1 | /* $Id: NEMAllNativeTemplate-win.cpp.h 71152 2018-02-28 12:36:04Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * NEM - Native execution manager, Windows code template ring-0/3.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2018 Oracle Corporation
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox Open Source Edition (OSE), as
|
---|
10 | * available from http://www.alldomusa.eu.org. This file is free software;
|
---|
11 | * you can redistribute it and/or modify it under the terms of the GNU
|
---|
12 | * General Public License (GPL) as published by the Free Software
|
---|
13 | * Foundation, in version 2 as it comes in the "COPYING" file of the
|
---|
14 | * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
|
---|
15 | * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
|
---|
16 | */
|
---|
17 |
|
---|
18 |
|
---|
19 | /*********************************************************************************************************************************
|
---|
20 | * Global Variables *
|
---|
21 | *********************************************************************************************************************************/
|
---|
22 | /** NEM_WIN_PAGE_STATE_XXX names. */
|
---|
23 | NEM_TMPL_STATIC const char * const g_apszPageStates[4] = { "not-set", "unmapped", "readable", "writable" };
|
---|
24 |
|
---|
25 |
|
---|
26 | /*********************************************************************************************************************************
|
---|
27 | * Internal Functions *
|
---|
28 | *********************************************************************************************************************************/
|
---|
29 | NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
|
---|
30 | uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged);
|
---|
31 |
|
---|
32 |
|
---|
33 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
34 |
|
---|
35 | /**
|
---|
36 | * Wrapper around VMMR0_DO_NEM_MAP_PAGES for a single page.
|
---|
37 | *
|
---|
38 | * @returns VBox status code.
|
---|
39 | * @param pVM The cross context VM structure.
|
---|
40 | * @param pVCpu The cross context virtual CPU structure of the caller.
|
---|
41 | * @param GCPhysSrc The source page. Does not need to be page aligned.
|
---|
42 | * @param GCPhysDst The destination page. Same as @a GCPhysSrc except for
|
---|
43 | * when A20 is disabled.
|
---|
44 | * @param fFlags HV_MAP_GPA_XXX.
|
---|
45 | */
|
---|
46 | DECLINLINE(int) nemHCWinHypercallMapPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst, uint32_t fFlags)
|
---|
47 | {
|
---|
48 | #ifdef IN_RING0
|
---|
49 | /** @todo optimize further, caller generally has the physical address. */
|
---|
50 | PGVM pGVM = GVMMR0FastGetGVMByVM(pVM);
|
---|
51 | AssertReturn(pGVM, VERR_INVALID_VM_HANDLE);
|
---|
52 | return nemR0WinMapPages(pGVM, pVM, &pGVM->aCpus[pVCpu->idCpu], GCPhysSrc, GCPhysDst, 1, fFlags);
|
---|
53 | #else
|
---|
54 | pVCpu->nem.s.Hypercall.MapPages.GCPhysSrc = GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
|
---|
55 | pVCpu->nem.s.Hypercall.MapPages.GCPhysDst = GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
|
---|
56 | pVCpu->nem.s.Hypercall.MapPages.cPages = 1;
|
---|
57 | pVCpu->nem.s.Hypercall.MapPages.fFlags = fFlags;
|
---|
58 | return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_MAP_PAGES, 0, NULL);
|
---|
59 | #endif
|
---|
60 | }
|
---|
61 |
|
---|
62 |
|
---|
63 | /**
|
---|
64 | * Wrapper around VMMR0_DO_NEM_UNMAP_PAGES for a single page.
|
---|
65 | *
|
---|
66 | * @returns VBox status code.
|
---|
67 | * @param pVM The cross context VM structure.
|
---|
68 | * @param pVCpu The cross context virtual CPU structure of the caller.
|
---|
69 | * @param GCPhys The page to unmap. Does not need to be page aligned.
|
---|
70 | */
|
---|
71 | DECLINLINE(int) nemHCWinHypercallUnmapPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
|
---|
72 | {
|
---|
73 | # ifdef IN_RING0
|
---|
74 | PGVM pGVM = GVMMR0FastGetGVMByVM(pVM);
|
---|
75 | AssertReturn(pGVM, VERR_INVALID_VM_HANDLE);
|
---|
76 | return nemR0WinUnmapPages(pGVM, &pGVM->aCpus[pVCpu->idCpu], GCPhys, 1);
|
---|
77 | # else
|
---|
78 | pVCpu->nem.s.Hypercall.UnmapPages.GCPhys = GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK;
|
---|
79 | pVCpu->nem.s.Hypercall.UnmapPages.cPages = 1;
|
---|
80 | return VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_UNMAP_PAGES, 0, NULL);
|
---|
81 | # endif
|
---|
82 | }
|
---|
83 |
|
---|
84 | #endif /* NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
|
---|
85 |
|
---|
86 |
|
---|
87 | #ifndef IN_RING0
|
---|
88 |
|
---|
89 | NEM_TMPL_STATIC int nemHCWinCopyStateToHyperV(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
90 | {
|
---|
91 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
|
---|
92 | NOREF(pCtx);
|
---|
93 | int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_EXPORT_STATE, UINT64_MAX, NULL);
|
---|
94 | AssertLogRelRCReturn(rc, rc);
|
---|
95 | return rc;
|
---|
96 |
|
---|
97 | #else
|
---|
98 | WHV_REGISTER_NAME aenmNames[128];
|
---|
99 | WHV_REGISTER_VALUE aValues[128];
|
---|
100 |
|
---|
101 | /* GPRs */
|
---|
102 | aenmNames[0] = WHvX64RegisterRax;
|
---|
103 | aValues[0].Reg64 = pCtx->rax;
|
---|
104 | aenmNames[1] = WHvX64RegisterRcx;
|
---|
105 | aValues[1].Reg64 = pCtx->rcx;
|
---|
106 | aenmNames[2] = WHvX64RegisterRdx;
|
---|
107 | aValues[2].Reg64 = pCtx->rdx;
|
---|
108 | aenmNames[3] = WHvX64RegisterRbx;
|
---|
109 | aValues[3].Reg64 = pCtx->rbx;
|
---|
110 | aenmNames[4] = WHvX64RegisterRsp;
|
---|
111 | aValues[4].Reg64 = pCtx->rsp;
|
---|
112 | aenmNames[5] = WHvX64RegisterRbp;
|
---|
113 | aValues[5].Reg64 = pCtx->rbp;
|
---|
114 | aenmNames[6] = WHvX64RegisterRsi;
|
---|
115 | aValues[6].Reg64 = pCtx->rsi;
|
---|
116 | aenmNames[7] = WHvX64RegisterRdi;
|
---|
117 | aValues[7].Reg64 = pCtx->rdi;
|
---|
118 | aenmNames[8] = WHvX64RegisterR8;
|
---|
119 | aValues[8].Reg64 = pCtx->r8;
|
---|
120 | aenmNames[9] = WHvX64RegisterR9;
|
---|
121 | aValues[9].Reg64 = pCtx->r9;
|
---|
122 | aenmNames[10] = WHvX64RegisterR10;
|
---|
123 | aValues[10].Reg64 = pCtx->r10;
|
---|
124 | aenmNames[11] = WHvX64RegisterR11;
|
---|
125 | aValues[11].Reg64 = pCtx->r11;
|
---|
126 | aenmNames[12] = WHvX64RegisterR12;
|
---|
127 | aValues[12].Reg64 = pCtx->r12;
|
---|
128 | aenmNames[13] = WHvX64RegisterR13;
|
---|
129 | aValues[13].Reg64 = pCtx->r13;
|
---|
130 | aenmNames[14] = WHvX64RegisterR14;
|
---|
131 | aValues[14].Reg64 = pCtx->r14;
|
---|
132 | aenmNames[15] = WHvX64RegisterR15;
|
---|
133 | aValues[15].Reg64 = pCtx->r15;
|
---|
134 |
|
---|
135 | /* RIP & Flags */
|
---|
136 | aenmNames[16] = WHvX64RegisterRip;
|
---|
137 | aValues[16].Reg64 = pCtx->rip;
|
---|
138 | aenmNames[17] = WHvX64RegisterRflags;
|
---|
139 | aValues[17].Reg64 = pCtx->rflags.u;
|
---|
140 |
|
---|
141 | /* Segments */
|
---|
142 | #define COPY_OUT_SEG(a_idx, a_enmName, a_SReg) \
|
---|
143 | do { \
|
---|
144 | aenmNames[a_idx] = a_enmName; \
|
---|
145 | aValues[a_idx].Segment.Base = (a_SReg).u64Base; \
|
---|
146 | aValues[a_idx].Segment.Limit = (a_SReg).u32Limit; \
|
---|
147 | aValues[a_idx].Segment.Selector = (a_SReg).Sel; \
|
---|
148 | aValues[a_idx].Segment.Attributes = (a_SReg).Attr.u; \
|
---|
149 | } while (0)
|
---|
150 | COPY_OUT_SEG(18, WHvX64RegisterEs, pCtx->es);
|
---|
151 | COPY_OUT_SEG(19, WHvX64RegisterCs, pCtx->cs);
|
---|
152 | COPY_OUT_SEG(20, WHvX64RegisterSs, pCtx->ss);
|
---|
153 | COPY_OUT_SEG(21, WHvX64RegisterDs, pCtx->ds);
|
---|
154 | COPY_OUT_SEG(22, WHvX64RegisterFs, pCtx->fs);
|
---|
155 | COPY_OUT_SEG(23, WHvX64RegisterGs, pCtx->gs);
|
---|
156 | COPY_OUT_SEG(24, WHvX64RegisterLdtr, pCtx->ldtr);
|
---|
157 | COPY_OUT_SEG(25, WHvX64RegisterTr, pCtx->tr);
|
---|
158 |
|
---|
159 | uintptr_t iReg = 26;
|
---|
160 | /* Descriptor tables. */
|
---|
161 | aenmNames[iReg] = WHvX64RegisterIdtr;
|
---|
162 | aValues[iReg].Table.Limit = pCtx->idtr.cbIdt;
|
---|
163 | aValues[iReg].Table.Base = pCtx->idtr.pIdt;
|
---|
164 | iReg++;
|
---|
165 | aenmNames[iReg] = WHvX64RegisterGdtr;
|
---|
166 | aValues[iReg].Table.Limit = pCtx->gdtr.cbGdt;
|
---|
167 | aValues[iReg].Table.Base = pCtx->gdtr.pGdt;
|
---|
168 | iReg++;
|
---|
169 |
|
---|
170 | /* Control registers. */
|
---|
171 | aenmNames[iReg] = WHvX64RegisterCr0;
|
---|
172 | aValues[iReg].Reg64 = pCtx->cr0;
|
---|
173 | iReg++;
|
---|
174 | aenmNames[iReg] = WHvX64RegisterCr2;
|
---|
175 | aValues[iReg].Reg64 = pCtx->cr2;
|
---|
176 | iReg++;
|
---|
177 | aenmNames[iReg] = WHvX64RegisterCr3;
|
---|
178 | aValues[iReg].Reg64 = pCtx->cr3;
|
---|
179 | iReg++;
|
---|
180 | aenmNames[iReg] = WHvX64RegisterCr4;
|
---|
181 | aValues[iReg].Reg64 = pCtx->cr4;
|
---|
182 | iReg++;
|
---|
183 | aenmNames[iReg] = WHvX64RegisterCr8;
|
---|
184 | aValues[iReg].Reg64 = CPUMGetGuestCR8(pVCpu);
|
---|
185 | iReg++;
|
---|
186 |
|
---|
187 | /* Debug registers. */
|
---|
188 | /** @todo fixme. Figure out what the hyper-v version of KVM_SET_GUEST_DEBUG would be. */
|
---|
189 | aenmNames[iReg] = WHvX64RegisterDr0;
|
---|
190 | //aValues[iReg].Reg64 = CPUMGetHyperDR0(pVCpu);
|
---|
191 | aValues[iReg].Reg64 = pCtx->dr[0];
|
---|
192 | iReg++;
|
---|
193 | aenmNames[iReg] = WHvX64RegisterDr1;
|
---|
194 | //aValues[iReg].Reg64 = CPUMGetHyperDR1(pVCpu);
|
---|
195 | aValues[iReg].Reg64 = pCtx->dr[1];
|
---|
196 | iReg++;
|
---|
197 | aenmNames[iReg] = WHvX64RegisterDr2;
|
---|
198 | //aValues[iReg].Reg64 = CPUMGetHyperDR2(pVCpu);
|
---|
199 | aValues[iReg].Reg64 = pCtx->dr[2];
|
---|
200 | iReg++;
|
---|
201 | aenmNames[iReg] = WHvX64RegisterDr3;
|
---|
202 | //aValues[iReg].Reg64 = CPUMGetHyperDR3(pVCpu);
|
---|
203 | aValues[iReg].Reg64 = pCtx->dr[3];
|
---|
204 | iReg++;
|
---|
205 | aenmNames[iReg] = WHvX64RegisterDr6;
|
---|
206 | //aValues[iReg].Reg64 = CPUMGetHyperDR6(pVCpu);
|
---|
207 | aValues[iReg].Reg64 = pCtx->dr[6];
|
---|
208 | iReg++;
|
---|
209 | aenmNames[iReg] = WHvX64RegisterDr7;
|
---|
210 | //aValues[iReg].Reg64 = CPUMGetHyperDR7(pVCpu);
|
---|
211 | aValues[iReg].Reg64 = pCtx->dr[7];
|
---|
212 | iReg++;
|
---|
213 |
|
---|
214 | /* Vector state. */
|
---|
215 | aenmNames[iReg] = WHvX64RegisterXmm0;
|
---|
216 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[0].uXmm.s.Lo;
|
---|
217 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[0].uXmm.s.Hi;
|
---|
218 | iReg++;
|
---|
219 | aenmNames[iReg] = WHvX64RegisterXmm1;
|
---|
220 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[1].uXmm.s.Lo;
|
---|
221 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[1].uXmm.s.Hi;
|
---|
222 | iReg++;
|
---|
223 | aenmNames[iReg] = WHvX64RegisterXmm2;
|
---|
224 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[2].uXmm.s.Lo;
|
---|
225 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[2].uXmm.s.Hi;
|
---|
226 | iReg++;
|
---|
227 | aenmNames[iReg] = WHvX64RegisterXmm3;
|
---|
228 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[3].uXmm.s.Lo;
|
---|
229 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[3].uXmm.s.Hi;
|
---|
230 | iReg++;
|
---|
231 | aenmNames[iReg] = WHvX64RegisterXmm4;
|
---|
232 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[4].uXmm.s.Lo;
|
---|
233 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[4].uXmm.s.Hi;
|
---|
234 | iReg++;
|
---|
235 | aenmNames[iReg] = WHvX64RegisterXmm5;
|
---|
236 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[5].uXmm.s.Lo;
|
---|
237 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[5].uXmm.s.Hi;
|
---|
238 | iReg++;
|
---|
239 | aenmNames[iReg] = WHvX64RegisterXmm6;
|
---|
240 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[6].uXmm.s.Lo;
|
---|
241 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[6].uXmm.s.Hi;
|
---|
242 | iReg++;
|
---|
243 | aenmNames[iReg] = WHvX64RegisterXmm7;
|
---|
244 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[7].uXmm.s.Lo;
|
---|
245 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[7].uXmm.s.Hi;
|
---|
246 | iReg++;
|
---|
247 | aenmNames[iReg] = WHvX64RegisterXmm8;
|
---|
248 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[8].uXmm.s.Lo;
|
---|
249 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[8].uXmm.s.Hi;
|
---|
250 | iReg++;
|
---|
251 | aenmNames[iReg] = WHvX64RegisterXmm9;
|
---|
252 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[9].uXmm.s.Lo;
|
---|
253 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[9].uXmm.s.Hi;
|
---|
254 | iReg++;
|
---|
255 | aenmNames[iReg] = WHvX64RegisterXmm10;
|
---|
256 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[10].uXmm.s.Lo;
|
---|
257 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[10].uXmm.s.Hi;
|
---|
258 | iReg++;
|
---|
259 | aenmNames[iReg] = WHvX64RegisterXmm11;
|
---|
260 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[11].uXmm.s.Lo;
|
---|
261 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[11].uXmm.s.Hi;
|
---|
262 | iReg++;
|
---|
263 | aenmNames[iReg] = WHvX64RegisterXmm12;
|
---|
264 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[12].uXmm.s.Lo;
|
---|
265 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[12].uXmm.s.Hi;
|
---|
266 | iReg++;
|
---|
267 | aenmNames[iReg] = WHvX64RegisterXmm13;
|
---|
268 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[13].uXmm.s.Lo;
|
---|
269 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[13].uXmm.s.Hi;
|
---|
270 | iReg++;
|
---|
271 | aenmNames[iReg] = WHvX64RegisterXmm14;
|
---|
272 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[14].uXmm.s.Lo;
|
---|
273 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[14].uXmm.s.Hi;
|
---|
274 | iReg++;
|
---|
275 | aenmNames[iReg] = WHvX64RegisterXmm15;
|
---|
276 | aValues[iReg].Reg128.Low64 = pCtx->pXStateR3->x87.aXMM[15].uXmm.s.Lo;
|
---|
277 | aValues[iReg].Reg128.High64 = pCtx->pXStateR3->x87.aXMM[15].uXmm.s.Hi;
|
---|
278 | iReg++;
|
---|
279 |
|
---|
280 | /* Floating point state. */
|
---|
281 | aenmNames[iReg] = WHvX64RegisterFpMmx0;
|
---|
282 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[0].au64[0];
|
---|
283 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[0].au64[1];
|
---|
284 | iReg++;
|
---|
285 | aenmNames[iReg] = WHvX64RegisterFpMmx1;
|
---|
286 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[1].au64[0];
|
---|
287 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[1].au64[1];
|
---|
288 | iReg++;
|
---|
289 | aenmNames[iReg] = WHvX64RegisterFpMmx2;
|
---|
290 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[2].au64[0];
|
---|
291 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[2].au64[1];
|
---|
292 | iReg++;
|
---|
293 | aenmNames[iReg] = WHvX64RegisterFpMmx3;
|
---|
294 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[3].au64[0];
|
---|
295 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[3].au64[1];
|
---|
296 | iReg++;
|
---|
297 | aenmNames[iReg] = WHvX64RegisterFpMmx4;
|
---|
298 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[4].au64[0];
|
---|
299 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[4].au64[1];
|
---|
300 | iReg++;
|
---|
301 | aenmNames[iReg] = WHvX64RegisterFpMmx5;
|
---|
302 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[5].au64[0];
|
---|
303 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[5].au64[1];
|
---|
304 | iReg++;
|
---|
305 | aenmNames[iReg] = WHvX64RegisterFpMmx6;
|
---|
306 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[6].au64[0];
|
---|
307 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[6].au64[1];
|
---|
308 | iReg++;
|
---|
309 | aenmNames[iReg] = WHvX64RegisterFpMmx7;
|
---|
310 | aValues[iReg].Fp.AsUINT128.Low64 = pCtx->pXStateR3->x87.aRegs[7].au64[0];
|
---|
311 | aValues[iReg].Fp.AsUINT128.High64 = pCtx->pXStateR3->x87.aRegs[7].au64[1];
|
---|
312 | iReg++;
|
---|
313 |
|
---|
314 | aenmNames[iReg] = WHvX64RegisterFpControlStatus;
|
---|
315 | aValues[iReg].FpControlStatus.FpControl = pCtx->pXStateR3->x87.FCW;
|
---|
316 | aValues[iReg].FpControlStatus.FpStatus = pCtx->pXStateR3->x87.FSW;
|
---|
317 | aValues[iReg].FpControlStatus.FpTag = pCtx->pXStateR3->x87.FTW;
|
---|
318 | aValues[iReg].FpControlStatus.Reserved = pCtx->pXStateR3->x87.FTW >> 8;
|
---|
319 | aValues[iReg].FpControlStatus.LastFpOp = pCtx->pXStateR3->x87.FOP;
|
---|
320 | aValues[iReg].FpControlStatus.LastFpRip = (pCtx->pXStateR3->x87.FPUIP)
|
---|
321 | | ((uint64_t)pCtx->pXStateR3->x87.CS << 32)
|
---|
322 | | ((uint64_t)pCtx->pXStateR3->x87.Rsrvd1 << 48);
|
---|
323 | iReg++;
|
---|
324 |
|
---|
325 | aenmNames[iReg] = WHvX64RegisterXmmControlStatus;
|
---|
326 | aValues[iReg].XmmControlStatus.LastFpRdp = (pCtx->pXStateR3->x87.FPUDP)
|
---|
327 | | ((uint64_t)pCtx->pXStateR3->x87.DS << 32)
|
---|
328 | | ((uint64_t)pCtx->pXStateR3->x87.Rsrvd2 << 48);
|
---|
329 | aValues[iReg].XmmControlStatus.XmmStatusControl = pCtx->pXStateR3->x87.MXCSR;
|
---|
330 | aValues[iReg].XmmControlStatus.XmmStatusControlMask = pCtx->pXStateR3->x87.MXCSR_MASK; /** @todo ??? (Isn't this an output field?) */
|
---|
331 | iReg++;
|
---|
332 |
|
---|
333 | /* MSRs */
|
---|
334 | // WHvX64RegisterTsc - don't touch
|
---|
335 | aenmNames[iReg] = WHvX64RegisterEfer;
|
---|
336 | aValues[iReg].Reg64 = pCtx->msrEFER;
|
---|
337 | iReg++;
|
---|
338 | aenmNames[iReg] = WHvX64RegisterKernelGsBase;
|
---|
339 | aValues[iReg].Reg64 = pCtx->msrKERNELGSBASE;
|
---|
340 | iReg++;
|
---|
341 | aenmNames[iReg] = WHvX64RegisterApicBase;
|
---|
342 | aValues[iReg].Reg64 = APICGetBaseMsrNoCheck(pVCpu);
|
---|
343 | iReg++;
|
---|
344 | aenmNames[iReg] = WHvX64RegisterPat;
|
---|
345 | aValues[iReg].Reg64 = pCtx->msrPAT;
|
---|
346 | iReg++;
|
---|
347 | /// @todo WHvX64RegisterSysenterCs
|
---|
348 | /// @todo WHvX64RegisterSysenterEip
|
---|
349 | /// @todo WHvX64RegisterSysenterEsp
|
---|
350 | aenmNames[iReg] = WHvX64RegisterStar;
|
---|
351 | aValues[iReg].Reg64 = pCtx->msrSTAR;
|
---|
352 | iReg++;
|
---|
353 | aenmNames[iReg] = WHvX64RegisterLstar;
|
---|
354 | aValues[iReg].Reg64 = pCtx->msrLSTAR;
|
---|
355 | iReg++;
|
---|
356 | aenmNames[iReg] = WHvX64RegisterCstar;
|
---|
357 | aValues[iReg].Reg64 = pCtx->msrCSTAR;
|
---|
358 | iReg++;
|
---|
359 | aenmNames[iReg] = WHvX64RegisterSfmask;
|
---|
360 | aValues[iReg].Reg64 = pCtx->msrSFMASK;
|
---|
361 | iReg++;
|
---|
362 |
|
---|
363 | /* event injection (always clear it). */
|
---|
364 | aenmNames[iReg] = WHvRegisterPendingInterruption;
|
---|
365 | aValues[iReg].Reg64 = 0;
|
---|
366 | iReg++;
|
---|
367 | /// @todo WHvRegisterInterruptState
|
---|
368 | /// @todo WHvRegisterPendingEvent0
|
---|
369 | /// @todo WHvRegisterPendingEvent1
|
---|
370 |
|
---|
371 | /*
|
---|
372 | * Set the registers.
|
---|
373 | */
|
---|
374 | Assert(iReg < RT_ELEMENTS(aValues));
|
---|
375 | Assert(iReg < RT_ELEMENTS(aenmNames));
|
---|
376 | #ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
|
---|
377 | Log12(("Calling WHvSetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
|
---|
378 | pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues));
|
---|
379 | #endif
|
---|
380 | HRESULT hrc = WHvSetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, iReg, aValues);
|
---|
381 | if (SUCCEEDED(hrc))
|
---|
382 | return VINF_SUCCESS;
|
---|
383 | AssertLogRelMsgFailed(("WHvSetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
|
---|
384 | pVM->nem.s.hPartition, pVCpu->idCpu, iReg,
|
---|
385 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
386 | return VERR_INTERNAL_ERROR;
|
---|
387 | #endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
|
---|
388 | }
|
---|
389 |
|
---|
390 |
|
---|
391 | NEM_TMPL_STATIC int nemHCWinCopyStateFromHyperV(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
392 | {
|
---|
393 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS
|
---|
394 | NOREF(pCtx);
|
---|
395 | int rc = VMMR3CallR0Emt(pVM, pVCpu, VMMR0_DO_NEM_IMPORT_STATE, UINT64_MAX, NULL);
|
---|
396 | if (RT_SUCCESS(rc))
|
---|
397 | return rc;
|
---|
398 | if (rc == VERR_NEM_FLUSH_TLB)
|
---|
399 | return PGMFlushTLB(pVCpu, pCtx->cr3, true /*fGlobal*/);
|
---|
400 | if (rc == VERR_NEM_CHANGE_PGM_MODE)
|
---|
401 | return PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
|
---|
402 | AssertLogRelRCReturn(rc, rc);
|
---|
403 | return rc;
|
---|
404 |
|
---|
405 | #else
|
---|
406 | WHV_REGISTER_NAME aenmNames[128];
|
---|
407 |
|
---|
408 | /* GPRs */
|
---|
409 | aenmNames[0] = WHvX64RegisterRax;
|
---|
410 | aenmNames[1] = WHvX64RegisterRcx;
|
---|
411 | aenmNames[2] = WHvX64RegisterRdx;
|
---|
412 | aenmNames[3] = WHvX64RegisterRbx;
|
---|
413 | aenmNames[4] = WHvX64RegisterRsp;
|
---|
414 | aenmNames[5] = WHvX64RegisterRbp;
|
---|
415 | aenmNames[6] = WHvX64RegisterRsi;
|
---|
416 | aenmNames[7] = WHvX64RegisterRdi;
|
---|
417 | aenmNames[8] = WHvX64RegisterR8;
|
---|
418 | aenmNames[9] = WHvX64RegisterR9;
|
---|
419 | aenmNames[10] = WHvX64RegisterR10;
|
---|
420 | aenmNames[11] = WHvX64RegisterR11;
|
---|
421 | aenmNames[12] = WHvX64RegisterR12;
|
---|
422 | aenmNames[13] = WHvX64RegisterR13;
|
---|
423 | aenmNames[14] = WHvX64RegisterR14;
|
---|
424 | aenmNames[15] = WHvX64RegisterR15;
|
---|
425 |
|
---|
426 | /* RIP & Flags */
|
---|
427 | aenmNames[16] = WHvX64RegisterRip;
|
---|
428 | aenmNames[17] = WHvX64RegisterRflags;
|
---|
429 |
|
---|
430 | /* Segments */
|
---|
431 | aenmNames[18] = WHvX64RegisterEs;
|
---|
432 | aenmNames[19] = WHvX64RegisterCs;
|
---|
433 | aenmNames[20] = WHvX64RegisterSs;
|
---|
434 | aenmNames[21] = WHvX64RegisterDs;
|
---|
435 | aenmNames[22] = WHvX64RegisterFs;
|
---|
436 | aenmNames[23] = WHvX64RegisterGs;
|
---|
437 | aenmNames[24] = WHvX64RegisterLdtr;
|
---|
438 | aenmNames[25] = WHvX64RegisterTr;
|
---|
439 |
|
---|
440 | /* Descriptor tables. */
|
---|
441 | aenmNames[26] = WHvX64RegisterIdtr;
|
---|
442 | aenmNames[27] = WHvX64RegisterGdtr;
|
---|
443 |
|
---|
444 | /* Control registers. */
|
---|
445 | aenmNames[28] = WHvX64RegisterCr0;
|
---|
446 | aenmNames[29] = WHvX64RegisterCr2;
|
---|
447 | aenmNames[30] = WHvX64RegisterCr3;
|
---|
448 | aenmNames[31] = WHvX64RegisterCr4;
|
---|
449 | aenmNames[32] = WHvX64RegisterCr8;
|
---|
450 |
|
---|
451 | /* Debug registers. */
|
---|
452 | aenmNames[33] = WHvX64RegisterDr0;
|
---|
453 | aenmNames[34] = WHvX64RegisterDr1;
|
---|
454 | aenmNames[35] = WHvX64RegisterDr2;
|
---|
455 | aenmNames[36] = WHvX64RegisterDr3;
|
---|
456 | aenmNames[37] = WHvX64RegisterDr6;
|
---|
457 | aenmNames[38] = WHvX64RegisterDr7;
|
---|
458 |
|
---|
459 | /* Vector state. */
|
---|
460 | aenmNames[39] = WHvX64RegisterXmm0;
|
---|
461 | aenmNames[40] = WHvX64RegisterXmm1;
|
---|
462 | aenmNames[41] = WHvX64RegisterXmm2;
|
---|
463 | aenmNames[42] = WHvX64RegisterXmm3;
|
---|
464 | aenmNames[43] = WHvX64RegisterXmm4;
|
---|
465 | aenmNames[44] = WHvX64RegisterXmm5;
|
---|
466 | aenmNames[45] = WHvX64RegisterXmm6;
|
---|
467 | aenmNames[46] = WHvX64RegisterXmm7;
|
---|
468 | aenmNames[47] = WHvX64RegisterXmm8;
|
---|
469 | aenmNames[48] = WHvX64RegisterXmm9;
|
---|
470 | aenmNames[49] = WHvX64RegisterXmm10;
|
---|
471 | aenmNames[50] = WHvX64RegisterXmm11;
|
---|
472 | aenmNames[51] = WHvX64RegisterXmm12;
|
---|
473 | aenmNames[52] = WHvX64RegisterXmm13;
|
---|
474 | aenmNames[53] = WHvX64RegisterXmm14;
|
---|
475 | aenmNames[54] = WHvX64RegisterXmm15;
|
---|
476 |
|
---|
477 | /* Floating point state. */
|
---|
478 | aenmNames[55] = WHvX64RegisterFpMmx0;
|
---|
479 | aenmNames[56] = WHvX64RegisterFpMmx1;
|
---|
480 | aenmNames[57] = WHvX64RegisterFpMmx2;
|
---|
481 | aenmNames[58] = WHvX64RegisterFpMmx3;
|
---|
482 | aenmNames[59] = WHvX64RegisterFpMmx4;
|
---|
483 | aenmNames[60] = WHvX64RegisterFpMmx5;
|
---|
484 | aenmNames[61] = WHvX64RegisterFpMmx6;
|
---|
485 | aenmNames[62] = WHvX64RegisterFpMmx7;
|
---|
486 | aenmNames[63] = WHvX64RegisterFpControlStatus;
|
---|
487 | aenmNames[64] = WHvX64RegisterXmmControlStatus;
|
---|
488 |
|
---|
489 | /* MSRs */
|
---|
490 | // WHvX64RegisterTsc - don't touch
|
---|
491 | aenmNames[65] = WHvX64RegisterEfer;
|
---|
492 | aenmNames[66] = WHvX64RegisterKernelGsBase;
|
---|
493 | aenmNames[67] = WHvX64RegisterApicBase;
|
---|
494 | aenmNames[68] = WHvX64RegisterPat;
|
---|
495 | aenmNames[69] = WHvX64RegisterSysenterCs;
|
---|
496 | aenmNames[70] = WHvX64RegisterSysenterEip;
|
---|
497 | aenmNames[71] = WHvX64RegisterSysenterEsp;
|
---|
498 | aenmNames[72] = WHvX64RegisterStar;
|
---|
499 | aenmNames[73] = WHvX64RegisterLstar;
|
---|
500 | aenmNames[74] = WHvX64RegisterCstar;
|
---|
501 | aenmNames[75] = WHvX64RegisterSfmask;
|
---|
502 |
|
---|
503 | /* event injection */
|
---|
504 | aenmNames[76] = WHvRegisterPendingInterruption;
|
---|
505 | aenmNames[77] = WHvRegisterInterruptState;
|
---|
506 | aenmNames[78] = WHvRegisterInterruptState;
|
---|
507 | aenmNames[79] = WHvRegisterPendingEvent0;
|
---|
508 | aenmNames[80] = WHvRegisterPendingEvent1;
|
---|
509 | unsigned const cRegs = 81;
|
---|
510 |
|
---|
511 | /*
|
---|
512 | * Get the registers.
|
---|
513 | */
|
---|
514 | WHV_REGISTER_VALUE aValues[cRegs];
|
---|
515 | RT_ZERO(aValues);
|
---|
516 | Assert(RT_ELEMENTS(aValues) >= cRegs);
|
---|
517 | Assert(RT_ELEMENTS(aenmNames) >= cRegs);
|
---|
518 | #ifdef NEM_WIN_INTERCEPT_NT_IO_CTLS
|
---|
519 | Log12(("Calling WHvGetVirtualProcessorRegisters(%p, %u, %p, %u, %p)\n",
|
---|
520 | pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, cRegs, aValues));
|
---|
521 | #endif
|
---|
522 | HRESULT hrc = WHvGetVirtualProcessorRegisters(pVM->nem.s.hPartition, pVCpu->idCpu, aenmNames, cRegs, aValues);
|
---|
523 | if (SUCCEEDED(hrc))
|
---|
524 | {
|
---|
525 | /* GPRs */
|
---|
526 | Assert(aenmNames[0] == WHvX64RegisterRax);
|
---|
527 | Assert(aenmNames[15] == WHvX64RegisterR15);
|
---|
528 | pCtx->rax = aValues[0].Reg64;
|
---|
529 | pCtx->rcx = aValues[1].Reg64;
|
---|
530 | pCtx->rdx = aValues[2].Reg64;
|
---|
531 | pCtx->rbx = aValues[3].Reg64;
|
---|
532 | pCtx->rsp = aValues[4].Reg64;
|
---|
533 | pCtx->rbp = aValues[5].Reg64;
|
---|
534 | pCtx->rsi = aValues[6].Reg64;
|
---|
535 | pCtx->rdi = aValues[7].Reg64;
|
---|
536 | pCtx->r8 = aValues[8].Reg64;
|
---|
537 | pCtx->r9 = aValues[9].Reg64;
|
---|
538 | pCtx->r10 = aValues[10].Reg64;
|
---|
539 | pCtx->r11 = aValues[11].Reg64;
|
---|
540 | pCtx->r12 = aValues[12].Reg64;
|
---|
541 | pCtx->r13 = aValues[13].Reg64;
|
---|
542 | pCtx->r14 = aValues[14].Reg64;
|
---|
543 | pCtx->r15 = aValues[15].Reg64;
|
---|
544 |
|
---|
545 | /* RIP & Flags */
|
---|
546 | Assert(aenmNames[16] == WHvX64RegisterRip);
|
---|
547 | pCtx->rip = aValues[16].Reg64;
|
---|
548 | pCtx->rflags.u = aValues[17].Reg64;
|
---|
549 |
|
---|
550 | /* Segments */
|
---|
551 | #define COPY_BACK_SEG(a_idx, a_enmName, a_SReg) \
|
---|
552 | do { \
|
---|
553 | Assert(aenmNames[a_idx] == a_enmName); \
|
---|
554 | (a_SReg).u64Base = aValues[a_idx].Segment.Base; \
|
---|
555 | (a_SReg).u32Limit = aValues[a_idx].Segment.Limit; \
|
---|
556 | (a_SReg).ValidSel = (a_SReg).Sel = aValues[a_idx].Segment.Selector; \
|
---|
557 | (a_SReg).Attr.u = aValues[a_idx].Segment.Attributes; \
|
---|
558 | (a_SReg).fFlags = CPUMSELREG_FLAGS_VALID; \
|
---|
559 | } while (0)
|
---|
560 | COPY_BACK_SEG(18, WHvX64RegisterEs, pCtx->es);
|
---|
561 | COPY_BACK_SEG(19, WHvX64RegisterCs, pCtx->cs);
|
---|
562 | COPY_BACK_SEG(20, WHvX64RegisterSs, pCtx->ss);
|
---|
563 | COPY_BACK_SEG(21, WHvX64RegisterDs, pCtx->ds);
|
---|
564 | COPY_BACK_SEG(22, WHvX64RegisterFs, pCtx->fs);
|
---|
565 | COPY_BACK_SEG(23, WHvX64RegisterGs, pCtx->gs);
|
---|
566 | COPY_BACK_SEG(24, WHvX64RegisterLdtr, pCtx->ldtr);
|
---|
567 | COPY_BACK_SEG(25, WHvX64RegisterTr, pCtx->tr);
|
---|
568 |
|
---|
569 | /* Descriptor tables. */
|
---|
570 | Assert(aenmNames[26] == WHvX64RegisterIdtr);
|
---|
571 | pCtx->idtr.cbIdt = aValues[26].Table.Limit;
|
---|
572 | pCtx->idtr.pIdt = aValues[26].Table.Base;
|
---|
573 | Assert(aenmNames[27] == WHvX64RegisterGdtr);
|
---|
574 | pCtx->gdtr.cbGdt = aValues[27].Table.Limit;
|
---|
575 | pCtx->gdtr.pGdt = aValues[27].Table.Base;
|
---|
576 |
|
---|
577 | /* Control registers. */
|
---|
578 | Assert(aenmNames[28] == WHvX64RegisterCr0);
|
---|
579 | bool fMaybeChangedMode = false;
|
---|
580 | bool fFlushTlb = false;
|
---|
581 | bool fFlushGlobalTlb = false;
|
---|
582 | if (pCtx->cr0 != aValues[28].Reg64)
|
---|
583 | {
|
---|
584 | CPUMSetGuestCR0(pVCpu, aValues[28].Reg64);
|
---|
585 | fMaybeChangedMode = true;
|
---|
586 | fFlushTlb = fFlushGlobalTlb = true; /// @todo fix this
|
---|
587 | }
|
---|
588 | Assert(aenmNames[29] == WHvX64RegisterCr2);
|
---|
589 | pCtx->cr2 = aValues[29].Reg64;
|
---|
590 | if (pCtx->cr3 != aValues[30].Reg64)
|
---|
591 | {
|
---|
592 | CPUMSetGuestCR3(pVCpu, aValues[30].Reg64);
|
---|
593 | fFlushTlb = true;
|
---|
594 | }
|
---|
595 | if (pCtx->cr4 != aValues[31].Reg64)
|
---|
596 | {
|
---|
597 | CPUMSetGuestCR4(pVCpu, aValues[31].Reg64);
|
---|
598 | fMaybeChangedMode = true;
|
---|
599 | fFlushTlb = fFlushGlobalTlb = true; /// @todo fix this
|
---|
600 | }
|
---|
601 | APICSetTpr(pVCpu, (uint8_t)aValues[32].Reg64 << 4);
|
---|
602 |
|
---|
603 | /* Debug registers. */
|
---|
604 | Assert(aenmNames[33] == WHvX64RegisterDr0);
|
---|
605 | /** @todo fixme */
|
---|
606 | if (pCtx->dr[0] != aValues[33].Reg64)
|
---|
607 | CPUMSetGuestDR0(pVCpu, aValues[33].Reg64);
|
---|
608 | if (pCtx->dr[1] != aValues[34].Reg64)
|
---|
609 | CPUMSetGuestDR1(pVCpu, aValues[34].Reg64);
|
---|
610 | if (pCtx->dr[2] != aValues[35].Reg64)
|
---|
611 | CPUMSetGuestDR2(pVCpu, aValues[35].Reg64);
|
---|
612 | if (pCtx->dr[3] != aValues[36].Reg64)
|
---|
613 | CPUMSetGuestDR3(pVCpu, aValues[36].Reg64);
|
---|
614 | Assert(aenmNames[37] == WHvX64RegisterDr6);
|
---|
615 | Assert(aenmNames[38] == WHvX64RegisterDr7);
|
---|
616 | if (pCtx->dr[6] != aValues[37].Reg64)
|
---|
617 | CPUMSetGuestDR6(pVCpu, aValues[37].Reg64);
|
---|
618 | if (pCtx->dr[7] != aValues[38].Reg64)
|
---|
619 | CPUMSetGuestDR6(pVCpu, aValues[38].Reg64);
|
---|
620 |
|
---|
621 | /* Vector state. */
|
---|
622 | Assert(aenmNames[39] == WHvX64RegisterXmm0);
|
---|
623 | Assert(aenmNames[54] == WHvX64RegisterXmm15);
|
---|
624 | pCtx->pXStateR3->x87.aXMM[0].uXmm.s.Lo = aValues[39].Reg128.Low64;
|
---|
625 | pCtx->pXStateR3->x87.aXMM[0].uXmm.s.Hi = aValues[39].Reg128.High64;
|
---|
626 | pCtx->pXStateR3->x87.aXMM[1].uXmm.s.Lo = aValues[40].Reg128.Low64;
|
---|
627 | pCtx->pXStateR3->x87.aXMM[1].uXmm.s.Hi = aValues[40].Reg128.High64;
|
---|
628 | pCtx->pXStateR3->x87.aXMM[2].uXmm.s.Lo = aValues[41].Reg128.Low64;
|
---|
629 | pCtx->pXStateR3->x87.aXMM[2].uXmm.s.Hi = aValues[41].Reg128.High64;
|
---|
630 | pCtx->pXStateR3->x87.aXMM[3].uXmm.s.Lo = aValues[42].Reg128.Low64;
|
---|
631 | pCtx->pXStateR3->x87.aXMM[3].uXmm.s.Hi = aValues[42].Reg128.High64;
|
---|
632 | pCtx->pXStateR3->x87.aXMM[4].uXmm.s.Lo = aValues[43].Reg128.Low64;
|
---|
633 | pCtx->pXStateR3->x87.aXMM[4].uXmm.s.Hi = aValues[43].Reg128.High64;
|
---|
634 | pCtx->pXStateR3->x87.aXMM[5].uXmm.s.Lo = aValues[44].Reg128.Low64;
|
---|
635 | pCtx->pXStateR3->x87.aXMM[5].uXmm.s.Hi = aValues[44].Reg128.High64;
|
---|
636 | pCtx->pXStateR3->x87.aXMM[6].uXmm.s.Lo = aValues[45].Reg128.Low64;
|
---|
637 | pCtx->pXStateR3->x87.aXMM[6].uXmm.s.Hi = aValues[45].Reg128.High64;
|
---|
638 | pCtx->pXStateR3->x87.aXMM[7].uXmm.s.Lo = aValues[46].Reg128.Low64;
|
---|
639 | pCtx->pXStateR3->x87.aXMM[7].uXmm.s.Hi = aValues[46].Reg128.High64;
|
---|
640 | pCtx->pXStateR3->x87.aXMM[8].uXmm.s.Lo = aValues[47].Reg128.Low64;
|
---|
641 | pCtx->pXStateR3->x87.aXMM[8].uXmm.s.Hi = aValues[47].Reg128.High64;
|
---|
642 | pCtx->pXStateR3->x87.aXMM[9].uXmm.s.Lo = aValues[48].Reg128.Low64;
|
---|
643 | pCtx->pXStateR3->x87.aXMM[9].uXmm.s.Hi = aValues[48].Reg128.High64;
|
---|
644 | pCtx->pXStateR3->x87.aXMM[10].uXmm.s.Lo = aValues[49].Reg128.Low64;
|
---|
645 | pCtx->pXStateR3->x87.aXMM[10].uXmm.s.Hi = aValues[49].Reg128.High64;
|
---|
646 | pCtx->pXStateR3->x87.aXMM[11].uXmm.s.Lo = aValues[50].Reg128.Low64;
|
---|
647 | pCtx->pXStateR3->x87.aXMM[11].uXmm.s.Hi = aValues[50].Reg128.High64;
|
---|
648 | pCtx->pXStateR3->x87.aXMM[12].uXmm.s.Lo = aValues[51].Reg128.Low64;
|
---|
649 | pCtx->pXStateR3->x87.aXMM[12].uXmm.s.Hi = aValues[51].Reg128.High64;
|
---|
650 | pCtx->pXStateR3->x87.aXMM[13].uXmm.s.Lo = aValues[52].Reg128.Low64;
|
---|
651 | pCtx->pXStateR3->x87.aXMM[13].uXmm.s.Hi = aValues[52].Reg128.High64;
|
---|
652 | pCtx->pXStateR3->x87.aXMM[14].uXmm.s.Lo = aValues[53].Reg128.Low64;
|
---|
653 | pCtx->pXStateR3->x87.aXMM[14].uXmm.s.Hi = aValues[53].Reg128.High64;
|
---|
654 | pCtx->pXStateR3->x87.aXMM[15].uXmm.s.Lo = aValues[54].Reg128.Low64;
|
---|
655 | pCtx->pXStateR3->x87.aXMM[15].uXmm.s.Hi = aValues[54].Reg128.High64;
|
---|
656 |
|
---|
657 | /* Floating point state. */
|
---|
658 | Assert(aenmNames[55] == WHvX64RegisterFpMmx0);
|
---|
659 | Assert(aenmNames[62] == WHvX64RegisterFpMmx7);
|
---|
660 | pCtx->pXStateR3->x87.aRegs[0].au64[0] = aValues[55].Fp.AsUINT128.Low64;
|
---|
661 | pCtx->pXStateR3->x87.aRegs[0].au64[1] = aValues[55].Fp.AsUINT128.High64;
|
---|
662 | pCtx->pXStateR3->x87.aRegs[1].au64[0] = aValues[56].Fp.AsUINT128.Low64;
|
---|
663 | pCtx->pXStateR3->x87.aRegs[1].au64[1] = aValues[56].Fp.AsUINT128.High64;
|
---|
664 | pCtx->pXStateR3->x87.aRegs[2].au64[0] = aValues[57].Fp.AsUINT128.Low64;
|
---|
665 | pCtx->pXStateR3->x87.aRegs[2].au64[1] = aValues[57].Fp.AsUINT128.High64;
|
---|
666 | pCtx->pXStateR3->x87.aRegs[3].au64[0] = aValues[58].Fp.AsUINT128.Low64;
|
---|
667 | pCtx->pXStateR3->x87.aRegs[3].au64[1] = aValues[58].Fp.AsUINT128.High64;
|
---|
668 | pCtx->pXStateR3->x87.aRegs[4].au64[0] = aValues[59].Fp.AsUINT128.Low64;
|
---|
669 | pCtx->pXStateR3->x87.aRegs[4].au64[1] = aValues[59].Fp.AsUINT128.High64;
|
---|
670 | pCtx->pXStateR3->x87.aRegs[5].au64[0] = aValues[60].Fp.AsUINT128.Low64;
|
---|
671 | pCtx->pXStateR3->x87.aRegs[5].au64[1] = aValues[60].Fp.AsUINT128.High64;
|
---|
672 | pCtx->pXStateR3->x87.aRegs[6].au64[0] = aValues[61].Fp.AsUINT128.Low64;
|
---|
673 | pCtx->pXStateR3->x87.aRegs[6].au64[1] = aValues[61].Fp.AsUINT128.High64;
|
---|
674 | pCtx->pXStateR3->x87.aRegs[7].au64[0] = aValues[62].Fp.AsUINT128.Low64;
|
---|
675 | pCtx->pXStateR3->x87.aRegs[7].au64[1] = aValues[62].Fp.AsUINT128.High64;
|
---|
676 |
|
---|
677 | Assert(aenmNames[63] == WHvX64RegisterFpControlStatus);
|
---|
678 | pCtx->pXStateR3->x87.FCW = aValues[63].FpControlStatus.FpControl;
|
---|
679 | pCtx->pXStateR3->x87.FSW = aValues[63].FpControlStatus.FpStatus;
|
---|
680 | pCtx->pXStateR3->x87.FTW = aValues[63].FpControlStatus.FpTag
|
---|
681 | /*| (aValues[63].FpControlStatus.Reserved << 8)*/;
|
---|
682 | pCtx->pXStateR3->x87.FOP = aValues[63].FpControlStatus.LastFpOp;
|
---|
683 | pCtx->pXStateR3->x87.FPUIP = (uint32_t)aValues[63].FpControlStatus.LastFpRip;
|
---|
684 | pCtx->pXStateR3->x87.CS = (uint16_t)(aValues[63].FpControlStatus.LastFpRip >> 32);
|
---|
685 | pCtx->pXStateR3->x87.Rsrvd1 = (uint16_t)(aValues[63].FpControlStatus.LastFpRip >> 48);
|
---|
686 |
|
---|
687 | Assert(aenmNames[64] == WHvX64RegisterXmmControlStatus);
|
---|
688 | pCtx->pXStateR3->x87.FPUDP = (uint32_t)aValues[64].XmmControlStatus.LastFpRdp;
|
---|
689 | pCtx->pXStateR3->x87.DS = (uint16_t)(aValues[64].XmmControlStatus.LastFpRdp >> 32);
|
---|
690 | pCtx->pXStateR3->x87.Rsrvd2 = (uint16_t)(aValues[64].XmmControlStatus.LastFpRdp >> 48);
|
---|
691 | pCtx->pXStateR3->x87.MXCSR = aValues[64].XmmControlStatus.XmmStatusControl;
|
---|
692 | pCtx->pXStateR3->x87.MXCSR_MASK = aValues[64].XmmControlStatus.XmmStatusControlMask; /** @todo ??? (Isn't this an output field?) */
|
---|
693 |
|
---|
694 | /* MSRs */
|
---|
695 | // WHvX64RegisterTsc - don't touch
|
---|
696 | Assert(aenmNames[65] == WHvX64RegisterEfer);
|
---|
697 | if (aValues[65].Reg64 != pCtx->msrEFER)
|
---|
698 | {
|
---|
699 | pCtx->msrEFER = aValues[65].Reg64;
|
---|
700 | fMaybeChangedMode = true;
|
---|
701 | }
|
---|
702 |
|
---|
703 | Assert(aenmNames[66] == WHvX64RegisterKernelGsBase);
|
---|
704 | pCtx->msrKERNELGSBASE = aValues[66].Reg64;
|
---|
705 |
|
---|
706 | Assert(aenmNames[67] == WHvX64RegisterApicBase);
|
---|
707 | if (aValues[67].Reg64 != APICGetBaseMsrNoCheck(pVCpu))
|
---|
708 | {
|
---|
709 | VBOXSTRICTRC rc2 = APICSetBaseMsr(pVCpu, aValues[67].Reg64);
|
---|
710 | Assert(rc2 == VINF_SUCCESS); NOREF(rc2);
|
---|
711 | }
|
---|
712 |
|
---|
713 | Assert(aenmNames[68] == WHvX64RegisterPat);
|
---|
714 | pCtx->msrPAT = aValues[68].Reg64;
|
---|
715 | /// @todo WHvX64RegisterSysenterCs
|
---|
716 | /// @todo WHvX64RegisterSysenterEip
|
---|
717 | /// @todo WHvX64RegisterSysenterEsp
|
---|
718 | Assert(aenmNames[72] == WHvX64RegisterStar);
|
---|
719 | pCtx->msrSTAR = aValues[72].Reg64;
|
---|
720 | Assert(aenmNames[73] == WHvX64RegisterLstar);
|
---|
721 | pCtx->msrLSTAR = aValues[73].Reg64;
|
---|
722 | Assert(aenmNames[74] == WHvX64RegisterCstar);
|
---|
723 | pCtx->msrCSTAR = aValues[74].Reg64;
|
---|
724 | Assert(aenmNames[75] == WHvX64RegisterSfmask);
|
---|
725 | pCtx->msrSFMASK = aValues[75].Reg64;
|
---|
726 |
|
---|
727 | /// @todo WHvRegisterPendingInterruption
|
---|
728 | Assert(aenmNames[76] == WHvRegisterPendingInterruption);
|
---|
729 | WHV_X64_PENDING_INTERRUPTION_REGISTER const * pPendingInt = (WHV_X64_PENDING_INTERRUPTION_REGISTER const *)&aValues[76];
|
---|
730 | if (pPendingInt->InterruptionPending)
|
---|
731 | {
|
---|
732 | Log7(("PendingInterruption: type=%u vector=%#x errcd=%RTbool/%#x instr-len=%u nested=%u\n",
|
---|
733 | pPendingInt->InterruptionType, pPendingInt->InterruptionVector, pPendingInt->DeliverErrorCode,
|
---|
734 | pPendingInt->ErrorCode, pPendingInt->InstructionLength, pPendingInt->NestedEvent));
|
---|
735 | AssertMsg((pPendingInt->AsUINT64 & UINT64_C(0xfc00)) == 0, ("%#RX64\n", pPendingInt->AsUINT64));
|
---|
736 | }
|
---|
737 |
|
---|
738 | /// @todo WHvRegisterInterruptState
|
---|
739 | /// @todo WHvRegisterPendingEvent0
|
---|
740 | /// @todo WHvRegisterPendingEvent1
|
---|
741 |
|
---|
742 |
|
---|
743 | if (fMaybeChangedMode)
|
---|
744 | {
|
---|
745 | int rc = PGMChangeMode(pVCpu, pCtx->cr0, pCtx->cr4, pCtx->msrEFER);
|
---|
746 | AssertRC(rc);
|
---|
747 | }
|
---|
748 | if (fFlushTlb)
|
---|
749 | {
|
---|
750 | int rc = PGMFlushTLB(pVCpu, pCtx->cr3, fFlushGlobalTlb);
|
---|
751 | AssertRC(rc);
|
---|
752 | }
|
---|
753 |
|
---|
754 | return VINF_SUCCESS;
|
---|
755 | }
|
---|
756 |
|
---|
757 | AssertLogRelMsgFailed(("WHvGetVirtualProcessorRegisters(%p, %u,,%u,) -> %Rhrc (Last=%#x/%u)\n",
|
---|
758 | pVM->nem.s.hPartition, pVCpu->idCpu, cRegs,
|
---|
759 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
760 | return VERR_INTERNAL_ERROR;
|
---|
761 | #endif /* !NEM_WIN_USE_HYPERCALLS_FOR_REGISTERS */
|
---|
762 | }
|
---|
763 |
|
---|
764 |
|
---|
765 | #ifdef LOG_ENABLED
|
---|
766 | /**
|
---|
767 | * Get the virtual processor running status.
|
---|
768 | */
|
---|
769 | DECLINLINE(VID_PROCESSOR_STATUS) nemHCWinCpuGetRunningStatus(PVMCPU pVCpu)
|
---|
770 | {
|
---|
771 | # ifdef IN_RING0
|
---|
772 | NOREF(pVCpu);
|
---|
773 | return VidProcessorStatusUndefined;
|
---|
774 | # else
|
---|
775 | RTERRVARS Saved;
|
---|
776 | RTErrVarsSave(&Saved);
|
---|
777 |
|
---|
778 | /*
|
---|
779 | * This API is disabled in release builds, it seems. On build 17101 it requires
|
---|
780 | * the following patch to be enabled (windbg): eb vid+12180 0f 84 98 00 00 00
|
---|
781 | */
|
---|
782 | VID_PROCESSOR_STATUS enmCpuStatus = VidProcessorStatusUndefined;
|
---|
783 | NTSTATUS rcNt = g_pfnVidGetVirtualProcessorRunningStatus(pVCpu->pVMR3->nem.s.hPartitionDevice, pVCpu->idCpu, &enmCpuStatus);
|
---|
784 | AssertRC(rcNt);
|
---|
785 |
|
---|
786 | RTErrVarsRestore(&Saved);
|
---|
787 | return enmCpuStatus;
|
---|
788 | # endif
|
---|
789 | }
|
---|
790 | #endif
|
---|
791 |
|
---|
792 |
|
---|
793 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
794 |
|
---|
795 | # ifdef IN_RING3 /* hopefully not needed in ring-0, as we'd need KTHREADs and KeAlertThread. */
|
---|
796 | /**
|
---|
797 | * Our own WHvCancelRunVirtualProcessor that can later be moved to ring-0.
|
---|
798 | *
|
---|
799 | * This is an experiment only.
|
---|
800 | *
|
---|
801 | * @returns VBox status code.
|
---|
802 | * @param pVM The cross context VM structure.
|
---|
803 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
804 | * calling EMT.
|
---|
805 | */
|
---|
806 | NEM_TMPL_STATIC int nemHCWinCancelRunVirtualProcessor(PVM pVM, PVMCPU pVCpu)
|
---|
807 | {
|
---|
808 | /*
|
---|
809 | * Work the state.
|
---|
810 | *
|
---|
811 | * From the looks of things, we should let the EMT call VidStopVirtualProcessor.
|
---|
812 | * So, we just need to modify the state and kick the EMT if it's waiting on
|
---|
813 | * messages. For the latter we use QueueUserAPC / KeAlterThread.
|
---|
814 | */
|
---|
815 | for (;;)
|
---|
816 | {
|
---|
817 | VMCPUSTATE enmState = VMCPU_GET_STATE(pVCpu);
|
---|
818 | switch (enmState)
|
---|
819 | {
|
---|
820 | case VMCPUSTATE_STARTED_EXEC_NEM:
|
---|
821 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED, VMCPUSTATE_STARTED_EXEC_NEM))
|
---|
822 | {
|
---|
823 | Log8(("nemHCWinCancelRunVirtualProcessor: Switched %u to canceled state\n", pVCpu->idCpu));
|
---|
824 | return VINF_SUCCESS;
|
---|
825 | }
|
---|
826 | break;
|
---|
827 |
|
---|
828 | case VMCPUSTATE_STARTED_EXEC_NEM_WAIT:
|
---|
829 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED, VMCPUSTATE_STARTED_EXEC_NEM_WAIT))
|
---|
830 | {
|
---|
831 | # ifdef IN_RING0
|
---|
832 | NTSTATUS rcNt = KeAlertThread(??);
|
---|
833 | # else
|
---|
834 | NTSTATUS rcNt = NtAlertThread(pVCpu->nem.s.hNativeThreadHandle);
|
---|
835 | # endif
|
---|
836 | Log8(("nemHCWinCancelRunVirtualProcessor: Alerted %u: %#x\n", pVCpu->idCpu, rcNt));
|
---|
837 | Assert(rcNt == STATUS_SUCCESS);
|
---|
838 | if (NT_SUCCESS(rcNt))
|
---|
839 | return VINF_SUCCESS;
|
---|
840 | AssertLogRelMsgFailedReturn(("NtAlertThread failed: %#x\n", rcNt), RTErrConvertFromNtStatus(rcNt));
|
---|
841 | }
|
---|
842 | break;
|
---|
843 |
|
---|
844 | default:
|
---|
845 | return VINF_SUCCESS;
|
---|
846 | }
|
---|
847 |
|
---|
848 | ASMNopPause();
|
---|
849 | RT_NOREF(pVM);
|
---|
850 | }
|
---|
851 | }
|
---|
852 | # endif /* IN_RING3 */
|
---|
853 |
|
---|
854 |
|
---|
855 | /**
|
---|
856 | * Fills in WHV_VP_EXIT_CONTEXT from HV_X64_INTERCEPT_MESSAGE_HEADER.
|
---|
857 | */
|
---|
858 | DECLINLINE(void) nemHCWinConvertX64MsgHdrToVpExitCtx(HV_X64_INTERCEPT_MESSAGE_HEADER const *pHdr, WHV_VP_EXIT_CONTEXT *pCtx)
|
---|
859 | {
|
---|
860 | pCtx->ExecutionState.AsUINT16 = pHdr->ExecutionState.AsUINT16;
|
---|
861 | pCtx->InstructionLength = pHdr->InstructionLength;
|
---|
862 | pCtx->Cs.Base = pHdr->CsSegment.Base;
|
---|
863 | pCtx->Cs.Limit = pHdr->CsSegment.Limit;
|
---|
864 | pCtx->Cs.Selector = pHdr->CsSegment.Selector;
|
---|
865 | pCtx->Cs.Attributes = pHdr->CsSegment.Attributes;
|
---|
866 | pCtx->Rip = pHdr->Rip;
|
---|
867 | pCtx->Rflags = pHdr->Rflags;
|
---|
868 | }
|
---|
869 |
|
---|
870 |
|
---|
871 | /**
|
---|
872 | * Convert hyper-V exit message to the WinHvPlatform structures.
|
---|
873 | *
|
---|
874 | * @returns VBox status code
|
---|
875 | * @param pMsgHdr The message to convert.
|
---|
876 | * @param pExitCtx The output structure. Assumes zeroed.
|
---|
877 | */
|
---|
878 | NEM_TMPL_STATIC int nemHCWinRunVirtualProcessorConvertPending(HV_MESSAGE_HEADER const *pMsgHdr, WHV_RUN_VP_EXIT_CONTEXT *pExitCtx)
|
---|
879 | {
|
---|
880 | switch (pMsgHdr->MessageType)
|
---|
881 | {
|
---|
882 | case HvMessageTypeUnmappedGpa:
|
---|
883 | case HvMessageTypeGpaIntercept:
|
---|
884 | {
|
---|
885 | PCHV_X64_MEMORY_INTERCEPT_MESSAGE pMemMsg = (PCHV_X64_MEMORY_INTERCEPT_MESSAGE)(pMsgHdr + 1);
|
---|
886 | Assert(pMsgHdr->PayloadSize == RT_UOFFSETOF(HV_X64_MEMORY_INTERCEPT_MESSAGE, DsSegment));
|
---|
887 |
|
---|
888 | pExitCtx->ExitReason = WHvRunVpExitReasonMemoryAccess;
|
---|
889 | nemHCWinConvertX64MsgHdrToVpExitCtx(&pMemMsg->Header, &pExitCtx->MemoryAccess.VpContext);
|
---|
890 | pExitCtx->MemoryAccess.InstructionByteCount = pMemMsg->InstructionByteCount;
|
---|
891 | ((uint64_t *)pExitCtx->MemoryAccess.InstructionBytes)[0] = ((uint64_t const *)pMemMsg->InstructionBytes)[0];
|
---|
892 | ((uint64_t *)pExitCtx->MemoryAccess.InstructionBytes)[1] = ((uint64_t const *)pMemMsg->InstructionBytes)[1];
|
---|
893 |
|
---|
894 | pExitCtx->MemoryAccess.AccessInfo.AccessType = pMemMsg->Header.InterceptAccessType;
|
---|
895 | pExitCtx->MemoryAccess.AccessInfo.GpaUnmapped = pMsgHdr->MessageType == HvMessageTypeUnmappedGpa;
|
---|
896 | pExitCtx->MemoryAccess.AccessInfo.GvaValid = pMemMsg->MemoryAccessInfo.GvaValid;
|
---|
897 | pExitCtx->MemoryAccess.AccessInfo.Reserved = pMemMsg->MemoryAccessInfo.Reserved;
|
---|
898 | pExitCtx->MemoryAccess.Gpa = pMemMsg->GuestPhysicalAddress;
|
---|
899 | pExitCtx->MemoryAccess.Gva = pMemMsg->GuestVirtualAddress;
|
---|
900 | return VINF_SUCCESS;
|
---|
901 | }
|
---|
902 |
|
---|
903 | case HvMessageTypeX64IoPortIntercept:
|
---|
904 | {
|
---|
905 | PCHV_X64_IO_PORT_INTERCEPT_MESSAGE pPioMsg= (PCHV_X64_IO_PORT_INTERCEPT_MESSAGE)(pMsgHdr + 1);
|
---|
906 | Assert(pMsgHdr->PayloadSize == sizeof(*pPioMsg));
|
---|
907 |
|
---|
908 | pExitCtx->ExitReason = WHvRunVpExitReasonX64IoPortAccess;
|
---|
909 | nemHCWinConvertX64MsgHdrToVpExitCtx(&pPioMsg->Header, &pExitCtx->IoPortAccess.VpContext);
|
---|
910 | pExitCtx->IoPortAccess.InstructionByteCount = pPioMsg->InstructionByteCount;
|
---|
911 | ((uint64_t *)pExitCtx->IoPortAccess.InstructionBytes)[0] = ((uint64_t const *)pPioMsg->InstructionBytes)[0];
|
---|
912 | ((uint64_t *)pExitCtx->IoPortAccess.InstructionBytes)[1] = ((uint64_t const *)pPioMsg->InstructionBytes)[1];
|
---|
913 |
|
---|
914 | pExitCtx->IoPortAccess.AccessInfo.IsWrite = pPioMsg->Header.InterceptAccessType == HV_INTERCEPT_ACCESS_WRITE;
|
---|
915 | pExitCtx->IoPortAccess.AccessInfo.AccessSize = pPioMsg->AccessInfo.AccessSize;
|
---|
916 | pExitCtx->IoPortAccess.AccessInfo.StringOp = pPioMsg->AccessInfo.StringOp;
|
---|
917 | pExitCtx->IoPortAccess.AccessInfo.RepPrefix = pPioMsg->AccessInfo.RepPrefix;
|
---|
918 | pExitCtx->IoPortAccess.AccessInfo.Reserved = pPioMsg->AccessInfo.Reserved;
|
---|
919 | pExitCtx->IoPortAccess.PortNumber = pPioMsg->PortNumber;
|
---|
920 | pExitCtx->IoPortAccess.Rax = pPioMsg->Rax;
|
---|
921 | pExitCtx->IoPortAccess.Rcx = pPioMsg->Rcx;
|
---|
922 | pExitCtx->IoPortAccess.Rsi = pPioMsg->Rsi;
|
---|
923 | pExitCtx->IoPortAccess.Rdi = pPioMsg->Rdi;
|
---|
924 | pExitCtx->IoPortAccess.Ds.Base = pPioMsg->DsSegment.Base;
|
---|
925 | pExitCtx->IoPortAccess.Ds.Limit = pPioMsg->DsSegment.Limit;
|
---|
926 | pExitCtx->IoPortAccess.Ds.Selector = pPioMsg->DsSegment.Selector;
|
---|
927 | pExitCtx->IoPortAccess.Ds.Attributes = pPioMsg->DsSegment.Attributes;
|
---|
928 | pExitCtx->IoPortAccess.Es.Base = pPioMsg->EsSegment.Base;
|
---|
929 | pExitCtx->IoPortAccess.Es.Limit = pPioMsg->EsSegment.Limit;
|
---|
930 | pExitCtx->IoPortAccess.Es.Selector = pPioMsg->EsSegment.Selector;
|
---|
931 | pExitCtx->IoPortAccess.Es.Attributes = pPioMsg->EsSegment.Attributes;
|
---|
932 | return VINF_SUCCESS;
|
---|
933 | }
|
---|
934 |
|
---|
935 | case HvMessageTypeX64Halt:
|
---|
936 | {
|
---|
937 | PCHV_X64_HALT_MESSAGE pHaltMsg = (PCHV_X64_HALT_MESSAGE)(pMsgHdr + 1);
|
---|
938 | AssertMsg(pHaltMsg->u64Reserved == 0, ("HALT reserved: %#RX64\n", pHaltMsg->u64Reserved));
|
---|
939 | pExitCtx->ExitReason = WHvRunVpExitReasonX64Halt;
|
---|
940 | return VINF_SUCCESS;
|
---|
941 | }
|
---|
942 |
|
---|
943 | case HvMessageTypeX64InterruptWindow:
|
---|
944 | AssertLogRelMsgFailedReturn(("Message type %#x not implemented!\n", pMsgHdr->MessageType), VERR_INTERNAL_ERROR_2);
|
---|
945 |
|
---|
946 | case HvMessageTypeInvalidVpRegisterValue:
|
---|
947 | case HvMessageTypeUnrecoverableException:
|
---|
948 | case HvMessageTypeUnsupportedFeature:
|
---|
949 | case HvMessageTypeTlbPageSizeMismatch:
|
---|
950 | AssertLogRelMsgFailedReturn(("Message type %#x not implemented!\n", pMsgHdr->MessageType), VERR_INTERNAL_ERROR_2);
|
---|
951 |
|
---|
952 | case HvMessageTypeX64MsrIntercept:
|
---|
953 | case HvMessageTypeX64CpuidIntercept:
|
---|
954 | case HvMessageTypeX64ExceptionIntercept:
|
---|
955 | case HvMessageTypeX64ApicEoi:
|
---|
956 | case HvMessageTypeX64LegacyFpError:
|
---|
957 | case HvMessageTypeX64RegisterIntercept:
|
---|
958 | case HvMessageTypeApicEoi:
|
---|
959 | case HvMessageTypeFerrAsserted:
|
---|
960 | case HvMessageTypeEventLogBufferComplete:
|
---|
961 | case HvMessageTimerExpired:
|
---|
962 | AssertLogRelMsgFailedReturn(("Unexpected message type #x!\n", pMsgHdr->MessageType), VERR_INTERNAL_ERROR_2);
|
---|
963 |
|
---|
964 | default:
|
---|
965 | AssertLogRelMsgFailedReturn(("Unknown message type #x!\n", pMsgHdr->MessageType), VERR_INTERNAL_ERROR_2);
|
---|
966 | }
|
---|
967 | }
|
---|
968 |
|
---|
969 |
|
---|
970 | /**
|
---|
971 | * Our own WHvRunVirtualProcessor that can later be moved to ring-0.
|
---|
972 | *
|
---|
973 | * This is an experiment only.
|
---|
974 | *
|
---|
975 | * @returns VBox status code.
|
---|
976 | * @param pVM The cross context VM structure.
|
---|
977 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
978 | * calling EMT.
|
---|
979 | * @param pExitCtx Where to return exit information.
|
---|
980 | * @param cbExitCtx Size of the exit information area.
|
---|
981 | */
|
---|
982 | NEM_TMPL_STATIC int nemHCWinRunVirtualProcessor(PVM pVM, PVMCPU pVCpu, WHV_RUN_VP_EXIT_CONTEXT *pExitCtx, size_t cbExitCtx)
|
---|
983 | {
|
---|
984 | RT_BZERO(pExitCtx, cbExitCtx);
|
---|
985 |
|
---|
986 | /*
|
---|
987 | * Tell the CPU to execute stuff if we haven't got a pending message.
|
---|
988 | */
|
---|
989 | VID_MESSAGE_MAPPING_HEADER volatile *pMappingHeader = (VID_MESSAGE_MAPPING_HEADER volatile *)pVCpu->nem.s.pvMsgSlotMapping;
|
---|
990 | uint32_t fHandleAndGetFlags;
|
---|
991 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED))
|
---|
992 | {
|
---|
993 | uint8_t const bMsgState = pVCpu->nem.s.bMsgState;
|
---|
994 | if (bMsgState == NEM_WIN_MSG_STATE_PENDING_MSG)
|
---|
995 | {
|
---|
996 | Assert(pMappingHeader->enmVidMsgType == VidMessageHypervisorMessage);
|
---|
997 | fHandleAndGetFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE | VID_MSHAGN_F_HANDLE_MESSAGE;
|
---|
998 | Log8(("nemHCWinRunVirtualProcessor: #1: msg pending, no need to start CPU (cpu state %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
999 | }
|
---|
1000 | else if (bMsgState != NEM_WIN_MSG_STATE_STARTED)
|
---|
1001 | {
|
---|
1002 | if (bMsgState == NEM_WIN_MSG_STATE_PENDING_STOP_AND_MSG)
|
---|
1003 | {
|
---|
1004 | Log8(("nemHCWinRunVirtualProcessor: #0: pending stop+message (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
1005 | /* ACK the pending message and get the stop message. */
|
---|
1006 | BOOL fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
|
---|
1007 | VID_MSHAGN_F_HANDLE_MESSAGE | VID_MSHAGN_F_GET_NEXT_MESSAGE, 5000);
|
---|
1008 | AssertLogRelMsg(fWait, ("dwErr=%u (%#x) rcNt=%#x\n", RTNtLastErrorValue(), RTNtLastErrorValue(), RTNtLastStatusValue()));
|
---|
1009 |
|
---|
1010 | /* ACK the stop message. */
|
---|
1011 | fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
|
---|
1012 | VID_MSHAGN_F_HANDLE_MESSAGE, 5000);
|
---|
1013 | AssertLogRelMsg(fWait, ("dwErr=%u (%#x) rcNt=%#x\n", RTNtLastErrorValue(), RTNtLastErrorValue(), RTNtLastStatusValue()));
|
---|
1014 |
|
---|
1015 | pVCpu->nem.s.bMsgState = NEM_WIN_MSG_STATE_STOPPED;
|
---|
1016 | }
|
---|
1017 |
|
---|
1018 | Log8(("nemHCWinRunVirtualProcessor: #1: starting CPU (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
1019 | if (g_pfnVidStartVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu))
|
---|
1020 | pVCpu->nem.s.bMsgState = NEM_WIN_MSG_STATE_STARTED;
|
---|
1021 | else
|
---|
1022 | {
|
---|
1023 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM);
|
---|
1024 | AssertLogRelMsgFailedReturn(("VidStartVirtualProcessor failed for CPU #%u: rcNt=%#x dwErr=%u\n",
|
---|
1025 | pVCpu->idCpu, RTNtLastStatusValue(), RTNtLastErrorValue()),
|
---|
1026 | VERR_INTERNAL_ERROR_3);
|
---|
1027 | }
|
---|
1028 | fHandleAndGetFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
|
---|
1029 | }
|
---|
1030 | else
|
---|
1031 | {
|
---|
1032 | /* This shouldn't happen. */
|
---|
1033 | fHandleAndGetFlags = VID_MSHAGN_F_GET_NEXT_MESSAGE;
|
---|
1034 | Log8(("nemHCWinRunVirtualProcessor: #1: NO MSG PENDING! No need to start CPU (cpu state %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
1035 | }
|
---|
1036 | }
|
---|
1037 | else
|
---|
1038 | {
|
---|
1039 | Log8(("nemHCWinRunVirtualProcessor: #1: state=%u -> canceled (cpu status %u)\n",
|
---|
1040 | VMCPU_GET_STATE(pVCpu), nemHCWinCpuGetRunningStatus(pVCpu)));
|
---|
1041 | pExitCtx->ExitReason = WHvRunVpExitReasonCanceled;
|
---|
1042 | return VINF_SUCCESS;
|
---|
1043 | }
|
---|
1044 |
|
---|
1045 | /*
|
---|
1046 | * Wait for it to stop and give us a reason to work with.
|
---|
1047 | */
|
---|
1048 | uint32_t cMillies = 5000; // Starting low so we can experiment without getting stuck.
|
---|
1049 | for (;;)
|
---|
1050 | {
|
---|
1051 | if (VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM_WAIT, VMCPUSTATE_STARTED_EXEC_NEM))
|
---|
1052 | {
|
---|
1053 | Log8(("nemHCWinRunVirtualProcessor: #2: Waiting %#x (cpu status %u)...\n",
|
---|
1054 | fHandleAndGetFlags, nemHCWinCpuGetRunningStatus(pVCpu)));
|
---|
1055 | BOOL fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
|
---|
1056 | fHandleAndGetFlags, cMillies);
|
---|
1057 | if (fWait)
|
---|
1058 | {
|
---|
1059 | /* Not sure yet, but we have to check whether there is anything pending
|
---|
1060 | and retry if there isn't. */
|
---|
1061 | VID_MESSAGE_TYPE const enmVidMsgType = pMappingHeader->enmVidMsgType;
|
---|
1062 | if (enmVidMsgType == VidMessageHypervisorMessage)
|
---|
1063 | {
|
---|
1064 | if (!VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_WAIT))
|
---|
1065 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
|
---|
1066 | Log8(("nemHCWinRunVirtualProcessor: #3: wait succeeded: %#x / %#x (cpu status %u)\n",
|
---|
1067 | enmVidMsgType, ((HV_MESSAGE_HEADER const *)(pMappingHeader + 1))->MessageType,
|
---|
1068 | nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
1069 | pVCpu->nem.s.bMsgState = NEM_WIN_MSG_STATE_PENDING_MSG;
|
---|
1070 | return nemHCWinRunVirtualProcessorConvertPending((HV_MESSAGE_HEADER const *)(pMappingHeader + 1), pExitCtx);
|
---|
1071 | }
|
---|
1072 |
|
---|
1073 | /* This shouldn't happen, and I think its wrong. */
|
---|
1074 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
|
---|
1075 | #ifdef DEBUG_bird
|
---|
1076 | __debugbreak();
|
---|
1077 | #endif
|
---|
1078 | Log8(("nemHCWinRunVirtualProcessor: #3: wait succeeded, but nothing pending: %#x / %#x (cpu status %u)\n",
|
---|
1079 | enmVidMsgType, ((HV_MESSAGE_HEADER const *)(pMappingHeader + 1))->MessageType, nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
1080 | pVCpu->nem.s.bMsgState = NEM_WIN_MSG_STATE_STARTED;
|
---|
1081 | AssertLogRelMsgReturnStmt(enmVidMsgType == VidMessageStopRequestComplete,
|
---|
1082 | ("enmVidMsgType=%#x\n", enmVidMsgType),
|
---|
1083 | g_pfnVidStopVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu),
|
---|
1084 | VERR_INTERNAL_ERROR_3);
|
---|
1085 | fHandleAndGetFlags &= ~VID_MSHAGN_F_HANDLE_MESSAGE;
|
---|
1086 | }
|
---|
1087 | else
|
---|
1088 | {
|
---|
1089 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED_EXEC_NEM_WAIT);
|
---|
1090 |
|
---|
1091 | /* Note! VID.SYS merges STATUS_ALERTED and STATUS_USER_APC into STATUS_TIMEOUT. */
|
---|
1092 | DWORD const dwErr = RTNtLastErrorValue();
|
---|
1093 | AssertLogRelMsgReturnStmt( dwErr == STATUS_TIMEOUT
|
---|
1094 | || dwErr == STATUS_ALERTED || dwErr == STATUS_USER_APC, /* just in case */
|
---|
1095 | ("dwErr=%u (%#x) (cpu status %u)\n", dwErr, dwErr, nemHCWinCpuGetRunningStatus(pVCpu)),
|
---|
1096 | g_pfnVidStopVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu),
|
---|
1097 | VERR_INTERNAL_ERROR_3);
|
---|
1098 | Log8(("nemHCWinRunVirtualProcessor: #3: wait timed out (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
1099 | pVCpu->nem.s.bMsgState = NEM_WIN_MSG_STATE_STARTED;
|
---|
1100 | fHandleAndGetFlags &= ~VID_MSHAGN_F_HANDLE_MESSAGE;
|
---|
1101 | }
|
---|
1102 | }
|
---|
1103 | else
|
---|
1104 | {
|
---|
1105 | /*
|
---|
1106 | * State changed and we need to return.
|
---|
1107 | *
|
---|
1108 | * We must ensure that the processor is not running while we
|
---|
1109 | * return, and that can be a bit complicated.
|
---|
1110 | */
|
---|
1111 | Log8(("nemHCWinRunVirtualProcessor: #4: state changed to %u (cpu status %u)\n",
|
---|
1112 | VMCPU_GET_STATE(pVCpu), nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
1113 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM_CANCELED);
|
---|
1114 |
|
---|
1115 | /* If we haven't marked the pervious message as handled, simply return
|
---|
1116 | without doing anything special. */
|
---|
1117 | if (fHandleAndGetFlags & VID_MSHAGN_F_HANDLE_MESSAGE)
|
---|
1118 | {
|
---|
1119 | Log8(("nemHCWinRunVirtualProcessor: #5: Didn't resume previous message.\n"));
|
---|
1120 | pVCpu->nem.s.bMsgState = NEM_WIN_MSG_STATE_PENDING_MSG;
|
---|
1121 | pExitCtx->ExitReason = WHvRunVpExitReasonCanceled;
|
---|
1122 | return VINF_SUCCESS;
|
---|
1123 | }
|
---|
1124 |
|
---|
1125 | /* The processor is running, so try stop it. */
|
---|
1126 | BOOL fStop = g_pfnVidStopVirtualProcessor(pVM->nem.s.hPartitionDevice, pVCpu->idCpu);
|
---|
1127 | if (fStop)
|
---|
1128 | {
|
---|
1129 | Log8(("nemHCWinRunVirtualProcessor: #5: Stopping CPU succeeded (cpu status %u)\n", nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
1130 | pVCpu->nem.s.bMsgState = NEM_WIN_MSG_STATE_STOPPED;
|
---|
1131 | pExitCtx->ExitReason = WHvRunVpExitReasonCanceled;
|
---|
1132 | return VINF_SUCCESS;
|
---|
1133 | }
|
---|
1134 |
|
---|
1135 | /* Dang, the CPU stopped by itself with a message pending. */
|
---|
1136 | DWORD dwErr = RTNtLastErrorValue();
|
---|
1137 | Log8(("nemHCWinRunVirtualProcessor: #5: Stopping CPU failed (%u/%#x) - cpu status %u\n",
|
---|
1138 | dwErr, dwErr, nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
1139 | pExitCtx->ExitReason = WHvRunVpExitReasonCanceled;
|
---|
1140 | AssertLogRelMsgReturn(dwErr == ERROR_VID_STOP_PENDING, ("dwErr=%#u\n", dwErr), VERR_INTERNAL_ERROR_3);
|
---|
1141 |
|
---|
1142 | /* Get the pending message. */
|
---|
1143 | BOOL fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
|
---|
1144 | VID_MSHAGN_F_GET_NEXT_MESSAGE, 5000);
|
---|
1145 | AssertLogRelMsgReturn(fWait, ("error=%#u\n", RTNtLastErrorValue()), VERR_INTERNAL_ERROR_3);
|
---|
1146 |
|
---|
1147 | VID_MESSAGE_TYPE const enmVidMsgType = pMappingHeader->enmVidMsgType;
|
---|
1148 | if (enmVidMsgType == VidMessageHypervisorMessage)
|
---|
1149 | {
|
---|
1150 | Log8(("nemHCWinRunVirtualProcessor: #6: wait succeeded: %#x / %#x (cpu status %u)\n", enmVidMsgType,
|
---|
1151 | ((HV_MESSAGE_HEADER const *)(pMappingHeader + 1))->MessageType, nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
1152 | pVCpu->nem.s.bMsgState = NEM_WIN_MSG_STATE_PENDING_STOP_AND_MSG;
|
---|
1153 | return nemHCWinRunVirtualProcessorConvertPending((HV_MESSAGE_HEADER const *)(pMappingHeader + 1), pExitCtx);
|
---|
1154 | }
|
---|
1155 |
|
---|
1156 | /* ACK the stop message, if that's what it is. Don't think we'll ever get here. */
|
---|
1157 | Log8(("nemHCWinRunVirtualProcessor: #6b: wait succeeded: %#x / %#x (cpu status %u)\n", enmVidMsgType,
|
---|
1158 | ((HV_MESSAGE_HEADER const *)(pMappingHeader + 1))->MessageType, nemHCWinCpuGetRunningStatus(pVCpu) ));
|
---|
1159 | AssertLogRelMsgReturn(enmVidMsgType == VidMessageStopRequestComplete, ("enmVidMsgType=%#x\n", enmVidMsgType),
|
---|
1160 | VERR_INTERNAL_ERROR_3);
|
---|
1161 | fWait = g_pfnVidMessageSlotHandleAndGetNext(pVM->nem.s.hPartitionDevice, pVCpu->idCpu,
|
---|
1162 | VID_MSHAGN_F_HANDLE_MESSAGE, 5000);
|
---|
1163 | AssertLogRelMsgReturn(fWait, ("dwErr=%#u\n", RTNtLastErrorValue()), VERR_INTERNAL_ERROR_3);
|
---|
1164 |
|
---|
1165 | pVCpu->nem.s.bMsgState = NEM_WIN_MSG_STATE_STOPPED;
|
---|
1166 | pExitCtx->ExitReason = WHvRunVpExitReasonCanceled;
|
---|
1167 | return VINF_SUCCESS;
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 | /** @todo check flags and stuff? */
|
---|
1171 | }
|
---|
1172 | }
|
---|
1173 |
|
---|
1174 | #endif /* NEM_WIN_USE_OUR_OWN_RUN_API */
|
---|
1175 |
|
---|
1176 | #ifdef LOG_ENABLED
|
---|
1177 | /**
|
---|
1178 | * Logs the current CPU state.
|
---|
1179 | */
|
---|
1180 | NEM_TMPL_STATIC void nemHCWinLogState(PVM pVM, PVMCPU pVCpu)
|
---|
1181 | {
|
---|
1182 | if (LogIs3Enabled())
|
---|
1183 | {
|
---|
1184 | # ifdef IN_RING3
|
---|
1185 | char szRegs[4096];
|
---|
1186 | DBGFR3RegPrintf(pVM->pUVM, pVCpu->idCpu, &szRegs[0], sizeof(szRegs),
|
---|
1187 | "rax=%016VR{rax} rbx=%016VR{rbx} rcx=%016VR{rcx} rdx=%016VR{rdx}\n"
|
---|
1188 | "rsi=%016VR{rsi} rdi=%016VR{rdi} r8 =%016VR{r8} r9 =%016VR{r9}\n"
|
---|
1189 | "r10=%016VR{r10} r11=%016VR{r11} r12=%016VR{r12} r13=%016VR{r13}\n"
|
---|
1190 | "r14=%016VR{r14} r15=%016VR{r15} %VRF{rflags}\n"
|
---|
1191 | "rip=%016VR{rip} rsp=%016VR{rsp} rbp=%016VR{rbp}\n"
|
---|
1192 | "cs={%04VR{cs} base=%016VR{cs_base} limit=%08VR{cs_lim} flags=%04VR{cs_attr}} cr0=%016VR{cr0}\n"
|
---|
1193 | "ds={%04VR{ds} base=%016VR{ds_base} limit=%08VR{ds_lim} flags=%04VR{ds_attr}} cr2=%016VR{cr2}\n"
|
---|
1194 | "es={%04VR{es} base=%016VR{es_base} limit=%08VR{es_lim} flags=%04VR{es_attr}} cr3=%016VR{cr3}\n"
|
---|
1195 | "fs={%04VR{fs} base=%016VR{fs_base} limit=%08VR{fs_lim} flags=%04VR{fs_attr}} cr4=%016VR{cr4}\n"
|
---|
1196 | "gs={%04VR{gs} base=%016VR{gs_base} limit=%08VR{gs_lim} flags=%04VR{gs_attr}} cr8=%016VR{cr8}\n"
|
---|
1197 | "ss={%04VR{ss} base=%016VR{ss_base} limit=%08VR{ss_lim} flags=%04VR{ss_attr}}\n"
|
---|
1198 | "dr0=%016VR{dr0} dr1=%016VR{dr1} dr2=%016VR{dr2} dr3=%016VR{dr3}\n"
|
---|
1199 | "dr6=%016VR{dr6} dr7=%016VR{dr7}\n"
|
---|
1200 | "gdtr=%016VR{gdtr_base}:%04VR{gdtr_lim} idtr=%016VR{idtr_base}:%04VR{idtr_lim} rflags=%08VR{rflags}\n"
|
---|
1201 | "ldtr={%04VR{ldtr} base=%016VR{ldtr_base} limit=%08VR{ldtr_lim} flags=%08VR{ldtr_attr}}\n"
|
---|
1202 | "tr ={%04VR{tr} base=%016VR{tr_base} limit=%08VR{tr_lim} flags=%08VR{tr_attr}}\n"
|
---|
1203 | " sysenter={cs=%04VR{sysenter_cs} eip=%08VR{sysenter_eip} esp=%08VR{sysenter_esp}}\n"
|
---|
1204 | " efer=%016VR{efer}\n"
|
---|
1205 | " pat=%016VR{pat}\n"
|
---|
1206 | " sf_mask=%016VR{sf_mask}\n"
|
---|
1207 | "krnl_gs_base=%016VR{krnl_gs_base}\n"
|
---|
1208 | " lstar=%016VR{lstar}\n"
|
---|
1209 | " star=%016VR{star} cstar=%016VR{cstar}\n"
|
---|
1210 | "fcw=%04VR{fcw} fsw=%04VR{fsw} ftw=%04VR{ftw} mxcsr=%04VR{mxcsr} mxcsr_mask=%04VR{mxcsr_mask}\n"
|
---|
1211 | );
|
---|
1212 |
|
---|
1213 | char szInstr[256];
|
---|
1214 | DBGFR3DisasInstrEx(pVM->pUVM, pVCpu->idCpu, 0, 0,
|
---|
1215 | DBGF_DISAS_FLAGS_CURRENT_GUEST | DBGF_DISAS_FLAGS_DEFAULT_MODE,
|
---|
1216 | szInstr, sizeof(szInstr), NULL);
|
---|
1217 | Log3(("%s%s\n", szRegs, szInstr));
|
---|
1218 | # else
|
---|
1219 | /** @todo stat logging in ring-0 */
|
---|
1220 | RT_NOREF(pVM, pVCpu);
|
---|
1221 | # endif
|
---|
1222 | }
|
---|
1223 | }
|
---|
1224 | #endif /* LOG_ENABLED */
|
---|
1225 |
|
---|
1226 |
|
---|
1227 | /**
|
---|
1228 | * Advances the guest RIP and clear EFLAGS.RF.
|
---|
1229 | *
|
---|
1230 | * This may clear VMCPU_FF_INHIBIT_INTERRUPTS.
|
---|
1231 | *
|
---|
1232 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1233 | * @param pCtx The CPU context to update.
|
---|
1234 | * @param pExitCtx The exit context.
|
---|
1235 | */
|
---|
1236 | DECLINLINE(void) nemHCWinAdvanceGuestRipAndClearRF(PVMCPU pVCpu, PCPUMCTX pCtx, WHV_VP_EXIT_CONTEXT const *pExitCtx)
|
---|
1237 | {
|
---|
1238 | /* Advance the RIP. */
|
---|
1239 | Assert(pExitCtx->InstructionLength > 0 && pExitCtx->InstructionLength < 16);
|
---|
1240 | pCtx->rip += pExitCtx->InstructionLength;
|
---|
1241 | pCtx->rflags.Bits.u1RF = 0;
|
---|
1242 |
|
---|
1243 | /* Update interrupt inhibition. */
|
---|
1244 | if (!VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1245 | { /* likely */ }
|
---|
1246 | else if (pCtx->rip != EMGetInhibitInterruptsPC(pVCpu))
|
---|
1247 | VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS);
|
---|
1248 | }
|
---|
1249 |
|
---|
1250 |
|
---|
1251 | NEM_TMPL_STATIC VBOXSTRICTRC
|
---|
1252 | nemHCWinHandleHalt(PVM pVM, PVMCPU pVCpu, PCPUMCTX pCtx)
|
---|
1253 | {
|
---|
1254 | NOREF(pVM); NOREF(pVCpu); NOREF(pCtx);
|
---|
1255 | LogFlow(("nemHCWinHandleHalt\n"));
|
---|
1256 | return VINF_EM_HALT;
|
---|
1257 | }
|
---|
1258 |
|
---|
1259 |
|
---|
1260 | NEM_TMPL_STATIC DECLCALLBACK(int)
|
---|
1261 | nemHCWinUnmapOnePageCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, uint8_t *pu2NemState, void *pvUser)
|
---|
1262 | {
|
---|
1263 | RT_NOREF_PV(pvUser);
|
---|
1264 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1265 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
|
---|
1266 | AssertRC(rc);
|
---|
1267 | if (RT_SUCCESS(rc))
|
---|
1268 | #else
|
---|
1269 | RT_NOREF_PV(pVCpu);
|
---|
1270 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
|
---|
1271 | if (SUCCEEDED(hrc))
|
---|
1272 | #endif
|
---|
1273 | {
|
---|
1274 | Log5(("NEM GPA unmap all: %RGp (cMappedPages=%u)\n", GCPhys, pVM->nem.s.cMappedPages - 1));
|
---|
1275 | *pu2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1276 | }
|
---|
1277 | else
|
---|
1278 | {
|
---|
1279 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1280 | LogRel(("nemR3WinUnmapOnePageCallback: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
|
---|
1281 | #else
|
---|
1282 | LogRel(("nemR3WinUnmapOnePageCallback: GCPhys=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
|
---|
1283 | GCPhys, g_apszPageStates[*pu2NemState], hrc, hrc, RTNtLastStatusValue(),
|
---|
1284 | RTNtLastErrorValue(), pVM->nem.s.cMappedPages));
|
---|
1285 | #endif
|
---|
1286 | *pu2NemState = NEM_WIN_PAGE_STATE_NOT_SET;
|
---|
1287 | }
|
---|
1288 | if (pVM->nem.s.cMappedPages > 0)
|
---|
1289 | ASMAtomicDecU32(&pVM->nem.s.cMappedPages);
|
---|
1290 | return VINF_SUCCESS;
|
---|
1291 | }
|
---|
1292 |
|
---|
1293 |
|
---|
1294 | /**
|
---|
1295 | * State to pass between nemHCWinHandleMemoryAccess / nemR3WinWHvHandleMemoryAccess
|
---|
1296 | * and nemHCWinHandleMemoryAccessPageCheckerCallback.
|
---|
1297 | */
|
---|
1298 | typedef struct NEMHCWINHMACPCCSTATE
|
---|
1299 | {
|
---|
1300 | /** Input: Write access. */
|
---|
1301 | bool fWriteAccess;
|
---|
1302 | /** Output: Set if we did something. */
|
---|
1303 | bool fDidSomething;
|
---|
1304 | /** Output: Set it we should resume. */
|
---|
1305 | bool fCanResume;
|
---|
1306 | } NEMHCWINHMACPCCSTATE;
|
---|
1307 |
|
---|
1308 | /**
|
---|
1309 | * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE,
|
---|
1310 | * Worker for nemR3WinHandleMemoryAccess; pvUser points to a
|
---|
1311 | * NEMHCWINHMACPCCSTATE structure. }
|
---|
1312 | */
|
---|
1313 | NEM_TMPL_STATIC DECLCALLBACK(int)
|
---|
1314 | nemHCWinHandleMemoryAccessPageCheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys, PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
|
---|
1315 | {
|
---|
1316 | NEMHCWINHMACPCCSTATE *pState = (NEMHCWINHMACPCCSTATE *)pvUser;
|
---|
1317 | pState->fDidSomething = false;
|
---|
1318 | pState->fCanResume = false;
|
---|
1319 |
|
---|
1320 | /* If A20 is disabled, we may need to make another query on the masked
|
---|
1321 | page to get the correct protection information. */
|
---|
1322 | uint8_t u2State = pInfo->u2NemState;
|
---|
1323 | RTGCPHYS GCPhysSrc;
|
---|
1324 | if ( pVM->nem.s.fA20Enabled
|
---|
1325 | || !NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
1326 | GCPhysSrc = GCPhys;
|
---|
1327 | else
|
---|
1328 | {
|
---|
1329 | GCPhysSrc = GCPhys & ~(RTGCPHYS)RT_BIT_32(20);
|
---|
1330 | PGMPHYSNEMPAGEINFO Info2;
|
---|
1331 | int rc = PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhysSrc, pState->fWriteAccess, &Info2, NULL, NULL);
|
---|
1332 | AssertRCReturn(rc, rc);
|
---|
1333 |
|
---|
1334 | *pInfo = Info2;
|
---|
1335 | pInfo->u2NemState = u2State;
|
---|
1336 | }
|
---|
1337 |
|
---|
1338 | /*
|
---|
1339 | * Consolidate current page state with actual page protection and access type.
|
---|
1340 | * We don't really consider downgrades here, as they shouldn't happen.
|
---|
1341 | */
|
---|
1342 | #ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1343 | /** @todo Someone at microsoft please explain:
|
---|
1344 | * I'm not sure WTF was going on, but I ended up in a loop if I remapped a
|
---|
1345 | * readonly page as writable (unmap, then map again). Specifically, this was an
|
---|
1346 | * issue with the big VRAM mapping at 0xe0000000 when booing DSL 4.4.1. So, in
|
---|
1347 | * a hope to work around that we no longer pre-map anything, just unmap stuff
|
---|
1348 | * and do it lazily here. And here we will first unmap, restart, and then remap
|
---|
1349 | * with new protection or backing.
|
---|
1350 | */
|
---|
1351 | #endif
|
---|
1352 | int rc;
|
---|
1353 | switch (u2State)
|
---|
1354 | {
|
---|
1355 | case NEM_WIN_PAGE_STATE_UNMAPPED:
|
---|
1356 | case NEM_WIN_PAGE_STATE_NOT_SET:
|
---|
1357 | if (pInfo->fNemProt == NEM_PAGE_PROT_NONE)
|
---|
1358 | {
|
---|
1359 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1\n", GCPhys));
|
---|
1360 | return VINF_SUCCESS;
|
---|
1361 | }
|
---|
1362 |
|
---|
1363 | /* Don't bother remapping it if it's a write request to a non-writable page. */
|
---|
1364 | if ( pState->fWriteAccess
|
---|
1365 | && !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE))
|
---|
1366 | {
|
---|
1367 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #1w\n", GCPhys));
|
---|
1368 | return VINF_SUCCESS;
|
---|
1369 | }
|
---|
1370 |
|
---|
1371 | /* Map the page. */
|
---|
1372 | rc = nemHCNativeSetPhysPage(pVM,
|
---|
1373 | pVCpu,
|
---|
1374 | GCPhysSrc & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
|
---|
1375 | GCPhys & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK,
|
---|
1376 | pInfo->fNemProt,
|
---|
1377 | &u2State,
|
---|
1378 | true /*fBackingState*/);
|
---|
1379 | pInfo->u2NemState = u2State;
|
---|
1380 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - synced => %s + %Rrc\n",
|
---|
1381 | GCPhys, g_apszPageStates[u2State], rc));
|
---|
1382 | pState->fDidSomething = true;
|
---|
1383 | pState->fCanResume = true;
|
---|
1384 | return rc;
|
---|
1385 |
|
---|
1386 | case NEM_WIN_PAGE_STATE_READABLE:
|
---|
1387 | if ( !(pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
|
---|
1388 | && (pInfo->fNemProt & (NEM_PAGE_PROT_READ | NEM_PAGE_PROT_EXECUTE)))
|
---|
1389 | {
|
---|
1390 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #2\n", GCPhys));
|
---|
1391 | return VINF_SUCCESS;
|
---|
1392 | }
|
---|
1393 |
|
---|
1394 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1395 | /* Upgrade page to writable. */
|
---|
1396 | /** @todo test this*/
|
---|
1397 | if ( (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
|
---|
1398 | && pState->fWriteAccess)
|
---|
1399 | {
|
---|
1400 | rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhys,
|
---|
1401 | HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
|
---|
1402 | | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
1403 | AssertRC(rc);
|
---|
1404 | if (RT_SUCCESS(rc))
|
---|
1405 | {
|
---|
1406 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
1407 | pState->fDidSomething = true;
|
---|
1408 | pState->fCanResume = true;
|
---|
1409 | Log5(("NEM GPA write-upgrade/exit: %RGp (was %s, cMappedPages=%u)\n",
|
---|
1410 | GCPhys, g_apszPageStates[u2State], pVM->nem.s.cMappedPages));
|
---|
1411 | }
|
---|
1412 | }
|
---|
1413 | else
|
---|
1414 | {
|
---|
1415 | /* Need to emulate the acces. */
|
---|
1416 | AssertBreak(pInfo->fNemProt != NEM_PAGE_PROT_NONE); /* There should be no downgrades. */
|
---|
1417 | rc = VINF_SUCCESS;
|
---|
1418 | }
|
---|
1419 | return rc;
|
---|
1420 | #else
|
---|
1421 | break;
|
---|
1422 | #endif
|
---|
1423 |
|
---|
1424 | case NEM_WIN_PAGE_STATE_WRITABLE:
|
---|
1425 | if (pInfo->fNemProt & NEM_PAGE_PROT_WRITE)
|
---|
1426 | {
|
---|
1427 | Log4(("nemHCWinHandleMemoryAccessPageCheckerCallback: %RGp - #3\n", GCPhys));
|
---|
1428 | return VINF_SUCCESS;
|
---|
1429 | }
|
---|
1430 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1431 | AssertFailed(); /* There should be no downgrades. */
|
---|
1432 | #endif
|
---|
1433 | break;
|
---|
1434 |
|
---|
1435 | default:
|
---|
1436 | AssertLogRelMsgFailedReturn(("u2State=%#x\n", u2State), VERR_INTERNAL_ERROR_3);
|
---|
1437 | }
|
---|
1438 |
|
---|
1439 | /*
|
---|
1440 | * Unmap and restart the instruction.
|
---|
1441 | * If this fails, which it does every so often, just unmap everything for now.
|
---|
1442 | */
|
---|
1443 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1444 | rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
|
---|
1445 | AssertRC(rc);
|
---|
1446 | if (RT_SUCCESS(rc))
|
---|
1447 | #else
|
---|
1448 | /** @todo figure out whether we mess up the state or if it's WHv. */
|
---|
1449 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
|
---|
1450 | if (SUCCEEDED(hrc))
|
---|
1451 | #endif
|
---|
1452 | {
|
---|
1453 | pState->fDidSomething = true;
|
---|
1454 | pState->fCanResume = true;
|
---|
1455 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1456 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
1457 | Log5(("NEM GPA unmapped/exit: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[u2State], cMappedPages));
|
---|
1458 | return VINF_SUCCESS;
|
---|
1459 | }
|
---|
1460 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1461 | LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhys, rc));
|
---|
1462 | return rc;
|
---|
1463 | #else
|
---|
1464 | LogRel(("nemHCWinHandleMemoryAccessPageCheckerCallback/unmap: GCPhysDst=%RGp %s hrc=%Rhrc (%#x) Last=%#x/%u (cMappedPages=%u)\n",
|
---|
1465 | GCPhys, g_apszPageStates[u2State], hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue(),
|
---|
1466 | pVM->nem.s.cMappedPages));
|
---|
1467 |
|
---|
1468 | PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinUnmapOnePageCallback, NULL);
|
---|
1469 | Log(("nemHCWinHandleMemoryAccessPageCheckerCallback: Unmapped all (cMappedPages=%u)\n", pVM->nem.s.cMappedPages));
|
---|
1470 |
|
---|
1471 | pState->fDidSomething = true;
|
---|
1472 | pState->fCanResume = true;
|
---|
1473 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1474 | return VINF_SUCCESS;
|
---|
1475 | #endif
|
---|
1476 | }
|
---|
1477 |
|
---|
1478 |
|
---|
1479 | #if 0 /* later */
|
---|
1480 | NEM_TMPL_STATIC nemHCWinRunGC(PVM pVM, PVMCPU pVCpu)
|
---|
1481 | {
|
---|
1482 | #ifdef LOG_ENABLED
|
---|
1483 | if (LogIs3Enabled())
|
---|
1484 | {
|
---|
1485 | Log3(("nemR3NativeRunGC: Entering #%u\n", pVCpu->idCpu));
|
---|
1486 | nemR3WinLogState(pVM, pVCpu);
|
---|
1487 | }
|
---|
1488 | #endif
|
---|
1489 |
|
---|
1490 | /*
|
---|
1491 | * The run loop.
|
---|
1492 | *
|
---|
1493 | * Current approach to state updating to use the sledgehammer and sync
|
---|
1494 | * everything every time. This will be optimized later.
|
---|
1495 | */
|
---|
1496 | const bool fSingleStepping = false; /** @todo get this from somewhere. */
|
---|
1497 | VBOXSTRICTRC rcStrict = VINF_SUCCESS;
|
---|
1498 | for (unsigned iLoop = 0;;iLoop++)
|
---|
1499 | {
|
---|
1500 | /*
|
---|
1501 | * Copy the state.
|
---|
1502 | */
|
---|
1503 | PCPUMCTX pCtx = CPUMQueryGuestCtxPtr(pVCpu);
|
---|
1504 | int rc2 = nemHCWinCopyStateToHyperV(pVM, pVCpu, pCtx);
|
---|
1505 | AssertRCBreakStmt(rc2, rcStrict = rc2);
|
---|
1506 |
|
---|
1507 | /*
|
---|
1508 | * Run a bit.
|
---|
1509 | */
|
---|
1510 | WHV_RUN_VP_EXIT_CONTEXT ExitReason;
|
---|
1511 | RT_ZERO(ExitReason);
|
---|
1512 | if ( !VM_FF_IS_PENDING(pVM, VM_FF_EMT_RENDEZVOUS | VM_FF_TM_VIRTUAL_SYNC)
|
---|
1513 | && !VMCPU_FF_IS_PENDING(pVCpu, VMCPU_FF_HM_TO_R3_MASK))
|
---|
1514 | {
|
---|
1515 | #ifdef NEM_WIN_USE_OUR_OWN_RUN_API
|
---|
1516 | int rc2 = nemR3WinRunVirtualProcessor(pVM, pVCpu, &ExitReason, sizeof(ExitReason));
|
---|
1517 | AssertRCBreakStmt(rc2, rcStrict = rc2);
|
---|
1518 | #else
|
---|
1519 | Log8(("Calling WHvRunVirtualProcessor\n"));
|
---|
1520 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED_EXEC_NEM, VMCPUSTATE_STARTED);
|
---|
1521 | HRESULT hrc = WHvRunVirtualProcessor(pVM->nem.s.hPartition, pVCpu->idCpu, &ExitReason, sizeof(ExitReason));
|
---|
1522 | VMCPU_CMPXCHG_STATE(pVCpu, VMCPUSTATE_STARTED, VMCPUSTATE_STARTED_EXEC_NEM);
|
---|
1523 | AssertLogRelMsgBreakStmt(SUCCEEDED(hrc),
|
---|
1524 | ("WHvRunVirtualProcessor(%p, %u,,) -> %Rhrc (Last=%#x/%u)\n", pVM->nem.s.hPartition, pVCpu->idCpu,
|
---|
1525 | hrc, RTNtLastStatusValue(), RTNtLastErrorValue()),
|
---|
1526 | rcStrict = VERR_INTERNAL_ERROR);
|
---|
1527 | Log2(("WHvRunVirtualProcessor -> %#x; exit code %#x (%d) (cpu status %u)\n",
|
---|
1528 | hrc, ExitReason.ExitReason, ExitReason.ExitReason, nemR3WinCpuGetRunningStatus(pVCpu) ));
|
---|
1529 | #endif
|
---|
1530 | }
|
---|
1531 | else
|
---|
1532 | {
|
---|
1533 | LogFlow(("nemR3NativeRunGC: returning: pending FF (pre exec)\n"));
|
---|
1534 | break;
|
---|
1535 | }
|
---|
1536 |
|
---|
1537 | /*
|
---|
1538 | * Copy back the state.
|
---|
1539 | */
|
---|
1540 | rc2 = nemR3WinCopyStateFromHyperV(pVM, pVCpu, pCtx);
|
---|
1541 | AssertRCBreakStmt(rc2, rcStrict = rc2);
|
---|
1542 |
|
---|
1543 | #ifdef LOG_ENABLED
|
---|
1544 | /*
|
---|
1545 | * Do some logging.
|
---|
1546 | */
|
---|
1547 | if (LogIs2Enabled())
|
---|
1548 | nemR3WinLogExitReason(&ExitReason);
|
---|
1549 | if (LogIs3Enabled())
|
---|
1550 | nemR3WinLogState(pVM, pVCpu);
|
---|
1551 | #endif
|
---|
1552 |
|
---|
1553 | #ifdef VBOX_STRICT
|
---|
1554 | /* Assert that the VpContext field makes sense. */
|
---|
1555 | switch (ExitReason.ExitReason)
|
---|
1556 | {
|
---|
1557 | case WHvRunVpExitReasonMemoryAccess:
|
---|
1558 | case WHvRunVpExitReasonX64IoPortAccess:
|
---|
1559 | case WHvRunVpExitReasonX64MsrAccess:
|
---|
1560 | case WHvRunVpExitReasonX64Cpuid:
|
---|
1561 | case WHvRunVpExitReasonException:
|
---|
1562 | case WHvRunVpExitReasonUnrecoverableException:
|
---|
1563 | Assert( ExitReason.IoPortAccess.VpContext.InstructionLength > 0
|
---|
1564 | || ( ExitReason.ExitReason == WHvRunVpExitReasonMemoryAccess
|
---|
1565 | && ExitReason.MemoryAccess.AccessInfo.AccessType == WHvMemoryAccessExecute));
|
---|
1566 | Assert(ExitReason.IoPortAccess.VpContext.InstructionLength < 16);
|
---|
1567 | Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Cpl == CPUMGetGuestCPL(pVCpu));
|
---|
1568 | Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Cr0Pe == RT_BOOL(pCtx->cr0 & X86_CR0_PE));
|
---|
1569 | Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Cr0Am == RT_BOOL(pCtx->cr0 & X86_CR0_AM));
|
---|
1570 | Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.EferLma == RT_BOOL(pCtx->msrEFER & MSR_K6_EFER_LMA));
|
---|
1571 | Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.DebugActive == RT_BOOL(pCtx->dr[7] & X86_DR7_ENABLED_MASK));
|
---|
1572 | Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Reserved0 == 0);
|
---|
1573 | Assert(ExitReason.IoPortAccess.VpContext.ExecutionState.Reserved1 == 0);
|
---|
1574 | Assert(ExitReason.IoPortAccess.VpContext.Rip == pCtx->rip);
|
---|
1575 | Assert(ExitReason.IoPortAccess.VpContext.Rflags == pCtx->rflags.u);
|
---|
1576 | Assert( ExitReason.IoPortAccess.VpContext.Cs.Base == pCtx->cs.u64Base
|
---|
1577 | && ExitReason.IoPortAccess.VpContext.Cs.Limit == pCtx->cs.u32Limit
|
---|
1578 | && ExitReason.IoPortAccess.VpContext.Cs.Selector == pCtx->cs.Sel);
|
---|
1579 | break;
|
---|
1580 | default: break; /* shut up compiler. */
|
---|
1581 | }
|
---|
1582 | #endif
|
---|
1583 |
|
---|
1584 | /*
|
---|
1585 | * Deal with the exit.
|
---|
1586 | */
|
---|
1587 | switch (ExitReason.ExitReason)
|
---|
1588 | {
|
---|
1589 | /* Frequent exits: */
|
---|
1590 | case WHvRunVpExitReasonCanceled:
|
---|
1591 | case WHvRunVpExitReasonAlerted:
|
---|
1592 | rcStrict = VINF_SUCCESS;
|
---|
1593 | break;
|
---|
1594 |
|
---|
1595 | case WHvRunVpExitReasonX64Halt:
|
---|
1596 | rcStrict = nemR3WinHandleHalt(pVM, pVCpu, pCtx);
|
---|
1597 | break;
|
---|
1598 |
|
---|
1599 | case WHvRunVpExitReasonMemoryAccess:
|
---|
1600 | rcStrict = nemR3WinHandleMemoryAccess(pVM, pVCpu, pCtx, &ExitReason.MemoryAccess);
|
---|
1601 | break;
|
---|
1602 |
|
---|
1603 | case WHvRunVpExitReasonX64IoPortAccess:
|
---|
1604 | rcStrict = nemR3WinHandleIoPortAccess(pVM, pVCpu, pCtx, &ExitReason.IoPortAccess);
|
---|
1605 | break;
|
---|
1606 |
|
---|
1607 | case WHvRunVpExitReasonX64InterruptWindow:
|
---|
1608 | rcStrict = nemR3WinHandleInterruptWindow(pVM, pVCpu, pCtx, &ExitReason);
|
---|
1609 | break;
|
---|
1610 |
|
---|
1611 | case WHvRunVpExitReasonX64MsrAccess: /* needs configuring */
|
---|
1612 | rcStrict = nemR3WinHandleMsrAccess(pVM, pVCpu, pCtx, &ExitReason);
|
---|
1613 | break;
|
---|
1614 |
|
---|
1615 | case WHvRunVpExitReasonX64Cpuid: /* needs configuring */
|
---|
1616 | rcStrict = nemR3WinHandleCpuId(pVM, pVCpu, pCtx, &ExitReason);
|
---|
1617 | break;
|
---|
1618 |
|
---|
1619 | case WHvRunVpExitReasonException: /* needs configuring */
|
---|
1620 | rcStrict = nemR3WinHandleException(pVM, pVCpu, pCtx, &ExitReason);
|
---|
1621 | break;
|
---|
1622 |
|
---|
1623 | /* Unlikely exits: */
|
---|
1624 | case WHvRunVpExitReasonUnsupportedFeature:
|
---|
1625 | rcStrict = nemR3WinHandleUD(pVM, pVCpu, pCtx, &ExitReason);
|
---|
1626 | break;
|
---|
1627 |
|
---|
1628 | case WHvRunVpExitReasonUnrecoverableException:
|
---|
1629 | rcStrict = nemR3WinHandleTripleFault(pVM, pVCpu, pCtx, &ExitReason);
|
---|
1630 | break;
|
---|
1631 |
|
---|
1632 | case WHvRunVpExitReasonInvalidVpRegisterValue:
|
---|
1633 | rcStrict = nemR3WinHandleInvalidState(pVM, pVCpu, pCtx, &ExitReason);
|
---|
1634 | break;
|
---|
1635 |
|
---|
1636 | /* Undesired exits: */
|
---|
1637 | case WHvRunVpExitReasonNone:
|
---|
1638 | default:
|
---|
1639 | AssertLogRelMsgFailed(("Unknown ExitReason: %#x\n", ExitReason.ExitReason));
|
---|
1640 | rcStrict = VERR_INTERNAL_ERROR_3;
|
---|
1641 | break;
|
---|
1642 | }
|
---|
1643 | if (rcStrict != VINF_SUCCESS)
|
---|
1644 | {
|
---|
1645 | LogFlow(("nemR3NativeRunGC: returning: %Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
|
---|
1646 | break;
|
---|
1647 | }
|
---|
1648 |
|
---|
1649 | #ifndef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1650 | /* Hack alert! */
|
---|
1651 | uint32_t const cMappedPages = pVM->nem.s.cMappedPages;
|
---|
1652 | if (cMappedPages < 4000)
|
---|
1653 | { /* likely */ }
|
---|
1654 | else
|
---|
1655 | {
|
---|
1656 | PGMPhysNemEnumPagesByState(pVM, pVCpu, NEM_WIN_PAGE_STATE_READABLE, nemR3WinUnmapOnePageCallback, NULL);
|
---|
1657 | Log(("nemR3NativeRunGC: Unmapped all; cMappedPages=%u -> %u\n", cMappedPages, pVM->nem.s.cMappedPages));
|
---|
1658 | }
|
---|
1659 | #endif
|
---|
1660 |
|
---|
1661 | /* If any FF is pending, return to the EM loops. That's okay for the
|
---|
1662 | current sledgehammer approach. */
|
---|
1663 | if ( VM_FF_IS_PENDING( pVM, !fSingleStepping ? VM_FF_HP_R0_PRE_HM_MASK : VM_FF_HP_R0_PRE_HM_STEP_MASK)
|
---|
1664 | || VMCPU_FF_IS_PENDING(pVCpu, !fSingleStepping ? VMCPU_FF_HP_R0_PRE_HM_MASK : VMCPU_FF_HP_R0_PRE_HM_STEP_MASK) )
|
---|
1665 | {
|
---|
1666 | LogFlow(("nemR3NativeRunGC: returning: pending FF (%#x / %#x)\n", pVM->fGlobalForcedActions, pVCpu->fLocalForcedActions));
|
---|
1667 | break;
|
---|
1668 | }
|
---|
1669 | }
|
---|
1670 |
|
---|
1671 | return rcStrict;
|
---|
1672 | }
|
---|
1673 | #endif /* later */
|
---|
1674 |
|
---|
1675 |
|
---|
1676 | #endif /* IN_RING0 */
|
---|
1677 |
|
---|
1678 |
|
---|
1679 | /**
|
---|
1680 | * @callback_method_impl{FNPGMPHYSNEMCHECKPAGE}
|
---|
1681 | */
|
---|
1682 | NEM_TMPL_STATIC DECLCALLBACK(int) nemHCWinUnsetForA20CheckerCallback(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys,
|
---|
1683 | PPGMPHYSNEMPAGEINFO pInfo, void *pvUser)
|
---|
1684 | {
|
---|
1685 | /* We'll just unmap the memory. */
|
---|
1686 | if (pInfo->u2NemState > NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
1687 | {
|
---|
1688 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1689 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhys);
|
---|
1690 | AssertRC(rc);
|
---|
1691 | if (RT_SUCCESS(rc))
|
---|
1692 | #else
|
---|
1693 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhys, X86_PAGE_SIZE);
|
---|
1694 | if (SUCCEEDED(hrc))
|
---|
1695 | #endif
|
---|
1696 | {
|
---|
1697 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
1698 | Log5(("NEM GPA unmapped/A20: %RGp (was %s, cMappedPages=%u)\n", GCPhys, g_apszPageStates[pInfo->u2NemState], cMappedPages));
|
---|
1699 | pInfo->u2NemState = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1700 | }
|
---|
1701 | else
|
---|
1702 | {
|
---|
1703 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1704 | LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp rc=%Rrc\n", GCPhys, rc));
|
---|
1705 | return rc;
|
---|
1706 | #else
|
---|
1707 | LogRel(("nemHCWinUnsetForA20CheckerCallback/unmap: GCPhys=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
1708 | GCPhys, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
1709 | return VERR_INTERNAL_ERROR_2;
|
---|
1710 | #endif
|
---|
1711 | }
|
---|
1712 | }
|
---|
1713 | RT_NOREF(pVCpu, pvUser);
|
---|
1714 | return VINF_SUCCESS;
|
---|
1715 | }
|
---|
1716 |
|
---|
1717 |
|
---|
1718 | /**
|
---|
1719 | * Unmaps a page from Hyper-V for the purpose of emulating A20 gate behavior.
|
---|
1720 | *
|
---|
1721 | * @returns The PGMPhysNemQueryPageInfo result.
|
---|
1722 | * @param pVM The cross context VM structure.
|
---|
1723 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1724 | * @param GCPhys The page to unmap.
|
---|
1725 | */
|
---|
1726 | NEM_TMPL_STATIC int nemHCWinUnmapPageForA20Gate(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhys)
|
---|
1727 | {
|
---|
1728 | PGMPHYSNEMPAGEINFO Info;
|
---|
1729 | return PGMPhysNemPageInfoChecker(pVM, pVCpu, GCPhys, false /*fMakeWritable*/, &Info,
|
---|
1730 | nemHCWinUnsetForA20CheckerCallback, NULL);
|
---|
1731 | }
|
---|
1732 |
|
---|
1733 |
|
---|
1734 | void nemHCNativeNotifyHandlerPhysicalRegister(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb)
|
---|
1735 | {
|
---|
1736 | Log5(("nemHCNativeNotifyHandlerPhysicalRegister: %RGp LB %RGp enmKind=%d\n", GCPhys, cb, enmKind));
|
---|
1737 | NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb);
|
---|
1738 | }
|
---|
1739 |
|
---|
1740 |
|
---|
1741 | void nemHCNativeNotifyHandlerPhysicalDeregister(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhys, RTGCPHYS cb,
|
---|
1742 | int fRestoreAsRAM, bool fRestoreAsRAM2)
|
---|
1743 | {
|
---|
1744 | Log5(("nemHCNativeNotifyHandlerPhysicalDeregister: %RGp LB %RGp enmKind=%d fRestoreAsRAM=%d fRestoreAsRAM2=%d\n",
|
---|
1745 | GCPhys, cb, enmKind, fRestoreAsRAM, fRestoreAsRAM2));
|
---|
1746 | NOREF(pVM); NOREF(enmKind); NOREF(GCPhys); NOREF(cb); NOREF(fRestoreAsRAM); NOREF(fRestoreAsRAM2);
|
---|
1747 | }
|
---|
1748 |
|
---|
1749 |
|
---|
1750 | void nemHCNativeNotifyHandlerPhysicalModify(PVM pVM, PGMPHYSHANDLERKIND enmKind, RTGCPHYS GCPhysOld,
|
---|
1751 | RTGCPHYS GCPhysNew, RTGCPHYS cb, bool fRestoreAsRAM)
|
---|
1752 | {
|
---|
1753 | Log5(("nemHCNativeNotifyHandlerPhysicalModify: %RGp LB %RGp -> %RGp enmKind=%d fRestoreAsRAM=%d\n",
|
---|
1754 | GCPhysOld, cb, GCPhysNew, enmKind, fRestoreAsRAM));
|
---|
1755 | NOREF(pVM); NOREF(enmKind); NOREF(GCPhysOld); NOREF(GCPhysNew); NOREF(cb); NOREF(fRestoreAsRAM);
|
---|
1756 | }
|
---|
1757 |
|
---|
1758 |
|
---|
1759 | /**
|
---|
1760 | * Worker that maps pages into Hyper-V.
|
---|
1761 | *
|
---|
1762 | * This is used by the PGM physical page notifications as well as the memory
|
---|
1763 | * access VMEXIT handlers.
|
---|
1764 | *
|
---|
1765 | * @returns VBox status code.
|
---|
1766 | * @param pVM The cross context VM structure.
|
---|
1767 | * @param pVCpu The cross context virtual CPU structure of the
|
---|
1768 | * calling EMT.
|
---|
1769 | * @param GCPhysSrc The source page address.
|
---|
1770 | * @param GCPhysDst The hyper-V destination page. This may differ from
|
---|
1771 | * GCPhysSrc when A20 is disabled.
|
---|
1772 | * @param fPageProt NEM_PAGE_PROT_XXX.
|
---|
1773 | * @param pu2State Our page state (input/output).
|
---|
1774 | * @param fBackingChanged Set if the page backing is being changed.
|
---|
1775 | * @thread EMT(pVCpu)
|
---|
1776 | */
|
---|
1777 | NEM_TMPL_STATIC int nemHCNativeSetPhysPage(PVM pVM, PVMCPU pVCpu, RTGCPHYS GCPhysSrc, RTGCPHYS GCPhysDst,
|
---|
1778 | uint32_t fPageProt, uint8_t *pu2State, bool fBackingChanged)
|
---|
1779 | {
|
---|
1780 | #ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1781 | /*
|
---|
1782 | * When using the hypercalls instead of the ring-3 APIs, we don't need to
|
---|
1783 | * unmap memory before modifying it. We still want to track the state though,
|
---|
1784 | * since unmap will fail when called an unmapped page and we don't want to redo
|
---|
1785 | * upgrades/downgrades.
|
---|
1786 | */
|
---|
1787 | uint8_t const u2OldState = *pu2State;
|
---|
1788 | int rc;
|
---|
1789 | if (fPageProt == NEM_PAGE_PROT_NONE)
|
---|
1790 | {
|
---|
1791 | if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
1792 | {
|
---|
1793 | rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
|
---|
1794 | if (RT_SUCCESS(rc))
|
---|
1795 | {
|
---|
1796 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1797 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
1798 | Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
1799 | }
|
---|
1800 | else
|
---|
1801 | AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
1802 | }
|
---|
1803 | else
|
---|
1804 | rc = VINF_SUCCESS;
|
---|
1805 | }
|
---|
1806 | else if (fPageProt & NEM_PAGE_PROT_WRITE)
|
---|
1807 | {
|
---|
1808 | if (u2OldState != NEM_WIN_PAGE_STATE_WRITABLE || fBackingChanged)
|
---|
1809 | {
|
---|
1810 | rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
1811 | HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
|
---|
1812 | | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
1813 | if (RT_SUCCESS(rc))
|
---|
1814 | {
|
---|
1815 | *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
1816 | uint32_t cMappedPages = u2OldState <= NEM_WIN_PAGE_STATE_UNMAPPED
|
---|
1817 | ? ASMAtomicIncU32(&pVM->nem.s.cMappedPages) : pVM->nem.s.cMappedPages;
|
---|
1818 | Log5(("NEM GPA writable/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
1819 | NOREF(cMappedPages);
|
---|
1820 | }
|
---|
1821 | else
|
---|
1822 | AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
1823 | }
|
---|
1824 | else
|
---|
1825 | rc = VINF_SUCCESS;
|
---|
1826 | }
|
---|
1827 | else
|
---|
1828 | {
|
---|
1829 | if (u2OldState != NEM_WIN_PAGE_STATE_READABLE || fBackingChanged)
|
---|
1830 | {
|
---|
1831 | rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
1832 | HV_MAP_GPA_READABLE | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
1833 | if (RT_SUCCESS(rc))
|
---|
1834 | {
|
---|
1835 | *pu2State = NEM_WIN_PAGE_STATE_READABLE;
|
---|
1836 | uint32_t cMappedPages = u2OldState <= NEM_WIN_PAGE_STATE_UNMAPPED
|
---|
1837 | ? ASMAtomicIncU32(&pVM->nem.s.cMappedPages) : pVM->nem.s.cMappedPages;
|
---|
1838 | Log5(("NEM GPA read+exec/set: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
1839 | NOREF(cMappedPages);
|
---|
1840 | }
|
---|
1841 | else
|
---|
1842 | AssertLogRelMsgFailed(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
1843 | }
|
---|
1844 | else
|
---|
1845 | rc = VINF_SUCCESS;
|
---|
1846 | }
|
---|
1847 |
|
---|
1848 | return VINF_SUCCESS;
|
---|
1849 |
|
---|
1850 | #else
|
---|
1851 | /*
|
---|
1852 | * Looks like we need to unmap a page before we can change the backing
|
---|
1853 | * or even modify the protection. This is going to be *REALLY* efficient.
|
---|
1854 | * PGM lends us two bits to keep track of the state here.
|
---|
1855 | */
|
---|
1856 | uint8_t const u2OldState = *pu2State;
|
---|
1857 | uint8_t const u2NewState = fPageProt & NEM_PAGE_PROT_WRITE ? NEM_WIN_PAGE_STATE_WRITABLE
|
---|
1858 | : fPageProt & NEM_PAGE_PROT_READ ? NEM_WIN_PAGE_STATE_READABLE : NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1859 | if ( fBackingChanged
|
---|
1860 | || u2NewState != u2OldState)
|
---|
1861 | {
|
---|
1862 | if (u2OldState > NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
1863 | {
|
---|
1864 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1865 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
|
---|
1866 | AssertRC(rc);
|
---|
1867 | if (RT_SUCCESS(rc))
|
---|
1868 | {
|
---|
1869 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1870 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
1871 | if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
1872 | {
|
---|
1873 | Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n",
|
---|
1874 | GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
1875 | return VINF_SUCCESS;
|
---|
1876 | }
|
---|
1877 | }
|
---|
1878 | else
|
---|
1879 | {
|
---|
1880 | LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
1881 | return rc;
|
---|
1882 | }
|
---|
1883 | # else
|
---|
1884 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst, X86_PAGE_SIZE);
|
---|
1885 | if (SUCCEEDED(hrc))
|
---|
1886 | {
|
---|
1887 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1888 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
1889 | if (u2NewState == NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
1890 | {
|
---|
1891 | Log5(("NEM GPA unmapped/set: %RGp (was %s, cMappedPages=%u)\n",
|
---|
1892 | GCPhysDst, g_apszPageStates[u2OldState], cMappedPages));
|
---|
1893 | return VINF_SUCCESS;
|
---|
1894 | }
|
---|
1895 | }
|
---|
1896 | else
|
---|
1897 | {
|
---|
1898 | LogRel(("nemHCNativeSetPhysPage/unmap: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
1899 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
1900 | return VERR_NEM_INIT_FAILED;
|
---|
1901 | }
|
---|
1902 | # endif
|
---|
1903 | }
|
---|
1904 | }
|
---|
1905 |
|
---|
1906 | /*
|
---|
1907 | * Writeable mapping?
|
---|
1908 | */
|
---|
1909 | if (fPageProt & NEM_PAGE_PROT_WRITE)
|
---|
1910 | {
|
---|
1911 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1912 | int rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
1913 | HV_MAP_GPA_READABLE | HV_MAP_GPA_WRITABLE
|
---|
1914 | | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
1915 | AssertRC(rc);
|
---|
1916 | if (RT_SUCCESS(rc))
|
---|
1917 | {
|
---|
1918 | *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
1919 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
1920 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
1921 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
1922 | return VINF_SUCCESS;
|
---|
1923 | }
|
---|
1924 | LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
1925 | return rc;
|
---|
1926 | # else
|
---|
1927 | void *pvPage;
|
---|
1928 | int rc = nemR3NativeGCPhys2R3PtrWriteable(pVM, GCPhysSrc, &pvPage);
|
---|
1929 | if (RT_SUCCESS(rc))
|
---|
1930 | {
|
---|
1931 | HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, pvPage, GCPhysDst, X86_PAGE_SIZE,
|
---|
1932 | WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute | WHvMapGpaRangeFlagWrite);
|
---|
1933 | if (SUCCEEDED(hrc))
|
---|
1934 | {
|
---|
1935 | *pu2State = NEM_WIN_PAGE_STATE_WRITABLE;
|
---|
1936 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
1937 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
1938 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
1939 | return VINF_SUCCESS;
|
---|
1940 | }
|
---|
1941 | LogRel(("nemHCNativeSetPhysPage/writable: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
1942 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
1943 | return VERR_NEM_INIT_FAILED;
|
---|
1944 | }
|
---|
1945 | LogRel(("nemHCNativeSetPhysPage/writable: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
|
---|
1946 | return rc;
|
---|
1947 | # endif
|
---|
1948 | }
|
---|
1949 |
|
---|
1950 | if (fPageProt & NEM_PAGE_PROT_READ)
|
---|
1951 | {
|
---|
1952 | # ifdef NEM_WIN_USE_HYPERCALLS_FOR_PAGES
|
---|
1953 | int rc = nemHCWinHypercallMapPage(pVM, pVCpu, GCPhysSrc, GCPhysDst,
|
---|
1954 | HV_MAP_GPA_READABLE | HV_MAP_GPA_EXECUTABLE | HV_MAP_GPA_EXECUTABLE_AGAIN);
|
---|
1955 | AssertRC(rc);
|
---|
1956 | if (RT_SUCCESS(rc))
|
---|
1957 | {
|
---|
1958 | *pu2State = NEM_WIN_PAGE_STATE_READABLE;
|
---|
1959 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
1960 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
1961 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
1962 | return VINF_SUCCESS;
|
---|
1963 | }
|
---|
1964 | LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
1965 | return rc;
|
---|
1966 | # else
|
---|
1967 | const void *pvPage;
|
---|
1968 | int rc = nemR3NativeGCPhys2R3PtrReadOnly(pVM, GCPhysSrc, &pvPage);
|
---|
1969 | if (RT_SUCCESS(rc))
|
---|
1970 | {
|
---|
1971 | HRESULT hrc = WHvMapGpaRange(pVM->nem.s.hPartition, (void *)pvPage, GCPhysDst, X86_PAGE_SIZE,
|
---|
1972 | WHvMapGpaRangeFlagRead | WHvMapGpaRangeFlagExecute);
|
---|
1973 | if (SUCCEEDED(hrc))
|
---|
1974 | {
|
---|
1975 | *pu2State = NEM_WIN_PAGE_STATE_READABLE;
|
---|
1976 | uint32_t cMappedPages = ASMAtomicIncU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
1977 | Log5(("NEM GPA mapped/set: %RGp %s (was %s, cMappedPages=%u)\n",
|
---|
1978 | GCPhysDst, g_apszPageStates[u2NewState], g_apszPageStates[u2OldState], cMappedPages));
|
---|
1979 | return VINF_SUCCESS;
|
---|
1980 | }
|
---|
1981 | LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysDst=%RGp hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
1982 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
1983 | return VERR_NEM_INIT_FAILED;
|
---|
1984 | }
|
---|
1985 | LogRel(("nemHCNativeSetPhysPage/readonly: GCPhysSrc=%RGp rc=%Rrc\n", GCPhysSrc, rc));
|
---|
1986 | return rc;
|
---|
1987 | # endif
|
---|
1988 | }
|
---|
1989 |
|
---|
1990 | /* We already unmapped it above. */
|
---|
1991 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
1992 | return VINF_SUCCESS;
|
---|
1993 | #endif /* !NEM_WIN_USE_HYPERCALLS_FOR_PAGES */
|
---|
1994 | }
|
---|
1995 |
|
---|
1996 |
|
---|
1997 | NEM_TMPL_STATIC int nemHCJustUnmapPageFromHyperV(PVM pVM, RTGCPHYS GCPhysDst, uint8_t *pu2State)
|
---|
1998 | {
|
---|
1999 | if (*pu2State <= NEM_WIN_PAGE_STATE_UNMAPPED)
|
---|
2000 | {
|
---|
2001 | Log5(("nemHCJustUnmapPageFromHyperV: %RGp == unmapped\n", GCPhysDst));
|
---|
2002 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
2003 | return VINF_SUCCESS;
|
---|
2004 | }
|
---|
2005 |
|
---|
2006 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
2007 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
2008 | int rc = nemHCWinHypercallUnmapPage(pVM, pVCpu, GCPhysDst);
|
---|
2009 | AssertRC(rc);
|
---|
2010 | if (RT_SUCCESS(rc))
|
---|
2011 | {
|
---|
2012 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
2013 | Log5(("NEM GPA unmapped/just: %RGp (was %s, cMappedPages=%u)\n", GCPhysDst, g_apszPageStates[*pu2State], cMappedPages));
|
---|
2014 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
2015 | return VINF_SUCCESS;
|
---|
2016 | }
|
---|
2017 | LogRel(("nemHCJustUnmapPageFromHyperV/unmap: GCPhysDst=%RGp rc=%Rrc\n", GCPhysDst, rc));
|
---|
2018 | return rc;
|
---|
2019 | #else
|
---|
2020 | HRESULT hrc = WHvUnmapGpaRange(pVM->nem.s.hPartition, GCPhysDst & ~(RTGCPHYS)X86_PAGE_OFFSET_MASK, X86_PAGE_SIZE);
|
---|
2021 | if (SUCCEEDED(hrc))
|
---|
2022 | {
|
---|
2023 | uint32_t cMappedPages = ASMAtomicDecU32(&pVM->nem.s.cMappedPages); NOREF(cMappedPages);
|
---|
2024 | *pu2State = NEM_WIN_PAGE_STATE_UNMAPPED;
|
---|
2025 | Log5(("nemHCJustUnmapPageFromHyperV: %RGp => unmapped (total %u)\n", GCPhysDst, cMappedPages));
|
---|
2026 | return VINF_SUCCESS;
|
---|
2027 | }
|
---|
2028 | LogRel(("nemHCJustUnmapPageFromHyperV(%RGp): failed! hrc=%Rhrc (%#x) Last=%#x/%u\n",
|
---|
2029 | GCPhysDst, hrc, hrc, RTNtLastStatusValue(), RTNtLastErrorValue()));
|
---|
2030 | return VERR_INTERNAL_ERROR_3;
|
---|
2031 | #endif
|
---|
2032 | }
|
---|
2033 |
|
---|
2034 |
|
---|
2035 | int nemHCNativeNotifyPhysPageAllocated(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
|
---|
2036 | PGMPAGETYPE enmType, uint8_t *pu2State)
|
---|
2037 | {
|
---|
2038 | Log5(("nemHCNativeNotifyPhysPageAllocated: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
|
---|
2039 | GCPhys, HCPhys, fPageProt, enmType, *pu2State));
|
---|
2040 | RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
|
---|
2041 |
|
---|
2042 | int rc;
|
---|
2043 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
2044 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
2045 | if ( pVM->nem.s.fA20Enabled
|
---|
2046 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
2047 | rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
2048 | else
|
---|
2049 | {
|
---|
2050 | /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
|
---|
2051 | rc = nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
|
---|
2052 | if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys) && RT_SUCCESS(rc))
|
---|
2053 | rc = nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
2054 |
|
---|
2055 | }
|
---|
2056 | #else
|
---|
2057 | RT_NOREF_PV(fPageProt);
|
---|
2058 | if ( pVM->nem.s.fA20Enabled
|
---|
2059 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
2060 | rc = nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
2061 | else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
2062 | rc = nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
2063 | else
|
---|
2064 | rc = VINF_SUCCESS; /* ignore since we've got the alias page at this address. */
|
---|
2065 | #endif
|
---|
2066 | return rc;
|
---|
2067 | }
|
---|
2068 |
|
---|
2069 |
|
---|
2070 | void nemHCNativeNotifyPhysPageProtChanged(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhys, uint32_t fPageProt,
|
---|
2071 | PGMPAGETYPE enmType, uint8_t *pu2State)
|
---|
2072 | {
|
---|
2073 | Log5(("nemHCNativeNotifyPhysPageProtChanged: %RGp HCPhys=%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
|
---|
2074 | GCPhys, HCPhys, fPageProt, enmType, *pu2State));
|
---|
2075 | RT_NOREF_PV(HCPhys); RT_NOREF_PV(enmType);
|
---|
2076 |
|
---|
2077 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
2078 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
2079 | if ( pVM->nem.s.fA20Enabled
|
---|
2080 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
2081 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, false /*fBackingChanged*/);
|
---|
2082 | else
|
---|
2083 | {
|
---|
2084 | /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
|
---|
2085 | nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
|
---|
2086 | if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
2087 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, false /*fBackingChanged*/);
|
---|
2088 | }
|
---|
2089 | #else
|
---|
2090 | RT_NOREF_PV(fPageProt);
|
---|
2091 | if ( pVM->nem.s.fA20Enabled
|
---|
2092 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
2093 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
2094 | else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
2095 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
2096 | /* else: ignore since we've got the alias page at this address. */
|
---|
2097 | #endif
|
---|
2098 | }
|
---|
2099 |
|
---|
2100 |
|
---|
2101 | void nemHCNativeNotifyPhysPageChanged(PVM pVM, RTGCPHYS GCPhys, RTHCPHYS HCPhysPrev, RTHCPHYS HCPhysNew,
|
---|
2102 | uint32_t fPageProt, PGMPAGETYPE enmType, uint8_t *pu2State)
|
---|
2103 | {
|
---|
2104 | Log5(("nemHCNativeNotifyPhysPageChanged: %RGp HCPhys=%RHp->%RHp fPageProt=%#x enmType=%d *pu2State=%d\n",
|
---|
2105 | GCPhys, HCPhysPrev, HCPhysNew, fPageProt, enmType, *pu2State));
|
---|
2106 | RT_NOREF_PV(HCPhysPrev); RT_NOREF_PV(HCPhysNew); RT_NOREF_PV(enmType);
|
---|
2107 |
|
---|
2108 | #if defined(NEM_WIN_USE_HYPERCALLS_FOR_PAGES) || defined(IN_RING0)
|
---|
2109 | PVMCPU pVCpu = VMMGetCpu(pVM);
|
---|
2110 | if ( pVM->nem.s.fA20Enabled
|
---|
2111 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
2112 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
2113 | else
|
---|
2114 | {
|
---|
2115 | /* To keep effort at a minimum, we unmap the HMA page alias and resync it lazily when needed. */
|
---|
2116 | nemHCWinUnmapPageForA20Gate(pVM, pVCpu, GCPhys | RT_BIT_32(20));
|
---|
2117 | if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
2118 | nemHCNativeSetPhysPage(pVM, pVCpu, GCPhys, GCPhys, fPageProt, pu2State, true /*fBackingChanged*/);
|
---|
2119 | }
|
---|
2120 | #else
|
---|
2121 | RT_NOREF_PV(fPageProt);
|
---|
2122 | if ( pVM->nem.s.fA20Enabled
|
---|
2123 | || !NEM_WIN_IS_RELEVANT_TO_A20(GCPhys))
|
---|
2124 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
2125 | else if (!NEM_WIN_IS_SUBJECT_TO_A20(GCPhys))
|
---|
2126 | nemR3JustUnmapPageFromHyperV(pVM, GCPhys, pu2State);
|
---|
2127 | /* else: ignore since we've got the alias page at this address. */
|
---|
2128 | #endif
|
---|
2129 | }
|
---|
2130 |
|
---|