUsers[i].iUserTable == iUserTable)
2928 {
2929 pPage->iUserHead = paUsers[i].iNext;
2930
2931 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2932 paUsers[i].iNext = pPool->iUserFreeHead;
2933 pPool->iUserFreeHead = i;
2934 return;
2935 }
2936
2937 /* General: Linear search. */
2938 uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
2939 while (i != NIL_PGMPOOL_USER_INDEX)
2940 {
2941 if ( paUsers[i].iUser == iUser
2942 && paUsers[i].iUserTable == iUserTable)
2943 {
2944 if (iPrev != NIL_PGMPOOL_USER_INDEX)
2945 paUsers[iPrev].iNext = paUsers[i].iNext;
2946 else
2947 pPage->iUserHead = paUsers[i].iNext;
2948
2949 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2950 paUsers[i].iNext = pPool->iUserFreeHead;
2951 pPool->iUserFreeHead = i;
2952 return;
2953 }
2954 iPrev = i;
2955 i = paUsers[i].iNext;
2956 }
2957
2958 /* Fatal: didn't find it */
2959 AssertFatalMsgFailed(("Didn't find the user entry! iUser=%#x iUserTable=%#x GCPhys=%RGp\n",
2960 iUser, iUserTable, pPage->GCPhys));
2961}
2962
2963
2964/**
2965 * Gets the entry size of a shadow table.
2966 *
2967 * @param enmKind The kind of page.
2968 *
2969 * @returns The size of the entry in bytes. That is, 4 or 8.
2970 * @returns If the kind is not for a table, an assertion is raised and 0 is
2971 * returned.
2972 */
2973DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
2974{
2975 switch (enmKind)
2976 {
2977 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2978 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2979 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2980 case PGMPOOLKIND_32BIT_PD:
2981 case PGMPOOLKIND_32BIT_PD_PHYS:
2982 return 4;
2983
2984 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2985 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2986 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2987 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2988 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2989 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2990 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2991 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2992 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2993 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2994 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2995 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2996 case PGMPOOLKIND_64BIT_PML4:
2997 case PGMPOOLKIND_PAE_PDPT:
2998 case PGMPOOLKIND_ROOT_NESTED:
2999 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3000 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3001 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3002 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3003 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3004 case PGMPOOLKIND_PAE_PD_PHYS:
3005 case PGMPOOLKIND_PAE_PDPT_PHYS:
3006 return 8;
3007
3008 default:
3009 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
3010 }
3011}
3012
3013
3014/**
3015 * Gets the entry size of a guest table.
3016 *
3017 * @param enmKind The kind of page.
3018 *
3019 * @returns The size of the entry in bytes. That is, 0, 4 or 8.
3020 * @returns If the kind is not for a table, an assertion is raised and 0 is
3021 * returned.
3022 */
3023DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
3024{
3025 switch (enmKind)
3026 {
3027 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3028 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3029 case PGMPOOLKIND_32BIT_PD:
3030 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3031 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3032 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3033 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3034 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3035 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3036 return 4;
3037
3038 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3039 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3040 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3041 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3042 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3043 case PGMPOOLKIND_64BIT_PML4:
3044 case PGMPOOLKIND_PAE_PDPT:
3045 return 8;
3046
3047 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3048 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3049 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3050 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3051 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3052 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3053 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3054 case PGMPOOLKIND_ROOT_NESTED:
3055 case PGMPOOLKIND_PAE_PD_PHYS:
3056 case PGMPOOLKIND_PAE_PDPT_PHYS:
3057 case PGMPOOLKIND_32BIT_PD_PHYS:
3058 /** @todo can we return 0? (nobody is calling this...) */
3059 AssertFailed();
3060 return 0;
3061
3062 default:
3063 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
3064 }
3065}
3066
3067#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3068
3069/**
3070 * Scans one shadow page table for mappings of a physical page.
3071 *
3072 * @param pVM The VM handle.
3073 * @param pPhysPage The guest page in question.
3074 * @param iShw The shadow page table.
3075 * @param cRefs The number of references made in that PT.
3076 */
3077static void pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
3078{
3079 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
3080 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3081
3082 /*
3083 * Assert sanity.
3084 */
3085 Assert(cRefs == 1);
3086 AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
3087 PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
3088
3089 /*
3090 * Then, clear the actual mappings to the page in the shadow PT.
3091 */
3092 switch (pPage->enmKind)
3093 {
3094 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3095 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3096 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3097 {
3098 const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3099 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3100 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3101 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3102 {
3103 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32 cRefs=%#x\n", i, pPT->a[i], cRefs));
3104 pPT->a[i].u = 0;
3105 cRefs--;
3106 if (!cRefs)
3107 return;
3108 }
3109#ifdef LOG_ENABLED
3110 Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3111 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3112 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3113 {
3114 Log(("i=%d cRefs=%d\n", i, cRefs--));
3115 }
3116#endif
3117 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3118 break;
3119 }
3120
3121 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3122 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3123 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3124 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3125 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3126 {
3127 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3128 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3129 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3130 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
3131 {
3132 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
3133 pPT->a[i].u = 0;
3134 cRefs--;
3135 if (!cRefs)
3136 return;
3137 }
3138#ifdef LOG_ENABLED
3139 Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3140 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3141 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
3142 {
3143 Log(("i=%d cRefs=%d\n", i, cRefs--));
3144 }
3145#endif
3146 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d u64=%RX64\n", cRefs, pPage->iFirstPresent, pPage->cPresent, u64));
3147 break;
3148 }
3149
3150 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3151 {
3152 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3153 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3154 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3155 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
3156 {
3157 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
3158 pPT->a[i].u = 0;
3159 cRefs--;
3160 if (!cRefs)
3161 return;
3162 }
3163#ifdef LOG_ENABLED
3164 Log(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3165 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3166 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
3167 {
3168 Log(("i=%d cRefs=%d\n", i, cRefs--));
3169 }
3170#endif
3171 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
3172 break;
3173 }
3174
3175 default:
3176 AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
3177 }
3178}
3179
3180
3181/**
3182 * Scans one shadow page table for mappings of a physical page.
3183 *
3184 * @param pVM The VM handle.
3185 * @param pPhysPage The guest page in question.
3186 * @param iShw The shadow page table.
3187 * @param cRefs The number of references made in that PT.
3188 */
3189void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
3190{
3191 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
3192 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
3193 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
3194 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, iShw, cRefs);
3195 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3196 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
3197}
3198
3199
3200/**
3201 * Flushes a list of shadow page tables mapping the same physical page.
3202 *
3203 * @param pVM The VM handle.
3204 * @param pPhysPage The guest page in question.
3205 * @param iPhysExt The physical cross reference extent list to flush.
3206 */
3207void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt)
3208{
3209 Assert(PGMIsLockOwner(pVM));
3210 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3211 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
3212 LogFlow(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%R[pgmpage] iPhysExt\n", pPhysPage, iPhysExt));
3213
3214 const uint16_t iPhysExtStart = iPhysExt;
3215 PPGMPOOLPHYSEXT pPhysExt;
3216 do
3217 {
3218 Assert(iPhysExt < pPool->cMaxPhysExts);
3219 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3220 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3221 if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
3222 {
3223 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, pPhysExt->aidx[i], 1);
3224 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3225 }
3226
3227 /* next */
3228 iPhysExt = pPhysExt->iNext;
3229 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3230
3231 /* insert the list into the free list and clear the ram range entry. */
3232 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3233 pPool->iPhysExtFreeHead = iPhysExtStart;
3234 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3235
3236 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
3237}
3238
3239#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
3240
3241/**
3242 * Flushes all shadow page table mappings of the given guest page.
3243 *
3244 * This is typically called when the host page backing the guest one has been
3245 * replaced or when the page protection was changed due to an access handler.
3246 *
3247 * @returns VBox status code.
3248 * @retval VINF_SUCCESS if all references has been successfully cleared.
3249 * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page
3250 * pool cleaning. FF and sync flags are set.
3251 *
3252 * @param pVM The VM handle.
3253 * @param pPhysPage The guest page in question.
3254 * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
3255 * flushed, it is NOT touched if this isn't necessary.
3256 * The caller MUST initialized this to @a false.
3257 */
3258int pgmPoolTrackFlushGCPhys(PVM pVM, PPGMPAGE pPhysPage, bool *pfFlushTLBs)
3259{
3260 PVMCPU pVCpu = VMMGetCpu(pVM);
3261 pgmLock(pVM);
3262 int rc = VINF_SUCCESS;
3263#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3264 const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
3265 if (u16)
3266 {
3267 /*
3268 * The zero page is currently screwing up the tracking and we'll
3269 * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
3270 * is defined, zero pages won't normally be mapped. Some kind of solution
3271 * will be needed for this problem of course, but it will have to wait...
3272 */
3273 if (PGM_PAGE_IS_ZERO(pPhysPage))
3274 rc = VINF_PGM_GCPHYS_ALIASED;
3275 else
3276 {
3277# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3278 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow and
3279 pgmPoolTrackFlushGCPhysPTs will/may kill the pool otherwise. */
3280 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
3281# endif
3282
3283 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3284 pgmPoolTrackFlushGCPhysPT(pVM,
3285 pPhysPage,
3286 PGMPOOL_TD_GET_IDX(u16),
3287 PGMPOOL_TD_GET_CREFS(u16));
3288 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3289 pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, PGMPOOL_TD_GET_IDX(u16));
3290 else
3291 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
3292 *pfFlushTLBs = true;
3293
3294# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3295 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
3296# endif
3297 }
3298 }
3299
3300#elif defined(PGMPOOL_WITH_CACHE)
3301 if (PGM_PAGE_IS_ZERO(pPhysPage))
3302 rc = VINF_PGM_GCPHYS_ALIASED;
3303 else
3304 {
3305# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3306 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow kills the pool otherwise. */
3307 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
3308# endif
3309 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
3310 if (rc == VINF_SUCCESS)
3311 *pfFlushTLBs = true;
3312 }
3313
3314# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3315 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
3316# endif
3317
3318#else
3319 rc = VINF_PGM_GCPHYS_ALIASED;
3320#endif
3321
3322 if (rc == VINF_PGM_GCPHYS_ALIASED)
3323 {
3324 pVCpu->pgm.s.fSyncFlags |= PGM_SYNC_CLEAR_PGM_POOL;
3325 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3326 rc = VINF_PGM_SYNC_CR3;
3327 }
3328 pgmUnlock(pVM);
3329 return rc;
3330}
3331
3332
3333/**
3334 * Scans all shadow page tables for mappings of a physical page.
3335 *
3336 * This may be slow, but it's most likely more efficient than cleaning
3337 * out the entire page pool / cache.
3338 *
3339 * @returns VBox status code.
3340 * @retval VINF_SUCCESS if all references has been successfully cleared.
3341 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
3342 * a page pool cleaning.
3343 *
3344 * @param pVM The VM handle.
3345 * @param pPhysPage The guest page in question.
3346 */
3347int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage)
3348{
3349 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3350 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3351 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
3352 pPool->cUsedPages, pPool->cPresent, pPhysPage));
3353
3354#if 1
3355 /*
3356 * There is a limit to what makes sense.
3357 */
3358 if (pPool->cPresent > 1024)
3359 {
3360 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
3361 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3362 return VINF_PGM_GCPHYS_ALIASED;
3363 }
3364#endif
3365
3366 /*
3367 * Iterate all the pages until we've encountered all that in use.
3368 * This is simple but not quite optimal solution.
3369 */
3370 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
3371 const uint32_t u32 = u64;
3372 unsigned cLeft = pPool->cUsedPages;
3373 unsigned iPage = pPool->cCurPages;
3374 while (--iPage >= PGMPOOL_IDX_FIRST)
3375 {
3376 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
3377 if (pPage->GCPhys != NIL_RTGCPHYS)
3378 {
3379 switch (pPage->enmKind)
3380 {
3381 /*
3382 * We only care about shadow page tables.
3383 */
3384 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3385 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3386 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3387 {
3388 unsigned cPresent = pPage->cPresent;
3389 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3390 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3391 if (pPT->a[i].n.u1Present)
3392 {
3393 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
3394 {
3395 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
3396 pPT->a[i].u = 0;
3397 }
3398 if (!--cPresent)
3399 break;
3400 }
3401 break;
3402 }
3403
3404 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3405 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3406 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3407 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3408 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3409 {
3410 unsigned cPresent = pPage->cPresent;
3411 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
3412 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
3413 if (pPT->a[i].n.u1Present)
3414 {
3415 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
3416 {
3417 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
3418 pPT->a[i].u = 0;
3419 }
3420 if (!--cPresent)
3421 break;
3422 }
3423 break;
3424 }
3425 }
3426 if (!--cLeft)
3427 break;
3428 }
3429 }
3430
3431 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3432 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
3433 return VINF_SUCCESS;
3434}
3435
3436
3437/**
3438 * Clears the user entry in a user table.
3439 *
3440 * This is used to remove all references to a page when flushing it.
3441 */
3442static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
3443{
3444 Assert(pUser->iUser != NIL_PGMPOOL_IDX);
3445 Assert(pUser->iUser < pPool->cCurPages);
3446 uint32_t iUserTable = pUser->iUserTable;
3447
3448 /*
3449 * Map the user page.
3450 */
3451 PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
3452 union
3453 {
3454 uint64_t *pau64;
3455 uint32_t *pau32;
3456 } u;
3457 u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
3458
3459 LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
3460
3461 /* Safety precaution in case we change the paging for other modes too in the future. */
3462 Assert(!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage));
3463
3464#ifdef VBOX_STRICT
3465 /*
3466 * Some sanity checks.
3467 */
3468 switch (pUserPage->enmKind)
3469 {
3470 case PGMPOOLKIND_32BIT_PD:
3471 case PGMPOOLKIND_32BIT_PD_PHYS:
3472 Assert(iUserTable < X86_PG_ENTRIES);
3473 break;
3474 case PGMPOOLKIND_PAE_PDPT:
3475 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3476 case PGMPOOLKIND_PAE_PDPT_PHYS:
3477 Assert(iUserTable < 4);
3478 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3479 break;
3480 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3481 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3482 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3483 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3484 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3485 case PGMPOOLKIND_PAE_PD_PHYS:
3486 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3487 break;
3488 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3489 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3490 Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING));
3491 break;
3492 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3493 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3494 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3495 break;
3496 case PGMPOOLKIND_64BIT_PML4:
3497 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
3498 /* GCPhys >> PAGE_SHIFT is the index here */
3499 break;
3500 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3501 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3502 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3503 break;
3504
3505 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3506 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3507 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3508 break;
3509
3510 case PGMPOOLKIND_ROOT_NESTED:
3511 Assert(iUserTable < X86_PG_PAE_ENTRIES);
3512 break;
3513
3514 default:
3515 AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
3516 break;
3517 }
3518#endif /* VBOX_STRICT */
3519
3520 /*
3521 * Clear the entry in the user page.
3522 */
3523 switch (pUserPage->enmKind)
3524 {
3525 /* 32-bit entries */
3526 case PGMPOOLKIND_32BIT_PD:
3527 case PGMPOOLKIND_32BIT_PD_PHYS:
3528 u.pau32[iUserTable] = 0;
3529 break;
3530
3531 /* 64-bit entries */
3532 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3533 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3534 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3535 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3536 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3537#if defined(IN_RC)
3538 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
3539 * non-present PDPT will continue to cause page faults.
3540 */
3541 ASMReloadCR3();
3542#endif
3543 /* no break */
3544 case PGMPOOLKIND_PAE_PD_PHYS:
3545 case PGMPOOLKIND_PAE_PDPT_PHYS:
3546 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3547 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3548 case PGMPOOLKIND_64BIT_PML4:
3549 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3550 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3551 case PGMPOOLKIND_PAE_PDPT:
3552 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3553 case PGMPOOLKIND_ROOT_NESTED:
3554 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3555 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3556 u.pau64[iUserTable] = 0;
3557 break;
3558
3559 default:
3560 AssertFatalMsgFailed(("enmKind=%d iUser=%#x iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
3561 }
3562}
3563
3564
3565/**
3566 * Clears all users of a page.
3567 */
3568static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3569{
3570 /*
3571 * Free all the user records.
3572 */
3573 LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
3574
3575 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
3576 uint16_t i = pPage->iUserHead;
3577 while (i != NIL_PGMPOOL_USER_INDEX)
3578 {
3579 /* Clear enter in user table. */
3580 pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
3581
3582 /* Free it. */
3583 const uint16_t iNext = paUsers[i].iNext;
3584 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3585 paUsers[i].iNext = pPool->iUserFreeHead;
3586 pPool->iUserFreeHead = i;
3587
3588 /* Next. */
3589 i = iNext;
3590 }
3591 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3592}
3593
3594#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3595
3596/**
3597 * Allocates a new physical cross reference extent.
3598 *
3599 * @returns Pointer to the allocated extent on success. NULL if we're out of them.
3600 * @param pVM The VM handle.
3601 * @param piPhysExt Where to store the phys ext index.
3602 */
3603PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt)
3604{
3605 Assert(PGMIsLockOwner(pVM));
3606 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3607 uint16_t iPhysExt = pPool->iPhysExtFreeHead;
3608 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3609 {
3610 STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
3611 return NULL;
3612 }
3613 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3614 pPool->iPhysExtFreeHead = pPhysExt->iNext;
3615 pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3616 *piPhysExt = iPhysExt;
3617 return pPhysExt;
3618}
3619
3620
3621/**
3622 * Frees a physical cross reference extent.
3623 *
3624 * @param pVM The VM handle.
3625 * @param iPhysExt The extent to free.
3626 */
3627void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt)
3628{
3629 Assert(PGMIsLockOwner(pVM));
3630 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3631 Assert(iPhysExt < pPool->cMaxPhysExts);
3632 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3633 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3634 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3635 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3636 pPool->iPhysExtFreeHead = iPhysExt;
3637}
3638
3639
3640/**
3641 * Frees a physical cross reference extent.
3642 *
3643 * @param pVM The VM handle.
3644 * @param iPhysExt The extent to free.
3645 */
3646void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt)
3647{
3648 Assert(PGMIsLockOwner(pVM));
3649 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3650
3651 const uint16_t iPhysExtStart = iPhysExt;
3652 PPGMPOOLPHYSEXT pPhysExt;
3653 do
3654 {
3655 Assert(iPhysExt < pPool->cMaxPhysExts);
3656 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3657 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3658 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3659
3660 /* next */
3661 iPhysExt = pPhysExt->iNext;
3662 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3663
3664 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3665 pPool->iPhysExtFreeHead = iPhysExtStart;
3666}
3667
3668
3669/**
3670 * Insert a reference into a list of physical cross reference extents.
3671 *
3672 * @returns The new tracking data for PGMPAGE.
3673 *
3674 * @param pVM The VM handle.
3675 * @param iPhysExt The physical extent index of the list head.
3676 * @param iShwPT The shadow page table index.
3677 *
3678 */
3679static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT)
3680{
3681 Assert(PGMIsLockOwner(pVM));
3682 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3683 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3684
3685 /* special common case. */
3686 if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
3687 {
3688 paPhysExts[iPhysExt].aidx[2] = iShwPT;
3689 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3690 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{,,%d}\n", iPhysExt, iShwPT));
3691 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3692 }
3693
3694 /* general treatment. */
3695 const uint16_t iPhysExtStart = iPhysExt;
3696 unsigned cMax = 15;
3697 for (;;)
3698 {
3699 Assert(iPhysExt < pPool->cMaxPhysExts);
3700 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3701 if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
3702 {
3703 paPhysExts[iPhysExt].aidx[i] = iShwPT;
3704 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3705 LogFlow(("pgmPoolTrackPhysExtInsert: %d:{%d} i=%d cMax=%d\n", iPhysExt, iShwPT, i, cMax));
3706 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
3707 }
3708 if (!--cMax)
3709 {
3710 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3711 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3712 LogFlow(("pgmPoolTrackPhysExtInsert: overflow (1) iShwPT=%d\n", iShwPT));
3713 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3714 }
3715 }
3716
3717 /* add another extent to the list. */
3718 PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3719 if (!pNew)
3720 {
3721 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3722 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3723 LogFlow(("pgmPoolTrackPhysExtInsert: pgmPoolTrackPhysExtAlloc failed iShwPT=%d\n", iShwPT));
3724 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3725 }
3726 pNew->iNext = iPhysExtStart;
3727 pNew->aidx[0] = iShwPT;
3728 LogFlow(("pgmPoolTrackPhysExtInsert: added new extent %d:{%d}->%d\n", iPhysExt, iShwPT, iPhysExtStart));
3729 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3730}
3731
3732
3733/**
3734 * Add a reference to guest physical page where extents are in use.
3735 *
3736 * @returns The new tracking data for PGMPAGE.
3737 *
3738 * @param pVM The VM handle.
3739 * @param u16 The ram range flags (top 16-bits).
3740 * @param iShwPT The shadow page table index.
3741 */
3742uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT)
3743{
3744 pgmLock(pVM);
3745 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3746 {
3747 /*
3748 * Convert to extent list.
3749 */
3750 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
3751 uint16_t iPhysExt;
3752 PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3753 if (pPhysExt)
3754 {
3755 LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
3756 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliased);
3757 pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
3758 pPhysExt->aidx[1] = iShwPT;
3759 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3760 }
3761 else
3762 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3763 }
3764 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3765 {
3766 /*
3767 * Insert into the extent list.
3768 */
3769 u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT);
3770 }
3771 else
3772 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedLots);
3773 pgmUnlock(pVM);
3774 return u16;
3775}
3776
3777
3778/**
3779 * Clear references to guest physical memory.
3780 *
3781 * @param pPool The pool.
3782 * @param pPage The page.
3783 * @param pPhysPage Pointer to the aPages entry in the ram range.
3784 */
3785void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage)
3786{
3787 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
3788 AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3789
3790 uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
3791 if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
3792 {
3793 PVM pVM = pPool->CTX_SUFF(pVM);
3794 pgmLock(pVM);
3795
3796 uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
3797 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3798 do
3799 {
3800 Assert(iPhysExt < pPool->cMaxPhysExts);
3801
3802 /*
3803 * Look for the shadow page and check if it's all freed.
3804 */
3805 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3806 {
3807 if (paPhysExts[iPhysExt].aidx[i] == pPage->idx)
3808 {
3809 paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
3810
3811 for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3812 if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
3813 {
3814 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3815 pgmUnlock(pVM);
3816 return;
3817 }
3818
3819 /* we can free the node. */
3820 const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
3821 if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
3822 && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
3823 {
3824 /* lonely node */
3825 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3826 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
3827 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3828 }
3829 else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
3830 {
3831 /* head */
3832 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
3833 PGM_PAGE_SET_TRACKING(pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
3834 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3835 }
3836 else
3837 {
3838 /* in list */
3839 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3840 paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
3841 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3842 }
3843 iPhysExt = iPhysExtNext;
3844 pgmUnlock(pVM);
3845 return;
3846 }
3847 }
3848
3849 /* next */
3850 iPhysExtPrev = iPhysExt;
3851 iPhysExt = paPhysExts[iPhysExt].iNext;
3852 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3853
3854 pgmUnlock(pVM);
3855 AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3856 }
3857 else /* nothing to do */
3858 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
3859}
3860
3861
3862/**
3863 * Clear references to guest physical memory.
3864 *
3865 * This is the same as pgmPoolTracDerefGCPhys except that the guest physical address
3866 * is assumed to be correct, so the linear search can be skipped and we can assert
3867 * at an earlier point.
3868 *
3869 * @param pPool The pool.
3870 * @param pPage The page.
3871 * @param HCPhys The host physical address corresponding to the guest page.
3872 * @param GCPhys The guest physical address corresponding to HCPhys.
3873 */
3874static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys)
3875{
3876 /*
3877 * Walk range list.
3878 */
3879 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3880 while (pRam)
3881 {
3882 RTGCPHYS off = GCPhys - pRam->GCPhys;
3883 if (off < pRam->cb)
3884 {
3885 /* does it match? */
3886 const unsigned iPage = off >> PAGE_SHIFT;
3887 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3888#ifdef LOG_ENABLED
3889RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]);
3890Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
3891#endif
3892 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3893 {
3894 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3895 return;
3896 }
3897 break;
3898 }
3899 pRam = pRam->CTX_SUFF(pNext);
3900 }
3901 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
3902}
3903
3904
3905/**
3906 * Clear references to guest physical memory.
3907 *
3908 * @param pPool The pool.
3909 * @param pPage The page.
3910 * @param HCPhys The host physical address corresponding to the guest page.
3911 * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
3912 */
3913void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint)
3914{
3915 Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
3916
3917 /*
3918 * Walk range list.
3919 */
3920 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3921 while (pRam)
3922 {
3923 RTGCPHYS off = GCPhysHint - pRam->GCPhys;
3924 if (off < pRam->cb)
3925 {
3926 /* does it match? */
3927 const unsigned iPage = off >> PAGE_SHIFT;
3928 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3929 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3930 {
3931 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3932 return;
3933 }
3934 break;
3935 }
3936 pRam = pRam->CTX_SUFF(pNext);
3937 }
3938
3939 /*
3940 * Damn, the hint didn't work. We'll have to do an expensive linear search.
3941 */
3942 STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
3943 pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3944 while (pRam)
3945 {
3946 unsigned iPage = pRam->cb >> PAGE_SHIFT;
3947 while (iPage-- > 0)
3948 {
3949 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3950 {
3951 Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
3952 HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
3953 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3954 return;
3955 }
3956 }
3957 pRam = pRam->CTX_SUFF(pNext);
3958 }
3959
3960 AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp\n", HCPhys, GCPhysHint));
3961}
3962
3963
3964/**
3965 * Clear references to guest physical memory in a 32-bit / 32-bit page table.
3966 *
3967 * @param pPool The pool.
3968 * @param pPage The page.
3969 * @param pShwPT The shadow page table (mapping of the page).
3970 * @param pGstPT The guest page table.
3971 */
3972DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
3973{
3974 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
3975 if (pShwPT->a[i].n.u1Present)
3976 {
3977 Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
3978 i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3979 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3980 if (!--pPage->cPresent)
3981 break;
3982 }
3983}
3984
3985
3986/**
3987 * Clear references to guest physical memory in a PAE / 32-bit page table.
3988 *
3989 * @param pPool The pool.
3990 * @param pPage The page.
3991 * @param pShwPT The shadow page table (mapping of the page).
3992 * @param pGstPT The guest page table (just a half one).
3993 */
3994DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PT pGstPT)
3995{
3996 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
3997 if (pShwPT->a[i].n.u1Present)
3998 {
3999 Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
4000 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
4001 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
4002 if (!--pPage->cPresent)
4003 break;
4004 }
4005}
4006
4007
4008/**
4009 * Clear references to guest physical memory in a PAE / PAE page table.
4010 *
4011 * @param pPool The pool.
4012 * @param pPage The page.
4013 * @param pShwPT The shadow page table (mapping of the page).
4014 * @param pGstPT The guest page table.
4015 */
4016DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT)
4017{
4018 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
4019 if (pShwPT->a[i].n.u1Present)
4020 {
4021 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
4022 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
4023 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK);
4024 if (!--pPage->cPresent)
4025 break;
4026 }
4027}
4028
4029
4030/**
4031 * Clear references to guest physical memory in a 32-bit / 4MB page table.
4032 *
4033 * @param pPool The pool.
4034 * @param pPage The page.
4035 * @param pShwPT The shadow page table (mapping of the page).
4036 */
4037DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
4038{
4039 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4040 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4041 if (pShwPT->a[i].n.u1Present)
4042 {
4043 Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
4044 i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys));
4045 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys);
4046 if (!--pPage->cPresent)
4047 break;
4048 }
4049}
4050
4051
4052/**
4053 * Clear references to guest physical memory in a PAE / 2/4MB page table.
4054 *
4055 * @param pPool The pool.
4056 * @param pPage The page.
4057 * @param pShwPT The shadow page table (mapping of the page).
4058 */
4059DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT)
4060{
4061 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4062 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4063 if (pShwPT->a[i].n.u1Present)
4064 {
4065 Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
4066 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys));
4067 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys);
4068 if (!--pPage->cPresent)
4069 break;
4070 }
4071}
4072
4073
4074/**
4075 * Clear references to shadowed pages in an EPT page table.
4076 *
4077 * @param pPool The pool.
4078 * @param pPage The page.
4079 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
4080 */
4081DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
4082{
4083 RTGCPHYS GCPhys = pPage->GCPhys + PAGE_SIZE * pPage->iFirstPresent;
4084 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
4085 if (pShwPT->a[i].n.u1Present)
4086 {
4087 Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
4088 i, pShwPT->a[i].u & EPT_PTE_PG_MASK, pPage->GCPhys));
4089 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & EPT_PTE_PG_MASK, GCPhys);
4090 if (!--pPage->cPresent)
4091 break;
4092 }
4093}
4094
4095#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
4096
4097
4098/**
4099 * Clear references to shadowed pages in a 32 bits page directory.
4100 *
4101 * @param pPool The pool.
4102 * @param pPage The page.
4103 * @param pShwPD The shadow page directory (mapping of the page).
4104 */
4105DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
4106{
4107 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4108 {
4109 if ( pShwPD->a[i].n.u1Present
4110 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
4111 )
4112 {
4113 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
4114 if (pSubPage)
4115 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4116 else
4117 AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
4118 }
4119 }
4120}
4121
4122/**
4123 * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
4124 *
4125 * @param pPool The pool.
4126 * @param pPage The page.
4127 * @param pShwPD The shadow page directory (mapping of the page).
4128 */
4129DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
4130{
4131 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4132 {
4133 if ( pShwPD->a[i].n.u1Present
4134 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
4135 )
4136 {
4137 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK);
4138 if (pSubPage)
4139 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4140 else
4141 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK));
4142 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4143 }
4144 }
4145}
4146
4147/**
4148 * Clear references to shadowed pages in a PAE page directory pointer table.
4149 *
4150 * @param pPool The pool.
4151 * @param pPage The page.
4152 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4153 */
4154DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
4155{
4156 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
4157 {
4158 if ( pShwPDPT->a[i].n.u1Present
4159 && !(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING)
4160 )
4161 {
4162 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
4163 if (pSubPage)
4164 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4165 else
4166 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
4167 }
4168 }
4169}
4170
4171
4172/**
4173 * Clear references to shadowed pages in a 64-bit page directory pointer table.
4174 *
4175 * @param pPool The pool.
4176 * @param pPage The page.
4177 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4178 */
4179DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
4180{
4181 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
4182 {
4183 Assert(!(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING));
4184 if (pShwPDPT->a[i].n.u1Present)
4185 {
4186 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
4187 if (pSubPage)
4188 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4189 else
4190 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
4191 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4192 }
4193 }
4194}
4195
4196
4197/**
4198 * Clear references to shadowed pages in a 64-bit level 4 page table.
4199 *
4200 * @param pPool The pool.
4201 * @param pPage The page.
4202 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
4203 */
4204DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
4205{
4206 for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
4207 {
4208 if (pShwPML4->a[i].n.u1Present)
4209 {
4210 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPML4->a[i].u & X86_PDPE_PG_MASK);
4211 if (pSubPage)
4212 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4213 else
4214 AssertFatalMsgFailed(("%RX64\n", pShwPML4->a[i].u & X86_PML4E_PG_MASK));
4215 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4216 }
4217 }
4218}
4219
4220
4221/**
4222 * Clear references to shadowed pages in an EPT page directory.
4223 *
4224 * @param pPool The pool.
4225 * @param pPage The page.
4226 * @param pShwPD The shadow page directory (mapping of the page).
4227 */
4228DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
4229{
4230 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
4231 {
4232 if (pShwPD->a[i].n.u1Present)
4233 {
4234 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & EPT_PDE_PG_MASK);
4235 if (pSubPage)
4236 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4237 else
4238 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
4239 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4240 }
4241 }
4242}
4243
4244
4245/**
4246 * Clear references to shadowed pages in an EPT page directory pointer table.
4247 *
4248 * @param pPool The pool.
4249 * @param pPage The page.
4250 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
4251 */
4252DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
4253{
4254 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
4255 {
4256 if (pShwPDPT->a[i].n.u1Present)
4257 {
4258 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK);
4259 if (pSubPage)
4260 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
4261 else
4262 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK));
4263 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
4264 }
4265 }
4266}
4267
4268
4269/**
4270 * Clears all references made by this page.
4271 *
4272 * This includes other shadow pages and GC physical addresses.
4273 *
4274 * @param pPool The pool.
4275 * @param pPage The page.
4276 */
4277static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4278{
4279 /*
4280 * Map the shadow page and take action according to the page kind.
4281 */
4282 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
4283 switch (pPage->enmKind)
4284 {
4285#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4286 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4287 {
4288 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4289 void *pvGst;
4290 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4291 pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
4292 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4293 break;
4294 }
4295
4296 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4297 {
4298 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4299 void *pvGst;
4300 int rc = PGM_GCPHYS_2_PTR_EX(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4301 pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PT)pvGst);
4302 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4303 break;
4304 }
4305
4306 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4307 {
4308 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4309 void *pvGst;
4310 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
4311 pgmPoolTrackDerefPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
4312 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4313 break;
4314 }
4315
4316 case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
4317 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4318 {
4319 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4320 pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
4321 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4322 break;
4323 }
4324
4325 case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
4326 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4327 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4328 {
4329 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
4330 pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PX86PTPAE)pvShw);
4331 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
4332 break;
4333 }
4334
4335#else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
4336 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4337 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4338 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4339 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4340 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4341 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4342 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
4343 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
4344 break;
4345#endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
4346
4347 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4348 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4349 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4350 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4351 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4352 case PGMPOOLKIND_PAE_PD_PHYS:
4353 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4354 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4355 pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
4356 break;
4357
4358 case PGMPOOLKIND_32BIT_PD_PHYS:
4359 case PGMPOOLKIND_32BIT_PD:
4360 pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
4361 break;
4362
4363 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4364 case PGMPOOLKIND_PAE_PDPT:
4365 case PGMPOOLKIND_PAE_PDPT_PHYS:
4366 pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
4367 break;
4368
4369 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4370 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4371 pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
4372 break;
4373
4374 case PGMPOOLKIND_64BIT_PML4:
4375 pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
4376 break;
4377
4378 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4379 pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
4380 break;
4381
4382 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4383 pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
4384 break;
4385
4386 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4387 pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
4388 break;
4389
4390 default:
4391 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
4392 }
4393
4394 /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
4395 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4396 ASMMemZeroPage(pvShw);
4397 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4398 pPage->fZeroed = true;
4399 PGMPOOL_UNLOCK_PTR(pPool->CTX_SUFF(pVM), pvShw);
4400}
4401#endif /* PGMPOOL_WITH_USER_TRACKING */
4402
4403/**
4404 * Flushes a pool page.
4405 *
4406 * This moves the page to the free list after removing all user references to it.
4407 *
4408 * @returns VBox status code.
4409 * @retval VINF_SUCCESS on success.
4410 * @param pPool The pool.
4411 * @param HCPhys The HC physical address of the shadow page.
4412 */
4413int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4414{
4415 PVM pVM = pPool->CTX_SUFF(pVM);
4416
4417 int rc = VINF_SUCCESS;
4418 STAM_PROFILE_START(&pPool->StatFlushPage, f);
4419 LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
4420 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
4421
4422 /*
4423 * Quietly reject any attempts at flushing any of the special root pages.
4424 */
4425 if (pPage->idx < PGMPOOL_IDX_FIRST)
4426 {
4427 AssertFailed(); /* can no longer happen */
4428 Log(("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
4429 return VINF_SUCCESS;
4430 }
4431
4432 pgmLock(pVM);
4433
4434 /*
4435 * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
4436 */
4437 if (pgmPoolIsPageLocked(&pVM->pgm.s, pPage))
4438 {
4439 AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
4440 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
4441 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
4442 || pPage->enmKind == PGMPOOLKIND_32BIT_PD
4443 || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4444 || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
4445 || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
4446 || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
4447 || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD,
4448 ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind));
4449 Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
4450 pgmUnlock(pVM);
4451 return VINF_SUCCESS;
4452 }
4453
4454#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4455 /* Start a subset so we won't run out of mapping space. */
4456 PVMCPU pVCpu = VMMGetCpu(pVM);
4457 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
4458#endif
4459
4460 /*
4461 * Mark the page as being in need of an ASMMemZeroPage().
4462 */
4463 pPage->fZeroed = false;
4464
4465#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4466 if (pPage->fDirty)
4467 pgmPoolFlushDirtyPage(pVM, pPool, pPage->idxDirty, true /* force removal */);
4468#endif
4469
4470#ifdef PGMPOOL_WITH_USER_TRACKING
4471 /*
4472 * Clear the page.
4473 */
4474 pgmPoolTrackClearPageUsers(pPool, pPage);
4475 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
4476 pgmPoolTrackDeref(pPool, pPage);
4477 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
4478#endif
4479
4480#ifdef PGMPOOL_WITH_CACHE
4481 /*
4482 * Flush it from the cache.
4483 */
4484 pgmPoolCacheFlushPage(pPool, pPage);
4485#endif /* PGMPOOL_WITH_CACHE */
4486
4487#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4488 /* Heavy stuff done. */
4489 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
4490#endif
4491
4492#ifdef PGMPOOL_WITH_MONITORING
4493 /*
4494 * Deregistering the monitoring.
4495 */
4496 if (pPage->fMonitored)
4497 rc = pgmPoolMonitorFlush(pPool, pPage);
4498#endif
4499
4500 /*
4501 * Free the page.
4502 */
4503 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
4504 pPage->iNext = pPool->iFreeHead;
4505 pPool->iFreeHead = pPage->idx;
4506 pPage->enmKind = PGMPOOLKIND_FREE;
4507 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4508 pPage->GCPhys = NIL_RTGCPHYS;
4509 pPage->fReusedFlushPending = false;
4510
4511 pPool->cUsedPages--;
4512 pgmUnlock(pVM);
4513 STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
4514 return rc;
4515}
4516
4517
4518/**
4519 * Frees a usage of a pool page.
4520 *
4521 * The caller is responsible to updating the user table so that it no longer
4522 * references the shadow page.
4523 *
4524 * @param pPool The pool.
4525 * @param HCPhys The HC physical address of the shadow page.
4526 * @param iUser The shadow page pool index of the user table.
4527 * @param iUserTable The index into the user table (shadowed).
4528 */
4529void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
4530{
4531 PVM pVM = pPool->CTX_SUFF(pVM);
4532
4533 STAM_PROFILE_START(&pPool->StatFree, a);
4534 LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%#x iUserTable=%#x\n",
4535 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
4536 Assert(pPage->idx >= PGMPOOL_IDX_FIRST);
4537 pgmLock(pVM);
4538#ifdef PGMPOOL_WITH_USER_TRACKING
4539 pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
4540#endif
4541#ifdef PGMPOOL_WITH_CACHE
4542 if (!pPage->fCached)
4543#endif
4544 pgmPoolFlushPage(pPool, pPage);
4545 pgmUnlock(pVM);
4546 STAM_PROFILE_STOP(&pPool->StatFree, a);
4547}
4548
4549
4550/**
4551 * Makes one or more free page free.
4552 *
4553 * @returns VBox status code.
4554 * @retval VINF_SUCCESS on success.
4555 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4556 *
4557 * @param pPool The pool.
4558 * @param enmKind Page table kind
4559 * @param iUser The user of the page.
4560 */
4561static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
4562{
4563 PVM pVM = pPool->CTX_SUFF(pVM);
4564
4565 LogFlow(("pgmPoolMakeMoreFreePages: iUser=%#x\n", iUser));
4566
4567 /*
4568 * If the pool isn't full grown yet, expand it.
4569 */
4570 if ( pPool->cCurPages < pPool->cMaxPages
4571#if defined(IN_RC)
4572 /* Hack alert: we can't deal with jumps to ring 3 when called from MapCR3 and allocating pages for PAE PDs. */
4573 && enmKind != PGMPOOLKIND_PAE_PD_FOR_PAE_PD
4574 && (enmKind < PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || enmKind > PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD)
4575#endif
4576 )
4577 {
4578 STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
4579#ifdef IN_RING3
4580 int rc = PGMR3PoolGrow(pVM);
4581#else
4582 int rc = VMMRZCallRing3NoCpu(pVM, VMMCALLRING3_PGM_POOL_GROW, 0);
4583#endif
4584 if (RT_FAILURE(rc))
4585 return rc;
4586 STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
4587 if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
4588 return VINF_SUCCESS;
4589 }
4590
4591#ifdef PGMPOOL_WITH_CACHE
4592 /*
4593 * Free one cached page.
4594 */
4595 return pgmPoolCacheFreeOne(pPool, iUser);
4596#else
4597 /*
4598 * Flush the pool.
4599 *
4600 * If we have tracking enabled, it should be possible to come up with
4601 * a cheap replacement strategy...
4602 */
4603 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
4604 AssertCompileFailed();
4605 Assert(!CPUMIsGuestInLongMode(pVM));
4606 pgmPoolFlushAllInt(pPool);
4607 return VERR_PGM_POOL_FLUSHED;
4608#endif
4609}
4610
4611/**
4612 * Allocates a page from the pool.
4613 *
4614 * This page may actually be a cached page and not in need of any processing
4615 * on the callers part.
4616 *
4617 * @returns VBox status code.
4618 * @retval VINF_SUCCESS if a NEW page was allocated.
4619 * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
4620 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4621 * @param pVM The VM handle.
4622 * @param GCPhys The GC physical address of the page we're gonna shadow.
4623 * For 4MB and 2MB PD entries, it's the first address the
4624 * shadow PT is covering.
4625 * @param enmKind The kind of mapping.
4626 * @param enmAccess Access type for the mapping (only relevant for big pages)
4627 * @param iUser The shadow page pool index of the user table.
4628 * @param iUserTable The index into the user table (shadowed).
4629 * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
4630 * @param fLockPage Lock the page
4631 */
4632int pgmPoolAllocEx(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, PGMPOOLACCESS enmAccess, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage, bool fLockPage)
4633{
4634 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4635 STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
4636 LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%#x iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
4637 *ppPage = NULL;
4638 /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
4639 * (TRPMR3SyncIDT) because of FF priority. Try fix that?
4640 * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_SYNC_CLEAR_PGM_POOL)); */
4641
4642 pgmLock(pVM);
4643
4644#ifdef PGMPOOL_WITH_CACHE
4645 if (pPool->fCacheEnabled)
4646 {
4647 int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, enmAccess, iUser, iUserTable, ppPage);
4648 if (RT_SUCCESS(rc2))
4649 {
4650 if (fLockPage)
4651 pgmPoolLockPage(pPool, *ppPage);
4652 pgmUnlock(pVM);
4653 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4654 LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
4655 return rc2;
4656 }
4657 }
4658#endif
4659
4660 /*
4661 * Allocate a new one.
4662 */
4663 int rc = VINF_SUCCESS;
4664 uint16_t iNew = pPool->iFreeHead;
4665 if (iNew == NIL_PGMPOOL_IDX)
4666 {
4667 rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
4668 if (RT_FAILURE(rc))
4669 {
4670 pgmUnlock(pVM);
4671 Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
4672 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4673 return rc;
4674 }
4675 iNew = pPool->iFreeHead;
4676 AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_INTERNAL_ERROR);
4677 }
4678
4679 /* unlink the free head */
4680 PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
4681 pPool->iFreeHead = pPage->iNext;
4682 pPage->iNext = NIL_PGMPOOL_IDX;
4683
4684 /*
4685 * Initialize it.
4686 */
4687 pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
4688 pPage->enmKind = enmKind;
4689 pPage->enmAccess = enmAccess;
4690 pPage->GCPhys = GCPhys;
4691 pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
4692 pPage->fMonitored = false;
4693 pPage->fCached = false;
4694#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4695 pPage->fDirty = false;
4696#endif
4697 pPage->fReusedFlushPending = false;
4698#ifdef PGMPOOL_WITH_MONITORING
4699 pPage->cModifications = 0;
4700 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4701 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4702#else
4703 pPage->fCR3Mix = false;
4704#endif
4705#ifdef PGMPOOL_WITH_USER_TRACKING
4706 pPage->cPresent = 0;
4707 pPage->iFirstPresent = NIL_PGMPOOL_PRESENT_INDEX;
4708 pPage->pvLastAccessHandlerFault = 0;
4709 pPage->cLastAccessHandlerCount = 0;
4710 pPage->pvLastAccessHandlerRip = 0;
4711
4712 /*
4713 * Insert into the tracking and cache. If this fails, free the page.
4714 */
4715 int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
4716 if (RT_FAILURE(rc3))
4717 {
4718 pPool->cUsedPages--;
4719 pPage->enmKind = PGMPOOLKIND_FREE;
4720 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4721 pPage->GCPhys = NIL_RTGCPHYS;
4722 pPage->iNext = pPool->iFreeHead;
4723 pPool->iFreeHead = pPage->idx;
4724 pgmUnlock(pVM);
4725 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4726 Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
4727 return rc3;
4728 }
4729#endif /* PGMPOOL_WITH_USER_TRACKING */
4730
4731 /*
4732 * Commit the allocation, clear the page and return.
4733 */
4734#ifdef VBOX_WITH_STATISTICS
4735 if (pPool->cUsedPages > pPool->cUsedPagesHigh)
4736 pPool->cUsedPagesHigh = pPool->cUsedPages;
4737#endif
4738
4739 if (!pPage->fZeroed)
4740 {
4741 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4742 void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
4743 ASMMemZeroPage(pv);
4744 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4745 }
4746
4747 *ppPage = pPage;
4748 if (fLockPage)
4749 pgmPoolLockPage(pPool, pPage);
4750 pgmUnlock(pVM);
4751 LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
4752 rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
4753 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4754 return rc;
4755}
4756
4757
4758/**
4759 * Frees a usage of a pool page.
4760 *
4761 * @param pVM The VM handle.
4762 * @param HCPhys The HC physical address of the shadow page.
4763 * @param iUser The shadow page pool index of the user table.
4764 * @param iUserTable The index into the user table (shadowed).
4765 */
4766void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
4767{
4768 LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%#x iUserTable=%#x\n", HCPhys, iUser, iUserTable));
4769 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4770 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
4771}
4772
4773/**
4774 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4775 *
4776 * @returns Pointer to the shadow page structure.
4777 * @param pPool The pool.
4778 * @param HCPhys The HC physical address of the shadow page.
4779 */
4780PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4781{
4782 PVM pVM = pPool->CTX_SUFF(pVM);
4783
4784 Assert(PGMIsLockOwner(pVM));
4785
4786 /*
4787 * Look up the page.
4788 */
4789 pgmLock(pVM);
4790 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4791 pgmUnlock(pVM);
4792
4793 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4794 return pPage;
4795}
4796
4797#ifdef IN_RING3 /* currently only used in ring 3; save some space in the R0 & GC modules (left it here as we might need it elsewhere later on) */
4798/**
4799 * Flush the specified page if present
4800 *
4801 * @param pVM The VM handle.
4802 * @param GCPhys Guest physical address of the page to flush
4803 */
4804void pgmPoolFlushPageByGCPhys(PVM pVM, RTGCPHYS GCPhys)
4805{
4806#ifdef PGMPOOL_WITH_CACHE
4807 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4808
4809 VM_ASSERT_EMT(pVM);
4810
4811 /*
4812 * Look up the GCPhys in the hash.
4813 */
4814 GCPhys = GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
4815 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
4816 if (i == NIL_PGMPOOL_IDX)
4817 return;
4818
4819 do
4820 {
4821 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4822 if (pPage->GCPhys - GCPhys < PAGE_SIZE)
4823 {
4824 switch (pPage->enmKind)
4825 {
4826 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4827 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4828 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4829 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4830 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4831 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4832 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4833 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4834 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4835 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4836 case PGMPOOLKIND_64BIT_PML4:
4837 case PGMPOOLKIND_32BIT_PD:
4838 case PGMPOOLKIND_PAE_PDPT:
4839 {
4840 Log(("PGMPoolFlushPage: found pgm pool pages for %RGp\n", GCPhys));
4841#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4842 if (pPage->fDirty)
4843 STAM_COUNTER_INC(&pPool->StatForceFlushDirtyPage);
4844 else
4845#endif
4846 STAM_COUNTER_INC(&pPool->StatForceFlushPage);
4847 Assert(!pgmPoolIsPageLocked(&pVM->pgm.s, pPage));
4848 pgmPoolMonitorChainFlush(pPool, pPage);
4849 return;
4850 }
4851
4852 /* ignore, no monitoring. */
4853 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4854 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4855 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4856 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
4857 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
4858 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4859 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4860 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4861 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4862 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4863 case PGMPOOLKIND_ROOT_NESTED:
4864 case PGMPOOLKIND_PAE_PD_PHYS:
4865 case PGMPOOLKIND_PAE_PDPT_PHYS:
4866 case PGMPOOLKIND_32BIT_PD_PHYS:
4867 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4868 break;
4869
4870 default:
4871 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
4872 }
4873 }
4874
4875 /* next */
4876 i = pPage->iNext;
4877 } while (i != NIL_PGMPOOL_IDX);
4878#endif
4879 return;
4880}
4881#endif /* IN_RING3 */
4882
4883#ifdef IN_RING3
4884/**
4885 * Flushes the entire cache.
4886 *
4887 * It will assert a global CR3 flush (FF) and assumes the caller is aware of this
4888 * and execute this CR3 flush.
4889 *
4890 * @param pPool The pool.
4891 */
4892void pgmR3PoolReset(PVM pVM)
4893{
4894 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4895
4896 Assert(PGMIsLockOwner(pVM));
4897 STAM_PROFILE_START(&pPool->StatFlushAllInt, a);
4898 LogFlow(("pgmPoolFlushAllInt:\n"));
4899
4900 /*
4901 * If there are no pages in the pool, there is nothing to do.
4902 */
4903 if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
4904 {
4905 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
4906 return;
4907 }
4908
4909 /*
4910 * Exit the shadow mode since we're going to clear everything,
4911 * including the root page.
4912 */
4913 for (unsigned i=0;i<pVM->cCPUs;i++)
4914 {
4915 PVMCPU pVCpu = &pVM->aCpus[i];
4916 pgmR3ExitShadowModeBeforePoolFlush(pVM, pVCpu);
4917 }
4918
4919 /*
4920 * Nuke the free list and reinsert all pages into it.
4921 */
4922 for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
4923 {
4924 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4925
4926 Assert(pPage->Core.Key == MMPage2Phys(pVM, pPage->pvPageR3));
4927#ifdef PGMPOOL_WITH_MONITORING
4928 if (pPage->fMonitored)
4929 pgmPoolMonitorFlush(pPool, pPage);
4930 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4931 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4932 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
4933 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
4934 pPage->cModifications = 0;
4935#endif
4936 pPage->GCPhys = NIL_RTGCPHYS;
4937 pPage->enmKind = PGMPOOLKIND_FREE;
4938 pPage->enmAccess = PGMPOOLACCESS_DONTCARE;
4939 Assert(pPage->idx == i);
4940 pPage->iNext = i + 1;
4941 pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
4942 pPage->fSeenNonGlobal = false;
4943 pPage->fMonitored = false;
4944#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
4945 pPage->fDirty = false;
4946#endif
4947 pPage->fCached = false;
4948 pPage->fReusedFlushPending = false;
4949#ifdef PGMPOOL_WITH_USER_TRACKING
4950 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
4951#else
4952 pPage->fCR3Mix = false;
4953#endif
4954#ifdef PGMPOOL_WITH_CACHE
4955 pPage->iAgeNext = NIL_PGMPOOL_IDX;
4956 pPage->iAgePrev = NIL_PGMPOOL_IDX;
4957#endif
4958 pPage->cLocked = 0;
4959 }
4960 pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
4961 pPool->iFreeHead = PGMPOOL_IDX_FIRST;
4962 pPool->cUsedPages = 0;
4963
4964#ifdef PGMPOOL_WITH_USER_TRACKING
4965 /*
4966 * Zap and reinitialize the user records.
4967 */
4968 pPool->cPresent = 0;
4969 pPool->iUserFreeHead = 0;
4970 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
4971 const unsigned cMaxUsers = pPool->cMaxUsers;
4972 for (unsigned i = 0; i < cMaxUsers; i++)
4973 {
4974 paUsers[i].iNext = i + 1;
4975 paUsers[i].iUser = NIL_PGMPOOL_IDX;
4976 paUsers[i].iUserTable = 0xfffffffe;
4977 }
4978 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
4979#endif
4980
4981#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4982 /*
4983 * Clear all the GCPhys links and rebuild the phys ext free list.
4984 */
4985 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
4986 pRam;
4987 pRam = pRam->CTX_SUFF(pNext))
4988 {
4989 unsigned iPage = pRam->cb >> PAGE_SHIFT;
4990 while (iPage-- > 0)
4991 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
4992 }
4993
4994 pPool->iPhysExtFreeHead = 0;
4995 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
4996 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
4997 for (unsigned i = 0; i < cMaxPhysExts; i++)
4998 {
4999 paPhysExts[i].iNext = i + 1;
5000 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
5001 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
5002 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
5003 }
5004 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
5005#endif
5006
5007#ifdef PGMPOOL_WITH_MONITORING
5008 /*
5009 * Just zap the modified list.
5010 */
5011 pPool->cModifiedPages = 0;
5012 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
5013#endif
5014
5015#ifdef PGMPOOL_WITH_CACHE
5016 /*
5017 * Clear the GCPhys hash and the age list.
5018 */
5019 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
5020 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
5021 pPool->iAgeHead = NIL_PGMPOOL_IDX;
5022 pPool->iAgeTail = NIL_PGMPOOL_IDX;
5023#endif
5024
5025#ifdef PGMPOOL_WITH_OPTIMIZED_DIRTY_PT
5026 /* Clear all dirty pages. */
5027 pPool->idxFreeDirtyPage = 0;
5028 pPool->cDirtyPages = 0;
5029 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aIdxDirtyPages); i++)
5030 pPool->aIdxDirtyPages[i] = NIL_PGMPOOL_IDX;
5031#endif
5032
5033 /*
5034 * Reinsert active pages into the hash and ensure monitoring chains are correct.
5035 */
5036 for (unsigned i = PGMPOOL_IDX_FIRST_SPECIAL; i < PGMPOOL_IDX_FIRST; i++)
5037 {
5038 PPGMPOOLPAGE pPage = &pPool->aPages[i];
5039 pPage->iNext = NIL_PGMPOOL_IDX;
5040#ifdef PGMPOOL_WITH_MONITORING
5041 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
5042 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
5043 pPage->cModifications = 0;
5044 /* ASSUMES that we're not sharing with any of the other special pages (safe for now). */
5045 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
5046 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
5047 if (pPage->fMonitored)
5048 {
5049 int rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
5050 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
5051 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
5052 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
5053 pPool->pszAccessHandler);
5054 AssertFatalRCSuccess(rc);
5055# ifdef PGMPOOL_WITH_CACHE
5056 pgmPoolHashInsert(pPool, pPage);
5057# endif
5058 }
5059#endif
5060#ifdef PGMPOOL_WITH_USER_TRACKING
5061 Assert(pPage->iUserHead == NIL_PGMPOOL_USER_INDEX); /* for now */
5062#endif
5063#ifdef PGMPOOL_WITH_CACHE
5064 Assert(pPage->iAgeNext == NIL_PGMPOOL_IDX);
5065 Assert(pPage->iAgePrev == NIL_PGMPOOL_IDX);
5066#endif
5067 }
5068
5069 for (unsigned i=0;i<pVM->cCPUs;i++)
5070 {
5071 PVMCPU pVCpu = &pVM->aCpus[i];
5072 /*
5073 * Re-enter the shadowing mode and assert Sync CR3 FF.
5074 */
5075 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
5076 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
5077 }
5078
5079 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
5080}
5081#endif /* IN_RING3 */
5082
5083#ifdef LOG_ENABLED
5084static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
5085{
5086 switch(enmKind)
5087 {
5088 case PGMPOOLKIND_INVALID:
5089 return "PGMPOOLKIND_INVALID";
5090 case PGMPOOLKIND_FREE:
5091 return "PGMPOOLKIND_FREE";
5092 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
5093 return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
5094 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
5095 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
5096 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
5097 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
5098 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
5099 return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
5100 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
5101 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
5102 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
5103 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
5104 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
5105 return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
5106 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
5107 return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
5108 case PGMPOOLKIND_32BIT_PD:
5109 return "PGMPOOLKIND_32BIT_PD";
5110 case PGMPOOLKIND_32BIT_PD_PHYS:
5111 return "PGMPOOLKIND_32BIT_PD_PHYS";
5112 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
5113 return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
5114 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
5115 return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
5116 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
5117 return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
5118 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
5119 return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
5120 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
5121 return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
5122 case PGMPOOLKIND_PAE_PD_PHYS:
5123 return "PGMPOOLKIND_PAE_PD_PHYS";
5124 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
5125 return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
5126 case PGMPOOLKIND_PAE_PDPT:
5127 return "PGMPOOLKIND_PAE_PDPT";
5128 case PGMPOOLKIND_PAE_PDPT_PHYS:
5129 return "PGMPOOLKIND_PAE_PDPT_PHYS";
5130 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
5131 return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
5132 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
5133 return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
5134 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
5135 return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
5136 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
5137 return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
5138 case PGMPOOLKIND_64BIT_PML4:
5139 return "PGMPOOLKIND_64BIT_PML4";
5140 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
5141 return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
5142 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
5143 return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
5144 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
5145 return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
5146 case PGMPOOLKIND_ROOT_NESTED:
5147 return "PGMPOOLKIND_ROOT_NESTED";
5148 }
5149 return "Unknown kind!";
5150}
5151#endif /* LOG_ENABLED*/
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette