VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/PGMAllPool.cpp@ 20008

最後變更 在這個檔案從20008是 19903,由 vboxsync 提交於 16 年 前

Invalidation cleanup

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id
檔案大小: 160.9 KB
 
1/* $Id: PGMAllPool.cpp 19903 2009-05-22 09:41:32Z vboxsync $ */
2/** @file
3 * PGM Shadow Page Pool.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/*******************************************************************************
24* Header Files *
25*******************************************************************************/
26#define LOG_GROUP LOG_GROUP_PGM_POOL
27#include <VBox/pgm.h>
28#include <VBox/mm.h>
29#include <VBox/em.h>
30#include <VBox/cpum.h>
31#ifdef IN_RC
32# include <VBox/patm.h>
33#endif
34#include "PGMInternal.h"
35#include <VBox/vm.h>
36#include <VBox/disopcode.h>
37#include <VBox/hwacc_vmx.h>
38
39#include <VBox/log.h>
40#include <VBox/err.h>
41#include <iprt/asm.h>
42#include <iprt/string.h>
43
44
45/*******************************************************************************
46* Internal Functions *
47*******************************************************************************/
48__BEGIN_DECLS
49static void pgmPoolFlushAllInt(PPGMPOOL pPool);
50#ifdef PGMPOOL_WITH_USER_TRACKING
51DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind);
52DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind);
53static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
54#endif
55#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
56static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint);
57#endif
58#ifdef PGMPOOL_WITH_CACHE
59static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
60#endif
61#ifdef PGMPOOL_WITH_MONITORING
62static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
63#endif
64#ifndef IN_RING3
65DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser);
66#endif
67#ifdef LOG_ENABLED
68static const char *pgmPoolPoolKindToStr(uint8_t enmKind);
69#endif
70
71void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
72void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
73int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
74PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
75void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
76void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
77
78__END_DECLS
79
80
81/**
82 * Checks if the specified page pool kind is for a 4MB or 2MB guest page.
83 *
84 * @returns true if it's the shadow of a 4MB or 2MB guest page, otherwise false.
85 * @param enmKind The page kind.
86 */
87DECLINLINE(bool) pgmPoolIsBigPage(PGMPOOLKIND enmKind)
88{
89 switch (enmKind)
90 {
91 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
92 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
93 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
94 return true;
95 default:
96 return false;
97 }
98}
99
100/** @def PGMPOOL_PAGE_2_LOCKED_PTR
101 * Maps a pool page pool into the current context and lock it (RC only).
102 *
103 * @returns VBox status code.
104 * @param pVM The VM handle.
105 * @param pPage The pool page.
106 *
107 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
108 * small page window employeed by that function. Be careful.
109 * @remark There is no need to assert on the result.
110 */
111#if defined(IN_RC)
112DECLINLINE(void *) PGMPOOL_PAGE_2_LOCKED_PTR(PVM pVM, PPGMPOOLPAGE pPage)
113{
114 void *pv = pgmPoolMapPageInlined(&pVM->pgm.s, pPage);
115
116 /* Make sure the dynamic mapping will not be reused. */
117 if (pv)
118 PGMDynLockHCPage(pVM, (uint8_t *)pv);
119
120 return pv;
121}
122#else
123# define PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage) PGMPOOL_PAGE_2_PTR(pVM, pPage)
124#endif
125
126/** @def PGMPOOL_UNLOCK_PTR
127 * Unlock a previously locked dynamic caching (RC only).
128 *
129 * @returns VBox status code.
130 * @param pVM The VM handle.
131 * @param pPage The pool page.
132 *
133 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
134 * small page window employeed by that function. Be careful.
135 * @remark There is no need to assert on the result.
136 */
137#if defined(IN_RC)
138DECLINLINE(void) PGMPOOL_UNLOCK_PTR(PVM pVM, void *pvPage)
139{
140 if (pvPage)
141 PGMDynUnlockHCPage(pVM, (uint8_t *)pvPage);
142}
143#else
144# define PGMPOOL_UNLOCK_PTR(pVM, pPage) do {} while (0)
145#endif
146
147
148#ifdef PGMPOOL_WITH_MONITORING
149/**
150 * Determin the size of a write instruction.
151 * @returns number of bytes written.
152 * @param pDis The disassembler state.
153 */
154static unsigned pgmPoolDisasWriteSize(PDISCPUSTATE pDis)
155{
156 /*
157 * This is very crude and possibly wrong for some opcodes,
158 * but since it's not really supposed to be called we can
159 * probably live with that.
160 */
161 return DISGetParamSize(pDis, &pDis->param1);
162}
163
164
165/**
166 * Flushes a chain of pages sharing the same access monitor.
167 *
168 * @returns VBox status code suitable for scheduling.
169 * @param pPool The pool.
170 * @param pPage A page in the chain.
171 */
172int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
173{
174 LogFlow(("pgmPoolMonitorChainFlush: Flush page %RGp type=%d\n", pPage->GCPhys, pPage->enmKind));
175
176 /*
177 * Find the list head.
178 */
179 uint16_t idx = pPage->idx;
180 if (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
181 {
182 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
183 {
184 idx = pPage->iMonitoredPrev;
185 Assert(idx != pPage->idx);
186 pPage = &pPool->aPages[idx];
187 }
188 }
189
190 /*
191 * Iterate the list flushing each shadow page.
192 */
193 int rc = VINF_SUCCESS;
194 for (;;)
195 {
196 idx = pPage->iMonitoredNext;
197 Assert(idx != pPage->idx);
198 if (pPage->idx >= PGMPOOL_IDX_FIRST)
199 {
200 int rc2 = pgmPoolFlushPage(pPool, pPage);
201 AssertRC(rc2);
202 }
203 /* next */
204 if (idx == NIL_PGMPOOL_IDX)
205 break;
206 pPage = &pPool->aPages[idx];
207 }
208 return rc;
209}
210
211
212/**
213 * Wrapper for getting the current context pointer to the entry being modified.
214 *
215 * @returns VBox status code suitable for scheduling.
216 * @param pVM VM Handle.
217 * @param pvDst Destination address
218 * @param pvSrc Source guest virtual address.
219 * @param GCPhysSrc The source guest physical address.
220 * @param cb Size of data to read
221 */
222DECLINLINE(int) pgmPoolPhysSimpleReadGCPhys(PVM pVM, void *pvDst, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvSrc, RTGCPHYS GCPhysSrc, size_t cb)
223{
224#if defined(IN_RING3)
225 memcpy(pvDst, (RTHCPTR)((uintptr_t)pvSrc & ~(RTHCUINTPTR)(cb - 1)), cb);
226 return VINF_SUCCESS;
227#else
228 /* @todo in RC we could attempt to use the virtual address, although this can cause many faults (PAE Windows XP guest). */
229 return PGMPhysSimpleReadGCPhys(pVM, pvDst, GCPhysSrc & ~(RTGCPHYS)(cb - 1), cb);
230#endif
231}
232
233/**
234 * Process shadow entries before they are changed by the guest.
235 *
236 * For PT entries we will clear them. For PD entries, we'll simply check
237 * for mapping conflicts and set the SyncCR3 FF if found.
238 *
239 * @param pVCpu VMCPU handle
240 * @param pPool The pool.
241 * @param pPage The head page.
242 * @param GCPhysFault The guest physical fault address.
243 * @param uAddress In R0 and GC this is the guest context fault address (flat).
244 * In R3 this is the host context 'fault' address.
245 * @param pCpu The disassembler state for figuring out the write size.
246 * This need not be specified if the caller knows we won't do cross entry accesses.
247 */
248void pgmPoolMonitorChainChanging(PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, CTXTYPE(RTGCPTR, RTHCPTR, RTGCPTR) pvAddress, PDISCPUSTATE pCpu)
249{
250 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
251 const unsigned off = GCPhysFault & PAGE_OFFSET_MASK;
252 const unsigned cbWrite = (pCpu) ? pgmPoolDisasWriteSize(pCpu) : 0;
253 PVM pVM = pPool->CTX_SUFF(pVM);
254
255 LogFlow(("pgmPoolMonitorChainChanging: %RGv phys=%RGp kind=%s cbWrite=%d\n", (RTGCPTR)pvAddress, GCPhysFault, pgmPoolPoolKindToStr(pPage->enmKind), cbWrite));
256 for (;;)
257 {
258 union
259 {
260 void *pv;
261 PX86PT pPT;
262 PX86PTPAE pPTPae;
263 PX86PD pPD;
264 PX86PDPAE pPDPae;
265 PX86PDPT pPDPT;
266 PX86PML4 pPML4;
267 } uShw;
268
269 uShw.pv = NULL;
270 switch (pPage->enmKind)
271 {
272 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
273 {
274 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
275 const unsigned iShw = off / sizeof(X86PTE);
276 LogFlow(("PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT iShw=%x\n", iShw));
277 if (uShw.pPT->a[iShw].n.u1Present)
278 {
279# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
280 X86PTE GstPte;
281
282 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
283 AssertRC(rc);
284 Log4(("pgmPoolMonitorChainChanging 32_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
285 pgmPoolTracDerefGCPhysHint(pPool, pPage,
286 uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK,
287 GstPte.u & X86_PTE_PG_MASK);
288# endif
289 ASMAtomicWriteSize(&uShw.pPT->a[iShw], 0);
290 }
291 break;
292 }
293
294 /* page/2 sized */
295 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
296 {
297 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
298 if (!((off ^ pPage->GCPhys) & (PAGE_SIZE / 2)))
299 {
300 const unsigned iShw = (off / sizeof(X86PTE)) & (X86_PG_PAE_ENTRIES - 1);
301 LogFlow(("PGMPOOLKIND_PAE_PT_FOR_32BIT_PT iShw=%x\n", iShw));
302 if (uShw.pPTPae->a[iShw].n.u1Present)
303 {
304# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
305 X86PTE GstPte;
306 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
307 AssertRC(rc);
308
309 Log4(("pgmPoolMonitorChainChanging pae_32: deref %016RX64 GCPhys %08RX32\n", uShw.pPT->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PG_MASK));
310 pgmPoolTracDerefGCPhysHint(pPool, pPage,
311 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
312 GstPte.u & X86_PTE_PG_MASK);
313# endif
314 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw], 0);
315 }
316 }
317 break;
318 }
319
320 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
321 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
322 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
323 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
324 {
325 unsigned iGst = off / sizeof(X86PDE);
326 unsigned iShwPdpt = iGst / 256;
327 unsigned iShw = (iGst % 256) * 2;
328 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
329
330 LogFlow(("pgmPoolMonitorChainChanging PAE for 32 bits: iGst=%x iShw=%x idx = %d page idx=%d\n", iGst, iShw, iShwPdpt, pPage->enmKind - PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD));
331 if (iShwPdpt == pPage->enmKind - (unsigned)PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD)
332 {
333 for (unsigned i = 0; i < 2; i++)
334 {
335# ifndef IN_RING0
336 if ((uShw.pPDPae->a[iShw + i].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
337 {
338 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
339 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
340 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw=%#x!\n", iShwPdpt, iShw+i));
341 break;
342 }
343 else
344# endif /* !IN_RING0 */
345 if (uShw.pPDPae->a[iShw+i].n.u1Present)
346 {
347 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw+i, uShw.pPDPae->a[iShw+i].u));
348 pgmPoolFree(pVM,
349 uShw.pPDPae->a[iShw+i].u & X86_PDE_PAE_PG_MASK,
350 pPage->idx,
351 iShw + i);
352 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw+i], 0);
353 }
354
355 /* paranoia / a bit assumptive. */
356 if ( pCpu
357 && (off & 3)
358 && (off & 3) + cbWrite > 4)
359 {
360 const unsigned iShw2 = iShw + 2 + i;
361 if (iShw2 < RT_ELEMENTS(uShw.pPDPae->a))
362 {
363# ifndef IN_RING0
364 if ((uShw.pPDPae->a[iShw2].u & (PGM_PDFLAGS_MAPPING | X86_PDE_P)) == (PGM_PDFLAGS_MAPPING | X86_PDE_P))
365 {
366 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
367 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
368 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShwPdpt=%#x iShw2=%#x!\n", iShwPdpt, iShw2));
369 break;
370 }
371 else
372# endif /* !IN_RING0 */
373 if (uShw.pPDPae->a[iShw2].n.u1Present)
374 {
375 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
376 pgmPoolFree(pVM,
377 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
378 pPage->idx,
379 iShw2);
380 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
381 }
382 }
383 }
384 }
385 }
386 break;
387 }
388
389 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
390 {
391 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
392 const unsigned iShw = off / sizeof(X86PTEPAE);
393 if (uShw.pPTPae->a[iShw].n.u1Present)
394 {
395# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
396 X86PTEPAE GstPte;
397 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress, GCPhysFault, sizeof(GstPte));
398 AssertRC(rc);
399
400 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
401 pgmPoolTracDerefGCPhysHint(pPool, pPage,
402 uShw.pPTPae->a[iShw].u & X86_PTE_PAE_PG_MASK,
403 GstPte.u & X86_PTE_PAE_PG_MASK);
404# endif
405 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw].u, 0);
406 }
407
408 /* paranoia / a bit assumptive. */
409 if ( pCpu
410 && (off & 7)
411 && (off & 7) + cbWrite > sizeof(X86PTEPAE))
412 {
413 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTEPAE);
414 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPTPae->a));
415
416 if (uShw.pPTPae->a[iShw2].n.u1Present)
417 {
418# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
419 X86PTEPAE GstPte;
420# ifdef IN_RING3
421 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, (RTHCPTR)((RTHCUINTPTR)pvAddress + sizeof(GstPte)), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
422# else
423 int rc = pgmPoolPhysSimpleReadGCPhys(pVM, &GstPte, pvAddress + sizeof(GstPte), GCPhysFault + sizeof(GstPte), sizeof(GstPte));
424# endif
425 AssertRC(rc);
426 Log4(("pgmPoolMonitorChainChanging pae: deref %016RX64 GCPhys %016RX64\n", uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK, GstPte.u & X86_PTE_PAE_PG_MASK));
427 pgmPoolTracDerefGCPhysHint(pPool, pPage,
428 uShw.pPTPae->a[iShw2].u & X86_PTE_PAE_PG_MASK,
429 GstPte.u & X86_PTE_PAE_PG_MASK);
430# endif
431 ASMAtomicWriteSize(&uShw.pPTPae->a[iShw2].u ,0);
432 }
433 }
434 break;
435 }
436
437 case PGMPOOLKIND_32BIT_PD:
438 {
439 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
440 const unsigned iShw = off / sizeof(X86PTE); // ASSUMING 32-bit guest paging!
441
442 LogFlow(("pgmPoolMonitorChainChanging: PGMPOOLKIND_32BIT_PD %x\n", iShw));
443# ifndef IN_RING0
444 if (uShw.pPD->a[iShw].u & PGM_PDFLAGS_MAPPING)
445 {
446 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
447 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
448 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
449 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
450 break;
451 }
452# endif /* !IN_RING0 */
453# ifndef IN_RING0
454 else
455# endif /* !IN_RING0 */
456 {
457 if (uShw.pPD->a[iShw].n.u1Present)
458 {
459 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
460 pgmPoolFree(pVM,
461 uShw.pPD->a[iShw].u & X86_PDE_PAE_PG_MASK,
462 pPage->idx,
463 iShw);
464 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
465 }
466 }
467 /* paranoia / a bit assumptive. */
468 if ( pCpu
469 && (off & 3)
470 && (off & 3) + cbWrite > sizeof(X86PTE))
471 {
472 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PTE);
473 if ( iShw2 != iShw
474 && iShw2 < RT_ELEMENTS(uShw.pPD->a))
475 {
476# ifndef IN_RING0
477 if (uShw.pPD->a[iShw2].u & PGM_PDFLAGS_MAPPING)
478 {
479 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
480 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
481 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
482 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
483 break;
484 }
485# endif /* !IN_RING0 */
486# ifndef IN_RING0
487 else
488# endif /* !IN_RING0 */
489 {
490 if (uShw.pPD->a[iShw2].n.u1Present)
491 {
492 LogFlow(("pgmPoolMonitorChainChanging: 32 bit pd iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPD->a[iShw2].u));
493 pgmPoolFree(pVM,
494 uShw.pPD->a[iShw2].u & X86_PDE_PAE_PG_MASK,
495 pPage->idx,
496 iShw2);
497 ASMAtomicWriteSize(&uShw.pPD->a[iShw2].u, 0);
498 }
499 }
500 }
501 }
502#if 0 /* useful when running PGMAssertCR3(), a bit too troublesome for general use (TLBs). */
503 if ( uShw.pPD->a[iShw].n.u1Present
504 && !VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
505 {
506 LogFlow(("pgmPoolMonitorChainChanging: iShw=%#x: %RX32 -> freeing it!\n", iShw, uShw.pPD->a[iShw].u));
507# ifdef IN_RC /* TLB load - we're pushing things a bit... */
508 ASMProbeReadByte(pvAddress);
509# endif
510 pgmPoolFree(pVM, uShw.pPD->a[iShw].u & X86_PDE_PG_MASK, pPage->idx, iShw);
511 ASMAtomicWriteSize(&uShw.pPD->a[iShw].u, 0);
512 }
513#endif
514 break;
515 }
516
517 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
518 {
519 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
520 const unsigned iShw = off / sizeof(X86PDEPAE);
521#ifndef IN_RING0
522 if (uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING)
523 {
524 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
525 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
526 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
527 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw=%#x!\n", iShw));
528 break;
529 }
530#endif /* !IN_RING0 */
531 /*
532 * Causes trouble when the guest uses a PDE to refer to the whole page table level
533 * structure. (Invalidate here; faults later on when it tries to change the page
534 * table entries -> recheck; probably only applies to the RC case.)
535 */
536# ifndef IN_RING0
537 else
538# endif /* !IN_RING0 */
539 {
540 if (uShw.pPDPae->a[iShw].n.u1Present)
541 {
542 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
543 pgmPoolFree(pVM,
544 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
545 pPage->idx,
546 iShw);
547 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
548 }
549 }
550 /* paranoia / a bit assumptive. */
551 if ( pCpu
552 && (off & 7)
553 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
554 {
555 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
556 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
557
558#ifndef IN_RING0
559 if ( iShw2 != iShw
560 && uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING)
561 {
562 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
563 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
564 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
565 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
566 break;
567 }
568#endif /* !IN_RING0 */
569# ifndef IN_RING0
570 else
571# endif /* !IN_RING0 */
572 if (uShw.pPDPae->a[iShw2].n.u1Present)
573 {
574 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
575 pgmPoolFree(pVM,
576 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
577 pPage->idx,
578 iShw2);
579 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
580 }
581 }
582 break;
583 }
584
585 case PGMPOOLKIND_PAE_PDPT:
586 {
587 /*
588 * Hopefully this doesn't happen very often:
589 * - touching unused parts of the page
590 * - messing with the bits of pd pointers without changing the physical address
591 */
592 /* PDPT roots are not page aligned; 32 byte only! */
593 const unsigned offPdpt = GCPhysFault - pPage->GCPhys;
594
595 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
596 const unsigned iShw = offPdpt / sizeof(X86PDPE);
597 if (iShw < X86_PG_PAE_PDPE_ENTRIES) /* don't use RT_ELEMENTS(uShw.pPDPT->a), because that's for long mode only */
598 {
599# ifndef IN_RING0
600 if (uShw.pPDPT->a[iShw].u & PGM_PLXFLAGS_MAPPING)
601 {
602 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
603 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
604 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
605 LogFlow(("pgmPoolMonitorChainChanging: Detected pdpt conflict at iShw=%#x!\n", iShw));
606 break;
607 }
608# endif /* !IN_RING0 */
609# ifndef IN_RING0
610 else
611# endif /* !IN_RING0 */
612 if (uShw.pPDPT->a[iShw].n.u1Present)
613 {
614 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
615 pgmPoolFree(pVM,
616 uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK,
617 pPage->idx,
618 iShw);
619 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
620 }
621
622 /* paranoia / a bit assumptive. */
623 if ( pCpu
624 && (offPdpt & 7)
625 && (offPdpt & 7) + cbWrite > sizeof(X86PDPE))
626 {
627 const unsigned iShw2 = (offPdpt + cbWrite - 1) / sizeof(X86PDPE);
628 if ( iShw2 != iShw
629 && iShw2 < X86_PG_PAE_PDPE_ENTRIES)
630 {
631# ifndef IN_RING0
632 if (uShw.pPDPT->a[iShw2].u & PGM_PLXFLAGS_MAPPING)
633 {
634 Assert(pgmMapAreMappingsEnabled(&pVM->pgm.s));
635 STAM_COUNTER_INC(&(pVCpu->pgm.s.StatRZGuestCR3WriteConflict));
636 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
637 LogFlow(("pgmPoolMonitorChainChanging: Detected conflict at iShw2=%#x!\n", iShw2));
638 break;
639 }
640# endif /* !IN_RING0 */
641# ifndef IN_RING0
642 else
643# endif /* !IN_RING0 */
644 if (uShw.pPDPT->a[iShw2].n.u1Present)
645 {
646 LogFlow(("pgmPoolMonitorChainChanging: pae pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
647 pgmPoolFree(pVM,
648 uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK,
649 pPage->idx,
650 iShw2);
651 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
652 }
653 }
654 }
655 }
656 break;
657 }
658
659#ifndef IN_RC
660 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
661 {
662 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
663 const unsigned iShw = off / sizeof(X86PDEPAE);
664 Assert(!(uShw.pPDPae->a[iShw].u & PGM_PDFLAGS_MAPPING));
665 if (uShw.pPDPae->a[iShw].n.u1Present)
666 {
667 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPae->a[iShw].u));
668 pgmPoolFree(pVM,
669 uShw.pPDPae->a[iShw].u & X86_PDE_PAE_PG_MASK,
670 pPage->idx,
671 iShw);
672 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw].u, 0);
673 }
674 /* paranoia / a bit assumptive. */
675 if ( pCpu
676 && (off & 7)
677 && (off & 7) + cbWrite > sizeof(X86PDEPAE))
678 {
679 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDEPAE);
680 AssertBreak(iShw2 < RT_ELEMENTS(uShw.pPDPae->a));
681
682 Assert(!(uShw.pPDPae->a[iShw2].u & PGM_PDFLAGS_MAPPING));
683 if (uShw.pPDPae->a[iShw2].n.u1Present)
684 {
685 LogFlow(("pgmPoolMonitorChainChanging: pae pd iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPae->a[iShw2].u));
686 pgmPoolFree(pVM,
687 uShw.pPDPae->a[iShw2].u & X86_PDE_PAE_PG_MASK,
688 pPage->idx,
689 iShw2);
690 ASMAtomicWriteSize(&uShw.pPDPae->a[iShw2].u, 0);
691 }
692 }
693 break;
694 }
695
696 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
697 {
698 /*
699 * Hopefully this doesn't happen very often:
700 * - messing with the bits of pd pointers without changing the physical address
701 */
702 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
703 {
704 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
705 const unsigned iShw = off / sizeof(X86PDPE);
706 if (uShw.pPDPT->a[iShw].n.u1Present)
707 {
708 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPDPT->a[iShw].u));
709 pgmPoolFree(pVM, uShw.pPDPT->a[iShw].u & X86_PDPE_PG_MASK, pPage->idx, iShw);
710 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw].u, 0);
711 }
712 /* paranoia / a bit assumptive. */
713 if ( pCpu
714 && (off & 7)
715 && (off & 7) + cbWrite > sizeof(X86PDPE))
716 {
717 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PDPE);
718 if (uShw.pPDPT->a[iShw2].n.u1Present)
719 {
720 LogFlow(("pgmPoolMonitorChainChanging: pdpt iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPDPT->a[iShw2].u));
721 pgmPoolFree(pVM, uShw.pPDPT->a[iShw2].u & X86_PDPE_PG_MASK, pPage->idx, iShw2);
722 ASMAtomicWriteSize(&uShw.pPDPT->a[iShw2].u, 0);
723 }
724 }
725 }
726 break;
727 }
728
729 case PGMPOOLKIND_64BIT_PML4:
730 {
731 /*
732 * Hopefully this doesn't happen very often:
733 * - messing with the bits of pd pointers without changing the physical address
734 */
735 if (!VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3))
736 {
737 uShw.pv = PGMPOOL_PAGE_2_LOCKED_PTR(pVM, pPage);
738 const unsigned iShw = off / sizeof(X86PDPE);
739 if (uShw.pPML4->a[iShw].n.u1Present)
740 {
741 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw=%#x: %RX64 -> freeing it!\n", iShw, uShw.pPML4->a[iShw].u));
742 pgmPoolFree(pVM, uShw.pPML4->a[iShw].u & X86_PML4E_PG_MASK, pPage->idx, iShw);
743 ASMAtomicWriteSize(&uShw.pPML4->a[iShw].u, 0);
744 }
745 /* paranoia / a bit assumptive. */
746 if ( pCpu
747 && (off & 7)
748 && (off & 7) + cbWrite > sizeof(X86PDPE))
749 {
750 const unsigned iShw2 = (off + cbWrite - 1) / sizeof(X86PML4E);
751 if (uShw.pPML4->a[iShw2].n.u1Present)
752 {
753 LogFlow(("pgmPoolMonitorChainChanging: pml4 iShw2=%#x: %RX64 -> freeing it!\n", iShw2, uShw.pPML4->a[iShw2].u));
754 pgmPoolFree(pVM, uShw.pPML4->a[iShw2].u & X86_PML4E_PG_MASK, pPage->idx, iShw2);
755 ASMAtomicWriteSize(&uShw.pPML4->a[iShw2].u, 0);
756 }
757 }
758 }
759 break;
760 }
761#endif /* IN_RING0 */
762
763 default:
764 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
765 }
766 PGMPOOL_UNLOCK_PTR(pVM, uShw.pv);
767
768 /* next */
769 if (pPage->iMonitoredNext == NIL_PGMPOOL_IDX)
770 return;
771 pPage = &pPool->aPages[pPage->iMonitoredNext];
772 }
773}
774
775# ifndef IN_RING3
776/**
777 * Checks if a access could be a fork operation in progress.
778 *
779 * Meaning, that the guest is setuping up the parent process for Copy-On-Write.
780 *
781 * @returns true if it's likly that we're forking, otherwise false.
782 * @param pPool The pool.
783 * @param pCpu The disassembled instruction.
784 * @param offFault The access offset.
785 */
786DECLINLINE(bool) pgmPoolMonitorIsForking(PPGMPOOL pPool, PDISCPUSTATE pCpu, unsigned offFault)
787{
788 /*
789 * i386 linux is using btr to clear X86_PTE_RW.
790 * The functions involved are (2.6.16 source inspection):
791 * clear_bit
792 * ptep_set_wrprotect
793 * copy_one_pte
794 * copy_pte_range
795 * copy_pmd_range
796 * copy_pud_range
797 * copy_page_range
798 * dup_mmap
799 * dup_mm
800 * copy_mm
801 * copy_process
802 * do_fork
803 */
804 if ( pCpu->pCurInstr->opcode == OP_BTR
805 && !(offFault & 4)
806 /** @todo Validate that the bit index is X86_PTE_RW. */
807 )
808 {
809 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,Fork));
810 return true;
811 }
812 return false;
813}
814
815
816/**
817 * Determine whether the page is likely to have been reused.
818 *
819 * @returns true if we consider the page as being reused for a different purpose.
820 * @returns false if we consider it to still be a paging page.
821 * @param pVM VM Handle.
822 * @param pRegFrame Trap register frame.
823 * @param pCpu The disassembly info for the faulting instruction.
824 * @param pvFault The fault address.
825 *
826 * @remark The REP prefix check is left to the caller because of STOSD/W.
827 */
828DECLINLINE(bool) pgmPoolMonitorIsReused(PVM pVM, PCPUMCTXCORE pRegFrame, PDISCPUSTATE pCpu, RTGCPTR pvFault)
829{
830#ifndef IN_RC
831 /** @todo could make this general, faulting close to rsp should be safe reuse heuristic. */
832 if ( HWACCMHasPendingIrq(pVM)
833 && (pRegFrame->rsp - pvFault) < 32)
834 {
835 /* Fault caused by stack writes while trying to inject an interrupt event. */
836 Log(("pgmPoolMonitorIsReused: reused %RGv for interrupt stack (rsp=%RGv).\n", pvFault, pRegFrame->rsp));
837 return true;
838 }
839#else
840 NOREF(pVM); NOREF(pvFault);
841#endif
842
843 switch (pCpu->pCurInstr->opcode)
844 {
845 /* call implies the actual push of the return address faulted */
846 case OP_CALL:
847 Log4(("pgmPoolMonitorIsReused: CALL\n"));
848 return true;
849 case OP_PUSH:
850 Log4(("pgmPoolMonitorIsReused: PUSH\n"));
851 return true;
852 case OP_PUSHF:
853 Log4(("pgmPoolMonitorIsReused: PUSHF\n"));
854 return true;
855 case OP_PUSHA:
856 Log4(("pgmPoolMonitorIsReused: PUSHA\n"));
857 return true;
858 case OP_FXSAVE:
859 Log4(("pgmPoolMonitorIsReused: FXSAVE\n"));
860 return true;
861 case OP_MOVNTI: /* solaris - block_zero_no_xmm */
862 Log4(("pgmPoolMonitorIsReused: MOVNTI\n"));
863 return true;
864 case OP_MOVNTDQ: /* solaris - hwblkclr & hwblkpagecopy */
865 Log4(("pgmPoolMonitorIsReused: MOVNTDQ\n"));
866 return true;
867 case OP_MOVSWD:
868 case OP_STOSWD:
869 if ( pCpu->prefix == (PREFIX_REP|PREFIX_REX)
870 && pRegFrame->rcx >= 0x40
871 )
872 {
873 Assert(pCpu->mode == CPUMODE_64BIT);
874
875 Log(("pgmPoolMonitorIsReused: OP_STOSQ\n"));
876 return true;
877 }
878 return false;
879 }
880 if ( (pCpu->param1.flags & USE_REG_GEN32)
881 && (pCpu->param1.base.reg_gen == USE_REG_ESP))
882 {
883 Log4(("pgmPoolMonitorIsReused: ESP\n"));
884 return true;
885 }
886
887 return false;
888}
889
890
891/**
892 * Flushes the page being accessed.
893 *
894 * @returns VBox status code suitable for scheduling.
895 * @param pVM The VM handle.
896 * @param pVCpu The VMCPU handle.
897 * @param pPool The pool.
898 * @param pPage The pool page (head).
899 * @param pCpu The disassembly of the write instruction.
900 * @param pRegFrame The trap register frame.
901 * @param GCPhysFault The fault address as guest physical address.
902 * @param pvFault The fault address.
903 */
904static int pgmPoolAccessHandlerFlush(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
905 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
906{
907 /*
908 * First, do the flushing.
909 */
910 int rc = pgmPoolMonitorChainFlush(pPool, pPage);
911
912 /*
913 * Emulate the instruction (xp/w2k problem, requires pc/cr2/sp detection).
914 */
915 uint32_t cbWritten;
916 int rc2 = EMInterpretInstructionCPU(pVM, pVCpu, pCpu, pRegFrame, pvFault, &cbWritten);
917 if (RT_SUCCESS(rc2))
918 pRegFrame->rip += pCpu->opsize;
919 else if (rc2 == VERR_EM_INTERPRETER)
920 {
921#ifdef IN_RC
922 if (PATMIsPatchGCAddr(pVM, (RTRCPTR)pRegFrame->eip))
923 {
924 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for patch code %04x:%RGv, ignoring.\n",
925 pRegFrame->cs, (RTGCPTR)pRegFrame->eip));
926 rc = VINF_SUCCESS;
927 STAM_COUNTER_INC(&pPool->StatMonitorRZIntrFailPatch2);
928 }
929 else
930#endif
931 {
932 rc = VINF_EM_RAW_EMULATE_INSTR;
933 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
934 }
935 }
936 else
937 rc = rc2;
938
939 /* See use in pgmPoolAccessHandlerSimple(). */
940 PGM_INVL_VCPU_TLBS(pVCpu);
941
942 LogFlow(("pgmPoolAccessHandlerPT: returns %Rrc (flushed)\n", rc));
943 return rc;
944
945}
946
947
948/**
949 * Handles the STOSD write accesses.
950 *
951 * @returns VBox status code suitable for scheduling.
952 * @param pVM The VM handle.
953 * @param pPool The pool.
954 * @param pPage The pool page (head).
955 * @param pCpu The disassembly of the write instruction.
956 * @param pRegFrame The trap register frame.
957 * @param GCPhysFault The fault address as guest physical address.
958 * @param pvFault The fault address.
959 */
960DECLINLINE(int) pgmPoolAccessHandlerSTOSD(PVM pVM, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
961 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
962{
963 Assert(pCpu->mode == CPUMODE_32BIT);
964
965 Log3(("pgmPoolAccessHandlerSTOSD\n"));
966
967 /*
968 * Increment the modification counter and insert it into the list
969 * of modified pages the first time.
970 */
971 if (!pPage->cModifications++)
972 pgmPoolMonitorModifiedInsert(pPool, pPage);
973
974 /*
975 * Execute REP STOSD.
976 *
977 * This ASSUMES that we're not invoked by Trap0e on in a out-of-sync
978 * write situation, meaning that it's safe to write here.
979 */
980 PVMCPU pVCpu = VMMGetCpu(pPool->CTX_SUFF(pVM));
981 RTGCUINTPTR pu32 = (RTGCUINTPTR)pvFault;
982 while (pRegFrame->ecx)
983 {
984#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
985 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
986 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
987 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
988#else
989 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, (RTGCPTR)pu32, NULL);
990#endif
991#ifdef IN_RC
992 *(uint32_t *)pu32 = pRegFrame->eax;
993#else
994 PGMPhysSimpleWriteGCPhys(pVM, GCPhysFault, &pRegFrame->eax, 4);
995#endif
996 pu32 += 4;
997 GCPhysFault += 4;
998 pRegFrame->edi += 4;
999 pRegFrame->ecx--;
1000 }
1001 pRegFrame->rip += pCpu->opsize;
1002
1003#ifdef IN_RC
1004 /* See use in pgmPoolAccessHandlerSimple(). */
1005 PGM_INVL_VCPU_TLBS(pVCpu);
1006#endif
1007
1008 LogFlow(("pgmPoolAccessHandlerSTOSD: returns\n"));
1009 return VINF_SUCCESS;
1010}
1011
1012
1013/**
1014 * Handles the simple write accesses.
1015 *
1016 * @returns VBox status code suitable for scheduling.
1017 * @param pVM The VM handle.
1018 * @param pVCpu The VMCPU handle.
1019 * @param pPool The pool.
1020 * @param pPage The pool page (head).
1021 * @param pCpu The disassembly of the write instruction.
1022 * @param pRegFrame The trap register frame.
1023 * @param GCPhysFault The fault address as guest physical address.
1024 * @param pvFault The fault address.
1025 */
1026DECLINLINE(int) pgmPoolAccessHandlerSimple(PVM pVM, PVMCPU pVCpu, PPGMPOOL pPool, PPGMPOOLPAGE pPage, PDISCPUSTATE pCpu,
1027 PCPUMCTXCORE pRegFrame, RTGCPHYS GCPhysFault, RTGCPTR pvFault)
1028{
1029 Log3(("pgmPoolAccessHandlerSimple\n"));
1030 /*
1031 * Increment the modification counter and insert it into the list
1032 * of modified pages the first time.
1033 */
1034 if (!pPage->cModifications++)
1035 pgmPoolMonitorModifiedInsert(pPool, pPage);
1036
1037 /*
1038 * Clear all the pages. ASSUMES that pvFault is readable.
1039 */
1040#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
1041 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
1042 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pCpu);
1043 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
1044#else
1045 pgmPoolMonitorChainChanging(pVCpu, pPool, pPage, GCPhysFault, pvFault, pCpu);
1046#endif
1047
1048 /*
1049 * Interpret the instruction.
1050 */
1051 uint32_t cb;
1052 int rc = EMInterpretInstructionCPU(pVM, pVCpu, pCpu, pRegFrame, pvFault, &cb);
1053 if (RT_SUCCESS(rc))
1054 pRegFrame->rip += pCpu->opsize;
1055 else if (rc == VERR_EM_INTERPRETER)
1056 {
1057 LogFlow(("pgmPoolAccessHandlerPTWorker: Interpretation failed for %04x:%RGv - opcode=%d\n",
1058 pRegFrame->cs, (RTGCPTR)pRegFrame->rip, pCpu->pCurInstr->opcode));
1059 rc = VINF_EM_RAW_EMULATE_INSTR;
1060 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,EmulateInstr));
1061 }
1062
1063#ifdef IN_RC
1064 /*
1065 * Quick hack, with logging enabled we're getting stale
1066 * code TLBs but no data TLB for EIP and crash in EMInterpretDisasOne.
1067 * Flushing here is BAD and expensive, I think EMInterpretDisasOne will
1068 * have to be fixed to support this. But that'll have to wait till next week.
1069 *
1070 * An alternative is to keep track of the changed PTEs together with the
1071 * GCPhys from the guest PT. This may proove expensive though.
1072 *
1073 * At the moment, it's VITAL that it's done AFTER the instruction interpreting
1074 * because we need the stale TLBs in some cases (XP boot). This MUST be fixed properly!
1075 */
1076 PGM_INVL_VCPU_TLBS(pVCpu);
1077#endif
1078
1079 LogFlow(("pgmPoolAccessHandlerSimple: returns %Rrc cb=%d\n", rc, cb));
1080 return rc;
1081}
1082
1083/**
1084 * \#PF Handler callback for PT write accesses.
1085 *
1086 * @returns VBox status code (appropriate for GC return).
1087 * @param pVM VM Handle.
1088 * @param uErrorCode CPU Error code.
1089 * @param pRegFrame Trap register frame.
1090 * NULL on DMA and other non CPU access.
1091 * @param pvFault The fault address (cr2).
1092 * @param GCPhysFault The GC physical address corresponding to pvFault.
1093 * @param pvUser User argument.
1094 */
1095DECLEXPORT(int) pgmPoolAccessHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault, RTGCPHYS GCPhysFault, void *pvUser)
1096{
1097 STAM_PROFILE_START(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), a);
1098 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1099 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)pvUser;
1100 PVMCPU pVCpu = VMMGetCpu(pVM);
1101
1102 LogFlow(("pgmPoolAccessHandler: pvFault=%RGv pPage=%p:{.idx=%d} GCPhysFault=%RGp\n", pvFault, pPage, pPage->idx, GCPhysFault));
1103
1104 /*
1105 * We should ALWAYS have the list head as user parameter. This
1106 * is because we use that page to record the changes.
1107 */
1108 Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1109
1110 /*
1111 * Disassemble the faulting instruction.
1112 */
1113 DISCPUSTATE Cpu;
1114 int rc = EMInterpretDisasOne(pVM, pVCpu, pRegFrame, &Cpu, NULL);
1115 AssertRCReturn(rc, rc);
1116
1117 pgmLock(pVM);
1118 AssertMsg(PHYS_PAGE_ADDRESS(GCPhysFault) == PHYS_PAGE_ADDRESS(pPage->GCPhys), ("%RGp vs %RGp\n", PHYS_PAGE_ADDRESS(GCPhysFault), pPage->GCPhys));
1119
1120 /*
1121 * Check if it's worth dealing with.
1122 */
1123 bool fReused = false;
1124 if ( ( pPage->cModifications < 48 /** @todo #define */ /** @todo need to check that it's not mapping EIP. */ /** @todo adjust this! */
1125 || pgmPoolIsPageLocked(&pVM->pgm.s, pPage)
1126 )
1127 && !(fReused = pgmPoolMonitorIsReused(pVM, pRegFrame, &Cpu, pvFault))
1128 && !pgmPoolMonitorIsForking(pPool, &Cpu, GCPhysFault & PAGE_OFFSET_MASK))
1129 {
1130 /*
1131 * Simple instructions, no REP prefix.
1132 */
1133 if (!(Cpu.prefix & (PREFIX_REP | PREFIX_REPNE)))
1134 {
1135 rc = pgmPoolAccessHandlerSimple(pVM, pVCpu, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1136 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,Handled), a);
1137 pgmUnlock(pVM);
1138 return rc;
1139 }
1140
1141 /*
1142 * Windows is frequently doing small memset() operations (netio test 4k+).
1143 * We have to deal with these or we'll kill the cache and performance.
1144 */
1145 if ( Cpu.pCurInstr->opcode == OP_STOSWD
1146 && CPUMGetGuestCPL(pVCpu, pRegFrame) == 0
1147 && pRegFrame->ecx <= 0x20
1148 && pRegFrame->ecx * 4 <= PAGE_SIZE - ((uintptr_t)pvFault & PAGE_OFFSET_MASK)
1149 && !((uintptr_t)pvFault & 3)
1150 && (pRegFrame->eax == 0 || pRegFrame->eax == 0x80) /* the two values observed. */
1151 && Cpu.mode == CPUMODE_32BIT
1152 && Cpu.opmode == CPUMODE_32BIT
1153 && Cpu.addrmode == CPUMODE_32BIT
1154 && Cpu.prefix == PREFIX_REP
1155 && !pRegFrame->eflags.Bits.u1DF
1156 )
1157 {
1158 rc = pgmPoolAccessHandlerSTOSD(pVM, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1159 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,RepStosd), a);
1160 pgmUnlock(pVM);
1161 return rc;
1162 }
1163
1164 /* REP prefix, don't bother. */
1165 STAM_COUNTER_INC(&pPool->CTX_MID_Z(StatMonitor,RepPrefix));
1166 Log4(("pgmPoolAccessHandler: eax=%#x ecx=%#x edi=%#x esi=%#x rip=%RGv opcode=%d prefix=%#x\n",
1167 pRegFrame->eax, pRegFrame->ecx, pRegFrame->edi, pRegFrame->esi, (RTGCPTR)pRegFrame->rip, Cpu.pCurInstr->opcode, Cpu.prefix));
1168 }
1169
1170 /*
1171 * Not worth it, so flush it.
1172 *
1173 * If we considered it to be reused, don't go back to ring-3
1174 * to emulate failed instructions since we usually cannot
1175 * interpret then. This may be a bit risky, in which case
1176 * the reuse detection must be fixed.
1177 */
1178 rc = pgmPoolAccessHandlerFlush(pVM, pVCpu, pPool, pPage, &Cpu, pRegFrame, GCPhysFault, pvFault);
1179 if (rc == VINF_EM_RAW_EMULATE_INSTR && fReused)
1180 rc = VINF_SUCCESS;
1181 STAM_PROFILE_STOP_EX(&pVM->pgm.s.CTX_SUFF(pPool)->CTX_SUFF_Z(StatMonitor), &pPool->CTX_MID_Z(StatMonitor,FlushPage), a);
1182 pgmUnlock(pVM);
1183 return rc;
1184}
1185
1186# endif /* !IN_RING3 */
1187#endif /* PGMPOOL_WITH_MONITORING */
1188
1189#ifdef PGMPOOL_WITH_CACHE
1190
1191/**
1192 * Inserts a page into the GCPhys hash table.
1193 *
1194 * @param pPool The pool.
1195 * @param pPage The page.
1196 */
1197DECLINLINE(void) pgmPoolHashInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1198{
1199 Log3(("pgmPoolHashInsert: %RGp\n", pPage->GCPhys));
1200 Assert(pPage->GCPhys != NIL_RTGCPHYS); Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1201 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1202 pPage->iNext = pPool->aiHash[iHash];
1203 pPool->aiHash[iHash] = pPage->idx;
1204}
1205
1206
1207/**
1208 * Removes a page from the GCPhys hash table.
1209 *
1210 * @param pPool The pool.
1211 * @param pPage The page.
1212 */
1213DECLINLINE(void) pgmPoolHashRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1214{
1215 Log3(("pgmPoolHashRemove: %RGp\n", pPage->GCPhys));
1216 uint16_t iHash = PGMPOOL_HASH(pPage->GCPhys);
1217 if (pPool->aiHash[iHash] == pPage->idx)
1218 pPool->aiHash[iHash] = pPage->iNext;
1219 else
1220 {
1221 uint16_t iPrev = pPool->aiHash[iHash];
1222 for (;;)
1223 {
1224 const int16_t i = pPool->aPages[iPrev].iNext;
1225 if (i == pPage->idx)
1226 {
1227 pPool->aPages[iPrev].iNext = pPage->iNext;
1228 break;
1229 }
1230 if (i == NIL_PGMPOOL_IDX)
1231 {
1232 AssertReleaseMsgFailed(("GCPhys=%RGp idx=%#x\n", pPage->GCPhys, pPage->idx));
1233 break;
1234 }
1235 iPrev = i;
1236 }
1237 }
1238 pPage->iNext = NIL_PGMPOOL_IDX;
1239}
1240
1241
1242/**
1243 * Frees up one cache page.
1244 *
1245 * @returns VBox status code.
1246 * @retval VINF_SUCCESS on success.
1247 * @param pPool The pool.
1248 * @param iUser The user index.
1249 */
1250static int pgmPoolCacheFreeOne(PPGMPOOL pPool, uint16_t iUser)
1251{
1252#ifndef IN_RC
1253 const PVM pVM = pPool->CTX_SUFF(pVM);
1254#endif
1255 Assert(pPool->iAgeHead != pPool->iAgeTail); /* We shouldn't be here if there < 2 cached entries! */
1256 STAM_COUNTER_INC(&pPool->StatCacheFreeUpOne);
1257
1258 /*
1259 * Select one page from the tail of the age list.
1260 */
1261 PPGMPOOLPAGE pPage;
1262 for (unsigned iLoop = 0; ; iLoop++)
1263 {
1264 uint16_t iToFree = pPool->iAgeTail;
1265 if (iToFree == iUser)
1266 iToFree = pPool->aPages[iToFree].iAgePrev;
1267/* This is the alternative to the SyncCR3 pgmPoolCacheUsed calls.
1268 if (pPool->aPages[iToFree].iUserHead != NIL_PGMPOOL_USER_INDEX)
1269 {
1270 uint16_t i = pPool->aPages[iToFree].iAgePrev;
1271 for (unsigned j = 0; j < 10 && i != NIL_PGMPOOL_USER_INDEX; j++, i = pPool->aPages[i].iAgePrev)
1272 {
1273 if (pPool->aPages[iToFree].iUserHead == NIL_PGMPOOL_USER_INDEX)
1274 continue;
1275 iToFree = i;
1276 break;
1277 }
1278 }
1279*/
1280 Assert(iToFree != iUser);
1281 AssertRelease(iToFree != NIL_PGMPOOL_IDX);
1282 pPage = &pPool->aPages[iToFree];
1283
1284 /*
1285 * Reject any attempts at flushing the currently active shadow CR3 mapping.
1286 * Call pgmPoolCacheUsed to move the page to the head of the age list.
1287 */
1288 if (!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage))
1289 break;
1290 LogFlow(("pgmPoolCacheFreeOne: refuse CR3 mapping\n"));
1291 pgmPoolCacheUsed(pPool, pPage);
1292 AssertLogRelReturn(iLoop < 8192, VERR_INTERNAL_ERROR);
1293 }
1294
1295 /*
1296 * Found a usable page, flush it and return.
1297 */
1298 int rc = pgmPoolFlushPage(pPool, pPage);
1299 /* This flush was initiated by us and not the guest, so explicitly flush the TLB. */
1300 if (rc == VINF_SUCCESS)
1301 PGM_INVL_ALL_VCPU_TLBS(pVM);
1302 return rc;
1303}
1304
1305
1306/**
1307 * Checks if a kind mismatch is really a page being reused
1308 * or if it's just normal remappings.
1309 *
1310 * @returns true if reused and the cached page (enmKind1) should be flushed
1311 * @returns false if not reused.
1312 * @param enmKind1 The kind of the cached page.
1313 * @param enmKind2 The kind of the requested page.
1314 */
1315static bool pgmPoolCacheReusedByKind(PGMPOOLKIND enmKind1, PGMPOOLKIND enmKind2)
1316{
1317 switch (enmKind1)
1318 {
1319 /*
1320 * Never reuse them. There is no remapping in non-paging mode.
1321 */
1322 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1323 case PGMPOOLKIND_32BIT_PD_PHYS:
1324 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1325 case PGMPOOLKIND_PAE_PD_PHYS:
1326 case PGMPOOLKIND_PAE_PDPT_PHYS:
1327 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1328 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1329 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1330 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1331 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1332 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT: /* never reuse them for other types */
1333 return false;
1334
1335 /*
1336 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1337 */
1338 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1339 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1340 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1341 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1342 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1343 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1344 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1345 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1346 case PGMPOOLKIND_32BIT_PD:
1347 case PGMPOOLKIND_PAE_PDPT:
1348 switch (enmKind2)
1349 {
1350 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1351 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1352 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1353 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1354 case PGMPOOLKIND_64BIT_PML4:
1355 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1356 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1357 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1358 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1359 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1360 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1361 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1362 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1363 return true;
1364 default:
1365 return false;
1366 }
1367
1368 /*
1369 * It's perfectly fine to reuse these, except for PAE and non-paging stuff.
1370 */
1371 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1372 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1373 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1374 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1375 case PGMPOOLKIND_64BIT_PML4:
1376 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1377 switch (enmKind2)
1378 {
1379 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1380 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1381 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1382 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1383 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1384 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1385 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1386 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1387 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1388 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1389 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1390 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1391 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1392 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1393 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1394 return true;
1395 default:
1396 return false;
1397 }
1398
1399 /*
1400 * These cannot be flushed, and it's common to reuse the PDs as PTs.
1401 */
1402 case PGMPOOLKIND_ROOT_NESTED:
1403 return false;
1404
1405 default:
1406 AssertFatalMsgFailed(("enmKind1=%d\n", enmKind1));
1407 }
1408}
1409
1410
1411/**
1412 * Attempts to satisfy a pgmPoolAlloc request from the cache.
1413 *
1414 * @returns VBox status code.
1415 * @retval VINF_PGM_CACHED_PAGE on success.
1416 * @retval VERR_FILE_NOT_FOUND if not found.
1417 * @param pPool The pool.
1418 * @param GCPhys The GC physical address of the page we're gonna shadow.
1419 * @param enmKind The kind of mapping.
1420 * @param iUser The shadow page pool index of the user table.
1421 * @param iUserTable The index into the user table (shadowed).
1422 * @param ppPage Where to store the pointer to the page.
1423 */
1424static int pgmPoolCacheAlloc(PPGMPOOL pPool, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
1425{
1426#ifndef IN_RC
1427 const PVM pVM = pPool->CTX_SUFF(pVM);
1428#endif
1429 /*
1430 * Look up the GCPhys in the hash.
1431 */
1432 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1433 Log3(("pgmPoolCacheAlloc: %RGp kind %s iUser=%x iUserTable=%x SLOT=%d\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable, i));
1434 if (i != NIL_PGMPOOL_IDX)
1435 {
1436 do
1437 {
1438 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1439 Log4(("pgmPoolCacheAlloc: slot %d found page %RGp\n", i, pPage->GCPhys));
1440 if (pPage->GCPhys == GCPhys)
1441 {
1442 if ((PGMPOOLKIND)pPage->enmKind == enmKind)
1443 {
1444 /* Put it at the start of the use list to make sure pgmPoolTrackAddUser
1445 * doesn't flush it in case there are no more free use records.
1446 */
1447 pgmPoolCacheUsed(pPool, pPage);
1448
1449 int rc = pgmPoolTrackAddUser(pPool, pPage, iUser, iUserTable);
1450 if (RT_SUCCESS(rc))
1451 {
1452 Assert((PGMPOOLKIND)pPage->enmKind == enmKind);
1453 *ppPage = pPage;
1454 STAM_COUNTER_INC(&pPool->StatCacheHits);
1455 return VINF_PGM_CACHED_PAGE;
1456 }
1457 return rc;
1458 }
1459
1460 /*
1461 * The kind is different. In some cases we should now flush the page
1462 * as it has been reused, but in most cases this is normal remapping
1463 * of PDs as PT or big pages using the GCPhys field in a slightly
1464 * different way than the other kinds.
1465 */
1466 if (pgmPoolCacheReusedByKind((PGMPOOLKIND)pPage->enmKind, enmKind))
1467 {
1468 STAM_COUNTER_INC(&pPool->StatCacheKindMismatches);
1469 pgmPoolFlushPage(pPool, pPage);
1470 PGM_INVL_VCPU_TLBS(VMMGetCpu(pVM)); /* see PT handler. */
1471 break;
1472 }
1473 }
1474
1475 /* next */
1476 i = pPage->iNext;
1477 } while (i != NIL_PGMPOOL_IDX);
1478 }
1479
1480 Log3(("pgmPoolCacheAlloc: Missed GCPhys=%RGp enmKind=%s\n", GCPhys, pgmPoolPoolKindToStr(enmKind)));
1481 STAM_COUNTER_INC(&pPool->StatCacheMisses);
1482 return VERR_FILE_NOT_FOUND;
1483}
1484
1485
1486/**
1487 * Inserts a page into the cache.
1488 *
1489 * @param pPool The pool.
1490 * @param pPage The cached page.
1491 * @param fCanBeCached Set if the page is fit for caching from the caller's point of view.
1492 */
1493static void pgmPoolCacheInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, bool fCanBeCached)
1494{
1495 /*
1496 * Insert into the GCPhys hash if the page is fit for that.
1497 */
1498 Assert(!pPage->fCached);
1499 if (fCanBeCached)
1500 {
1501 pPage->fCached = true;
1502 pgmPoolHashInsert(pPool, pPage);
1503 Log3(("pgmPoolCacheInsert: Caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1504 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1505 STAM_COUNTER_INC(&pPool->StatCacheCacheable);
1506 }
1507 else
1508 {
1509 Log3(("pgmPoolCacheInsert: Not caching %p:{.Core=%RHp, .idx=%d, .enmKind=%s, GCPhys=%RGp}\n",
1510 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
1511 STAM_COUNTER_INC(&pPool->StatCacheUncacheable);
1512 }
1513
1514 /*
1515 * Insert at the head of the age list.
1516 */
1517 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1518 pPage->iAgeNext = pPool->iAgeHead;
1519 if (pPool->iAgeHead != NIL_PGMPOOL_IDX)
1520 pPool->aPages[pPool->iAgeHead].iAgePrev = pPage->idx;
1521 else
1522 pPool->iAgeTail = pPage->idx;
1523 pPool->iAgeHead = pPage->idx;
1524}
1525
1526
1527/**
1528 * Flushes a cached page.
1529 *
1530 * @param pPool The pool.
1531 * @param pPage The cached page.
1532 */
1533static void pgmPoolCacheFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1534{
1535 Log3(("pgmPoolCacheFlushPage: %RGp\n", pPage->GCPhys));
1536
1537 /*
1538 * Remove the page from the hash.
1539 */
1540 if (pPage->fCached)
1541 {
1542 pPage->fCached = false;
1543 pgmPoolHashRemove(pPool, pPage);
1544 }
1545 else
1546 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
1547
1548 /*
1549 * Remove it from the age list.
1550 */
1551 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
1552 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
1553 else
1554 pPool->iAgeTail = pPage->iAgePrev;
1555 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
1556 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
1557 else
1558 pPool->iAgeHead = pPage->iAgeNext;
1559 pPage->iAgeNext = NIL_PGMPOOL_IDX;
1560 pPage->iAgePrev = NIL_PGMPOOL_IDX;
1561}
1562
1563#endif /* PGMPOOL_WITH_CACHE */
1564#ifdef PGMPOOL_WITH_MONITORING
1565
1566/**
1567 * Looks for pages sharing the monitor.
1568 *
1569 * @returns Pointer to the head page.
1570 * @returns NULL if not found.
1571 * @param pPool The Pool
1572 * @param pNewPage The page which is going to be monitored.
1573 */
1574static PPGMPOOLPAGE pgmPoolMonitorGetPageByGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pNewPage)
1575{
1576#ifdef PGMPOOL_WITH_CACHE
1577 /*
1578 * Look up the GCPhys in the hash.
1579 */
1580 RTGCPHYS GCPhys = pNewPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1581 unsigned i = pPool->aiHash[PGMPOOL_HASH(GCPhys)];
1582 if (i == NIL_PGMPOOL_IDX)
1583 return NULL;
1584 do
1585 {
1586 PPGMPOOLPAGE pPage = &pPool->aPages[i];
1587 if ( pPage->GCPhys - GCPhys < PAGE_SIZE
1588 && pPage != pNewPage)
1589 {
1590 switch (pPage->enmKind)
1591 {
1592 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1593 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1594 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1595 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1596 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1597 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1598 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1599 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1600 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1601 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1602 case PGMPOOLKIND_64BIT_PML4:
1603 case PGMPOOLKIND_32BIT_PD:
1604 case PGMPOOLKIND_PAE_PDPT:
1605 {
1606 /* find the head */
1607 while (pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1608 {
1609 Assert(pPage->iMonitoredPrev != pPage->idx);
1610 pPage = &pPool->aPages[pPage->iMonitoredPrev];
1611 }
1612 return pPage;
1613 }
1614
1615 /* ignore, no monitoring. */
1616 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1617 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1618 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1619 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1620 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1621 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1622 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1623 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1624 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1625 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1626 case PGMPOOLKIND_ROOT_NESTED:
1627 case PGMPOOLKIND_PAE_PD_PHYS:
1628 case PGMPOOLKIND_PAE_PDPT_PHYS:
1629 case PGMPOOLKIND_32BIT_PD_PHYS:
1630 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1631 break;
1632 default:
1633 AssertFatalMsgFailed(("enmKind=%d idx=%d\n", pPage->enmKind, pPage->idx));
1634 }
1635 }
1636
1637 /* next */
1638 i = pPage->iNext;
1639 } while (i != NIL_PGMPOOL_IDX);
1640#endif
1641 return NULL;
1642}
1643
1644
1645/**
1646 * Enabled write monitoring of a guest page.
1647 *
1648 * @returns VBox status code.
1649 * @retval VINF_SUCCESS on success.
1650 * @param pPool The pool.
1651 * @param pPage The cached page.
1652 */
1653static int pgmPoolMonitorInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1654{
1655 LogFlow(("pgmPoolMonitorInsert %RGp\n", pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1)));
1656
1657 /*
1658 * Filter out the relevant kinds.
1659 */
1660 switch (pPage->enmKind)
1661 {
1662 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1663 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1664 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1665 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1666 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1667 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1668 case PGMPOOLKIND_64BIT_PML4:
1669 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1670 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1671 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1672 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1673 case PGMPOOLKIND_32BIT_PD:
1674 case PGMPOOLKIND_PAE_PDPT:
1675 break;
1676
1677 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1678 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1679 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1680 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1681 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1682 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1683 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1684 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1685 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1686 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1687 case PGMPOOLKIND_ROOT_NESTED:
1688 /* Nothing to monitor here. */
1689 return VINF_SUCCESS;
1690
1691 case PGMPOOLKIND_32BIT_PD_PHYS:
1692 case PGMPOOLKIND_PAE_PDPT_PHYS:
1693 case PGMPOOLKIND_PAE_PD_PHYS:
1694 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
1695 /* Nothing to monitor here. */
1696 return VINF_SUCCESS;
1697#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1698 break;
1699#else
1700 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1701#endif
1702 default:
1703 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1704 }
1705
1706 /*
1707 * Install handler.
1708 */
1709 int rc;
1710 PPGMPOOLPAGE pPageHead = pgmPoolMonitorGetPageByGCPhys(pPool, pPage);
1711 if (pPageHead)
1712 {
1713 Assert(pPageHead != pPage); Assert(pPageHead->iMonitoredNext != pPage->idx);
1714 Assert(pPageHead->iMonitoredPrev != pPage->idx);
1715 pPage->iMonitoredPrev = pPageHead->idx;
1716 pPage->iMonitoredNext = pPageHead->iMonitoredNext;
1717 if (pPageHead->iMonitoredNext != NIL_PGMPOOL_IDX)
1718 pPool->aPages[pPageHead->iMonitoredNext].iMonitoredPrev = pPage->idx;
1719 pPageHead->iMonitoredNext = pPage->idx;
1720 rc = VINF_SUCCESS;
1721 }
1722 else
1723 {
1724 Assert(pPage->iMonitoredNext == NIL_PGMPOOL_IDX); Assert(pPage->iMonitoredPrev == NIL_PGMPOOL_IDX);
1725 PVM pVM = pPool->CTX_SUFF(pVM);
1726 const RTGCPHYS GCPhysPage = pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1);
1727 rc = PGMHandlerPhysicalRegisterEx(pVM, PGMPHYSHANDLERTYPE_PHYSICAL_WRITE,
1728 GCPhysPage, GCPhysPage + (PAGE_SIZE - 1),
1729 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
1730 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
1731 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
1732 pPool->pszAccessHandler);
1733 /** @todo we should probably deal with out-of-memory conditions here, but for now increasing
1734 * the heap size should suffice. */
1735 AssertFatalMsgRC(rc, ("PGMHandlerPhysicalRegisterEx %RGp failed with %Rrc\n", GCPhysPage, rc));
1736 Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3));
1737 }
1738 pPage->fMonitored = true;
1739 return rc;
1740}
1741
1742
1743/**
1744 * Disables write monitoring of a guest page.
1745 *
1746 * @returns VBox status code.
1747 * @retval VINF_SUCCESS on success.
1748 * @param pPool The pool.
1749 * @param pPage The cached page.
1750 */
1751static int pgmPoolMonitorFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1752{
1753 /*
1754 * Filter out the relevant kinds.
1755 */
1756 switch (pPage->enmKind)
1757 {
1758 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1759 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1760 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
1761 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1762 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
1763 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
1764 case PGMPOOLKIND_64BIT_PML4:
1765 case PGMPOOLKIND_32BIT_PD:
1766 case PGMPOOLKIND_PAE_PDPT:
1767 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
1768 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
1769 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
1770 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
1771 break;
1772
1773 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1774 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1775 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1776 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1777 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1778 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
1779 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
1780 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
1781 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
1782 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
1783 case PGMPOOLKIND_ROOT_NESTED:
1784 case PGMPOOLKIND_PAE_PD_PHYS:
1785 case PGMPOOLKIND_PAE_PDPT_PHYS:
1786 case PGMPOOLKIND_32BIT_PD_PHYS:
1787 /* Nothing to monitor here. */
1788 return VINF_SUCCESS;
1789
1790#ifdef PGMPOOL_WITH_MIXED_PT_CR3
1791 break;
1792#endif
1793 default:
1794 AssertFatalMsgFailed(("This can't happen! enmKind=%d\n", pPage->enmKind));
1795 }
1796
1797 /*
1798 * Remove the page from the monitored list or uninstall it if last.
1799 */
1800 const PVM pVM = pPool->CTX_SUFF(pVM);
1801 int rc;
1802 if ( pPage->iMonitoredNext != NIL_PGMPOOL_IDX
1803 || pPage->iMonitoredPrev != NIL_PGMPOOL_IDX)
1804 {
1805 if (pPage->iMonitoredPrev == NIL_PGMPOOL_IDX)
1806 {
1807 PPGMPOOLPAGE pNewHead = &pPool->aPages[pPage->iMonitoredNext];
1808 pNewHead->iMonitoredPrev = NIL_PGMPOOL_IDX;
1809 rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
1810 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pNewHead),
1811 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pNewHead),
1812 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pNewHead),
1813 pPool->pszAccessHandler);
1814 AssertFatalRCSuccess(rc);
1815 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1816 }
1817 else
1818 {
1819 pPool->aPages[pPage->iMonitoredPrev].iMonitoredNext = pPage->iMonitoredNext;
1820 if (pPage->iMonitoredNext != NIL_PGMPOOL_IDX)
1821 {
1822 pPool->aPages[pPage->iMonitoredNext].iMonitoredPrev = pPage->iMonitoredPrev;
1823 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
1824 }
1825 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
1826 rc = VINF_SUCCESS;
1827 }
1828 }
1829 else
1830 {
1831 rc = PGMHandlerPhysicalDeregister(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1));
1832 AssertFatalRC(rc);
1833 AssertMsg(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL) || VMCPU_FF_ISSET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3),
1834 ("%#x %#x\n", pVM->pgm.s.fGlobalSyncFlags, pVM->fGlobalForcedActions));
1835 }
1836 pPage->fMonitored = false;
1837
1838 /*
1839 * Remove it from the list of modified pages (if in it).
1840 */
1841 pgmPoolMonitorModifiedRemove(pPool, pPage);
1842
1843 return rc;
1844}
1845
1846
1847/**
1848 * Inserts the page into the list of modified pages.
1849 *
1850 * @param pPool The pool.
1851 * @param pPage The page.
1852 */
1853void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1854{
1855 Log3(("pgmPoolMonitorModifiedInsert: idx=%d\n", pPage->idx));
1856 AssertMsg( pPage->iModifiedNext == NIL_PGMPOOL_IDX
1857 && pPage->iModifiedPrev == NIL_PGMPOOL_IDX
1858 && pPool->iModifiedHead != pPage->idx,
1859 ("Next=%d Prev=%d idx=%d cModifications=%d Head=%d cModifiedPages=%d\n",
1860 pPage->iModifiedNext, pPage->iModifiedPrev, pPage->idx, pPage->cModifications,
1861 pPool->iModifiedHead, pPool->cModifiedPages));
1862
1863 pPage->iModifiedNext = pPool->iModifiedHead;
1864 if (pPool->iModifiedHead != NIL_PGMPOOL_IDX)
1865 pPool->aPages[pPool->iModifiedHead].iModifiedPrev = pPage->idx;
1866 pPool->iModifiedHead = pPage->idx;
1867 pPool->cModifiedPages++;
1868#ifdef VBOX_WITH_STATISTICS
1869 if (pPool->cModifiedPages > pPool->cModifiedPagesHigh)
1870 pPool->cModifiedPagesHigh = pPool->cModifiedPages;
1871#endif
1872}
1873
1874
1875/**
1876 * Removes the page from the list of modified pages and resets the
1877 * moficiation counter.
1878 *
1879 * @param pPool The pool.
1880 * @param pPage The page which is believed to be in the list of modified pages.
1881 */
1882static void pgmPoolMonitorModifiedRemove(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
1883{
1884 Log3(("pgmPoolMonitorModifiedRemove: idx=%d cModifications=%d\n", pPage->idx, pPage->cModifications));
1885 if (pPool->iModifiedHead == pPage->idx)
1886 {
1887 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1888 pPool->iModifiedHead = pPage->iModifiedNext;
1889 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1890 {
1891 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = NIL_PGMPOOL_IDX;
1892 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1893 }
1894 pPool->cModifiedPages--;
1895 }
1896 else if (pPage->iModifiedPrev != NIL_PGMPOOL_IDX)
1897 {
1898 pPool->aPages[pPage->iModifiedPrev].iModifiedNext = pPage->iModifiedNext;
1899 if (pPage->iModifiedNext != NIL_PGMPOOL_IDX)
1900 {
1901 pPool->aPages[pPage->iModifiedNext].iModifiedPrev = pPage->iModifiedPrev;
1902 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1903 }
1904 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1905 pPool->cModifiedPages--;
1906 }
1907 else
1908 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX);
1909 pPage->cModifications = 0;
1910}
1911
1912
1913/**
1914 * Zaps the list of modified pages, resetting their modification counters in the process.
1915 *
1916 * @param pVM The VM handle.
1917 */
1918void pgmPoolMonitorModifiedClearAll(PVM pVM)
1919{
1920 pgmLock(pVM);
1921 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1922 LogFlow(("pgmPoolMonitorModifiedClearAll: cModifiedPages=%d\n", pPool->cModifiedPages));
1923
1924 unsigned cPages = 0; NOREF(cPages);
1925 uint16_t idx = pPool->iModifiedHead;
1926 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
1927 while (idx != NIL_PGMPOOL_IDX)
1928 {
1929 PPGMPOOLPAGE pPage = &pPool->aPages[idx];
1930 idx = pPage->iModifiedNext;
1931 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
1932 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
1933 pPage->cModifications = 0;
1934 Assert(++cPages);
1935 }
1936 AssertMsg(cPages == pPool->cModifiedPages, ("%d != %d\n", cPages, pPool->cModifiedPages));
1937 pPool->cModifiedPages = 0;
1938 pgmUnlock(pVM);
1939}
1940
1941
1942#ifdef IN_RING3
1943/**
1944 * Callback to clear all shadow pages and clear all modification counters.
1945 *
1946 * @returns VBox status code.
1947 * @param pVM The VM handle.
1948 * @param pvUser Unused parameter
1949 * @remark Should only be used when monitoring is available, thus placed in
1950 * the PGMPOOL_WITH_MONITORING #ifdef.
1951 */
1952DECLCALLBACK(int) pgmPoolClearAll(PVM pVM, void *pvUser)
1953{
1954 NOREF(pvUser);
1955 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
1956 STAM_PROFILE_START(&pPool->StatClearAll, c);
1957 LogFlow(("pgmPoolClearAll: cUsedPages=%d\n", pPool->cUsedPages));
1958
1959 pgmLock(pVM);
1960
1961 /*
1962 * Iterate all the pages until we've encountered all that in use.
1963 * This is simple but not quite optimal solution.
1964 */
1965 unsigned cModifiedPages = 0; NOREF(cModifiedPages);
1966 unsigned cLeft = pPool->cUsedPages;
1967 unsigned iPage = pPool->cCurPages;
1968 while (--iPage >= PGMPOOL_IDX_FIRST)
1969 {
1970 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
1971 if (pPage->GCPhys != NIL_RTGCPHYS)
1972 {
1973 switch (pPage->enmKind)
1974 {
1975 /*
1976 * We only care about shadow page tables.
1977 */
1978 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
1979 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
1980 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
1981 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
1982 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
1983 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
1984 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
1985 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
1986 {
1987#ifdef PGMPOOL_WITH_USER_TRACKING
1988 if (pPage->cPresent)
1989#endif
1990 {
1991 void *pvShw = PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pPage);
1992 STAM_PROFILE_START(&pPool->StatZeroPage, z);
1993 ASMMemZeroPage(pvShw);
1994 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
1995#ifdef PGMPOOL_WITH_USER_TRACKING
1996 pPage->cPresent = 0;
1997 pPage->iFirstPresent = ~0;
1998#endif
1999 }
2000 }
2001 /* fall thru */
2002
2003 default:
2004 Assert(!pPage->cModifications || ++cModifiedPages);
2005 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2006 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2007 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2008 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2009 pPage->cModifications = 0;
2010 break;
2011
2012 }
2013 if (!--cLeft)
2014 break;
2015 }
2016 }
2017
2018 /* swipe the special pages too. */
2019 for (iPage = PGMPOOL_IDX_FIRST_SPECIAL; iPage < PGMPOOL_IDX_FIRST; iPage++)
2020 {
2021 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2022 if (pPage->GCPhys != NIL_RTGCPHYS)
2023 {
2024 Assert(!pPage->cModifications || ++cModifiedPages);
2025 Assert(pPage->iModifiedNext == NIL_PGMPOOL_IDX || pPage->cModifications);
2026 Assert(pPage->iModifiedPrev == NIL_PGMPOOL_IDX || pPage->cModifications);
2027 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
2028 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
2029 pPage->cModifications = 0;
2030 }
2031 }
2032
2033#ifndef DEBUG_michael
2034 AssertMsg(cModifiedPages == pPool->cModifiedPages, ("%d != %d\n", cModifiedPages, pPool->cModifiedPages));
2035#endif
2036 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
2037 pPool->cModifiedPages = 0;
2038
2039#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2040 /*
2041 * Clear all the GCPhys links and rebuild the phys ext free list.
2042 */
2043 for (PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
2044 pRam;
2045 pRam = pRam->CTX_SUFF(pNext))
2046 {
2047 unsigned iPage = pRam->cb >> PAGE_SHIFT;
2048 while (iPage-- > 0)
2049 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
2050 }
2051
2052 pPool->iPhysExtFreeHead = 0;
2053 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
2054 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
2055 for (unsigned i = 0; i < cMaxPhysExts; i++)
2056 {
2057 paPhysExts[i].iNext = i + 1;
2058 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
2059 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
2060 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
2061 }
2062 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
2063#endif
2064
2065 pPool->cPresent = 0;
2066 pgmUnlock(pVM);
2067 PGM_INVL_ALL_VCPU_TLBS(pVM);
2068 STAM_PROFILE_STOP(&pPool->StatClearAll, c);
2069 return VINF_SUCCESS;
2070}
2071#endif /* IN_RING3 */
2072
2073
2074/**
2075 * Handle SyncCR3 pool tasks
2076 *
2077 * @returns VBox status code.
2078 * @retval VINF_SUCCESS if successfully added.
2079 * @retval VINF_PGM_SYNC_CR3 is it needs to be deferred to ring 3 (GC only)
2080 * @param pVM The VM handle.
2081 * @remark Should only be used when monitoring is available, thus placed in
2082 * the PGMPOOL_WITH_MONITORING #ifdef.
2083 */
2084int pgmPoolSyncCR3(PVM pVM)
2085{
2086 LogFlow(("pgmPoolSyncCR3\n"));
2087 /*
2088 * When monitoring shadowed pages, we reset the modification counters on CR3 sync.
2089 * Occasionally we will have to clear all the shadow page tables because we wanted
2090 * to monitor a page which was mapped by too many shadowed page tables. This operation
2091 * sometimes refered to as a 'lightweight flush'.
2092 */
2093# ifdef IN_RING3 /* Don't flush in ring-0 or raw mode, it's taking too long. */
2094 if (ASMBitTestAndClear(&pVM->pgm.s.fGlobalSyncFlags, PGM_GLOBAL_SYNC_CLEAR_PGM_POOL_BIT))
2095 {
2096 VMMR3AtomicExecuteHandler(pVM, pgmPoolClearAll, NULL);
2097# else /* !IN_RING3 */
2098 if (pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL)
2099 {
2100 LogFlow(("SyncCR3: PGM_GLOBAL_SYNC_CLEAR_PGM_POOL is set -> VINF_PGM_SYNC_CR3\n"));
2101 VMCPU_FF_SET(VMMGetCpu(pVM), VMCPU_FF_PGM_SYNC_CR3); /** @todo no need to do global sync, right? */
2102 return VINF_PGM_SYNC_CR3;
2103# endif /* !IN_RING3 */
2104 }
2105 else
2106 pgmPoolMonitorModifiedClearAll(pVM);
2107
2108 return VINF_SUCCESS;
2109}
2110
2111#endif /* PGMPOOL_WITH_MONITORING */
2112#ifdef PGMPOOL_WITH_USER_TRACKING
2113
2114/**
2115 * Frees up at least one user entry.
2116 *
2117 * @returns VBox status code.
2118 * @retval VINF_SUCCESS if successfully added.
2119 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2120 * @param pPool The pool.
2121 * @param iUser The user index.
2122 */
2123static int pgmPoolTrackFreeOneUser(PPGMPOOL pPool, uint16_t iUser)
2124{
2125 STAM_COUNTER_INC(&pPool->StatTrackFreeUpOneUser);
2126#ifdef PGMPOOL_WITH_CACHE
2127 /*
2128 * Just free cached pages in a braindead fashion.
2129 */
2130 /** @todo walk the age list backwards and free the first with usage. */
2131 int rc = VINF_SUCCESS;
2132 do
2133 {
2134 int rc2 = pgmPoolCacheFreeOne(pPool, iUser);
2135 if (RT_FAILURE(rc2) && rc == VINF_SUCCESS)
2136 rc = rc2;
2137 } while (pPool->iUserFreeHead == NIL_PGMPOOL_USER_INDEX);
2138 return rc;
2139#else
2140 /*
2141 * Lazy approach.
2142 */
2143 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
2144 AssertCompileFailed();
2145 Assert(!CPUMIsGuestInLongMode(pVM));
2146 pgmPoolFlushAllInt(pPool);
2147 return VERR_PGM_POOL_FLUSHED;
2148#endif
2149}
2150
2151
2152/**
2153 * Inserts a page into the cache.
2154 *
2155 * This will create user node for the page, insert it into the GCPhys
2156 * hash, and insert it into the age list.
2157 *
2158 * @returns VBox status code.
2159 * @retval VINF_SUCCESS if successfully added.
2160 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2161 * @param pPool The pool.
2162 * @param pPage The cached page.
2163 * @param GCPhys The GC physical address of the page we're gonna shadow.
2164 * @param iUser The user index.
2165 * @param iUserTable The user table index.
2166 */
2167DECLINLINE(int) pgmPoolTrackInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhys, uint16_t iUser, uint32_t iUserTable)
2168{
2169 int rc = VINF_SUCCESS;
2170 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2171
2172 LogFlow(("pgmPoolTrackInsert GCPhys=%RGp iUser %x iUserTable %x\n", GCPhys, iUser, iUserTable));
2173
2174#ifdef VBOX_STRICT
2175 /*
2176 * Check that the entry doesn't already exists.
2177 */
2178 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2179 {
2180 uint16_t i = pPage->iUserHead;
2181 do
2182 {
2183 Assert(i < pPool->cMaxUsers);
2184 AssertMsg(paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2185 i = paUsers[i].iNext;
2186 } while (i != NIL_PGMPOOL_USER_INDEX);
2187 }
2188#endif
2189
2190 /*
2191 * Find free a user node.
2192 */
2193 uint16_t i = pPool->iUserFreeHead;
2194 if (i == NIL_PGMPOOL_USER_INDEX)
2195 {
2196 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2197 if (RT_FAILURE(rc))
2198 return rc;
2199 i = pPool->iUserFreeHead;
2200 }
2201
2202 /*
2203 * Unlink the user node from the free list,
2204 * initialize and insert it into the user list.
2205 */
2206 pPool->iUserFreeHead = paUsers[i].iNext;
2207 paUsers[i].iNext = NIL_PGMPOOL_USER_INDEX;
2208 paUsers[i].iUser = iUser;
2209 paUsers[i].iUserTable = iUserTable;
2210 pPage->iUserHead = i;
2211
2212 /*
2213 * Insert into cache and enable monitoring of the guest page if enabled.
2214 *
2215 * Until we implement caching of all levels, including the CR3 one, we'll
2216 * have to make sure we don't try monitor & cache any recursive reuse of
2217 * a monitored CR3 page. Because all windows versions are doing this we'll
2218 * have to be able to do combined access monitoring, CR3 + PT and
2219 * PD + PT (guest PAE).
2220 *
2221 * Update:
2222 * We're now cooperating with the CR3 monitor if an uncachable page is found.
2223 */
2224#if defined(PGMPOOL_WITH_MONITORING) || defined(PGMPOOL_WITH_CACHE)
2225# ifdef PGMPOOL_WITH_MIXED_PT_CR3
2226 const bool fCanBeMonitored = true;
2227# else
2228 bool fCanBeMonitored = pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored == NIL_RTGCPHYS
2229 || (GCPhys & X86_PTE_PAE_PG_MASK) != (pPool->CTX_SUFF(pVM)->pgm.s.GCPhysGstCR3Monitored & X86_PTE_PAE_PG_MASK)
2230 || pgmPoolIsBigPage((PGMPOOLKIND)pPage->enmKind);
2231# endif
2232# ifdef PGMPOOL_WITH_CACHE
2233 pgmPoolCacheInsert(pPool, pPage, fCanBeMonitored); /* This can be expanded. */
2234# endif
2235 if (fCanBeMonitored)
2236 {
2237# ifdef PGMPOOL_WITH_MONITORING
2238 rc = pgmPoolMonitorInsert(pPool, pPage);
2239 AssertRC(rc);
2240 }
2241# endif
2242#endif /* PGMPOOL_WITH_MONITORING */
2243 return rc;
2244}
2245
2246
2247# ifdef PGMPOOL_WITH_CACHE /* (only used when the cache is enabled.) */
2248/**
2249 * Adds a user reference to a page.
2250 *
2251 * This will move the page to the head of the
2252 *
2253 * @returns VBox status code.
2254 * @retval VINF_SUCCESS if successfully added.
2255 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
2256 * @param pPool The pool.
2257 * @param pPage The cached page.
2258 * @param iUser The user index.
2259 * @param iUserTable The user table.
2260 */
2261static int pgmPoolTrackAddUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2262{
2263 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2264
2265 Log3(("pgmPoolTrackAddUser GCPhys = %RGp iUser %x iUserTable %x\n", pPage->GCPhys, iUser, iUserTable));
2266
2267# ifdef VBOX_STRICT
2268 /*
2269 * Check that the entry doesn't already exists. We only allow multiple users of top-level paging structures (SHW_POOL_ROOT_IDX).
2270 */
2271 if (pPage->iUserHead != NIL_PGMPOOL_USER_INDEX)
2272 {
2273 uint16_t i = pPage->iUserHead;
2274 do
2275 {
2276 Assert(i < pPool->cMaxUsers);
2277 AssertMsg(iUser != PGMPOOL_IDX_PD || iUser != PGMPOOL_IDX_PDPT || iUser != PGMPOOL_IDX_NESTED_ROOT || iUser != PGMPOOL_IDX_AMD64_CR3 ||
2278 paUsers[i].iUser != iUser || paUsers[i].iUserTable != iUserTable, ("%x %x vs new %x %x\n", paUsers[i].iUser, paUsers[i].iUserTable, iUser, iUserTable));
2279 i = paUsers[i].iNext;
2280 } while (i != NIL_PGMPOOL_USER_INDEX);
2281 }
2282# endif
2283
2284 /*
2285 * Allocate a user node.
2286 */
2287 uint16_t i = pPool->iUserFreeHead;
2288 if (i == NIL_PGMPOOL_USER_INDEX)
2289 {
2290 int rc = pgmPoolTrackFreeOneUser(pPool, iUser);
2291 if (RT_FAILURE(rc))
2292 return rc;
2293 i = pPool->iUserFreeHead;
2294 }
2295 pPool->iUserFreeHead = paUsers[i].iNext;
2296
2297 /*
2298 * Initialize the user node and insert it.
2299 */
2300 paUsers[i].iNext = pPage->iUserHead;
2301 paUsers[i].iUser = iUser;
2302 paUsers[i].iUserTable = iUserTable;
2303 pPage->iUserHead = i;
2304
2305# ifdef PGMPOOL_WITH_CACHE
2306 /*
2307 * Tell the cache to update its replacement stats for this page.
2308 */
2309 pgmPoolCacheUsed(pPool, pPage);
2310# endif
2311 return VINF_SUCCESS;
2312}
2313# endif /* PGMPOOL_WITH_CACHE */
2314
2315
2316/**
2317 * Frees a user record associated with a page.
2318 *
2319 * This does not clear the entry in the user table, it simply replaces the
2320 * user record to the chain of free records.
2321 *
2322 * @param pPool The pool.
2323 * @param HCPhys The HC physical address of the shadow page.
2324 * @param iUser The shadow page pool index of the user table.
2325 * @param iUserTable The index into the user table (shadowed).
2326 */
2327static void pgmPoolTrackFreeUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
2328{
2329 /*
2330 * Unlink and free the specified user entry.
2331 */
2332 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2333
2334 Log3(("pgmPoolTrackFreeUser %RGp %x %x\n", pPage->GCPhys, iUser, iUserTable));
2335 /* Special: For PAE and 32-bit paging, there is usually no more than one user. */
2336 uint16_t i = pPage->iUserHead;
2337 if ( i != NIL_PGMPOOL_USER_INDEX
2338 && paUsers[i].iUser == iUser
2339 && paUsers[i].iUserTable == iUserTable)
2340 {
2341 pPage->iUserHead = paUsers[i].iNext;
2342
2343 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2344 paUsers[i].iNext = pPool->iUserFreeHead;
2345 pPool->iUserFreeHead = i;
2346 return;
2347 }
2348
2349 /* General: Linear search. */
2350 uint16_t iPrev = NIL_PGMPOOL_USER_INDEX;
2351 while (i != NIL_PGMPOOL_USER_INDEX)
2352 {
2353 if ( paUsers[i].iUser == iUser
2354 && paUsers[i].iUserTable == iUserTable)
2355 {
2356 if (iPrev != NIL_PGMPOOL_USER_INDEX)
2357 paUsers[iPrev].iNext = paUsers[i].iNext;
2358 else
2359 pPage->iUserHead = paUsers[i].iNext;
2360
2361 paUsers[i].iUser = NIL_PGMPOOL_IDX;
2362 paUsers[i].iNext = pPool->iUserFreeHead;
2363 pPool->iUserFreeHead = i;
2364 return;
2365 }
2366 iPrev = i;
2367 i = paUsers[i].iNext;
2368 }
2369
2370 /* Fatal: didn't find it */
2371 AssertFatalMsgFailed(("Didn't find the user entry! iUser=%#x iUserTable=%#x GCPhys=%RGp\n",
2372 iUser, iUserTable, pPage->GCPhys));
2373}
2374
2375
2376/**
2377 * Gets the entry size of a shadow table.
2378 *
2379 * @param enmKind The kind of page.
2380 *
2381 * @returns The size of the entry in bytes. That is, 4 or 8.
2382 * @returns If the kind is not for a table, an assertion is raised and 0 is
2383 * returned.
2384 */
2385DECLINLINE(unsigned) pgmPoolTrackGetShadowEntrySize(PGMPOOLKIND enmKind)
2386{
2387 switch (enmKind)
2388 {
2389 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2390 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2391 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2392 case PGMPOOLKIND_32BIT_PD:
2393 case PGMPOOLKIND_32BIT_PD_PHYS:
2394 return 4;
2395
2396 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2397 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2398 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2399 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2400 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2401 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2402 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2403 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2404 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2405 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2406 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2407 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2408 case PGMPOOLKIND_64BIT_PML4:
2409 case PGMPOOLKIND_PAE_PDPT:
2410 case PGMPOOLKIND_ROOT_NESTED:
2411 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2412 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2413 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2414 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2415 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2416 case PGMPOOLKIND_PAE_PD_PHYS:
2417 case PGMPOOLKIND_PAE_PDPT_PHYS:
2418 return 8;
2419
2420 default:
2421 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2422 }
2423}
2424
2425
2426/**
2427 * Gets the entry size of a guest table.
2428 *
2429 * @param enmKind The kind of page.
2430 *
2431 * @returns The size of the entry in bytes. That is, 0, 4 or 8.
2432 * @returns If the kind is not for a table, an assertion is raised and 0 is
2433 * returned.
2434 */
2435DECLINLINE(unsigned) pgmPoolTrackGetGuestEntrySize(PGMPOOLKIND enmKind)
2436{
2437 switch (enmKind)
2438 {
2439 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2440 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2441 case PGMPOOLKIND_32BIT_PD:
2442 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2443 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2444 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2445 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2446 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2447 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2448 return 4;
2449
2450 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2451 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2452 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2453 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2454 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2455 case PGMPOOLKIND_64BIT_PML4:
2456 case PGMPOOLKIND_PAE_PDPT:
2457 return 8;
2458
2459 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2460 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2461 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2462 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2463 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2464 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2465 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2466 case PGMPOOLKIND_ROOT_NESTED:
2467 case PGMPOOLKIND_PAE_PD_PHYS:
2468 case PGMPOOLKIND_PAE_PDPT_PHYS:
2469 case PGMPOOLKIND_32BIT_PD_PHYS:
2470 /** @todo can we return 0? (nobody is calling this...) */
2471 AssertFailed();
2472 return 0;
2473
2474 default:
2475 AssertFatalMsgFailed(("enmKind=%d\n", enmKind));
2476 }
2477}
2478
2479#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2480
2481/**
2482 * Scans one shadow page table for mappings of a physical page.
2483 *
2484 * @param pVM The VM handle.
2485 * @param pPhysPage The guest page in question.
2486 * @param iShw The shadow page table.
2487 * @param cRefs The number of references made in that PT.
2488 */
2489static void pgmPoolTrackFlushGCPhysPTInt(PVM pVM, PCPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2490{
2491 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2492 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2493
2494 /*
2495 * Assert sanity.
2496 */
2497 Assert(cRefs == 1);
2498 AssertFatalMsg(iShw < pPool->cCurPages && iShw != NIL_PGMPOOL_IDX, ("iShw=%d\n", iShw));
2499 PPGMPOOLPAGE pPage = &pPool->aPages[iShw];
2500
2501 /*
2502 * Then, clear the actual mappings to the page in the shadow PT.
2503 */
2504 switch (pPage->enmKind)
2505 {
2506 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2507 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2508 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2509 {
2510 const uint32_t u32 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2511 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2512 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2513 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2514 {
2515 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX32 cRefs=%#x\n", i, pPT->a[i], cRefs));
2516 pPT->a[i].u = 0;
2517 cRefs--;
2518 if (!cRefs)
2519 return;
2520 }
2521#ifdef LOG_ENABLED
2522 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2523 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2524 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2525 {
2526 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2527 pPT->a[i].u = 0;
2528 }
2529#endif
2530 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2531 break;
2532 }
2533
2534 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2535 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2536 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2537 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2538 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2539 {
2540 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2541 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2542 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2543 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2544 {
2545 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2546 pPT->a[i].u = 0;
2547 cRefs--;
2548 if (!cRefs)
2549 return;
2550 }
2551#ifdef LOG_ENABLED
2552 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2553 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2554 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2555 {
2556 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2557 pPT->a[i].u = 0;
2558 }
2559#endif
2560 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d u64=%RX64\n", cRefs, pPage->iFirstPresent, pPage->cPresent, u64));
2561 break;
2562 }
2563
2564 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
2565 {
2566 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2567 PEPTPT pPT = (PEPTPT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2568 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2569 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2570 {
2571 Log4(("pgmPoolTrackFlushGCPhysPTs: i=%d pte=%RX64 cRefs=%#x\n", i, pPT->a[i], cRefs));
2572 pPT->a[i].u = 0;
2573 cRefs--;
2574 if (!cRefs)
2575 return;
2576 }
2577#ifdef LOG_ENABLED
2578 RTLogPrintf("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent);
2579 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
2580 if ((pPT->a[i].u & (EPT_PTE_PG_MASK | X86_PTE_P)) == u64)
2581 {
2582 RTLogPrintf("i=%d cRefs=%d\n", i, cRefs--);
2583 pPT->a[i].u = 0;
2584 }
2585#endif
2586 AssertFatalMsgFailed(("cRefs=%d iFirstPresent=%d cPresent=%d\n", cRefs, pPage->iFirstPresent, pPage->cPresent));
2587 break;
2588 }
2589
2590 default:
2591 AssertFatalMsgFailed(("enmKind=%d iShw=%d\n", pPage->enmKind, iShw));
2592 }
2593}
2594
2595
2596/**
2597 * Scans one shadow page table for mappings of a physical page.
2598 *
2599 * @param pVM The VM handle.
2600 * @param pPhysPage The guest page in question.
2601 * @param iShw The shadow page table.
2602 * @param cRefs The number of references made in that PT.
2603 */
2604void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs)
2605{
2606 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool); NOREF(pPool);
2607 LogFlow(("pgmPoolTrackFlushGCPhysPT: pPhysPage=%R[pgmpage] iShw=%d cRefs=%d\n", pPhysPage, iShw, cRefs));
2608 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPT, f);
2609 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, iShw, cRefs);
2610 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2611 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPT, f);
2612}
2613
2614
2615/**
2616 * Flushes a list of shadow page tables mapping the same physical page.
2617 *
2618 * @param pVM The VM handle.
2619 * @param pPhysPage The guest page in question.
2620 * @param iPhysExt The physical cross reference extent list to flush.
2621 */
2622void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt)
2623{
2624 Assert(PGMIsLockOwner(pVM));
2625 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2626 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTs, f);
2627 LogFlow(("pgmPoolTrackFlushGCPhysPTs: pPhysPage=%R[pgmpage] iPhysExt\n", pPhysPage, iPhysExt));
2628
2629 const uint16_t iPhysExtStart = iPhysExt;
2630 PPGMPOOLPHYSEXT pPhysExt;
2631 do
2632 {
2633 Assert(iPhysExt < pPool->cMaxPhysExts);
2634 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
2635 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
2636 if (pPhysExt->aidx[i] != NIL_PGMPOOL_IDX)
2637 {
2638 pgmPoolTrackFlushGCPhysPTInt(pVM, pPhysPage, pPhysExt->aidx[i], 1);
2639 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
2640 }
2641
2642 /* next */
2643 iPhysExt = pPhysExt->iNext;
2644 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
2645
2646 /* insert the list into the free list and clear the ram range entry. */
2647 pPhysExt->iNext = pPool->iPhysExtFreeHead;
2648 pPool->iPhysExtFreeHead = iPhysExtStart;
2649 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2650
2651 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTs, f);
2652}
2653
2654#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
2655
2656/**
2657 * Flushes all shadow page table mappings of the given guest page.
2658 *
2659 * This is typically called when the host page backing the guest one has been
2660 * replaced or when the page protection was changed due to an access handler.
2661 *
2662 * @returns VBox status code.
2663 * @retval VINF_SUCCESS if all references has been successfully cleared.
2664 * @retval VINF_PGM_SYNC_CR3 if we're better off with a CR3 sync and a page
2665 * pool cleaning. FF and sync flags are set.
2666 *
2667 * @param pVM The VM handle.
2668 * @param pPhysPage The guest page in question.
2669 * @param pfFlushTLBs This is set to @a true if the shadow TLBs should be
2670 * flushed, it is NOT touched if this isn't necessary.
2671 * The caller MUST initialized this to @a false.
2672 */
2673int pgmPoolTrackFlushGCPhys(PVM pVM, PPGMPAGE pPhysPage, bool *pfFlushTLBs)
2674{
2675 pgmLock(pVM);
2676 int rc = VINF_SUCCESS;
2677#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2678 const uint16_t u16 = PGM_PAGE_GET_TRACKING(pPhysPage);
2679 if (u16)
2680 {
2681 /*
2682 * The zero page is currently screwing up the tracking and we'll
2683 * have to flush the whole shebang. Unless VBOX_WITH_NEW_LAZY_PAGE_ALLOC
2684 * is defined, zero pages won't normally be mapped. Some kind of solution
2685 * will be needed for this problem of course, but it will have to wait...
2686 */
2687 if (PGM_PAGE_IS_ZERO(pPhysPage))
2688 rc = VINF_PGM_GCPHYS_ALIASED;
2689 else
2690 {
2691# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2692 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow and
2693 pgmPoolTrackFlushGCPhysPTs will/may kill the pool otherwise. */
2694 PVMCPU pVCpu = VMMGetCpu(pVM);
2695 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2696# endif
2697
2698 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
2699 pgmPoolTrackFlushGCPhysPT(pVM,
2700 pPhysPage,
2701 PGMPOOL_TD_GET_IDX(u16),
2702 PGMPOOL_TD_GET_CREFS(u16));
2703 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
2704 pgmPoolTrackFlushGCPhysPTs(pVM, pPhysPage, PGMPOOL_TD_GET_IDX(u16));
2705 else
2706 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2707 *pfFlushTLBs = true;
2708
2709# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2710 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2711# endif
2712 }
2713 }
2714
2715#elif defined(PGMPOOL_WITH_CACHE)
2716 if (PGM_PAGE_IS_ZERO(pPhysPage))
2717 rc = VINF_PGM_GCPHYS_ALIASED;
2718 else
2719 {
2720# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2721 /* Start a subset here because pgmPoolTrackFlushGCPhysPTsSlow kill the pool otherwise. */
2722 PVMCPU pVCpu = VMMGetCpu(pVM);
2723 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
2724# endif
2725 rc = pgmPoolTrackFlushGCPhysPTsSlow(pVM, pPhysPage);
2726 if (rc == VINF_SUCCESS)
2727 *pfFlushTLBs = true;
2728 }
2729
2730# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2731 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
2732# endif
2733
2734#else
2735 rc = VINF_PGM_GCPHYS_ALIASED;
2736#endif
2737
2738 if (rc == VINF_PGM_GCPHYS_ALIASED)
2739 {
2740 pVM->pgm.s.fGlobalSyncFlags |= PGM_GLOBAL_SYNC_CLEAR_PGM_POOL;
2741 for (unsigned i=0;i<pVM->cCPUs;i++)
2742 {
2743 PVMCPU pVCpu = &pVM->aCpus[i];
2744 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2745 }
2746 rc = VINF_PGM_SYNC_CR3;
2747 }
2748 pgmUnlock(pVM);
2749 return rc;
2750}
2751
2752
2753/**
2754 * Scans all shadow page tables for mappings of a physical page.
2755 *
2756 * This may be slow, but it's most likely more efficient than cleaning
2757 * out the entire page pool / cache.
2758 *
2759 * @returns VBox status code.
2760 * @retval VINF_SUCCESS if all references has been successfully cleared.
2761 * @retval VINF_PGM_GCPHYS_ALIASED if we're better off with a CR3 sync and
2762 * a page pool cleaning.
2763 *
2764 * @param pVM The VM handle.
2765 * @param pPhysPage The guest page in question.
2766 */
2767int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage)
2768{
2769 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
2770 STAM_PROFILE_START(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2771 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: cUsedPages=%d cPresent=%d pPhysPage=%R[pgmpage]\n",
2772 pPool->cUsedPages, pPool->cPresent, pPhysPage));
2773
2774#if 1
2775 /*
2776 * There is a limit to what makes sense.
2777 */
2778 if (pPool->cPresent > 1024)
2779 {
2780 LogFlow(("pgmPoolTrackFlushGCPhysPTsSlow: giving up... (cPresent=%d)\n", pPool->cPresent));
2781 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2782 return VINF_PGM_GCPHYS_ALIASED;
2783 }
2784#endif
2785
2786 /*
2787 * Iterate all the pages until we've encountered all that in use.
2788 * This is simple but not quite optimal solution.
2789 */
2790 const uint64_t u64 = PGM_PAGE_GET_HCPHYS(pPhysPage) | X86_PTE_P;
2791 const uint32_t u32 = u64;
2792 unsigned cLeft = pPool->cUsedPages;
2793 unsigned iPage = pPool->cCurPages;
2794 while (--iPage >= PGMPOOL_IDX_FIRST)
2795 {
2796 PPGMPOOLPAGE pPage = &pPool->aPages[iPage];
2797 if (pPage->GCPhys != NIL_RTGCPHYS)
2798 {
2799 switch (pPage->enmKind)
2800 {
2801 /*
2802 * We only care about shadow page tables.
2803 */
2804 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
2805 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
2806 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
2807 {
2808 unsigned cPresent = pPage->cPresent;
2809 PX86PT pPT = (PX86PT)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2810 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2811 if (pPT->a[i].n.u1Present)
2812 {
2813 if ((pPT->a[i].u & (X86_PTE_PG_MASK | X86_PTE_P)) == u32)
2814 {
2815 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX32\n", iPage, i, pPT->a[i]));
2816 pPT->a[i].u = 0;
2817 }
2818 if (!--cPresent)
2819 break;
2820 }
2821 break;
2822 }
2823
2824 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
2825 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
2826 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
2827 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
2828 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
2829 {
2830 unsigned cPresent = pPage->cPresent;
2831 PX86PTPAE pPT = (PX86PTPAE)PGMPOOL_PAGE_2_PTR(pVM, pPage);
2832 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pPT->a); i++)
2833 if (pPT->a[i].n.u1Present)
2834 {
2835 if ((pPT->a[i].u & (X86_PTE_PAE_PG_MASK | X86_PTE_P)) == u64)
2836 {
2837 //Log4(("pgmPoolTrackFlushGCPhysPTsSlow: idx=%d i=%d pte=%RX64\n", iPage, i, pPT->a[i]));
2838 pPT->a[i].u = 0;
2839 }
2840 if (!--cPresent)
2841 break;
2842 }
2843 break;
2844 }
2845 }
2846 if (!--cLeft)
2847 break;
2848 }
2849 }
2850
2851 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
2852 STAM_PROFILE_STOP(&pPool->StatTrackFlushGCPhysPTsSlow, s);
2853 return VINF_SUCCESS;
2854}
2855
2856
2857/**
2858 * Clears the user entry in a user table.
2859 *
2860 * This is used to remove all references to a page when flushing it.
2861 */
2862static void pgmPoolTrackClearPageUser(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PCPGMPOOLUSER pUser)
2863{
2864 Assert(pUser->iUser != NIL_PGMPOOL_IDX);
2865 Assert(pUser->iUser < pPool->cCurPages);
2866 uint32_t iUserTable = pUser->iUserTable;
2867
2868 /*
2869 * Map the user page.
2870 */
2871 PPGMPOOLPAGE pUserPage = &pPool->aPages[pUser->iUser];
2872 union
2873 {
2874 uint64_t *pau64;
2875 uint32_t *pau32;
2876 } u;
2877 u.pau64 = (uint64_t *)PGMPOOL_PAGE_2_PTR(pPool->CTX_SUFF(pVM), pUserPage);
2878
2879 LogFlow(("pgmPoolTrackClearPageUser: clear %x in %s (%RGp) (flushing %s)\n", iUserTable, pgmPoolPoolKindToStr(pUserPage->enmKind), pUserPage->Core.Key, pgmPoolPoolKindToStr(pPage->enmKind)));
2880
2881 /* Safety precaution in case we change the paging for other modes too in the future. */
2882 Assert(!pgmPoolIsPageLocked(&pPool->CTX_SUFF(pVM)->pgm.s, pPage));
2883
2884#ifdef VBOX_STRICT
2885 /*
2886 * Some sanity checks.
2887 */
2888 switch (pUserPage->enmKind)
2889 {
2890 case PGMPOOLKIND_32BIT_PD:
2891 case PGMPOOLKIND_32BIT_PD_PHYS:
2892 Assert(iUserTable < X86_PG_ENTRIES);
2893 break;
2894 case PGMPOOLKIND_PAE_PDPT:
2895 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2896 case PGMPOOLKIND_PAE_PDPT_PHYS:
2897 Assert(iUserTable < 4);
2898 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2899 break;
2900 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2901 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2902 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2903 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2904 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2905 case PGMPOOLKIND_PAE_PD_PHYS:
2906 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2907 break;
2908 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2909 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2910 Assert(!(u.pau64[iUserTable] & PGM_PDFLAGS_MAPPING));
2911 break;
2912 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2913 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2914 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2915 break;
2916 case PGMPOOLKIND_64BIT_PML4:
2917 Assert(!(u.pau64[iUserTable] & PGM_PLXFLAGS_PERMANENT));
2918 /* GCPhys >> PAGE_SHIFT is the index here */
2919 break;
2920 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2921 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2922 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2923 break;
2924
2925 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2926 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2927 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2928 break;
2929
2930 case PGMPOOLKIND_ROOT_NESTED:
2931 Assert(iUserTable < X86_PG_PAE_ENTRIES);
2932 break;
2933
2934 default:
2935 AssertMsgFailed(("enmKind=%d\n", pUserPage->enmKind));
2936 break;
2937 }
2938#endif /* VBOX_STRICT */
2939
2940 /*
2941 * Clear the entry in the user page.
2942 */
2943 switch (pUserPage->enmKind)
2944 {
2945 /* 32-bit entries */
2946 case PGMPOOLKIND_32BIT_PD:
2947 case PGMPOOLKIND_32BIT_PD_PHYS:
2948 u.pau32[iUserTable] = 0;
2949 break;
2950
2951 /* 64-bit entries */
2952 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
2953 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
2954 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
2955 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
2956 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
2957#if defined(IN_RC)
2958 /* In 32 bits PAE mode we *must* invalidate the TLB when changing a PDPT entry; the CPU fetches them only during cr3 load, so any
2959 * non-present PDPT will continue to cause page faults.
2960 */
2961 ASMReloadCR3();
2962#endif
2963 /* no break */
2964 case PGMPOOLKIND_PAE_PD_PHYS:
2965 case PGMPOOLKIND_PAE_PDPT_PHYS:
2966 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
2967 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
2968 case PGMPOOLKIND_64BIT_PML4:
2969 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
2970 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
2971 case PGMPOOLKIND_PAE_PDPT:
2972 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
2973 case PGMPOOLKIND_ROOT_NESTED:
2974 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
2975 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
2976 u.pau64[iUserTable] = 0;
2977 break;
2978
2979 default:
2980 AssertFatalMsgFailed(("enmKind=%d iUser=%#x iUserTable=%#x\n", pUserPage->enmKind, pUser->iUser, pUser->iUserTable));
2981 }
2982}
2983
2984
2985/**
2986 * Clears all users of a page.
2987 */
2988static void pgmPoolTrackClearPageUsers(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
2989{
2990 /*
2991 * Free all the user records.
2992 */
2993 LogFlow(("pgmPoolTrackClearPageUsers %RGp\n", pPage->GCPhys));
2994
2995 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
2996 uint16_t i = pPage->iUserHead;
2997 while (i != NIL_PGMPOOL_USER_INDEX)
2998 {
2999 /* Clear enter in user table. */
3000 pgmPoolTrackClearPageUser(pPool, pPage, &paUsers[i]);
3001
3002 /* Free it. */
3003 const uint16_t iNext = paUsers[i].iNext;
3004 paUsers[i].iUser = NIL_PGMPOOL_IDX;
3005 paUsers[i].iNext = pPool->iUserFreeHead;
3006 pPool->iUserFreeHead = i;
3007
3008 /* Next. */
3009 i = iNext;
3010 }
3011 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
3012}
3013
3014#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3015
3016/**
3017 * Allocates a new physical cross reference extent.
3018 *
3019 * @returns Pointer to the allocated extent on success. NULL if we're out of them.
3020 * @param pVM The VM handle.
3021 * @param piPhysExt Where to store the phys ext index.
3022 */
3023PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt)
3024{
3025 Assert(PGMIsLockOwner(pVM));
3026 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3027 uint16_t iPhysExt = pPool->iPhysExtFreeHead;
3028 if (iPhysExt == NIL_PGMPOOL_PHYSEXT_INDEX)
3029 {
3030 STAM_COUNTER_INC(&pPool->StamTrackPhysExtAllocFailures);
3031 return NULL;
3032 }
3033 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3034 pPool->iPhysExtFreeHead = pPhysExt->iNext;
3035 pPhysExt->iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
3036 *piPhysExt = iPhysExt;
3037 return pPhysExt;
3038}
3039
3040
3041/**
3042 * Frees a physical cross reference extent.
3043 *
3044 * @param pVM The VM handle.
3045 * @param iPhysExt The extent to free.
3046 */
3047void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt)
3048{
3049 Assert(PGMIsLockOwner(pVM));
3050 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3051 Assert(iPhysExt < pPool->cMaxPhysExts);
3052 PPGMPOOLPHYSEXT pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3053 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3054 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3055 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3056 pPool->iPhysExtFreeHead = iPhysExt;
3057}
3058
3059
3060/**
3061 * Frees a physical cross reference extent.
3062 *
3063 * @param pVM The VM handle.
3064 * @param iPhysExt The extent to free.
3065 */
3066void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt)
3067{
3068 Assert(PGMIsLockOwner(pVM));
3069 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3070
3071 const uint16_t iPhysExtStart = iPhysExt;
3072 PPGMPOOLPHYSEXT pPhysExt;
3073 do
3074 {
3075 Assert(iPhysExt < pPool->cMaxPhysExts);
3076 pPhysExt = &pPool->CTX_SUFF(paPhysExts)[iPhysExt];
3077 for (unsigned i = 0; i < RT_ELEMENTS(pPhysExt->aidx); i++)
3078 pPhysExt->aidx[i] = NIL_PGMPOOL_IDX;
3079
3080 /* next */
3081 iPhysExt = pPhysExt->iNext;
3082 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3083
3084 pPhysExt->iNext = pPool->iPhysExtFreeHead;
3085 pPool->iPhysExtFreeHead = iPhysExtStart;
3086}
3087
3088
3089/**
3090 * Insert a reference into a list of physical cross reference extents.
3091 *
3092 * @returns The new tracking data for PGMPAGE.
3093 *
3094 * @param pVM The VM handle.
3095 * @param iPhysExt The physical extent index of the list head.
3096 * @param iShwPT The shadow page table index.
3097 *
3098 */
3099static uint16_t pgmPoolTrackPhysExtInsert(PVM pVM, uint16_t iPhysExt, uint16_t iShwPT)
3100{
3101 Assert(PGMIsLockOwner(pVM));
3102 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
3103 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3104
3105 /* special common case. */
3106 if (paPhysExts[iPhysExt].aidx[2] == NIL_PGMPOOL_IDX)
3107 {
3108 paPhysExts[iPhysExt].aidx[2] = iShwPT;
3109 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3110 LogFlow(("pgmPoolTrackPhysExtAddref: %d:{,,%d}\n", iPhysExt, iShwPT));
3111 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3112 }
3113
3114 /* general treatment. */
3115 const uint16_t iPhysExtStart = iPhysExt;
3116 unsigned cMax = 15;
3117 for (;;)
3118 {
3119 Assert(iPhysExt < pPool->cMaxPhysExts);
3120 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3121 if (paPhysExts[iPhysExt].aidx[i] == NIL_PGMPOOL_IDX)
3122 {
3123 paPhysExts[iPhysExt].aidx[i] = iShwPT;
3124 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedMany);
3125 LogFlow(("pgmPoolTrackPhysExtAddref: %d:{%d} i=%d cMax=%d\n", iPhysExt, iShwPT, i, cMax));
3126 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtStart);
3127 }
3128 if (!--cMax)
3129 {
3130 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3131 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3132 LogFlow(("pgmPoolTrackPhysExtAddref: overflow (1) iShwPT=%d\n", iShwPT));
3133 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3134 }
3135 }
3136
3137 /* add another extent to the list. */
3138 PPGMPOOLPHYSEXT pNew = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3139 if (!pNew)
3140 {
3141 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackOverflows);
3142 pgmPoolTrackPhysExtFreeList(pVM, iPhysExtStart);
3143 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3144 }
3145 pNew->iNext = iPhysExtStart;
3146 pNew->aidx[0] = iShwPT;
3147 LogFlow(("pgmPoolTrackPhysExtAddref: added new extent %d:{%d}->%d\n", iPhysExt, iShwPT, iPhysExtStart));
3148 return PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3149}
3150
3151
3152/**
3153 * Add a reference to guest physical page where extents are in use.
3154 *
3155 * @returns The new tracking data for PGMPAGE.
3156 *
3157 * @param pVM The VM handle.
3158 * @param u16 The ram range flags (top 16-bits).
3159 * @param iShwPT The shadow page table index.
3160 */
3161uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT)
3162{
3163 pgmLock(pVM);
3164 if (PGMPOOL_TD_GET_CREFS(u16) != PGMPOOL_TD_CREFS_PHYSEXT)
3165 {
3166 /*
3167 * Convert to extent list.
3168 */
3169 Assert(PGMPOOL_TD_GET_CREFS(u16) == 1);
3170 uint16_t iPhysExt;
3171 PPGMPOOLPHYSEXT pPhysExt = pgmPoolTrackPhysExtAlloc(pVM, &iPhysExt);
3172 if (pPhysExt)
3173 {
3174 LogFlow(("pgmPoolTrackPhysExtAddref: new extent: %d:{%d, %d}\n", iPhysExt, PGMPOOL_TD_GET_IDX(u16), iShwPT));
3175 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliased);
3176 pPhysExt->aidx[0] = PGMPOOL_TD_GET_IDX(u16);
3177 pPhysExt->aidx[1] = iShwPT;
3178 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExt);
3179 }
3180 else
3181 u16 = PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED);
3182 }
3183 else if (u16 != PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, PGMPOOL_TD_IDX_OVERFLOWED))
3184 {
3185 /*
3186 * Insert into the extent list.
3187 */
3188 u16 = pgmPoolTrackPhysExtInsert(pVM, PGMPOOL_TD_GET_IDX(u16), iShwPT);
3189 }
3190 else
3191 STAM_COUNTER_INC(&pVM->pgm.s.StatTrackAliasedLots);
3192 pgmUnlock(pVM);
3193 return u16;
3194}
3195
3196
3197/**
3198 * Clear references to guest physical memory.
3199 *
3200 * @param pPool The pool.
3201 * @param pPage The page.
3202 * @param pPhysPage Pointer to the aPages entry in the ram range.
3203 */
3204void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PPGMPAGE pPhysPage)
3205{
3206 const unsigned cRefs = PGM_PAGE_GET_TD_CREFS(pPhysPage);
3207 AssertFatalMsg(cRefs == PGMPOOL_TD_CREFS_PHYSEXT, ("cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3208
3209 uint16_t iPhysExt = PGM_PAGE_GET_TD_IDX(pPhysPage);
3210 if (iPhysExt != PGMPOOL_TD_IDX_OVERFLOWED)
3211 {
3212 PVM pVM = pPool->CTX_SUFF(pVM);
3213 pgmLock(pVM);
3214
3215 uint16_t iPhysExtPrev = NIL_PGMPOOL_PHYSEXT_INDEX;
3216 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
3217 do
3218 {
3219 Assert(iPhysExt < pPool->cMaxPhysExts);
3220
3221 /*
3222 * Look for the shadow page and check if it's all freed.
3223 */
3224 for (unsigned i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3225 {
3226 if (paPhysExts[iPhysExt].aidx[i] == pPage->idx)
3227 {
3228 paPhysExts[iPhysExt].aidx[i] = NIL_PGMPOOL_IDX;
3229
3230 for (i = 0; i < RT_ELEMENTS(paPhysExts[iPhysExt].aidx); i++)
3231 if (paPhysExts[iPhysExt].aidx[i] != NIL_PGMPOOL_IDX)
3232 {
3233 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3234 pgmUnlock(pVM);
3235 return;
3236 }
3237
3238 /* we can free the node. */
3239 const uint16_t iPhysExtNext = paPhysExts[iPhysExt].iNext;
3240 if ( iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX
3241 && iPhysExtNext == NIL_PGMPOOL_PHYSEXT_INDEX)
3242 {
3243 /* lonely node */
3244 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3245 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d lonely\n", pPhysPage, pPage->idx));
3246 PGM_PAGE_SET_TRACKING(pPhysPage, 0);
3247 }
3248 else if (iPhysExtPrev == NIL_PGMPOOL_PHYSEXT_INDEX)
3249 {
3250 /* head */
3251 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d head\n", pPhysPage, pPage->idx));
3252 PGM_PAGE_SET_TRACKING(pPhysPage, PGMPOOL_TD_MAKE(PGMPOOL_TD_CREFS_PHYSEXT, iPhysExtNext));
3253 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3254 }
3255 else
3256 {
3257 /* in list */
3258 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage] idx=%d\n", pPhysPage, pPage->idx));
3259 paPhysExts[iPhysExtPrev].iNext = iPhysExtNext;
3260 pgmPoolTrackPhysExtFree(pVM, iPhysExt);
3261 }
3262 iPhysExt = iPhysExtNext;
3263 pgmUnlock(pVM);
3264 return;
3265 }
3266 }
3267
3268 /* next */
3269 iPhysExtPrev = iPhysExt;
3270 iPhysExt = paPhysExts[iPhysExt].iNext;
3271 } while (iPhysExt != NIL_PGMPOOL_PHYSEXT_INDEX);
3272
3273 pgmUnlock(pVM);
3274 AssertFatalMsgFailed(("not-found! cRefs=%d pPhysPage=%R[pgmpage] pPage=%p:{.idx=%d}\n", cRefs, pPhysPage, pPage, pPage->idx));
3275 }
3276 else /* nothing to do */
3277 Log2(("pgmPoolTrackPhysExtDerefGCPhys: pPhysPage=%R[pgmpage]\n", pPhysPage));
3278}
3279
3280
3281/**
3282 * Clear references to guest physical memory.
3283 *
3284 * This is the same as pgmPoolTracDerefGCPhys except that the guest physical address
3285 * is assumed to be correct, so the linear search can be skipped and we can assert
3286 * at an earlier point.
3287 *
3288 * @param pPool The pool.
3289 * @param pPage The page.
3290 * @param HCPhys The host physical address corresponding to the guest page.
3291 * @param GCPhys The guest physical address corresponding to HCPhys.
3292 */
3293static void pgmPoolTracDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhys)
3294{
3295 /*
3296 * Walk range list.
3297 */
3298 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3299 while (pRam)
3300 {
3301 RTGCPHYS off = GCPhys - pRam->GCPhys;
3302 if (off < pRam->cb)
3303 {
3304 /* does it match? */
3305 const unsigned iPage = off >> PAGE_SHIFT;
3306 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3307#ifdef LOG_ENABLED
3308RTHCPHYS HCPhysPage = PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]);
3309Log2(("pgmPoolTracDerefGCPhys %RHp vs %RHp\n", HCPhysPage, HCPhys));
3310#endif
3311 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3312 {
3313 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3314 return;
3315 }
3316 break;
3317 }
3318 pRam = pRam->CTX_SUFF(pNext);
3319 }
3320 AssertFatalMsgFailed(("HCPhys=%RHp GCPhys=%RGp\n", HCPhys, GCPhys));
3321}
3322
3323
3324/**
3325 * Clear references to guest physical memory.
3326 *
3327 * @param pPool The pool.
3328 * @param pPage The page.
3329 * @param HCPhys The host physical address corresponding to the guest page.
3330 * @param GCPhysHint The guest physical address which may corresponding to HCPhys.
3331 */
3332static void pgmPoolTracDerefGCPhysHint(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTHCPHYS HCPhys, RTGCPHYS GCPhysHint)
3333{
3334 Log4(("pgmPoolTracDerefGCPhysHint %RHp %RGp\n", HCPhys, GCPhysHint));
3335
3336 /*
3337 * Walk range list.
3338 */
3339 PPGMRAMRANGE pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3340 while (pRam)
3341 {
3342 RTGCPHYS off = GCPhysHint - pRam->GCPhys;
3343 if (off < pRam->cb)
3344 {
3345 /* does it match? */
3346 const unsigned iPage = off >> PAGE_SHIFT;
3347 Assert(PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]));
3348 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3349 {
3350 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3351 return;
3352 }
3353 break;
3354 }
3355 pRam = pRam->CTX_SUFF(pNext);
3356 }
3357
3358 /*
3359 * Damn, the hint didn't work. We'll have to do an expensive linear search.
3360 */
3361 STAM_COUNTER_INC(&pPool->StatTrackLinearRamSearches);
3362 pRam = pPool->CTX_SUFF(pVM)->pgm.s.CTX_SUFF(pRamRanges);
3363 while (pRam)
3364 {
3365 unsigned iPage = pRam->cb >> PAGE_SHIFT;
3366 while (iPage-- > 0)
3367 {
3368 if (PGM_PAGE_GET_HCPHYS(&pRam->aPages[iPage]) == HCPhys)
3369 {
3370 Log4(("pgmPoolTracDerefGCPhysHint: Linear HCPhys=%RHp GCPhysHint=%RGp GCPhysReal=%RGp\n",
3371 HCPhys, GCPhysHint, pRam->GCPhys + (iPage << PAGE_SHIFT)));
3372 pgmTrackDerefGCPhys(pPool, pPage, &pRam->aPages[iPage]);
3373 return;
3374 }
3375 }
3376 pRam = pRam->CTX_SUFF(pNext);
3377 }
3378
3379 AssertFatalMsgFailed(("HCPhys=%RHp GCPhysHint=%RGp\n", HCPhys, GCPhysHint));
3380}
3381
3382
3383/**
3384 * Clear references to guest physical memory in a 32-bit / 32-bit page table.
3385 *
3386 * @param pPool The pool.
3387 * @param pPage The page.
3388 * @param pShwPT The shadow page table (mapping of the page).
3389 * @param pGstPT The guest page table.
3390 */
3391DECLINLINE(void) pgmPoolTrackDerefPT32Bit32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT, PCX86PT pGstPT)
3392{
3393 for (unsigned i = pPage->iFirstPresent; i < RT_ELEMENTS(pShwPT->a); i++)
3394 if (pShwPT->a[i].n.u1Present)
3395 {
3396 Log4(("pgmPoolTrackDerefPT32Bit32Bit: i=%d pte=%RX32 hint=%RX32\n",
3397 i, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3398 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3399 if (!--pPage->cPresent)
3400 break;
3401 }
3402}
3403
3404
3405/**
3406 * Clear references to guest physical memory in a PAE / 32-bit page table.
3407 *
3408 * @param pPool The pool.
3409 * @param pPage The page.
3410 * @param pShwPT The shadow page table (mapping of the page).
3411 * @param pGstPT The guest page table (just a half one).
3412 */
3413DECLINLINE(void) pgmPoolTrackDerefPTPae32Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PT pGstPT)
3414{
3415 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3416 if (pShwPT->a[i].n.u1Present)
3417 {
3418 Log4(("pgmPoolTrackDerefPTPae32Bit: i=%d pte=%RX64 hint=%RX32\n",
3419 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK));
3420 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PG_MASK);
3421 }
3422}
3423
3424
3425/**
3426 * Clear references to guest physical memory in a PAE / PAE page table.
3427 *
3428 * @param pPool The pool.
3429 * @param pPage The page.
3430 * @param pShwPT The shadow page table (mapping of the page).
3431 * @param pGstPT The guest page table.
3432 */
3433DECLINLINE(void) pgmPoolTrackDerefPTPaePae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT, PCX86PTPAE pGstPT)
3434{
3435 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++)
3436 if (pShwPT->a[i].n.u1Present)
3437 {
3438 Log4(("pgmPoolTrackDerefPTPaePae: i=%d pte=%RX32 hint=%RX32\n",
3439 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK));
3440 pgmPoolTracDerefGCPhysHint(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, pGstPT->a[i].u & X86_PTE_PAE_PG_MASK);
3441 }
3442}
3443
3444
3445/**
3446 * Clear references to guest physical memory in a 32-bit / 4MB page table.
3447 *
3448 * @param pPool The pool.
3449 * @param pPage The page.
3450 * @param pShwPT The shadow page table (mapping of the page).
3451 */
3452DECLINLINE(void) pgmPoolTrackDerefPT32Bit4MB(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PT pShwPT)
3453{
3454 RTGCPHYS GCPhys = pPage->GCPhys;
3455 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3456 if (pShwPT->a[i].n.u1Present)
3457 {
3458 Log4(("pgmPoolTrackDerefPT32Bit4MB: i=%d pte=%RX32 GCPhys=%RGp\n",
3459 i, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys));
3460 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PG_MASK, GCPhys);
3461 }
3462}
3463
3464
3465/**
3466 * Clear references to guest physical memory in a PAE / 2/4MB page table.
3467 *
3468 * @param pPool The pool.
3469 * @param pPage The page.
3470 * @param pShwPT The shadow page table (mapping of the page).
3471 */
3472DECLINLINE(void) pgmPoolTrackDerefPTPaeBig(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PTPAE pShwPT)
3473{
3474 RTGCPHYS GCPhys = pPage->GCPhys;
3475 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3476 if (pShwPT->a[i].n.u1Present)
3477 {
3478 Log4(("pgmPoolTrackDerefPTPaeBig: i=%d pte=%RX64 hint=%RGp\n",
3479 i, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys));
3480 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & X86_PTE_PAE_PG_MASK, GCPhys);
3481 }
3482}
3483
3484#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
3485
3486
3487/**
3488 * Clear references to shadowed pages in a 32 bits page directory.
3489 *
3490 * @param pPool The pool.
3491 * @param pPage The page.
3492 * @param pShwPD The shadow page directory (mapping of the page).
3493 */
3494DECLINLINE(void) pgmPoolTrackDerefPD(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PD pShwPD)
3495{
3496 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3497 {
3498 if ( pShwPD->a[i].n.u1Present
3499 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3500 )
3501 {
3502 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PG_MASK);
3503 if (pSubPage)
3504 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3505 else
3506 AssertFatalMsgFailed(("%x\n", pShwPD->a[i].u & X86_PDE_PG_MASK));
3507 }
3508 }
3509}
3510
3511/**
3512 * Clear references to shadowed pages in a PAE (legacy or 64 bits) page directory.
3513 *
3514 * @param pPool The pool.
3515 * @param pPage The page.
3516 * @param pShwPD The shadow page directory (mapping of the page).
3517 */
3518DECLINLINE(void) pgmPoolTrackDerefPDPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPAE pShwPD)
3519{
3520 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3521 {
3522 if ( pShwPD->a[i].n.u1Present
3523 && !(pShwPD->a[i].u & PGM_PDFLAGS_MAPPING)
3524 )
3525 {
3526 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & X86_PDE_PAE_PG_MASK);
3527 if (pSubPage)
3528 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3529 else
3530 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & X86_PDE_PAE_PG_MASK));
3531 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3532 }
3533 }
3534}
3535
3536/**
3537 * Clear references to shadowed pages in a PAE page directory pointer table.
3538 *
3539 * @param pPool The pool.
3540 * @param pPage The page.
3541 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3542 */
3543DECLINLINE(void) pgmPoolTrackDerefPDPTPae(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3544{
3545 for (unsigned i = 0; i < X86_PG_PAE_PDPE_ENTRIES; i++)
3546 {
3547 if ( pShwPDPT->a[i].n.u1Present
3548 && !(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING)
3549 )
3550 {
3551 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3552 if (pSubPage)
3553 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3554 else
3555 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3556 }
3557 }
3558}
3559
3560
3561/**
3562 * Clear references to shadowed pages in a 64-bit page directory pointer table.
3563 *
3564 * @param pPool The pool.
3565 * @param pPage The page.
3566 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3567 */
3568DECLINLINE(void) pgmPoolTrackDerefPDPT64Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PDPT pShwPDPT)
3569{
3570 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3571 {
3572 Assert(!(pShwPDPT->a[i].u & PGM_PLXFLAGS_MAPPING));
3573 if (pShwPDPT->a[i].n.u1Present)
3574 {
3575 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & X86_PDPE_PG_MASK);
3576 if (pSubPage)
3577 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3578 else
3579 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & X86_PDPE_PG_MASK));
3580 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3581 }
3582 }
3583}
3584
3585
3586/**
3587 * Clear references to shadowed pages in a 64-bit level 4 page table.
3588 *
3589 * @param pPool The pool.
3590 * @param pPage The page.
3591 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3592 */
3593DECLINLINE(void) pgmPoolTrackDerefPML464Bit(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PX86PML4 pShwPML4)
3594{
3595 for (unsigned i = 0; i < RT_ELEMENTS(pShwPML4->a); i++)
3596 {
3597 if (pShwPML4->a[i].n.u1Present)
3598 {
3599 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPML4->a[i].u & X86_PDPE_PG_MASK);
3600 if (pSubPage)
3601 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3602 else
3603 AssertFatalMsgFailed(("%RX64\n", pShwPML4->a[i].u & X86_PML4E_PG_MASK));
3604 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3605 }
3606 }
3607}
3608
3609
3610/**
3611 * Clear references to shadowed pages in an EPT page table.
3612 *
3613 * @param pPool The pool.
3614 * @param pPage The page.
3615 * @param pShwPML4 The shadow page directory pointer table (mapping of the page).
3616 */
3617DECLINLINE(void) pgmPoolTrackDerefPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPT pShwPT)
3618{
3619 RTGCPHYS GCPhys = pPage->GCPhys;
3620 for (unsigned i = 0; i < RT_ELEMENTS(pShwPT->a); i++, GCPhys += PAGE_SIZE)
3621 if (pShwPT->a[i].n.u1Present)
3622 {
3623 Log4(("pgmPoolTrackDerefPTEPT: i=%d pte=%RX64 GCPhys=%RX64\n",
3624 i, pShwPT->a[i].u & EPT_PTE_PG_MASK, pPage->GCPhys));
3625 pgmPoolTracDerefGCPhys(pPool, pPage, pShwPT->a[i].u & EPT_PTE_PG_MASK, GCPhys);
3626 }
3627}
3628
3629
3630/**
3631 * Clear references to shadowed pages in an EPT page directory.
3632 *
3633 * @param pPool The pool.
3634 * @param pPage The page.
3635 * @param pShwPD The shadow page directory (mapping of the page).
3636 */
3637DECLINLINE(void) pgmPoolTrackDerefPDEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPD pShwPD)
3638{
3639 for (unsigned i = 0; i < RT_ELEMENTS(pShwPD->a); i++)
3640 {
3641 if (pShwPD->a[i].n.u1Present)
3642 {
3643 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPD->a[i].u & EPT_PDE_PG_MASK);
3644 if (pSubPage)
3645 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3646 else
3647 AssertFatalMsgFailed(("%RX64\n", pShwPD->a[i].u & EPT_PDE_PG_MASK));
3648 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3649 }
3650 }
3651}
3652
3653
3654/**
3655 * Clear references to shadowed pages in an EPT page directory pointer table.
3656 *
3657 * @param pPool The pool.
3658 * @param pPage The page.
3659 * @param pShwPDPT The shadow page directory pointer table (mapping of the page).
3660 */
3661DECLINLINE(void) pgmPoolTrackDerefPDPTEPT(PPGMPOOL pPool, PPGMPOOLPAGE pPage, PEPTPDPT pShwPDPT)
3662{
3663 for (unsigned i = 0; i < RT_ELEMENTS(pShwPDPT->a); i++)
3664 {
3665 if (pShwPDPT->a[i].n.u1Present)
3666 {
3667 PPGMPOOLPAGE pSubPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK);
3668 if (pSubPage)
3669 pgmPoolTrackFreeUser(pPool, pSubPage, pPage->idx, i);
3670 else
3671 AssertFatalMsgFailed(("%RX64\n", pShwPDPT->a[i].u & EPT_PDPTE_PG_MASK));
3672 /** @todo 64-bit guests: have to ensure that we're not exhausting the dynamic mappings! */
3673 }
3674 }
3675}
3676
3677
3678/**
3679 * Clears all references made by this page.
3680 *
3681 * This includes other shadow pages and GC physical addresses.
3682 *
3683 * @param pPool The pool.
3684 * @param pPage The page.
3685 */
3686static void pgmPoolTrackDeref(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3687{
3688 /*
3689 * Map the shadow page and take action according to the page kind.
3690 */
3691 void *pvShw = PGMPOOL_PAGE_2_LOCKED_PTR(pPool->CTX_SUFF(pVM), pPage);
3692 switch (pPage->enmKind)
3693 {
3694#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
3695 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3696 {
3697 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3698 void *pvGst;
3699 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3700 pgmPoolTrackDerefPT32Bit32Bit(pPool, pPage, (PX86PT)pvShw, (PCX86PT)pvGst);
3701 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3702 break;
3703 }
3704
3705 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3706 {
3707 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3708 void *pvGst;
3709 int rc = PGM_GCPHYS_2_PTR_EX(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3710 pgmPoolTrackDerefPTPae32Bit(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PT)pvGst);
3711 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3712 break;
3713 }
3714
3715 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3716 {
3717 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3718 void *pvGst;
3719 int rc = PGM_GCPHYS_2_PTR(pPool->CTX_SUFF(pVM), pPage->GCPhys, &pvGst); AssertReleaseRC(rc);
3720 pgmPoolTrackDerefPTPaePae(pPool, pPage, (PX86PTPAE)pvShw, (PCX86PTPAE)pvGst);
3721 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3722 break;
3723 }
3724
3725 case PGMPOOLKIND_32BIT_PT_FOR_PHYS: /* treat it like a 4 MB page */
3726 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3727 {
3728 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3729 pgmPoolTrackDerefPT32Bit4MB(pPool, pPage, (PX86PT)pvShw);
3730 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3731 break;
3732 }
3733
3734 case PGMPOOLKIND_PAE_PT_FOR_PHYS: /* treat it like a 2 MB page */
3735 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3736 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3737 {
3738 STAM_PROFILE_START(&pPool->StatTrackDerefGCPhys, g);
3739 pgmPoolTrackDerefPTPaeBig(pPool, pPage, (PX86PTPAE)pvShw);
3740 STAM_PROFILE_STOP(&pPool->StatTrackDerefGCPhys, g);
3741 break;
3742 }
3743
3744#else /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3745 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
3746 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
3747 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
3748 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
3749 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
3750 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
3751 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
3752 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
3753 break;
3754#endif /* !PGMPOOL_WITH_GCPHYS_TRACKING */
3755
3756 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
3757 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
3758 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
3759 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
3760 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
3761 case PGMPOOLKIND_PAE_PD_PHYS:
3762 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
3763 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
3764 pgmPoolTrackDerefPDPae(pPool, pPage, (PX86PDPAE)pvShw);
3765 break;
3766
3767 case PGMPOOLKIND_32BIT_PD_PHYS:
3768 case PGMPOOLKIND_32BIT_PD:
3769 pgmPoolTrackDerefPD(pPool, pPage, (PX86PD)pvShw);
3770 break;
3771
3772 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
3773 case PGMPOOLKIND_PAE_PDPT:
3774 case PGMPOOLKIND_PAE_PDPT_PHYS:
3775 pgmPoolTrackDerefPDPTPae(pPool, pPage, (PX86PDPT)pvShw);
3776 break;
3777
3778 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
3779 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
3780 pgmPoolTrackDerefPDPT64Bit(pPool, pPage, (PX86PDPT)pvShw);
3781 break;
3782
3783 case PGMPOOLKIND_64BIT_PML4:
3784 pgmPoolTrackDerefPML464Bit(pPool, pPage, (PX86PML4)pvShw);
3785 break;
3786
3787 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
3788 pgmPoolTrackDerefPTEPT(pPool, pPage, (PEPTPT)pvShw);
3789 break;
3790
3791 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
3792 pgmPoolTrackDerefPDEPT(pPool, pPage, (PEPTPD)pvShw);
3793 break;
3794
3795 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
3796 pgmPoolTrackDerefPDPTEPT(pPool, pPage, (PEPTPDPT)pvShw);
3797 break;
3798
3799 default:
3800 AssertFatalMsgFailed(("enmKind=%d\n", pPage->enmKind));
3801 }
3802
3803 /* paranoia, clear the shadow page. Remove this laser (i.e. let Alloc and ClearAll do it). */
3804 STAM_PROFILE_START(&pPool->StatZeroPage, z);
3805 ASMMemZeroPage(pvShw);
3806 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
3807 pPage->fZeroed = true;
3808 PGMPOOL_UNLOCK_PTR(pPool->CTX_SUFF(pVM), pvShw);
3809}
3810#endif /* PGMPOOL_WITH_USER_TRACKING */
3811
3812/**
3813 * Flushes a pool page.
3814 *
3815 * This moves the page to the free list after removing all user references to it.
3816 *
3817 * @returns VBox status code.
3818 * @retval VINF_SUCCESS on success.
3819 * @param pPool The pool.
3820 * @param HCPhys The HC physical address of the shadow page.
3821 */
3822int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
3823{
3824 PVM pVM = pPool->CTX_SUFF(pVM);
3825
3826 int rc = VINF_SUCCESS;
3827 STAM_PROFILE_START(&pPool->StatFlushPage, f);
3828 LogFlow(("pgmPoolFlushPage: pPage=%p:{.Key=%RHp, .idx=%d, .enmKind=%s, .GCPhys=%RGp}\n",
3829 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), pPage->GCPhys));
3830
3831 /*
3832 * Quietly reject any attempts at flushing any of the special root pages.
3833 */
3834 if (pPage->idx < PGMPOOL_IDX_FIRST)
3835 {
3836 AssertFailed(); /* can no longer happen */
3837 Log(("pgmPoolFlushPage: special root page, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
3838 return VINF_SUCCESS;
3839 }
3840
3841 pgmLock(pVM);
3842
3843 /*
3844 * Quietly reject any attempts at flushing the currently active shadow CR3 mapping
3845 */
3846 if (pgmPoolIsPageLocked(&pVM->pgm.s, pPage))
3847 {
3848 AssertMsg( pPage->enmKind == PGMPOOLKIND_64BIT_PML4
3849 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT
3850 || pPage->enmKind == PGMPOOLKIND_PAE_PDPT_FOR_32BIT
3851 || pPage->enmKind == PGMPOOLKIND_32BIT_PD
3852 || pPage->enmKind == PGMPOOLKIND_PAE_PD_FOR_PAE_PD
3853 || pPage->enmKind == PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD
3854 || pPage->enmKind == PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD
3855 || pPage->enmKind == PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD
3856 || pPage->enmKind == PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD,
3857 ("Can't free the shadow CR3! (%RHp vs %RHp kind=%d\n", PGMGetHyperCR3(VMMGetCpu(pVM)), pPage->Core.Key, pPage->enmKind));
3858 Log(("pgmPoolFlushPage: current active shadow CR3, rejected. enmKind=%s idx=%d\n", pgmPoolPoolKindToStr(pPage->enmKind), pPage->idx));
3859 pgmUnlock(pVM);
3860 return VINF_SUCCESS;
3861 }
3862
3863#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3864 /* Start a subset so we won't run out of mapping space. */
3865 PVMCPU pVCpu = VMMGetCpu(pVM);
3866 uint32_t iPrevSubset = PGMDynMapPushAutoSubset(pVCpu);
3867#endif
3868
3869 /*
3870 * Mark the page as being in need of a ASMMemZeroPage().
3871 */
3872 pPage->fZeroed = false;
3873
3874#ifdef PGMPOOL_WITH_USER_TRACKING
3875 /*
3876 * Clear the page.
3877 */
3878 pgmPoolTrackClearPageUsers(pPool, pPage);
3879 STAM_PROFILE_START(&pPool->StatTrackDeref,a);
3880 pgmPoolTrackDeref(pPool, pPage);
3881 STAM_PROFILE_STOP(&pPool->StatTrackDeref,a);
3882#endif
3883
3884#ifdef PGMPOOL_WITH_CACHE
3885 /*
3886 * Flush it from the cache.
3887 */
3888 pgmPoolCacheFlushPage(pPool, pPage);
3889#endif /* PGMPOOL_WITH_CACHE */
3890
3891#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3892 /* Heavy stuff done. */
3893 PGMDynMapPopAutoSubset(pVCpu, iPrevSubset);
3894#endif
3895
3896#ifdef PGMPOOL_WITH_MONITORING
3897 /*
3898 * Deregistering the monitoring.
3899 */
3900 if (pPage->fMonitored)
3901 rc = pgmPoolMonitorFlush(pPool, pPage);
3902#endif
3903
3904 /*
3905 * Free the page.
3906 */
3907 Assert(pPage->iNext == NIL_PGMPOOL_IDX);
3908 pPage->iNext = pPool->iFreeHead;
3909 pPool->iFreeHead = pPage->idx;
3910 pPage->enmKind = PGMPOOLKIND_FREE;
3911 pPage->GCPhys = NIL_RTGCPHYS;
3912 pPage->fReusedFlushPending = false;
3913
3914 pPool->cUsedPages--;
3915 pgmUnlock(pVM);
3916 STAM_PROFILE_STOP(&pPool->StatFlushPage, f);
3917 return rc;
3918}
3919
3920
3921/**
3922 * Frees a usage of a pool page.
3923 *
3924 * The caller is responsible to updating the user table so that it no longer
3925 * references the shadow page.
3926 *
3927 * @param pPool The pool.
3928 * @param HCPhys The HC physical address of the shadow page.
3929 * @param iUser The shadow page pool index of the user table.
3930 * @param iUserTable The index into the user table (shadowed).
3931 */
3932void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable)
3933{
3934 PVM pVM = pPool->CTX_SUFF(pVM);
3935
3936 STAM_PROFILE_START(&pPool->StatFree, a);
3937 LogFlow(("pgmPoolFreeByPage: pPage=%p:{.Key=%RHp, .idx=%d, enmKind=%s} iUser=%#x iUserTable=%#x\n",
3938 pPage, pPage->Core.Key, pPage->idx, pgmPoolPoolKindToStr(pPage->enmKind), iUser, iUserTable));
3939 Assert(pPage->idx >= PGMPOOL_IDX_FIRST);
3940 pgmLock(pVM);
3941#ifdef PGMPOOL_WITH_USER_TRACKING
3942 pgmPoolTrackFreeUser(pPool, pPage, iUser, iUserTable);
3943#endif
3944#ifdef PGMPOOL_WITH_CACHE
3945 if (!pPage->fCached)
3946#endif
3947 pgmPoolFlushPage(pPool, pPage);
3948 pgmUnlock(pVM);
3949 STAM_PROFILE_STOP(&pPool->StatFree, a);
3950}
3951
3952
3953/**
3954 * Makes one or more free page free.
3955 *
3956 * @returns VBox status code.
3957 * @retval VINF_SUCCESS on success.
3958 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
3959 *
3960 * @param pPool The pool.
3961 * @param enmKind Page table kind
3962 * @param iUser The user of the page.
3963 */
3964static int pgmPoolMakeMoreFreePages(PPGMPOOL pPool, PGMPOOLKIND enmKind, uint16_t iUser)
3965{
3966 PVM pVM = pPool->CTX_SUFF(pVM);
3967
3968 LogFlow(("pgmPoolMakeMoreFreePages: iUser=%#x\n", iUser));
3969
3970 /*
3971 * If the pool isn't full grown yet, expand it.
3972 */
3973 if ( pPool->cCurPages < pPool->cMaxPages
3974#if defined(IN_RC)
3975 /* Hack alert: we can't deal with jumps to ring 3 when called from MapCR3 and allocating pages for PAE PDs. */
3976 && enmKind != PGMPOOLKIND_PAE_PD_FOR_PAE_PD
3977 && (enmKind < PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD || enmKind > PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD)
3978#endif
3979 )
3980 {
3981 STAM_PROFILE_ADV_SUSPEND(&pPool->StatAlloc, a);
3982#ifdef IN_RING3
3983 int rc = PGMR3PoolGrow(pVM);
3984#else
3985 int rc = CTXALLMID(VMM, CallHost)(pVM, VMMCALLHOST_PGM_POOL_GROW, 0);
3986#endif
3987 if (RT_FAILURE(rc))
3988 return rc;
3989 STAM_PROFILE_ADV_RESUME(&pPool->StatAlloc, a);
3990 if (pPool->iFreeHead != NIL_PGMPOOL_IDX)
3991 return VINF_SUCCESS;
3992 }
3993
3994#ifdef PGMPOOL_WITH_CACHE
3995 /*
3996 * Free one cached page.
3997 */
3998 return pgmPoolCacheFreeOne(pPool, iUser);
3999#else
4000 /*
4001 * Flush the pool.
4002 *
4003 * If we have tracking enabled, it should be possible to come up with
4004 * a cheap replacement strategy...
4005 */
4006 /* @todo This path no longer works (CR3 root pages will be flushed)!! */
4007 AssertCompileFailed();
4008 Assert(!CPUMIsGuestInLongMode(pVM));
4009 pgmPoolFlushAllInt(pPool);
4010 return VERR_PGM_POOL_FLUSHED;
4011#endif
4012}
4013
4014
4015/**
4016 * Allocates a page from the pool.
4017 *
4018 * This page may actually be a cached page and not in need of any processing
4019 * on the callers part.
4020 *
4021 * @returns VBox status code.
4022 * @retval VINF_SUCCESS if a NEW page was allocated.
4023 * @retval VINF_PGM_CACHED_PAGE if a CACHED page was returned.
4024 * @retval VERR_PGM_POOL_FLUSHED if the pool was flushed.
4025 * @param pVM The VM handle.
4026 * @param GCPhys The GC physical address of the page we're gonna shadow.
4027 * For 4MB and 2MB PD entries, it's the first address the
4028 * shadow PT is covering.
4029 * @param enmKind The kind of mapping.
4030 * @param iUser The shadow page pool index of the user table.
4031 * @param iUserTable The index into the user table (shadowed).
4032 * @param ppPage Where to store the pointer to the page. NULL is stored here on failure.
4033 */
4034int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage)
4035{
4036 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4037 STAM_PROFILE_ADV_START(&pPool->StatAlloc, a);
4038 LogFlow(("pgmPoolAlloc: GCPhys=%RGp enmKind=%s iUser=%#x iUserTable=%#x\n", GCPhys, pgmPoolPoolKindToStr(enmKind), iUser, iUserTable));
4039 *ppPage = NULL;
4040 /** @todo CSAM/PGMPrefetchPage messes up here during CSAMR3CheckGates
4041 * (TRPMR3SyncIDT) because of FF priority. Try fix that?
4042 * Assert(!(pVM->pgm.s.fGlobalSyncFlags & PGM_GLOBAL_SYNC_CLEAR_PGM_POOL)); */
4043
4044 pgmLock(pVM);
4045
4046#ifdef PGMPOOL_WITH_CACHE
4047 if (pPool->fCacheEnabled)
4048 {
4049 int rc2 = pgmPoolCacheAlloc(pPool, GCPhys, enmKind, iUser, iUserTable, ppPage);
4050 if (RT_SUCCESS(rc2))
4051 {
4052 pgmUnlock(pVM);
4053 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4054 LogFlow(("pgmPoolAlloc: cached returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d}\n", rc2, *ppPage, (*ppPage)->Core.Key, (*ppPage)->idx));
4055 return rc2;
4056 }
4057 }
4058#endif
4059
4060 /*
4061 * Allocate a new one.
4062 */
4063 int rc = VINF_SUCCESS;
4064 uint16_t iNew = pPool->iFreeHead;
4065 if (iNew == NIL_PGMPOOL_IDX)
4066 {
4067 rc = pgmPoolMakeMoreFreePages(pPool, enmKind, iUser);
4068 if (RT_FAILURE(rc))
4069 {
4070 pgmUnlock(pVM);
4071 Log(("pgmPoolAlloc: returns %Rrc (Free)\n", rc));
4072 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4073 return rc;
4074 }
4075 iNew = pPool->iFreeHead;
4076 AssertReleaseReturn(iNew != NIL_PGMPOOL_IDX, VERR_INTERNAL_ERROR);
4077 }
4078
4079 /* unlink the free head */
4080 PPGMPOOLPAGE pPage = &pPool->aPages[iNew];
4081 pPool->iFreeHead = pPage->iNext;
4082 pPage->iNext = NIL_PGMPOOL_IDX;
4083
4084 /*
4085 * Initialize it.
4086 */
4087 pPool->cUsedPages++; /* physical handler registration / pgmPoolTrackFlushGCPhysPTsSlow requirement. */
4088 pPage->enmKind = enmKind;
4089 pPage->GCPhys = GCPhys;
4090 pPage->fSeenNonGlobal = false; /* Set this to 'true' to disable this feature. */
4091 pPage->fMonitored = false;
4092 pPage->fCached = false;
4093 pPage->fReusedFlushPending = false;
4094#ifdef PGMPOOL_WITH_MONITORING
4095 pPage->cModifications = 0;
4096 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4097 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4098#else
4099 pPage->fCR3Mix = false;
4100#endif
4101#ifdef PGMPOOL_WITH_USER_TRACKING
4102 pPage->cPresent = 0;
4103 pPage->iFirstPresent = ~0;
4104
4105 /*
4106 * Insert into the tracking and cache. If this fails, free the page.
4107 */
4108 int rc3 = pgmPoolTrackInsert(pPool, pPage, GCPhys, iUser, iUserTable);
4109 if (RT_FAILURE(rc3))
4110 {
4111 pPool->cUsedPages--;
4112 pPage->enmKind = PGMPOOLKIND_FREE;
4113 pPage->GCPhys = NIL_RTGCPHYS;
4114 pPage->iNext = pPool->iFreeHead;
4115 pPool->iFreeHead = pPage->idx;
4116 pgmUnlock(pVM);
4117 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4118 Log(("pgmPoolAlloc: returns %Rrc (Insert)\n", rc3));
4119 return rc3;
4120 }
4121#endif /* PGMPOOL_WITH_USER_TRACKING */
4122
4123 /*
4124 * Commit the allocation, clear the page and return.
4125 */
4126#ifdef VBOX_WITH_STATISTICS
4127 if (pPool->cUsedPages > pPool->cUsedPagesHigh)
4128 pPool->cUsedPagesHigh = pPool->cUsedPages;
4129#endif
4130
4131 if (!pPage->fZeroed)
4132 {
4133 STAM_PROFILE_START(&pPool->StatZeroPage, z);
4134 void *pv = PGMPOOL_PAGE_2_PTR(pVM, pPage);
4135 ASMMemZeroPage(pv);
4136 STAM_PROFILE_STOP(&pPool->StatZeroPage, z);
4137 }
4138
4139 *ppPage = pPage;
4140 pgmUnlock(pVM);
4141 LogFlow(("pgmPoolAlloc: returns %Rrc *ppPage=%p:{.Key=%RHp, .idx=%d, .fCached=%RTbool, .fMonitored=%RTbool}\n",
4142 rc, pPage, pPage->Core.Key, pPage->idx, pPage->fCached, pPage->fMonitored));
4143 STAM_PROFILE_ADV_STOP(&pPool->StatAlloc, a);
4144 return rc;
4145}
4146
4147
4148/**
4149 * Frees a usage of a pool page.
4150 *
4151 * @param pVM The VM handle.
4152 * @param HCPhys The HC physical address of the shadow page.
4153 * @param iUser The shadow page pool index of the user table.
4154 * @param iUserTable The index into the user table (shadowed).
4155 */
4156void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable)
4157{
4158 LogFlow(("pgmPoolFree: HCPhys=%RHp iUser=%#x iUserTable=%#x\n", HCPhys, iUser, iUserTable));
4159 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4160 pgmPoolFreeByPage(pPool, pgmPoolGetPage(pPool, HCPhys), iUser, iUserTable);
4161}
4162
4163/**
4164 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4165 *
4166 * @returns Pointer to the shadow page structure.
4167 * @param pPool The pool.
4168 * @param HCPhys The HC physical address of the shadow page.
4169 */
4170PPGMPOOLPAGE pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4171{
4172 PVM pVM = pPool->CTX_SUFF(pVM);
4173
4174 /*
4175 * Look up the page.
4176 */
4177 pgmLock(pVM);
4178 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4179 pgmUnlock(pVM);
4180
4181 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4182 return pPage;
4183}
4184
4185
4186#ifdef IN_RING3
4187/**
4188 * Flushes the entire cache.
4189 *
4190 * It will assert a global CR3 flush (FF) and assumes the caller is aware of this
4191 * and execute this CR3 flush.
4192 *
4193 * @param pPool The pool.
4194 */
4195void pgmR3PoolReset(PVM pVM)
4196{
4197 PPGMPOOL pPool = pVM->pgm.s.CTX_SUFF(pPool);
4198
4199 Assert(PGMIsLockOwner(pVM));
4200 STAM_PROFILE_START(&pPool->StatFlushAllInt, a);
4201 LogFlow(("pgmPoolFlushAllInt:\n"));
4202
4203 /*
4204 * If there are no pages in the pool, there is nothing to do.
4205 */
4206 if (pPool->cCurPages <= PGMPOOL_IDX_FIRST)
4207 {
4208 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
4209 return;
4210 }
4211
4212 /*
4213 * Exit the shadow mode since we're going to clear everything,
4214 * including the root page.
4215 */
4216 for (unsigned i=0;i<pVM->cCPUs;i++)
4217 {
4218 PVMCPU pVCpu = &pVM->aCpus[i];
4219 pgmR3ExitShadowModeBeforePoolFlush(pVM, pVCpu);
4220 }
4221
4222 /*
4223 * Nuke the free list and reinsert all pages into it.
4224 */
4225 for (unsigned i = pPool->cCurPages - 1; i >= PGMPOOL_IDX_FIRST; i--)
4226 {
4227 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4228
4229 Assert(pPage->Core.Key == MMPage2Phys(pVM, pPage->pvPageR3));
4230#ifdef PGMPOOL_WITH_MONITORING
4231 if (pPage->fMonitored)
4232 pgmPoolMonitorFlush(pPool, pPage);
4233 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4234 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4235 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
4236 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
4237 pPage->cModifications = 0;
4238#endif
4239 pPage->GCPhys = NIL_RTGCPHYS;
4240 pPage->enmKind = PGMPOOLKIND_FREE;
4241 Assert(pPage->idx == i);
4242 pPage->iNext = i + 1;
4243 pPage->fZeroed = false; /* This could probably be optimized, but better safe than sorry. */
4244 pPage->fSeenNonGlobal = false;
4245 pPage->fMonitored= false;
4246 pPage->fCached = false;
4247 pPage->fReusedFlushPending = false;
4248#ifdef PGMPOOL_WITH_USER_TRACKING
4249 pPage->iUserHead = NIL_PGMPOOL_USER_INDEX;
4250#else
4251 pPage->fCR3Mix = false;
4252#endif
4253#ifdef PGMPOOL_WITH_CACHE
4254 pPage->iAgeNext = NIL_PGMPOOL_IDX;
4255 pPage->iAgePrev = NIL_PGMPOOL_IDX;
4256#endif
4257 pPage->cLocked = 0;
4258 }
4259 pPool->aPages[pPool->cCurPages - 1].iNext = NIL_PGMPOOL_IDX;
4260 pPool->iFreeHead = PGMPOOL_IDX_FIRST;
4261 pPool->cUsedPages = 0;
4262
4263#ifdef PGMPOOL_WITH_USER_TRACKING
4264 /*
4265 * Zap and reinitialize the user records.
4266 */
4267 pPool->cPresent = 0;
4268 pPool->iUserFreeHead = 0;
4269 PPGMPOOLUSER paUsers = pPool->CTX_SUFF(paUsers);
4270 const unsigned cMaxUsers = pPool->cMaxUsers;
4271 for (unsigned i = 0; i < cMaxUsers; i++)
4272 {
4273 paUsers[i].iNext = i + 1;
4274 paUsers[i].iUser = NIL_PGMPOOL_IDX;
4275 paUsers[i].iUserTable = 0xfffffffe;
4276 }
4277 paUsers[cMaxUsers - 1].iNext = NIL_PGMPOOL_USER_INDEX;
4278#endif
4279
4280#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4281 /*
4282 * Clear all the GCPhys links and rebuild the phys ext free list.
4283 */
4284 for (PPGMRAMRANGE pRam = pVM->pgm.s.CTX_SUFF(pRamRanges);
4285 pRam;
4286 pRam = pRam->CTX_SUFF(pNext))
4287 {
4288 unsigned iPage = pRam->cb >> PAGE_SHIFT;
4289 while (iPage-- > 0)
4290 PGM_PAGE_SET_TRACKING(&pRam->aPages[iPage], 0);
4291 }
4292
4293 pPool->iPhysExtFreeHead = 0;
4294 PPGMPOOLPHYSEXT paPhysExts = pPool->CTX_SUFF(paPhysExts);
4295 const unsigned cMaxPhysExts = pPool->cMaxPhysExts;
4296 for (unsigned i = 0; i < cMaxPhysExts; i++)
4297 {
4298 paPhysExts[i].iNext = i + 1;
4299 paPhysExts[i].aidx[0] = NIL_PGMPOOL_IDX;
4300 paPhysExts[i].aidx[1] = NIL_PGMPOOL_IDX;
4301 paPhysExts[i].aidx[2] = NIL_PGMPOOL_IDX;
4302 }
4303 paPhysExts[cMaxPhysExts - 1].iNext = NIL_PGMPOOL_PHYSEXT_INDEX;
4304#endif
4305
4306#ifdef PGMPOOL_WITH_MONITORING
4307 /*
4308 * Just zap the modified list.
4309 */
4310 pPool->cModifiedPages = 0;
4311 pPool->iModifiedHead = NIL_PGMPOOL_IDX;
4312#endif
4313
4314#ifdef PGMPOOL_WITH_CACHE
4315 /*
4316 * Clear the GCPhys hash and the age list.
4317 */
4318 for (unsigned i = 0; i < RT_ELEMENTS(pPool->aiHash); i++)
4319 pPool->aiHash[i] = NIL_PGMPOOL_IDX;
4320 pPool->iAgeHead = NIL_PGMPOOL_IDX;
4321 pPool->iAgeTail = NIL_PGMPOOL_IDX;
4322#endif
4323
4324 /*
4325 * Reinsert active pages into the hash and ensure monitoring chains are correct.
4326 */
4327 for (unsigned i = PGMPOOL_IDX_FIRST_SPECIAL; i < PGMPOOL_IDX_FIRST; i++)
4328 {
4329 PPGMPOOLPAGE pPage = &pPool->aPages[i];
4330 pPage->iNext = NIL_PGMPOOL_IDX;
4331#ifdef PGMPOOL_WITH_MONITORING
4332 pPage->iModifiedNext = NIL_PGMPOOL_IDX;
4333 pPage->iModifiedPrev = NIL_PGMPOOL_IDX;
4334 pPage->cModifications = 0;
4335 /* ASSUMES that we're not sharing with any of the other special pages (safe for now). */
4336 pPage->iMonitoredNext = NIL_PGMPOOL_IDX;
4337 pPage->iMonitoredPrev = NIL_PGMPOOL_IDX;
4338 if (pPage->fMonitored)
4339 {
4340 int rc = PGMHandlerPhysicalChangeCallbacks(pVM, pPage->GCPhys & ~(RTGCPHYS)(PAGE_SIZE - 1),
4341 pPool->pfnAccessHandlerR3, MMHyperCCToR3(pVM, pPage),
4342 pPool->pfnAccessHandlerR0, MMHyperCCToR0(pVM, pPage),
4343 pPool->pfnAccessHandlerRC, MMHyperCCToRC(pVM, pPage),
4344 pPool->pszAccessHandler);
4345 AssertFatalRCSuccess(rc);
4346# ifdef PGMPOOL_WITH_CACHE
4347 pgmPoolHashInsert(pPool, pPage);
4348# endif
4349 }
4350#endif
4351#ifdef PGMPOOL_WITH_USER_TRACKING
4352 Assert(pPage->iUserHead == NIL_PGMPOOL_USER_INDEX); /* for now */
4353#endif
4354#ifdef PGMPOOL_WITH_CACHE
4355 Assert(pPage->iAgeNext == NIL_PGMPOOL_IDX);
4356 Assert(pPage->iAgePrev == NIL_PGMPOOL_IDX);
4357#endif
4358 }
4359
4360 for (unsigned i=0;i<pVM->cCPUs;i++)
4361 {
4362 PVMCPU pVCpu = &pVM->aCpus[i];
4363 /*
4364 * Re-enter the shadowing mode and assert Sync CR3 FF.
4365 */
4366 pgmR3ReEnterShadowModeAfterPoolFlush(pVM, pVCpu);
4367 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4368 }
4369
4370 STAM_PROFILE_STOP(&pPool->StatFlushAllInt, a);
4371}
4372#endif /* IN_RING3 */
4373
4374#ifdef LOG_ENABLED
4375static const char *pgmPoolPoolKindToStr(uint8_t enmKind)
4376{
4377 switch(enmKind)
4378 {
4379 case PGMPOOLKIND_INVALID:
4380 return "PGMPOOLKIND_INVALID";
4381 case PGMPOOLKIND_FREE:
4382 return "PGMPOOLKIND_FREE";
4383 case PGMPOOLKIND_32BIT_PT_FOR_PHYS:
4384 return "PGMPOOLKIND_32BIT_PT_FOR_PHYS";
4385 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT:
4386 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT";
4387 case PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB:
4388 return "PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB";
4389 case PGMPOOLKIND_PAE_PT_FOR_PHYS:
4390 return "PGMPOOLKIND_PAE_PT_FOR_PHYS";
4391 case PGMPOOLKIND_PAE_PT_FOR_32BIT_PT:
4392 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_PT";
4393 case PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB:
4394 return "PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB";
4395 case PGMPOOLKIND_PAE_PT_FOR_PAE_PT:
4396 return "PGMPOOLKIND_PAE_PT_FOR_PAE_PT";
4397 case PGMPOOLKIND_PAE_PT_FOR_PAE_2MB:
4398 return "PGMPOOLKIND_PAE_PT_FOR_PAE_2MB";
4399 case PGMPOOLKIND_32BIT_PD:
4400 return "PGMPOOLKIND_32BIT_PD";
4401 case PGMPOOLKIND_32BIT_PD_PHYS:
4402 return "PGMPOOLKIND_32BIT_PD_PHYS";
4403 case PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD:
4404 return "PGMPOOLKIND_PAE_PD0_FOR_32BIT_PD";
4405 case PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD:
4406 return "PGMPOOLKIND_PAE_PD1_FOR_32BIT_PD";
4407 case PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD:
4408 return "PGMPOOLKIND_PAE_PD2_FOR_32BIT_PD";
4409 case PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD:
4410 return "PGMPOOLKIND_PAE_PD3_FOR_32BIT_PD";
4411 case PGMPOOLKIND_PAE_PD_FOR_PAE_PD:
4412 return "PGMPOOLKIND_PAE_PD_FOR_PAE_PD";
4413 case PGMPOOLKIND_PAE_PD_PHYS:
4414 return "PGMPOOLKIND_PAE_PD_PHYS";
4415 case PGMPOOLKIND_PAE_PDPT_FOR_32BIT:
4416 return "PGMPOOLKIND_PAE_PDPT_FOR_32BIT";
4417 case PGMPOOLKIND_PAE_PDPT:
4418 return "PGMPOOLKIND_PAE_PDPT";
4419 case PGMPOOLKIND_PAE_PDPT_PHYS:
4420 return "PGMPOOLKIND_PAE_PDPT_PHYS";
4421 case PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT:
4422 return "PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT";
4423 case PGMPOOLKIND_64BIT_PDPT_FOR_PHYS:
4424 return "PGMPOOLKIND_64BIT_PDPT_FOR_PHYS";
4425 case PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD:
4426 return "PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD";
4427 case PGMPOOLKIND_64BIT_PD_FOR_PHYS:
4428 return "PGMPOOLKIND_64BIT_PD_FOR_PHYS";
4429 case PGMPOOLKIND_64BIT_PML4:
4430 return "PGMPOOLKIND_64BIT_PML4";
4431 case PGMPOOLKIND_EPT_PDPT_FOR_PHYS:
4432 return "PGMPOOLKIND_EPT_PDPT_FOR_PHYS";
4433 case PGMPOOLKIND_EPT_PD_FOR_PHYS:
4434 return "PGMPOOLKIND_EPT_PD_FOR_PHYS";
4435 case PGMPOOLKIND_EPT_PT_FOR_PHYS:
4436 return "PGMPOOLKIND_EPT_PT_FOR_PHYS";
4437 case PGMPOOLKIND_ROOT_NESTED:
4438 return "PGMPOOLKIND_ROOT_NESTED";
4439 }
4440 return "Unknown kind!";
4441}
4442#endif /* LOG_ENABLED*/
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette