VirtualBox

source: vbox/trunk/src/VBox/VMM/VMMAll/IEMAllCImplVmxInstr.cpp@ 98506

最後變更 在這個檔案從98506是 98360,由 vboxsync 提交於 2 年 前

VMM/IEM: Nested VMX: bugref:10318 Pause-loop exiting is exposed to the guest, don't assert on it.

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Author Date Id Revision
檔案大小: 407.7 KB
 
1/* $Id: IEMAllCImplVmxInstr.cpp 98360 2023-01-31 11:28:31Z vboxsync $ */
2/** @file
3 * IEM - VT-x instruction implementation.
4 */
5
6/*
7 * Copyright (C) 2011-2023 Oracle and/or its affiliates.
8 *
9 * This file is part of VirtualBox base platform packages, as
10 * available from https://www.alldomusa.eu.org.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation, in version 3 of the
15 * License.
16 *
17 * This program is distributed in the hope that it will be useful, but
18 * WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, see <https://www.gnu.org/licenses>.
24 *
25 * SPDX-License-Identifier: GPL-3.0-only
26 */
27
28
29/*********************************************************************************************************************************
30* Header Files *
31*********************************************************************************************************************************/
32#define LOG_GROUP LOG_GROUP_IEM_VMX
33#define VMCPU_INCL_CPUM_GST_CTX
34#include <VBox/vmm/iem.h>
35#include <VBox/vmm/apic.h>
36#include <VBox/vmm/cpum.h>
37#include <VBox/vmm/dbgf.h>
38#include <VBox/vmm/em.h>
39#include <VBox/vmm/gim.h>
40#include <VBox/vmm/hm.h>
41#include <VBox/vmm/pgm.h>
42#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
43# include <VBox/vmm/hmvmxinline.h>
44#endif
45#include <VBox/vmm/tm.h>
46#include "IEMInternal.h"
47#include <VBox/vmm/vmcc.h>
48#include <VBox/log.h>
49#include <VBox/err.h>
50#include <VBox/param.h>
51#include <VBox/disopcode.h>
52#include <iprt/asm-math.h>
53#include <iprt/assert.h>
54#include <iprt/string.h>
55#include <iprt/x86.h>
56
57#include "IEMInline.h"
58
59
60/*********************************************************************************************************************************
61* Defined Constants And Macros *
62*********************************************************************************************************************************/
63#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
64/**
65 * Gets the ModR/M, SIB and displacement byte(s) from decoded opcodes given their
66 * relative offsets.
67 */
68# ifdef IEM_WITH_CODE_TLB /** @todo IEM TLB */
69# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) do { a_bModRm = 0; RT_NOREF(a_offModRm); } while (0)
70# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) do { a_bSib = 0; RT_NOREF(a_offSib); } while (0)
71# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) do { a_u16Disp = 0; RT_NOREF(a_offDisp); } while (0)
72# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) do { a_u16Disp = 0; RT_NOREF(a_offDisp); } while (0)
73# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) do { a_u32Disp = 0; RT_NOREF(a_offDisp); } while (0)
74# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) do { a_u32Disp = 0; RT_NOREF(a_offDisp); } while (0)
75# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { a_u64Disp = 0; RT_NOREF(a_offDisp); } while (0)
76# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) do { a_u64Disp = 0; RT_NOREF(a_offDisp); } while (0)
77# if 0
78# error "Implement me: Getting ModR/M, SIB, displacement needs to work even when instruction crosses a page boundary."
79# endif
80# else /* !IEM_WITH_CODE_TLB */
81# define IEM_MODRM_GET_U8(a_pVCpu, a_bModRm, a_offModRm) \
82 do \
83 { \
84 Assert((a_offModRm) < (a_pVCpu)->iem.s.cbOpcode); \
85 (a_bModRm) = (a_pVCpu)->iem.s.abOpcode[(a_offModRm)]; \
86 } while (0)
87
88# define IEM_SIB_GET_U8(a_pVCpu, a_bSib, a_offSib) IEM_MODRM_GET_U8(a_pVCpu, a_bSib, a_offSib)
89
90# define IEM_DISP_GET_U16(a_pVCpu, a_u16Disp, a_offDisp) \
91 do \
92 { \
93 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
94 uint8_t const bTmpLo = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
95 uint8_t const bTmpHi = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
96 (a_u16Disp) = RT_MAKE_U16(bTmpLo, bTmpHi); \
97 } while (0)
98
99# define IEM_DISP_GET_S8_SX_U16(a_pVCpu, a_u16Disp, a_offDisp) \
100 do \
101 { \
102 Assert((a_offDisp) < (a_pVCpu)->iem.s.cbOpcode); \
103 (a_u16Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
104 } while (0)
105
106# define IEM_DISP_GET_U32(a_pVCpu, a_u32Disp, a_offDisp) \
107 do \
108 { \
109 Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
110 uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
111 uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
112 uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
113 uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
114 (a_u32Disp) = RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
115 } while (0)
116
117# define IEM_DISP_GET_S8_SX_U32(a_pVCpu, a_u32Disp, a_offDisp) \
118 do \
119 { \
120 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
121 (a_u32Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
122 } while (0)
123
124# define IEM_DISP_GET_S8_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
125 do \
126 { \
127 Assert((a_offDisp) + 1 < (a_pVCpu)->iem.s.cbOpcode); \
128 (a_u64Disp) = (int8_t)((a_pVCpu)->iem.s.abOpcode[(a_offDisp)]); \
129 } while (0)
130
131# define IEM_DISP_GET_S32_SX_U64(a_pVCpu, a_u64Disp, a_offDisp) \
132 do \
133 { \
134 Assert((a_offDisp) + 3 < (a_pVCpu)->iem.s.cbOpcode); \
135 uint8_t const bTmp0 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp)]; \
136 uint8_t const bTmp1 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 1]; \
137 uint8_t const bTmp2 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 2]; \
138 uint8_t const bTmp3 = (a_pVCpu)->iem.s.abOpcode[(a_offDisp) + 3]; \
139 (a_u64Disp) = (int32_t)RT_MAKE_U32_FROM_U8(bTmp0, bTmp1, bTmp2, bTmp3); \
140 } while (0)
141# endif /* !IEM_WITH_CODE_TLB */
142
143/** Check for VMX instructions requiring to be in VMX operation.
144 * @note Any changes here, check if IEMOP_HLP_IN_VMX_OPERATION needs updating. */
145# define IEM_VMX_IN_VMX_OPERATION(a_pVCpu, a_szInstr, a_InsDiagPrefix) \
146 do \
147 { \
148 if (IEM_VMX_IS_ROOT_MODE(a_pVCpu)) \
149 { /* likely */ } \
150 else \
151 { \
152 Log((a_szInstr ": Not in VMX operation (root mode) -> #UD\n")); \
153 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = a_InsDiagPrefix##_VmxRoot; \
154 return iemRaiseUndefinedOpcode(a_pVCpu); \
155 } \
156 } while (0)
157
158/** Marks a VM-entry failure with a diagnostic reason, logs and returns. */
159# define IEM_VMX_VMENTRY_FAILED_RET(a_pVCpu, a_pszInstr, a_pszFailure, a_VmxDiag) \
160 do \
161 { \
162 LogRel(("%s: VM-entry failed! enmDiag=%u (%s) -> %s\n", (a_pszInstr), (a_VmxDiag), \
163 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
164 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
165 return VERR_VMX_VMENTRY_FAILED; \
166 } while (0)
167
168/** Marks a VM-exit failure with a diagnostic reason and logs. */
169# define IEM_VMX_VMEXIT_FAILED(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
170 do \
171 { \
172 LogRel(("VM-exit failed! uExitReason=%u enmDiag=%u (%s) -> %s\n", (a_uExitReason), (a_VmxDiag), \
173 HMGetVmxDiagDesc(a_VmxDiag), (a_pszFailure))); \
174 (a_pVCpu)->cpum.GstCtx.hwvirt.vmx.enmDiag = (a_VmxDiag); \
175 } while (0)
176
177/** Marks a VM-exit failure with a diagnostic reason, logs and returns. */
178# define IEM_VMX_VMEXIT_FAILED_RET(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag) \
179 do \
180 { \
181 IEM_VMX_VMEXIT_FAILED(a_pVCpu, a_uExitReason, a_pszFailure, a_VmxDiag); \
182 return VERR_VMX_VMEXIT_FAILED; \
183 } while (0)
184
185
186/*********************************************************************************************************************************
187* Global Variables *
188*********************************************************************************************************************************/
189/** @todo NSTVMX: The following VM-exit intercepts are pending:
190 * VMX_EXIT_IO_SMI
191 * VMX_EXIT_SMI
192 * VMX_EXIT_GETSEC
193 * VMX_EXIT_RSM
194 * VMX_EXIT_MONITOR (APIC access VM-exit caused by MONITOR pending)
195 * VMX_EXIT_ERR_MACHINE_CHECK (we never need to raise this?)
196 * VMX_EXIT_RDRAND
197 * VMX_EXIT_VMFUNC
198 * VMX_EXIT_ENCLS
199 * VMX_EXIT_RDSEED
200 * VMX_EXIT_PML_FULL
201 * VMX_EXIT_XSAVES
202 * VMX_EXIT_XRSTORS
203 */
204/**
205 * Map of VMCS field encodings to their virtual-VMCS structure offsets.
206 *
207 * The first array dimension is VMCS field encoding of Width OR'ed with Type and the
208 * second dimension is the Index, see VMXVMCSFIELD.
209 */
210uint16_t const g_aoffVmcsMap[16][VMX_V_VMCS_MAX_INDEX + 1] =
211{
212 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
213 {
214 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u16Vpid),
215 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u16PostIntNotifyVector),
216 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u16EptpIndex),
217 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u16HlatPrefixSize),
218 /* 4-11 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
219 /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
220 /* 20-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
221 /* 28-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
222 },
223 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
224 {
225 /* 0-7 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
226 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
227 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
228 /* 24-31 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
229 /* 32-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
230 },
231 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
232 {
233 /* 0 */ RT_UOFFSETOF(VMXVVMCS, GuestEs),
234 /* 1 */ RT_UOFFSETOF(VMXVVMCS, GuestCs),
235 /* 2 */ RT_UOFFSETOF(VMXVVMCS, GuestSs),
236 /* 3 */ RT_UOFFSETOF(VMXVVMCS, GuestDs),
237 /* 4 */ RT_UOFFSETOF(VMXVVMCS, GuestFs),
238 /* 5 */ RT_UOFFSETOF(VMXVVMCS, GuestGs),
239 /* 6 */ RT_UOFFSETOF(VMXVVMCS, GuestLdtr),
240 /* 7 */ RT_UOFFSETOF(VMXVVMCS, GuestTr),
241 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u16GuestIntStatus),
242 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u16PmlIndex),
243 /* 10-17 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
244 /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
245 /* 26-33 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
246 /* 34 */ UINT16_MAX
247 },
248 /* VMX_VMCSFIELD_WIDTH_16BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
249 {
250 /* 0 */ RT_UOFFSETOF(VMXVVMCS, HostEs),
251 /* 1 */ RT_UOFFSETOF(VMXVVMCS, HostCs),
252 /* 2 */ RT_UOFFSETOF(VMXVVMCS, HostSs),
253 /* 3 */ RT_UOFFSETOF(VMXVVMCS, HostDs),
254 /* 4 */ RT_UOFFSETOF(VMXVVMCS, HostFs),
255 /* 5 */ RT_UOFFSETOF(VMXVVMCS, HostGs),
256 /* 6 */ RT_UOFFSETOF(VMXVVMCS, HostTr),
257 /* 7-14 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
258 /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
259 /* 23-30 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
260 /* 31-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
261 },
262 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
263 {
264 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapA),
265 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64AddrIoBitmapB),
266 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64AddrMsrBitmap),
267 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrStore),
268 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64AddrExitMsrLoad),
269 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEntryMsrLoad),
270 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64ExecVmcsPtr),
271 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPml),
272 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64TscOffset),
273 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVirtApic),
274 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64AddrApicAccess),
275 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64AddrPostedIntDesc),
276 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64VmFuncCtls),
277 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64EptPtr),
278 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap0),
279 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap1),
280 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap2),
281 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64EoiExitBitmap3),
282 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64AddrEptpList),
283 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmreadBitmap),
284 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64AddrVmwriteBitmap),
285 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64AddrXcptVeInfo),
286 /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64XssExitBitmap),
287 /* 23 */ RT_UOFFSETOF(VMXVVMCS, u64EnclsExitBitmap),
288 /* 24 */ RT_UOFFSETOF(VMXVVMCS, u64SppTablePtr),
289 /* 25 */ RT_UOFFSETOF(VMXVVMCS, u64TscMultiplier),
290 /* 26 */ RT_UOFFSETOF(VMXVVMCS, u64ProcCtls3),
291 /* 27 */ RT_UOFFSETOF(VMXVVMCS, u64EnclvExitBitmap),
292 /* 28 */ UINT16_MAX,
293 /* 29 */ UINT16_MAX,
294 /* 30 */ UINT16_MAX,
295 /* 31 */ RT_UOFFSETOF(VMXVVMCS, u64PconfigExitBitmap),
296 /* 32 */ RT_UOFFSETOF(VMXVVMCS, u64HlatPtr),
297 /* 33 */ UINT16_MAX,
298 /* 34 */ RT_UOFFSETOF(VMXVVMCS, u64ExitCtls2)
299 },
300 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
301 {
302 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestPhysAddr),
303 /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
304 /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
305 /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
306 /* 25-32 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
307 /* 33-34*/ UINT16_MAX, UINT16_MAX
308 },
309 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
310 {
311 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64VmcsLinkPtr),
312 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDebugCtlMsr),
313 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPatMsr),
314 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEferMsr),
315 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPerfGlobalCtlMsr),
316 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte0),
317 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte1),
318 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte2),
319 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPdpte3),
320 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestBndcfgsMsr),
321 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRtitCtlMsr),
322 /* 11 */ UINT16_MAX,
323 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPkrsMsr),
324 /* 13-20 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
325 /* 21-28 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
326 /* 29-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
327 },
328 /* VMX_VMCSFIELD_WIDTH_64BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
329 {
330 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostPatMsr),
331 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostEferMsr),
332 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostPerfGlobalCtlMsr),
333 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostPkrsMsr),
334 /* 4-11 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
335 /* 12-19 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
336 /* 20-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
337 /* 28-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
338 },
339 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_CONTROL: */
340 {
341 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32PinCtls),
342 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls),
343 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32XcptBitmap),
344 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMask),
345 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32XcptPFMatch),
346 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32Cr3TargetCount),
347 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32ExitCtls),
348 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrStoreCount),
349 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32ExitMsrLoadCount),
350 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32EntryCtls),
351 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32EntryMsrLoadCount),
352 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32EntryIntInfo),
353 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32EntryXcptErrCode),
354 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32EntryInstrLen),
355 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32TprThreshold),
356 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32ProcCtls2),
357 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32PleGap),
358 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32PleWindow),
359 /* 18-25 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
360 /* 26-33 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
361 /* 34 */ UINT16_MAX
362 },
363 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
364 {
365 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32RoVmInstrError),
366 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitReason),
367 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntInfo),
368 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitIntErrCode),
369 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringInfo),
370 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32RoIdtVectoringErrCode),
371 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrLen),
372 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32RoExitInstrInfo),
373 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
374 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
375 /* 24-31 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
376 /* 32-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
377 },
378 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
379 {
380 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsLimit),
381 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsLimit),
382 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsLimit),
383 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsLimit),
384 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsLimit),
385 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsLimit),
386 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrLimit),
387 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrLimit),
388 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGdtrLimit),
389 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIdtrLimit),
390 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u32GuestEsAttr),
391 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u32GuestCsAttr),
392 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSsAttr),
393 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u32GuestDsAttr),
394 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u32GuestFsAttr),
395 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u32GuestGsAttr),
396 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u32GuestLdtrAttr),
397 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u32GuestTrAttr),
398 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u32GuestIntrState),
399 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u32GuestActivityState),
400 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSmBase),
401 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u32GuestSysenterCS),
402 /* 22 */ UINT16_MAX,
403 /* 23 */ RT_UOFFSETOF(VMXVVMCS, u32PreemptTimer),
404 /* 24-31 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
405 /* 32-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
406 },
407 /* VMX_VMCSFIELD_WIDTH_32BIT | VMX_VMCSFIELD_TYPE_HOST_STATE: */
408 {
409 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u32HostSysenterCs),
410 /* 1-8 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
411 /* 9-16 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
412 /* 17-24 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
413 /* 25-32 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
414 /* 33-34 */ UINT16_MAX, UINT16_MAX
415 },
416 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_CONTROL: */
417 {
418 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0Mask),
419 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4Mask),
420 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64Cr0ReadShadow),
421 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64Cr4ReadShadow),
422 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target0),
423 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target1),
424 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target2),
425 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64Cr3Target3),
426 /* 8-15 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
427 /* 16-23 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
428 /* 24-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
429 /* 32-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX
430 },
431 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_VMEXIT_INFO: */
432 {
433 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64RoExitQual),
434 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRcx),
435 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRsi),
436 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRdi),
437 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64RoIoRip),
438 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64RoGuestLinearAddr),
439 /* 6-13 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
440 /* 14-21 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
441 /* 22-29 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
442 /* 30-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
443 },
444 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_GUEST_STATE: */
445 {
446 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr0),
447 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr3),
448 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCr4),
449 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64GuestEsBase),
450 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64GuestCsBase),
451 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsBase),
452 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDsBase),
453 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64GuestFsBase),
454 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGsBase),
455 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64GuestLdtrBase),
456 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64GuestTrBase),
457 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64GuestGdtrBase),
458 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIdtrBase),
459 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64GuestDr7),
460 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRsp),
461 /* 15 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRip),
462 /* 16 */ RT_UOFFSETOF(VMXVVMCS, u64GuestRFlags),
463 /* 17 */ RT_UOFFSETOF(VMXVVMCS, u64GuestPendingDbgXcpts),
464 /* 18 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEsp),
465 /* 19 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSysenterEip),
466 /* 20 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSCetMsr),
467 /* 21 */ RT_UOFFSETOF(VMXVVMCS, u64GuestSsp),
468 /* 22 */ RT_UOFFSETOF(VMXVVMCS, u64GuestIntrSspTableAddrMsr),
469 /* 23-27 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
470 /* 31-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
471 },
472 /* VMX_VMCSFIELD_WIDTH_NATURAL | VMX_VMCSFIELD_TYPE_HOST_STATE: */
473 {
474 /* 0 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr0),
475 /* 1 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr3),
476 /* 2 */ RT_UOFFSETOF(VMXVVMCS, u64HostCr4),
477 /* 3 */ RT_UOFFSETOF(VMXVVMCS, u64HostFsBase),
478 /* 4 */ RT_UOFFSETOF(VMXVVMCS, u64HostGsBase),
479 /* 5 */ RT_UOFFSETOF(VMXVVMCS, u64HostTrBase),
480 /* 6 */ RT_UOFFSETOF(VMXVVMCS, u64HostGdtrBase),
481 /* 7 */ RT_UOFFSETOF(VMXVVMCS, u64HostIdtrBase),
482 /* 8 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEsp),
483 /* 9 */ RT_UOFFSETOF(VMXVVMCS, u64HostSysenterEip),
484 /* 10 */ RT_UOFFSETOF(VMXVVMCS, u64HostRsp),
485 /* 11 */ RT_UOFFSETOF(VMXVVMCS, u64HostRip),
486 /* 12 */ RT_UOFFSETOF(VMXVVMCS, u64HostSCetMsr),
487 /* 13 */ RT_UOFFSETOF(VMXVVMCS, u64HostSsp),
488 /* 14 */ RT_UOFFSETOF(VMXVVMCS, u64HostIntrSspTableAddrMsr),
489 /* 15-22 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
490 /* 23-30 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX,
491 /* 31-34 */ UINT16_MAX, UINT16_MAX, UINT16_MAX, UINT16_MAX
492 }
493};
494
495
496/**
497 * Gets a host selector from the VMCS.
498 *
499 * @param pVmcs Pointer to the virtual VMCS.
500 * @param iSelReg The index of the segment register (X86_SREG_XXX).
501 */
502DECLINLINE(RTSEL) iemVmxVmcsGetHostSelReg(PCVMXVVMCS pVmcs, uint8_t iSegReg)
503{
504 Assert(iSegReg < X86_SREG_COUNT);
505 RTSEL HostSel;
506 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
507 uint8_t const uType = VMX_VMCSFIELD_TYPE_HOST_STATE;
508 uint8_t const uWidthType = (uWidth << 2) | uType;
509 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_HOST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
510 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
511 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
512 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
513 uint8_t const *pbField = pbVmcs + offField;
514 HostSel = *(uint16_t *)pbField;
515 return HostSel;
516}
517
518
519/**
520 * Sets a guest segment register in the VMCS.
521 *
522 * @param pVmcs Pointer to the virtual VMCS.
523 * @param iSegReg The index of the segment register (X86_SREG_XXX).
524 * @param pSelReg Pointer to the segment register.
525 */
526static void iemVmxVmcsSetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCCPUMSELREG pSelReg) RT_NOEXCEPT
527{
528 Assert(pSelReg);
529 Assert(iSegReg < X86_SREG_COUNT);
530
531 /* Selector. */
532 {
533 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
534 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
535 uint8_t const uWidthType = (uWidth << 2) | uType;
536 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
537 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
538 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
539 uint8_t *pbVmcs = (uint8_t *)pVmcs;
540 uint8_t *pbField = pbVmcs + offField;
541 *(uint16_t *)pbField = pSelReg->Sel;
542 }
543
544 /* Limit. */
545 {
546 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
547 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
548 uint8_t const uWidthType = (uWidth << 2) | uType;
549 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCSFIELD_INDEX);
550 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
551 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
552 uint8_t *pbVmcs = (uint8_t *)pVmcs;
553 uint8_t *pbField = pbVmcs + offField;
554 *(uint32_t *)pbField = pSelReg->u32Limit;
555 }
556
557 /* Base. */
558 {
559 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_NATURAL;
560 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
561 uint8_t const uWidthType = (uWidth << 2) | uType;
562 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCSFIELD_INDEX);
563 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
564 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
565 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
566 uint8_t const *pbField = pbVmcs + offField;
567 *(uint64_t *)pbField = pSelReg->u64Base;
568 }
569
570 /* Attributes. */
571 {
572 uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
573 | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
574 | X86DESCATTR_UNUSABLE;
575 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
576 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
577 uint8_t const uWidthType = (uWidth << 2) | uType;
578 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCSFIELD_INDEX);
579 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
580 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
581 uint8_t *pbVmcs = (uint8_t *)pVmcs;
582 uint8_t *pbField = pbVmcs + offField;
583 *(uint32_t *)pbField = pSelReg->Attr.u & fValidAttrMask;
584 }
585}
586
587
588/**
589 * Gets a guest segment register from the VMCS.
590 *
591 * @returns VBox status code.
592 * @param pVmcs Pointer to the virtual VMCS.
593 * @param iSegReg The index of the segment register (X86_SREG_XXX).
594 * @param pSelReg Where to store the segment register (only updated when
595 * VINF_SUCCESS is returned).
596 *
597 * @remarks Warning! This does not validate the contents of the retrieved segment
598 * register.
599 */
600static int iemVmxVmcsGetGuestSegReg(PCVMXVVMCS pVmcs, uint8_t iSegReg, PCPUMSELREG pSelReg) RT_NOEXCEPT
601{
602 Assert(pSelReg);
603 Assert(iSegReg < X86_SREG_COUNT);
604
605 /* Selector. */
606 uint16_t u16Sel;
607 {
608 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_16BIT;
609 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
610 uint8_t const uWidthType = (uWidth << 2) | uType;
611 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS16_GUEST_ES_SEL, VMX_BF_VMCSFIELD_INDEX);
612 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
613 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
614 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
615 uint8_t const *pbField = pbVmcs + offField;
616 u16Sel = *(uint16_t *)pbField;
617 }
618
619 /* Limit. */
620 uint32_t u32Limit;
621 {
622 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
623 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
624 uint8_t const uWidthType = (uWidth << 2) | uType;
625 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_LIMIT, VMX_BF_VMCSFIELD_INDEX);
626 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
627 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
628 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
629 uint8_t const *pbField = pbVmcs + offField;
630 u32Limit = *(uint32_t *)pbField;
631 }
632
633 /* Base. */
634 uint64_t u64Base;
635 {
636 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_NATURAL;
637 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
638 uint8_t const uWidthType = (uWidth << 2) | uType;
639 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS_GUEST_ES_BASE, VMX_BF_VMCSFIELD_INDEX);
640 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
641 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
642 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
643 uint8_t const *pbField = pbVmcs + offField;
644 u64Base = *(uint64_t *)pbField;
645 /** @todo NSTVMX: Should we zero out high bits here for 32-bit virtual CPUs? */
646 }
647
648 /* Attributes. */
649 uint32_t u32Attr;
650 {
651 uint8_t const uWidth = VMX_VMCSFIELD_WIDTH_32BIT;
652 uint8_t const uType = VMX_VMCSFIELD_TYPE_GUEST_STATE;
653 uint8_t const uWidthType = (uWidth << 2) | uType;
654 uint8_t const uIndex = iSegReg + RT_BF_GET(VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS, VMX_BF_VMCSFIELD_INDEX);
655 AssertReturn(uIndex <= VMX_V_VMCS_MAX_INDEX, VERR_IEM_IPE_3);
656 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
657 uint8_t const *pbVmcs = (uint8_t *)pVmcs;
658 uint8_t const *pbField = pbVmcs + offField;
659 u32Attr = *(uint32_t *)pbField;
660 }
661
662 pSelReg->Sel = u16Sel;
663 pSelReg->ValidSel = u16Sel;
664 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
665 pSelReg->u32Limit = u32Limit;
666 pSelReg->u64Base = u64Base;
667 pSelReg->Attr.u = u32Attr;
668 return VINF_SUCCESS;
669}
670
671
672/**
673 * Converts an IEM exception event type to a VMX event type.
674 *
675 * @returns The VMX event type.
676 * @param uVector The interrupt / exception vector.
677 * @param fFlags The IEM event flag (see IEM_XCPT_FLAGS_XXX).
678 */
679DECLINLINE(uint8_t) iemVmxGetEventType(uint32_t uVector, uint32_t fFlags)
680{
681 /* Paranoia (callers may use these interchangeably). */
682 AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_IDT_VECTORING_INFO_TYPE_NMI);
683 AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_HW_XCPT);
684 AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_IDT_VECTORING_INFO_TYPE_EXT_INT);
685 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_SW_XCPT);
686 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_IDT_VECTORING_INFO_TYPE_SW_INT);
687 AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_IDT_VECTORING_INFO_TYPE_PRIV_SW_XCPT);
688 AssertCompile(VMX_EXIT_INT_INFO_TYPE_NMI == VMX_ENTRY_INT_INFO_TYPE_NMI);
689 AssertCompile(VMX_EXIT_INT_INFO_TYPE_HW_XCPT == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT);
690 AssertCompile(VMX_EXIT_INT_INFO_TYPE_EXT_INT == VMX_ENTRY_INT_INFO_TYPE_EXT_INT);
691 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT);
692 AssertCompile(VMX_EXIT_INT_INFO_TYPE_SW_INT == VMX_ENTRY_INT_INFO_TYPE_SW_INT);
693 AssertCompile(VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT);
694
695 if (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
696 {
697 if (uVector == X86_XCPT_NMI)
698 return VMX_EXIT_INT_INFO_TYPE_NMI;
699 return VMX_EXIT_INT_INFO_TYPE_HW_XCPT;
700 }
701
702 if (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
703 {
704 if (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR))
705 return VMX_EXIT_INT_INFO_TYPE_SW_XCPT;
706 if (fFlags & IEM_XCPT_FLAGS_ICEBP_INSTR)
707 return VMX_EXIT_INT_INFO_TYPE_PRIV_SW_XCPT;
708 return VMX_EXIT_INT_INFO_TYPE_SW_INT;
709 }
710
711 Assert(fFlags & IEM_XCPT_FLAGS_T_EXT_INT);
712 return VMX_EXIT_INT_INFO_TYPE_EXT_INT;
713}
714
715
716/**
717 * Determines whether the guest is using PAE paging given the VMCS.
718 *
719 * @returns @c true if PAE paging mode is used, @c false otherwise.
720 * @param pVmcs Pointer to the virtual VMCS.
721 *
722 * @warning Only use this prior to switching the guest-CPU state with the
723 * nested-guest CPU state!
724 */
725DECL_FORCE_INLINE(bool) iemVmxVmcsIsGuestPaePagingEnabled(PCVMXVVMCS pVmcs)
726{
727 return ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST)
728 && (pVmcs->u64GuestCr4.u & X86_CR4_PAE)
729 && (pVmcs->u64GuestCr0.u & X86_CR0_PG));
730}
731
732
733/**
734 * Sets the Exit qualification VMCS field.
735 *
736 * @param pVCpu The cross context virtual CPU structure.
737 * @param u64ExitQual The Exit qualification.
738 */
739DECL_FORCE_INLINE(void) iemVmxVmcsSetExitQual(PVMCPUCC pVCpu, uint64_t u64ExitQual)
740{
741 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoExitQual.u = u64ExitQual;
742}
743
744
745/**
746 * Sets the VM-exit interruption information field.
747 *
748 * @param pVCpu The cross context virtual CPU structure.
749 * @param uExitIntInfo The VM-exit interruption information.
750 */
751DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntInfo(PVMCPUCC pVCpu, uint32_t uExitIntInfo)
752{
753 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitIntInfo = uExitIntInfo;
754}
755
756
757/**
758 * Sets the VM-exit interruption error code.
759 *
760 * @param pVCpu The cross context virtual CPU structure.
761 * @param uErrCode The error code.
762 */
763DECL_FORCE_INLINE(void) iemVmxVmcsSetExitIntErrCode(PVMCPUCC pVCpu, uint32_t uErrCode)
764{
765 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitIntErrCode = uErrCode;
766}
767
768
769/**
770 * Sets the IDT-vectoring information field.
771 *
772 * @param pVCpu The cross context virtual CPU structure.
773 * @param uIdtVectorInfo The IDT-vectoring information.
774 */
775DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringInfo(PVMCPUCC pVCpu, uint32_t uIdtVectorInfo)
776{
777 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringInfo = uIdtVectorInfo;
778}
779
780
781/**
782 * Sets the IDT-vectoring error code field.
783 *
784 * @param pVCpu The cross context virtual CPU structure.
785 * @param uErrCode The error code.
786 */
787DECL_FORCE_INLINE(void) iemVmxVmcsSetIdtVectoringErrCode(PVMCPUCC pVCpu, uint32_t uErrCode)
788{
789 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringErrCode = uErrCode;
790}
791
792
793/**
794 * Sets the VM-exit guest-linear address VMCS field.
795 *
796 * @param pVCpu The cross context virtual CPU structure.
797 * @param uGuestLinearAddr The VM-exit guest-linear address.
798 */
799DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestLinearAddr(PVMCPUCC pVCpu, uint64_t uGuestLinearAddr)
800{
801 /* Bits 63:32 of guest-linear address MBZ if the guest isn't in long mode prior to the VM-exit. */
802 Assert(CPUMIsGuestInLongModeEx(IEM_GET_CTX(pVCpu)) || !(uGuestLinearAddr & UINT64_C(0xffffffff00000000)));
803 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoGuestLinearAddr.u = uGuestLinearAddr;
804}
805
806
807/**
808 * Sets the VM-exit guest-physical address VMCS field.
809 *
810 * @param pVCpu The cross context virtual CPU structure.
811 * @param uGuestPhysAddr The VM-exit guest-physical address.
812 */
813DECL_FORCE_INLINE(void) iemVmxVmcsSetExitGuestPhysAddr(PVMCPUCC pVCpu, uint64_t uGuestPhysAddr)
814{
815 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64RoGuestPhysAddr.u = uGuestPhysAddr;
816}
817
818
819/**
820 * Sets the VM-exit instruction length VMCS field.
821 *
822 * @param pVCpu The cross context virtual CPU structure.
823 * @param cbInstr The VM-exit instruction length in bytes.
824 *
825 * @remarks Callers may clear this field to 0. Hence, this function does not check
826 * the validity of the instruction length.
827 */
828DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrLen(PVMCPUCC pVCpu, uint32_t cbInstr)
829{
830 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitInstrLen = cbInstr;
831}
832
833
834/**
835 * Sets the VM-exit instruction info. VMCS field.
836 *
837 * @param pVCpu The cross context virtual CPU structure.
838 * @param uExitInstrInfo The VM-exit instruction information.
839 */
840DECL_FORCE_INLINE(void) iemVmxVmcsSetExitInstrInfo(PVMCPUCC pVCpu, uint32_t uExitInstrInfo)
841{
842 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoExitInstrInfo = uExitInstrInfo;
843}
844
845
846/**
847 * Sets the guest pending-debug exceptions field.
848 *
849 * @param pVCpu The cross context virtual CPU structure.
850 * @param uGuestPendingDbgXcpts The guest pending-debug exceptions.
851 */
852DECL_FORCE_INLINE(void) iemVmxVmcsSetGuestPendingDbgXcpts(PVMCPUCC pVCpu, uint64_t uGuestPendingDbgXcpts)
853{
854 Assert(!(uGuestPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK));
855 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestPendingDbgXcpts.u = uGuestPendingDbgXcpts;
856}
857
858
859/**
860 * Implements VMSucceed for VMX instruction success.
861 *
862 * @param pVCpu The cross context virtual CPU structure.
863 */
864DECL_FORCE_INLINE(void) iemVmxVmSucceed(PVMCPUCC pVCpu)
865{
866 return CPUMSetGuestVmxVmSucceed(&pVCpu->cpum.GstCtx);
867}
868
869
870/**
871 * Implements VMFailInvalid for VMX instruction failure.
872 *
873 * @param pVCpu The cross context virtual CPU structure.
874 */
875DECL_FORCE_INLINE(void) iemVmxVmFailInvalid(PVMCPUCC pVCpu)
876{
877 return CPUMSetGuestVmxVmFailInvalid(&pVCpu->cpum.GstCtx);
878}
879
880
881/**
882 * Implements VMFail for VMX instruction failure.
883 *
884 * @param pVCpu The cross context virtual CPU structure.
885 * @param enmInsErr The VM instruction error.
886 */
887DECL_FORCE_INLINE(void) iemVmxVmFail(PVMCPUCC pVCpu, VMXINSTRERR enmInsErr)
888{
889 return CPUMSetGuestVmxVmFail(&pVCpu->cpum.GstCtx, enmInsErr);
890}
891
892
893/**
894 * Checks if the given auto-load/store MSR area count is valid for the
895 * implementation.
896 *
897 * @returns @c true if it's within the valid limit, @c false otherwise.
898 * @param pVCpu The cross context virtual CPU structure.
899 * @param uMsrCount The MSR area count to check.
900 */
901DECL_FORCE_INLINE(bool) iemVmxIsAutoMsrCountValid(PCVMCPU pVCpu, uint32_t uMsrCount)
902{
903 uint64_t const u64VmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
904 uint32_t const cMaxSupportedMsrs = VMX_MISC_MAX_MSRS(u64VmxMiscMsr);
905 Assert(cMaxSupportedMsrs <= VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
906 if (uMsrCount <= cMaxSupportedMsrs)
907 return true;
908 return false;
909}
910
911
912/**
913 * Flushes the current VMCS contents back to guest memory.
914 *
915 * @returns VBox status code.
916 * @param pVCpu The cross context virtual CPU structure.
917 */
918DECL_FORCE_INLINE(int) iemVmxWriteCurrentVmcsToGstMem(PVMCPUCC pVCpu)
919{
920 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
921 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), IEM_VMX_GET_CURRENT_VMCS(pVCpu),
922 &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs));
923 return rc;
924}
925
926
927/**
928 * Populates the current VMCS contents from guest memory.
929 *
930 * @returns VBox status code.
931 * @param pVCpu The cross context virtual CPU structure.
932 */
933DECL_FORCE_INLINE(int) iemVmxReadCurrentVmcsFromGstMem(PVMCPUCC pVCpu)
934{
935 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
936 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs,
937 IEM_VMX_GET_CURRENT_VMCS(pVCpu), sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs));
938 return rc;
939}
940
941
942/**
943 * Gets the instruction diagnostic for segment base checks during VM-entry of a
944 * nested-guest.
945 *
946 * @param iSegReg The segment index (X86_SREG_XXX).
947 */
948static VMXVDIAG iemVmxGetDiagVmentrySegBase(unsigned iSegReg) RT_NOEXCEPT
949{
950 switch (iSegReg)
951 {
952 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseCs;
953 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseDs;
954 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseEs;
955 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseFs;
956 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseGs;
957 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseSs;
958 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_1);
959 }
960}
961
962
963/**
964 * Gets the instruction diagnostic for segment base checks during VM-entry of a
965 * nested-guest that is in Virtual-8086 mode.
966 *
967 * @param iSegReg The segment index (X86_SREG_XXX).
968 */
969static VMXVDIAG iemVmxGetDiagVmentrySegBaseV86(unsigned iSegReg) RT_NOEXCEPT
970{
971 switch (iSegReg)
972 {
973 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegBaseV86Cs;
974 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ds;
975 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegBaseV86Es;
976 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegBaseV86Fs;
977 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegBaseV86Gs;
978 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegBaseV86Ss;
979 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_2);
980 }
981}
982
983
984/**
985 * Gets the instruction diagnostic for segment limit checks during VM-entry of a
986 * nested-guest that is in Virtual-8086 mode.
987 *
988 * @param iSegReg The segment index (X86_SREG_XXX).
989 */
990static VMXVDIAG iemVmxGetDiagVmentrySegLimitV86(unsigned iSegReg) RT_NOEXCEPT
991{
992 switch (iSegReg)
993 {
994 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegLimitV86Cs;
995 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ds;
996 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegLimitV86Es;
997 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegLimitV86Fs;
998 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegLimitV86Gs;
999 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegLimitV86Ss;
1000 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_3);
1001 }
1002}
1003
1004
1005/**
1006 * Gets the instruction diagnostic for segment attribute checks during VM-entry of a
1007 * nested-guest that is in Virtual-8086 mode.
1008 *
1009 * @param iSegReg The segment index (X86_SREG_XXX).
1010 */
1011static VMXVDIAG iemVmxGetDiagVmentrySegAttrV86(unsigned iSegReg) RT_NOEXCEPT
1012{
1013 switch (iSegReg)
1014 {
1015 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrV86Cs;
1016 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ds;
1017 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrV86Es;
1018 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrV86Fs;
1019 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrV86Gs;
1020 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrV86Ss;
1021 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_4);
1022 }
1023}
1024
1025
1026/**
1027 * Gets the instruction diagnostic for segment attributes reserved bits failure
1028 * during VM-entry of a nested-guest.
1029 *
1030 * @param iSegReg The segment index (X86_SREG_XXX).
1031 */
1032static VMXVDIAG iemVmxGetDiagVmentrySegAttrRsvd(unsigned iSegReg) RT_NOEXCEPT
1033{
1034 switch (iSegReg)
1035 {
1036 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdCs;
1037 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdDs;
1038 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrRsvdEs;
1039 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdFs;
1040 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdGs;
1041 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrRsvdSs;
1042 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_5);
1043 }
1044}
1045
1046
1047/**
1048 * Gets the instruction diagnostic for segment attributes descriptor-type
1049 * (code/segment or system) failure during VM-entry of a nested-guest.
1050 *
1051 * @param iSegReg The segment index (X86_SREG_XXX).
1052 */
1053static VMXVDIAG iemVmxGetDiagVmentrySegAttrDescType(unsigned iSegReg) RT_NOEXCEPT
1054{
1055 switch (iSegReg)
1056 {
1057 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeCs;
1058 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeDs;
1059 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeEs;
1060 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeFs;
1061 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeGs;
1062 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDescTypeSs;
1063 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_6);
1064 }
1065}
1066
1067
1068/**
1069 * Gets the instruction diagnostic for segment attributes descriptor-type
1070 * (code/segment or system) failure during VM-entry of a nested-guest.
1071 *
1072 * @param iSegReg The segment index (X86_SREG_XXX).
1073 */
1074static VMXVDIAG iemVmxGetDiagVmentrySegAttrPresent(unsigned iSegReg) RT_NOEXCEPT
1075{
1076 switch (iSegReg)
1077 {
1078 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrPresentCs;
1079 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrPresentDs;
1080 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrPresentEs;
1081 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrPresentFs;
1082 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrPresentGs;
1083 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrPresentSs;
1084 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_7);
1085 }
1086}
1087
1088
1089/**
1090 * Gets the instruction diagnostic for segment attribute granularity failure during
1091 * VM-entry of a nested-guest.
1092 *
1093 * @param iSegReg The segment index (X86_SREG_XXX).
1094 */
1095static VMXVDIAG iemVmxGetDiagVmentrySegAttrGran(unsigned iSegReg) RT_NOEXCEPT
1096{
1097 switch (iSegReg)
1098 {
1099 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrGranCs;
1100 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrGranDs;
1101 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrGranEs;
1102 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrGranFs;
1103 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrGranGs;
1104 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrGranSs;
1105 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_8);
1106 }
1107}
1108
1109/**
1110 * Gets the instruction diagnostic for segment attribute DPL/RPL failure during
1111 * VM-entry of a nested-guest.
1112 *
1113 * @param iSegReg The segment index (X86_SREG_XXX).
1114 */
1115static VMXVDIAG iemVmxGetDiagVmentrySegAttrDplRpl(unsigned iSegReg) RT_NOEXCEPT
1116{
1117 switch (iSegReg)
1118 {
1119 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplCs;
1120 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplDs;
1121 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrDplRplEs;
1122 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplFs;
1123 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplGs;
1124 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrDplRplSs;
1125 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_9);
1126 }
1127}
1128
1129
1130/**
1131 * Gets the instruction diagnostic for segment attribute type accessed failure
1132 * during VM-entry of a nested-guest.
1133 *
1134 * @param iSegReg The segment index (X86_SREG_XXX).
1135 */
1136static VMXVDIAG iemVmxGetDiagVmentrySegAttrTypeAcc(unsigned iSegReg) RT_NOEXCEPT
1137{
1138 switch (iSegReg)
1139 {
1140 case X86_SREG_CS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccCs;
1141 case X86_SREG_DS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccDs;
1142 case X86_SREG_ES: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccEs;
1143 case X86_SREG_FS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccFs;
1144 case X86_SREG_GS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccGs;
1145 case X86_SREG_SS: return kVmxVDiag_Vmentry_GuestSegAttrTypeAccSs;
1146 IEM_NOT_REACHED_DEFAULT_CASE_RET2(kVmxVDiag_Ipe_10);
1147 }
1148}
1149
1150
1151/**
1152 * Saves the guest control registers, debug registers and some MSRs are part of
1153 * VM-exit.
1154 *
1155 * @param pVCpu The cross context virtual CPU structure.
1156 */
1157static void iemVmxVmexitSaveGuestControlRegsMsrs(PVMCPUCC pVCpu) RT_NOEXCEPT
1158{
1159 /*
1160 * Saves the guest control registers, debug registers and some MSRs.
1161 * See Intel spec. 27.3.1 "Saving Control Registers, Debug Registers and MSRs".
1162 */
1163 PVMXVVMCS pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1164
1165 /* Save control registers. */
1166 pVmcs->u64GuestCr0.u = pVCpu->cpum.GstCtx.cr0;
1167 pVmcs->u64GuestCr3.u = pVCpu->cpum.GstCtx.cr3;
1168 pVmcs->u64GuestCr4.u = pVCpu->cpum.GstCtx.cr4;
1169
1170 /* Save SYSENTER CS, ESP, EIP. */
1171 pVmcs->u32GuestSysenterCS = pVCpu->cpum.GstCtx.SysEnter.cs;
1172 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1173 {
1174 pVmcs->u64GuestSysenterEsp.u = pVCpu->cpum.GstCtx.SysEnter.esp;
1175 pVmcs->u64GuestSysenterEip.u = pVCpu->cpum.GstCtx.SysEnter.eip;
1176 }
1177 else
1178 {
1179 pVmcs->u64GuestSysenterEsp.s.Lo = pVCpu->cpum.GstCtx.SysEnter.esp;
1180 pVmcs->u64GuestSysenterEip.s.Lo = pVCpu->cpum.GstCtx.SysEnter.eip;
1181 }
1182
1183 /* Save debug registers (DR7 and IA32_DEBUGCTL MSR). */
1184 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_DEBUG)
1185 {
1186 pVmcs->u64GuestDr7.u = pVCpu->cpum.GstCtx.dr[7];
1187 /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
1188 }
1189
1190 /* Save PAT MSR. */
1191 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PAT_MSR)
1192 pVmcs->u64GuestPatMsr.u = pVCpu->cpum.GstCtx.msrPAT;
1193
1194 /* Save EFER MSR. */
1195 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_EFER_MSR)
1196 pVmcs->u64GuestEferMsr.u = pVCpu->cpum.GstCtx.msrEFER;
1197
1198 /* We don't support clearing IA32_BNDCFGS MSR yet. */
1199 Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_CLEAR_BNDCFGS_MSR));
1200
1201 /* Nothing to do for SMBASE register - We don't support SMM yet. */
1202}
1203
1204
1205/**
1206 * Saves the guest force-flags in preparation of entering the nested-guest.
1207 *
1208 * @param pVCpu The cross context virtual CPU structure.
1209 */
1210static void iemVmxVmentrySaveNmiBlockingFF(PVMCPUCC pVCpu) RT_NOEXCEPT
1211{
1212 /* We shouldn't be called multiple times during VM-entry. */
1213 Assert(pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit == 0);
1214
1215 /* MTF should not be set outside VMX non-root mode. */
1216 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
1217
1218 /*
1219 * Preserve the required force-flags.
1220 *
1221 * We cache and clear force-flags that would affect the execution of the
1222 * nested-guest. Cached flags are then restored while returning to the guest
1223 * if necessary.
1224 *
1225 * - VMCPU_FF_INHIBIT_INTERRUPTS need not be cached as it only affects
1226 * interrupts until the completion of the current VMLAUNCH/VMRESUME
1227 * instruction. Interrupt inhibition for any nested-guest instruction
1228 * is supplied by the guest-interruptibility state VMCS field and will
1229 * be set up as part of loading the guest state. Technically
1230 * blocking-by-STI is possible with VMLAUNCH/VMRESUME but we currently
1231 * disallow it since we can't distinguish it from blocking-by-MovSS
1232 * and no nested-hypervisor we care about uses STI immediately
1233 * followed by VMLAUNCH/VMRESUME.
1234 *
1235 * - VMCPU_FF_BLOCK_NMIS needs to be cached as VM-exits caused before
1236 * successful VM-entry (due to invalid guest-state) need to continue
1237 * blocking NMIs if it was in effect before VM-entry.
1238 *
1239 * - MTF need not be preserved as it's used only in VMX non-root mode and
1240 * is supplied through the VM-execution controls.
1241 *
1242 * The remaining FFs (e.g. timers, APIC updates) can stay in place so that
1243 * we will be able to generate interrupts that may cause VM-exits for
1244 * the nested-guest.
1245 */
1246 pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit = pVCpu->cpum.GstCtx.eflags.uBoth & CPUMCTX_INHIBIT_NMI;
1247}
1248
1249
1250/**
1251 * Restores the guest force-flags in preparation of exiting the nested-guest.
1252 *
1253 * @param pVCpu The cross context virtual CPU structure.
1254 */
1255static void iemVmxVmexitRestoreNmiBlockingFF(PVMCPUCC pVCpu) RT_NOEXCEPT
1256{
1257 /** @todo r=bird: why aren't we clearing the nested guest flags first here?
1258 * If there is some other code doing that already, it would be great
1259 * to point to it here... */
1260 pVCpu->cpum.GstCtx.eflags.uBoth |= pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit;
1261 pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit = 0;
1262}
1263
1264
1265/**
1266 * Performs the VMX transition to/from VMX non-root mode.
1267 *
1268 * @param pVCpu The cross context virtual CPU structure.
1269*/
1270static int iemVmxTransition(PVMCPUCC pVCpu) RT_NOEXCEPT
1271{
1272 /*
1273 * Inform PGM about paging mode changes.
1274 * We include X86_CR0_PE because PGM doesn't handle paged-real mode yet,
1275 * see comment in iemMemPageTranslateAndCheckAccess().
1276 */
1277 int rc = PGMChangeMode(pVCpu, pVCpu->cpum.GstCtx.cr0 | X86_CR0_PE, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.msrEFER,
1278 true /* fForce */);
1279 if (RT_SUCCESS(rc))
1280 { /* likely */ }
1281 else
1282 return rc;
1283
1284 /* Invalidate IEM TLBs now that we've forced a PGM mode change. */
1285 IEMTlbInvalidateAll(pVCpu);
1286
1287 /* Inform CPUM (recompiler), can later be removed. */
1288 CPUMSetChangedFlags(pVCpu, CPUM_CHANGED_ALL);
1289
1290 /* Re-initialize IEM cache/state after the drastic mode switch. */
1291 iemReInitExec(pVCpu);
1292 return rc;
1293}
1294
1295
1296/**
1297 * Calculates the current VMX-preemption timer value.
1298 *
1299 * @returns The current VMX-preemption timer value.
1300 * @param pVCpu The cross context virtual CPU structure.
1301 */
1302static uint32_t iemVmxCalcPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT
1303{
1304 /*
1305 * Assume the following:
1306 * PreemptTimerShift = 5
1307 * VmcsPreemptTimer = 2 (i.e. need to decrement by 1 every 2 * RT_BIT(5) = 20000 TSC ticks)
1308 * EntryTick = 50000 (TSC at time of VM-entry)
1309 *
1310 * CurTick Delta PreemptTimerVal
1311 * ----------------------------------
1312 * 60000 10000 2
1313 * 80000 30000 1
1314 * 90000 40000 0 -> VM-exit.
1315 *
1316 * If Delta >= VmcsPreemptTimer * RT_BIT(PreemptTimerShift) cause a VMX-preemption timer VM-exit.
1317 * The saved VMX-preemption timer value is calculated as follows:
1318 * PreemptTimerVal = VmcsPreemptTimer - (Delta / (VmcsPreemptTimer * RT_BIT(PreemptTimerShift)))
1319 * E.g.:
1320 * Delta = 10000
1321 * Tmp = 10000 / (2 * 10000) = 0.5
1322 * NewPt = 2 - 0.5 = 2
1323 * Delta = 30000
1324 * Tmp = 30000 / (2 * 10000) = 1.5
1325 * NewPt = 2 - 1.5 = 1
1326 * Delta = 40000
1327 * Tmp = 40000 / 20000 = 2
1328 * NewPt = 2 - 2 = 0
1329 */
1330 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
1331 uint32_t const uVmcsPreemptVal = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PreemptTimer;
1332 if (uVmcsPreemptVal > 0)
1333 {
1334 uint64_t const uCurTick = TMCpuTickGetNoCheck(pVCpu);
1335 uint64_t const uEntryTick = pVCpu->cpum.GstCtx.hwvirt.vmx.uEntryTick;
1336 uint64_t const uDelta = uCurTick - uEntryTick;
1337 uint32_t const uPreemptTimer = uVmcsPreemptVal
1338 - ASMDivU64ByU32RetU32(uDelta, uVmcsPreemptVal * RT_BIT(VMX_V_PREEMPT_TIMER_SHIFT));
1339 return uPreemptTimer;
1340 }
1341 return 0;
1342}
1343
1344
1345/**
1346 * Saves guest segment registers, GDTR, IDTR, LDTR, TR as part of VM-exit.
1347 *
1348 * @param pVCpu The cross context virtual CPU structure.
1349 */
1350static void iemVmxVmexitSaveGuestSegRegs(PVMCPUCC pVCpu) RT_NOEXCEPT
1351{
1352 /*
1353 * Save guest segment registers, GDTR, IDTR, LDTR, TR.
1354 * See Intel spec 27.3.2 "Saving Segment Registers and Descriptor-Table Registers".
1355 */
1356 /* CS, SS, ES, DS, FS, GS. */
1357 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1358 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
1359 {
1360 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
1361 if (!pSelReg->Attr.n.u1Unusable)
1362 iemVmxVmcsSetGuestSegReg(pVmcs, iSegReg, pSelReg);
1363 else
1364 {
1365 /*
1366 * For unusable segments the attributes are undefined except for CS and SS.
1367 * For the rest we don't bother preserving anything but the unusable bit.
1368 */
1369 switch (iSegReg)
1370 {
1371 case X86_SREG_CS:
1372 pVmcs->GuestCs = pSelReg->Sel;
1373 pVmcs->u64GuestCsBase.u = pSelReg->u64Base;
1374 pVmcs->u32GuestCsLimit = pSelReg->u32Limit;
1375 pVmcs->u32GuestCsAttr = pSelReg->Attr.u & ( X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
1376 | X86DESCATTR_UNUSABLE);
1377 break;
1378
1379 case X86_SREG_SS:
1380 pVmcs->GuestSs = pSelReg->Sel;
1381 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1382 pVmcs->u64GuestSsBase.u &= UINT32_C(0xffffffff);
1383 pVmcs->u32GuestSsAttr = pSelReg->Attr.u & (X86DESCATTR_DPL | X86DESCATTR_UNUSABLE);
1384 break;
1385
1386 case X86_SREG_DS:
1387 pVmcs->GuestDs = pSelReg->Sel;
1388 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1389 pVmcs->u64GuestDsBase.u &= UINT32_C(0xffffffff);
1390 pVmcs->u32GuestDsAttr = X86DESCATTR_UNUSABLE;
1391 break;
1392
1393 case X86_SREG_ES:
1394 pVmcs->GuestEs = pSelReg->Sel;
1395 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1396 pVmcs->u64GuestEsBase.u &= UINT32_C(0xffffffff);
1397 pVmcs->u32GuestEsAttr = X86DESCATTR_UNUSABLE;
1398 break;
1399
1400 case X86_SREG_FS:
1401 pVmcs->GuestFs = pSelReg->Sel;
1402 pVmcs->u64GuestFsBase.u = pSelReg->u64Base;
1403 pVmcs->u32GuestFsAttr = X86DESCATTR_UNUSABLE;
1404 break;
1405
1406 case X86_SREG_GS:
1407 pVmcs->GuestGs = pSelReg->Sel;
1408 pVmcs->u64GuestGsBase.u = pSelReg->u64Base;
1409 pVmcs->u32GuestGsAttr = X86DESCATTR_UNUSABLE;
1410 break;
1411 }
1412 }
1413 }
1414
1415 /* Segment attribute bits 31:17 and 11:8 MBZ. */
1416 uint32_t const fValidAttrMask = X86DESCATTR_TYPE | X86DESCATTR_DT | X86DESCATTR_DPL | X86DESCATTR_P
1417 | X86DESCATTR_AVL | X86DESCATTR_L | X86DESCATTR_D | X86DESCATTR_G
1418 | X86DESCATTR_UNUSABLE;
1419 /* LDTR. */
1420 {
1421 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.ldtr;
1422 pVmcs->GuestLdtr = pSelReg->Sel;
1423 pVmcs->u64GuestLdtrBase.u = pSelReg->u64Base;
1424 Assert(X86_IS_CANONICAL(pSelReg->u64Base));
1425 pVmcs->u32GuestLdtrLimit = pSelReg->u32Limit;
1426 pVmcs->u32GuestLdtrAttr = pSelReg->Attr.u & fValidAttrMask;
1427 }
1428
1429 /* TR. */
1430 {
1431 PCCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.tr;
1432 pVmcs->GuestTr = pSelReg->Sel;
1433 pVmcs->u64GuestTrBase.u = pSelReg->u64Base;
1434 pVmcs->u32GuestTrLimit = pSelReg->u32Limit;
1435 pVmcs->u32GuestTrAttr = pSelReg->Attr.u & fValidAttrMask;
1436 }
1437
1438 /* GDTR. */
1439 pVmcs->u64GuestGdtrBase.u = pVCpu->cpum.GstCtx.gdtr.pGdt;
1440 pVmcs->u32GuestGdtrLimit = pVCpu->cpum.GstCtx.gdtr.cbGdt;
1441
1442 /* IDTR. */
1443 pVmcs->u64GuestIdtrBase.u = pVCpu->cpum.GstCtx.idtr.pIdt;
1444 pVmcs->u32GuestIdtrLimit = pVCpu->cpum.GstCtx.idtr.cbIdt;
1445}
1446
1447
1448/**
1449 * Saves guest non-register state as part of VM-exit.
1450 *
1451 * @param pVCpu The cross context virtual CPU structure.
1452 * @param uExitReason The VM-exit reason.
1453 */
1454static void iemVmxVmexitSaveGuestNonRegState(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1455{
1456 /*
1457 * Save guest non-register state.
1458 * See Intel spec. 27.3.4 "Saving Non-Register State".
1459 */
1460 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1461
1462 /*
1463 * Activity state.
1464 * Most VM-exits will occur in the active state. However, if the first instruction
1465 * following the VM-entry is a HLT instruction, and the MTF VM-execution control is set,
1466 * the VM-exit will be from the HLT activity state.
1467 *
1468 * See Intel spec. 25.5.2 "Monitor Trap Flag".
1469 */
1470 /** @todo NSTVMX: Does triple-fault VM-exit reflect a shutdown activity state or
1471 * not? */
1472 EMSTATE const enmActivityState = EMGetState(pVCpu);
1473 switch (enmActivityState)
1474 {
1475 case EMSTATE_HALTED: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_HLT; break;
1476 default: pVmcs->u32GuestActivityState = VMX_VMCS_GUEST_ACTIVITY_ACTIVE; break;
1477 }
1478
1479 /*
1480 * Interruptibility-state.
1481 */
1482 /* NMI. */
1483 pVmcs->u32GuestIntrState = 0;
1484 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
1485 {
1486 if (pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking)
1487 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
1488 }
1489 else
1490 {
1491 if (CPUMAreInterruptsInhibitedByNmi(&pVCpu->cpum.GstCtx))
1492 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI;
1493 }
1494
1495 /* Blocking-by-STI. */
1496 if (!CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx))
1497 { /* probable */}
1498 else
1499 {
1500 /** @todo NSTVMX: We can't distinguish between blocking-by-MovSS and blocking-by-STI
1501 * currently. */
1502 if (pVCpu->cpum.GstCtx.rip == pVCpu->cpum.GstCtx.uRipInhibitInt)
1503 pVmcs->u32GuestIntrState |= VMX_VMCS_GUEST_INT_STATE_BLOCK_STI; /** @todo r=bird: Why the STI one? MOVSS seems to block more and the one to use. */
1504
1505 /* Clear inhibition unconditionally since we've ensured it isn't set prior to executing VMLAUNCH/VMRESUME. */
1506 CPUMClearInterruptShadow(&pVCpu->cpum.GstCtx);
1507 }
1508 /* Nothing to do for SMI/enclave. We don't support enclaves or SMM yet. */
1509
1510 /*
1511 * Pending debug exceptions.
1512 *
1513 * For VM-exits where it is not applicable, we can safely zero out the field.
1514 * For VM-exits where it is applicable, it's expected to be updated by the caller already.
1515 */
1516 if ( uExitReason != VMX_EXIT_INIT_SIGNAL
1517 && uExitReason != VMX_EXIT_SMI
1518 && uExitReason != VMX_EXIT_ERR_MACHINE_CHECK
1519 && !VMXIsVmexitTrapLike(uExitReason))
1520 {
1521 /** @todo NSTVMX: also must exclude VM-exits caused by debug exceptions when
1522 * block-by-MovSS is in effect. */
1523 pVmcs->u64GuestPendingDbgXcpts.u = 0;
1524 }
1525
1526 /*
1527 * Save the VMX-preemption timer value back into the VMCS if the feature is enabled.
1528 *
1529 * For VMX-preemption timer VM-exits, we should have already written back 0 if the
1530 * feature is supported back into the VMCS, and thus there is nothing further to do here.
1531 */
1532 if ( uExitReason != VMX_EXIT_PREEMPT_TIMER
1533 && (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
1534 pVmcs->u32PreemptTimer = iemVmxCalcPreemptTimer(pVCpu);
1535
1536 /*
1537 * Save the guest PAE PDPTEs.
1538 */
1539 if ( !CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx)
1540 || !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT))
1541 {
1542 /*
1543 * Without EPT or when the nested-guest is not using PAE paging, the values saved
1544 * in the VMCS during VM-exit are undefined. We zero them here for consistency.
1545 */
1546 pVmcs->u64GuestPdpte0.u = 0;
1547 pVmcs->u64GuestPdpte1.u = 0;
1548 pVmcs->u64GuestPdpte2.u = 0;
1549 pVmcs->u64GuestPdpte3.u = 0;
1550 }
1551 else
1552 {
1553 /*
1554 * With EPT and when the nested-guest is using PAE paging, we update the PDPTEs from
1555 * the nested-guest CPU context. Both IEM (Mov CRx) and hardware-assisted execution
1556 * of the nested-guest is expected to have updated them.
1557 */
1558 pVmcs->u64GuestPdpte0.u = pVCpu->cpum.GstCtx.aPaePdpes[0].u;
1559 pVmcs->u64GuestPdpte1.u = pVCpu->cpum.GstCtx.aPaePdpes[1].u;
1560 pVmcs->u64GuestPdpte2.u = pVCpu->cpum.GstCtx.aPaePdpes[2].u;
1561 pVmcs->u64GuestPdpte3.u = pVCpu->cpum.GstCtx.aPaePdpes[3].u;
1562 }
1563
1564 /* Clear PGM's copy of the EPT pointer for added safety. */
1565 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
1566 PGMSetGuestEptPtr(pVCpu, 0 /* uEptPtr */);
1567}
1568
1569
1570/**
1571 * Saves the guest-state as part of VM-exit.
1572 *
1573 * @returns VBox status code.
1574 * @param pVCpu The cross context virtual CPU structure.
1575 * @param uExitReason The VM-exit reason.
1576 */
1577static void iemVmxVmexitSaveGuestState(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1578{
1579 iemVmxVmexitSaveGuestControlRegsMsrs(pVCpu);
1580 iemVmxVmexitSaveGuestSegRegs(pVCpu);
1581
1582 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRip.u = pVCpu->cpum.GstCtx.rip;
1583 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRsp.u = pVCpu->cpum.GstCtx.rsp;
1584 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64GuestRFlags.u = pVCpu->cpum.GstCtx.rflags.u; /** @todo NSTVMX: Check RFLAGS.RF handling. */
1585
1586 iemVmxVmexitSaveGuestNonRegState(pVCpu, uExitReason);
1587}
1588
1589
1590/**
1591 * Saves the guest MSRs into the VM-exit MSR-store area as part of VM-exit.
1592 *
1593 * @returns VBox status code.
1594 * @param pVCpu The cross context virtual CPU structure.
1595 * @param uExitReason The VM-exit reason (for diagnostic purposes).
1596 */
1597static int iemVmxVmexitSaveGuestAutoMsrs(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1598{
1599 /*
1600 * Save guest MSRs.
1601 * See Intel spec. 27.4 "Saving MSRs".
1602 */
1603 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1604 const char * const pszFailure = "VMX-abort";
1605
1606 /*
1607 * The VM-exit MSR-store area address need not be a valid guest-physical address if the
1608 * VM-exit MSR-store count is 0. If this is the case, bail early without reading it.
1609 * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
1610 */
1611 uint32_t const cMsrs = RT_MIN(pVmcs->u32ExitMsrStoreCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea));
1612 if (!cMsrs)
1613 return VINF_SUCCESS;
1614
1615 /*
1616 * Verify the MSR auto-store count. Physical CPUs can behave unpredictably if the count
1617 * is exceeded including possibly raising #MC exceptions during VMX transition. Our
1618 * implementation causes a VMX-abort followed by a triple-fault.
1619 */
1620 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
1621 if (fIsMsrCountValid)
1622 { /* likely */ }
1623 else
1624 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreCount);
1625
1626 /*
1627 * Optimization if the nested hypervisor is using the same guest-physical page for both
1628 * the VM-entry MSR-load area as well as the VM-exit MSR store area.
1629 */
1630 PVMXAUTOMSR pMsrArea;
1631 RTGCPHYS const GCPhysVmEntryMsrLoadArea = pVmcs->u64AddrEntryMsrLoad.u;
1632 RTGCPHYS const GCPhysVmExitMsrStoreArea = pVmcs->u64AddrExitMsrStore.u;
1633 if (GCPhysVmEntryMsrLoadArea == GCPhysVmExitMsrStoreArea)
1634 pMsrArea = pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea;
1635 else
1636 {
1637 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea[0],
1638 GCPhysVmExitMsrStoreArea, cMsrs * sizeof(VMXAUTOMSR));
1639 if (RT_SUCCESS(rc))
1640 pMsrArea = pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrStoreArea;
1641 else
1642 {
1643 AssertMsgFailed(("VM-exit: Failed to read MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrStoreArea, rc));
1644 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrReadPhys);
1645 }
1646 }
1647
1648 /*
1649 * Update VM-exit MSR store area.
1650 */
1651 PVMXAUTOMSR pMsr = pMsrArea;
1652 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
1653 {
1654 if ( !pMsr->u32Reserved
1655 && pMsr->u32Msr != MSR_IA32_SMBASE
1656 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
1657 {
1658 VBOXSTRICTRC rcStrict = CPUMQueryGuestMsr(pVCpu, pMsr->u32Msr, &pMsr->u64Value);
1659 if (rcStrict == VINF_SUCCESS)
1660 continue;
1661
1662 /*
1663 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
1664 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
1665 * recording the MSR index in the auxiliary info. field and indicated further by our
1666 * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
1667 * if possible, or come up with a better, generic solution.
1668 */
1669 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1670 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_READ
1671 ? kVmxVDiag_Vmexit_MsrStoreRing3
1672 : kVmxVDiag_Vmexit_MsrStore;
1673 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
1674 }
1675 else
1676 {
1677 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1678 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStoreRsvd);
1679 }
1680 }
1681
1682 /*
1683 * Commit the VM-exit MSR store are to guest memory.
1684 */
1685 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmExitMsrStoreArea, pMsrArea, cMsrs * sizeof(VMXAUTOMSR));
1686 if (RT_SUCCESS(rc))
1687 return VINF_SUCCESS;
1688
1689 NOREF(uExitReason);
1690 NOREF(pszFailure);
1691
1692 AssertMsgFailed(("VM-exit: Failed to write MSR auto-store area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrStoreArea, rc));
1693 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrStorePtrWritePhys);
1694}
1695
1696
1697/**
1698 * Performs a VMX abort (due to an fatal error during VM-exit).
1699 *
1700 * @returns Strict VBox status code.
1701 * @param pVCpu The cross context virtual CPU structure.
1702 * @param enmAbort The VMX abort reason.
1703 */
1704static VBOXSTRICTRC iemVmxAbort(PVMCPUCC pVCpu, VMXABORT enmAbort) RT_NOEXCEPT
1705{
1706 /*
1707 * Perform the VMX abort.
1708 * See Intel spec. 27.7 "VMX Aborts".
1709 */
1710 LogFunc(("enmAbort=%u (%s) -> RESET\n", enmAbort, VMXGetAbortDesc(enmAbort)));
1711
1712 /* We don't support SMX yet. */
1713 pVCpu->cpum.GstCtx.hwvirt.vmx.enmAbort = enmAbort;
1714 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
1715 {
1716 RTGCPHYS const GCPhysVmcs = IEM_VMX_GET_CURRENT_VMCS(pVCpu);
1717 uint32_t const offVmxAbort = RT_UOFFSETOF(VMXVVMCS, enmVmxAbort);
1718 PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + offVmxAbort, &enmAbort, sizeof(enmAbort));
1719 }
1720
1721 return VINF_EM_TRIPLE_FAULT;
1722}
1723
1724
1725/**
1726 * Loads host control registers, debug registers and MSRs as part of VM-exit.
1727 *
1728 * @param pVCpu The cross context virtual CPU structure.
1729 */
1730static void iemVmxVmexitLoadHostControlRegsMsrs(PVMCPUCC pVCpu) RT_NOEXCEPT
1731{
1732 /*
1733 * Load host control registers, debug registers and MSRs.
1734 * See Intel spec. 27.5.1 "Loading Host Control Registers, Debug Registers, MSRs".
1735 */
1736 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1737 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1738
1739 /* CR0. */
1740 {
1741 /* Bits 63:32, 28:19, 17, 15:6, ET, CD, NW and CR0 fixed bits are not modified. */
1742 uint64_t const fCr0IgnMask = VMX_EXIT_HOST_CR0_IGNORE_MASK;
1743 uint64_t const uHostCr0 = pVmcs->u64HostCr0.u;
1744 uint64_t const uGuestCr0 = pVCpu->cpum.GstCtx.cr0;
1745 uint64_t const uValidHostCr0 = (uHostCr0 & ~fCr0IgnMask) | (uGuestCr0 & fCr0IgnMask);
1746
1747 /* Verify we have not modified CR0 fixed bits in VMX operation. */
1748#ifdef VBOX_STRICT
1749 uint64_t const uCr0Mb1 = iemVmxGetCr0Fixed0(pVCpu, true /* fVmxNonRootMode */);
1750 bool const fUx = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
1751 AssertMsg( (uValidHostCr0 & uCr0Mb1) == uCr0Mb1
1752 && (uValidHostCr0 & ~VMX_V_CR0_FIXED1) == 0,
1753 ("host=%#RX64 guest=%#RX64 mb1=%#RX64 valid_host_cr0=%#RX64 fUx=%RTbool\n",
1754 uHostCr0, uGuestCr0, uCr0Mb1, uValidHostCr0, fUx));
1755#endif
1756 Assert(!(uValidHostCr0 >> 32));
1757 CPUMSetGuestCR0(pVCpu, uValidHostCr0);
1758 }
1759
1760 /* CR4. */
1761 {
1762 /* CR4 fixed bits are not modified. */
1763 uint64_t const uCr4Mb1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
1764 uint64_t const uCr4Mb0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
1765 uint64_t const uHostCr4 = pVmcs->u64HostCr4.u;
1766 uint64_t uValidHostCr4 = (uHostCr4 & uCr4Mb0) | uCr4Mb1;
1767 if (fHostInLongMode)
1768 uValidHostCr4 |= X86_CR4_PAE;
1769 else
1770 uValidHostCr4 &= ~(uint64_t)X86_CR4_PCIDE;
1771
1772 /* Verify we have not modified CR4 fixed bits in VMX non-root operation. */
1773 AssertMsg( (uValidHostCr4 & uCr4Mb1) == uCr4Mb1
1774 && (uValidHostCr4 & ~uCr4Mb0) == 0,
1775 ("host=%#RX64 guest=%#RX64, uCr4Mb1=%#RX64 uCr4Mb0=%#RX64 valid_host_cr4=%#RX64\n",
1776 uHostCr4, pVCpu->cpum.GstCtx.cr4, uCr4Mb1, uCr4Mb0, uValidHostCr4));
1777 CPUMSetGuestCR4(pVCpu, uValidHostCr4);
1778 }
1779
1780 /* CR3 (host value validated while checking host-state during VM-entry). */
1781 pVCpu->cpum.GstCtx.cr3 = pVmcs->u64HostCr3.u;
1782
1783 /* DR7. */
1784 pVCpu->cpum.GstCtx.dr[7] = X86_DR7_INIT_VAL;
1785
1786 /** @todo NSTVMX: Support IA32_DEBUGCTL MSR */
1787
1788 /* Save SYSENTER CS, ESP, EIP (host value validated while checking host-state during VM-entry). */
1789 pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64HostSysenterEip.u;
1790 pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64HostSysenterEsp.u;
1791 pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32HostSysenterCs;
1792
1793 /* FS, GS bases are loaded later while we load host segment registers. */
1794
1795 /* EFER MSR (host value validated while checking host-state during VM-entry). */
1796 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
1797 pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64HostEferMsr.u;
1798 else if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
1799 {
1800 if (fHostInLongMode)
1801 pVCpu->cpum.GstCtx.msrEFER |= (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
1802 else
1803 pVCpu->cpum.GstCtx.msrEFER &= ~(MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
1804 }
1805
1806 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
1807
1808 /* PAT MSR (host value is validated while checking host-state during VM-entry). */
1809 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
1810 pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64HostPatMsr.u;
1811
1812 /* We don't support IA32_BNDCFGS MSR yet. */
1813}
1814
1815
1816/**
1817 * Loads host segment registers, GDTR, IDTR, LDTR and TR as part of VM-exit.
1818 *
1819 * @param pVCpu The cross context virtual CPU structure.
1820 */
1821static void iemVmxVmexitLoadHostSegRegs(PVMCPUCC pVCpu) RT_NOEXCEPT
1822{
1823 /*
1824 * Load host segment registers, GDTR, IDTR, LDTR and TR.
1825 * See Intel spec. 27.5.2 "Loading Host Segment and Descriptor-Table Registers".
1826 *
1827 * Warning! Be careful to not touch fields that are reserved by VT-x,
1828 * e.g. segment limit high bits stored in segment attributes (in bits 11:8).
1829 */
1830 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1831 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
1832
1833 /* CS, SS, ES, DS, FS, GS. */
1834 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
1835 {
1836 RTSEL const HostSel = iemVmxVmcsGetHostSelReg(pVmcs, iSegReg);
1837 bool const fUnusable = RT_BOOL(HostSel == 0);
1838 PCPUMSELREG pSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
1839
1840 /* Selector. */
1841 pSelReg->Sel = HostSel;
1842 pSelReg->ValidSel = HostSel;
1843 pSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
1844
1845 /* Limit. */
1846 pSelReg->u32Limit = 0xffffffff;
1847
1848 /* Base. */
1849 pSelReg->u64Base = 0;
1850
1851 /* Attributes. */
1852 if (iSegReg == X86_SREG_CS)
1853 {
1854 pSelReg->Attr.n.u4Type = X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED;
1855 pSelReg->Attr.n.u1DescType = 1;
1856 pSelReg->Attr.n.u2Dpl = 0;
1857 pSelReg->Attr.n.u1Present = 1;
1858 pSelReg->Attr.n.u1Long = fHostInLongMode;
1859 pSelReg->Attr.n.u1DefBig = !fHostInLongMode;
1860 pSelReg->Attr.n.u1Granularity = 1;
1861 Assert(!pSelReg->Attr.n.u1Unusable);
1862 Assert(!fUnusable);
1863 }
1864 else
1865 {
1866 pSelReg->Attr.n.u4Type = X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED;
1867 pSelReg->Attr.n.u1DescType = 1;
1868 pSelReg->Attr.n.u2Dpl = 0;
1869 pSelReg->Attr.n.u1Present = 1;
1870 pSelReg->Attr.n.u1DefBig = 1;
1871 pSelReg->Attr.n.u1Granularity = 1;
1872 pSelReg->Attr.n.u1Unusable = fUnusable;
1873 }
1874 }
1875
1876 /* FS base. */
1877 if ( !pVCpu->cpum.GstCtx.fs.Attr.n.u1Unusable
1878 || fHostInLongMode)
1879 {
1880 Assert(X86_IS_CANONICAL(pVmcs->u64HostFsBase.u));
1881 pVCpu->cpum.GstCtx.fs.u64Base = pVmcs->u64HostFsBase.u;
1882 }
1883
1884 /* GS base. */
1885 if ( !pVCpu->cpum.GstCtx.gs.Attr.n.u1Unusable
1886 || fHostInLongMode)
1887 {
1888 Assert(X86_IS_CANONICAL(pVmcs->u64HostGsBase.u));
1889 pVCpu->cpum.GstCtx.gs.u64Base = pVmcs->u64HostGsBase.u;
1890 }
1891
1892 /* TR. */
1893 Assert(X86_IS_CANONICAL(pVmcs->u64HostTrBase.u));
1894 Assert(!pVCpu->cpum.GstCtx.tr.Attr.n.u1Unusable);
1895 pVCpu->cpum.GstCtx.tr.Sel = pVmcs->HostTr;
1896 pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->HostTr;
1897 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
1898 pVCpu->cpum.GstCtx.tr.u32Limit = X86_SEL_TYPE_SYS_386_TSS_LIMIT_MIN;
1899 pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64HostTrBase.u;
1900 pVCpu->cpum.GstCtx.tr.Attr.n.u4Type = X86_SEL_TYPE_SYS_386_TSS_BUSY;
1901 pVCpu->cpum.GstCtx.tr.Attr.n.u1DescType = 0;
1902 pVCpu->cpum.GstCtx.tr.Attr.n.u2Dpl = 0;
1903 pVCpu->cpum.GstCtx.tr.Attr.n.u1Present = 1;
1904 pVCpu->cpum.GstCtx.tr.Attr.n.u1DefBig = 0;
1905 pVCpu->cpum.GstCtx.tr.Attr.n.u1Granularity = 0;
1906
1907 /* LDTR (Warning! do not touch the base and limits here). */
1908 pVCpu->cpum.GstCtx.ldtr.Sel = 0;
1909 pVCpu->cpum.GstCtx.ldtr.ValidSel = 0;
1910 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
1911 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
1912
1913 /* GDTR. */
1914 Assert(X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u));
1915 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64HostGdtrBase.u;
1916 pVCpu->cpum.GstCtx.gdtr.cbGdt = 0xffff;
1917
1918 /* IDTR.*/
1919 Assert(X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u));
1920 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64HostIdtrBase.u;
1921 pVCpu->cpum.GstCtx.idtr.cbIdt = 0xffff;
1922}
1923
1924
1925/**
1926 * Loads the host MSRs from the VM-exit MSR-load area as part of VM-exit.
1927 *
1928 * @returns VBox status code.
1929 * @param pVCpu The cross context virtual CPU structure.
1930 * @param uExitReason The VMX instruction name (for logging purposes).
1931 */
1932static int iemVmxVmexitLoadHostAutoMsrs(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
1933{
1934 /*
1935 * Load host MSRs.
1936 * See Intel spec. 27.6 "Loading MSRs".
1937 */
1938 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
1939 const char * const pszFailure = "VMX-abort";
1940
1941 /*
1942 * The VM-exit MSR-load area address need not be a valid guest-physical address if the
1943 * VM-exit MSR load count is 0. If this is the case, bail early without reading it.
1944 * See Intel spec. 24.7.2 "VM-Exit Controls for MSRs".
1945 */
1946 uint32_t const cMsrs = RT_MIN(pVmcs->u32ExitMsrLoadCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea));
1947 if (!cMsrs)
1948 return VINF_SUCCESS;
1949
1950 /*
1951 * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count
1952 * is exceeded including possibly raising #MC exceptions during VMX transition. Our
1953 * implementation causes a VMX-abort followed by a triple-fault.
1954 */
1955 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
1956 if (fIsMsrCountValid)
1957 { /* likely */ }
1958 else
1959 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadCount);
1960
1961 RTGCPHYS const GCPhysVmExitMsrLoadArea = pVmcs->u64AddrExitMsrLoad.u;
1962 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea[0],
1963 GCPhysVmExitMsrLoadArea, cMsrs * sizeof(VMXAUTOMSR));
1964 if (RT_SUCCESS(rc))
1965 {
1966 PCVMXAUTOMSR pMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.aExitMsrLoadArea;
1967 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
1968 {
1969 if ( !pMsr->u32Reserved
1970 && pMsr->u32Msr != MSR_K8_FS_BASE
1971 && pMsr->u32Msr != MSR_K8_GS_BASE
1972 && pMsr->u32Msr != MSR_K6_EFER
1973 && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
1974 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
1975 {
1976 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
1977 if (rcStrict == VINF_SUCCESS)
1978 continue;
1979
1980 /*
1981 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-exit.
1982 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VMX-abort
1983 * recording the MSR index in the auxiliary info. field and indicated further by our
1984 * own, specific diagnostic code. Later, we can try implement handling of the MSR in ring-0
1985 * if possible, or come up with a better, generic solution.
1986 */
1987 pVCpu->cpum.GstCtx.hwvirt.vmx.uAbortAux = pMsr->u32Msr;
1988 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
1989 ? kVmxVDiag_Vmexit_MsrLoadRing3
1990 : kVmxVDiag_Vmexit_MsrLoad;
1991 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, enmDiag);
1992 }
1993 else
1994 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadRsvd);
1995 }
1996 }
1997 else
1998 {
1999 AssertMsgFailed(("VM-exit: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", GCPhysVmExitMsrLoadArea, rc));
2000 IEM_VMX_VMEXIT_FAILED_RET(pVCpu, uExitReason, pszFailure, kVmxVDiag_Vmexit_MsrLoadPtrReadPhys);
2001 }
2002
2003 NOREF(uExitReason);
2004 NOREF(pszFailure);
2005 return VINF_SUCCESS;
2006}
2007
2008
2009/**
2010 * Loads the host state as part of VM-exit.
2011 *
2012 * @returns Strict VBox status code.
2013 * @param pVCpu The cross context virtual CPU structure.
2014 * @param uExitReason The VM-exit reason (for logging purposes).
2015 */
2016static VBOXSTRICTRC iemVmxVmexitLoadHostState(PVMCPUCC pVCpu, uint32_t uExitReason) RT_NOEXCEPT
2017{
2018 /*
2019 * Load host state.
2020 * See Intel spec. 27.5 "Loading Host State".
2021 */
2022 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
2023 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
2024
2025 /* We cannot return from a long-mode guest to a host that is not in long mode. */
2026 if ( CPUMIsGuestInLongMode(pVCpu)
2027 && !fHostInLongMode)
2028 {
2029 Log(("VM-exit from long-mode guest to host not in long-mode -> VMX-Abort\n"));
2030 return iemVmxAbort(pVCpu, VMXABORT_HOST_NOT_IN_LONG_MODE);
2031 }
2032
2033 /*
2034 * Check host PAE PDPTEs prior to loading the host state.
2035 * See Intel spec. 26.5.4 "Checking and Loading Host Page-Directory-Pointer-Table Entries".
2036 */
2037 if ( (pVmcs->u64HostCr4.u & X86_CR4_PAE)
2038 && !fHostInLongMode
2039 && ( !CPUMIsGuestInPAEModeEx(&pVCpu->cpum.GstCtx)
2040 || pVmcs->u64HostCr3.u != pVCpu->cpum.GstCtx.cr3))
2041 {
2042 int const rc = PGMGstMapPaePdpesAtCr3(pVCpu, pVmcs->u64HostCr3.u);
2043 if (RT_SUCCESS(rc))
2044 { /* likely*/ }
2045 else
2046 {
2047 IEM_VMX_VMEXIT_FAILED(pVCpu, uExitReason, "VMX-abort", kVmxVDiag_Vmexit_HostPdpte);
2048 return iemVmxAbort(pVCpu, VMXBOART_HOST_PDPTE);
2049 }
2050 }
2051
2052 iemVmxVmexitLoadHostControlRegsMsrs(pVCpu);
2053 iemVmxVmexitLoadHostSegRegs(pVCpu);
2054
2055 /*
2056 * Load host RIP, RSP and RFLAGS.
2057 * See Intel spec. 27.5.3 "Loading Host RIP, RSP and RFLAGS"
2058 */
2059 pVCpu->cpum.GstCtx.rip = pVmcs->u64HostRip.u;
2060 pVCpu->cpum.GstCtx.rsp = pVmcs->u64HostRsp.u;
2061 pVCpu->cpum.GstCtx.rflags.u = X86_EFL_1;
2062
2063 /* Clear address range monitoring. */
2064 EMMonitorWaitClear(pVCpu);
2065
2066 /* Perform the VMX transition (PGM updates). */
2067 VBOXSTRICTRC rcStrict = iemVmxTransition(pVCpu);
2068 if (rcStrict == VINF_SUCCESS)
2069 { /* likely */ }
2070 else if (RT_SUCCESS(rcStrict))
2071 {
2072 Log3(("VM-exit: iemVmxTransition returns %Rrc (uExitReason=%u) -> Setting passup status\n", VBOXSTRICTRC_VAL(rcStrict),
2073 uExitReason));
2074 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
2075 }
2076 else
2077 {
2078 Log3(("VM-exit: iemVmxTransition failed! rc=%Rrc (uExitReason=%u)\n", VBOXSTRICTRC_VAL(rcStrict), uExitReason));
2079 return VBOXSTRICTRC_VAL(rcStrict);
2080 }
2081
2082 Assert(rcStrict == VINF_SUCCESS);
2083
2084 /* Load MSRs from the VM-exit auto-load MSR area. */
2085 int rc = iemVmxVmexitLoadHostAutoMsrs(pVCpu, uExitReason);
2086 if (RT_FAILURE(rc))
2087 {
2088 Log(("VM-exit failed while loading host MSRs -> VMX-Abort\n"));
2089 return iemVmxAbort(pVCpu, VMXABORT_LOAD_HOST_MSR);
2090 }
2091 return VINF_SUCCESS;
2092}
2093
2094
2095/**
2096 * Gets VM-exit instruction information along with any displacement for an
2097 * instruction VM-exit.
2098 *
2099 * @returns The VM-exit instruction information.
2100 * @param pVCpu The cross context virtual CPU structure.
2101 * @param uExitReason The VM-exit reason.
2102 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_XXX).
2103 * @param pGCPtrDisp Where to store the displacement field. Optional, can be
2104 * NULL.
2105 */
2106static uint32_t iemVmxGetExitInstrInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, PRTGCPTR pGCPtrDisp) RT_NOEXCEPT
2107{
2108 RTGCPTR GCPtrDisp;
2109 VMXEXITINSTRINFO ExitInstrInfo;
2110 ExitInstrInfo.u = 0;
2111
2112 /*
2113 * Get and parse the ModR/M byte from our decoded opcodes.
2114 */
2115 uint8_t bRm;
2116 uint8_t const offModRm = pVCpu->iem.s.offModRm;
2117 IEM_MODRM_GET_U8(pVCpu, bRm, offModRm);
2118 if ((bRm & X86_MODRM_MOD_MASK) == (3 << X86_MODRM_MOD_SHIFT))
2119 {
2120 /*
2121 * ModR/M indicates register addressing.
2122 *
2123 * The primary/secondary register operands are reported in the iReg1 or iReg2
2124 * fields depending on whether it is a read/write form.
2125 */
2126 uint8_t idxReg1;
2127 uint8_t idxReg2;
2128 if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
2129 {
2130 idxReg1 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
2131 idxReg2 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
2132 }
2133 else
2134 {
2135 idxReg1 = (bRm & X86_MODRM_RM_MASK) | pVCpu->iem.s.uRexB;
2136 idxReg2 = ((bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK) | pVCpu->iem.s.uRexReg;
2137 }
2138 ExitInstrInfo.All.u2Scaling = 0;
2139 ExitInstrInfo.All.iReg1 = idxReg1;
2140 ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
2141 ExitInstrInfo.All.fIsRegOperand = 1;
2142 ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
2143 ExitInstrInfo.All.iSegReg = 0;
2144 ExitInstrInfo.All.iIdxReg = 0;
2145 ExitInstrInfo.All.fIdxRegInvalid = 1;
2146 ExitInstrInfo.All.iBaseReg = 0;
2147 ExitInstrInfo.All.fBaseRegInvalid = 1;
2148 ExitInstrInfo.All.iReg2 = idxReg2;
2149
2150 /* Displacement not applicable for register addressing. */
2151 GCPtrDisp = 0;
2152 }
2153 else
2154 {
2155 /*
2156 * ModR/M indicates memory addressing.
2157 */
2158 uint8_t uScale = 0;
2159 bool fBaseRegValid = false;
2160 bool fIdxRegValid = false;
2161 uint8_t iBaseReg = 0;
2162 uint8_t iIdxReg = 0;
2163 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_16BIT)
2164 {
2165 /*
2166 * Parse the ModR/M, displacement for 16-bit addressing mode.
2167 * See Intel instruction spec. Table 2-1. "16-Bit Addressing Forms with the ModR/M Byte".
2168 */
2169 uint16_t u16Disp = 0;
2170 uint8_t const offDisp = offModRm + sizeof(bRm);
2171 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 6)
2172 {
2173 /* Displacement without any registers. */
2174 IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp);
2175 }
2176 else
2177 {
2178 /* Register (index and base). */
2179 switch (bRm & X86_MODRM_RM_MASK)
2180 {
2181 case 0: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2182 case 1: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2183 case 2: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2184 case 3: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2185 case 4: fIdxRegValid = true; iIdxReg = X86_GREG_xSI; break;
2186 case 5: fIdxRegValid = true; iIdxReg = X86_GREG_xDI; break;
2187 case 6: fBaseRegValid = true; iBaseReg = X86_GREG_xBP; break;
2188 case 7: fBaseRegValid = true; iBaseReg = X86_GREG_xBX; break;
2189 }
2190
2191 /* Register + displacement. */
2192 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2193 {
2194 case 0: break;
2195 case 1: IEM_DISP_GET_S8_SX_U16(pVCpu, u16Disp, offDisp); break;
2196 case 2: IEM_DISP_GET_U16(pVCpu, u16Disp, offDisp); break;
2197 default:
2198 {
2199 /* Register addressing, handled at the beginning. */
2200 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2201 break;
2202 }
2203 }
2204 }
2205
2206 Assert(!uScale); /* There's no scaling/SIB byte for 16-bit addressing. */
2207 GCPtrDisp = (int16_t)u16Disp; /* Sign-extend the displacement. */
2208 }
2209 else if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_32BIT)
2210 {
2211 /*
2212 * Parse the ModR/M, SIB, displacement for 32-bit addressing mode.
2213 * See Intel instruction spec. Table 2-2. "32-Bit Addressing Forms with the ModR/M Byte".
2214 */
2215 uint32_t u32Disp = 0;
2216 if ((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5)
2217 {
2218 /* Displacement without any registers. */
2219 uint8_t const offDisp = offModRm + sizeof(bRm);
2220 IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
2221 }
2222 else
2223 {
2224 /* Register (and perhaps scale, index and base). */
2225 uint8_t offDisp = offModRm + sizeof(bRm);
2226 iBaseReg = (bRm & X86_MODRM_RM_MASK);
2227 if (iBaseReg == 4)
2228 {
2229 /* An SIB byte follows the ModR/M byte, parse it. */
2230 uint8_t bSib;
2231 uint8_t const offSib = offModRm + sizeof(bRm);
2232 IEM_SIB_GET_U8(pVCpu, bSib, offSib);
2233
2234 /* A displacement may follow SIB, update its offset. */
2235 offDisp += sizeof(bSib);
2236
2237 /* Get the scale. */
2238 uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
2239
2240 /* Get the index register. */
2241 iIdxReg = (bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK;
2242 fIdxRegValid = RT_BOOL(iIdxReg != 4);
2243
2244 /* Get the base register. */
2245 iBaseReg = bSib & X86_SIB_BASE_MASK;
2246 fBaseRegValid = true;
2247 if (iBaseReg == 5)
2248 {
2249 if ((bRm & X86_MODRM_MOD_MASK) == 0)
2250 {
2251 /* Mod is 0 implies a 32-bit displacement with no base. */
2252 fBaseRegValid = false;
2253 IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp);
2254 }
2255 else
2256 {
2257 /* Mod is not 0 implies an 8-bit/32-bit displacement (handled below) with an EBP base. */
2258 iBaseReg = X86_GREG_xBP;
2259 }
2260 }
2261 }
2262
2263 /* Register + displacement. */
2264 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2265 {
2266 case 0: /* Handled above */ break;
2267 case 1: IEM_DISP_GET_S8_SX_U32(pVCpu, u32Disp, offDisp); break;
2268 case 2: IEM_DISP_GET_U32(pVCpu, u32Disp, offDisp); break;
2269 default:
2270 {
2271 /* Register addressing, handled at the beginning. */
2272 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2273 break;
2274 }
2275 }
2276 }
2277
2278 GCPtrDisp = (int32_t)u32Disp; /* Sign-extend the displacement. */
2279 }
2280 else
2281 {
2282 Assert(pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT);
2283
2284 /*
2285 * Parse the ModR/M, SIB, displacement for 64-bit addressing mode.
2286 * See Intel instruction spec. 2.2 "IA-32e Mode".
2287 */
2288 uint64_t u64Disp = 0;
2289 bool const fRipRelativeAddr = RT_BOOL((bRm & (X86_MODRM_MOD_MASK | X86_MODRM_RM_MASK)) == 5);
2290 if (fRipRelativeAddr)
2291 {
2292 /*
2293 * RIP-relative addressing mode.
2294 *
2295 * The displacement is 32-bit signed implying an offset range of +/-2G.
2296 * See Intel instruction spec. 2.2.1.6 "RIP-Relative Addressing".
2297 */
2298 uint8_t const offDisp = offModRm + sizeof(bRm);
2299 IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
2300 }
2301 else
2302 {
2303 uint8_t offDisp = offModRm + sizeof(bRm);
2304
2305 /*
2306 * Register (and perhaps scale, index and base).
2307 *
2308 * REX.B extends the most-significant bit of the base register. However, REX.B
2309 * is ignored while determining whether an SIB follows the opcode. Hence, we
2310 * shall OR any REX.B bit -after- inspecting for an SIB byte below.
2311 *
2312 * See Intel instruction spec. Table 2-5. "Special Cases of REX Encodings".
2313 */
2314 iBaseReg = (bRm & X86_MODRM_RM_MASK);
2315 if (iBaseReg == 4)
2316 {
2317 /* An SIB byte follows the ModR/M byte, parse it. Displacement (if any) follows SIB. */
2318 uint8_t bSib;
2319 uint8_t const offSib = offModRm + sizeof(bRm);
2320 IEM_SIB_GET_U8(pVCpu, bSib, offSib);
2321
2322 /* Displacement may follow SIB, update its offset. */
2323 offDisp += sizeof(bSib);
2324
2325 /* Get the scale. */
2326 uScale = (bSib >> X86_SIB_SCALE_SHIFT) & X86_SIB_SCALE_SMASK;
2327
2328 /* Get the index. */
2329 iIdxReg = ((bSib >> X86_SIB_INDEX_SHIFT) & X86_SIB_INDEX_SMASK) | pVCpu->iem.s.uRexIndex;
2330 fIdxRegValid = RT_BOOL(iIdxReg != 4); /* R12 -can- be used as an index register. */
2331
2332 /* Get the base. */
2333 iBaseReg = (bSib & X86_SIB_BASE_MASK);
2334 fBaseRegValid = true;
2335 if (iBaseReg == 5)
2336 {
2337 if ((bRm & X86_MODRM_MOD_MASK) == 0)
2338 {
2339 /* Mod is 0 implies a signed 32-bit displacement with no base. */
2340 IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp);
2341 }
2342 else
2343 {
2344 /* Mod is non-zero implies an 8-bit/32-bit displacement (handled below) with RBP or R13 as base. */
2345 iBaseReg = pVCpu->iem.s.uRexB ? X86_GREG_x13 : X86_GREG_xBP;
2346 }
2347 }
2348 }
2349 iBaseReg |= pVCpu->iem.s.uRexB;
2350
2351 /* Register + displacement. */
2352 switch ((bRm >> X86_MODRM_MOD_SHIFT) & X86_MODRM_MOD_SMASK)
2353 {
2354 case 0: /* Handled above */ break;
2355 case 1: IEM_DISP_GET_S8_SX_U64(pVCpu, u64Disp, offDisp); break;
2356 case 2: IEM_DISP_GET_S32_SX_U64(pVCpu, u64Disp, offDisp); break;
2357 default:
2358 {
2359 /* Register addressing, handled at the beginning. */
2360 AssertMsgFailed(("ModR/M %#x implies register addressing, memory addressing expected!", bRm));
2361 break;
2362 }
2363 }
2364 }
2365
2366 GCPtrDisp = fRipRelativeAddr ? pVCpu->cpum.GstCtx.rip + u64Disp : u64Disp;
2367 }
2368
2369 /*
2370 * The primary or secondary register operand is reported in iReg2 depending
2371 * on whether the primary operand is in read/write form.
2372 */
2373 uint8_t idxReg2;
2374 if (!VMXINSTRID_IS_MODRM_PRIMARY_OP_W(uInstrId))
2375 {
2376 idxReg2 = bRm & X86_MODRM_RM_MASK;
2377 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
2378 idxReg2 |= pVCpu->iem.s.uRexB;
2379 }
2380 else
2381 {
2382 idxReg2 = (bRm >> X86_MODRM_REG_SHIFT) & X86_MODRM_REG_SMASK;
2383 if (pVCpu->iem.s.enmEffAddrMode == IEMMODE_64BIT)
2384 idxReg2 |= pVCpu->iem.s.uRexReg;
2385 }
2386 ExitInstrInfo.All.u2Scaling = uScale;
2387 ExitInstrInfo.All.iReg1 = 0; /* Not applicable for memory addressing. */
2388 ExitInstrInfo.All.u3AddrSize = pVCpu->iem.s.enmEffAddrMode;
2389 ExitInstrInfo.All.fIsRegOperand = 0;
2390 ExitInstrInfo.All.uOperandSize = pVCpu->iem.s.enmEffOpSize;
2391 ExitInstrInfo.All.iSegReg = pVCpu->iem.s.iEffSeg;
2392 ExitInstrInfo.All.iIdxReg = iIdxReg;
2393 ExitInstrInfo.All.fIdxRegInvalid = !fIdxRegValid;
2394 ExitInstrInfo.All.iBaseReg = iBaseReg;
2395 ExitInstrInfo.All.iIdxReg = !fBaseRegValid;
2396 ExitInstrInfo.All.iReg2 = idxReg2;
2397 }
2398
2399 /*
2400 * Handle exceptions to the norm for certain instructions.
2401 * (e.g. some instructions convey an instruction identity in place of iReg2).
2402 */
2403 switch (uExitReason)
2404 {
2405 case VMX_EXIT_GDTR_IDTR_ACCESS:
2406 {
2407 Assert(VMXINSTRID_IS_VALID(uInstrId));
2408 Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
2409 ExitInstrInfo.GdtIdt.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
2410 ExitInstrInfo.GdtIdt.u2Undef0 = 0;
2411 break;
2412 }
2413
2414 case VMX_EXIT_LDTR_TR_ACCESS:
2415 {
2416 Assert(VMXINSTRID_IS_VALID(uInstrId));
2417 Assert(VMXINSTRID_GET_ID(uInstrId) == (uInstrId & 0x3));
2418 ExitInstrInfo.LdtTr.u2InstrId = VMXINSTRID_GET_ID(uInstrId);
2419 ExitInstrInfo.LdtTr.u2Undef0 = 0;
2420 break;
2421 }
2422
2423 case VMX_EXIT_RDRAND:
2424 case VMX_EXIT_RDSEED:
2425 {
2426 Assert(ExitInstrInfo.RdrandRdseed.u2OperandSize != 3);
2427 break;
2428 }
2429 }
2430
2431 /* Update displacement and return the constructed VM-exit instruction information field. */
2432 if (pGCPtrDisp)
2433 *pGCPtrDisp = GCPtrDisp;
2434
2435 return ExitInstrInfo.u;
2436}
2437
2438
2439/**
2440 * VMX VM-exit handler.
2441 *
2442 * @returns Strict VBox status code.
2443 * @retval VINF_VMX_VMEXIT when the VM-exit is successful.
2444 * @retval VINF_EM_TRIPLE_FAULT when VM-exit is unsuccessful and leads to a
2445 * triple-fault.
2446 *
2447 * @param pVCpu The cross context virtual CPU structure.
2448 * @param uExitReason The VM-exit reason.
2449 * @param u64ExitQual The Exit qualification.
2450 *
2451 * @remarks We need not necessarily have completed VM-entry before a VM-exit is
2452 * called. Failures during VM-entry can cause VM-exits as well, so we
2453 * -cannot- assert we're in VMX non-root mode here.
2454 */
2455VBOXSTRICTRC iemVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual) RT_NOEXCEPT
2456{
2457# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
2458 RT_NOREF3(pVCpu, uExitReason, u64ExitQual);
2459 AssertMsgFailed(("VM-exit should only be invoked from ring-3 when nested-guest executes only in ring-3!\n"));
2460 return VERR_IEM_IPE_7;
2461# else
2462 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
2463
2464 /* Just count this as an exit and be done with that. */
2465 pVCpu->iem.s.cPotentialExits++;
2466
2467 /*
2468 * Import all the guest-CPU state.
2469 *
2470 * HM on returning to guest execution would have to reset up a whole lot of state
2471 * anyway, (e.g., VM-entry/VM-exit controls) and we do not ever import a part of
2472 * the state and flag reloading the entire state on re-entry. So import the entire
2473 * state here, see HMNotifyVmxNstGstVmexit() for more comments.
2474 */
2475 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_ALL);
2476
2477 /*
2478 * Ensure VM-entry interruption information valid bit is cleared.
2479 *
2480 * We do it here on every VM-exit so that even premature VM-exits (e.g. those caused
2481 * by invalid-guest state or machine-check exceptions) also clear this bit.
2482 *
2483 * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry control fields".
2484 */
2485 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
2486 pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
2487
2488 /*
2489 * Update the VM-exit reason and Exit qualification.
2490 * Other VMCS read-only data fields are expected to be updated by the caller already.
2491 */
2492 pVmcs->u32RoExitReason = uExitReason;
2493 pVmcs->u64RoExitQual.u = u64ExitQual;
2494
2495 Log2(("vmexit: reason=%u qual=%#RX64 cs:rip=%04x:%08RX64 cr0=%#RX64 cr3=%#RX64 cr4=%#RX64 eflags=%#RX32\n", uExitReason,
2496 pVmcs->u64RoExitQual.u, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0,
2497 pVCpu->cpum.GstCtx.cr3, pVCpu->cpum.GstCtx.cr4, pVCpu->cpum.GstCtx.eflags.u));
2498
2499 /*
2500 * Update the IDT-vectoring information fields if the VM-exit is triggered during delivery of an event.
2501 * See Intel spec. 27.2.4 "Information for VM Exits During Event Delivery".
2502 */
2503 {
2504 uint8_t uVector;
2505 uint32_t fFlags;
2506 uint32_t uErrCode;
2507 bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, &uVector, &fFlags, &uErrCode, NULL /* puCr2 */);
2508 if (fInEventDelivery)
2509 {
2510 /*
2511 * A VM-exit is not considered to occur during event delivery when the VM-exit is
2512 * caused by a triple-fault or the original event results in a double-fault that
2513 * causes the VM exit directly (exception bitmap). Therefore, we must not set the
2514 * original event information into the IDT-vectoring information fields.
2515 *
2516 * See Intel spec. 27.2.4 "Information for VM Exits During Event Delivery".
2517 */
2518 if ( uExitReason != VMX_EXIT_TRIPLE_FAULT
2519 && ( uExitReason != VMX_EXIT_XCPT_OR_NMI
2520 || !VMX_EXIT_INT_INFO_IS_XCPT_DF(pVmcs->u32RoExitIntInfo)))
2521 {
2522 uint8_t const uIdtVectoringType = iemVmxGetEventType(uVector, fFlags);
2523 uint8_t const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
2524 uint32_t const uIdtVectoringInfo = RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VECTOR, uVector)
2525 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_TYPE, uIdtVectoringType)
2526 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_ERR_CODE_VALID, fErrCodeValid)
2527 | RT_BF_MAKE(VMX_BF_IDT_VECTORING_INFO_VALID, 1);
2528 iemVmxVmcsSetIdtVectoringInfo(pVCpu, uIdtVectoringInfo);
2529 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, uErrCode);
2530 Log2(("vmexit: idt_info=%#RX32 idt_err_code=%#RX32 cr2=%#RX64\n", uIdtVectoringInfo, uErrCode,
2531 pVCpu->cpum.GstCtx.cr2));
2532 }
2533 }
2534 }
2535
2536 /* The following VMCS fields should always be zero since we don't support injecting SMIs into a guest. */
2537 Assert(pVmcs->u64RoIoRcx.u == 0);
2538 Assert(pVmcs->u64RoIoRsi.u == 0);
2539 Assert(pVmcs->u64RoIoRdi.u == 0);
2540 Assert(pVmcs->u64RoIoRip.u == 0);
2541
2542 /*
2543 * Save the guest state back into the VMCS.
2544 * We only need to save the state when the VM-entry was successful.
2545 */
2546 bool const fVmentryFailed = VMX_EXIT_REASON_HAS_ENTRY_FAILED(uExitReason);
2547 if (!fVmentryFailed)
2548 {
2549 /* We should not cause an NMI-window/interrupt-window VM-exit when injecting events as part of VM-entry. */
2550 if (!CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx))
2551 {
2552 Assert(uExitReason != VMX_EXIT_NMI_WINDOW);
2553 Assert(uExitReason != VMX_EXIT_INT_WINDOW);
2554 }
2555
2556 /* For exception or NMI VM-exits the VM-exit interruption info. field must be valid. */
2557 Assert(uExitReason != VMX_EXIT_XCPT_OR_NMI || VMX_EXIT_INT_INFO_IS_VALID(pVmcs->u32RoExitIntInfo));
2558
2559 /*
2560 * If we support storing EFER.LMA into IA32e-mode guest field on VM-exit, we need to do that now.
2561 * See Intel spec. 27.2 "Recording VM-exit Information And Updating VM-entry Control".
2562 *
2563 * It is not clear from the Intel spec. if this is done only when VM-entry succeeds.
2564 * If a VM-exit happens before loading guest EFER, we risk restoring the host EFER.LMA
2565 * as guest-CPU state would not been modified. Hence for now, we do this only when
2566 * the VM-entry succeeded.
2567 */
2568 /** @todo r=ramshankar: Figure out if this bit gets set to host EFER.LMA on real
2569 * hardware when VM-exit fails during VM-entry (e.g. VERR_VMX_INVALID_GUEST_STATE). */
2570 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxExitSaveEferLma)
2571 {
2572 if (pVCpu->cpum.GstCtx.msrEFER & MSR_K6_EFER_LMA)
2573 pVmcs->u32EntryCtls |= VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
2574 else
2575 pVmcs->u32EntryCtls &= ~VMX_ENTRY_CTLS_IA32E_MODE_GUEST;
2576 }
2577
2578 /*
2579 * The rest of the high bits of the VM-exit reason are only relevant when the VM-exit
2580 * occurs in enclave mode/SMM which we don't support yet.
2581 *
2582 * If we ever add support for it, we can pass just the lower bits to the functions
2583 * below, till then an assert should suffice.
2584 */
2585 Assert(!RT_HI_U16(uExitReason));
2586
2587 /* Save the guest state into the VMCS and restore guest MSRs from the auto-store guest MSR area. */
2588 iemVmxVmexitSaveGuestState(pVCpu, uExitReason);
2589 int rc = iemVmxVmexitSaveGuestAutoMsrs(pVCpu, uExitReason);
2590 if (RT_SUCCESS(rc))
2591 { /* likely */ }
2592 else
2593 return iemVmxAbort(pVCpu, VMXABORT_SAVE_GUEST_MSRS);
2594
2595 /* Clear any saved NMI-blocking state so we don't assert on next VM-entry (if it was in effect on the previous one). */
2596 pVCpu->cpum.GstCtx.hwvirt.fSavedInhibit &= ~CPUMCTX_INHIBIT_NMI;
2597 }
2598 else
2599 {
2600 /* Restore the NMI-blocking state if VM-entry failed due to invalid guest state or while loading MSRs. */
2601 uint32_t const uExitReasonBasic = VMX_EXIT_REASON_BASIC(uExitReason);
2602 if ( uExitReasonBasic == VMX_EXIT_ERR_INVALID_GUEST_STATE
2603 || uExitReasonBasic == VMX_EXIT_ERR_MSR_LOAD)
2604 iemVmxVmexitRestoreNmiBlockingFF(pVCpu);
2605 }
2606
2607 /*
2608 * Stop any running VMX-preemption timer if necessary.
2609 */
2610 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
2611 CPUMStopGuestVmxPremptTimer(pVCpu);
2612
2613 /*
2614 * Clear any pending VMX nested-guest force-flags.
2615 * These force-flags have no effect on (outer) guest execution and will
2616 * be re-evaluated and setup on the next nested-guest VM-entry.
2617 */
2618 VMCPU_FF_CLEAR_MASK(pVCpu, VMCPU_FF_VMX_ALL_MASK);
2619
2620 /*
2621 * We're no longer in nested-guest execution mode.
2622 *
2623 * It is important to do this prior to loading the host state because
2624 * PGM looks at fInVmxNonRootMode to determine if it needs to perform
2625 * second-level address translation while switching to host CR3.
2626 */
2627 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = false;
2628
2629 /* Restore the host (outer guest) state. */
2630 VBOXSTRICTRC rcStrict = iemVmxVmexitLoadHostState(pVCpu, uExitReason);
2631 if (RT_SUCCESS(rcStrict))
2632 {
2633 Assert(rcStrict == VINF_SUCCESS);
2634 rcStrict = VINF_VMX_VMEXIT;
2635 }
2636 else
2637 Log(("vmexit: Loading host-state failed. uExitReason=%u rc=%Rrc\n", uExitReason, VBOXSTRICTRC_VAL(rcStrict)));
2638
2639 if (VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
2640 {
2641 /* Notify HM that the current VMCS fields have been modified. */
2642 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
2643
2644 /* Notify HM that we've completed the VM-exit. */
2645 HMNotifyVmxNstGstVmexit(pVCpu);
2646 }
2647
2648# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
2649 /* Revert any IEM-only nested-guest execution policy, otherwise return rcStrict. */
2650 Log(("vmexit: Disabling IEM-only EM execution policy!\n"));
2651 int rcSched = EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, false);
2652 if (rcSched != VINF_SUCCESS)
2653 iemSetPassUpStatus(pVCpu, rcSched);
2654# endif
2655 return rcStrict;
2656# endif
2657}
2658
2659
2660/**
2661 * VMX VM-exit handler for VM-exits due to instruction execution.
2662 *
2663 * This is intended for instructions where the caller provides all the relevant
2664 * VM-exit information.
2665 *
2666 * @returns Strict VBox status code.
2667 * @param pVCpu The cross context virtual CPU structure.
2668 * @param pExitInfo Pointer to the VM-exit information.
2669 */
2670static VBOXSTRICTRC iemVmxVmexitInstrWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
2671{
2672 /*
2673 * For instructions where any of the following fields are not applicable:
2674 * - Exit qualification must be cleared.
2675 * - VM-exit instruction info. is undefined.
2676 * - Guest-linear address is undefined.
2677 * - Guest-physical address is undefined.
2678 *
2679 * The VM-exit instruction length is mandatory for all VM-exits that are caused by
2680 * instruction execution. For VM-exits that are not due to instruction execution this
2681 * field is undefined.
2682 *
2683 * In our implementation in IEM, all undefined fields are generally cleared. However,
2684 * if the caller supplies information (from say the physical CPU directly) it is
2685 * then possible that the undefined fields are not cleared.
2686 *
2687 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
2688 * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
2689 */
2690 Assert(pExitInfo);
2691 AssertMsg(pExitInfo->uReason <= VMX_EXIT_MAX, ("uReason=%u\n", pExitInfo->uReason));
2692 AssertMsg(pExitInfo->cbInstr >= 1 && pExitInfo->cbInstr <= 15,
2693 ("uReason=%u cbInstr=%u\n", pExitInfo->uReason, pExitInfo->cbInstr));
2694
2695 /* Update all the relevant fields from the VM-exit instruction information struct. */
2696 iemVmxVmcsSetExitInstrInfo(pVCpu, pExitInfo->InstrInfo.u);
2697 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr);
2698 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr);
2699 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
2700
2701 /* Perform the VM-exit. */
2702 return iemVmxVmexit(pVCpu, pExitInfo->uReason, pExitInfo->u64Qual);
2703}
2704
2705
2706/**
2707 * VMX VM-exit handler for VM-exits due to instruction execution.
2708 *
2709 * This is intended for instructions that only provide the VM-exit instruction
2710 * length.
2711 *
2712 * @param pVCpu The cross context virtual CPU structure.
2713 * @param uExitReason The VM-exit reason.
2714 * @param cbInstr The instruction length in bytes.
2715 */
2716VBOXSTRICTRC iemVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr) RT_NOEXCEPT
2717{
2718#ifdef VBOX_STRICT
2719 /*
2720 * To prevent us from shooting ourselves in the foot.
2721 * The follow instructions should convey more than just the instruction length.
2722 */
2723 switch (uExitReason)
2724 {
2725 case VMX_EXIT_INVEPT:
2726 case VMX_EXIT_INVPCID:
2727 case VMX_EXIT_INVVPID:
2728 case VMX_EXIT_LDTR_TR_ACCESS:
2729 case VMX_EXIT_GDTR_IDTR_ACCESS:
2730 case VMX_EXIT_VMCLEAR:
2731 case VMX_EXIT_VMPTRLD:
2732 case VMX_EXIT_VMPTRST:
2733 case VMX_EXIT_VMREAD:
2734 case VMX_EXIT_VMWRITE:
2735 case VMX_EXIT_VMXON:
2736 case VMX_EXIT_XRSTORS:
2737 case VMX_EXIT_XSAVES:
2738 case VMX_EXIT_RDRAND:
2739 case VMX_EXIT_RDSEED:
2740 case VMX_EXIT_IO_INSTR:
2741 AssertMsgFailedReturn(("Use iemVmxVmexitInstrNeedsInfo for uExitReason=%u\n", uExitReason), VERR_IEM_IPE_5);
2742 break;
2743 }
2744#endif
2745
2746 VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_INSTR_LEN(uExitReason, cbInstr);
2747 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2748}
2749
2750
2751/**
2752 * Interface for HM and EM to emulate VM-exit due to a triple-fault.
2753 *
2754 * @returns Strict VBox status code.
2755 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2756 * @thread EMT(pVCpu)
2757 */
2758VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitTripleFault(PVMCPUCC pVCpu)
2759{
2760 VBOXSTRICTRC rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_TRIPLE_FAULT, 0 /* u64ExitQual */);
2761 Assert(!pVCpu->iem.s.cActiveMappings);
2762 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2763}
2764
2765
2766/**
2767 * Interface for HM and EM to emulate VM-exit due to startup-IPI (SIPI).
2768 *
2769 * @returns Strict VBox status code.
2770 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2771 * @param uVector The SIPI vector.
2772 * @thread EMT(pVCpu)
2773 */
2774VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitStartupIpi(PVMCPUCC pVCpu, uint8_t uVector)
2775{
2776 VBOXSTRICTRC rcStrict = iemVmxVmexit(pVCpu, VMX_EXIT_SIPI, uVector);
2777 Assert(!pVCpu->iem.s.cActiveMappings);
2778 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2779}
2780
2781
2782/**
2783 * Interface for HM and EM to emulate a VM-exit.
2784 *
2785 * If a specialized version of a VM-exit handler exists, that must be used instead.
2786 *
2787 * @returns Strict VBox status code.
2788 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2789 * @param uExitReason The VM-exit reason.
2790 * @param u64ExitQual The Exit qualification.
2791 * @thread EMT(pVCpu)
2792 */
2793VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexit(PVMCPUCC pVCpu, uint32_t uExitReason, uint64_t u64ExitQual)
2794{
2795 VBOXSTRICTRC rcStrict = iemVmxVmexit(pVCpu, uExitReason, u64ExitQual);
2796 Assert(!pVCpu->iem.s.cActiveMappings);
2797 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2798}
2799
2800
2801/**
2802 * Interface for HM and EM to emulate a VM-exit due to an instruction.
2803 *
2804 * This is meant to be used for those instructions that VMX provides additional
2805 * decoding information beyond just the instruction length!
2806 *
2807 * @returns Strict VBox status code.
2808 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2809 * @param pExitInfo Pointer to the VM-exit information.
2810 * @thread EMT(pVCpu)
2811 */
2812VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitInstrWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
2813{
2814 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
2815 Assert(!pVCpu->iem.s.cActiveMappings);
2816 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2817}
2818
2819
2820/**
2821 * Interface for HM and EM to emulate a VM-exit due to an instruction.
2822 *
2823 * This is meant to be used for those instructions that VMX provides only the
2824 * instruction length.
2825 *
2826 * @returns Strict VBox status code.
2827 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
2828 * @param pExitInfo Pointer to the VM-exit information.
2829 * @param cbInstr The instruction length in bytes.
2830 * @thread EMT(pVCpu)
2831 */
2832VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitInstr(PVMCPUCC pVCpu, uint32_t uExitReason, uint8_t cbInstr)
2833{
2834 VBOXSTRICTRC rcStrict = iemVmxVmexitInstr(pVCpu, uExitReason, cbInstr);
2835 Assert(!pVCpu->iem.s.cActiveMappings);
2836 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
2837}
2838
2839
2840/**
2841 * VMX VM-exit handler for VM-exits due to instruction execution.
2842 *
2843 * This is intended for instructions that have a ModR/M byte and update the VM-exit
2844 * instruction information and Exit qualification fields.
2845 *
2846 * @param pVCpu The cross context virtual CPU structure.
2847 * @param uExitReason The VM-exit reason.
2848 * @param uInstrid The instruction identity (VMXINSTRID_XXX).
2849 * @param cbInstr The instruction length in bytes.
2850 *
2851 * @remarks Do not use this for INS/OUTS instruction.
2852 */
2853VBOXSTRICTRC iemVmxVmexitInstrNeedsInfo(PVMCPUCC pVCpu, uint32_t uExitReason, VMXINSTRID uInstrId, uint8_t cbInstr) RT_NOEXCEPT
2854{
2855#ifdef VBOX_STRICT
2856 /*
2857 * To prevent us from shooting ourselves in the foot.
2858 * The follow instructions convey specific info that require using their respective handlers.
2859 */
2860 switch (uExitReason)
2861 {
2862 case VMX_EXIT_INVEPT:
2863 case VMX_EXIT_INVPCID:
2864 case VMX_EXIT_INVVPID:
2865 case VMX_EXIT_LDTR_TR_ACCESS:
2866 case VMX_EXIT_GDTR_IDTR_ACCESS:
2867 case VMX_EXIT_VMCLEAR:
2868 case VMX_EXIT_VMPTRLD:
2869 case VMX_EXIT_VMPTRST:
2870 case VMX_EXIT_VMREAD:
2871 case VMX_EXIT_VMWRITE:
2872 case VMX_EXIT_VMXON:
2873 case VMX_EXIT_XRSTORS:
2874 case VMX_EXIT_XSAVES:
2875 case VMX_EXIT_RDRAND:
2876 case VMX_EXIT_RDSEED:
2877 break;
2878 default:
2879 AssertMsgFailedReturn(("Use instruction-specific handler\n"), VERR_IEM_IPE_5);
2880 break;
2881 }
2882#endif
2883
2884 /*
2885 * Update the Exit qualification field with displacement bytes.
2886 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
2887 */
2888 /* Construct the VM-exit instruction information. */
2889 RTGCPTR GCPtrDisp;
2890 uint32_t const uInstrInfo = iemVmxGetExitInstrInfo(pVCpu, uExitReason, uInstrId, &GCPtrDisp);
2891
2892 VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO(uExitReason, GCPtrDisp, uInstrInfo, cbInstr);
2893 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2894}
2895
2896
2897/**
2898 * VMX VM-exit handler for VM-exits due to INVLPG.
2899 *
2900 * @returns Strict VBox status code.
2901 * @param pVCpu The cross context virtual CPU structure.
2902 * @param GCPtrPage The guest-linear address of the page being invalidated.
2903 * @param cbInstr The instruction length in bytes.
2904 */
2905VBOXSTRICTRC iemVmxVmexitInstrInvlpg(PVMCPUCC pVCpu, RTGCPTR GCPtrPage, uint8_t cbInstr) RT_NOEXCEPT
2906{
2907 VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_INVLPG, GCPtrPage, cbInstr);
2908 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(ExitInfo.u64Qual));
2909 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2910}
2911
2912
2913/**
2914 * VMX VM-exit handler for VM-exits due to LMSW.
2915 *
2916 * @returns Strict VBox status code.
2917 * @param pVCpu The cross context virtual CPU structure.
2918 * @param uGuestCr0 The current guest CR0.
2919 * @param pu16NewMsw The machine-status word specified in LMSW's source
2920 * operand. This will be updated depending on the VMX
2921 * guest/host CR0 mask if LMSW is not intercepted.
2922 * @param GCPtrEffDst The guest-linear address of the source operand in case
2923 * of a memory operand. For register operand, pass
2924 * NIL_RTGCPTR.
2925 * @param cbInstr The instruction length in bytes.
2926 */
2927VBOXSTRICTRC iemVmxVmexitInstrLmsw(PVMCPUCC pVCpu, uint32_t uGuestCr0, uint16_t *pu16NewMsw,
2928 RTGCPTR GCPtrEffDst, uint8_t cbInstr) RT_NOEXCEPT
2929{
2930 Assert(pu16NewMsw);
2931
2932 uint16_t const uNewMsw = *pu16NewMsw;
2933 if (CPUMIsGuestVmxLmswInterceptSet(&pVCpu->cpum.GstCtx, uNewMsw))
2934 {
2935 Log2(("lmsw: Guest intercept -> VM-exit\n"));
2936 bool const fMemOperand = RT_BOOL(GCPtrEffDst != NIL_RTGCPTR);
2937 VMXVEXITINFO ExitInfo
2938 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
2939 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
2940 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_OP, fMemOperand)
2941 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_LMSW_DATA, uNewMsw)
2942 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_LMSW),
2943 cbInstr);
2944 if (fMemOperand)
2945 {
2946 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode || !RT_HI_U32(GCPtrEffDst));
2947 ExitInfo.u64GuestLinearAddr = GCPtrEffDst;
2948 }
2949 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
2950 }
2951
2952 /*
2953 * If LMSW did not cause a VM-exit, any CR0 bits in the range 0:3 that is set in the
2954 * CR0 guest/host mask must be left unmodified.
2955 *
2956 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
2957 */
2958 uint32_t const fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
2959 uint32_t const fGstHostLmswMask = fGstHostMask & (X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS);
2960 *pu16NewMsw = (uGuestCr0 & fGstHostLmswMask) | (uNewMsw & ~fGstHostLmswMask);
2961
2962 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
2963}
2964
2965
2966/**
2967 * VMX VM-exit handler for VM-exits due to CLTS.
2968 *
2969 * @returns Strict VBox status code.
2970 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the CLTS instruction did not cause a
2971 * VM-exit but must not modify the guest CR0.TS bit.
2972 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the CLTS instruction did not cause a
2973 * VM-exit and modification to the guest CR0.TS bit is allowed (subject to
2974 * CR0 fixed bits in VMX operation).
2975 * @param pVCpu The cross context virtual CPU structure.
2976 * @param cbInstr The instruction length in bytes.
2977 */
2978VBOXSTRICTRC iemVmxVmexitInstrClts(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
2979{
2980 /*
2981 * If CR0.TS is owned by the host:
2982 * - If CR0.TS is set in the read-shadow, we must cause a VM-exit.
2983 * - If CR0.TS is cleared in the read-shadow, no VM-exit is caused and the
2984 * CLTS instruction completes without clearing CR0.TS.
2985 *
2986 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
2987 */
2988 uint32_t const fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
2989 if (fGstHostMask & X86_CR0_TS)
2990 {
2991 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0ReadShadow.u & X86_CR0_TS)
2992 {
2993 Log2(("clts: Guest intercept -> VM-exit\n"));
2994 VMXVEXITINFO const ExitInfo
2995 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
2996 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 0) /* CR0 */
2997 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS,
2998 VMX_EXIT_QUAL_CRX_ACCESS_CLTS),
2999 cbInstr);
3000 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3001 }
3002 return VINF_VMX_MODIFIES_BEHAVIOR;
3003 }
3004
3005 /*
3006 * If CR0.TS is not owned by the host, the CLTS instructions operates normally
3007 * and may modify CR0.TS (subject to CR0 fixed bits in VMX operation).
3008 */
3009 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3010}
3011
3012
3013/**
3014 * VMX VM-exit handler for VM-exits due to 'Mov CR0,GReg' and 'Mov CR4,GReg'
3015 * (CR0/CR4 write).
3016 *
3017 * @returns Strict VBox status code.
3018 * @param pVCpu The cross context virtual CPU structure.
3019 * @param iCrReg The control register (either CR0 or CR4).
3020 * @param uGuestCrX The current guest CR0/CR4.
3021 * @param puNewCrX Pointer to the new CR0/CR4 value. Will be updated if no
3022 * VM-exit is caused.
3023 * @param iGReg The general register from which the CR0/CR4 value is being
3024 * loaded.
3025 * @param cbInstr The instruction length in bytes.
3026 */
3027VBOXSTRICTRC iemVmxVmexitInstrMovToCr0Cr4(PVMCPUCC pVCpu, uint8_t iCrReg, uint64_t *puNewCrX,
3028 uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3029{
3030 Assert(puNewCrX);
3031 Assert(iCrReg == 0 || iCrReg == 4);
3032 Assert(iGReg < X86_GREG_COUNT);
3033
3034 uint64_t const uNewCrX = *puNewCrX;
3035 if (CPUMIsGuestVmxMovToCr0Cr4InterceptSet(&pVCpu->cpum.GstCtx, iCrReg, uNewCrX))
3036 {
3037 Log2(("mov_Cr_Rd: (CR%u) Guest intercept -> VM-exit\n", iCrReg));
3038 VMXVEXITINFO const ExitInfo
3039 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3040 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, iCrReg)
3041 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg)
3042 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE),
3043 cbInstr);
3044 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3045 }
3046
3047 /*
3048 * If the Mov-to-CR0/CR4 did not cause a VM-exit, any bits owned by the host
3049 * must not be modified the instruction.
3050 *
3051 * See Intel Spec. 25.3 "Changes To Instruction Behavior In VMX Non-root Operation".
3052 */
3053 uint64_t uGuestCrX;
3054 uint64_t fGstHostMask;
3055 if (iCrReg == 0)
3056 {
3057 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
3058 uGuestCrX = pVCpu->cpum.GstCtx.cr0;
3059 fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr0Mask.u;
3060 }
3061 else
3062 {
3063 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR4);
3064 uGuestCrX = pVCpu->cpum.GstCtx.cr4;
3065 fGstHostMask = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64Cr4Mask.u;
3066 }
3067
3068 *puNewCrX = (uGuestCrX & fGstHostMask) | (*puNewCrX & ~fGstHostMask);
3069 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3070}
3071
3072
3073/**
3074 * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR3' (CR3 read).
3075 *
3076 * @returns VBox strict status code.
3077 * @param pVCpu The cross context virtual CPU structure.
3078 * @param iGReg The general register to which the CR3 value is being stored.
3079 * @param cbInstr The instruction length in bytes.
3080 */
3081VBOXSTRICTRC iemVmxVmexitInstrMovFromCr3(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3082{
3083 Assert(iGReg < X86_GREG_COUNT);
3084 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
3085
3086 /*
3087 * If the CR3-store exiting control is set, we must cause a VM-exit.
3088 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3089 */
3090 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR3_STORE_EXIT)
3091 {
3092 Log2(("mov_Rd_Cr: (CR3) Guest intercept -> VM-exit\n"));
3093 VMXVEXITINFO const ExitInfo
3094 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3095 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
3096 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg)
3097 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ),
3098 cbInstr);
3099 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3100 }
3101 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3102}
3103
3104
3105/**
3106 * VMX VM-exit handler for VM-exits due to 'Mov CR3,GReg' (CR3 write).
3107 *
3108 * @returns VBox strict status code.
3109 * @param pVCpu The cross context virtual CPU structure.
3110 * @param uNewCr3 The new CR3 value.
3111 * @param iGReg The general register from which the CR3 value is being
3112 * loaded.
3113 * @param cbInstr The instruction length in bytes.
3114 */
3115VBOXSTRICTRC iemVmxVmexitInstrMovToCr3(PVMCPUCC pVCpu, uint64_t uNewCr3, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3116{
3117 Assert(iGReg < X86_GREG_COUNT);
3118
3119 /*
3120 * If the CR3-load exiting control is set and the new CR3 value does not
3121 * match any of the CR3-target values in the VMCS, we must cause a VM-exit.
3122 *
3123 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3124 */
3125 if (CPUMIsGuestVmxMovToCr3InterceptSet(pVCpu, uNewCr3))
3126 {
3127 Log2(("mov_Cr_Rd: (CR3) Guest intercept -> VM-exit\n"));
3128 VMXVEXITINFO const ExitInfo
3129 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3130 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 3) /* CR3 */
3131 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg)
3132 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS,
3133 VMX_EXIT_QUAL_CRX_ACCESS_WRITE),
3134 cbInstr);
3135 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3136 }
3137 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3138}
3139
3140
3141/**
3142 * VMX VM-exit handler for VM-exits due to 'Mov GReg,CR8' (CR8 read).
3143 *
3144 * @returns VBox strict status code.
3145 * @param pVCpu The cross context virtual CPU structure.
3146 * @param iGReg The general register to which the CR8 value is being stored.
3147 * @param cbInstr The instruction length in bytes.
3148 */
3149VBOXSTRICTRC iemVmxVmexitInstrMovFromCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3150{
3151 Assert(iGReg < X86_GREG_COUNT);
3152
3153 /*
3154 * If the CR8-store exiting control is set, we must cause a VM-exit.
3155 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3156 */
3157 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR8_STORE_EXIT)
3158 {
3159 Log2(("mov_Rd_Cr: (CR8) Guest intercept -> VM-exit\n"));
3160 VMXVEXITINFO const ExitInfo
3161 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3162 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
3163 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg)
3164 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_READ),
3165 cbInstr);
3166 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3167 }
3168 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3169}
3170
3171
3172/**
3173 * VMX VM-exit handler for VM-exits due to 'Mov CR8,GReg' (CR8 write).
3174 *
3175 * @returns VBox strict status code.
3176 * @param pVCpu The cross context virtual CPU structure.
3177 * @param iGReg The general register from which the CR8 value is being
3178 * loaded.
3179 * @param cbInstr The instruction length in bytes.
3180 */
3181VBOXSTRICTRC iemVmxVmexitInstrMovToCr8(PVMCPUCC pVCpu, uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3182{
3183 Assert(iGReg < X86_GREG_COUNT);
3184
3185 /*
3186 * If the CR8-load exiting control is set, we must cause a VM-exit.
3187 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3188 */
3189 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_CR8_LOAD_EXIT)
3190 {
3191 Log2(("mov_Cr_Rd: (CR8) Guest intercept -> VM-exit\n"));
3192 VMXVEXITINFO const ExitInfo
3193 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_CRX,
3194 RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_REGISTER, 8) /* CR8 */
3195 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_GENREG, iGReg)
3196 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_CRX_ACCESS, VMX_EXIT_QUAL_CRX_ACCESS_WRITE),
3197 cbInstr);
3198 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3199 }
3200 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3201}
3202
3203
3204/**
3205 * VMX VM-exit handler for VM-exits due to 'Mov DRx,GReg' (DRx write) and 'Mov
3206 * GReg,DRx' (DRx read).
3207 *
3208 * @returns VBox strict status code.
3209 * @param pVCpu The cross context virtual CPU structure.
3210 * @param uInstrid The instruction identity (VMXINSTRID_MOV_TO_DRX or
3211 * VMXINSTRID_MOV_FROM_DRX).
3212 * @param iDrReg The debug register being accessed.
3213 * @param iGReg The general register to/from which the DRx value is being
3214 * store/loaded.
3215 * @param cbInstr The instruction length in bytes.
3216 */
3217VBOXSTRICTRC iemVmxVmexitInstrMovDrX(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint8_t iDrReg,
3218 uint8_t iGReg, uint8_t cbInstr) RT_NOEXCEPT
3219{
3220 Assert(iDrReg <= 7);
3221 Assert(uInstrId == VMXINSTRID_MOV_TO_DRX || uInstrId == VMXINSTRID_MOV_FROM_DRX);
3222 Assert(iGReg < X86_GREG_COUNT);
3223
3224 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_MOV_DR_EXIT)
3225 {
3226 VMXVEXITINFO const ExitInfo
3227 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MOV_DRX,
3228 RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_REGISTER, iDrReg)
3229 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_GENREG, iGReg)
3230 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_DRX_DIRECTION,
3231 uInstrId == VMXINSTRID_MOV_TO_DRX
3232 ? VMX_EXIT_QUAL_DRX_DIRECTION_WRITE
3233 : VMX_EXIT_QUAL_DRX_DIRECTION_READ),
3234 cbInstr);
3235 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3236 }
3237
3238 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3239}
3240
3241
3242/**
3243 * VMX VM-exit handler for VM-exits due to I/O instructions (IN and OUT).
3244 *
3245 * @returns VBox strict status code.
3246 * @param pVCpu The cross context virtual CPU structure.
3247 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_IN or
3248 * VMXINSTRID_IO_OUT).
3249 * @param u16Port The I/O port being accessed.
3250 * @param fImm Whether the I/O port was encoded using an immediate operand
3251 * or the implicit DX register.
3252 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
3253 * @param cbInstr The instruction length in bytes.
3254 */
3255VBOXSTRICTRC iemVmxVmexitInstrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port,
3256 bool fImm, uint8_t cbAccess, uint8_t cbInstr) RT_NOEXCEPT
3257{
3258 Assert(uInstrId == VMXINSTRID_IO_IN || uInstrId == VMXINSTRID_IO_OUT);
3259 Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
3260
3261 if (CPUMIsGuestVmxIoInterceptSet(pVCpu, u16Port, cbAccess))
3262 {
3263 VMXVEXITINFO const ExitInfo
3264 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_IO_INSTR,
3265 RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
3266 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING, fImm)
3267 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port)
3268 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION,
3269 uInstrId == VMXINSTRID_IO_IN
3270 ? VMX_EXIT_QUAL_IO_DIRECTION_IN
3271 : VMX_EXIT_QUAL_IO_DIRECTION_OUT),
3272 cbInstr);
3273 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3274 }
3275 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3276}
3277
3278
3279/**
3280 * VMX VM-exit handler for VM-exits due to string I/O instructions (INS and OUTS).
3281 *
3282 * @returns VBox strict status code.
3283 * @param pVCpu The cross context virtual CPU structure.
3284 * @param uInstrId The VM-exit instruction identity (VMXINSTRID_IO_INS or
3285 * VMXINSTRID_IO_OUTS).
3286 * @param u16Port The I/O port being accessed.
3287 * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
3288 * @param fRep Whether the instruction has a REP prefix or not.
3289 * @param ExitInstrInfo The VM-exit instruction info. field.
3290 * @param cbInstr The instruction length in bytes.
3291 */
3292VBOXSTRICTRC iemVmxVmexitInstrStrIo(PVMCPUCC pVCpu, VMXINSTRID uInstrId, uint16_t u16Port, uint8_t cbAccess,
3293 bool fRep, VMXEXITINSTRINFO ExitInstrInfo, uint8_t cbInstr) RT_NOEXCEPT
3294{
3295 Assert(uInstrId == VMXINSTRID_IO_INS || uInstrId == VMXINSTRID_IO_OUTS);
3296 Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
3297 Assert(ExitInstrInfo.StrIo.iSegReg < X86_SREG_COUNT);
3298 Assert(ExitInstrInfo.StrIo.u3AddrSize == 0 || ExitInstrInfo.StrIo.u3AddrSize == 1 || ExitInstrInfo.StrIo.u3AddrSize == 2);
3299 Assert(uInstrId != VMXINSTRID_IO_INS || ExitInstrInfo.StrIo.iSegReg == X86_SREG_ES);
3300
3301 if (CPUMIsGuestVmxIoInterceptSet(pVCpu, u16Port, cbAccess))
3302 {
3303 /*
3304 * Figure out the guest-linear address and the direction bit (INS/OUTS).
3305 */
3306 /** @todo r=ramshankar: Is there something in IEM that already does this? */
3307 static uint64_t const s_auAddrSizeMasks[] = { UINT64_C(0xffff), UINT64_C(0xffffffff), UINT64_C(0xffffffffffffffff) };
3308 uint8_t const iSegReg = ExitInstrInfo.StrIo.iSegReg;
3309 uint8_t const uAddrSize = ExitInstrInfo.StrIo.u3AddrSize;
3310 uint64_t const uAddrSizeMask = s_auAddrSizeMasks[uAddrSize];
3311
3312 uint32_t uDirection;
3313 uint64_t uGuestLinearAddr;
3314 if (uInstrId == VMXINSTRID_IO_INS)
3315 {
3316 uDirection = VMX_EXIT_QUAL_IO_DIRECTION_IN;
3317 uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rdi & uAddrSizeMask);
3318 }
3319 else
3320 {
3321 uDirection = VMX_EXIT_QUAL_IO_DIRECTION_OUT;
3322 uGuestLinearAddr = pVCpu->cpum.GstCtx.aSRegs[iSegReg].u64Base + (pVCpu->cpum.GstCtx.rsi & uAddrSizeMask);
3323 }
3324
3325 /*
3326 * If the segment is unusable, the guest-linear address in undefined.
3327 * We shall clear it for consistency.
3328 *
3329 * See Intel spec. 27.2.1 "Basic VM-Exit Information".
3330 */
3331 if (pVCpu->cpum.GstCtx.aSRegs[iSegReg].Attr.n.u1Unusable)
3332 uGuestLinearAddr = 0;
3333
3334 VMXVEXITINFO const ExitInfo
3335 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_INFO_AND_LIN_ADDR(VMX_EXIT_IO_INSTR,
3336 RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_WIDTH, cbAccess - 1)
3337 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_DIRECTION, uDirection)
3338 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_STRING, 1)
3339 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_IS_REP, fRep)
3340 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_ENCODING,
3341 VMX_EXIT_QUAL_IO_ENCODING_DX)
3342 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_IO_PORT, u16Port),
3343 IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxInsOutInfo
3344 ? ExitInstrInfo.u : 0,
3345 cbInstr,
3346 uGuestLinearAddr);
3347 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3348 }
3349
3350 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3351}
3352
3353
3354/**
3355 * VMX VM-exit handler for VM-exits due to MWAIT.
3356 *
3357 * @returns VBox strict status code.
3358 * @param pVCpu The cross context virtual CPU structure.
3359 * @param fMonitorHwArmed Whether the address-range monitor hardware is armed.
3360 * @param cbInstr The instruction length in bytes.
3361 */
3362VBOXSTRICTRC iemVmxVmexitInstrMwait(PVMCPUCC pVCpu, bool fMonitorHwArmed, uint8_t cbInstr) RT_NOEXCEPT
3363{
3364 VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_MWAIT, fMonitorHwArmed, cbInstr);
3365 return iemVmxVmexitInstrWithInfo(pVCpu, &ExitInfo);
3366}
3367
3368
3369/**
3370 * VMX VM-exit handler for VM-exits due to PAUSE.
3371 *
3372 * @returns VBox strict status code.
3373 * @param pVCpu The cross context virtual CPU structure.
3374 * @param cbInstr The instruction length in bytes.
3375 */
3376static VBOXSTRICTRC iemVmxVmexitInstrPause(PVMCPUCC pVCpu, uint8_t cbInstr) RT_NOEXCEPT
3377{
3378 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
3379
3380 /*
3381 * The PAUSE VM-exit is controlled by the "PAUSE exiting" control and the
3382 * "PAUSE-loop exiting" control.
3383 *
3384 * The PLE-Gap is the maximum number of TSC ticks between two successive executions of
3385 * the PAUSE instruction before we cause a VM-exit. The PLE-Window is the maximum amount
3386 * of TSC ticks the guest is allowed to execute in a pause loop before we must cause
3387 * a VM-exit.
3388 *
3389 * See Intel spec. 24.6.13 "Controls for PAUSE-Loop Exiting".
3390 * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
3391 */
3392 bool fIntercept = false;
3393 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_PAUSE_EXIT)
3394 fIntercept = true;
3395 else if ( (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PAUSE_LOOP_EXIT)
3396 && pVCpu->iem.s.uCpl == 0)
3397 {
3398 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3399
3400 /*
3401 * A previous-PAUSE-tick value of 0 is used to identify the first time
3402 * execution of a PAUSE instruction after VM-entry at CPL 0. We must
3403 * consider this to be the first execution of PAUSE in a loop according
3404 * to the Intel.
3405 *
3406 * All subsequent records for the previous-PAUSE-tick we ensure that it
3407 * cannot be zero by OR'ing 1 to rule out the TSC wrap-around cases at 0.
3408 */
3409 uint64_t *puFirstPauseLoopTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick;
3410 uint64_t *puPrevPauseTick = &pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick;
3411 uint64_t const uTick = TMCpuTickGet(pVCpu);
3412 uint32_t const uPleGap = pVmcs->u32PleGap;
3413 uint32_t const uPleWindow = pVmcs->u32PleWindow;
3414 if ( *puPrevPauseTick == 0
3415 || uTick - *puPrevPauseTick > uPleGap)
3416 *puFirstPauseLoopTick = uTick;
3417 else if (uTick - *puFirstPauseLoopTick > uPleWindow)
3418 fIntercept = true;
3419
3420 *puPrevPauseTick = uTick | 1;
3421 }
3422
3423 if (fIntercept)
3424 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_PAUSE, cbInstr);
3425
3426 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3427}
3428
3429
3430/**
3431 * VMX VM-exit handler for VM-exits due to task switches.
3432 *
3433 * @returns VBox strict status code.
3434 * @param pVCpu The cross context virtual CPU structure.
3435 * @param enmTaskSwitch The cause of the task switch.
3436 * @param SelNewTss The selector of the new TSS.
3437 * @param cbInstr The instruction length in bytes.
3438 */
3439VBOXSTRICTRC iemVmxVmexitTaskSwitch(PVMCPUCC pVCpu, IEMTASKSWITCH enmTaskSwitch, RTSEL SelNewTss, uint8_t cbInstr) RT_NOEXCEPT
3440{
3441 /*
3442 * Task-switch VM-exits are unconditional and provide the Exit qualification.
3443 *
3444 * If the cause of the task switch is due to execution of CALL, IRET or the JMP
3445 * instruction or delivery of the exception generated by one of these instructions
3446 * lead to a task switch through a task gate in the IDT, we need to provide the
3447 * VM-exit instruction length. Any other means of invoking a task switch VM-exit
3448 * leaves the VM-exit instruction length field undefined.
3449 *
3450 * See Intel spec. 25.2 "Other Causes Of VM Exits".
3451 * See Intel spec. 27.2.4 "Information for VM Exits Due to Instruction Execution".
3452 */
3453 Assert(cbInstr <= 15);
3454
3455 uint8_t uType;
3456 switch (enmTaskSwitch)
3457 {
3458 case IEMTASKSWITCH_CALL: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_CALL; break;
3459 case IEMTASKSWITCH_IRET: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IRET; break;
3460 case IEMTASKSWITCH_JUMP: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_JMP; break;
3461 case IEMTASKSWITCH_INT_XCPT: uType = VMX_EXIT_QUAL_TASK_SWITCH_TYPE_IDT; break;
3462 IEM_NOT_REACHED_DEFAULT_CASE_RET();
3463 }
3464
3465 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_NEW_TSS, SelNewTss)
3466 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_TASK_SWITCH_SOURCE, uType);
3467 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
3468 return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH, u64ExitQual);
3469}
3470
3471
3472/**
3473 * VMX VM-exit handler for trap-like VM-exits.
3474 *
3475 * @returns VBox strict status code.
3476 * @param pVCpu The cross context virtual CPU structure.
3477 * @param pExitInfo Pointer to the VM-exit information.
3478 * @param pExitEventInfo Pointer to the VM-exit event information.
3479 */
3480static VBOXSTRICTRC iemVmxVmexitTrapLikeWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
3481{
3482 Assert(VMXIsVmexitTrapLike(pExitInfo->uReason));
3483 iemVmxVmcsSetGuestPendingDbgXcpts(pVCpu, pExitInfo->u64GuestPendingDbgXcpts);
3484 return iemVmxVmexit(pVCpu, pExitInfo->uReason, pExitInfo->u64Qual);
3485}
3486
3487
3488/**
3489 * Interface for HM and EM to emulate a trap-like VM-exit (MTF, APIC-write,
3490 * Virtualized-EOI, TPR-below threshold).
3491 *
3492 * @returns Strict VBox status code.
3493 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3494 * @param pExitInfo Pointer to the VM-exit information.
3495 * @thread EMT(pVCpu)
3496 */
3497VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitTrapLike(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
3498{
3499 Assert(pExitInfo);
3500 VBOXSTRICTRC rcStrict = iemVmxVmexitTrapLikeWithInfo(pVCpu, pExitInfo);
3501 Assert(!pVCpu->iem.s.cActiveMappings);
3502 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3503}
3504
3505
3506/**
3507 * VMX VM-exit handler for VM-exits due to task switches.
3508 *
3509 * This is intended for task switches where the caller provides all the relevant
3510 * VM-exit information.
3511 *
3512 * @returns VBox strict status code.
3513 * @param pVCpu The cross context virtual CPU structure.
3514 * @param pExitInfo Pointer to the VM-exit information.
3515 * @param pExitEventInfo Pointer to the VM-exit event information.
3516 */
3517static VBOXSTRICTRC iemVmxVmexitTaskSwitchWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
3518 PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
3519{
3520 Assert(pExitInfo->uReason == VMX_EXIT_TASK_SWITCH);
3521 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
3522 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3523 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3524 return iemVmxVmexit(pVCpu, VMX_EXIT_TASK_SWITCH, pExitInfo->u64Qual);
3525}
3526
3527
3528/**
3529 * Interface for HM and EM to emulate a VM-exit due to a task switch.
3530 *
3531 * @returns Strict VBox status code.
3532 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3533 * @param pExitInfo Pointer to the VM-exit information.
3534 * @param pExitEventInfo Pointer to the VM-exit event information.
3535 * @thread EMT(pVCpu)
3536 */
3537VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitTaskSwitch(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo)
3538{
3539 Assert(pExitInfo);
3540 Assert(pExitEventInfo);
3541 Assert(pExitInfo->uReason == VMX_EXIT_TASK_SWITCH);
3542 VBOXSTRICTRC rcStrict = iemVmxVmexitTaskSwitchWithInfo(pVCpu, pExitInfo, pExitEventInfo);
3543 Assert(!pVCpu->iem.s.cActiveMappings);
3544 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3545}
3546
3547
3548/**
3549 * VMX VM-exit handler for VM-exits due to expiring of the preemption timer.
3550 *
3551 * @returns VBox strict status code.
3552 * @param pVCpu The cross context virtual CPU structure.
3553 */
3554VBOXSTRICTRC iemVmxVmexitPreemptTimer(PVMCPUCC pVCpu) RT_NOEXCEPT
3555{
3556 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
3557 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER);
3558
3559 /* Import the hardware virtualization state (for nested-guest VM-entry TSC-tick). */
3560 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
3561
3562 /* Save the VMX-preemption timer value (of 0) back in to the VMCS if the CPU supports this feature. */
3563 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER)
3564 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PreemptTimer = 0;
3565
3566 /* Cause the VMX-preemption timer VM-exit. The Exit qualification MBZ. */
3567 return iemVmxVmexit(pVCpu, VMX_EXIT_PREEMPT_TIMER, 0 /* u64ExitQual */);
3568}
3569
3570
3571/**
3572 * Interface for HM and EM to emulate VM-exit due to expiry of the preemption timer.
3573 *
3574 * @returns Strict VBox status code.
3575 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3576 * @thread EMT(pVCpu)
3577 */
3578VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitPreemptTimer(PVMCPUCC pVCpu)
3579{
3580 VBOXSTRICTRC rcStrict = iemVmxVmexitPreemptTimer(pVCpu);
3581 Assert(!pVCpu->iem.s.cActiveMappings);
3582 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3583}
3584
3585
3586/**
3587 * VMX VM-exit handler for VM-exits due to external interrupts.
3588 *
3589 * @returns VBox strict status code.
3590 * @param pVCpu The cross context virtual CPU structure.
3591 * @param uVector The external interrupt vector (pass 0 if the interrupt
3592 * is still pending since we typically won't know the
3593 * vector).
3594 * @param fIntPending Whether the external interrupt is pending or
3595 * acknowledged in the interrupt controller.
3596 */
3597static VBOXSTRICTRC iemVmxVmexitExtInt(PVMCPUCC pVCpu, uint8_t uVector, bool fIntPending) RT_NOEXCEPT
3598{
3599 Assert(!fIntPending || uVector == 0);
3600
3601 /* The VM-exit is subject to "External interrupt exiting" being set. */
3602 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT)
3603 {
3604 if (fIntPending)
3605 {
3606 /*
3607 * If the interrupt is pending and we don't need to acknowledge the
3608 * interrupt on VM-exit, cause the VM-exit immediately.
3609 *
3610 * See Intel spec 25.2 "Other Causes Of VM Exits".
3611 */
3612 if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT))
3613 return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT, 0 /* u64ExitQual */);
3614
3615 /*
3616 * If the interrupt is pending and we -do- need to acknowledge the interrupt
3617 * on VM-exit, postpone VM-exit till after the interrupt controller has been
3618 * acknowledged that the interrupt has been consumed. Callers would have to call
3619 * us again after getting the vector (and ofc, with fIntPending with false).
3620 */
3621 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3622 }
3623
3624 /*
3625 * If the interrupt is no longer pending (i.e. it has been acknowledged) and the
3626 * "External interrupt exiting" and "Acknowledge interrupt on VM-exit" controls are
3627 * all set, we need to record the vector of the external interrupt in the
3628 * VM-exit interruption information field. Otherwise, mark this field as invalid.
3629 *
3630 * See Intel spec. 27.2.2 "Information for VM Exits Due to Vectored Events".
3631 */
3632 uint32_t uExitIntInfo;
3633 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ExitCtls & VMX_EXIT_CTLS_ACK_EXT_INT)
3634 {
3635 bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3636 uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
3637 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_EXT_INT)
3638 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
3639 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3640 }
3641 else
3642 uExitIntInfo = 0;
3643 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3644
3645 /*
3646 * Cause the VM-exit whether or not the vector has been stored
3647 * in the VM-exit interruption-information field.
3648 */
3649 return iemVmxVmexit(pVCpu, VMX_EXIT_EXT_INT, 0 /* u64ExitQual */);
3650 }
3651
3652 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3653}
3654
3655
3656/**
3657 * Interface for HM and EM to emulate VM-exit due to external interrupts.
3658 *
3659 * @returns Strict VBox status code.
3660 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3661 * @param uVector The external interrupt vector (pass 0 if the external
3662 * interrupt is still pending).
3663 * @param fIntPending Whether the external interrupt is pending or
3664 * acknowdledged in the interrupt controller.
3665 * @thread EMT(pVCpu)
3666 */
3667VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitExtInt(PVMCPUCC pVCpu, uint8_t uVector, bool fIntPending)
3668{
3669 VBOXSTRICTRC rcStrict = iemVmxVmexitExtInt(pVCpu, uVector, fIntPending);
3670 Assert(!pVCpu->iem.s.cActiveMappings);
3671 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3672}
3673
3674
3675/**
3676 * VMX VM-exit handler for VM-exits due to a double fault caused during delivery of
3677 * an event.
3678 *
3679 * @returns VBox strict status code.
3680 * @param pVCpu The cross context virtual CPU structure.
3681 */
3682VBOXSTRICTRC iemVmxVmexitEventDoubleFault(PVMCPUCC pVCpu) RT_NOEXCEPT
3683{
3684 uint32_t const fXcptBitmap = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32XcptBitmap;
3685 if (fXcptBitmap & RT_BIT(X86_XCPT_DF))
3686 {
3687 /*
3688 * The NMI-unblocking due to IRET field need not be set for double faults.
3689 * See Intel spec. 31.7.1.2 "Resuming Guest Software After Handling An Exception".
3690 */
3691 uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, X86_XCPT_DF)
3692 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, VMX_EXIT_INT_INFO_TYPE_HW_XCPT)
3693 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, 1)
3694 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, 0)
3695 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3696 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3697 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, 0 /* u64ExitQual */);
3698 }
3699
3700 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3701}
3702
3703
3704/**
3705 * VMX VM-exit handler for VM-exit due to delivery of an events.
3706 *
3707 * This is intended for VM-exit due to exceptions or NMIs where the caller provides
3708 * all the relevant VM-exit information.
3709 *
3710 * @returns VBox strict status code.
3711 * @param pVCpu The cross context virtual CPU structure.
3712 * @param pExitInfo Pointer to the VM-exit information.
3713 * @param pExitEventInfo Pointer to the VM-exit event information.
3714 */
3715static VBOXSTRICTRC iemVmxVmexitEventWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
3716{
3717 Assert(pExitInfo);
3718 Assert(pExitEventInfo);
3719 Assert(pExitInfo->uReason == VMX_EXIT_XCPT_OR_NMI);
3720 Assert(VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
3721
3722 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
3723 iemVmxVmcsSetExitIntInfo(pVCpu, pExitEventInfo->uExitIntInfo);
3724 iemVmxVmcsSetExitIntErrCode(pVCpu, pExitEventInfo->uExitIntErrCode);
3725 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3726 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3727 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, pExitInfo->u64Qual);
3728}
3729
3730
3731/**
3732 * Interface for HM and EM to emulate VM-exit due to NMIs.
3733 *
3734 * @returns Strict VBox status code.
3735 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3736 * @thread EMT(pVCpu)
3737 */
3738VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitXcptNmi(PVMCPUCC pVCpu)
3739{
3740 VMXVEXITINFO const ExitInfo = VMXVEXITINFO_INIT_ONLY_REASON(VMX_EXIT_XCPT_OR_NMI);
3741 VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT_ONLY_INT( RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1)
3742 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE,
3743 VMX_EXIT_INT_INFO_TYPE_NMI)
3744 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR,
3745 X86_XCPT_NMI),
3746 0);
3747 VBOXSTRICTRC rcStrict = iemVmxVmexitEventWithInfo(pVCpu, &ExitInfo, &ExitEventInfo);
3748 Assert(!pVCpu->iem.s.cActiveMappings);
3749 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3750}
3751
3752
3753/**
3754 * Interface for HM and EM to emulate VM-exit due to exceptions.
3755 *
3756 * Exception includes NMIs, software exceptions (those generated by INT3 or
3757 * INTO) and privileged software exceptions (those generated by INT1/ICEBP).
3758 *
3759 * @returns Strict VBox status code.
3760 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3761 * @param pExitInfo Pointer to the VM-exit information.
3762 * @param pExitEventInfo Pointer to the VM-exit event information.
3763 * @thread EMT(pVCpu)
3764 */
3765VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitXcpt(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo)
3766{
3767 Assert(pExitInfo);
3768 Assert(pExitEventInfo);
3769 VBOXSTRICTRC rcStrict = iemVmxVmexitEventWithInfo(pVCpu, pExitInfo, pExitEventInfo);
3770 Assert(!pVCpu->iem.s.cActiveMappings);
3771 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
3772}
3773
3774
3775/**
3776 * VMX VM-exit handler for VM-exits due to delivery of an event.
3777 *
3778 * @returns VBox strict status code.
3779 * @param pVCpu The cross context virtual CPU structure.
3780 * @param uVector The interrupt / exception vector.
3781 * @param fFlags The flags (see IEM_XCPT_FLAGS_XXX).
3782 * @param uErrCode The error code associated with the event.
3783 * @param uCr2 The CR2 value in case of a \#PF exception.
3784 * @param cbInstr The instruction length in bytes.
3785 */
3786VBOXSTRICTRC iemVmxVmexitEvent(PVMCPUCC pVCpu, uint8_t uVector, uint32_t fFlags, uint32_t uErrCode,
3787 uint64_t uCr2, uint8_t cbInstr) RT_NOEXCEPT
3788{
3789 /*
3790 * If the event is being injected as part of VM-entry, it is -not- subject to event
3791 * intercepts in the nested-guest. However, secondary exceptions that occur during
3792 * injection of any event -are- subject to event interception.
3793 *
3794 * See Intel spec. 26.5.1.2 "VM Exits During Event Injection".
3795 */
3796 if (!CPUMIsGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx))
3797 {
3798 /*
3799 * If the event is a virtual-NMI (which is an NMI being inject during VM-entry)
3800 * virtual-NMI blocking must be set in effect rather than physical NMI blocking.
3801 *
3802 * See Intel spec. 24.6.1 "Pin-Based VM-Execution Controls".
3803 */
3804 if ( uVector == X86_XCPT_NMI
3805 && (fFlags & IEM_XCPT_FLAGS_T_CPU_XCPT)
3806 && (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
3807 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
3808 else
3809 Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking);
3810
3811 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, true);
3812 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3813 }
3814
3815 /*
3816 * We are injecting an external interrupt, check if we need to cause a VM-exit now.
3817 * If not, the caller will continue delivery of the external interrupt as it would
3818 * normally. The interrupt is no longer pending in the interrupt controller at this
3819 * point.
3820 */
3821 if (fFlags & IEM_XCPT_FLAGS_T_EXT_INT)
3822 {
3823 Assert(!VMX_IDT_VECTORING_INFO_IS_VALID(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32RoIdtVectoringInfo));
3824 return iemVmxVmexitExtInt(pVCpu, uVector, false /* fIntPending */);
3825 }
3826
3827 /*
3828 * Evaluate intercepts for hardware exceptions, software exceptions (#BP, #OF),
3829 * and privileged software exceptions (#DB generated by INT1/ICEBP) and software
3830 * interrupts.
3831 */
3832 Assert(fFlags & (IEM_XCPT_FLAGS_T_CPU_XCPT | IEM_XCPT_FLAGS_T_SOFT_INT));
3833 bool fIntercept;
3834 if ( !(fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
3835 || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
3836 fIntercept = CPUMIsGuestVmxXcptInterceptSet(&pVCpu->cpum.GstCtx, uVector, uErrCode);
3837 else
3838 {
3839 /* Software interrupts cannot be intercepted and therefore do not cause a VM-exit. */
3840 fIntercept = false;
3841 }
3842
3843 /*
3844 * Now that we've determined whether the event causes a VM-exit, we need to construct the
3845 * relevant VM-exit information and cause the VM-exit.
3846 */
3847 if (fIntercept)
3848 {
3849 Assert(!(fFlags & IEM_XCPT_FLAGS_T_EXT_INT));
3850
3851 /* Construct the rest of the event related information fields and cause the VM-exit. */
3852 uint64_t u64ExitQual;
3853 if (uVector == X86_XCPT_PF)
3854 {
3855 Assert(fFlags & IEM_XCPT_FLAGS_CR2);
3856 u64ExitQual = uCr2;
3857 }
3858 else if (uVector == X86_XCPT_DB)
3859 {
3860 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_DR6);
3861 u64ExitQual = pVCpu->cpum.GstCtx.dr[6] & VMX_VMCS_EXIT_QUAL_VALID_MASK;
3862 }
3863 else
3864 u64ExitQual = 0;
3865
3866 uint8_t const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3867 bool const fErrCodeValid = RT_BOOL(fFlags & IEM_XCPT_FLAGS_ERR);
3868 uint8_t const uIntInfoType = iemVmxGetEventType(uVector, fFlags);
3869 uint32_t const uExitIntInfo = RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VECTOR, uVector)
3870 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_TYPE, uIntInfoType)
3871 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_ERR_CODE_VALID, fErrCodeValid)
3872 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_NMI_UNBLOCK_IRET, fNmiUnblocking)
3873 | RT_BF_MAKE(VMX_BF_EXIT_INT_INFO_VALID, 1);
3874 iemVmxVmcsSetExitIntInfo(pVCpu, uExitIntInfo);
3875 iemVmxVmcsSetExitIntErrCode(pVCpu, uErrCode);
3876
3877 /*
3878 * For VM-exits due to software exceptions (those generated by INT3 or INTO) or privileged
3879 * software exceptions (those generated by INT1/ICEBP) we need to supply the VM-exit instruction
3880 * length.
3881 */
3882 if ( (fFlags & IEM_XCPT_FLAGS_T_SOFT_INT)
3883 || (fFlags & (IEM_XCPT_FLAGS_BP_INSTR | IEM_XCPT_FLAGS_OF_INSTR | IEM_XCPT_FLAGS_ICEBP_INSTR)))
3884 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
3885 else
3886 iemVmxVmcsSetExitInstrLen(pVCpu, 0);
3887
3888 return iemVmxVmexit(pVCpu, VMX_EXIT_XCPT_OR_NMI, u64ExitQual);
3889 }
3890
3891 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
3892}
3893
3894
3895/**
3896 * VMX VM-exit handler for EPT misconfiguration.
3897 *
3898 * @param pVCpu The cross context virtual CPU structure.
3899 * @param GCPhysAddr The physical address causing the EPT misconfiguration.
3900 * This need not be page aligned (e.g. nested-guest in real
3901 * mode).
3902 */
3903static VBOXSTRICTRC iemVmxVmexitEptMisconfig(PVMCPUCC pVCpu, RTGCPHYS GCPhysAddr) RT_NOEXCEPT
3904{
3905 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
3906 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_MISCONFIG, 0 /* u64ExitQual */);
3907}
3908
3909
3910/**
3911 * VMX VM-exit handler for EPT misconfiguration.
3912 *
3913 * This is intended for EPT misconfigurations where the caller provides all the
3914 * relevant VM-exit information.
3915 *
3916 * @param pVCpu The cross context virtual CPU structure.
3917 * @param GCPhysAddr The physical address causing the EPT misconfiguration.
3918 * This need not be page aligned (e.g. nested-guest in real
3919 * mode).
3920 * @param pExitEventInfo Pointer to the VM-exit event information.
3921 */
3922static VBOXSTRICTRC iemVmxVmexitEptMisconfigWithInfo(PVMCPUCC pVCpu, RTGCPHYS GCPhysAddr, PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
3923{
3924 Assert(pExitEventInfo);
3925 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
3926 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
3927 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
3928 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
3929 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_MISCONFIG, 0 /* u64ExitQual */);
3930}
3931
3932
3933/**
3934 * Interface for HM and EM to emulate a VM-exit due to an EPT misconfiguration.
3935 *
3936 * @returns Strict VBox status code.
3937 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
3938 * @param GCPhysAddr The nested-guest physical address causing the EPT
3939 * misconfiguration.
3940 * @param pExitEventInfo Pointer to the VM-exit event information.
3941 * @thread EMT(pVCpu)
3942 */
3943VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitEptMisconfig(PVMCPUCC pVCpu, RTGCPHYS GCPhysAddr, PCVMXVEXITEVENTINFO pExitEventInfo)
3944{
3945 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
3946
3947 iemInitExec(pVCpu, false /*fBypassHandlers*/);
3948 VBOXSTRICTRC rcStrict = iemVmxVmexitEptMisconfigWithInfo(pVCpu, GCPhysAddr, pExitEventInfo);
3949 Assert(!pVCpu->iem.s.cActiveMappings);
3950 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
3951}
3952
3953
3954/**
3955 * VMX VM-exit handler for EPT violation.
3956 *
3957 * @param pVCpu The cross context virtual CPU structure.
3958 * @param fAccess The access causing the EPT violation, IEM_ACCESS_XXX.
3959 * @param fSlatFail The SLAT failure info, IEM_SLAT_FAIL_XXX.
3960 * @param fEptAccess The EPT paging structure bits.
3961 * @param GCPhysAddr The physical address causing the EPT violation. This
3962 * need not be page aligned (e.g. nested-guest in real
3963 * mode).
3964 * @param fIsLinearAddrValid Whether translation of a linear address caused this
3965 * EPT violation. If @c false, GCPtrAddr must be 0.
3966 * @param GCPtrAddr The linear address causing the EPT violation.
3967 * @param cbInstr The VM-exit instruction length.
3968 */
3969static VBOXSTRICTRC iemVmxVmexitEptViolation(PVMCPUCC pVCpu, uint32_t fAccess, uint32_t fSlatFail,
3970 uint64_t fEptAccess, RTGCPHYS GCPhysAddr, bool fIsLinearAddrValid,
3971 uint64_t GCPtrAddr, uint8_t cbInstr) RT_NOEXCEPT
3972{
3973 /*
3974 * If the linear address isn't valid (can happen when loading PDPTEs
3975 * as part of MOV CR execution) the linear address field is undefined.
3976 * While we can leave it this way, it's preferrable to zero it for consistency.
3977 */
3978 Assert(fIsLinearAddrValid || GCPtrAddr == 0);
3979
3980 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
3981 bool const fSupportsAccessDirty = RT_BOOL(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_ACCESS_DIRTY);
3982
3983 uint32_t const fDataRdMask = IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_READ;
3984 uint32_t const fDataWrMask = IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_WRITE;
3985 uint32_t const fInstrMask = IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_EXEC;
3986 bool const fDataRead = ((fAccess & fDataRdMask) == IEM_ACCESS_DATA_R) | fSupportsAccessDirty;
3987 bool const fDataWrite = ((fAccess & fDataWrMask) == IEM_ACCESS_DATA_W) | fSupportsAccessDirty;
3988 bool const fInstrFetch = ((fAccess & fInstrMask) == IEM_ACCESS_INSTRUCTION);
3989 bool const fEptRead = RT_BOOL(fEptAccess & EPT_E_READ);
3990 bool const fEptWrite = RT_BOOL(fEptAccess & EPT_E_WRITE);
3991 bool const fEptExec = RT_BOOL(fEptAccess & EPT_E_EXECUTE);
3992 bool const fNmiUnblocking = pVCpu->cpum.GstCtx.hwvirt.vmx.fNmiUnblockingIret;
3993 bool const fIsLinearToPhysAddr = fIsLinearAddrValid & RT_BOOL(fSlatFail & IEM_SLAT_FAIL_LINEAR_TO_PHYS_ADDR);
3994
3995 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_READ, fDataRead)
3996 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_WRITE, fDataWrite)
3997 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ACCESS_INSTR_FETCH, fInstrFetch)
3998 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_READ, fEptRead)
3999 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_WRITE, fEptWrite)
4000 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_ENTRY_EXECUTE, fEptExec)
4001 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_LINEAR_ADDR_VALID, fIsLinearAddrValid)
4002 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_LINEAR_TO_PHYS_ADDR, fIsLinearToPhysAddr)
4003 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_EPT_NMI_UNBLOCK_IRET, fNmiUnblocking);
4004
4005#ifdef VBOX_STRICT
4006 uint64_t const fMiscCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
4007 uint32_t const fProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2;
4008 Assert(!(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_ADVEXITINFO_EPT_VIOLATION)); /* Advanced VM-exit info. not supported */
4009 Assert(!(fCaps & MSR_IA32_VMX_EPT_VPID_CAP_SUPER_SHW_STACK)); /* Supervisor shadow stack control not supported. */
4010 Assert(!(RT_BF_GET(fMiscCaps, VMX_BF_MISC_INTEL_PT))); /* Intel PT not supported. */
4011 Assert(!(fProcCtls2 & VMX_PROC_CTLS2_MODE_BASED_EPT_PERM)); /* Mode-based execute control not supported. */
4012#endif
4013
4014 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, GCPhysAddr);
4015 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, GCPtrAddr);
4016 iemVmxVmcsSetExitInstrLen(pVCpu, cbInstr);
4017
4018 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_VIOLATION, u64ExitQual);
4019}
4020
4021
4022/**
4023 * VMX VM-exit handler for EPT violation.
4024 *
4025 * This is intended for EPT violations where the caller provides all the
4026 * relevant VM-exit information.
4027 *
4028 * @returns VBox strict status code.
4029 * @param pVCpu The cross context virtual CPU structure.
4030 * @param pExitInfo Pointer to the VM-exit information.
4031 * @param pExitEventInfo Pointer to the VM-exit event information.
4032 */
4033static VBOXSTRICTRC iemVmxVmexitEptViolationWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
4034 PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
4035{
4036 Assert(pExitInfo);
4037 Assert(pExitEventInfo);
4038 Assert(pExitInfo->uReason == VMX_EXIT_EPT_VIOLATION);
4039 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
4040
4041 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
4042 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
4043
4044 iemVmxVmcsSetExitGuestPhysAddr(pVCpu, pExitInfo->u64GuestPhysAddr);
4045 if (pExitInfo->u64Qual & VMX_BF_EXIT_QUAL_EPT_LINEAR_ADDR_VALID_MASK)
4046 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, pExitInfo->u64GuestLinearAddr);
4047 else
4048 iemVmxVmcsSetExitGuestLinearAddr(pVCpu, 0);
4049 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
4050 return iemVmxVmexit(pVCpu, VMX_EXIT_EPT_VIOLATION, pExitInfo->u64Qual);
4051}
4052
4053
4054/**
4055 * Interface for HM and EM to emulate a VM-exit due to an EPT violation.
4056 *
4057 * @returns Strict VBox status code.
4058 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4059 * @param pExitInfo Pointer to the VM-exit information.
4060 * @param pExitEventInfo Pointer to the VM-exit event information.
4061 * @thread EMT(pVCpu)
4062 */
4063VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitEptViolation(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
4064 PCVMXVEXITEVENTINFO pExitEventInfo)
4065{
4066 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
4067
4068 iemInitExec(pVCpu, false /*fBypassHandlers*/);
4069 VBOXSTRICTRC rcStrict = iemVmxVmexitEptViolationWithInfo(pVCpu, pExitInfo, pExitEventInfo);
4070 Assert(!pVCpu->iem.s.cActiveMappings);
4071 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
4072}
4073
4074
4075/**
4076 * VMX VM-exit handler for EPT-induced VM-exits.
4077 *
4078 * @param pVCpu The cross context virtual CPU structure.
4079 * @param pWalk The page walk info.
4080 * @param fAccess The access causing the EPT event, IEM_ACCESS_XXX.
4081 * @param fSlatFail Additional SLAT info, IEM_SLAT_FAIL_XXX.
4082 * @param cbInstr The VM-exit instruction length if applicable. Pass 0 if not
4083 * applicable.
4084 */
4085VBOXSTRICTRC iemVmxVmexitEpt(PVMCPUCC pVCpu, PPGMPTWALK pWalk, uint32_t fAccess, uint32_t fSlatFail, uint8_t cbInstr) RT_NOEXCEPT
4086{
4087 Assert(pWalk->fIsSlat);
4088 Assert(pWalk->fFailed & PGM_WALKFAIL_EPT);
4089 Assert(!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEptXcptVe); /* #VE exceptions not supported. */
4090 Assert(!(pWalk->fFailed & PGM_WALKFAIL_EPT_VIOLATION_CONVERTIBLE)); /* Without #VE, convertible violations not possible. */
4091
4092 if (pWalk->fFailed & PGM_WALKFAIL_EPT_VIOLATION)
4093 {
4094 LogFlow(("EptViolation: cs:rip=%04x:%08RX64 fAccess=%#RX32\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, fAccess));
4095 uint64_t const fEptAccess = (pWalk->fEffective & PGM_PTATTRS_EPT_MASK) >> PGM_PTATTRS_EPT_SHIFT;
4096 return iemVmxVmexitEptViolation(pVCpu, fAccess, fSlatFail, fEptAccess, pWalk->GCPhysNested, pWalk->fIsLinearAddrValid,
4097 pWalk->GCPtr, cbInstr);
4098 }
4099
4100 LogFlow(("EptMisconfig: cs:rip=%04x:%08RX64 fAccess=%#RX32\n", pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, fAccess));
4101 Assert(pWalk->fFailed & PGM_WALKFAIL_EPT_MISCONFIG);
4102 return iemVmxVmexitEptMisconfig(pVCpu, pWalk->GCPhysNested);
4103}
4104
4105
4106/**
4107 * VMX VM-exit handler for APIC accesses.
4108 *
4109 * @param pVCpu The cross context virtual CPU structure.
4110 * @param offAccess The offset of the register being accessed.
4111 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4112 */
4113static VBOXSTRICTRC iemVmxVmexitApicAccess(PVMCPUCC pVCpu, uint16_t offAccess, uint32_t fAccess) RT_NOEXCEPT
4114{
4115 VMXAPICACCESS enmAccess;
4116 bool const fInEventDelivery = IEMGetCurrentXcpt(pVCpu, NULL, NULL, NULL, NULL);
4117 if (fInEventDelivery)
4118 enmAccess = VMXAPICACCESS_LINEAR_EVENT_DELIVERY;
4119 else if ((fAccess & (IEM_ACCESS_WHAT_MASK | IEM_ACCESS_TYPE_MASK)) == IEM_ACCESS_INSTRUCTION)
4120 enmAccess = VMXAPICACCESS_LINEAR_INSTR_FETCH;
4121 else if (fAccess & IEM_ACCESS_TYPE_WRITE)
4122 enmAccess = VMXAPICACCESS_LINEAR_WRITE;
4123 else
4124 enmAccess = VMXAPICACCESS_LINEAR_READ;
4125
4126 uint64_t const u64ExitQual = RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_OFFSET, offAccess)
4127 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_TYPE, enmAccess);
4128 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS, u64ExitQual);
4129}
4130
4131
4132/**
4133 * VMX VM-exit handler for APIC accesses.
4134 *
4135 * This is intended for APIC accesses where the caller provides all the
4136 * relevant VM-exit information.
4137 *
4138 * @returns VBox strict status code.
4139 * @param pVCpu The cross context virtual CPU structure.
4140 * @param pExitInfo Pointer to the VM-exit information.
4141 * @param pExitEventInfo Pointer to the VM-exit event information.
4142 */
4143static VBOXSTRICTRC iemVmxVmexitApicAccessWithInfo(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo,
4144 PCVMXVEXITEVENTINFO pExitEventInfo) RT_NOEXCEPT
4145{
4146 /* VM-exit interruption information should not be valid for APIC-access VM-exits. */
4147 Assert(!VMX_EXIT_INT_INFO_IS_VALID(pExitEventInfo->uExitIntInfo));
4148 Assert(pExitInfo->uReason == VMX_EXIT_APIC_ACCESS);
4149 iemVmxVmcsSetExitIntInfo(pVCpu, 0);
4150 iemVmxVmcsSetExitIntErrCode(pVCpu, 0);
4151 iemVmxVmcsSetExitInstrLen(pVCpu, pExitInfo->cbInstr);
4152 iemVmxVmcsSetIdtVectoringInfo(pVCpu, pExitEventInfo->uIdtVectoringInfo);
4153 iemVmxVmcsSetIdtVectoringErrCode(pVCpu, pExitEventInfo->uIdtVectoringErrCode);
4154 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_ACCESS, pExitInfo->u64Qual);
4155}
4156
4157
4158/**
4159 * Interface for HM and EM to virtualize memory-mapped APIC accesses.
4160 *
4161 * @returns Strict VBox status code.
4162 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the memory access was virtualized.
4163 * @retval VINF_VMX_VMEXIT if the access causes a VM-exit.
4164 *
4165 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4166 * @param pExitInfo Pointer to the VM-exit information.
4167 * @param pExitEventInfo Pointer to the VM-exit event information.
4168 * @thread EMT(pVCpu)
4169 */
4170VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitApicAccess(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo, PCVMXVEXITEVENTINFO pExitEventInfo)
4171{
4172 Assert(pExitInfo);
4173 Assert(pExitEventInfo);
4174 VBOXSTRICTRC rcStrict = iemVmxVmexitApicAccessWithInfo(pVCpu, pExitInfo, pExitEventInfo);
4175 Assert(!pVCpu->iem.s.cActiveMappings);
4176 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
4177}
4178
4179
4180/**
4181 * VMX VM-exit handler for APIC-write VM-exits.
4182 *
4183 * @param pVCpu The cross context virtual CPU structure.
4184 * @param offApic The write to the virtual-APIC page offset that caused this
4185 * VM-exit.
4186 */
4187static VBOXSTRICTRC iemVmxVmexitApicWrite(PVMCPUCC pVCpu, uint16_t offApic) RT_NOEXCEPT
4188{
4189 Assert(offApic < XAPIC_OFF_END + 4);
4190 /* Write only bits 11:0 of the APIC offset into the Exit qualification field. */
4191 offApic &= UINT16_C(0xfff);
4192 return iemVmxVmexit(pVCpu, VMX_EXIT_APIC_WRITE, offApic);
4193}
4194
4195
4196/**
4197 * Clears any pending virtual-APIC write emulation.
4198 *
4199 * @returns The virtual-APIC offset that was written before clearing it.
4200 * @param pVCpu The cross context virtual CPU structure.
4201 */
4202DECLINLINE(uint16_t) iemVmxVirtApicClearPendingWrite(PVMCPUCC pVCpu)
4203{
4204 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_HWVIRT);
4205 uint8_t const offVirtApicWrite = pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite;
4206 pVCpu->cpum.GstCtx.hwvirt.vmx.offVirtApicWrite = 0;
4207 Assert(VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE));
4208 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_VMX_APIC_WRITE);
4209 return offVirtApicWrite;
4210}
4211
4212
4213/**
4214 * Reads a 32-bit register from the virtual-APIC page at the given offset.
4215 *
4216 * @returns The register from the virtual-APIC page.
4217 * @param pVCpu The cross context virtual CPU structure.
4218 * @param offReg The offset of the register being read.
4219 */
4220uint32_t iemVmxVirtApicReadRaw32(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT
4221{
4222 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
4223
4224 uint32_t uReg = 0;
4225 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4226 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg, sizeof(uReg));
4227 AssertMsgStmt(RT_SUCCESS(rc),
4228 ("Failed to read %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4229 sizeof(uReg), offReg, GCPhysVirtApic, rc),
4230 uReg = 0);
4231 return uReg;
4232}
4233
4234
4235/**
4236 * Reads a 64-bit register from the virtual-APIC page at the given offset.
4237 *
4238 * @returns The register from the virtual-APIC page.
4239 * @param pVCpu The cross context virtual CPU structure.
4240 * @param offReg The offset of the register being read.
4241 */
4242static uint64_t iemVmxVirtApicReadRaw64(PVMCPUCC pVCpu, uint16_t offReg) RT_NOEXCEPT
4243{
4244 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint64_t));
4245
4246 uint64_t uReg = 0;
4247 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4248 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg, sizeof(uReg));
4249 AssertMsgStmt(RT_SUCCESS(rc),
4250 ("Failed to read %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4251 sizeof(uReg), offReg, GCPhysVirtApic, rc),
4252 uReg = 0);
4253 return uReg;
4254}
4255
4256
4257/**
4258 * Writes a 32-bit register to the virtual-APIC page at the given offset.
4259 *
4260 * @param pVCpu The cross context virtual CPU structure.
4261 * @param offReg The offset of the register being written.
4262 * @param uReg The register value to write.
4263 */
4264void iemVmxVirtApicWriteRaw32(PVMCPUCC pVCpu, uint16_t offReg, uint32_t uReg) RT_NOEXCEPT
4265{
4266 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint32_t));
4267
4268 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4269 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg, &uReg, sizeof(uReg));
4270 AssertMsgRC(rc, ("Failed to write %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4271 sizeof(uReg), offReg, GCPhysVirtApic, rc));
4272}
4273
4274
4275/**
4276 * Writes a 64-bit register to the virtual-APIC page at the given offset.
4277 *
4278 * @param pVCpu The cross context virtual CPU structure.
4279 * @param offReg The offset of the register being written.
4280 * @param uReg The register value to write.
4281 */
4282static void iemVmxVirtApicWriteRaw64(PVMCPUCC pVCpu, uint16_t offReg, uint64_t uReg) RT_NOEXCEPT
4283{
4284 Assert(offReg <= VMX_V_VIRT_APIC_SIZE - sizeof(uint64_t));
4285
4286 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4287 int rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg, &uReg, sizeof(uReg));
4288 AssertMsgRC(rc, ("Failed to write %u bytes at offset %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4289 sizeof(uReg), offReg, GCPhysVirtApic, rc));
4290}
4291
4292
4293/**
4294 * Sets the vector in a virtual-APIC 256-bit sparse register.
4295 *
4296 * @param pVCpu The cross context virtual CPU structure.
4297 * @param offReg The offset of the 256-bit spare register.
4298 * @param uVector The vector to set.
4299 *
4300 * @remarks This is based on our APIC device code.
4301 */
4302static void iemVmxVirtApicSetVectorInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t uVector) RT_NOEXCEPT
4303{
4304 /* Determine the vector offset within the chunk. */
4305 uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
4306
4307 /* Read the chunk at the offset. */
4308 uint32_t uReg;
4309 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4310 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg + offVector, sizeof(uReg));
4311 if (RT_SUCCESS(rc))
4312 {
4313 /* Modify the chunk. */
4314 uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
4315 uReg |= RT_BIT(idxVectorBit);
4316
4317 /* Write the chunk. */
4318 rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg + offVector, &uReg, sizeof(uReg));
4319 AssertMsgRC(rc, ("Failed to set vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4320 uVector, offReg, GCPhysVirtApic, rc));
4321 }
4322 else
4323 AssertMsgFailed(("Failed to get vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4324 uVector, offReg, GCPhysVirtApic, rc));
4325}
4326
4327
4328/**
4329 * Clears the vector in a virtual-APIC 256-bit sparse register.
4330 *
4331 * @param pVCpu The cross context virtual CPU structure.
4332 * @param offReg The offset of the 256-bit spare register.
4333 * @param uVector The vector to clear.
4334 *
4335 * @remarks This is based on our APIC device code.
4336 */
4337static void iemVmxVirtApicClearVectorInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t uVector) RT_NOEXCEPT
4338{
4339 /* Determine the vector offset within the chunk. */
4340 uint16_t const offVector = (uVector & UINT32_C(0xe0)) >> 1;
4341
4342 /* Read the chunk at the offset. */
4343 uint32_t uReg;
4344 RTGCPHYS const GCPhysVirtApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrVirtApic.u;
4345 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &uReg, GCPhysVirtApic + offReg + offVector, sizeof(uReg));
4346 if (RT_SUCCESS(rc))
4347 {
4348 /* Modify the chunk. */
4349 uint16_t const idxVectorBit = uVector & UINT32_C(0x1f);
4350 uReg &= ~RT_BIT(idxVectorBit);
4351
4352 /* Write the chunk. */
4353 rc = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic + offReg + offVector, &uReg, sizeof(uReg));
4354 AssertMsgRC(rc, ("Failed to clear vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4355 uVector, offReg, GCPhysVirtApic, rc));
4356 }
4357 else
4358 AssertMsgFailed(("Failed to get vector %#x in 256-bit register at %#x of the virtual-APIC page at %#RGp: %Rrc\n",
4359 uVector, offReg, GCPhysVirtApic, rc));
4360}
4361
4362
4363/**
4364 * Checks if a memory access to the APIC-access page must causes an APIC-access
4365 * VM-exit.
4366 *
4367 * @param pVCpu The cross context virtual CPU structure.
4368 * @param offAccess The offset of the register being accessed.
4369 * @param cbAccess The size of the access in bytes.
4370 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4371 *
4372 * @remarks This must not be used for MSR-based APIC-access page accesses!
4373 * @sa iemVmxVirtApicAccessMsrWrite, iemVmxVirtApicAccessMsrRead.
4374 */
4375static bool iemVmxVirtApicIsMemAccessIntercepted(PVMCPUCC pVCpu, uint16_t offAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT
4376{
4377 Assert(cbAccess > 0);
4378 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4379
4380 /*
4381 * We must cause a VM-exit if any of the following are true:
4382 * - TPR shadowing isn't active.
4383 * - The access size exceeds 32-bits.
4384 * - The access is not contained within low 4 bytes of a 16-byte aligned offset.
4385 *
4386 * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
4387 * See Intel spec. 29.4.3.1 "Determining Whether a Write Access is Virtualized".
4388 */
4389 if ( !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
4390 || cbAccess > sizeof(uint32_t)
4391 || ((offAccess + cbAccess - 1) & 0xc)
4392 || offAccess >= XAPIC_OFF_END + 4)
4393 return true;
4394
4395 /*
4396 * If the access is part of an operation where we have already
4397 * virtualized a virtual-APIC write, we must cause a VM-exit.
4398 */
4399 if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_APIC_WRITE))
4400 return true;
4401
4402 /*
4403 * Check write accesses to the APIC-access page that cause VM-exits.
4404 */
4405 if (fAccess & IEM_ACCESS_TYPE_WRITE)
4406 {
4407 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4408 {
4409 /*
4410 * With APIC-register virtualization, a write access to any of the
4411 * following registers are virtualized. Accessing any other register
4412 * causes a VM-exit.
4413 */
4414 uint16_t const offAlignedAccess = offAccess & 0xfffc;
4415 switch (offAlignedAccess)
4416 {
4417 case XAPIC_OFF_ID:
4418 case XAPIC_OFF_TPR:
4419 case XAPIC_OFF_EOI:
4420 case XAPIC_OFF_LDR:
4421 case XAPIC_OFF_DFR:
4422 case XAPIC_OFF_SVR:
4423 case XAPIC_OFF_ESR:
4424 case XAPIC_OFF_ICR_LO:
4425 case XAPIC_OFF_ICR_HI:
4426 case XAPIC_OFF_LVT_TIMER:
4427 case XAPIC_OFF_LVT_THERMAL:
4428 case XAPIC_OFF_LVT_PERF:
4429 case XAPIC_OFF_LVT_LINT0:
4430 case XAPIC_OFF_LVT_LINT1:
4431 case XAPIC_OFF_LVT_ERROR:
4432 case XAPIC_OFF_TIMER_ICR:
4433 case XAPIC_OFF_TIMER_DCR:
4434 break;
4435 default:
4436 return true;
4437 }
4438 }
4439 else if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4440 {
4441 /*
4442 * With virtual-interrupt delivery, a write access to any of the
4443 * following registers are virtualized. Accessing any other register
4444 * causes a VM-exit.
4445 *
4446 * Note! The specification does not allow writing to offsets in-between
4447 * these registers (e.g. TPR + 1 byte) unlike read accesses.
4448 */
4449 switch (offAccess)
4450 {
4451 case XAPIC_OFF_TPR:
4452 case XAPIC_OFF_EOI:
4453 case XAPIC_OFF_ICR_LO:
4454 break;
4455 default:
4456 return true;
4457 }
4458 }
4459 else
4460 {
4461 /*
4462 * Without APIC-register virtualization or virtual-interrupt delivery,
4463 * only TPR accesses are virtualized.
4464 */
4465 if (offAccess == XAPIC_OFF_TPR)
4466 { /* likely */ }
4467 else
4468 return true;
4469 }
4470 }
4471 else
4472 {
4473 /*
4474 * Check read accesses to the APIC-access page that cause VM-exits.
4475 */
4476 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4477 {
4478 /*
4479 * With APIC-register virtualization, a read access to any of the
4480 * following registers are virtualized. Accessing any other register
4481 * causes a VM-exit.
4482 */
4483 uint16_t const offAlignedAccess = offAccess & 0xfffc;
4484 switch (offAlignedAccess)
4485 {
4486 /** @todo r=ramshankar: What about XAPIC_OFF_LVT_CMCI? */
4487 case XAPIC_OFF_ID:
4488 case XAPIC_OFF_VERSION:
4489 case XAPIC_OFF_TPR:
4490 case XAPIC_OFF_EOI:
4491 case XAPIC_OFF_LDR:
4492 case XAPIC_OFF_DFR:
4493 case XAPIC_OFF_SVR:
4494 case XAPIC_OFF_ISR0: case XAPIC_OFF_ISR1: case XAPIC_OFF_ISR2: case XAPIC_OFF_ISR3:
4495 case XAPIC_OFF_ISR4: case XAPIC_OFF_ISR5: case XAPIC_OFF_ISR6: case XAPIC_OFF_ISR7:
4496 case XAPIC_OFF_TMR0: case XAPIC_OFF_TMR1: case XAPIC_OFF_TMR2: case XAPIC_OFF_TMR3:
4497 case XAPIC_OFF_TMR4: case XAPIC_OFF_TMR5: case XAPIC_OFF_TMR6: case XAPIC_OFF_TMR7:
4498 case XAPIC_OFF_IRR0: case XAPIC_OFF_IRR1: case XAPIC_OFF_IRR2: case XAPIC_OFF_IRR3:
4499 case XAPIC_OFF_IRR4: case XAPIC_OFF_IRR5: case XAPIC_OFF_IRR6: case XAPIC_OFF_IRR7:
4500 case XAPIC_OFF_ESR:
4501 case XAPIC_OFF_ICR_LO:
4502 case XAPIC_OFF_ICR_HI:
4503 case XAPIC_OFF_LVT_TIMER:
4504 case XAPIC_OFF_LVT_THERMAL:
4505 case XAPIC_OFF_LVT_PERF:
4506 case XAPIC_OFF_LVT_LINT0:
4507 case XAPIC_OFF_LVT_LINT1:
4508 case XAPIC_OFF_LVT_ERROR:
4509 case XAPIC_OFF_TIMER_ICR:
4510 case XAPIC_OFF_TIMER_DCR:
4511 break;
4512 default:
4513 return true;
4514 }
4515 }
4516 else
4517 {
4518 /* Without APIC-register virtualization, only TPR accesses are virtualized. */
4519 if (offAccess == XAPIC_OFF_TPR)
4520 { /* likely */ }
4521 else
4522 return true;
4523 }
4524 }
4525
4526 /* The APIC access is virtualized, does not cause a VM-exit. */
4527 return false;
4528}
4529
4530
4531/**
4532 * Virtualizes a memory-based APIC access by certain instructions even though they
4533 * do not use the address to access memory.
4534 *
4535 * This is for instructions like MONITOR, CLFLUSH, CLFLUSHOPT, ENTER which may cause
4536 * page-faults but do not use the address to access memory.
4537 *
4538 * @param pVCpu The cross context virtual CPU structure.
4539 * @param pGCPhysAccess Pointer to the guest-physical address accessed.
4540 * @param cbAccess The size of the access in bytes.
4541 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4542 */
4543VBOXSTRICTRC iemVmxVirtApicAccessUnused(PVMCPUCC pVCpu, PRTGCPHYS pGCPhysAccess, size_t cbAccess, uint32_t fAccess) RT_NOEXCEPT
4544{
4545 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
4546 Assert(pGCPhysAccess);
4547
4548 RTGCPHYS const GCPhysAccess = *pGCPhysAccess & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
4549 RTGCPHYS const GCPhysApic = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u64AddrApicAccess.u;
4550 Assert(!(GCPhysApic & GUEST_PAGE_OFFSET_MASK));
4551
4552 if (GCPhysAccess == GCPhysApic)
4553 {
4554 uint16_t const offAccess = *pGCPhysAccess & GUEST_PAGE_OFFSET_MASK;
4555 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
4556 if (fIntercept)
4557 return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
4558
4559 *pGCPhysAccess = GCPhysApic | offAccess;
4560 return VINF_VMX_MODIFIES_BEHAVIOR;
4561 }
4562
4563 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4564}
4565
4566
4567/**
4568 * Virtualizes a memory-based APIC access.
4569 *
4570 * @returns VBox strict status code.
4571 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the access was virtualized.
4572 * @retval VINF_VMX_VMEXIT if the access causes a VM-exit.
4573 *
4574 * @param pVCpu The cross context virtual CPU structure.
4575 * @param offAccess The offset of the register being accessed (within the
4576 * APIC-access page).
4577 * @param cbAccess The size of the access in bytes.
4578 * @param pvData Pointer to the data being written or where to store the data
4579 * being read.
4580 * @param fAccess The type of access, see IEM_ACCESS_XXX.
4581 */
4582static VBOXSTRICTRC iemVmxVirtApicAccessMem(PVMCPUCC pVCpu, uint16_t offAccess, size_t cbAccess,
4583 void *pvData, uint32_t fAccess) RT_NOEXCEPT
4584{
4585 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS);
4586 Assert(pvData);
4587
4588 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, cbAccess, fAccess);
4589 if (fIntercept)
4590 return iemVmxVmexitApicAccess(pVCpu, offAccess, fAccess);
4591
4592 if (fAccess & IEM_ACCESS_TYPE_WRITE)
4593 {
4594 /*
4595 * A write access to the APIC-access page that is virtualized (rather than
4596 * causing a VM-exit) writes data to the virtual-APIC page.
4597 */
4598 uint32_t const u32Data = *(uint32_t *)pvData;
4599 iemVmxVirtApicWriteRaw32(pVCpu, offAccess, u32Data);
4600
4601 /*
4602 * Record the currently updated APIC offset, as we need this later for figuring
4603 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
4604 * as for supplying the exit qualification when causing an APIC-write VM-exit.
4605 *
4606 * After completion of the current operation, we need to perform TPR virtualization,
4607 * EOI virtualization or APIC-write VM-exit depending on which register was written.
4608 *
4609 * The current operation may be a REP-prefixed string instruction, execution of any
4610 * other instruction, or delivery of an event through the IDT.
4611 *
4612 * Thus things like clearing bytes 3:1 of the VTPR, clearing VEOI are not to be
4613 * performed now but later after completion of the current operation.
4614 *
4615 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
4616 */
4617 iemVmxVirtApicSetPendingWrite(pVCpu, offAccess);
4618
4619 LogFlowFunc(("Write access at offset %#x not intercepted -> Wrote %#RX32\n", offAccess, u32Data));
4620 }
4621 else
4622 {
4623 /*
4624 * A read access from the APIC-access page that is virtualized (rather than
4625 * causing a VM-exit) returns data from the virtual-APIC page.
4626 *
4627 * See Intel spec. 29.4.2 "Virtualizing Reads from the APIC-Access Page".
4628 */
4629 Assert(fAccess & IEM_ACCESS_TYPE_READ);
4630
4631 Assert(cbAccess <= 4);
4632 Assert(offAccess < XAPIC_OFF_END + 4);
4633 static uint32_t const s_auAccessSizeMasks[] = { 0, 0xff, 0xffff, 0xffffff, 0xffffffff };
4634
4635 uint32_t u32Data = iemVmxVirtApicReadRaw32(pVCpu, offAccess);
4636 u32Data &= s_auAccessSizeMasks[cbAccess];
4637 *(uint32_t *)pvData = u32Data;
4638
4639 LogFlowFunc(("Read access at offset %#x not intercepted -> Read %#RX32\n", offAccess, u32Data));
4640 }
4641
4642 return VINF_VMX_MODIFIES_BEHAVIOR;
4643}
4644
4645
4646/**
4647 * Virtualizes an MSR-based APIC read access.
4648 *
4649 * @returns VBox strict status code.
4650 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR read was virtualized.
4651 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR read access must be
4652 * handled by the x2APIC device.
4653 * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
4654 * not within the range of valid MSRs, caller must raise \#GP(0).
4655 * @param pVCpu The cross context virtual CPU structure.
4656 * @param idMsr The x2APIC MSR being read.
4657 * @param pu64Value Where to store the read x2APIC MSR value (only valid when
4658 * VINF_VMX_MODIFIES_BEHAVIOR is returned).
4659 */
4660static VBOXSTRICTRC iemVmxVirtApicAccessMsrRead(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Value) RT_NOEXCEPT
4661{
4662 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE);
4663 Assert(pu64Value);
4664
4665 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
4666 {
4667 if ( idMsr >= MSR_IA32_X2APIC_START
4668 && idMsr <= MSR_IA32_X2APIC_END)
4669 {
4670 uint16_t const offReg = (idMsr & 0xff) << 4;
4671 uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
4672 *pu64Value = u64Value;
4673 return VINF_VMX_MODIFIES_BEHAVIOR;
4674 }
4675 return VERR_OUT_OF_RANGE;
4676 }
4677
4678 if (idMsr == MSR_IA32_X2APIC_TPR)
4679 {
4680 uint16_t const offReg = (idMsr & 0xff) << 4;
4681 uint64_t const u64Value = iemVmxVirtApicReadRaw64(pVCpu, offReg);
4682 *pu64Value = u64Value;
4683 return VINF_VMX_MODIFIES_BEHAVIOR;
4684 }
4685
4686 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4687}
4688
4689
4690/**
4691 * Virtualizes an MSR-based APIC write access.
4692 *
4693 * @returns VBox strict status code.
4694 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR write was virtualized.
4695 * @retval VERR_OUT_RANGE if the MSR read was supposed to be virtualized but was
4696 * not within the range of valid MSRs, caller must raise \#GP(0).
4697 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR must be written normally.
4698 *
4699 * @param pVCpu The cross context virtual CPU structure.
4700 * @param idMsr The x2APIC MSR being written.
4701 * @param u64Value The value of the x2APIC MSR being written.
4702 */
4703static VBOXSTRICTRC iemVmxVirtApicAccessMsrWrite(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t u64Value) RT_NOEXCEPT
4704{
4705 /*
4706 * Check if the access is to be virtualized.
4707 * See Intel spec. 29.5 "Virtualizing MSR-based APIC Accesses".
4708 */
4709 if ( idMsr == MSR_IA32_X2APIC_TPR
4710 || ( (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
4711 && ( idMsr == MSR_IA32_X2APIC_EOI
4712 || idMsr == MSR_IA32_X2APIC_SELF_IPI)))
4713 {
4714 /* Validate the MSR write depending on the register. */
4715 switch (idMsr)
4716 {
4717 case MSR_IA32_X2APIC_TPR:
4718 case MSR_IA32_X2APIC_SELF_IPI:
4719 {
4720 if (u64Value & UINT64_C(0xffffffffffffff00))
4721 return VERR_OUT_OF_RANGE;
4722 break;
4723 }
4724 case MSR_IA32_X2APIC_EOI:
4725 {
4726 if (u64Value != 0)
4727 return VERR_OUT_OF_RANGE;
4728 break;
4729 }
4730 }
4731
4732 /* Write the MSR to the virtual-APIC page. */
4733 uint16_t const offReg = (idMsr & 0xff) << 4;
4734 iemVmxVirtApicWriteRaw64(pVCpu, offReg, u64Value);
4735
4736 /*
4737 * Record the currently updated APIC offset, as we need this later for figuring
4738 * out whether to perform TPR, EOI or self-IPI virtualization as well as well
4739 * as for supplying the exit qualification when causing an APIC-write VM-exit.
4740 */
4741 iemVmxVirtApicSetPendingWrite(pVCpu, offReg);
4742
4743 return VINF_VMX_MODIFIES_BEHAVIOR;
4744 }
4745
4746 return VINF_VMX_INTERCEPT_NOT_ACTIVE;
4747}
4748
4749
4750/**
4751 * Interface for HM and EM to virtualize x2APIC MSR accesses.
4752 *
4753 * @returns Strict VBox status code.
4754 * @retval VINF_VMX_MODIFIES_BEHAVIOR if the MSR access was virtualized.
4755 * @retval VINF_VMX_INTERCEPT_NOT_ACTIVE if the MSR access must be handled by
4756 * the x2APIC device.
4757 * @retval VERR_OUT_RANGE if the caller must raise \#GP(0).
4758 *
4759 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
4760 * @param idMsr The MSR being read.
4761 * @param pu64Value Pointer to the value being written or where to store the
4762 * value being read.
4763 * @param fWrite Whether this is an MSR write or read access.
4764 * @thread EMT(pVCpu)
4765 */
4766VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVirtApicAccessMsr(PVMCPUCC pVCpu, uint32_t idMsr, uint64_t *pu64Value, bool fWrite)
4767{
4768 Assert(pu64Value);
4769
4770 VBOXSTRICTRC rcStrict;
4771 if (fWrite)
4772 rcStrict = iemVmxVirtApicAccessMsrWrite(pVCpu, idMsr, *pu64Value);
4773 else
4774 rcStrict = iemVmxVirtApicAccessMsrRead(pVCpu, idMsr, pu64Value);
4775 Assert(!pVCpu->iem.s.cActiveMappings);
4776 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
4777
4778}
4779
4780
4781/**
4782 * Finds the most significant set bit in a virtual-APIC 256-bit sparse register.
4783 *
4784 * @returns VBox status code.
4785 * @retval VINF_SUCCESS when the highest set bit is found.
4786 * @retval VERR_NOT_FOUND when no bit is set.
4787 *
4788 * @param pVCpu The cross context virtual CPU structure.
4789 * @param offReg The offset of the APIC 256-bit sparse register.
4790 * @param pidxHighestBit Where to store the highest bit (most significant bit)
4791 * set in the register. Only valid when VINF_SUCCESS is
4792 * returned.
4793 *
4794 * @remarks The format of the 256-bit sparse register here mirrors that found in
4795 * real APIC hardware.
4796 */
4797static int iemVmxVirtApicGetHighestSetBitInReg(PVMCPUCC pVCpu, uint16_t offReg, uint8_t *pidxHighestBit)
4798{
4799 Assert(offReg < XAPIC_OFF_END + 4);
4800 Assert(pidxHighestBit);
4801
4802 /*
4803 * There are 8 contiguous fragments (of 16-bytes each) in the sparse register.
4804 * However, in each fragment only the first 4 bytes are used.
4805 */
4806 uint8_t const cFrags = 8;
4807 for (int8_t iFrag = cFrags; iFrag >= 0; iFrag--)
4808 {
4809 uint16_t const offFrag = iFrag * 16;
4810 uint32_t const u32Frag = iemVmxVirtApicReadRaw32(pVCpu, offReg + offFrag);
4811 if (!u32Frag)
4812 continue;
4813
4814 unsigned idxHighestBit = ASMBitLastSetU32(u32Frag);
4815 Assert(idxHighestBit > 0);
4816 --idxHighestBit;
4817 Assert(idxHighestBit <= UINT8_MAX);
4818 *pidxHighestBit = idxHighestBit;
4819 return VINF_SUCCESS;
4820 }
4821 return VERR_NOT_FOUND;
4822}
4823
4824
4825/**
4826 * Evaluates pending virtual interrupts.
4827 *
4828 * @param pVCpu The cross context virtual CPU structure.
4829 */
4830static void iemVmxEvalPendingVirtIntrs(PVMCPUCC pVCpu) RT_NOEXCEPT
4831{
4832 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4833
4834 if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT))
4835 {
4836 uint8_t const uRvi = RT_LO_U8(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u16GuestIntStatus);
4837 uint8_t const uPpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_PPR);
4838
4839 if ((uRvi >> 4) > (uPpr >> 4))
4840 {
4841 Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Signalling pending interrupt\n", uRvi, uPpr));
4842 VMCPU_FF_SET(pVCpu, VMCPU_FF_INTERRUPT_NESTED_GUEST);
4843 }
4844 else
4845 Log2(("eval_virt_intrs: uRvi=%#x uPpr=%#x - Nothing to do\n", uRvi, uPpr));
4846 }
4847}
4848
4849
4850/**
4851 * Performs PPR virtualization.
4852 *
4853 * @returns VBox strict status code.
4854 * @param pVCpu The cross context virtual CPU structure.
4855 */
4856static void iemVmxPprVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
4857{
4858 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4859 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4860
4861 /*
4862 * PPR virtualization is caused in response to a VM-entry, TPR-virtualization,
4863 * or EOI-virtualization.
4864 *
4865 * See Intel spec. 29.1.3 "PPR Virtualization".
4866 */
4867 uint8_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4868 uint8_t const uSvi = RT_HI_U8(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u16GuestIntStatus) & 0xf0;
4869
4870 uint32_t uPpr;
4871 if ((uTpr & 0xf0) >= uSvi)
4872 uPpr = uTpr;
4873 else
4874 uPpr = uSvi;
4875
4876 Log2(("ppr_virt: uTpr=%#x uSvi=%#x uPpr=%#x\n", uTpr, uSvi, uPpr));
4877 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_PPR, uPpr);
4878}
4879
4880
4881/**
4882 * Performs VMX TPR virtualization.
4883 *
4884 * @returns VBox strict status code.
4885 * @param pVCpu The cross context virtual CPU structure.
4886 */
4887static VBOXSTRICTRC iemVmxTprVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
4888{
4889 Assert(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4890
4891 /*
4892 * We should have already performed the virtual-APIC write to the TPR offset
4893 * in the virtual-APIC page. We now perform TPR virtualization.
4894 *
4895 * See Intel spec. 29.1.2 "TPR Virtualization".
4896 */
4897 if (!(pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
4898 {
4899 uint32_t const uTprThreshold = pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32TprThreshold;
4900 uint32_t const uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
4901
4902 /*
4903 * If the VTPR falls below the TPR threshold, we must cause a VM-exit.
4904 * See Intel spec. 29.1.2 "TPR Virtualization".
4905 */
4906 if (((uTpr >> 4) & 0xf) < uTprThreshold)
4907 {
4908 Log2(("tpr_virt: uTpr=%u uTprThreshold=%u -> VM-exit\n", uTpr, uTprThreshold));
4909 return iemVmxVmexit(pVCpu, VMX_EXIT_TPR_BELOW_THRESHOLD, 0 /* u64ExitQual */);
4910 }
4911 }
4912 else
4913 {
4914 iemVmxPprVirtualization(pVCpu);
4915 iemVmxEvalPendingVirtIntrs(pVCpu);
4916 }
4917
4918 return VINF_SUCCESS;
4919}
4920
4921
4922/**
4923 * Checks whether an EOI write for the given interrupt vector causes a VM-exit or
4924 * not.
4925 *
4926 * @returns @c true if the EOI write is intercepted, @c false otherwise.
4927 * @param pVCpu The cross context virtual CPU structure.
4928 * @param uVector The interrupt that was acknowledged using an EOI.
4929 */
4930static bool iemVmxIsEoiInterceptSet(PCVMCPU pVCpu, uint8_t uVector) RT_NOEXCEPT
4931{
4932 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4933 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4934
4935 if (uVector < 64)
4936 return RT_BOOL(pVmcs->u64EoiExitBitmap0.u & RT_BIT_64(uVector));
4937 if (uVector < 128)
4938 return RT_BOOL(pVmcs->u64EoiExitBitmap1.u & RT_BIT_64(uVector));
4939 if (uVector < 192)
4940 return RT_BOOL(pVmcs->u64EoiExitBitmap2.u & RT_BIT_64(uVector));
4941 return RT_BOOL(pVmcs->u64EoiExitBitmap3.u & RT_BIT_64(uVector));
4942}
4943
4944
4945/**
4946 * Performs EOI virtualization.
4947 *
4948 * @returns VBox strict status code.
4949 * @param pVCpu The cross context virtual CPU structure.
4950 */
4951static VBOXSTRICTRC iemVmxEoiVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
4952{
4953 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4954 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
4955
4956 /*
4957 * Clear the interrupt guest-interrupt as no longer in-service (ISR)
4958 * and get the next guest-interrupt that's in-service (if any).
4959 *
4960 * See Intel spec. 29.1.4 "EOI Virtualization".
4961 */
4962 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
4963 uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
4964 Log2(("eoi_virt: uRvi=%#x uSvi=%#x\n", uRvi, uSvi));
4965
4966 uint8_t uVector = uSvi;
4967 iemVmxVirtApicClearVectorInReg(pVCpu, XAPIC_OFF_ISR0, uVector);
4968
4969 uVector = 0;
4970 iemVmxVirtApicGetHighestSetBitInReg(pVCpu, XAPIC_OFF_ISR0, &uVector);
4971
4972 if (uVector)
4973 Log2(("eoi_virt: next interrupt %#x\n", uVector));
4974 else
4975 Log2(("eoi_virt: no interrupt pending in ISR\n"));
4976
4977 /* Update guest-interrupt status SVI (leave RVI portion as it is) in the VMCS. */
4978 pVmcs->u16GuestIntStatus = RT_MAKE_U16(uRvi, uVector);
4979
4980 iemVmxPprVirtualization(pVCpu);
4981 if (iemVmxIsEoiInterceptSet(pVCpu, uVector))
4982 return iemVmxVmexit(pVCpu, VMX_EXIT_VIRTUALIZED_EOI, uVector);
4983 iemVmxEvalPendingVirtIntrs(pVCpu);
4984 return VINF_SUCCESS;
4985}
4986
4987
4988/**
4989 * Performs self-IPI virtualization.
4990 *
4991 * @returns VBox strict status code.
4992 * @param pVCpu The cross context virtual CPU structure.
4993 */
4994static VBOXSTRICTRC iemVmxSelfIpiVirtualization(PVMCPUCC pVCpu) RT_NOEXCEPT
4995{
4996 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
4997 Assert(pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW);
4998
4999 /*
5000 * We should have already performed the virtual-APIC write to the self-IPI offset
5001 * in the virtual-APIC page. We now perform self-IPI virtualization.
5002 *
5003 * See Intel spec. 29.1.5 "Self-IPI Virtualization".
5004 */
5005 uint8_t const uVector = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_LO);
5006 Log2(("self_ipi_virt: uVector=%#x\n", uVector));
5007 iemVmxVirtApicSetVectorInReg(pVCpu, XAPIC_OFF_IRR0, uVector);
5008 uint8_t const uRvi = RT_LO_U8(pVmcs->u16GuestIntStatus);
5009 uint8_t const uSvi = RT_HI_U8(pVmcs->u16GuestIntStatus);
5010 if (uVector > uRvi)
5011 pVmcs->u16GuestIntStatus = RT_MAKE_U16(uVector, uSvi);
5012 iemVmxEvalPendingVirtIntrs(pVCpu);
5013 return VINF_SUCCESS;
5014}
5015
5016
5017/**
5018 * Performs VMX APIC-write emulation.
5019 *
5020 * @returns VBox strict status code.
5021 * @param pVCpu The cross context virtual CPU structure.
5022 */
5023VBOXSTRICTRC iemVmxApicWriteEmulation(PVMCPUCC pVCpu) RT_NOEXCEPT
5024{
5025 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5026
5027 /* Import the virtual-APIC write offset (part of the hardware-virtualization state). */
5028 IEM_CTX_IMPORT_RET(pVCpu, CPUMCTX_EXTRN_HWVIRT);
5029
5030 /*
5031 * Perform APIC-write emulation based on the virtual-APIC register written.
5032 * See Intel spec. 29.4.3.2 "APIC-Write Emulation".
5033 */
5034 uint16_t const offApicWrite = iemVmxVirtApicClearPendingWrite(pVCpu);
5035 VBOXSTRICTRC rcStrict;
5036 switch (offApicWrite)
5037 {
5038 case XAPIC_OFF_TPR:
5039 {
5040 /* Clear bytes 3:1 of the VTPR and perform TPR virtualization. */
5041 uint32_t uTpr = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5042 uTpr &= UINT32_C(0x000000ff);
5043 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_TPR, uTpr);
5044 Log2(("iemVmxApicWriteEmulation: TPR write %#x\n", uTpr));
5045 rcStrict = iemVmxTprVirtualization(pVCpu);
5046 break;
5047 }
5048
5049 case XAPIC_OFF_EOI:
5050 {
5051 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
5052 {
5053 /* Clear VEOI and perform EOI virtualization. */
5054 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_EOI, 0);
5055 Log2(("iemVmxApicWriteEmulation: EOI write\n"));
5056 rcStrict = iemVmxEoiVirtualization(pVCpu);
5057 }
5058 else
5059 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5060 break;
5061 }
5062
5063 case XAPIC_OFF_ICR_LO:
5064 {
5065 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
5066 {
5067 /* If the ICR_LO is valid, write it and perform self-IPI virtualization. */
5068 uint32_t const uIcrLo = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_TPR);
5069 uint32_t const fIcrLoMb0 = UINT32_C(0xfffbb700);
5070 uint32_t const fIcrLoMb1 = UINT32_C(0x000000f0);
5071 if ( !(uIcrLo & fIcrLoMb0)
5072 && (uIcrLo & fIcrLoMb1))
5073 {
5074 Log2(("iemVmxApicWriteEmulation: Self-IPI virtualization with vector %#x\n", (uIcrLo & 0xff)));
5075 rcStrict = iemVmxSelfIpiVirtualization(pVCpu);
5076 }
5077 else
5078 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5079 }
5080 else
5081 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5082 break;
5083 }
5084
5085 case XAPIC_OFF_ICR_HI:
5086 {
5087 /* Clear bytes 2:0 of VICR_HI. No other virtualization or VM-exit must occur. */
5088 uint32_t uIcrHi = iemVmxVirtApicReadRaw32(pVCpu, XAPIC_OFF_ICR_HI);
5089 uIcrHi &= UINT32_C(0xff000000);
5090 iemVmxVirtApicWriteRaw32(pVCpu, XAPIC_OFF_ICR_HI, uIcrHi);
5091 rcStrict = VINF_SUCCESS;
5092 break;
5093 }
5094
5095 default:
5096 {
5097 /* Writes to any other virtual-APIC register causes an APIC-write VM-exit. */
5098 rcStrict = iemVmxVmexitApicWrite(pVCpu, offApicWrite);
5099 break;
5100 }
5101 }
5102
5103 return rcStrict;
5104}
5105
5106
5107/**
5108 * Interface for HM and EM to perform an APIC-write emulation which may cause a
5109 * VM-exit.
5110 *
5111 * @returns Strict VBox status code.
5112 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
5113 * @thread EMT(pVCpu)
5114 */
5115VMM_INT_DECL(VBOXSTRICTRC) IEMExecVmxVmexitApicWrite(PVMCPUCC pVCpu)
5116{
5117 VBOXSTRICTRC rcStrict = iemVmxApicWriteEmulation(pVCpu);
5118 Assert(!pVCpu->iem.s.cActiveMappings);
5119 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
5120}
5121
5122
5123/**
5124 * Checks guest control registers, debug registers and MSRs as part of VM-entry.
5125 *
5126 * @param pVCpu The cross context virtual CPU structure.
5127 * @param pszInstr The VMX instruction name (for logging purposes).
5128 */
5129DECLINLINE(int) iemVmxVmentryCheckGuestControlRegsMsrs(PVMCPUCC pVCpu, const char *pszInstr)
5130{
5131 /*
5132 * Guest Control Registers, Debug Registers, and MSRs.
5133 * See Intel spec. 26.3.1.1 "Checks on Guest Control Registers, Debug Registers, and MSRs".
5134 */
5135 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5136 const char * const pszFailure = "VM-exit";
5137 bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
5138
5139 /* CR0 reserved bits. */
5140 {
5141 /* CR0 MB1 bits. */
5142 uint64_t const u64Cr0Fixed0 = iemVmxGetCr0Fixed0(pVCpu, true /* fVmxNonRootMode */);
5143 if ((pVmcs->u64GuestCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
5144 { /* likely */ }
5145 else
5146 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed0);
5147
5148 /* CR0 MBZ bits. */
5149 uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
5150 if (!(pVmcs->u64GuestCr0.u & ~u64Cr0Fixed1))
5151 { /* likely */ }
5152 else
5153 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0Fixed1);
5154
5155 /* Without unrestricted guest support, VT-x supports does not support unpaged protected mode. */
5156 if ( !fUnrestrictedGuest
5157 && (pVmcs->u64GuestCr0.u & X86_CR0_PG)
5158 && !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5159 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr0PgPe);
5160 }
5161
5162 /* CR4 reserved bits. */
5163 {
5164 /* CR4 MB1 bits. */
5165 uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
5166 if ((pVmcs->u64GuestCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
5167 { /* likely */ }
5168 else
5169 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed0);
5170
5171 /* CR4 MBZ bits. */
5172 uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
5173 if (!(pVmcs->u64GuestCr4.u & ~u64Cr4Fixed1))
5174 { /* likely */ }
5175 else
5176 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr4Fixed1);
5177 }
5178
5179 /* DEBUGCTL MSR. */
5180 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5181 || !(pVmcs->u64GuestDebugCtlMsr.u & ~MSR_IA32_DEBUGCTL_VALID_MASK_INTEL))
5182 { /* likely */ }
5183 else
5184 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDebugCtl);
5185
5186 /* 64-bit CPU checks. */
5187 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5188 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5189 {
5190 if (fGstInLongMode)
5191 {
5192 /* PAE must be set. */
5193 if ( (pVmcs->u64GuestCr0.u & X86_CR0_PG)
5194 && (pVmcs->u64GuestCr0.u & X86_CR4_PAE))
5195 { /* likely */ }
5196 else
5197 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPae);
5198 }
5199 else
5200 {
5201 /* PCIDE should not be set. */
5202 if (!(pVmcs->u64GuestCr4.u & X86_CR4_PCIDE))
5203 { /* likely */ }
5204 else
5205 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPcide);
5206 }
5207
5208 /* CR3. */
5209 if (!(pVmcs->u64GuestCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
5210 { /* likely */ }
5211 else
5212 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestCr3);
5213
5214 /* DR7. */
5215 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
5216 || !(pVmcs->u64GuestDr7.u & X86_DR7_MBZ_MASK))
5217 { /* likely */ }
5218 else
5219 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestDr7);
5220
5221 /* SYSENTER ESP and SYSENTER EIP. */
5222 if ( X86_IS_CANONICAL(pVmcs->u64GuestSysenterEsp.u)
5223 && X86_IS_CANONICAL(pVmcs->u64GuestSysenterEip.u))
5224 { /* likely */ }
5225 else
5226 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSysenterEspEip);
5227 }
5228
5229 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
5230 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
5231
5232 /* PAT MSR. */
5233 if ( !(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
5234 || CPUMIsPatMsrValid(pVmcs->u64GuestPatMsr.u))
5235 { /* likely */ }
5236 else
5237 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPatMsr);
5238
5239 /* EFER MSR. */
5240 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
5241 {
5242 uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
5243 if (!(pVmcs->u64GuestEferMsr.u & ~uValidEferMask))
5244 { /* likely */ }
5245 else
5246 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsrRsvd);
5247
5248 bool const fGstLma = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LMA);
5249 bool const fGstLme = RT_BOOL(pVmcs->u64GuestEferMsr.u & MSR_K6_EFER_LME);
5250 if ( fGstLma == fGstInLongMode
5251 && ( !(pVmcs->u64GuestCr0.u & X86_CR0_PG)
5252 || fGstLma == fGstLme))
5253 { /* likely */ }
5254 else
5255 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestEferMsr);
5256 }
5257
5258 /* We don't support IA32_BNDCFGS MSR yet. */
5259 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
5260
5261 NOREF(pszInstr);
5262 NOREF(pszFailure);
5263 return VINF_SUCCESS;
5264}
5265
5266
5267/**
5268 * Checks guest segment registers, LDTR and TR as part of VM-entry.
5269 *
5270 * @param pVCpu The cross context virtual CPU structure.
5271 * @param pszInstr The VMX instruction name (for logging purposes).
5272 */
5273DECLINLINE(int) iemVmxVmentryCheckGuestSegRegs(PVMCPUCC pVCpu, const char *pszInstr)
5274{
5275 /*
5276 * Segment registers.
5277 * See Intel spec. 26.3.1.2 "Checks on Guest Segment Registers".
5278 */
5279 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5280 const char * const pszFailure = "VM-exit";
5281 bool const fGstInV86Mode = RT_BOOL(pVmcs->u64GuestRFlags.u & X86_EFL_VM);
5282 bool const fUnrestrictedGuest = RT_BOOL(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST);
5283 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5284
5285 /* Selectors. */
5286 if ( !fGstInV86Mode
5287 && !fUnrestrictedGuest
5288 && (pVmcs->GuestSs & X86_SEL_RPL) != (pVmcs->GuestCs & X86_SEL_RPL))
5289 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelCsSsRpl);
5290
5291 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
5292 {
5293 CPUMSELREG SelReg;
5294 int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &SelReg);
5295 if (RT_LIKELY(rc == VINF_SUCCESS))
5296 { /* likely */ }
5297 else
5298 return rc;
5299
5300 /*
5301 * Virtual-8086 mode checks.
5302 */
5303 if (fGstInV86Mode)
5304 {
5305 /* Base address. */
5306 if (SelReg.u64Base == (uint64_t)SelReg.Sel << 4)
5307 { /* likely */ }
5308 else
5309 {
5310 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBaseV86(iSegReg);
5311 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5312 }
5313
5314 /* Limit. */
5315 if (SelReg.u32Limit == 0xffff)
5316 { /* likely */ }
5317 else
5318 {
5319 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegLimitV86(iSegReg);
5320 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5321 }
5322
5323 /* Attribute. */
5324 if (SelReg.Attr.u == 0xf3)
5325 { /* likely */ }
5326 else
5327 {
5328 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrV86(iSegReg);
5329 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5330 }
5331
5332 /* We're done; move to checking the next segment. */
5333 continue;
5334 }
5335
5336 /* Checks done by 64-bit CPUs. */
5337 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5338 {
5339 /* Base address. */
5340 if ( iSegReg == X86_SREG_FS
5341 || iSegReg == X86_SREG_GS)
5342 {
5343 if (X86_IS_CANONICAL(SelReg.u64Base))
5344 { /* likely */ }
5345 else
5346 {
5347 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
5348 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5349 }
5350 }
5351 else if (iSegReg == X86_SREG_CS)
5352 {
5353 if (!RT_HI_U32(SelReg.u64Base))
5354 { /* likely */ }
5355 else
5356 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseCs);
5357 }
5358 else
5359 {
5360 if ( SelReg.Attr.n.u1Unusable
5361 || !RT_HI_U32(SelReg.u64Base))
5362 { /* likely */ }
5363 else
5364 {
5365 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegBase(iSegReg);
5366 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5367 }
5368 }
5369 }
5370
5371 /*
5372 * Checks outside Virtual-8086 mode.
5373 */
5374 uint8_t const uSegType = SelReg.Attr.n.u4Type;
5375 uint8_t const fCodeDataSeg = SelReg.Attr.n.u1DescType;
5376 uint8_t const fUsable = !SelReg.Attr.n.u1Unusable;
5377 uint8_t const uDpl = SelReg.Attr.n.u2Dpl;
5378 uint8_t const fPresent = SelReg.Attr.n.u1Present;
5379 uint8_t const uGranularity = SelReg.Attr.n.u1Granularity;
5380 uint8_t const uDefBig = SelReg.Attr.n.u1DefBig;
5381 uint8_t const fSegLong = SelReg.Attr.n.u1Long;
5382
5383 /* Code or usable segment. */
5384 if ( iSegReg == X86_SREG_CS
5385 || fUsable)
5386 {
5387 /* Reserved bits (bits 31:17 and bits 11:8). */
5388 if (!(SelReg.Attr.u & 0xfffe0f00))
5389 { /* likely */ }
5390 else
5391 {
5392 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrRsvd(iSegReg);
5393 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5394 }
5395
5396 /* Descriptor type. */
5397 if (fCodeDataSeg)
5398 { /* likely */ }
5399 else
5400 {
5401 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDescType(iSegReg);
5402 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5403 }
5404
5405 /* Present. */
5406 if (fPresent)
5407 { /* likely */ }
5408 else
5409 {
5410 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrPresent(iSegReg);
5411 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5412 }
5413
5414 /* Granularity. */
5415 if ( ((SelReg.u32Limit & 0x00000fff) == 0x00000fff || !uGranularity)
5416 && ((SelReg.u32Limit & 0xfff00000) == 0x00000000 || uGranularity))
5417 { /* likely */ }
5418 else
5419 {
5420 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrGran(iSegReg);
5421 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5422 }
5423 }
5424
5425 if (iSegReg == X86_SREG_CS)
5426 {
5427 /* Segment Type and DPL. */
5428 if ( uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5429 && fUnrestrictedGuest)
5430 {
5431 if (uDpl == 0)
5432 { /* likely */ }
5433 else
5434 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplZero);
5435 }
5436 else if ( uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_ACCESSED)
5437 || uSegType == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
5438 {
5439 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5440 if (uDpl == AttrSs.n.u2Dpl)
5441 { /* likely */ }
5442 else
5443 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplEqSs);
5444 }
5445 else if ((uSegType & (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
5446 == (X86_SEL_TYPE_CODE | X86_SEL_TYPE_CONF | X86_SEL_TYPE_ACCESSED))
5447 {
5448 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5449 if (uDpl <= AttrSs.n.u2Dpl)
5450 { /* likely */ }
5451 else
5452 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDplLtSs);
5453 }
5454 else
5455 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsType);
5456
5457 /* Def/Big. */
5458 if ( fGstInLongMode
5459 && fSegLong)
5460 {
5461 if (uDefBig == 0)
5462 { /* likely */ }
5463 else
5464 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsDefBig);
5465 }
5466 }
5467 else if (iSegReg == X86_SREG_SS)
5468 {
5469 /* Segment Type. */
5470 if ( !fUsable
5471 || uSegType == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5472 || uSegType == (X86_SEL_TYPE_DOWN | X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED))
5473 { /* likely */ }
5474 else
5475 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsType);
5476
5477 /* DPL. */
5478 if (!fUnrestrictedGuest)
5479 {
5480 if (uDpl == (SelReg.Sel & X86_SEL_RPL))
5481 { /* likely */ }
5482 else
5483 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplEqRpl);
5484 }
5485 X86DESCATTR AttrCs; AttrCs.u = pVmcs->u32GuestCsAttr;
5486 if ( AttrCs.n.u4Type == (X86_SEL_TYPE_RW | X86_SEL_TYPE_ACCESSED)
5487 || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5488 {
5489 if (uDpl == 0)
5490 { /* likely */ }
5491 else
5492 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrSsDplZero);
5493 }
5494 }
5495 else
5496 {
5497 /* DS, ES, FS, GS. */
5498 if (fUsable)
5499 {
5500 /* Segment type. */
5501 if (uSegType & X86_SEL_TYPE_ACCESSED)
5502 { /* likely */ }
5503 else
5504 {
5505 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrTypeAcc(iSegReg);
5506 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5507 }
5508
5509 if ( !(uSegType & X86_SEL_TYPE_CODE)
5510 || (uSegType & X86_SEL_TYPE_READ))
5511 { /* likely */ }
5512 else
5513 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrCsTypeRead);
5514
5515 /* DPL. */
5516 if ( !fUnrestrictedGuest
5517 && uSegType <= (X86_SEL_TYPE_CODE | X86_SEL_TYPE_READ | X86_SEL_TYPE_ACCESSED))
5518 {
5519 if (uDpl >= (SelReg.Sel & X86_SEL_RPL))
5520 { /* likely */ }
5521 else
5522 {
5523 VMXVDIAG const enmDiag = iemVmxGetDiagVmentrySegAttrDplRpl(iSegReg);
5524 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
5525 }
5526 }
5527 }
5528 }
5529 }
5530
5531 /*
5532 * LDTR.
5533 */
5534 {
5535 CPUMSELREG Ldtr;
5536 Ldtr.Sel = pVmcs->GuestLdtr;
5537 Ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
5538 Ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
5539 Ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
5540
5541 if (!Ldtr.Attr.n.u1Unusable)
5542 {
5543 /* Selector. */
5544 if (!(Ldtr.Sel & X86_SEL_LDT))
5545 { /* likely */ }
5546 else
5547 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelLdtr);
5548
5549 /* Base. */
5550 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5551 {
5552 if (X86_IS_CANONICAL(Ldtr.u64Base))
5553 { /* likely */ }
5554 else
5555 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseLdtr);
5556 }
5557
5558 /* Attributes. */
5559 /* Reserved bits (bits 31:17 and bits 11:8). */
5560 if (!(Ldtr.Attr.u & 0xfffe0f00))
5561 { /* likely */ }
5562 else
5563 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrRsvd);
5564
5565 if (Ldtr.Attr.n.u4Type == X86_SEL_TYPE_SYS_LDT)
5566 { /* likely */ }
5567 else
5568 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrType);
5569
5570 if (!Ldtr.Attr.n.u1DescType)
5571 { /* likely */ }
5572 else
5573 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrDescType);
5574
5575 if (Ldtr.Attr.n.u1Present)
5576 { /* likely */ }
5577 else
5578 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrPresent);
5579
5580 if ( ((Ldtr.u32Limit & 0x00000fff) == 0x00000fff || !Ldtr.Attr.n.u1Granularity)
5581 && ((Ldtr.u32Limit & 0xfff00000) == 0x00000000 || Ldtr.Attr.n.u1Granularity))
5582 { /* likely */ }
5583 else
5584 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrLdtrGran);
5585 }
5586 }
5587
5588 /*
5589 * TR.
5590 */
5591 {
5592 CPUMSELREG Tr;
5593 Tr.Sel = pVmcs->GuestTr;
5594 Tr.u32Limit = pVmcs->u32GuestTrLimit;
5595 Tr.u64Base = pVmcs->u64GuestTrBase.u;
5596 Tr.Attr.u = pVmcs->u32GuestTrAttr;
5597
5598 /* Selector. */
5599 if (!(Tr.Sel & X86_SEL_LDT))
5600 { /* likely */ }
5601 else
5602 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegSelTr);
5603
5604 /* Base. */
5605 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5606 {
5607 if (X86_IS_CANONICAL(Tr.u64Base))
5608 { /* likely */ }
5609 else
5610 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegBaseTr);
5611 }
5612
5613 /* Attributes. */
5614 /* Reserved bits (bits 31:17 and bits 11:8). */
5615 if (!(Tr.Attr.u & 0xfffe0f00))
5616 { /* likely */ }
5617 else
5618 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrRsvd);
5619
5620 if (!Tr.Attr.n.u1Unusable)
5621 { /* likely */ }
5622 else
5623 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrUnusable);
5624
5625 if ( Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_386_TSS_BUSY
5626 || ( !fGstInLongMode
5627 && Tr.Attr.n.u4Type == X86_SEL_TYPE_SYS_286_TSS_BUSY))
5628 { /* likely */ }
5629 else
5630 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrType);
5631
5632 if (!Tr.Attr.n.u1DescType)
5633 { /* likely */ }
5634 else
5635 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrDescType);
5636
5637 if (Tr.Attr.n.u1Present)
5638 { /* likely */ }
5639 else
5640 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrPresent);
5641
5642 if ( ((Tr.u32Limit & 0x00000fff) == 0x00000fff || !Tr.Attr.n.u1Granularity)
5643 && ((Tr.u32Limit & 0xfff00000) == 0x00000000 || Tr.Attr.n.u1Granularity))
5644 { /* likely */ }
5645 else
5646 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestSegAttrTrGran);
5647 }
5648
5649 NOREF(pszInstr);
5650 NOREF(pszFailure);
5651 return VINF_SUCCESS;
5652}
5653
5654
5655/**
5656 * Checks guest GDTR and IDTR as part of VM-entry.
5657 *
5658 * @param pVCpu The cross context virtual CPU structure.
5659 * @param pszInstr The VMX instruction name (for logging purposes).
5660 */
5661DECLINLINE(int) iemVmxVmentryCheckGuestGdtrIdtr(PVMCPUCC pVCpu, const char *pszInstr)
5662{
5663 /*
5664 * GDTR and IDTR.
5665 * See Intel spec. 26.3.1.3 "Checks on Guest Descriptor-Table Registers".
5666 */
5667 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5668 const char *const pszFailure = "VM-exit";
5669
5670 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5671 {
5672 /* Base. */
5673 if (X86_IS_CANONICAL(pVmcs->u64GuestGdtrBase.u))
5674 { /* likely */ }
5675 else
5676 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrBase);
5677
5678 if (X86_IS_CANONICAL(pVmcs->u64GuestIdtrBase.u))
5679 { /* likely */ }
5680 else
5681 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrBase);
5682 }
5683
5684 /* Limit. */
5685 if (!RT_HI_U16(pVmcs->u32GuestGdtrLimit))
5686 { /* likely */ }
5687 else
5688 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestGdtrLimit);
5689
5690 if (!RT_HI_U16(pVmcs->u32GuestIdtrLimit))
5691 { /* likely */ }
5692 else
5693 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIdtrLimit);
5694
5695 NOREF(pszInstr);
5696 NOREF(pszFailure);
5697 return VINF_SUCCESS;
5698}
5699
5700
5701/**
5702 * Checks guest RIP and RFLAGS as part of VM-entry.
5703 *
5704 * @param pVCpu The cross context virtual CPU structure.
5705 * @param pszInstr The VMX instruction name (for logging purposes).
5706 */
5707DECLINLINE(int) iemVmxVmentryCheckGuestRipRFlags(PVMCPUCC pVCpu, const char *pszInstr)
5708{
5709 /*
5710 * RIP and RFLAGS.
5711 * See Intel spec. 26.3.1.4 "Checks on Guest RIP and RFLAGS".
5712 */
5713 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5714 const char *const pszFailure = "VM-exit";
5715 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
5716
5717 /* RIP. */
5718 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
5719 {
5720 X86DESCATTR AttrCs;
5721 AttrCs.u = pVmcs->u32GuestCsAttr;
5722 if ( !fGstInLongMode
5723 || !AttrCs.n.u1Long)
5724 {
5725 if (!RT_HI_U32(pVmcs->u64GuestRip.u))
5726 { /* likely */ }
5727 else
5728 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRipRsvd);
5729 }
5730
5731 if ( fGstInLongMode
5732 && AttrCs.n.u1Long)
5733 {
5734 Assert(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth == 48); /* Canonical. */
5735 if ( IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxLinearAddrWidth < 64
5736 && X86_IS_CANONICAL(pVmcs->u64GuestRip.u))
5737 { /* likely */ }
5738 else
5739 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRip);
5740 }
5741 }
5742
5743 /* RFLAGS (bits 63:22 (or 31:22), bits 15, 5, 3 are reserved, bit 1 MB1). */
5744 uint64_t const uGuestRFlags = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode ? pVmcs->u64GuestRFlags.u
5745 : pVmcs->u64GuestRFlags.s.Lo;
5746 if ( !(uGuestRFlags & ~(X86_EFL_LIVE_MASK | X86_EFL_RA1_MASK))
5747 && (uGuestRFlags & X86_EFL_RA1_MASK) == X86_EFL_RA1_MASK)
5748 { /* likely */ }
5749 else
5750 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsRsvd);
5751
5752 if (!(uGuestRFlags & X86_EFL_VM))
5753 { /* likely */ }
5754 else
5755 {
5756 if ( fGstInLongMode
5757 || !(pVmcs->u64GuestCr0.u & X86_CR0_PE))
5758 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsVm);
5759 }
5760
5761 if (VMX_ENTRY_INT_INFO_IS_EXT_INT(pVmcs->u32EntryIntInfo))
5762 {
5763 if (uGuestRFlags & X86_EFL_IF)
5764 { /* likely */ }
5765 else
5766 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestRFlagsIf);
5767 }
5768
5769 NOREF(pszInstr);
5770 NOREF(pszFailure);
5771 return VINF_SUCCESS;
5772}
5773
5774
5775/**
5776 * Checks guest non-register state as part of VM-entry.
5777 *
5778 * @param pVCpu The cross context virtual CPU structure.
5779 * @param pszInstr The VMX instruction name (for logging purposes).
5780 */
5781DECLINLINE(int) iemVmxVmentryCheckGuestNonRegState(PVMCPUCC pVCpu, const char *pszInstr)
5782{
5783 /*
5784 * Guest non-register state.
5785 * See Intel spec. 26.3.1.5 "Checks on Guest Non-Register State".
5786 */
5787 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
5788 const char *const pszFailure = "VM-exit";
5789
5790 /*
5791 * Activity state.
5792 */
5793 uint64_t const u64GuestVmxMiscMsr = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Misc;
5794 uint32_t const fActivityStateMask = RT_BF_GET(u64GuestVmxMiscMsr, VMX_BF_MISC_ACTIVITY_STATES);
5795 if (!(pVmcs->u32GuestActivityState & fActivityStateMask))
5796 { /* likely */ }
5797 else
5798 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateRsvd);
5799
5800 X86DESCATTR AttrSs; AttrSs.u = pVmcs->u32GuestSsAttr;
5801 if ( !AttrSs.n.u2Dpl
5802 || pVmcs->u32GuestActivityState != VMX_VMCS_GUEST_ACTIVITY_HLT)
5803 { /* likely */ }
5804 else
5805 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateSsDpl);
5806
5807 if ( pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_STI
5808 || pVmcs->u32GuestIntrState == VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
5809 {
5810 if (pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_ACTIVE)
5811 { /* likely */ }
5812 else
5813 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateStiMovSs);
5814 }
5815
5816 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
5817 {
5818 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
5819 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
5820 AssertCompile(VMX_V_GUEST_ACTIVITY_STATE_MASK == (VMX_VMCS_GUEST_ACTIVITY_HLT | VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN));
5821 switch (pVmcs->u32GuestActivityState)
5822 {
5823 case VMX_VMCS_GUEST_ACTIVITY_HLT:
5824 {
5825 if ( uType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT
5826 || uType == VMX_ENTRY_INT_INFO_TYPE_NMI
5827 || ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
5828 && ( uVector == X86_XCPT_DB
5829 || uVector == X86_XCPT_MC))
5830 || ( uType == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT
5831 && uVector == VMX_ENTRY_INT_INFO_VECTOR_MTF))
5832 { /* likely */ }
5833 else
5834 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateHlt);
5835 break;
5836 }
5837
5838 case VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN:
5839 {
5840 if ( uType == VMX_ENTRY_INT_INFO_TYPE_NMI
5841 || ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
5842 && uVector == X86_XCPT_MC))
5843 { /* likely */ }
5844 else
5845 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestActStateShutdown);
5846 break;
5847 }
5848
5849 case VMX_VMCS_GUEST_ACTIVITY_ACTIVE:
5850 default:
5851 break;
5852 }
5853 }
5854
5855 /*
5856 * Interruptibility state.
5857 */
5858 if (!(pVmcs->u32GuestIntrState & ~VMX_VMCS_GUEST_INT_STATE_MASK))
5859 { /* likely */ }
5860 else
5861 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRsvd);
5862
5863 if ((pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5864 != (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5865 { /* likely */ }
5866 else
5867 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateStiMovSs);
5868
5869 if ( (pVmcs->u64GuestRFlags.u & X86_EFL_IF)
5870 || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5871 { /* likely */ }
5872 else
5873 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateRFlagsSti);
5874
5875 if (VMX_ENTRY_INT_INFO_IS_VALID(pVmcs->u32EntryIntInfo))
5876 {
5877 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(pVmcs->u32EntryIntInfo);
5878 if (uType == VMX_ENTRY_INT_INFO_TYPE_EXT_INT)
5879 {
5880 if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
5881 { /* likely */ }
5882 else
5883 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateExtInt);
5884 }
5885 else if (uType == VMX_ENTRY_INT_INFO_TYPE_NMI)
5886 {
5887 if (!(pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI)))
5888 { /* likely */ }
5889 else
5890 {
5891 /*
5892 * We don't support injecting NMIs when blocking-by-STI would be in effect.
5893 * We update the Exit qualification only when blocking-by-STI is set
5894 * without blocking-by-MovSS being set. Although in practise it does not
5895 * make much difference since the order of checks are implementation defined.
5896 */
5897 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
5898 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_NMI_INJECT);
5899 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateNmi);
5900 }
5901
5902 if ( !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
5903 || !(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI))
5904 { /* likely */ }
5905 else
5906 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateVirtNmi);
5907 }
5908 }
5909
5910 /* We don't support SMM yet. So blocking-by-SMIs must not be set. */
5911 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_SMI))
5912 { /* likely */ }
5913 else
5914 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateSmi);
5915
5916 /* We don't support SGX yet. So enclave-interruption must not be set. */
5917 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_ENCLAVE))
5918 { /* likely */ }
5919 else
5920 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestIntStateEnclave);
5921
5922 /*
5923 * Pending debug exceptions.
5924 */
5925 uint64_t const uPendingDbgXcpts = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode
5926 ? pVmcs->u64GuestPendingDbgXcpts.u
5927 : pVmcs->u64GuestPendingDbgXcpts.s.Lo;
5928 if (!(uPendingDbgXcpts & ~VMX_VMCS_GUEST_PENDING_DEBUG_VALID_MASK))
5929 { /* likely */ }
5930 else
5931 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRsvd);
5932
5933 if ( (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS | VMX_VMCS_GUEST_INT_STATE_BLOCK_STI))
5934 || pVmcs->u32GuestActivityState == VMX_VMCS_GUEST_ACTIVITY_HLT)
5935 {
5936 if ( (pVmcs->u64GuestRFlags.u & X86_EFL_TF)
5937 && !(pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF)
5938 && !(uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
5939 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsTf);
5940
5941 if ( ( !(pVmcs->u64GuestRFlags.u & X86_EFL_TF)
5942 || (pVmcs->u64GuestDebugCtlMsr.u & MSR_IA32_DEBUGCTL_BTF))
5943 && (uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS))
5944 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptBsNoTf);
5945 }
5946
5947 /* We don't support RTM (Real-time Transactional Memory) yet. */
5948 if (!(uPendingDbgXcpts & VMX_VMCS_GUEST_PENDING_DEBUG_RTM))
5949 { /* likely */ }
5950 else
5951 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPndDbgXcptRtm);
5952
5953 /*
5954 * VMCS link pointer.
5955 */
5956 if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
5957 {
5958 RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
5959 /* We don't support SMM yet (so VMCS link pointer cannot be the current VMCS). */
5960 if (GCPhysShadowVmcs != IEM_VMX_GET_CURRENT_VMCS(pVCpu))
5961 { /* likely */ }
5962 else
5963 {
5964 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
5965 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrCurVmcs);
5966 }
5967
5968 /* Validate the address. */
5969 if ( !(GCPhysShadowVmcs & X86_PAGE_4K_OFFSET_MASK)
5970 && !(GCPhysShadowVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
5971 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysShadowVmcs))
5972 { /* likely */ }
5973 else
5974 {
5975 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
5976 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmcsLinkPtr);
5977 }
5978 }
5979
5980 NOREF(pszInstr);
5981 NOREF(pszFailure);
5982 return VINF_SUCCESS;
5983}
5984
5985
5986#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
5987/**
5988 * Checks guest PDPTEs as part of VM-entry.
5989 *
5990 * @param pVCpu The cross context virtual CPU structure.
5991 * @param pszInstr The VMX instruction name (for logging purposes).
5992 */
5993static int iemVmxVmentryCheckGuestPdptes(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
5994{
5995 /*
5996 * Guest PDPTEs.
5997 * See Intel spec. 26.3.1.5 "Checks on Guest Page-Directory-Pointer-Table Entries".
5998 */
5999 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6000 const char * const pszFailure = "VM-exit";
6001
6002 /*
6003 * When EPT is used, we need to validate the PAE PDPTEs provided in the VMCS.
6004 * Otherwise, we load any PAE PDPTEs referenced by CR3 at a later point.
6005 */
6006 if ( iemVmxVmcsIsGuestPaePagingEnabled(pVmcs)
6007 && (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT))
6008 {
6009 /* Get PDPTEs from the VMCS. */
6010 X86PDPE aPaePdptes[X86_PG_PAE_PDPE_ENTRIES];
6011 aPaePdptes[0].u = pVmcs->u64GuestPdpte0.u;
6012 aPaePdptes[1].u = pVmcs->u64GuestPdpte1.u;
6013 aPaePdptes[2].u = pVmcs->u64GuestPdpte2.u;
6014 aPaePdptes[3].u = pVmcs->u64GuestPdpte3.u;
6015
6016 /* Check validity of the PDPTEs. */
6017 if (PGMGstArePaePdpesValid(pVCpu, &aPaePdptes[0]))
6018 { /* likely */ }
6019 else
6020 {
6021 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
6022 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpte);
6023 }
6024 }
6025
6026 NOREF(pszFailure);
6027 NOREF(pszInstr);
6028 return VINF_SUCCESS;
6029}
6030#endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
6031
6032
6033/**
6034 * Checks guest-state as part of VM-entry.
6035 *
6036 * @returns VBox status code.
6037 * @param pVCpu The cross context virtual CPU structure.
6038 * @param pszInstr The VMX instruction name (for logging purposes).
6039 */
6040static int iemVmxVmentryCheckGuestState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6041{
6042 int rc = iemVmxVmentryCheckGuestControlRegsMsrs(pVCpu, pszInstr);
6043 if (RT_SUCCESS(rc))
6044 {
6045 rc = iemVmxVmentryCheckGuestSegRegs(pVCpu, pszInstr);
6046 if (RT_SUCCESS(rc))
6047 {
6048 rc = iemVmxVmentryCheckGuestGdtrIdtr(pVCpu, pszInstr);
6049 if (RT_SUCCESS(rc))
6050 {
6051 rc = iemVmxVmentryCheckGuestRipRFlags(pVCpu, pszInstr);
6052 if (RT_SUCCESS(rc))
6053 {
6054 rc = iemVmxVmentryCheckGuestNonRegState(pVCpu, pszInstr);
6055#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6056 if (RT_SUCCESS(rc))
6057 rc = iemVmxVmentryCheckGuestPdptes(pVCpu, pszInstr);
6058#endif
6059 }
6060 }
6061 }
6062 }
6063 return rc;
6064}
6065
6066
6067/**
6068 * Checks host-state as part of VM-entry.
6069 *
6070 * @returns VBox status code.
6071 * @param pVCpu The cross context virtual CPU structure.
6072 * @param pszInstr The VMX instruction name (for logging purposes).
6073 */
6074static int iemVmxVmentryCheckHostState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6075{
6076 /*
6077 * Host Control Registers and MSRs.
6078 * See Intel spec. 26.2.2 "Checks on Host Control Registers and MSRs".
6079 */
6080 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6081 const char * const pszFailure = "VMFail";
6082
6083 /* CR0 reserved bits. */
6084 {
6085 /* CR0 MB1 bits. */
6086 uint64_t const u64Cr0Fixed0 = iemVmxGetCr0Fixed0(pVCpu, true /* fVmxNonRootMode */);
6087 if ((pVmcs->u64HostCr0.u & u64Cr0Fixed0) == u64Cr0Fixed0)
6088 { /* likely */ }
6089 else
6090 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed0);
6091
6092 /* CR0 MBZ bits. */
6093 uint64_t const u64Cr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
6094 if (!(pVmcs->u64HostCr0.u & ~u64Cr0Fixed1))
6095 { /* likely */ }
6096 else
6097 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr0Fixed1);
6098 }
6099
6100 /* CR4 reserved bits. */
6101 {
6102 /* CR4 MB1 bits. */
6103 uint64_t const u64Cr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
6104 if ((pVmcs->u64HostCr4.u & u64Cr4Fixed0) == u64Cr4Fixed0)
6105 { /* likely */ }
6106 else
6107 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed0);
6108
6109 /* CR4 MBZ bits. */
6110 uint64_t const u64Cr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
6111 if (!(pVmcs->u64HostCr4.u & ~u64Cr4Fixed1))
6112 { /* likely */ }
6113 else
6114 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Fixed1);
6115 }
6116
6117 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6118 {
6119 /* CR3 reserved bits. */
6120 if (!(pVmcs->u64HostCr3.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth))
6121 { /* likely */ }
6122 else
6123 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr3);
6124
6125 /* SYSENTER ESP and SYSENTER EIP. */
6126 if ( X86_IS_CANONICAL(pVmcs->u64HostSysenterEsp.u)
6127 && X86_IS_CANONICAL(pVmcs->u64HostSysenterEip.u))
6128 { /* likely */ }
6129 else
6130 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSysenterEspEip);
6131 }
6132
6133 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
6134 Assert(!(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PERF_MSR));
6135
6136 /* PAT MSR. */
6137 if ( !(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_PAT_MSR)
6138 || CPUMIsPatMsrValid(pVmcs->u64HostPatMsr.u))
6139 { /* likely */ }
6140 else
6141 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostPatMsr);
6142
6143 /* EFER MSR. */
6144 bool const fHostInLongMode = RT_BOOL(pVmcs->u32ExitCtls & VMX_EXIT_CTLS_HOST_ADDR_SPACE_SIZE);
6145 uint64_t const uValidEferMask = CPUMGetGuestEferMsrValidMask(pVCpu->CTX_SUFF(pVM));
6146 if (pVmcs->u32ExitCtls & VMX_EXIT_CTLS_LOAD_EFER_MSR)
6147 {
6148 if (!(pVmcs->u64HostEferMsr.u & ~uValidEferMask))
6149 { /* likely */ }
6150 else
6151 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsrRsvd);
6152
6153 bool const fHostLma = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LMA);
6154 bool const fHostLme = RT_BOOL(pVmcs->u64HostEferMsr.u & MSR_K6_EFER_LME);
6155 if ( fHostInLongMode == fHostLma
6156 && fHostInLongMode == fHostLme)
6157 { /* likely */ }
6158 else
6159 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostEferMsr);
6160 }
6161
6162 /*
6163 * Host Segment and Descriptor-Table Registers.
6164 * See Intel spec. 26.2.3 "Checks on Host Segment and Descriptor-Table Registers".
6165 */
6166 /* Selector RPL and TI. */
6167 if ( !(pVmcs->HostCs & (X86_SEL_RPL | X86_SEL_LDT))
6168 && !(pVmcs->HostSs & (X86_SEL_RPL | X86_SEL_LDT))
6169 && !(pVmcs->HostDs & (X86_SEL_RPL | X86_SEL_LDT))
6170 && !(pVmcs->HostEs & (X86_SEL_RPL | X86_SEL_LDT))
6171 && !(pVmcs->HostFs & (X86_SEL_RPL | X86_SEL_LDT))
6172 && !(pVmcs->HostGs & (X86_SEL_RPL | X86_SEL_LDT))
6173 && !(pVmcs->HostTr & (X86_SEL_RPL | X86_SEL_LDT)))
6174 { /* likely */ }
6175 else
6176 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSel);
6177
6178 /* CS and TR selectors cannot be 0. */
6179 if ( pVmcs->HostCs
6180 && pVmcs->HostTr)
6181 { /* likely */ }
6182 else
6183 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCsTr);
6184
6185 /* SS cannot be 0 if 32-bit host. */
6186 if ( fHostInLongMode
6187 || pVmcs->HostSs)
6188 { /* likely */ }
6189 else
6190 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSs);
6191
6192 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6193 {
6194 /* FS, GS, GDTR, IDTR, TR base address. */
6195 if ( X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
6196 && X86_IS_CANONICAL(pVmcs->u64HostFsBase.u)
6197 && X86_IS_CANONICAL(pVmcs->u64HostGdtrBase.u)
6198 && X86_IS_CANONICAL(pVmcs->u64HostIdtrBase.u)
6199 && X86_IS_CANONICAL(pVmcs->u64HostTrBase.u))
6200 { /* likely */ }
6201 else
6202 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostSegBase);
6203 }
6204
6205 /*
6206 * Host address-space size for 64-bit CPUs.
6207 * See Intel spec. 26.2.4 "Checks Related to Address-Space Size".
6208 */
6209 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
6210 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6211 {
6212 bool const fCpuInLongMode = CPUMIsGuestInLongMode(pVCpu);
6213
6214 /* Logical processor in IA-32e mode. */
6215 if (fCpuInLongMode)
6216 {
6217 if (fHostInLongMode)
6218 {
6219 /* PAE must be set. */
6220 if (pVmcs->u64HostCr4.u & X86_CR4_PAE)
6221 { /* likely */ }
6222 else
6223 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pae);
6224
6225 /* RIP must be canonical. */
6226 if (X86_IS_CANONICAL(pVmcs->u64HostRip.u))
6227 { /* likely */ }
6228 else
6229 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRip);
6230 }
6231 else
6232 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostLongMode);
6233 }
6234 else
6235 {
6236 /* Logical processor is outside IA-32e mode. */
6237 if ( !fGstInLongMode
6238 && !fHostInLongMode)
6239 {
6240 /* PCIDE should not be set. */
6241 if (!(pVmcs->u64HostCr4.u & X86_CR4_PCIDE))
6242 { /* likely */ }
6243 else
6244 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostCr4Pcide);
6245
6246 /* The high 32-bits of RIP MBZ. */
6247 if (!pVmcs->u64HostRip.s.Hi)
6248 { /* likely */ }
6249 else
6250 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostRipRsvd);
6251 }
6252 else
6253 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongMode);
6254 }
6255 }
6256 else
6257 {
6258 /* Host address-space size for 32-bit CPUs. */
6259 if ( !fGstInLongMode
6260 && !fHostInLongMode)
6261 { /* likely */ }
6262 else
6263 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_HostGuestLongModeNoCpu);
6264 }
6265
6266 NOREF(pszInstr);
6267 NOREF(pszFailure);
6268 return VINF_SUCCESS;
6269}
6270
6271
6272#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6273/**
6274 * Checks the EPT pointer VMCS field as part of VM-entry.
6275 *
6276 * @returns VBox status code.
6277 * @param pVCpu The cross context virtual CPU structure.
6278 * @param uEptPtr The EPT pointer to check.
6279 * @param penmVmxDiag Where to store the diagnostic reason on failure (not
6280 * updated on success). Optional, can be NULL.
6281 */
6282static int iemVmxVmentryCheckEptPtr(PVMCPUCC pVCpu, uint64_t uEptPtr, VMXVDIAG *penmVmxDiag) RT_NOEXCEPT
6283{
6284 VMXVDIAG enmVmxDiag;
6285
6286 /* Reserved bits. */
6287 uint8_t const cMaxPhysAddrWidth = IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cMaxPhysAddrWidth;
6288 uint64_t const fValidMask = VMX_EPTP_VALID_MASK & ~(UINT64_MAX << cMaxPhysAddrWidth);
6289 if (uEptPtr & fValidMask)
6290 {
6291 /* Memory Type. */
6292 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
6293 uint8_t const fMemType = RT_BF_GET(uEptPtr, VMX_BF_EPTP_MEMTYPE);
6294 if ( ( fMemType == VMX_EPTP_MEMTYPE_WB
6295 && RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_MEMTYPE_WB))
6296 || ( fMemType == VMX_EPTP_MEMTYPE_UC
6297 && RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_MEMTYPE_UC)))
6298 {
6299 /*
6300 * Page walk length (PML4).
6301 * Intel used to specify bit 7 of IA32_VMX_EPT_VPID_CAP as page walk length
6302 * of 5 but that seems to be removed from the latest specs. leaving only PML4
6303 * as the maximum supported page-walk level hence we hardcode it as 3 (1 less than 4)
6304 */
6305 Assert(RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_PAGE_WALK_LENGTH_4));
6306 if (RT_BF_GET(uEptPtr, VMX_BF_EPTP_PAGE_WALK_LENGTH) == 3)
6307 {
6308 /* Access and dirty bits support in EPT structures. */
6309 if ( !RT_BF_GET(uEptPtr, VMX_BF_EPTP_ACCESS_DIRTY)
6310 || RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_ACCESS_DIRTY))
6311 return VINF_SUCCESS;
6312
6313 enmVmxDiag = kVmxVDiag_Vmentry_EptpAccessDirty;
6314 }
6315 else
6316 enmVmxDiag = kVmxVDiag_Vmentry_EptpPageWalkLength;
6317 }
6318 else
6319 enmVmxDiag = kVmxVDiag_Vmentry_EptpMemType;
6320 }
6321 else
6322 enmVmxDiag = kVmxVDiag_Vmentry_EptpRsvd;
6323
6324 if (penmVmxDiag)
6325 *penmVmxDiag = enmVmxDiag;
6326 return VERR_VMX_VMENTRY_FAILED;
6327}
6328#endif
6329
6330
6331/**
6332 * Checks VMCS controls fields as part of VM-entry.
6333 *
6334 * @returns VBox status code.
6335 * @param pVCpu The cross context virtual CPU structure.
6336 * @param pszInstr The VMX instruction name (for logging purposes).
6337 *
6338 * @remarks This may update secondary-processor based VM-execution control fields
6339 * in the current VMCS if necessary.
6340 */
6341static int iemVmxVmentryCheckCtls(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6342{
6343 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6344 const char * const pszFailure = "VMFail";
6345 bool const fVmxTrueMsrs = RT_BOOL(pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Basic & VMX_BF_BASIC_TRUE_CTLS_MASK);
6346
6347 /*
6348 * VM-execution controls.
6349 * See Intel spec. 26.2.1.1 "VM-Execution Control Fields".
6350 */
6351 {
6352 /* Pin-based VM-execution controls. */
6353 {
6354 VMXCTLSMSR const PinCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TruePinCtls
6355 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.PinCtls;
6356 if (!(~pVmcs->u32PinCtls & PinCtls.n.allowed0))
6357 { /* likely */ }
6358 else
6359 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsDisallowed0);
6360
6361 if (!(pVmcs->u32PinCtls & ~PinCtls.n.allowed1))
6362 { /* likely */ }
6363 else
6364 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_PinCtlsAllowed1);
6365 }
6366
6367 /* Processor-based VM-execution controls. */
6368 {
6369 VMXCTLSMSR const ProcCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TrueProcCtls
6370 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls;
6371 if (!(~pVmcs->u32ProcCtls & ProcCtls.n.allowed0))
6372 { /* likely */ }
6373 else
6374 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsDisallowed0);
6375
6376 if (!(pVmcs->u32ProcCtls & ~ProcCtls.n.allowed1))
6377 { /* likely */ }
6378 else
6379 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtlsAllowed1);
6380 }
6381
6382 /* Secondary processor-based VM-execution controls. */
6383 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_SECONDARY_CTLS)
6384 {
6385 VMXCTLSMSR const ProcCtls2 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ProcCtls2;
6386 if (!(~pVmcs->u32ProcCtls2 & ProcCtls2.n.allowed0))
6387 { /* likely */ }
6388 else
6389 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Disallowed0);
6390
6391 if (!(pVmcs->u32ProcCtls2 & ~ProcCtls2.n.allowed1))
6392 { /* likely */ }
6393 else
6394 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ProcCtls2Allowed1);
6395 }
6396 else
6397 Assert(!pVmcs->u32ProcCtls2);
6398
6399 /* CR3-target count. */
6400 if (pVmcs->u32Cr3TargetCount <= VMX_V_CR3_TARGET_COUNT)
6401 { /* likely */ }
6402 else
6403 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Cr3TargetCount);
6404
6405 /* I/O bitmaps physical addresses. */
6406 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
6407 {
6408 RTGCPHYS const GCPhysIoBitmapA = pVmcs->u64AddrIoBitmapA.u;
6409 if ( !(GCPhysIoBitmapA & X86_PAGE_4K_OFFSET_MASK)
6410 && !(GCPhysIoBitmapA >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6411 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysIoBitmapA))
6412 { /* likely */ }
6413 else
6414 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapA);
6415
6416 RTGCPHYS const GCPhysIoBitmapB = pVmcs->u64AddrIoBitmapB.u;
6417 if ( !(GCPhysIoBitmapB & X86_PAGE_4K_OFFSET_MASK)
6418 && !(GCPhysIoBitmapB >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6419 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysIoBitmapB))
6420 { /* likely */ }
6421 else
6422 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrIoBitmapB);
6423 }
6424
6425 /* MSR bitmap physical address. */
6426 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
6427 {
6428 RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
6429 if ( !(GCPhysMsrBitmap & X86_PAGE_4K_OFFSET_MASK)
6430 && !(GCPhysMsrBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6431 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysMsrBitmap))
6432 { /* likely */ }
6433 else
6434 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrMsrBitmap);
6435 }
6436
6437 /* TPR shadow related controls. */
6438 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6439 {
6440 /* Virtual-APIC page physical address. */
6441 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6442 if ( !(GCPhysVirtApic & X86_PAGE_4K_OFFSET_MASK)
6443 && !(GCPhysVirtApic >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6444 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVirtApic))
6445 { /* likely */ }
6446 else
6447 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVirtApicPage);
6448
6449 /* TPR threshold bits 31:4 MBZ without virtual-interrupt delivery. */
6450 if ( !(pVmcs->u32TprThreshold & ~VMX_TPR_THRESHOLD_MASK)
6451 || (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
6452 { /* likely */ }
6453 else
6454 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdRsvd);
6455
6456 /* The rest done XXX document */
6457 }
6458 else
6459 {
6460 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6461 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
6462 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
6463 { /* likely */ }
6464 else
6465 {
6466 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6467 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicTprShadow);
6468 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_APIC_REG_VIRT)
6469 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ApicRegVirt);
6470 Assert(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY);
6471 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtIntDelivery);
6472 }
6473 }
6474
6475 /* NMI exiting and virtual-NMIs. */
6476 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_NMI_EXIT)
6477 || !(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI))
6478 { /* likely */ }
6479 else
6480 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtNmi);
6481
6482 /* Virtual-NMIs and NMI-window exiting. */
6483 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
6484 || !(pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT))
6485 { /* likely */ }
6486 else
6487 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_NmiWindowExit);
6488
6489 /* Virtualize APIC accesses. */
6490 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
6491 {
6492 /* APIC-access physical address. */
6493 RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
6494 if ( !(GCPhysApicAccess & X86_PAGE_4K_OFFSET_MASK)
6495 && !(GCPhysApicAccess >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6496 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
6497 { /* likely */ }
6498 else
6499 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccess);
6500
6501 /*
6502 * Disallow APIC-access page and virtual-APIC page from being the same address.
6503 * Note! This is not an Intel requirement, but one imposed by our implementation.
6504 */
6505 /** @todo r=ramshankar: This is done primarily to simplify recursion scenarios while
6506 * redirecting accesses between the APIC-access page and the virtual-APIC
6507 * page. If any nested hypervisor requires this, we can implement it later. */
6508 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
6509 {
6510 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
6511 if (GCPhysVirtApic != GCPhysApicAccess)
6512 { /* likely */ }
6513 else
6514 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessEqVirtApic);
6515 }
6516 }
6517
6518 /* Virtualize-x2APIC mode is mutually exclusive with virtualize-APIC accesses. */
6519 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_X2APIC_MODE)
6520 || !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS))
6521 { /* likely */ }
6522 else
6523 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
6524
6525 /* Virtual-interrupt delivery requires external interrupt exiting. */
6526 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY)
6527 || (pVmcs->u32PinCtls & VMX_PIN_CTLS_EXT_INT_EXIT))
6528 { /* likely */ }
6529 else
6530 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtX2ApicVirtApic);
6531
6532 /* VPID. */
6533 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VPID)
6534 || pVmcs->u16Vpid != 0)
6535 { /* likely */ }
6536 else
6537 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_Vpid);
6538
6539#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
6540 /* Extended-Page-Table Pointer (EPTP). */
6541 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
6542 {
6543 VMXVDIAG enmVmxDiag;
6544 int const rc = iemVmxVmentryCheckEptPtr(pVCpu, pVmcs->u64EptPtr.u, &enmVmxDiag);
6545 if (RT_SUCCESS(rc))
6546 { /* likely */ }
6547 else
6548 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmVmxDiag);
6549 }
6550#else
6551 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT));
6552 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST));
6553#endif
6554 Assert(!(pVmcs->u32PinCtls & VMX_PIN_CTLS_POSTED_INT)); /* We don't support posted interrupts yet. */
6555 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_PML)); /* We don't support PML yet. */
6556 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMFUNC)); /* We don't support VM functions yet. */
6557 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT_XCPT_VE)); /* We don't support EPT-violation #VE yet. */
6558 Assert(!(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_TSC_SCALING)); /* We don't support TSC-scaling yet. */
6559
6560 /* VMCS shadowing. */
6561 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
6562 {
6563 /* VMREAD-bitmap physical address. */
6564 RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
6565 if ( !(GCPhysVmreadBitmap & X86_PAGE_4K_OFFSET_MASK)
6566 && !(GCPhysVmreadBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6567 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmreadBitmap))
6568 { /* likely */ }
6569 else
6570 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmreadBitmap);
6571
6572 /* VMWRITE-bitmap physical address. */
6573 RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmreadBitmap.u;
6574 if ( !(GCPhysVmwriteBitmap & X86_PAGE_4K_OFFSET_MASK)
6575 && !(GCPhysVmwriteBitmap >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6576 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmwriteBitmap))
6577 { /* likely */ }
6578 else
6579 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrVmwriteBitmap);
6580 }
6581 }
6582
6583 /*
6584 * VM-exit controls.
6585 * See Intel spec. 26.2.1.2 "VM-Exit Control Fields".
6586 */
6587 {
6588 VMXCTLSMSR const ExitCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TrueExitCtls
6589 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.ExitCtls;
6590 if (!(~pVmcs->u32ExitCtls & ExitCtls.n.allowed0))
6591 { /* likely */ }
6592 else
6593 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsDisallowed0);
6594
6595 if (!(pVmcs->u32ExitCtls & ~ExitCtls.n.allowed1))
6596 { /* likely */ }
6597 else
6598 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_ExitCtlsAllowed1);
6599
6600 /* Save preemption timer without activating it. */
6601 if ( (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
6602 || !(pVmcs->u32ProcCtls & VMX_EXIT_CTLS_SAVE_PREEMPT_TIMER))
6603 { /* likely */ }
6604 else
6605 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_SavePreemptTimer);
6606
6607 /* VM-exit MSR-store count and VM-exit MSR-store area address. */
6608 if (pVmcs->u32ExitMsrStoreCount)
6609 {
6610 if ( !(pVmcs->u64AddrExitMsrStore.u & VMX_AUTOMSR_OFFSET_MASK)
6611 && !(pVmcs->u64AddrExitMsrStore.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6612 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrStore.u))
6613 { /* likely */ }
6614 else
6615 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrStore);
6616 }
6617
6618 /* VM-exit MSR-load count and VM-exit MSR-load area address. */
6619 if (pVmcs->u32ExitMsrLoadCount)
6620 {
6621 if ( !(pVmcs->u64AddrExitMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
6622 && !(pVmcs->u64AddrExitMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6623 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrExitMsrLoad.u))
6624 { /* likely */ }
6625 else
6626 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrExitMsrLoad);
6627 }
6628 }
6629
6630 /*
6631 * VM-entry controls.
6632 * See Intel spec. 26.2.1.3 "VM-Entry Control Fields".
6633 */
6634 {
6635 VMXCTLSMSR const EntryCtls = fVmxTrueMsrs ? pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.TrueEntryCtls
6636 : pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.EntryCtls;
6637 if (!(~pVmcs->u32EntryCtls & EntryCtls.n.allowed0))
6638 { /* likely */ }
6639 else
6640 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsDisallowed0);
6641
6642 if (!(pVmcs->u32EntryCtls & ~EntryCtls.n.allowed1))
6643 { /* likely */ }
6644 else
6645 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryCtlsAllowed1);
6646
6647 /* Event injection. */
6648 uint32_t const uIntInfo = pVmcs->u32EntryIntInfo;
6649 if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VALID))
6650 {
6651 /* Type and vector. */
6652 uint8_t const uType = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_TYPE);
6653 uint8_t const uVector = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_VECTOR);
6654 uint8_t const uRsvd = RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_RSVD_12_30);
6655 if ( !uRsvd
6656 && VMXIsEntryIntInfoTypeValid(IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxMonitorTrapFlag, uType)
6657 && VMXIsEntryIntInfoVectorValid(uVector, uType))
6658 { /* likely */ }
6659 else
6660 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoTypeVecRsvd);
6661
6662 /* Exception error code. */
6663 if (RT_BF_GET(uIntInfo, VMX_BF_ENTRY_INT_INFO_ERR_CODE_VALID))
6664 {
6665 /* Delivery possible only in Unrestricted-guest mode when CR0.PE is set. */
6666 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_UNRESTRICTED_GUEST)
6667 || (pVmcs->u64GuestCr0.s.Lo & X86_CR0_PE))
6668 { /* likely */ }
6669 else
6670 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodePe);
6671
6672 /* Exceptions that provide an error code. */
6673 if ( uType == VMX_ENTRY_INT_INFO_TYPE_HW_XCPT
6674 && ( uVector == X86_XCPT_DF
6675 || uVector == X86_XCPT_TS
6676 || uVector == X86_XCPT_NP
6677 || uVector == X86_XCPT_SS
6678 || uVector == X86_XCPT_GP
6679 || uVector == X86_XCPT_PF
6680 || uVector == X86_XCPT_AC))
6681 { /* likely */ }
6682 else
6683 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryIntInfoErrCodeVec);
6684
6685 /* Exception error-code reserved bits. */
6686 if (!(pVmcs->u32EntryXcptErrCode & ~VMX_ENTRY_INT_XCPT_ERR_CODE_VALID_MASK))
6687 { /* likely */ }
6688 else
6689 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryXcptErrCodeRsvd);
6690
6691 /* Injecting a software interrupt, software exception or privileged software exception. */
6692 if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
6693 || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
6694 || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
6695 {
6696 /* Instruction length must be in the range 0-15. */
6697 if (pVmcs->u32EntryInstrLen <= VMX_ENTRY_INSTR_LEN_MAX)
6698 { /* likely */ }
6699 else
6700 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLen);
6701
6702 /* However, instruction length of 0 is allowed only when its CPU feature is present. */
6703 if ( pVmcs->u32EntryInstrLen != 0
6704 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEntryInjectSoftInt)
6705 { /* likely */ }
6706 else
6707 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_EntryInstrLenZero);
6708 }
6709 }
6710 }
6711
6712 /* VM-entry MSR-load count and VM-entry MSR-load area address. */
6713 if (pVmcs->u32EntryMsrLoadCount)
6714 {
6715 if ( !(pVmcs->u64AddrEntryMsrLoad.u & VMX_AUTOMSR_OFFSET_MASK)
6716 && !(pVmcs->u64AddrEntryMsrLoad.u >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth)
6717 && PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), pVmcs->u64AddrEntryMsrLoad.u))
6718 { /* likely */ }
6719 else
6720 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrEntryMsrLoad);
6721 }
6722
6723 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_ENTRY_TO_SMM)); /* We don't support SMM yet. */
6724 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_DEACTIVATE_DUAL_MON)); /* We don't support dual-monitor treatment yet. */
6725 }
6726
6727 NOREF(pszInstr);
6728 NOREF(pszFailure);
6729 return VINF_SUCCESS;
6730}
6731
6732
6733/**
6734 * Loads the guest control registers, debug register and some MSRs as part of
6735 * VM-entry.
6736 *
6737 * @param pVCpu The cross context virtual CPU structure.
6738 */
6739static void iemVmxVmentryLoadGuestControlRegsMsrs(PVMCPUCC pVCpu) RT_NOEXCEPT
6740{
6741 /*
6742 * Load guest control registers, debug registers and MSRs.
6743 * See Intel spec. 26.3.2.1 "Loading Guest Control Registers, Debug Registers and MSRs".
6744 */
6745 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6746
6747 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR0);
6748 uint64_t const uGstCr0 = (pVmcs->u64GuestCr0.u & ~VMX_ENTRY_GUEST_CR0_IGNORE_MASK)
6749 | (pVCpu->cpum.GstCtx.cr0 & VMX_ENTRY_GUEST_CR0_IGNORE_MASK);
6750 pVCpu->cpum.GstCtx.cr0 = uGstCr0;
6751 pVCpu->cpum.GstCtx.cr4 = pVmcs->u64GuestCr4.u;
6752 pVCpu->cpum.GstCtx.cr3 = pVmcs->u64GuestCr3.u;
6753
6754 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_DEBUG)
6755 pVCpu->cpum.GstCtx.dr[7] = (pVmcs->u64GuestDr7.u & ~VMX_ENTRY_GUEST_DR7_MBZ_MASK) | VMX_ENTRY_GUEST_DR7_MB1_MASK;
6756
6757 pVCpu->cpum.GstCtx.SysEnter.eip = pVmcs->u64GuestSysenterEip.s.Lo;
6758 pVCpu->cpum.GstCtx.SysEnter.esp = pVmcs->u64GuestSysenterEsp.s.Lo;
6759 pVCpu->cpum.GstCtx.SysEnter.cs = pVmcs->u32GuestSysenterCS;
6760
6761 if (IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fLongMode)
6762 {
6763 /* FS base and GS base are loaded while loading the rest of the guest segment registers. */
6764
6765 /* EFER MSR. */
6766 if (!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR))
6767 {
6768 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_EFER);
6769 uint64_t const uHostEfer = pVCpu->cpum.GstCtx.msrEFER;
6770 bool const fGstInLongMode = RT_BOOL(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_IA32E_MODE_GUEST);
6771 bool const fGstPaging = RT_BOOL(uGstCr0 & X86_CR0_PG);
6772 if (fGstInLongMode)
6773 {
6774 /* If the nested-guest is in long mode, LMA and LME are both set. */
6775 Assert(fGstPaging);
6776 pVCpu->cpum.GstCtx.msrEFER = uHostEfer | (MSR_K6_EFER_LMA | MSR_K6_EFER_LME);
6777 }
6778 else
6779 {
6780 /*
6781 * If the nested-guest is outside long mode:
6782 * - With paging: LMA is cleared, LME is cleared.
6783 * - Without paging: LMA is cleared, LME is left unmodified.
6784 */
6785 uint64_t const fLmaLmeMask = MSR_K6_EFER_LMA | (fGstPaging ? MSR_K6_EFER_LME : 0);
6786 pVCpu->cpum.GstCtx.msrEFER = uHostEfer & ~fLmaLmeMask;
6787 }
6788 }
6789 /* else: see below. */
6790 }
6791
6792 /* PAT MSR. */
6793 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PAT_MSR)
6794 pVCpu->cpum.GstCtx.msrPAT = pVmcs->u64GuestPatMsr.u;
6795
6796 /* EFER MSR. */
6797 if (pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_EFER_MSR)
6798 pVCpu->cpum.GstCtx.msrEFER = pVmcs->u64GuestEferMsr.u;
6799
6800 /* We don't support IA32_PERF_GLOBAL_CTRL MSR yet. */
6801 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_PERF_MSR));
6802
6803 /* We don't support IA32_BNDCFGS MSR yet. */
6804 Assert(!(pVmcs->u32EntryCtls & VMX_ENTRY_CTLS_LOAD_BNDCFGS_MSR));
6805
6806 /* Nothing to do for SMBASE register - We don't support SMM yet. */
6807}
6808
6809
6810/**
6811 * Loads the guest segment registers, GDTR, IDTR, LDTR and TR as part of VM-entry.
6812 *
6813 * @param pVCpu The cross context virtual CPU structure.
6814 */
6815static void iemVmxVmentryLoadGuestSegRegs(PVMCPUCC pVCpu) RT_NOEXCEPT
6816{
6817 /*
6818 * Load guest segment registers, GDTR, IDTR, LDTR and TR.
6819 * See Intel spec. 26.3.2.2 "Loading Guest Segment Registers and Descriptor-Table Registers".
6820 */
6821 /* CS, SS, ES, DS, FS, GS. */
6822 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6823 for (unsigned iSegReg = 0; iSegReg < X86_SREG_COUNT; iSegReg++)
6824 {
6825 PCPUMSELREG pGstSelReg = &pVCpu->cpum.GstCtx.aSRegs[iSegReg];
6826 CPUMSELREG VmcsSelReg;
6827 int rc = iemVmxVmcsGetGuestSegReg(pVmcs, iSegReg, &VmcsSelReg);
6828 AssertRC(rc); NOREF(rc);
6829 if (!(VmcsSelReg.Attr.u & X86DESCATTR_UNUSABLE))
6830 {
6831 pGstSelReg->Sel = VmcsSelReg.Sel;
6832 pGstSelReg->ValidSel = VmcsSelReg.Sel;
6833 pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6834 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6835 pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
6836 pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
6837 }
6838 else
6839 {
6840 pGstSelReg->Sel = VmcsSelReg.Sel;
6841 pGstSelReg->ValidSel = VmcsSelReg.Sel;
6842 pGstSelReg->fFlags = CPUMSELREG_FLAGS_VALID;
6843 switch (iSegReg)
6844 {
6845 case X86_SREG_CS:
6846 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6847 pGstSelReg->u32Limit = VmcsSelReg.u32Limit;
6848 pGstSelReg->Attr.u = VmcsSelReg.Attr.u;
6849 break;
6850
6851 case X86_SREG_SS:
6852 pGstSelReg->u64Base = VmcsSelReg.u64Base & UINT32_C(0xfffffff0);
6853 pGstSelReg->u32Limit = 0;
6854 pGstSelReg->Attr.u = (VmcsSelReg.Attr.u & X86DESCATTR_DPL) | X86DESCATTR_D | X86DESCATTR_UNUSABLE;
6855 break;
6856
6857 case X86_SREG_ES:
6858 case X86_SREG_DS:
6859 pGstSelReg->u64Base = 0;
6860 pGstSelReg->u32Limit = 0;
6861 pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
6862 break;
6863
6864 case X86_SREG_FS:
6865 case X86_SREG_GS:
6866 pGstSelReg->u64Base = VmcsSelReg.u64Base;
6867 pGstSelReg->u32Limit = 0;
6868 pGstSelReg->Attr.u = X86DESCATTR_UNUSABLE;
6869 break;
6870 }
6871 Assert(pGstSelReg->Attr.n.u1Unusable);
6872 }
6873 }
6874
6875 /* LDTR. */
6876 pVCpu->cpum.GstCtx.ldtr.Sel = pVmcs->GuestLdtr;
6877 pVCpu->cpum.GstCtx.ldtr.ValidSel = pVmcs->GuestLdtr;
6878 pVCpu->cpum.GstCtx.ldtr.fFlags = CPUMSELREG_FLAGS_VALID;
6879 if (!(pVmcs->u32GuestLdtrAttr & X86DESCATTR_UNUSABLE))
6880 {
6881 pVCpu->cpum.GstCtx.ldtr.u64Base = pVmcs->u64GuestLdtrBase.u;
6882 pVCpu->cpum.GstCtx.ldtr.u32Limit = pVmcs->u32GuestLdtrLimit;
6883 pVCpu->cpum.GstCtx.ldtr.Attr.u = pVmcs->u32GuestLdtrAttr;
6884 }
6885 else
6886 {
6887 pVCpu->cpum.GstCtx.ldtr.u64Base = 0;
6888 pVCpu->cpum.GstCtx.ldtr.u32Limit = 0;
6889 pVCpu->cpum.GstCtx.ldtr.Attr.u = X86DESCATTR_UNUSABLE;
6890 }
6891
6892 /* TR. */
6893 Assert(!(pVmcs->u32GuestTrAttr & X86DESCATTR_UNUSABLE));
6894 pVCpu->cpum.GstCtx.tr.Sel = pVmcs->GuestTr;
6895 pVCpu->cpum.GstCtx.tr.ValidSel = pVmcs->GuestTr;
6896 pVCpu->cpum.GstCtx.tr.fFlags = CPUMSELREG_FLAGS_VALID;
6897 pVCpu->cpum.GstCtx.tr.u64Base = pVmcs->u64GuestTrBase.u;
6898 pVCpu->cpum.GstCtx.tr.u32Limit = pVmcs->u32GuestTrLimit;
6899 pVCpu->cpum.GstCtx.tr.Attr.u = pVmcs->u32GuestTrAttr;
6900
6901 /* GDTR. */
6902 pVCpu->cpum.GstCtx.gdtr.cbGdt = pVmcs->u32GuestGdtrLimit;
6903 pVCpu->cpum.GstCtx.gdtr.pGdt = pVmcs->u64GuestGdtrBase.u;
6904
6905 /* IDTR. */
6906 pVCpu->cpum.GstCtx.idtr.cbIdt = pVmcs->u32GuestIdtrLimit;
6907 pVCpu->cpum.GstCtx.idtr.pIdt = pVmcs->u64GuestIdtrBase.u;
6908}
6909
6910
6911/**
6912 * Loads the guest MSRs from the VM-entry MSR-load area as part of VM-entry.
6913 *
6914 * @returns VBox status code.
6915 * @param pVCpu The cross context virtual CPU structure.
6916 * @param pszInstr The VMX instruction name (for logging purposes).
6917 */
6918static int iemVmxVmentryLoadGuestAutoMsrs(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
6919{
6920 /*
6921 * Load guest MSRs.
6922 * See Intel spec. 26.4 "Loading MSRs".
6923 */
6924 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
6925 const char *const pszFailure = "VM-exit";
6926
6927 /*
6928 * The VM-entry MSR-load area address need not be a valid guest-physical address if the
6929 * VM-entry MSR load count is 0. If this is the case, bail early without reading it.
6930 * See Intel spec. 24.8.2 "VM-Entry Controls for MSRs".
6931 */
6932 uint32_t const cMsrs = RT_MIN(pVmcs->u32EntryMsrLoadCount, RT_ELEMENTS(pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea));
6933 if (!cMsrs)
6934 return VINF_SUCCESS;
6935
6936 /*
6937 * Verify the MSR auto-load count. Physical CPUs can behave unpredictably if the count is
6938 * exceeded including possibly raising #MC exceptions during VMX transition. Our
6939 * implementation shall fail VM-entry with an VMX_EXIT_ERR_MSR_LOAD VM-exit.
6940 */
6941 bool const fIsMsrCountValid = iemVmxIsAutoMsrCountValid(pVCpu, cMsrs);
6942 if (fIsMsrCountValid)
6943 { /* likely */ }
6944 else
6945 {
6946 iemVmxVmcsSetExitQual(pVCpu, VMX_V_AUTOMSR_AREA_SIZE / sizeof(VMXAUTOMSR));
6947 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadCount);
6948 }
6949
6950 RTGCPHYS const GCPhysVmEntryMsrLoadArea = pVmcs->u64AddrEntryMsrLoad.u;
6951 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea[0],
6952 GCPhysVmEntryMsrLoadArea, cMsrs * sizeof(VMXAUTOMSR));
6953 if (RT_SUCCESS(rc))
6954 {
6955 PCVMXAUTOMSR pMsr = &pVCpu->cpum.GstCtx.hwvirt.vmx.aEntryMsrLoadArea[0];
6956 for (uint32_t idxMsr = 0; idxMsr < cMsrs; idxMsr++, pMsr++)
6957 {
6958 if ( !pMsr->u32Reserved
6959 && pMsr->u32Msr != MSR_K8_FS_BASE
6960 && pMsr->u32Msr != MSR_K8_GS_BASE
6961 && pMsr->u32Msr != MSR_K6_EFER
6962 && pMsr->u32Msr != MSR_IA32_SMM_MONITOR_CTL
6963 && pMsr->u32Msr >> 8 != MSR_IA32_X2APIC_START >> 8)
6964 {
6965 VBOXSTRICTRC rcStrict = CPUMSetGuestMsr(pVCpu, pMsr->u32Msr, pMsr->u64Value);
6966 if (rcStrict == VINF_SUCCESS)
6967 continue;
6968
6969 /*
6970 * If we're in ring-0, we cannot handle returns to ring-3 at this point and continue VM-entry.
6971 * If any nested hypervisor loads MSRs that require ring-3 handling, we cause a VM-entry failure
6972 * recording the MSR index in the Exit qualification (as per the Intel spec.) and indicated
6973 * further by our own, specific diagnostic code. Later, we can try implement handling of the
6974 * MSR in ring-0 if possible, or come up with a better, generic solution.
6975 */
6976 iemVmxVmcsSetExitQual(pVCpu, idxMsr);
6977 VMXVDIAG const enmDiag = rcStrict == VINF_CPUM_R3_MSR_WRITE
6978 ? kVmxVDiag_Vmentry_MsrLoadRing3
6979 : kVmxVDiag_Vmentry_MsrLoad;
6980 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, enmDiag);
6981 }
6982 else
6983 {
6984 iemVmxVmcsSetExitQual(pVCpu, idxMsr);
6985 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadRsvd);
6986 }
6987 }
6988 }
6989 else
6990 {
6991 AssertMsgFailed(("%s: Failed to read MSR auto-load area at %#RGp, rc=%Rrc\n", pszInstr, GCPhysVmEntryMsrLoadArea, rc));
6992 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrLoadPtrReadPhys);
6993 }
6994
6995 NOREF(pszInstr);
6996 NOREF(pszFailure);
6997 return VINF_SUCCESS;
6998}
6999
7000
7001/**
7002 * Loads the guest-state non-register state as part of VM-entry.
7003 *
7004 * @returns VBox status code.
7005 * @param pVCpu The cross context virtual CPU structure.
7006 * @param pszInstr The VMX instruction name (for logging purposes).
7007 *
7008 * @remarks This must be called only after loading the nested-guest register state
7009 * (especially nested-guest RIP).
7010 */
7011static int iemVmxVmentryLoadGuestNonRegState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7012{
7013 /*
7014 * Load guest non-register state.
7015 * See Intel spec. 26.6 "Special Features of VM Entry"
7016 */
7017 const char *const pszFailure = "VM-exit";
7018 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7019
7020 /*
7021 * If VM-entry is not vectoring, block-by-STI and block-by-MovSS state must be loaded.
7022 * If VM-entry is vectoring, there is no block-by-STI or block-by-MovSS.
7023 *
7024 * See Intel spec. 26.6.1 "Interruptibility State".
7025 */
7026 bool const fEntryVectoring = VMXIsVmentryVectoring(pVmcs->u32EntryIntInfo, NULL /* puEntryIntInfoType */);
7027 if ( !fEntryVectoring
7028 && (pVmcs->u32GuestIntrState & (VMX_VMCS_GUEST_INT_STATE_BLOCK_STI | VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)))
7029 CPUMSetInInterruptShadowEx(&pVCpu->cpum.GstCtx, pVmcs->u64GuestRip.u);
7030 else
7031 Assert(!CPUMIsInInterruptShadow(&pVCpu->cpum.GstCtx));
7032
7033 /* NMI blocking. */
7034 if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_NMI)
7035 {
7036 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI)
7037 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = true;
7038 else
7039 {
7040 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
7041 CPUMSetInterruptInhibitingByNmi(&pVCpu->cpum.GstCtx);
7042 }
7043 }
7044 else
7045 pVCpu->cpum.GstCtx.hwvirt.vmx.fVirtNmiBlocking = false;
7046
7047 /* SMI blocking is irrelevant. We don't support SMIs yet. */
7048
7049 /*
7050 * Set PGM's copy of the EPT pointer.
7051 * The EPTP has already been validated while checking guest state.
7052 *
7053 * It is important to do this prior to mapping PAE PDPTEs (below).
7054 */
7055 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
7056 PGMSetGuestEptPtr(pVCpu, pVmcs->u64EptPtr.u);
7057
7058 /*
7059 * Load the guest's PAE PDPTEs.
7060 */
7061 if (!iemVmxVmcsIsGuestPaePagingEnabled(pVmcs))
7062 {
7063 /*
7064 * When PAE paging is not used we clear the PAE PDPTEs for safety
7065 * in case we might be switching from a PAE host to a non-PAE guest.
7066 */
7067 pVCpu->cpum.GstCtx.aPaePdpes[0].u = 0;
7068 pVCpu->cpum.GstCtx.aPaePdpes[1].u = 0;
7069 pVCpu->cpum.GstCtx.aPaePdpes[2].u = 0;
7070 pVCpu->cpum.GstCtx.aPaePdpes[3].u = 0;
7071 }
7072 else if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_EPT)
7073 {
7074 /*
7075 * With EPT and the nested-guest using PAE paging, we've already validated the PAE PDPTEs
7076 * while checking the guest state. We can load them into the nested-guest CPU state now.
7077 * They'll later be used while mapping CR3 and the PAE PDPTEs.
7078 */
7079 pVCpu->cpum.GstCtx.aPaePdpes[0].u = pVmcs->u64GuestPdpte0.u;
7080 pVCpu->cpum.GstCtx.aPaePdpes[1].u = pVmcs->u64GuestPdpte1.u;
7081 pVCpu->cpum.GstCtx.aPaePdpes[2].u = pVmcs->u64GuestPdpte2.u;
7082 pVCpu->cpum.GstCtx.aPaePdpes[3].u = pVmcs->u64GuestPdpte3.u;
7083 }
7084 else
7085 {
7086 /*
7087 * Without EPT and the nested-guest using PAE paging, we must load the PAE PDPTEs
7088 * referenced by CR3. This involves loading (and mapping) CR3 and validating them now.
7089 */
7090 int const rc = PGMGstMapPaePdpesAtCr3(pVCpu, pVmcs->u64GuestCr3.u);
7091 if (RT_SUCCESS(rc))
7092 { /* likely */ }
7093 else
7094 {
7095 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_PDPTE);
7096 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_GuestPdpte);
7097 }
7098 }
7099
7100 /* VPID is irrelevant. We don't support VPID yet. */
7101
7102 /* Clear address-range monitoring. */
7103 EMMonitorWaitClear(pVCpu);
7104
7105 return VINF_SUCCESS;
7106}
7107
7108
7109/**
7110 * Loads the guest VMCS referenced state (such as MSR bitmaps, I/O bitmaps etc).
7111 *
7112 * @param pVCpu The cross context virtual CPU structure.
7113 * @param pszInstr The VMX instruction name (for logging purposes).
7114 *
7115 * @remarks This assumes various VMCS related data structure pointers have already
7116 * been verified prior to calling this function.
7117 */
7118static int iemVmxVmentryLoadGuestVmcsRefState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7119{
7120 const char *const pszFailure = "VM-exit";
7121 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7122
7123 /*
7124 * Virtualize APIC accesses.
7125 */
7126 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
7127 {
7128 /* APIC-access physical address. */
7129 RTGCPHYS const GCPhysApicAccess = pVmcs->u64AddrApicAccess.u;
7130
7131 /*
7132 * Register the handler for the APIC-access page.
7133 *
7134 * We don't deregister the APIC-access page handler during the VM-exit as a different
7135 * nested-VCPU might be using the same guest-physical address for its APIC-access page.
7136 *
7137 * We leave the page registered until the first access that happens outside VMX non-root
7138 * mode. Guest software is allowed to access structures such as the APIC-access page
7139 * only when no logical processor with a current VMCS references it in VMX non-root mode,
7140 * otherwise it can lead to unpredictable behavior including guest triple-faults.
7141 *
7142 * See Intel spec. 24.11.4 "Software Access to Related Structures".
7143 */
7144 if (!PGMHandlerPhysicalIsRegistered(pVCpu->CTX_SUFF(pVM), GCPhysApicAccess))
7145 {
7146 PVMCC pVM = pVCpu->CTX_SUFF(pVM);
7147 int rc = PGMHandlerPhysicalRegister(pVM, GCPhysApicAccess, GCPhysApicAccess | X86_PAGE_4K_OFFSET_MASK,
7148 pVM->iem.s.hVmxApicAccessPage, 0 /*uUser*/, NULL /*pszDesc*/);
7149 if (RT_SUCCESS(rc))
7150 { /* likely */ }
7151 else
7152 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_AddrApicAccessHandlerReg);
7153 }
7154 }
7155
7156 /*
7157 * VMCS shadowing.
7158 */
7159 if (pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
7160 {
7161 /* Read the VMREAD-bitmap. */
7162 RTGCPHYS const GCPhysVmreadBitmap = pVmcs->u64AddrVmreadBitmap.u;
7163 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abVmreadBitmap[0],
7164 GCPhysVmreadBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abVmreadBitmap));
7165 if (RT_SUCCESS(rc))
7166 { /* likely */ }
7167 else
7168 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmreadBitmapPtrReadPhys);
7169
7170 /* Read the VMWRITE-bitmap. */
7171 RTGCPHYS const GCPhysVmwriteBitmap = pVmcs->u64AddrVmwriteBitmap.u;
7172 rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abVmwriteBitmap[0],
7173 GCPhysVmwriteBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abVmwriteBitmap));
7174 if (RT_SUCCESS(rc))
7175 { /* likely */ }
7176 else
7177 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmwriteBitmapPtrReadPhys);
7178 }
7179
7180 /*
7181 * I/O bitmaps.
7182 */
7183 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_IO_BITMAPS)
7184 {
7185 /* Read the IO bitmap A. */
7186 RTGCPHYS const GCPhysIoBitmapA = pVmcs->u64AddrIoBitmapA.u;
7187 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abIoBitmap[0],
7188 GCPhysIoBitmapA, VMX_V_IO_BITMAP_A_SIZE);
7189 if (RT_SUCCESS(rc))
7190 { /* likely */ }
7191 else
7192 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_IoBitmapAPtrReadPhys);
7193
7194 /* Read the IO bitmap B. */
7195 RTGCPHYS const GCPhysIoBitmapB = pVmcs->u64AddrIoBitmapB.u;
7196 rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abIoBitmap[VMX_V_IO_BITMAP_A_SIZE],
7197 GCPhysIoBitmapB, VMX_V_IO_BITMAP_B_SIZE);
7198 if (RT_SUCCESS(rc))
7199 { /* likely */ }
7200 else
7201 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_IoBitmapBPtrReadPhys);
7202 }
7203
7204 /*
7205 * TPR shadow and Virtual-APIC page.
7206 */
7207 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_TPR_SHADOW)
7208 {
7209 /* Verify TPR threshold and VTPR when both virtualize-APIC accesses and virtual-interrupt delivery aren't used. */
7210 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_APIC_ACCESS)
7211 && !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VIRT_INT_DELIVERY))
7212 {
7213 /* Read the VTPR from the virtual-APIC page. */
7214 RTGCPHYS const GCPhysVirtApic = pVmcs->u64AddrVirtApic.u;
7215 uint8_t u8VTpr;
7216 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &u8VTpr, GCPhysVirtApic + XAPIC_OFF_TPR, sizeof(u8VTpr));
7217 if (RT_SUCCESS(rc))
7218 { /* likely */ }
7219 else
7220 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VirtApicPagePtrReadPhys);
7221
7222 /* Bits 3:0 of the TPR-threshold must not be greater than bits 7:4 of VTPR. */
7223 if ((uint8_t)RT_BF_GET(pVmcs->u32TprThreshold, VMX_BF_TPR_THRESHOLD_TPR) <= (u8VTpr & 0xf0))
7224 { /* likely */ }
7225 else
7226 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_TprThresholdVTpr);
7227 }
7228 }
7229
7230 /*
7231 * VMCS link pointer.
7232 */
7233 if (pVmcs->u64VmcsLinkPtr.u != UINT64_C(0xffffffffffffffff))
7234 {
7235 /* Read the VMCS-link pointer from guest memory. */
7236 RTGCPHYS const GCPhysShadowVmcs = pVmcs->u64VmcsLinkPtr.u;
7237 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs,
7238 GCPhysShadowVmcs, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs));
7239 if (RT_SUCCESS(rc))
7240 { /* likely */ }
7241 else
7242 {
7243 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
7244 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrReadPhys);
7245 }
7246
7247 /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
7248 if (pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs.u32VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID)
7249 { /* likely */ }
7250 else
7251 {
7252 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
7253 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrRevId);
7254 }
7255
7256 /* Verify the shadow bit is set if VMCS shadowing is enabled . */
7257 if ( !(pVmcs->u32ProcCtls2 & VMX_PROC_CTLS2_VMCS_SHADOWING)
7258 || pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs.u32VmcsRevId.n.fIsShadowVmcs)
7259 { /* likely */ }
7260 else
7261 {
7262 iemVmxVmcsSetExitQual(pVCpu, VMX_ENTRY_FAIL_QUAL_VMCS_LINK_PTR);
7263 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_VmcsLinkPtrShadow);
7264 }
7265
7266 /* Update our cache of the guest physical address of the shadow VMCS. */
7267 pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysShadowVmcs = GCPhysShadowVmcs;
7268 }
7269
7270 /*
7271 * MSR bitmap.
7272 */
7273 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
7274 {
7275 /* Read the MSR bitmap. */
7276 RTGCPHYS const GCPhysMsrBitmap = pVmcs->u64AddrMsrBitmap.u;
7277 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap[0],
7278 GCPhysMsrBitmap, sizeof(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap));
7279 if (RT_SUCCESS(rc))
7280 { /* likely */ }
7281 else
7282 IEM_VMX_VMENTRY_FAILED_RET(pVCpu, pszInstr, pszFailure, kVmxVDiag_Vmentry_MsrBitmapPtrReadPhys);
7283 }
7284
7285 NOREF(pszFailure);
7286 NOREF(pszInstr);
7287 return VINF_SUCCESS;
7288}
7289
7290
7291/**
7292 * Loads the guest-state as part of VM-entry.
7293 *
7294 * @returns VBox status code.
7295 * @param pVCpu The cross context virtual CPU structure.
7296 * @param pszInstr The VMX instruction name (for logging purposes).
7297 *
7298 * @remarks This must be done after all the necessary steps prior to loading of
7299 * guest-state (e.g. checking various VMCS state).
7300 */
7301static int iemVmxVmentryLoadGuestState(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7302{
7303 /* Load guest control registers, MSRs (that are directly part of the VMCS). */
7304 iemVmxVmentryLoadGuestControlRegsMsrs(pVCpu);
7305
7306 /* Load guest segment registers. */
7307 iemVmxVmentryLoadGuestSegRegs(pVCpu);
7308
7309 /*
7310 * Load guest RIP, RSP and RFLAGS.
7311 * See Intel spec. 26.3.2.3 "Loading Guest RIP, RSP and RFLAGS".
7312 */
7313 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7314 pVCpu->cpum.GstCtx.rsp = pVmcs->u64GuestRsp.u;
7315 pVCpu->cpum.GstCtx.rip = pVmcs->u64GuestRip.u;
7316 pVCpu->cpum.GstCtx.rflags.u = pVmcs->u64GuestRFlags.u;
7317
7318 /* Initialize the PAUSE-loop controls as part of VM-entry. */
7319 pVCpu->cpum.GstCtx.hwvirt.vmx.uFirstPauseLoopTick = 0;
7320 pVCpu->cpum.GstCtx.hwvirt.vmx.uPrevPauseTick = 0;
7321
7322 /* Load guest non-register state (such as interrupt shadows, NMI blocking etc). */
7323 int rc = iemVmxVmentryLoadGuestNonRegState(pVCpu, pszInstr);
7324 if (rc == VINF_SUCCESS)
7325 { /* likely */ }
7326 else
7327 return rc;
7328
7329 /* Load VMX related structures and state referenced by the VMCS. */
7330 rc = iemVmxVmentryLoadGuestVmcsRefState(pVCpu, pszInstr);
7331 if (rc == VINF_SUCCESS)
7332 { /* likely */ }
7333 else
7334 return rc;
7335
7336 NOREF(pszInstr);
7337 return VINF_SUCCESS;
7338}
7339
7340
7341/**
7342 * Returns whether there are is a pending debug exception on VM-entry.
7343 *
7344 * @param pVCpu The cross context virtual CPU structure.
7345 * @param pszInstr The VMX instruction name (for logging purposes).
7346 */
7347static bool iemVmxVmentryIsPendingDebugXcpt(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7348{
7349 /*
7350 * Pending debug exceptions.
7351 * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
7352 */
7353 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7354 Assert(pVmcs);
7355
7356 bool fPendingDbgXcpt = RT_BOOL(pVmcs->u64GuestPendingDbgXcpts.u & ( VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_BS
7357 | VMX_VMCS_GUEST_PENDING_DEBUG_XCPT_EN_BP));
7358 if (fPendingDbgXcpt)
7359 {
7360 uint8_t uEntryIntInfoType;
7361 bool const fEntryVectoring = VMXIsVmentryVectoring(pVmcs->u32EntryIntInfo, &uEntryIntInfoType);
7362 if (fEntryVectoring)
7363 {
7364 switch (uEntryIntInfoType)
7365 {
7366 case VMX_ENTRY_INT_INFO_TYPE_EXT_INT:
7367 case VMX_ENTRY_INT_INFO_TYPE_NMI:
7368 case VMX_ENTRY_INT_INFO_TYPE_HW_XCPT:
7369 case VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT:
7370 fPendingDbgXcpt = false;
7371 break;
7372
7373 case VMX_ENTRY_INT_INFO_TYPE_SW_XCPT:
7374 {
7375 /*
7376 * Whether the pending debug exception for software exceptions other than
7377 * #BP and #OF is delivered after injecting the exception or is discard
7378 * is CPU implementation specific. We will discard them (easier).
7379 */
7380 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(pVmcs->u32EntryIntInfo);
7381 if ( uVector != X86_XCPT_BP
7382 && uVector != X86_XCPT_OF)
7383 fPendingDbgXcpt = false;
7384 RT_FALL_THRU();
7385 }
7386 case VMX_ENTRY_INT_INFO_TYPE_SW_INT:
7387 {
7388 if (!(pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS))
7389 fPendingDbgXcpt = false;
7390 break;
7391 }
7392 }
7393 }
7394 else
7395 {
7396 /*
7397 * When the VM-entry is not vectoring but there is blocking-by-MovSS, whether the
7398 * pending debug exception is held pending or is discarded is CPU implementation
7399 * specific. We will discard them (easier).
7400 */
7401 if (pVmcs->u32GuestIntrState & VMX_VMCS_GUEST_INT_STATE_BLOCK_MOVSS)
7402 fPendingDbgXcpt = false;
7403
7404 /* There's no pending debug exception in the shutdown or wait-for-SIPI state. */
7405 if (pVmcs->u32GuestActivityState & (VMX_VMCS_GUEST_ACTIVITY_SHUTDOWN | VMX_VMCS_GUEST_ACTIVITY_SIPI_WAIT))
7406 fPendingDbgXcpt = false;
7407 }
7408 }
7409
7410 NOREF(pszInstr);
7411 return fPendingDbgXcpt;
7412}
7413
7414
7415/**
7416 * Set up the monitor-trap flag (MTF).
7417 *
7418 * @param pVCpu The cross context virtual CPU structure.
7419 * @param pszInstr The VMX instruction name (for logging purposes).
7420 */
7421static void iemVmxVmentrySetupMtf(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7422{
7423 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7424 Assert(pVmcs);
7425 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_MONITOR_TRAP_FLAG)
7426 {
7427 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
7428 Log(("%s: Monitor-trap flag set on VM-entry\n", pszInstr));
7429 }
7430 else
7431 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_MTF));
7432 NOREF(pszInstr);
7433}
7434
7435
7436/**
7437 * Sets up NMI-window exiting.
7438 *
7439 * @param pVCpu The cross context virtual CPU structure.
7440 * @param pszInstr The VMX instruction name (for logging purposes).
7441 */
7442static void iemVmxVmentrySetupNmiWindow(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7443{
7444 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7445 Assert(pVmcs);
7446 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_NMI_WINDOW_EXIT)
7447 {
7448 Assert(pVmcs->u32PinCtls & VMX_PIN_CTLS_VIRT_NMI);
7449 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW);
7450 Log(("%s: NMI-window set on VM-entry\n", pszInstr));
7451 }
7452 else
7453 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_NMI_WINDOW));
7454 NOREF(pszInstr);
7455}
7456
7457
7458/**
7459 * Sets up interrupt-window exiting.
7460 *
7461 * @param pVCpu The cross context virtual CPU structure.
7462 * @param pszInstr The VMX instruction name (for logging purposes).
7463 */
7464static void iemVmxVmentrySetupIntWindow(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7465{
7466 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7467 Assert(pVmcs);
7468 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_INT_WINDOW_EXIT)
7469 {
7470 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW);
7471 Log(("%s: Interrupt-window set on VM-entry\n", pszInstr));
7472 }
7473 else
7474 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_INT_WINDOW));
7475 NOREF(pszInstr);
7476}
7477
7478
7479/**
7480 * Set up the VMX-preemption timer.
7481 *
7482 * @param pVCpu The cross context virtual CPU structure.
7483 * @param pszInstr The VMX instruction name (for logging purposes).
7484 */
7485static void iemVmxVmentrySetupPreemptTimer(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7486{
7487 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7488 Assert(pVmcs);
7489 if (pVmcs->u32PinCtls & VMX_PIN_CTLS_PREEMPT_TIMER)
7490 {
7491 /*
7492 * If the timer is 0, we must cause a VM-exit before executing the first
7493 * nested-guest instruction. So we can flag as though the timer has already
7494 * expired and we will check and cause a VM-exit at the right priority elsewhere
7495 * in the code.
7496 */
7497 uint64_t uEntryTick;
7498 uint32_t const uPreemptTimer = pVmcs->u32PreemptTimer;
7499 if (uPreemptTimer)
7500 {
7501 int rc = CPUMStartGuestVmxPremptTimer(pVCpu, uPreemptTimer, VMX_V_PREEMPT_TIMER_SHIFT, &uEntryTick);
7502 AssertRC(rc);
7503 Log(("%s: VM-entry set up VMX-preemption timer at %#RX64\n", pszInstr, uEntryTick));
7504 }
7505 else
7506 {
7507 uEntryTick = TMCpuTickGetNoCheck(pVCpu);
7508 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER);
7509 Log(("%s: VM-entry set up VMX-preemption timer at %#RX64 to expire immediately!\n", pszInstr, uEntryTick));
7510 }
7511
7512 pVCpu->cpum.GstCtx.hwvirt.vmx.uEntryTick = uEntryTick;
7513 }
7514 else
7515 Assert(!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_VMX_PREEMPT_TIMER));
7516
7517 NOREF(pszInstr);
7518}
7519
7520
7521/**
7522 * Injects an event using TRPM given a VM-entry interruption info and related
7523 * fields.
7524 *
7525 * @param pVCpu The cross context virtual CPU structure.
7526 * @param pszInstr The VMX instruction name (for logging purposes).
7527 * @param uEntryIntInfo The VM-entry interruption info.
7528 * @param uErrCode The error code associated with the event if any.
7529 * @param cbInstr The VM-entry instruction length (for software
7530 * interrupts and software exceptions). Pass 0
7531 * otherwise.
7532 * @param GCPtrFaultAddress The guest CR2 if this is a \#PF event.
7533 */
7534static void iemVmxVmentryInjectTrpmEvent(PVMCPUCC pVCpu, const char *pszInstr, uint32_t uEntryIntInfo, uint32_t uErrCode,
7535 uint32_t cbInstr, RTGCUINTPTR GCPtrFaultAddress) RT_NOEXCEPT
7536{
7537 Assert(VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo));
7538
7539 uint8_t const uType = VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo);
7540 uint8_t const uVector = VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo);
7541 TRPMEVENT const enmTrpmEvent = HMVmxEventTypeToTrpmEventType(uEntryIntInfo);
7542
7543 Assert(uType != VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT);
7544
7545 int rc = TRPMAssertTrap(pVCpu, uVector, enmTrpmEvent);
7546 AssertRC(rc);
7547 Log(("%s: Injecting: vector=%#x type=%#x (%s)\n", pszInstr, uVector, uType, VMXGetEntryIntInfoTypeDesc(uType)));
7548
7549 if (VMX_ENTRY_INT_INFO_IS_ERROR_CODE_VALID(uEntryIntInfo))
7550 {
7551 TRPMSetErrorCode(pVCpu, uErrCode);
7552 Log(("%s: Injecting: err_code=%#x\n", pszInstr, uErrCode));
7553 }
7554
7555 if (VMX_ENTRY_INT_INFO_IS_XCPT_PF(uEntryIntInfo))
7556 {
7557 TRPMSetFaultAddress(pVCpu, GCPtrFaultAddress);
7558 Log(("%s: Injecting: fault_addr=%RGp\n", pszInstr, GCPtrFaultAddress));
7559 }
7560 else if ( uType == VMX_ENTRY_INT_INFO_TYPE_SW_INT
7561 || uType == VMX_ENTRY_INT_INFO_TYPE_SW_XCPT
7562 || uType == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
7563 {
7564 TRPMSetInstrLength(pVCpu, cbInstr);
7565 Log(("%s: Injecting: instr_len=%u\n", pszInstr, cbInstr));
7566 }
7567
7568 if (VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo) == VMX_ENTRY_INT_INFO_TYPE_PRIV_SW_XCPT)
7569 {
7570 TRPMSetTrapDueToIcebp(pVCpu);
7571 Log(("%s: Injecting: icebp\n", pszInstr));
7572 }
7573
7574 NOREF(pszInstr);
7575}
7576
7577
7578/**
7579 * Performs event injection (if any) as part of VM-entry.
7580 *
7581 * @param pVCpu The cross context virtual CPU structure.
7582 * @param pszInstr The VMX instruction name (for logging purposes).
7583 */
7584static void iemVmxVmentryInjectEvent(PVMCPUCC pVCpu, const char *pszInstr) RT_NOEXCEPT
7585{
7586 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7587
7588 /*
7589 * Inject events.
7590 * The event that is going to be made pending for injection is not subject to VMX intercepts,
7591 * thus we flag ignoring of intercepts. However, recursive exceptions if any during delivery
7592 * of the current event -are- subject to intercepts, hence this flag will be flipped during
7593 * the actually delivery of this event.
7594 *
7595 * See Intel spec. 26.5 "Event Injection".
7596 */
7597 uint32_t const uEntryIntInfo = pVmcs->u32EntryIntInfo;
7598 bool const fEntryIntInfoValid = VMX_ENTRY_INT_INFO_IS_VALID(uEntryIntInfo);
7599
7600 CPUMSetGuestVmxInterceptEvents(&pVCpu->cpum.GstCtx, !fEntryIntInfoValid);
7601 if (fEntryIntInfoValid)
7602 {
7603 if (VMX_ENTRY_INT_INFO_TYPE(uEntryIntInfo) == VMX_ENTRY_INT_INFO_TYPE_OTHER_EVENT)
7604 {
7605 Assert(VMX_ENTRY_INT_INFO_VECTOR(uEntryIntInfo) == VMX_ENTRY_INT_INFO_VECTOR_MTF);
7606 VMCPU_FF_SET(pVCpu, VMCPU_FF_VMX_MTF);
7607 }
7608 else
7609 iemVmxVmentryInjectTrpmEvent(pVCpu, pszInstr, uEntryIntInfo, pVmcs->u32EntryXcptErrCode, pVmcs->u32EntryInstrLen,
7610 pVCpu->cpum.GstCtx.cr2);
7611
7612 /*
7613 * We need to clear the VM-entry interruption information field's valid bit on VM-exit.
7614 *
7615 * However, we do it here on VM-entry as well because while it isn't visible to guest
7616 * software until VM-exit, when and if HM looks at the VMCS to continue nested-guest
7617 * execution using hardware-assisted VMX, it will not try to inject the event again.
7618 *
7619 * See Intel spec. 24.8.3 "VM-Entry Controls for Event Injection".
7620 */
7621 pVmcs->u32EntryIntInfo &= ~VMX_ENTRY_INT_INFO_VALID;
7622 }
7623 else
7624 {
7625 /*
7626 * Inject any pending guest debug exception.
7627 * Unlike injecting events, this #DB injection on VM-entry is subject to #DB VMX intercept.
7628 * See Intel spec. 26.6.3 "Delivery of Pending Debug Exceptions after VM Entry".
7629 */
7630 bool const fPendingDbgXcpt = iemVmxVmentryIsPendingDebugXcpt(pVCpu, pszInstr);
7631 if (fPendingDbgXcpt)
7632 {
7633 uint32_t const uDbgXcptInfo = RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VECTOR, X86_XCPT_DB)
7634 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_TYPE, VMX_ENTRY_INT_INFO_TYPE_HW_XCPT)
7635 | RT_BF_MAKE(VMX_BF_ENTRY_INT_INFO_VALID, 1);
7636 iemVmxVmentryInjectTrpmEvent(pVCpu, pszInstr, uDbgXcptInfo, 0 /* uErrCode */, pVmcs->u32EntryInstrLen,
7637 0 /* GCPtrFaultAddress */);
7638 }
7639 }
7640
7641 NOREF(pszInstr);
7642}
7643
7644
7645/**
7646 * Initializes all read-only VMCS fields as part of VM-entry.
7647 *
7648 * @param pVCpu The cross context virtual CPU structure.
7649 */
7650static void iemVmxVmentryInitReadOnlyFields(PVMCPUCC pVCpu) RT_NOEXCEPT
7651{
7652 /*
7653 * Any VMCS field which we do not establish on every VM-exit but may potentially
7654 * be used on the VM-exit path of a nested hypervisor -and- is not explicitly
7655 * specified to be undefined, needs to be initialized here.
7656 *
7657 * Thus, it is especially important to clear the Exit qualification field
7658 * since it must be zero for VM-exits where it is not used. Similarly, the
7659 * VM-exit interruption information field's valid bit needs to be cleared for
7660 * the same reasons.
7661 */
7662 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7663 Assert(pVmcs);
7664
7665 /* 16-bit (none currently). */
7666 /* 32-bit. */
7667 pVmcs->u32RoVmInstrError = 0;
7668 pVmcs->u32RoExitReason = 0;
7669 pVmcs->u32RoExitIntInfo = 0;
7670 pVmcs->u32RoExitIntErrCode = 0;
7671 pVmcs->u32RoIdtVectoringInfo = 0;
7672 pVmcs->u32RoIdtVectoringErrCode = 0;
7673 pVmcs->u32RoExitInstrLen = 0;
7674 pVmcs->u32RoExitInstrInfo = 0;
7675
7676 /* 64-bit. */
7677 pVmcs->u64RoGuestPhysAddr.u = 0;
7678
7679 /* Natural-width. */
7680 pVmcs->u64RoExitQual.u = 0;
7681 pVmcs->u64RoIoRcx.u = 0;
7682 pVmcs->u64RoIoRsi.u = 0;
7683 pVmcs->u64RoIoRdi.u = 0;
7684 pVmcs->u64RoIoRip.u = 0;
7685 pVmcs->u64RoGuestLinearAddr.u = 0;
7686}
7687
7688
7689/**
7690 * VMLAUNCH/VMRESUME instruction execution worker.
7691 *
7692 * @returns Strict VBox status code.
7693 * @param pVCpu The cross context virtual CPU structure.
7694 * @param cbInstr The instruction length in bytes.
7695 * @param uInstrId The instruction identity (VMXINSTRID_VMLAUNCH or
7696 * VMXINSTRID_VMRESUME).
7697 *
7698 * @remarks Common VMX instruction checks are already expected to by the caller,
7699 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
7700 */
7701static VBOXSTRICTRC iemVmxVmlaunchVmresume(PVMCPUCC pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId) RT_NOEXCEPT
7702{
7703# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && !defined(IN_RING3)
7704 RT_NOREF3(pVCpu, cbInstr, uInstrId);
7705 return VINF_EM_RAW_EMULATE_INSTR;
7706# else
7707 Assert( uInstrId == VMXINSTRID_VMLAUNCH
7708 || uInstrId == VMXINSTRID_VMRESUME);
7709 const char * const pszInstr = uInstrId == VMXINSTRID_VMRESUME ? "vmresume" : "vmlaunch";
7710
7711 /* Nested-guest intercept. */
7712 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
7713 return iemVmxVmexitInstr(pVCpu, uInstrId == VMXINSTRID_VMRESUME ? VMX_EXIT_VMRESUME : VMX_EXIT_VMLAUNCH, cbInstr);
7714
7715 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
7716
7717 /*
7718 * Basic VM-entry checks.
7719 * The order of the CPL, current and shadow VMCS and block-by-MovSS are important.
7720 * The checks following that do not have to follow a specific order.
7721 *
7722 * See Intel spec. 26.1 "Basic VM-entry Checks".
7723 */
7724
7725 /* CPL. */
7726 if (pVCpu->iem.s.uCpl == 0)
7727 { /* likely */ }
7728 else
7729 {
7730 Log(("%s: CPL %u -> #GP(0)\n", pszInstr, pVCpu->iem.s.uCpl));
7731 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_Cpl;
7732 return iemRaiseGeneralProtectionFault0(pVCpu);
7733 }
7734
7735 /* Current VMCS valid. */
7736 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
7737 { /* likely */ }
7738 else
7739 {
7740 Log(("%s: VMCS pointer %#RGp invalid -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7741 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrInvalid;
7742 iemVmxVmFailInvalid(pVCpu);
7743 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7744 }
7745
7746 /* Current VMCS is not a shadow VMCS. */
7747 if (!pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.u32VmcsRevId.n.fIsShadowVmcs)
7748 { /* likely */ }
7749 else
7750 {
7751 Log(("%s: VMCS pointer %#RGp is a shadow VMCS -> VMFailInvalid\n", pszInstr, IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
7752 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_PtrShadowVmcs;
7753 iemVmxVmFailInvalid(pVCpu);
7754 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7755 }
7756
7757 /** @todo Distinguish block-by-MovSS from block-by-STI. Currently we
7758 * use block-by-STI here which is not quite correct. */
7759 if (!CPUMIsInInterruptShadowWithUpdate(&pVCpu->cpum.GstCtx))
7760 { /* likely */ }
7761 else
7762 {
7763 Log(("%s: VM entry with events blocked by MOV SS -> VMFail\n", pszInstr));
7764 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_BlocKMovSS;
7765 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_BLOCK_MOVSS);
7766 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7767 }
7768
7769 if (uInstrId == VMXINSTRID_VMLAUNCH)
7770 {
7771 /* VMLAUNCH with non-clear VMCS. */
7772 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState == VMX_V_VMCS_LAUNCH_STATE_CLEAR)
7773 { /* likely */ }
7774 else
7775 {
7776 Log(("vmlaunch: VMLAUNCH with non-clear VMCS -> VMFail\n"));
7777 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsClear;
7778 iemVmxVmFail(pVCpu, VMXINSTRERR_VMLAUNCH_NON_CLEAR_VMCS);
7779 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7780 }
7781 }
7782 else
7783 {
7784 /* VMRESUME with non-launched VMCS. */
7785 if (pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState == VMX_V_VMCS_LAUNCH_STATE_LAUNCHED)
7786 { /* likely */ }
7787 else
7788 {
7789 Log(("vmresume: VMRESUME with non-launched VMCS -> VMFail\n"));
7790 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmentry_VmcsLaunch;
7791 iemVmxVmFail(pVCpu, VMXINSTRERR_VMRESUME_NON_LAUNCHED_VMCS);
7792 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7793 }
7794 }
7795
7796 /*
7797 * We are allowed to cache VMCS related data structures (such as I/O bitmaps, MSR bitmaps)
7798 * while entering VMX non-root mode. We do some of this while checking VM-execution
7799 * controls. The nested hypervisor should not make assumptions and cannot expect
7800 * predictable behavior if changes to these structures are made in guest memory while
7801 * executing in VMX non-root mode. As far as VirtualBox is concerned, the guest cannot
7802 * modify them anyway as we cache them in host memory.
7803 *
7804 * See Intel spec. 24.11.4 "Software Access to Related Structures".
7805 */
7806 PVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7807 Assert(pVmcs);
7808 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
7809
7810 int rc = iemVmxVmentryCheckCtls(pVCpu, pszInstr);
7811 if (RT_SUCCESS(rc))
7812 {
7813 rc = iemVmxVmentryCheckHostState(pVCpu, pszInstr);
7814 if (RT_SUCCESS(rc))
7815 {
7816 /*
7817 * Initialize read-only VMCS fields before VM-entry since we don't update all of them
7818 * for every VM-exit. This needs to be done before invoking a VM-exit (even those
7819 * ones that may occur during VM-entry below).
7820 */
7821 iemVmxVmentryInitReadOnlyFields(pVCpu);
7822
7823 /*
7824 * Blocking of NMIs need to be restored if VM-entry fails due to invalid-guest state.
7825 * So we save the VMCPU_FF_BLOCK_NMI force-flag here so we can restore it on
7826 * VM-exit when required.
7827 * See Intel spec. 26.7 "VM-entry Failures During or After Loading Guest State"
7828 */
7829 iemVmxVmentrySaveNmiBlockingFF(pVCpu);
7830
7831 rc = iemVmxVmentryCheckGuestState(pVCpu, pszInstr);
7832 if (RT_SUCCESS(rc))
7833 {
7834 /*
7835 * We've now entered nested-guest execution.
7836 *
7837 * It is important do this prior to loading the guest state because
7838 * as part of loading the guest state, PGM (and perhaps other components
7839 * in the future) relies on detecting whether VMX non-root mode has been
7840 * entered.
7841 */
7842 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode = true;
7843
7844 rc = iemVmxVmentryLoadGuestState(pVCpu, pszInstr);
7845 if (RT_SUCCESS(rc))
7846 {
7847 rc = iemVmxVmentryLoadGuestAutoMsrs(pVCpu, pszInstr);
7848 if (RT_SUCCESS(rc))
7849 {
7850 Assert(rc != VINF_CPUM_R3_MSR_WRITE);
7851
7852 /* VMLAUNCH instruction must update the VMCS launch state. */
7853 if (uInstrId == VMXINSTRID_VMLAUNCH)
7854 pVmcs->fVmcsState = VMX_V_VMCS_LAUNCH_STATE_LAUNCHED;
7855
7856 /* Perform the VMX transition (PGM updates). */
7857 VBOXSTRICTRC rcStrict = iemVmxTransition(pVCpu);
7858 if (rcStrict == VINF_SUCCESS)
7859 { /* likely */ }
7860 else if (RT_SUCCESS(rcStrict))
7861 {
7862 Log3(("%s: iemVmxTransition returns %Rrc -> Setting passup status\n", pszInstr,
7863 VBOXSTRICTRC_VAL(rcStrict)));
7864 rcStrict = iemSetPassUpStatus(pVCpu, rcStrict);
7865 }
7866 else
7867 {
7868 Log3(("%s: iemVmxTransition failed! rc=%Rrc\n", pszInstr, VBOXSTRICTRC_VAL(rcStrict)));
7869 return rcStrict;
7870 }
7871
7872 /* Paranoia. */
7873 Assert(rcStrict == VINF_SUCCESS);
7874
7875 /*
7876 * The priority of potential VM-exits during VM-entry is important.
7877 * The priorities of VM-exits and events are listed from highest
7878 * to lowest as follows:
7879 *
7880 * 1. Event injection.
7881 * 2. Trap on task-switch (T flag set in TSS).
7882 * 3. TPR below threshold / APIC-write.
7883 * 4. SMI, INIT.
7884 * 5. MTF exit.
7885 * 6. Debug-trap exceptions (EFLAGS.TF), pending debug exceptions.
7886 * 7. VMX-preemption timer.
7887 * 9. NMI-window exit.
7888 * 10. NMI injection.
7889 * 11. Interrupt-window exit.
7890 * 12. Virtual-interrupt injection.
7891 * 13. Interrupt injection.
7892 * 14. Process next instruction (fetch, decode, execute).
7893 */
7894
7895 /* Setup VMX-preemption timer. */
7896 iemVmxVmentrySetupPreemptTimer(pVCpu, pszInstr);
7897
7898 /* Setup monitor-trap flag. */
7899 iemVmxVmentrySetupMtf(pVCpu, pszInstr);
7900
7901 /* Setup NMI-window exiting. */
7902 iemVmxVmentrySetupNmiWindow(pVCpu, pszInstr);
7903
7904 /* Setup interrupt-window exiting. */
7905 iemVmxVmentrySetupIntWindow(pVCpu, pszInstr);
7906
7907 /*
7908 * Inject any event that the nested hypervisor wants to inject.
7909 * Note! We cannot immediately perform the event injection here as we may have
7910 * pending PGM operations to perform due to switching page tables and/or
7911 * mode.
7912 */
7913 iemVmxVmentryInjectEvent(pVCpu, pszInstr);
7914
7915# if defined(VBOX_WITH_NESTED_HWVIRT_ONLY_IN_IEM) && defined(IN_RING3)
7916 /* Reschedule to IEM-only execution of the nested-guest. */
7917 LogFlow(("%s: Enabling IEM-only EM execution policy!\n", pszInstr));
7918 int rcSched = EMR3SetExecutionPolicy(pVCpu->CTX_SUFF(pVM)->pUVM, EMEXECPOLICY_IEM_ALL, true);
7919 if (rcSched != VINF_SUCCESS)
7920 iemSetPassUpStatus(pVCpu, rcSched);
7921# endif
7922
7923 /* Finally, done. */
7924 Log2(("vmentry: %s: cs:rip=%04x:%08RX64 cr0=%#RX64 (%#RX64) cr4=%#RX64 (%#RX64) efer=%#RX64 (%#RX64)\n",
7925 pszInstr, pVCpu->cpum.GstCtx.cs.Sel, pVCpu->cpum.GstCtx.rip, pVCpu->cpum.GstCtx.cr0,
7926 pVmcs->u64Cr0ReadShadow.u, pVCpu->cpum.GstCtx.cr4, pVmcs->u64Cr4ReadShadow.u,
7927 pVCpu->cpum.GstCtx.msrEFER, pVmcs->u64GuestEferMsr.u));
7928 return VINF_SUCCESS;
7929 }
7930 return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_MSR_LOAD | VMX_EXIT_REASON_ENTRY_FAILED, pVmcs->u64RoExitQual.u);
7931 }
7932 }
7933 return iemVmxVmexit(pVCpu, VMX_EXIT_ERR_INVALID_GUEST_STATE | VMX_EXIT_REASON_ENTRY_FAILED, pVmcs->u64RoExitQual.u);
7934 }
7935
7936 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_HOST_STATE);
7937 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7938 }
7939
7940 iemVmxVmFail(pVCpu, VMXINSTRERR_VMENTRY_INVALID_CTLS);
7941 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
7942# endif
7943}
7944
7945
7946/**
7947 * Interface for HM and EM to emulate the VMLAUNCH/VMRESUME instruction.
7948 *
7949 * @returns Strict VBox status code.
7950 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
7951 * @param cbInstr The instruction length in bytes.
7952 * @param uInstrId The instruction ID (VMXINSTRID_VMLAUNCH or
7953 * VMXINSTRID_VMRESUME).
7954 * @thread EMT(pVCpu)
7955 */
7956VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmlaunchVmresume(PVMCPUCC pVCpu, uint8_t cbInstr, VMXINSTRID uInstrId)
7957{
7958 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
7959 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_VMX_VMENTRY_MASK);
7960
7961 iemInitExec(pVCpu, false /*fBypassHandlers*/);
7962 VBOXSTRICTRC rcStrict = iemVmxVmlaunchVmresume(pVCpu, cbInstr, uInstrId);
7963 Assert(!pVCpu->iem.s.cActiveMappings);
7964 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
7965}
7966
7967
7968/**
7969 * Checks whether an RDMSR or WRMSR instruction for the given MSR is intercepted
7970 * (causes a VM-exit) or not.
7971 *
7972 * @returns @c true if the instruction is intercepted, @c false otherwise.
7973 * @param pVCpu The cross context virtual CPU structure.
7974 * @param uExitReason The VM-exit reason (VMX_EXIT_RDMSR or
7975 * VMX_EXIT_WRMSR).
7976 * @param idMsr The MSR.
7977 */
7978bool iemVmxIsRdmsrWrmsrInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint32_t idMsr) RT_NOEXCEPT
7979{
7980 Assert(IEM_VMX_IS_NON_ROOT_MODE(pVCpu));
7981 Assert( uExitReason == VMX_EXIT_RDMSR
7982 || uExitReason == VMX_EXIT_WRMSR);
7983
7984 /* Consult the MSR bitmap if the feature is supported. */
7985 PCVMXVVMCS const pVmcs = &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs;
7986 Assert(pVmcs);
7987 if (pVmcs->u32ProcCtls & VMX_PROC_CTLS_USE_MSR_BITMAPS)
7988 {
7989 uint32_t const fMsrpm = CPUMGetVmxMsrPermission(pVCpu->cpum.GstCtx.hwvirt.vmx.abMsrBitmap, idMsr);
7990 if (uExitReason == VMX_EXIT_RDMSR)
7991 return RT_BOOL(fMsrpm & VMXMSRPM_EXIT_RD);
7992 return RT_BOOL(fMsrpm & VMXMSRPM_EXIT_WR);
7993 }
7994
7995 /* Without MSR bitmaps, all MSR accesses are intercepted. */
7996 return true;
7997}
7998
7999
8000/**
8001 * VMREAD instruction execution worker that does not perform any validation checks.
8002 *
8003 * Callers are expected to have performed the necessary checks and to ensure the
8004 * VMREAD will succeed.
8005 *
8006 * @param pVmcs Pointer to the virtual VMCS.
8007 * @param pu64Dst Where to write the VMCS value.
8008 * @param u64VmcsField The VMCS field.
8009 *
8010 * @remarks May be called with interrupts disabled.
8011 */
8012static void iemVmxVmreadNoCheck(PCVMXVVMCS pVmcs, uint64_t *pu64Dst, uint64_t u64VmcsField) RT_NOEXCEPT
8013{
8014 VMXVMCSFIELD VmcsField;
8015 VmcsField.u = u64VmcsField;
8016 uint8_t const uWidth = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_WIDTH);
8017 uint8_t const uType = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_TYPE);
8018 uint8_t const uWidthType = (uWidth << 2) | uType;
8019 uint8_t const uIndex = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_INDEX);
8020 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
8021 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
8022 AssertMsg(offField < VMX_V_VMCS_SIZE, ("off=%u field=%#RX64 width=%#x type=%#x index=%#x (%u)\n", offField, u64VmcsField,
8023 uWidth, uType, uIndex, uIndex));
8024 AssertCompile(VMX_V_SHADOW_VMCS_SIZE == VMX_V_VMCS_SIZE);
8025
8026 /*
8027 * Read the VMCS component based on the field's effective width.
8028 *
8029 * The effective width is 64-bit fields adjusted to 32-bits if the access-type
8030 * indicates high bits (little endian).
8031 *
8032 * Note! The caller is responsible to trim the result and update registers
8033 * or memory locations are required. Here we just zero-extend to the largest
8034 * type (i.e. 64-bits).
8035 */
8036 uint8_t const *pbVmcs = (uint8_t const *)pVmcs;
8037 uint8_t const *pbField = pbVmcs + offField;
8038 uint8_t const uEffWidth = VMXGetVmcsFieldWidthEff(VmcsField.u);
8039 switch (uEffWidth)
8040 {
8041 case VMX_VMCSFIELD_WIDTH_64BIT:
8042 case VMX_VMCSFIELD_WIDTH_NATURAL: *pu64Dst = *(uint64_t const *)pbField; break;
8043 case VMX_VMCSFIELD_WIDTH_32BIT: *pu64Dst = *(uint32_t const *)pbField; break;
8044 case VMX_VMCSFIELD_WIDTH_16BIT: *pu64Dst = *(uint16_t const *)pbField; break;
8045 }
8046}
8047
8048
8049/**
8050 * Interface for HM and EM to read a VMCS field from the nested-guest VMCS.
8051 *
8052 * It is ASSUMED the caller knows what they're doing. No VMREAD instruction checks
8053 * are performed. Bounds checks are strict builds only.
8054 *
8055 * @param pVmcs Pointer to the virtual VMCS.
8056 * @param u64VmcsField The VMCS field.
8057 * @param pu64Dst Where to store the VMCS value.
8058 *
8059 * @remarks May be called with interrupts disabled.
8060 * @todo This should probably be moved to CPUM someday.
8061 */
8062VMM_INT_DECL(void) IEMReadVmxVmcsField(PCVMXVVMCS pVmcs, uint64_t u64VmcsField, uint64_t *pu64Dst)
8063{
8064 AssertPtr(pVmcs);
8065 AssertPtr(pu64Dst);
8066 iemVmxVmreadNoCheck(pVmcs, pu64Dst, u64VmcsField);
8067}
8068
8069
8070/**
8071 * VMREAD common (memory/register) instruction execution worker.
8072 *
8073 * @returns Strict VBox status code.
8074 * @param pVCpu The cross context virtual CPU structure.
8075 * @param cbInstr The instruction length in bytes.
8076 * @param pu64Dst Where to write the VMCS value (only updated when
8077 * VINF_SUCCESS is returned).
8078 * @param u64VmcsField The VMCS field.
8079 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8080 * NULL.
8081 */
8082static VBOXSTRICTRC iemVmxVmreadCommon(PVMCPUCC pVCpu, uint8_t cbInstr, uint64_t *pu64Dst,
8083 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8084{
8085 /* Nested-guest intercept. */
8086 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8087 && CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMREAD, u64VmcsField))
8088 {
8089 if (pExitInfo)
8090 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8091 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMREAD, VMXINSTRID_VMREAD, cbInstr);
8092 }
8093
8094 /* CPL. */
8095 if (pVCpu->iem.s.uCpl == 0)
8096 { /* likely */ }
8097 else
8098 {
8099 Log(("vmread: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8100 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_Cpl;
8101 return iemRaiseGeneralProtectionFault0(pVCpu);
8102 }
8103
8104 pVCpu->iem.s.cPotentialExits++;
8105
8106 /* VMCS pointer in root mode. */
8107 if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
8108 || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8109 { /* likely */ }
8110 else
8111 {
8112 Log(("vmread: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
8113 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrInvalid;
8114 iemVmxVmFailInvalid(pVCpu);
8115 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8116 }
8117
8118 /* VMCS-link pointer in non-root mode. */
8119 if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8120 || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
8121 { /* likely */ }
8122 else
8123 {
8124 Log(("vmread: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
8125 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_LinkPtrInvalid;
8126 iemVmxVmFailInvalid(pVCpu);
8127 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8128 }
8129
8130 /* Supported VMCS field. */
8131 if (CPUMIsGuestVmxVmcsFieldValid(pVCpu->CTX_SUFF(pVM), u64VmcsField))
8132 { /* likely */ }
8133 else
8134 {
8135 Log(("vmread: VMCS field %#RX64 invalid -> VMFail\n", u64VmcsField));
8136 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_FieldInvalid;
8137 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
8138 iemVmxVmFail(pVCpu, VMXINSTRERR_VMREAD_INVALID_COMPONENT);
8139 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8140 }
8141
8142 /*
8143 * Reading from the current or shadow VMCS.
8144 */
8145 PCVMXVVMCS pVmcs = !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8146 ? &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs
8147 : &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs;
8148 iemVmxVmreadNoCheck(pVmcs, pu64Dst, u64VmcsField);
8149 Log4(("vmread %#RX64 => %#RX64\n", u64VmcsField, *pu64Dst));
8150 return VINF_SUCCESS;
8151}
8152
8153
8154/**
8155 * VMREAD (64-bit register) instruction execution worker.
8156 *
8157 * @returns Strict VBox status code.
8158 * @param pVCpu The cross context virtual CPU structure.
8159 * @param cbInstr The instruction length in bytes.
8160 * @param pu64Dst Where to store the VMCS field's value.
8161 * @param u64VmcsField The VMCS field.
8162 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8163 * NULL.
8164 */
8165static VBOXSTRICTRC iemVmxVmreadReg64(PVMCPUCC pVCpu, uint8_t cbInstr, uint64_t *pu64Dst,
8166 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8167{
8168 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, pu64Dst, u64VmcsField, pExitInfo);
8169 if (rcStrict == VINF_SUCCESS)
8170 {
8171 iemVmxVmSucceed(pVCpu);
8172 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8173 }
8174
8175 Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8176 return rcStrict;
8177}
8178
8179
8180/**
8181 * VMREAD (32-bit register) instruction execution worker.
8182 *
8183 * @returns Strict VBox status code.
8184 * @param pVCpu The cross context virtual CPU structure.
8185 * @param cbInstr The instruction length in bytes.
8186 * @param pu32Dst Where to store the VMCS field's value.
8187 * @param u32VmcsField The VMCS field.
8188 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8189 * NULL.
8190 */
8191static VBOXSTRICTRC iemVmxVmreadReg32(PVMCPUCC pVCpu, uint8_t cbInstr, uint32_t *pu32Dst,
8192 uint64_t u32VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8193{
8194 uint64_t u64Dst;
8195 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u32VmcsField, pExitInfo);
8196 if (rcStrict == VINF_SUCCESS)
8197 {
8198 *pu32Dst = u64Dst;
8199 iemVmxVmSucceed(pVCpu);
8200 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8201 }
8202
8203 Log(("vmread/reg: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8204 return rcStrict;
8205}
8206
8207
8208/**
8209 * VMREAD (memory) instruction execution worker.
8210 *
8211 * @returns Strict VBox status code.
8212 * @param pVCpu The cross context virtual CPU structure.
8213 * @param cbInstr The instruction length in bytes.
8214 * @param iEffSeg The effective segment register to use with @a u64Val.
8215 * Pass UINT8_MAX if it is a register access.
8216 * @param GCPtrDst The guest linear address to store the VMCS field's
8217 * value.
8218 * @param u64VmcsField The VMCS field.
8219 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8220 * NULL.
8221 */
8222static VBOXSTRICTRC iemVmxVmreadMem(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrDst,
8223 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8224{
8225 uint64_t u64Dst;
8226 VBOXSTRICTRC rcStrict = iemVmxVmreadCommon(pVCpu, cbInstr, &u64Dst, u64VmcsField, pExitInfo);
8227 if (rcStrict == VINF_SUCCESS)
8228 {
8229 /*
8230 * Write the VMCS field's value to the location specified in guest-memory.
8231 */
8232 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8233 rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrDst, u64Dst);
8234 else
8235 rcStrict = iemMemStoreDataU32(pVCpu, iEffSeg, GCPtrDst, u64Dst);
8236 if (rcStrict == VINF_SUCCESS)
8237 {
8238 iemVmxVmSucceed(pVCpu);
8239 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8240 }
8241
8242 Log(("vmread/mem: Failed to write to memory operand at %#RGv, rc=%Rrc\n", GCPtrDst, VBOXSTRICTRC_VAL(rcStrict)));
8243 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmread_PtrMap;
8244 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrDst;
8245 return rcStrict;
8246 }
8247
8248 Log(("vmread/mem: iemVmxVmreadCommon failed rc=%Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8249 return rcStrict;
8250}
8251
8252
8253/**
8254 * Interface for HM and EM to emulate the VMREAD instruction.
8255 *
8256 * @returns Strict VBox status code.
8257 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8258 * @param pExitInfo Pointer to the VM-exit information.
8259 * @thread EMT(pVCpu)
8260 */
8261VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmread(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8262{
8263 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8264 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8265 Assert(pExitInfo);
8266
8267 iemInitExec(pVCpu, false /*fBypassHandlers*/);
8268
8269 VBOXSTRICTRC rcStrict;
8270 uint8_t const cbInstr = pExitInfo->cbInstr;
8271 bool const fIs64BitMode = RT_BOOL(pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT);
8272 uint64_t const u64FieldEnc = fIs64BitMode
8273 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2)
8274 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2);
8275 if (pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand)
8276 {
8277 if (fIs64BitMode)
8278 {
8279 uint64_t *pu64Dst = iemGRegRefU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg1);
8280 rcStrict = iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64FieldEnc, pExitInfo);
8281 }
8282 else
8283 {
8284 uint32_t *pu32Dst = iemGRegRefU32(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg1);
8285 rcStrict = iemVmxVmreadReg32(pVCpu, cbInstr, pu32Dst, u64FieldEnc, pExitInfo);
8286 }
8287 }
8288 else
8289 {
8290 RTGCPTR const GCPtrDst = pExitInfo->GCPtrEffAddr;
8291 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmreadVmwrite.iSegReg;
8292 rcStrict = iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u64FieldEnc, pExitInfo);
8293 }
8294 Assert(!pVCpu->iem.s.cActiveMappings);
8295 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8296}
8297
8298
8299/**
8300 * VMWRITE instruction execution worker that does not perform any validation
8301 * checks.
8302 *
8303 * Callers are expected to have performed the necessary checks and to ensure the
8304 * VMWRITE will succeed.
8305 *
8306 * @param pVmcs Pointer to the virtual VMCS.
8307 * @param u64Val The value to write.
8308 * @param u64VmcsField The VMCS field.
8309 *
8310 * @remarks May be called with interrupts disabled.
8311 */
8312static void iemVmxVmwriteNoCheck(PVMXVVMCS pVmcs, uint64_t u64Val, uint64_t u64VmcsField) RT_NOEXCEPT
8313{
8314 VMXVMCSFIELD VmcsField;
8315 VmcsField.u = u64VmcsField;
8316 uint8_t const uWidth = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_WIDTH);
8317 uint8_t const uType = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_TYPE);
8318 uint8_t const uWidthType = (uWidth << 2) | uType;
8319 uint8_t const uIndex = RT_BF_GET(VmcsField.u, VMX_BF_VMCSFIELD_INDEX);
8320 Assert(uIndex <= VMX_V_VMCS_MAX_INDEX);
8321 uint16_t const offField = g_aoffVmcsMap[uWidthType][uIndex];
8322 Assert(offField < VMX_V_VMCS_SIZE);
8323 AssertCompile(VMX_V_SHADOW_VMCS_SIZE == VMX_V_VMCS_SIZE);
8324
8325 /*
8326 * Write the VMCS component based on the field's effective width.
8327 *
8328 * The effective width is 64-bit fields adjusted to 32-bits if the access-type
8329 * indicates high bits (little endian).
8330 */
8331 uint8_t *pbVmcs = (uint8_t *)pVmcs;
8332 uint8_t *pbField = pbVmcs + offField;
8333 uint8_t const uEffWidth = VMXGetVmcsFieldWidthEff(VmcsField.u);
8334 switch (uEffWidth)
8335 {
8336 case VMX_VMCSFIELD_WIDTH_64BIT:
8337 case VMX_VMCSFIELD_WIDTH_NATURAL: *(uint64_t *)pbField = u64Val; break;
8338 case VMX_VMCSFIELD_WIDTH_32BIT: *(uint32_t *)pbField = u64Val; break;
8339 case VMX_VMCSFIELD_WIDTH_16BIT: *(uint16_t *)pbField = u64Val; break;
8340 }
8341}
8342
8343
8344/**
8345 * Interface for HM and EM to write a VMCS field in the nested-guest VMCS.
8346 *
8347 * It is ASSUMED the caller knows what they're doing. No VMWRITE instruction checks
8348 * are performed. Bounds checks are strict builds only.
8349 *
8350 * @param pVmcs Pointer to the virtual VMCS.
8351 * @param u64VmcsField The VMCS field.
8352 * @param u64Val The value to write.
8353 *
8354 * @remarks May be called with interrupts disabled.
8355 * @todo This should probably be moved to CPUM someday.
8356 */
8357VMM_INT_DECL(void) IEMWriteVmxVmcsField(PVMXVVMCS pVmcs, uint64_t u64VmcsField, uint64_t u64Val)
8358{
8359 AssertPtr(pVmcs);
8360 iemVmxVmwriteNoCheck(pVmcs, u64Val, u64VmcsField);
8361}
8362
8363
8364/**
8365 * VMWRITE instruction execution worker.
8366 *
8367 * @returns Strict VBox status code.
8368 * @param pVCpu The cross context virtual CPU structure.
8369 * @param cbInstr The instruction length in bytes.
8370 * @param iEffSeg The effective segment register to use with @a u64Val.
8371 * Pass UINT8_MAX if it is a register access.
8372 * @param u64Val The value to write (or guest linear address to the
8373 * value), @a iEffSeg will indicate if it's a memory
8374 * operand.
8375 * @param u64VmcsField The VMCS field.
8376 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8377 * NULL.
8378 */
8379static VBOXSTRICTRC iemVmxVmwrite(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, uint64_t u64Val,
8380 uint64_t u64VmcsField, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8381{
8382 /* Nested-guest intercept. */
8383 if ( IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8384 && CPUMIsGuestVmxVmreadVmwriteInterceptSet(pVCpu, VMX_EXIT_VMWRITE, u64VmcsField))
8385 {
8386 if (pExitInfo)
8387 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8388 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMWRITE, VMXINSTRID_VMWRITE, cbInstr);
8389 }
8390
8391 /* CPL. */
8392 if (pVCpu->iem.s.uCpl == 0)
8393 { /* likely */ }
8394 else
8395 {
8396 Log(("vmwrite: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8397 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_Cpl;
8398 return iemRaiseGeneralProtectionFault0(pVCpu);
8399 }
8400
8401 pVCpu->iem.s.cPotentialExits++;
8402
8403 /* VMCS pointer in root mode. */
8404 if ( !IEM_VMX_IS_ROOT_MODE(pVCpu)
8405 || IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8406 { /* likely */ }
8407 else
8408 {
8409 Log(("vmwrite: VMCS pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_CURRENT_VMCS(pVCpu)));
8410 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrInvalid;
8411 iemVmxVmFailInvalid(pVCpu);
8412 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8413 }
8414
8415 /* VMCS-link pointer in non-root mode. */
8416 if ( !IEM_VMX_IS_NON_ROOT_MODE(pVCpu)
8417 || IEM_VMX_HAS_SHADOW_VMCS(pVCpu))
8418 { /* likely */ }
8419 else
8420 {
8421 Log(("vmwrite: VMCS-link pointer %#RGp invalid -> VMFailInvalid\n", IEM_VMX_GET_SHADOW_VMCS(pVCpu)));
8422 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_LinkPtrInvalid;
8423 iemVmxVmFailInvalid(pVCpu);
8424 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8425 }
8426
8427 /* If the VMWRITE instruction references memory, access the specified memory operand. */
8428 bool const fIsRegOperand = iEffSeg == UINT8_MAX;
8429 if (!fIsRegOperand)
8430 {
8431 /* Read the value from the specified guest memory location. */
8432 VBOXSTRICTRC rcStrict;
8433 RTGCPTR const GCPtrVal = u64Val;
8434 if (pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT)
8435 rcStrict = iemMemFetchDataU64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
8436 else
8437 rcStrict = iemMemFetchDataU32_ZX_U64(pVCpu, &u64Val, iEffSeg, GCPtrVal);
8438 if (RT_UNLIKELY(rcStrict != VINF_SUCCESS))
8439 {
8440 Log(("vmwrite: Failed to read value from memory operand at %#RGv, rc=%Rrc\n", GCPtrVal, VBOXSTRICTRC_VAL(rcStrict)));
8441 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_PtrMap;
8442 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVal;
8443 return rcStrict;
8444 }
8445 }
8446 else
8447 Assert(!pExitInfo || pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand);
8448
8449 /* Supported VMCS field. */
8450 if (CPUMIsGuestVmxVmcsFieldValid(pVCpu->CTX_SUFF(pVM), u64VmcsField))
8451 { /* likely */ }
8452 else
8453 {
8454 Log(("vmwrite: VMCS field %#RX64 invalid -> VMFail\n", u64VmcsField));
8455 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldInvalid;
8456 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
8457 iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_INVALID_COMPONENT);
8458 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8459 }
8460
8461 /* Read-only VMCS field. */
8462 bool const fIsFieldReadOnly = VMXIsVmcsFieldReadOnly(u64VmcsField);
8463 if ( !fIsFieldReadOnly
8464 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmwriteAll)
8465 { /* likely */ }
8466 else
8467 {
8468 Log(("vmwrite: Write to read-only VMCS component %#RX64 -> VMFail\n", u64VmcsField));
8469 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmwrite_FieldRo;
8470 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64VmcsField;
8471 iemVmxVmFail(pVCpu, VMXINSTRERR_VMWRITE_RO_COMPONENT);
8472 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8473 }
8474
8475 /*
8476 * Write to the current or shadow VMCS.
8477 */
8478 bool const fInVmxNonRootMode = IEM_VMX_IS_NON_ROOT_MODE(pVCpu);
8479 PVMXVVMCS pVmcs = !fInVmxNonRootMode
8480 ? &pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs
8481 : &pVCpu->cpum.GstCtx.hwvirt.vmx.ShadowVmcs;
8482 iemVmxVmwriteNoCheck(pVmcs, u64Val, u64VmcsField);
8483 Log4(("vmwrite %#RX64 <= %#RX64\n", u64VmcsField, u64Val));
8484
8485 if ( !fInVmxNonRootMode
8486 && VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
8487 {
8488 /* Notify HM that the VMCS content might have changed. */
8489 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
8490 }
8491
8492 iemVmxVmSucceed(pVCpu);
8493 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8494}
8495
8496
8497/**
8498 * Interface for HM and EM to emulate the VMWRITE instruction.
8499 *
8500 * @returns Strict VBox status code.
8501 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8502 * @param pExitInfo Pointer to the VM-exit information.
8503 * @thread EMT(pVCpu)
8504 */
8505VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmwrite(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8506{
8507 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8508 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8509 Assert(pExitInfo);
8510
8511 iemInitExec(pVCpu, false /*fBypassHandlers*/);
8512
8513 uint64_t u64Val;
8514 uint8_t iEffSeg;
8515 if (pExitInfo->InstrInfo.VmreadVmwrite.fIsRegOperand)
8516 {
8517 u64Val = iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg1);
8518 iEffSeg = UINT8_MAX;
8519 }
8520 else
8521 {
8522 u64Val = pExitInfo->GCPtrEffAddr;
8523 iEffSeg = pExitInfo->InstrInfo.VmreadVmwrite.iSegReg;
8524 }
8525 uint8_t const cbInstr = pExitInfo->cbInstr;
8526 uint64_t const u64FieldEnc = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT
8527 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2)
8528 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.VmreadVmwrite.iReg2);
8529 VBOXSTRICTRC rcStrict = iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, u64Val, u64FieldEnc, pExitInfo);
8530 Assert(!pVCpu->iem.s.cActiveMappings);
8531 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8532}
8533
8534
8535/**
8536 * VMCLEAR instruction execution worker.
8537 *
8538 * @returns Strict VBox status code.
8539 * @param pVCpu The cross context virtual CPU structure.
8540 * @param cbInstr The instruction length in bytes.
8541 * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
8542 * @param GCPtrVmcs The linear address of the VMCS pointer.
8543 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8544 *
8545 * @remarks Common VMX instruction checks are already expected to by the caller,
8546 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8547 */
8548static VBOXSTRICTRC iemVmxVmclear(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
8549 RTGCPHYS GCPtrVmcs, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8550{
8551 /* Nested-guest intercept. */
8552 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8553 {
8554 if (pExitInfo)
8555 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8556 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMCLEAR, VMXINSTRID_NONE, cbInstr);
8557 }
8558
8559 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8560
8561 /* CPL. */
8562 if (pVCpu->iem.s.uCpl == 0)
8563 { /* likely */ }
8564 else
8565 {
8566 Log(("vmclear: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8567 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_Cpl;
8568 return iemRaiseGeneralProtectionFault0(pVCpu);
8569 }
8570
8571 /* Get the VMCS pointer from the location specified by the source memory operand. */
8572 RTGCPHYS GCPhysVmcs;
8573 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
8574 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8575 { /* likely */ }
8576 else
8577 {
8578 Log(("vmclear: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
8579 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrMap;
8580 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8581 return rcStrict;
8582 }
8583
8584 /* VMCS pointer alignment. */
8585 if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
8586 { /* likely */ }
8587 else
8588 {
8589 Log(("vmclear: VMCS pointer not page-aligned -> VMFail()\n"));
8590 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAlign;
8591 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8592 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8593 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8594 }
8595
8596 /* VMCS physical-address width limits. */
8597 if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8598 { /* likely */ }
8599 else
8600 {
8601 Log(("vmclear: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
8602 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrWidth;
8603 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8604 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8605 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8606 }
8607
8608 /* VMCS is not the VMXON region. */
8609 if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
8610 { /* likely */ }
8611 else
8612 {
8613 Log(("vmclear: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
8614 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrVmxon;
8615 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8616 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_VMXON_PTR);
8617 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8618 }
8619
8620 /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
8621 restriction imposed by our implementation. */
8622 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
8623 { /* likely */ }
8624 else
8625 {
8626 Log(("vmclear: VMCS not normal memory -> VMFail()\n"));
8627 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmclear_PtrAbnormal;
8628 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8629 iemVmxVmFail(pVCpu, VMXINSTRERR_VMCLEAR_INVALID_PHYSADDR);
8630 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8631 }
8632
8633 /*
8634 * VMCLEAR allows committing and clearing any valid VMCS pointer.
8635 *
8636 * If the current VMCS is the one being cleared, set its state to 'clear' and commit
8637 * to guest memory. Otherwise, set the state of the VMCS referenced in guest memory
8638 * to 'clear'.
8639 */
8640 uint8_t const fVmcsLaunchStateClear = VMX_V_VMCS_LAUNCH_STATE_CLEAR;
8641 if ( IEM_VMX_HAS_CURRENT_VMCS(pVCpu)
8642 && IEM_VMX_GET_CURRENT_VMCS(pVCpu) == GCPhysVmcs)
8643 {
8644 pVCpu->cpum.GstCtx.hwvirt.vmx.Vmcs.fVmcsState = fVmcsLaunchStateClear;
8645 iemVmxWriteCurrentVmcsToGstMem(pVCpu);
8646 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
8647 }
8648 else
8649 {
8650 AssertCompileMemberSize(VMXVVMCS, fVmcsState, sizeof(fVmcsLaunchStateClear));
8651 rcStrict = PGMPhysSimpleWriteGCPhys(pVCpu->CTX_SUFF(pVM), GCPhysVmcs + RT_UOFFSETOF(VMXVVMCS, fVmcsState),
8652 (const void *)&fVmcsLaunchStateClear, sizeof(fVmcsLaunchStateClear));
8653 if (RT_FAILURE(rcStrict))
8654 return rcStrict;
8655 }
8656
8657 iemVmxVmSucceed(pVCpu);
8658 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8659}
8660
8661
8662/**
8663 * Interface for HM and EM to emulate the VMCLEAR instruction.
8664 *
8665 * @returns Strict VBox status code.
8666 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8667 * @param pExitInfo Pointer to the VM-exit information.
8668 * @thread EMT(pVCpu)
8669 */
8670VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmclear(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8671{
8672 Assert(pExitInfo);
8673 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8674 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8675
8676 iemInitExec(pVCpu, false /*fBypassHandlers*/);
8677
8678 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
8679 uint8_t const cbInstr = pExitInfo->cbInstr;
8680 RTGCPTR const GCPtrVmcs = pExitInfo->GCPtrEffAddr;
8681 VBOXSTRICTRC rcStrict = iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, pExitInfo);
8682 Assert(!pVCpu->iem.s.cActiveMappings);
8683 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8684}
8685
8686
8687/**
8688 * VMPTRST instruction execution worker.
8689 *
8690 * @returns Strict VBox status code.
8691 * @param pVCpu The cross context virtual CPU structure.
8692 * @param cbInstr The instruction length in bytes.
8693 * @param iEffSeg The effective segment register to use with @a GCPtrVmcs.
8694 * @param GCPtrVmcs The linear address of where to store the current VMCS
8695 * pointer.
8696 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8697 *
8698 * @remarks Common VMX instruction checks are already expected to by the caller,
8699 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8700 */
8701static VBOXSTRICTRC iemVmxVmptrst(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
8702 RTGCPHYS GCPtrVmcs, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8703{
8704 /* Nested-guest intercept. */
8705 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8706 {
8707 if (pExitInfo)
8708 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8709 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRST, VMXINSTRID_NONE, cbInstr);
8710 }
8711
8712 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8713
8714 /* CPL. */
8715 if (pVCpu->iem.s.uCpl == 0)
8716 { /* likely */ }
8717 else
8718 {
8719 Log(("vmptrst: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8720 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_Cpl;
8721 return iemRaiseGeneralProtectionFault0(pVCpu);
8722 }
8723
8724 /* Set the VMCS pointer to the location specified by the destination memory operand. */
8725 AssertCompile(NIL_RTGCPHYS == ~(RTGCPHYS)0U);
8726 VBOXSTRICTRC rcStrict = iemMemStoreDataU64(pVCpu, iEffSeg, GCPtrVmcs, IEM_VMX_GET_CURRENT_VMCS(pVCpu));
8727 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8728 {
8729 iemVmxVmSucceed(pVCpu);
8730 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8731 }
8732
8733 Log(("vmptrst: Failed to store VMCS pointer to memory at destination operand %#Rrc\n", VBOXSTRICTRC_VAL(rcStrict)));
8734 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrst_PtrMap;
8735 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8736 return rcStrict;
8737}
8738
8739
8740/**
8741 * Interface for HM and EM to emulate the VMPTRST instruction.
8742 *
8743 * @returns Strict VBox status code.
8744 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8745 * @param pExitInfo Pointer to the VM-exit information.
8746 * @thread EMT(pVCpu)
8747 */
8748VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmptrst(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8749{
8750 Assert(pExitInfo);
8751 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8752 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8753
8754 iemInitExec(pVCpu, false /*fBypassHandlers*/);
8755
8756 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
8757 uint8_t const cbInstr = pExitInfo->cbInstr;
8758 RTGCPTR const GCPtrVmcs = pExitInfo->GCPtrEffAddr;
8759 VBOXSTRICTRC rcStrict = iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, pExitInfo);
8760 Assert(!pVCpu->iem.s.cActiveMappings);
8761 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8762}
8763
8764
8765/**
8766 * VMPTRLD instruction execution worker.
8767 *
8768 * @returns Strict VBox status code.
8769 * @param pVCpu The cross context virtual CPU structure.
8770 * @param cbInstr The instruction length in bytes.
8771 * @param GCPtrVmcs The linear address of the current VMCS pointer.
8772 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
8773 *
8774 * @remarks Common VMX instruction checks are already expected to by the caller,
8775 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8776 */
8777static VBOXSTRICTRC iemVmxVmptrld(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
8778 RTGCPHYS GCPtrVmcs, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8779{
8780 /* Nested-guest intercept. */
8781 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8782 {
8783 if (pExitInfo)
8784 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8785 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMPTRLD, VMXINSTRID_NONE, cbInstr);
8786 }
8787
8788 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
8789
8790 /* CPL. */
8791 if (pVCpu->iem.s.uCpl == 0)
8792 { /* likely */ }
8793 else
8794 {
8795 Log(("vmptrld: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
8796 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_Cpl;
8797 return iemRaiseGeneralProtectionFault0(pVCpu);
8798 }
8799
8800 /* Get the VMCS pointer from the location specified by the source memory operand. */
8801 RTGCPHYS GCPhysVmcs;
8802 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmcs, iEffSeg, GCPtrVmcs);
8803 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
8804 { /* likely */ }
8805 else
8806 {
8807 Log(("vmptrld: Failed to read VMCS physaddr from %#RGv, rc=%Rrc\n", GCPtrVmcs, VBOXSTRICTRC_VAL(rcStrict)));
8808 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrMap;
8809 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmcs;
8810 return rcStrict;
8811 }
8812
8813 /* VMCS pointer alignment. */
8814 if (!(GCPhysVmcs & X86_PAGE_4K_OFFSET_MASK))
8815 { /* likely */ }
8816 else
8817 {
8818 Log(("vmptrld: VMCS pointer not page-aligned -> VMFail()\n"));
8819 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAlign;
8820 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8821 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8822 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8823 }
8824
8825 /* VMCS physical-address width limits. */
8826 if (!(GCPhysVmcs >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
8827 { /* likely */ }
8828 else
8829 {
8830 Log(("vmptrld: VMCS pointer extends beyond physical-address width -> VMFail()\n"));
8831 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrWidth;
8832 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8833 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8834 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8835 }
8836
8837 /* VMCS is not the VMXON region. */
8838 if (GCPhysVmcs != pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon)
8839 { /* likely */ }
8840 else
8841 {
8842 Log(("vmptrld: VMCS pointer cannot be identical to VMXON region pointer -> VMFail()\n"));
8843 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrVmxon;
8844 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8845 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_VMXON_PTR);
8846 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8847 }
8848
8849 /* Ensure VMCS is not MMIO, ROM etc. This is not an Intel requirement but a
8850 restriction imposed by our implementation. */
8851 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmcs))
8852 { /* likely */ }
8853 else
8854 {
8855 Log(("vmptrld: VMCS not normal memory -> VMFail()\n"));
8856 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrAbnormal;
8857 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8858 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INVALID_PHYSADDR);
8859 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8860 }
8861
8862 /* Read just the VMCS revision from the VMCS. */
8863 VMXVMCSREVID VmcsRevId;
8864 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmcs, sizeof(VmcsRevId));
8865 if (RT_SUCCESS(rc))
8866 { /* likely */ }
8867 else
8868 {
8869 Log(("vmptrld: Failed to read revision identifier from VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
8870 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_RevPtrReadPhys;
8871 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8872 return rc;
8873 }
8874
8875 /*
8876 * Verify the VMCS revision specified by the guest matches what we reported to the guest.
8877 * Verify the VMCS is not a shadow VMCS, if the VMCS shadowing feature is supported.
8878 */
8879 if ( VmcsRevId.n.u31RevisionId == VMX_V_VMCS_REVISION_ID
8880 && ( !VmcsRevId.n.fIsShadowVmcs
8881 || IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVmcsShadowing))
8882 { /* likely */ }
8883 else
8884 {
8885 if (VmcsRevId.n.u31RevisionId != VMX_V_VMCS_REVISION_ID)
8886 {
8887 Log(("vmptrld: VMCS revision mismatch, expected %#RX32 got %#RX32, GCPtrVmcs=%#RGv GCPhysVmcs=%#RGp -> VMFail()\n",
8888 VMX_V_VMCS_REVISION_ID, VmcsRevId.n.u31RevisionId, GCPtrVmcs, GCPhysVmcs));
8889 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_VmcsRevId;
8890 }
8891 else
8892 {
8893 Log(("vmptrld: Shadow VMCS -> VMFail()\n"));
8894 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_ShadowVmcs;
8895 }
8896 iemVmxVmFail(pVCpu, VMXINSTRERR_VMPTRLD_INCORRECT_VMCS_REV);
8897 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8898 }
8899
8900 /*
8901 * We cache only the current VMCS in CPUMCTX. Therefore, VMPTRLD should always flush
8902 * the cache of an existing, current VMCS back to guest memory before loading a new,
8903 * different current VMCS.
8904 */
8905 if (IEM_VMX_GET_CURRENT_VMCS(pVCpu) != GCPhysVmcs)
8906 {
8907 if (IEM_VMX_HAS_CURRENT_VMCS(pVCpu))
8908 {
8909 iemVmxWriteCurrentVmcsToGstMem(pVCpu);
8910 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
8911 }
8912
8913 /* Set the new VMCS as the current VMCS and read it from guest memory. */
8914 IEM_VMX_SET_CURRENT_VMCS(pVCpu, GCPhysVmcs);
8915 rc = iemVmxReadCurrentVmcsFromGstMem(pVCpu);
8916 if (RT_SUCCESS(rc))
8917 {
8918 /* Notify HM that a new, current VMCS is loaded. */
8919 if (VM_IS_HM_ENABLED(pVCpu->CTX_SUFF(pVM)))
8920 HMNotifyVmxNstGstCurrentVmcsChanged(pVCpu);
8921 }
8922 else
8923 {
8924 Log(("vmptrld: Failed to read VMCS at %#RGp, rc=%Rrc\n", GCPhysVmcs, rc));
8925 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmptrld_PtrReadPhys;
8926 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmcs;
8927 return rc;
8928 }
8929 }
8930
8931 Assert(IEM_VMX_HAS_CURRENT_VMCS(pVCpu));
8932 iemVmxVmSucceed(pVCpu);
8933 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
8934}
8935
8936
8937/**
8938 * Interface for HM and EM to emulate the VMPTRLD instruction.
8939 *
8940 * @returns Strict VBox status code.
8941 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
8942 * @param pExitInfo Pointer to the VM-exit information.
8943 * @thread EMT(pVCpu)
8944 */
8945VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmptrld(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
8946{
8947 Assert(pExitInfo);
8948 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
8949 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
8950
8951 iemInitExec(pVCpu, false /*fBypassHandlers*/);
8952
8953 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
8954 uint8_t const cbInstr = pExitInfo->cbInstr;
8955 RTGCPTR const GCPtrVmcs = pExitInfo->GCPtrEffAddr;
8956 VBOXSTRICTRC rcStrict = iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, pExitInfo);
8957 Assert(!pVCpu->iem.s.cActiveMappings);
8958 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
8959}
8960
8961
8962/**
8963 * INVVPID instruction execution worker.
8964 *
8965 * @returns Strict VBox status code.
8966 * @param pVCpu The cross context virtual CPU structure.
8967 * @param cbInstr The instruction length in bytes.
8968 * @param iEffSeg The segment of the invvpid descriptor.
8969 * @param GCPtrInvvpidDesc The address of invvpid descriptor.
8970 * @param u64InvvpidType The invalidation type.
8971 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
8972 * NULL.
8973 *
8974 * @remarks Common VMX instruction checks are already expected to by the caller,
8975 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
8976 */
8977VBOXSTRICTRC iemVmxInvvpid(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInvvpidDesc,
8978 uint64_t u64InvvpidType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
8979{
8980 /* Check if INVVPID instruction is supported, otherwise raise #UD. */
8981 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxVpid)
8982 return iemRaiseUndefinedOpcode(pVCpu);
8983
8984 /* Nested-guest intercept. */
8985 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
8986 {
8987 if (pExitInfo)
8988 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
8989 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_INVVPID, VMXINSTRID_NONE, cbInstr);
8990 }
8991
8992 /* CPL. */
8993 if (pVCpu->iem.s.uCpl != 0)
8994 {
8995 Log(("invvpid: CPL != 0 -> #GP(0)\n"));
8996 return iemRaiseGeneralProtectionFault0(pVCpu);
8997 }
8998
8999 /*
9000 * Validate INVVPID invalidation type.
9001 *
9002 * The instruction specifies exactly ONE of the supported invalidation types.
9003 *
9004 * Each of the types has a bit in IA32_VMX_EPT_VPID_CAP MSR specifying if it is
9005 * supported. In theory, it's possible for a CPU to not support flushing individual
9006 * addresses but all the other types or any other combination. We do not take any
9007 * shortcuts here by assuming the types we currently expose to the guest.
9008 */
9009 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
9010 bool const fInvvpidSupported = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID);
9011 bool const fTypeIndivAddr = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_INDIV_ADDR);
9012 bool const fTypeSingleCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX);
9013 bool const fTypeAllCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_ALL_CTX);
9014 bool const fTypeSingleCtxRetainGlobals = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVVPID_SINGLE_CTX_RETAIN_GLOBALS);
9015
9016 bool afSupportedTypes[4];
9017 afSupportedTypes[0] = fTypeIndivAddr;
9018 afSupportedTypes[1] = fTypeSingleCtx;
9019 afSupportedTypes[2] = fTypeAllCtx;
9020 afSupportedTypes[3] = fTypeSingleCtxRetainGlobals;
9021
9022 if ( fInvvpidSupported
9023 && !(u64InvvpidType & ~(uint64_t)VMX_INVVPID_VALID_MASK)
9024 && afSupportedTypes[u64InvvpidType & 3])
9025 { /* likely */ }
9026 else
9027 {
9028 Log(("invvpid: invalid/unsupported invvpid type %#x -> VMFail\n", u64InvvpidType));
9029 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_TypeInvalid;
9030 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
9031 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9032 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9033 }
9034
9035 /*
9036 * Fetch the invvpid descriptor from guest memory.
9037 */
9038 RTUINT128U uDesc;
9039 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInvvpidDesc);
9040 if (rcStrict == VINF_SUCCESS)
9041 {
9042 /*
9043 * Validate the descriptor.
9044 */
9045 if (uDesc.s.Lo <= 0xffff)
9046 { /* likely */ }
9047 else
9048 {
9049 Log(("invvpid: reserved bits set in invvpid descriptor %#RX64 -> #GP(0)\n", uDesc.s.Lo));
9050 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_DescRsvd;
9051 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uDesc.s.Lo;
9052 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9053 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9054 }
9055
9056 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
9057 RTGCUINTPTR64 const GCPtrInvAddr = uDesc.s.Hi;
9058 uint16_t const uVpid = uDesc.Words.w0;
9059 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
9060 switch (u64InvvpidType)
9061 {
9062 case VMXTLBFLUSHVPID_INDIV_ADDR:
9063 {
9064 if (uVpid != 0)
9065 {
9066 if (IEM_IS_CANONICAL(GCPtrInvAddr))
9067 {
9068 /* Invalidate mappings for the linear address tagged with VPID. */
9069 /** @todo PGM support for VPID? Currently just flush everything. */
9070 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9071 iemVmxVmSucceed(pVCpu);
9072 }
9073 else
9074 {
9075 Log(("invvpid: invalidation address %#RGP is not canonical -> VMFail\n", GCPtrInvAddr));
9076 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type0InvalidAddr;
9077 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrInvAddr;
9078 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9079 }
9080 }
9081 else
9082 {
9083 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
9084 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type0InvalidVpid;
9085 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
9086 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9087 }
9088 break;
9089 }
9090
9091 case VMXTLBFLUSHVPID_SINGLE_CONTEXT:
9092 {
9093 if (uVpid != 0)
9094 {
9095 /* Invalidate all mappings with VPID. */
9096 /** @todo PGM support for VPID? Currently just flush everything. */
9097 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9098 iemVmxVmSucceed(pVCpu);
9099 }
9100 else
9101 {
9102 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
9103 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type1InvalidVpid;
9104 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InvvpidType;
9105 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9106 }
9107 break;
9108 }
9109
9110 case VMXTLBFLUSHVPID_ALL_CONTEXTS:
9111 {
9112 /* Invalidate all mappings with non-zero VPIDs. */
9113 /** @todo PGM support for VPID? Currently just flush everything. */
9114 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9115 iemVmxVmSucceed(pVCpu);
9116 break;
9117 }
9118
9119 case VMXTLBFLUSHVPID_SINGLE_CONTEXT_RETAIN_GLOBALS:
9120 {
9121 if (uVpid != 0)
9122 {
9123 /* Invalidate all mappings with VPID except global translations. */
9124 /** @todo PGM support for VPID? Currently just flush everything. */
9125 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9126 iemVmxVmSucceed(pVCpu);
9127 }
9128 else
9129 {
9130 Log(("invvpid: invalid VPID %#x for invalidation type %u -> VMFail\n", uVpid, u64InvvpidType));
9131 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invvpid_Type3InvalidVpid;
9132 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uVpid;
9133 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9134 }
9135 break;
9136 }
9137 IEM_NOT_REACHED_DEFAULT_CASE_RET();
9138 }
9139 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9140 }
9141 return rcStrict;
9142}
9143
9144
9145/**
9146 * Interface for HM and EM to emulate the INVVPID instruction.
9147 *
9148 * @returns Strict VBox status code.
9149 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9150 * @param pExitInfo Pointer to the VM-exit information.
9151 * @thread EMT(pVCpu)
9152 */
9153VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvvpid(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
9154{
9155 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 4);
9156 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9157 Assert(pExitInfo);
9158
9159 iemInitExec(pVCpu, false /*fBypassHandlers*/);
9160
9161 uint8_t const iEffSeg = pExitInfo->InstrInfo.Inv.iSegReg;
9162 uint8_t const cbInstr = pExitInfo->cbInstr;
9163 RTGCPTR const GCPtrInvvpidDesc = pExitInfo->GCPtrEffAddr;
9164 uint64_t const u64InvvpidType = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT
9165 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.Inv.iReg2)
9166 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.Inv.iReg2);
9167 VBOXSTRICTRC rcStrict = iemVmxInvvpid(pVCpu, cbInstr, iEffSeg, GCPtrInvvpidDesc, u64InvvpidType, pExitInfo);
9168 Assert(!pVCpu->iem.s.cActiveMappings);
9169 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9170}
9171
9172#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
9173
9174/**
9175 * INVEPT instruction execution worker.
9176 *
9177 * @returns Strict VBox status code.
9178 * @param pVCpu The cross context virtual CPU structure.
9179 * @param cbInstr The instruction length in bytes.
9180 * @param iEffSeg The segment of the invept descriptor.
9181 * @param GCPtrInveptDesc The address of invept descriptor.
9182 * @param u64InveptType The invalidation type.
9183 * @param pExitInfo Pointer to the VM-exit information. Optional, can be
9184 * NULL.
9185 *
9186 * @remarks Common VMX instruction checks are already expected to by the caller,
9187 * i.e. VMX operation, CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
9188 */
9189static VBOXSTRICTRC iemVmxInvept(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg, RTGCPTR GCPtrInveptDesc,
9190 uint64_t u64InveptType, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
9191{
9192 /* Check if EPT is supported, otherwise raise #UD. */
9193 if (!IEM_GET_GUEST_CPU_FEATURES(pVCpu)->fVmxEpt)
9194 return iemRaiseUndefinedOpcode(pVCpu);
9195
9196 /* Nested-guest intercept. */
9197 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9198 {
9199 if (pExitInfo)
9200 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
9201 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_INVEPT, VMXINSTRID_NONE, cbInstr);
9202 }
9203
9204 /* CPL. */
9205 if (pVCpu->iem.s.uCpl != 0)
9206 {
9207 Log(("invept: CPL != 0 -> #GP(0)\n"));
9208 return iemRaiseGeneralProtectionFault0(pVCpu);
9209 }
9210
9211 /*
9212 * Validate INVEPT invalidation type.
9213 *
9214 * The instruction specifies exactly ONE of the supported invalidation types.
9215 *
9216 * Each of the types has a bit in IA32_VMX_EPT_VPID_CAP MSR specifying if it is
9217 * supported. In theory, it's possible for a CPU to not support flushing individual
9218 * addresses but all the other types or any other combination. We do not take any
9219 * shortcuts here by assuming the types we currently expose to the guest.
9220 */
9221 uint64_t const fCaps = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64EptVpidCaps;
9222 bool const fInveptSupported = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT);
9223 bool const fTypeSingleCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT_SINGLE_CTX);
9224 bool const fTypeAllCtx = RT_BF_GET(fCaps, VMX_BF_EPT_VPID_CAP_INVEPT_ALL_CTX);
9225
9226 bool afSupportedTypes[4];
9227 afSupportedTypes[0] = false;
9228 afSupportedTypes[1] = fTypeSingleCtx;
9229 afSupportedTypes[2] = fTypeAllCtx;
9230 afSupportedTypes[3] = false;
9231
9232 if ( fInveptSupported
9233 && !(u64InveptType & ~(uint64_t)VMX_INVEPT_VALID_MASK)
9234 && afSupportedTypes[u64InveptType & 3])
9235 { /* likely */ }
9236 else
9237 {
9238 Log(("invept: invalid/unsupported invvpid type %#x -> VMFail\n", u64InveptType));
9239 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_TypeInvalid;
9240 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = u64InveptType;
9241 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9242 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9243 }
9244
9245 /*
9246 * Fetch the invept descriptor from guest memory.
9247 */
9248 RTUINT128U uDesc;
9249 VBOXSTRICTRC rcStrict = iemMemFetchDataU128(pVCpu, &uDesc, iEffSeg, GCPtrInveptDesc);
9250 if (rcStrict == VINF_SUCCESS)
9251 {
9252 /*
9253 * Validate the descriptor.
9254 *
9255 * The Intel spec. does not explicit say the INVEPT instruction fails when reserved
9256 * bits in the descriptor are set, but it -does- for INVVPID. Until we test on real
9257 * hardware, it's assumed INVEPT behaves the same as INVVPID in this regard. It's
9258 * better to be strict in our emulation until proven otherwise.
9259 */
9260 if (uDesc.s.Hi)
9261 {
9262 Log(("invept: reserved bits set in invept descriptor %#RX64 -> VMFail\n", uDesc.s.Hi));
9263 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_DescRsvd;
9264 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = uDesc.s.Hi;
9265 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9266 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9267 }
9268
9269 /*
9270 * Flush TLB mappings based on the EPT type.
9271 */
9272 if (u64InveptType == VMXTLBFLUSHEPT_SINGLE_CONTEXT)
9273 {
9274 uint64_t const GCPhysEptPtr = uDesc.s.Lo;
9275 int const rc = iemVmxVmentryCheckEptPtr(pVCpu, GCPhysEptPtr, NULL /* enmDiag */);
9276 if (RT_SUCCESS(rc))
9277 { /* likely */ }
9278 else
9279 {
9280 Log(("invept: EPTP invalid %#RX64 -> VMFail\n", GCPhysEptPtr));
9281 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Invept_EptpInvalid;
9282 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysEptPtr;
9283 iemVmxVmFail(pVCpu, VMXINSTRERR_INVEPT_INVVPID_INVALID_OPERAND);
9284 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9285 }
9286 }
9287
9288 /** @todo PGM support for EPT tags? Currently just flush everything. */
9289 IEM_CTX_ASSERT(pVCpu, CPUMCTX_EXTRN_CR3);
9290 uint64_t const uCr3 = pVCpu->cpum.GstCtx.cr3;
9291 PGMFlushTLB(pVCpu, uCr3, true /* fGlobal */);
9292
9293 iemVmxVmSucceed(pVCpu);
9294 rcStrict = iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9295 }
9296
9297 return rcStrict;
9298}
9299
9300
9301/**
9302 * Interface for HM and EM to emulate the INVEPT instruction.
9303 *
9304 * @returns Strict VBox status code.
9305 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9306 * @param pExitInfo Pointer to the VM-exit information.
9307 * @thread EMT(pVCpu)
9308 */
9309VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedInvept(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
9310{
9311 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 4);
9312 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9313 Assert(pExitInfo);
9314
9315 iemInitExec(pVCpu, false /*fBypassHandlers*/);
9316
9317 uint8_t const iEffSeg = pExitInfo->InstrInfo.Inv.iSegReg;
9318 uint8_t const cbInstr = pExitInfo->cbInstr;
9319 RTGCPTR const GCPtrInveptDesc = pExitInfo->GCPtrEffAddr;
9320 uint64_t const u64InveptType = pVCpu->iem.s.enmCpuMode == IEMMODE_64BIT
9321 ? iemGRegFetchU64(pVCpu, pExitInfo->InstrInfo.Inv.iReg2)
9322 : iemGRegFetchU32(pVCpu, pExitInfo->InstrInfo.Inv.iReg2);
9323 VBOXSTRICTRC rcStrict = iemVmxInvept(pVCpu, cbInstr, iEffSeg, GCPtrInveptDesc, u64InveptType, pExitInfo);
9324 Assert(!pVCpu->iem.s.cActiveMappings);
9325 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9326}
9327
9328#endif /* VBOX_WITH_NESTED_HWVIRT_VMX_EPT */
9329
9330/**
9331 * VMXON instruction execution worker.
9332 *
9333 * @returns Strict VBox status code.
9334 * @param pVCpu The cross context virtual CPU structure.
9335 * @param cbInstr The instruction length in bytes.
9336 * @param iEffSeg The effective segment register to use with @a
9337 * GCPtrVmxon.
9338 * @param GCPtrVmxon The linear address of the VMXON pointer.
9339 * @param pExitInfo Pointer to the VM-exit information. Optional, can be NULL.
9340 *
9341 * @remarks Common VMX instruction checks are already expected to by the caller,
9342 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
9343 */
9344static VBOXSTRICTRC iemVmxVmxon(PVMCPUCC pVCpu, uint8_t cbInstr, uint8_t iEffSeg,
9345 RTGCPHYS GCPtrVmxon, PCVMXVEXITINFO pExitInfo) RT_NOEXCEPT
9346{
9347 if (!IEM_VMX_IS_ROOT_MODE(pVCpu))
9348 {
9349 /* CPL. */
9350 if (pVCpu->iem.s.uCpl == 0)
9351 { /* likely */ }
9352 else
9353 {
9354 Log(("vmxon: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
9355 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cpl;
9356 return iemRaiseGeneralProtectionFault0(pVCpu);
9357 }
9358
9359 /* A20M (A20 Masked) mode. */
9360 if (PGMPhysIsA20Enabled(pVCpu))
9361 { /* likely */ }
9362 else
9363 {
9364 Log(("vmxon: A20M mode -> #GP(0)\n"));
9365 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_A20M;
9366 return iemRaiseGeneralProtectionFault0(pVCpu);
9367 }
9368
9369 /* CR0. */
9370 {
9371 /*
9372 * CR0 MB1 bits.
9373 *
9374 * We use VMX_V_CR0_FIXED0 below to ensure CR0.PE and CR0.PG are always set
9375 * while executing VMXON. CR0.PE and CR0.PG are only allowed to be clear
9376 * when the guest running in VMX non-root mode with unrestricted-guest control
9377 * enabled in the VMCS.
9378 */
9379 uint64_t const uCr0Fixed0 = VMX_V_CR0_FIXED0;
9380 if ((pVCpu->cpum.GstCtx.cr0 & uCr0Fixed0) == uCr0Fixed0)
9381 { /* likely */ }
9382 else
9383 {
9384 Log(("vmxon: CR0 fixed0 bits cleared -> #GP(0)\n"));
9385 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed0;
9386 return iemRaiseGeneralProtectionFault0(pVCpu);
9387 }
9388
9389 /* CR0 MBZ bits. */
9390 uint64_t const uCr0Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr0Fixed1;
9391 if (!(pVCpu->cpum.GstCtx.cr0 & ~uCr0Fixed1))
9392 { /* likely */ }
9393 else
9394 {
9395 Log(("vmxon: CR0 fixed1 bits set -> #GP(0)\n"));
9396 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr0Fixed1;
9397 return iemRaiseGeneralProtectionFault0(pVCpu);
9398 }
9399 }
9400
9401 /* CR4. */
9402 {
9403 /* CR4 MB1 bits. */
9404 uint64_t const uCr4Fixed0 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed0;
9405 if ((pVCpu->cpum.GstCtx.cr4 & uCr4Fixed0) == uCr4Fixed0)
9406 { /* likely */ }
9407 else
9408 {
9409 Log(("vmxon: CR4 fixed0 bits cleared -> #GP(0)\n"));
9410 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed0;
9411 return iemRaiseGeneralProtectionFault0(pVCpu);
9412 }
9413
9414 /* CR4 MBZ bits. */
9415 uint64_t const uCr4Fixed1 = pVCpu->cpum.GstCtx.hwvirt.vmx.Msrs.u64Cr4Fixed1;
9416 if (!(pVCpu->cpum.GstCtx.cr4 & ~uCr4Fixed1))
9417 { /* likely */ }
9418 else
9419 {
9420 Log(("vmxon: CR4 fixed1 bits set -> #GP(0)\n"));
9421 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_Cr4Fixed1;
9422 return iemRaiseGeneralProtectionFault0(pVCpu);
9423 }
9424 }
9425
9426 /* Feature control MSR's LOCK and VMXON bits. */
9427 uint64_t const uMsrFeatCtl = CPUMGetGuestIa32FeatCtrl(pVCpu);
9428 if ((uMsrFeatCtl & (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
9429 == (MSR_IA32_FEATURE_CONTROL_LOCK | MSR_IA32_FEATURE_CONTROL_VMXON))
9430 { /* likely */ }
9431 else
9432 {
9433 Log(("vmxon: Feature control lock bit or VMXON bit cleared -> #GP(0)\n"));
9434 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_MsrFeatCtl;
9435 return iemRaiseGeneralProtectionFault0(pVCpu);
9436 }
9437
9438 /* Get the VMXON pointer from the location specified by the source memory operand. */
9439 RTGCPHYS GCPhysVmxon;
9440 VBOXSTRICTRC rcStrict = iemMemFetchDataU64(pVCpu, &GCPhysVmxon, iEffSeg, GCPtrVmxon);
9441 if (RT_LIKELY(rcStrict == VINF_SUCCESS))
9442 { /* likely */ }
9443 else
9444 {
9445 Log(("vmxon: Failed to read VMXON region physaddr from %#RGv, rc=%Rrc\n", GCPtrVmxon, VBOXSTRICTRC_VAL(rcStrict)));
9446 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrMap;
9447 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPtrVmxon;
9448 return rcStrict;
9449 }
9450
9451 /* VMXON region pointer alignment. */
9452 if (!(GCPhysVmxon & X86_PAGE_4K_OFFSET_MASK))
9453 { /* likely */ }
9454 else
9455 {
9456 Log(("vmxon: VMXON region pointer not page-aligned -> VMFailInvalid\n"));
9457 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAlign;
9458 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
9459 iemVmxVmFailInvalid(pVCpu);
9460 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9461 }
9462
9463 /* VMXON physical-address width limits. */
9464 if (!(GCPhysVmxon >> IEM_GET_GUEST_CPU_FEATURES(pVCpu)->cVmxMaxPhysAddrWidth))
9465 { /* likely */ }
9466 else
9467 {
9468 Log(("vmxon: VMXON region pointer extends beyond physical-address width -> VMFailInvalid\n"));
9469 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrWidth;
9470 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
9471 iemVmxVmFailInvalid(pVCpu);
9472 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9473 }
9474
9475 /* Ensure VMXON region is not MMIO, ROM etc. This is not an Intel requirement but a
9476 restriction imposed by our implementation. */
9477 if (PGMPhysIsGCPhysNormal(pVCpu->CTX_SUFF(pVM), GCPhysVmxon))
9478 { /* likely */ }
9479 else
9480 {
9481 Log(("vmxon: VMXON region not normal memory -> VMFailInvalid\n"));
9482 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrAbnormal;
9483 pVCpu->cpum.GstCtx.hwvirt.vmx.uDiagAux = GCPhysVmxon;
9484 iemVmxVmFailInvalid(pVCpu);
9485 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9486 }
9487
9488 /* Read the VMCS revision ID from the VMXON region. */
9489 VMXVMCSREVID VmcsRevId;
9490 int rc = PGMPhysSimpleReadGCPhys(pVCpu->CTX_SUFF(pVM), &VmcsRevId, GCPhysVmxon, sizeof(VmcsRevId));
9491 if (RT_SUCCESS(rc))
9492 { /* likely */ }
9493 else
9494 {
9495 Log(("vmxon: Failed to read VMXON region at %#RGp, rc=%Rrc\n", GCPhysVmxon, rc));
9496 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_PtrReadPhys;
9497 return rc;
9498 }
9499
9500 /* Verify the VMCS revision specified by the guest matches what we reported to the guest. */
9501 if (RT_LIKELY(VmcsRevId.u == VMX_V_VMCS_REVISION_ID))
9502 { /* likely */ }
9503 else
9504 {
9505 /* Revision ID mismatch. */
9506 if (!VmcsRevId.n.fIsShadowVmcs)
9507 {
9508 Log(("vmxon: VMCS revision mismatch, expected %#RX32 got %#RX32 -> VMFailInvalid\n", VMX_V_VMCS_REVISION_ID,
9509 VmcsRevId.n.u31RevisionId));
9510 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmcsRevId;
9511 iemVmxVmFailInvalid(pVCpu);
9512 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9513 }
9514
9515 /* Shadow VMCS disallowed. */
9516 Log(("vmxon: Shadow VMCS -> VMFailInvalid\n"));
9517 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_ShadowVmcs;
9518 iemVmxVmFailInvalid(pVCpu);
9519 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9520 }
9521
9522 /*
9523 * Record that we're in VMX operation, block INIT, block and disable A20M.
9524 */
9525 pVCpu->cpum.GstCtx.hwvirt.vmx.GCPhysVmxon = GCPhysVmxon;
9526 IEM_VMX_CLEAR_CURRENT_VMCS(pVCpu);
9527 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = true;
9528
9529 /* Clear address-range monitoring. */
9530 EMMonitorWaitClear(pVCpu);
9531 /** @todo NSTVMX: Intel PT. */
9532
9533 iemVmxVmSucceed(pVCpu);
9534 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9535 }
9536 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9537 {
9538 /* Nested-guest intercept. */
9539 if (pExitInfo)
9540 return iemVmxVmexitInstrWithInfo(pVCpu, pExitInfo);
9541 return iemVmxVmexitInstrNeedsInfo(pVCpu, VMX_EXIT_VMXON, VMXINSTRID_NONE, cbInstr);
9542 }
9543
9544 Assert(IEM_VMX_IS_ROOT_MODE(pVCpu));
9545
9546 /* CPL. */
9547 if (pVCpu->iem.s.uCpl > 0)
9548 {
9549 Log(("vmxon: In VMX root mode: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
9550 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxRootCpl;
9551 return iemRaiseGeneralProtectionFault0(pVCpu);
9552 }
9553
9554 /* VMXON when already in VMX root mode. */
9555 iemVmxVmFail(pVCpu, VMXINSTRERR_VMXON_IN_VMXROOTMODE);
9556 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxon_VmxAlreadyRoot;
9557 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9558}
9559
9560
9561/**
9562 * Interface for HM and EM to emulate the VMXON instruction.
9563 *
9564 * @returns Strict VBox status code.
9565 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9566 * @param pExitInfo Pointer to the VM-exit information.
9567 * @thread EMT(pVCpu)
9568 */
9569VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmxon(PVMCPUCC pVCpu, PCVMXVEXITINFO pExitInfo)
9570{
9571 Assert(pExitInfo);
9572 IEMEXEC_ASSERT_INSTR_LEN_RETURN(pExitInfo->cbInstr, 3);
9573 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9574
9575 iemInitExec(pVCpu, false /*fBypassHandlers*/);
9576
9577 uint8_t const iEffSeg = pExitInfo->InstrInfo.VmxXsave.iSegReg;
9578 uint8_t const cbInstr = pExitInfo->cbInstr;
9579 RTGCPTR const GCPtrVmxon = pExitInfo->GCPtrEffAddr;
9580 VBOXSTRICTRC rcStrict = iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, pExitInfo);
9581 Assert(!pVCpu->iem.s.cActiveMappings);
9582 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9583}
9584
9585
9586/**
9587 * Implements 'VMXOFF'.
9588 *
9589 * @remarks Common VMX instruction checks are already expected to by the caller,
9590 * i.e. CR4.VMXE, Real/V86 mode, EFER/CS.L checks.
9591 */
9592IEM_CIMPL_DEF_0(iemCImpl_vmxoff)
9593{
9594 /* Nested-guest intercept. */
9595 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9596 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMXOFF, cbInstr);
9597
9598 /* CPL. */
9599 if (pVCpu->iem.s.uCpl == 0)
9600 { /* likely */ }
9601 else
9602 {
9603 Log(("vmxoff: CPL %u -> #GP(0)\n", pVCpu->iem.s.uCpl));
9604 pVCpu->cpum.GstCtx.hwvirt.vmx.enmDiag = kVmxVDiag_Vmxoff_Cpl;
9605 return iemRaiseGeneralProtectionFault0(pVCpu);
9606 }
9607
9608 /* Dual monitor treatment of SMIs and SMM. */
9609 uint64_t const fSmmMonitorCtl = CPUMGetGuestIa32SmmMonitorCtl(pVCpu);
9610 if (!(fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VALID))
9611 { /* likely */ }
9612 else
9613 {
9614 iemVmxVmFail(pVCpu, VMXINSTRERR_VMXOFF_DUAL_MON);
9615 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9616 }
9617
9618 /* Record that we're no longer in VMX root operation, block INIT, block and disable A20M. */
9619 pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxRootMode = false;
9620 Assert(!pVCpu->cpum.GstCtx.hwvirt.vmx.fInVmxNonRootMode);
9621
9622 if (fSmmMonitorCtl & MSR_IA32_SMM_MONITOR_VMXOFF_UNBLOCK_SMI)
9623 { /** @todo NSTVMX: Unblock SMI. */ }
9624
9625 EMMonitorWaitClear(pVCpu);
9626 /** @todo NSTVMX: Unblock and enable A20M. */
9627
9628 iemVmxVmSucceed(pVCpu);
9629 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9630}
9631
9632
9633/**
9634 * Interface for HM and EM to emulate the VMXOFF instruction.
9635 *
9636 * @returns Strict VBox status code.
9637 * @param pVCpu The cross context virtual CPU structure of the calling EMT.
9638 * @param cbInstr The instruction length in bytes.
9639 * @thread EMT(pVCpu)
9640 */
9641VMM_INT_DECL(VBOXSTRICTRC) IEMExecDecodedVmxoff(PVMCPUCC pVCpu, uint8_t cbInstr)
9642{
9643 IEMEXEC_ASSERT_INSTR_LEN_RETURN(cbInstr, 3);
9644 IEM_CTX_ASSERT(pVCpu, IEM_CPUMCTX_EXTRN_EXEC_DECODED_NO_MEM_MASK | CPUMCTX_EXTRN_INHIBIT_INT | CPUMCTX_EXTRN_INHIBIT_NMI);
9645
9646 iemInitExec(pVCpu, false /*fBypassHandlers*/);
9647 VBOXSTRICTRC rcStrict = IEM_CIMPL_CALL_0(iemCImpl_vmxoff);
9648 Assert(!pVCpu->iem.s.cActiveMappings);
9649 return iemUninitExecAndFiddleStatusAndMaybeReenter(pVCpu, rcStrict);
9650}
9651
9652
9653/**
9654 * Implements 'VMXON'.
9655 */
9656IEM_CIMPL_DEF_2(iemCImpl_vmxon, uint8_t, iEffSeg, RTGCPTR, GCPtrVmxon)
9657{
9658 return iemVmxVmxon(pVCpu, cbInstr, iEffSeg, GCPtrVmxon, NULL /* pExitInfo */);
9659}
9660
9661
9662/**
9663 * Implements 'VMLAUNCH'.
9664 */
9665IEM_CIMPL_DEF_0(iemCImpl_vmlaunch)
9666{
9667 return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMLAUNCH);
9668}
9669
9670
9671/**
9672 * Implements 'VMRESUME'.
9673 */
9674IEM_CIMPL_DEF_0(iemCImpl_vmresume)
9675{
9676 return iemVmxVmlaunchVmresume(pVCpu, cbInstr, VMXINSTRID_VMRESUME);
9677}
9678
9679
9680/**
9681 * Implements 'VMPTRLD'.
9682 */
9683IEM_CIMPL_DEF_2(iemCImpl_vmptrld, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
9684{
9685 return iemVmxVmptrld(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
9686}
9687
9688
9689/**
9690 * Implements 'VMPTRST'.
9691 */
9692IEM_CIMPL_DEF_2(iemCImpl_vmptrst, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
9693{
9694 return iemVmxVmptrst(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
9695}
9696
9697
9698/**
9699 * Implements 'VMCLEAR'.
9700 */
9701IEM_CIMPL_DEF_2(iemCImpl_vmclear, uint8_t, iEffSeg, RTGCPTR, GCPtrVmcs)
9702{
9703 return iemVmxVmclear(pVCpu, cbInstr, iEffSeg, GCPtrVmcs, NULL /* pExitInfo */);
9704}
9705
9706
9707/**
9708 * Implements 'VMWRITE' register.
9709 */
9710IEM_CIMPL_DEF_2(iemCImpl_vmwrite_reg, uint64_t, u64Val, uint64_t, u64VmcsField)
9711{
9712 return iemVmxVmwrite(pVCpu, cbInstr, UINT8_MAX /* iEffSeg */, u64Val, u64VmcsField, NULL /* pExitInfo */);
9713}
9714
9715
9716/**
9717 * Implements 'VMWRITE' memory.
9718 */
9719IEM_CIMPL_DEF_3(iemCImpl_vmwrite_mem, uint8_t, iEffSeg, RTGCPTR, GCPtrVal, uint32_t, u64VmcsField)
9720{
9721 return iemVmxVmwrite(pVCpu, cbInstr, iEffSeg, GCPtrVal, u64VmcsField, NULL /* pExitInfo */);
9722}
9723
9724
9725/**
9726 * Implements 'VMREAD' register (64-bit).
9727 */
9728IEM_CIMPL_DEF_2(iemCImpl_vmread_reg64, uint64_t *, pu64Dst, uint64_t, u64VmcsField)
9729{
9730 return iemVmxVmreadReg64(pVCpu, cbInstr, pu64Dst, u64VmcsField, NULL /* pExitInfo */);
9731}
9732
9733
9734/**
9735 * Implements 'VMREAD' register (32-bit).
9736 */
9737IEM_CIMPL_DEF_2(iemCImpl_vmread_reg32, uint32_t *, pu32Dst, uint32_t, u32VmcsField)
9738{
9739 return iemVmxVmreadReg32(pVCpu, cbInstr, pu32Dst, u32VmcsField, NULL /* pExitInfo */);
9740}
9741
9742
9743/**
9744 * Implements 'VMREAD' memory, 64-bit register.
9745 */
9746IEM_CIMPL_DEF_3(iemCImpl_vmread_mem_reg64, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u64VmcsField)
9747{
9748 return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u64VmcsField, NULL /* pExitInfo */);
9749}
9750
9751
9752/**
9753 * Implements 'VMREAD' memory, 32-bit register.
9754 */
9755IEM_CIMPL_DEF_3(iemCImpl_vmread_mem_reg32, uint8_t, iEffSeg, RTGCPTR, GCPtrDst, uint32_t, u32VmcsField)
9756{
9757 return iemVmxVmreadMem(pVCpu, cbInstr, iEffSeg, GCPtrDst, u32VmcsField, NULL /* pExitInfo */);
9758}
9759
9760
9761/**
9762 * Implements 'INVVPID'.
9763 */
9764IEM_CIMPL_DEF_3(iemCImpl_invvpid, uint8_t, iEffSeg, RTGCPTR, GCPtrInvvpidDesc, uint64_t, uInvvpidType)
9765{
9766 return iemVmxInvvpid(pVCpu, cbInstr, iEffSeg, GCPtrInvvpidDesc, uInvvpidType, NULL /* pExitInfo */);
9767}
9768
9769
9770#ifdef VBOX_WITH_NESTED_HWVIRT_VMX_EPT
9771/**
9772 * Implements 'INVEPT'.
9773 */
9774IEM_CIMPL_DEF_3(iemCImpl_invept, uint8_t, iEffSeg, RTGCPTR, GCPtrInveptDesc, uint64_t, uInveptType)
9775{
9776 return iemVmxInvept(pVCpu, cbInstr, iEffSeg, GCPtrInveptDesc, uInveptType, NULL /* pExitInfo */);
9777}
9778#endif
9779
9780
9781/**
9782 * Implements VMX's implementation of PAUSE.
9783 */
9784IEM_CIMPL_DEF_0(iemCImpl_vmx_pause)
9785{
9786 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9787 {
9788 VBOXSTRICTRC rcStrict = iemVmxVmexitInstrPause(pVCpu, cbInstr);
9789 if (rcStrict != VINF_VMX_INTERCEPT_NOT_ACTIVE)
9790 return rcStrict;
9791 }
9792
9793 /*
9794 * Outside VMX non-root operation or if the PAUSE instruction does not cause
9795 * a VM-exit, the instruction operates normally.
9796 */
9797 return iemRegAddToRipAndFinishingClearingRF(pVCpu, cbInstr);
9798}
9799
9800#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
9801
9802
9803/**
9804 * Implements 'VMCALL'.
9805 */
9806IEM_CIMPL_DEF_0(iemCImpl_vmcall)
9807{
9808 pVCpu->iem.s.cPotentialExits++;
9809
9810#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9811 /* Nested-guest intercept. */
9812 if (IEM_VMX_IS_NON_ROOT_MODE(pVCpu))
9813 return iemVmxVmexitInstr(pVCpu, VMX_EXIT_VMCALL, cbInstr);
9814#endif
9815
9816 /* Join forces with vmmcall. */
9817 return IEM_CIMPL_CALL_1(iemCImpl_Hypercall, OP_VMCALL);
9818}
9819
9820
9821#ifdef VBOX_WITH_NESTED_HWVIRT_VMX
9822
9823/**
9824 * @callback_method_impl{FNPGMPHYSHANDLER, VMX APIC-access page accesses}
9825 *
9826 * @remarks The @a uUser argument is currently unused.
9827 */
9828DECLCALLBACK(VBOXSTRICTRC) iemVmxApicAccessPageHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCPHYS GCPhysFault, void *pvPhys,
9829 void *pvBuf, size_t cbBuf, PGMACCESSTYPE enmAccessType,
9830 PGMACCESSORIGIN enmOrigin, uint64_t uUser)
9831{
9832 RT_NOREF3(pvPhys, enmOrigin, uUser);
9833
9834 RTGCPHYS const GCPhysAccessBase = GCPhysFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
9835 if (CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)))
9836 {
9837 Assert(CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(pVCpu), VMX_PROC_CTLS2_VIRT_APIC_ACCESS));
9838 Assert(CPUMGetGuestVmxApicAccessPageAddrEx(IEM_GET_CTX(pVCpu)) == GCPhysAccessBase);
9839
9840 uint32_t const fAccess = enmAccessType == PGMACCESSTYPE_WRITE ? IEM_ACCESS_DATA_W : IEM_ACCESS_DATA_R;
9841 uint16_t const offAccess = GCPhysFault & GUEST_PAGE_OFFSET_MASK;
9842
9843 LogFlowFunc(("Fault at %#RGp (cbBuf=%u fAccess=%#x)\n", GCPhysFault, cbBuf, fAccess));
9844 VBOXSTRICTRC rcStrict = iemVmxVirtApicAccessMem(pVCpu, offAccess, cbBuf, pvBuf, fAccess);
9845 if (RT_FAILURE(rcStrict))
9846 return rcStrict;
9847
9848 /* Any access on this APIC-access page has been handled, caller should not carry out the access. */
9849 return VINF_SUCCESS;
9850 }
9851
9852 LogFunc(("Accessed outside VMX non-root mode, deregistering page handler for %#RGp\n", GCPhysAccessBase));
9853 int rc = PGMHandlerPhysicalDeregister(pVM, GCPhysAccessBase);
9854 if (RT_FAILURE(rc))
9855 return rc;
9856
9857 /* Instruct the caller of this handler to perform the read/write as normal memory. */
9858 return VINF_PGM_HANDLER_DO_DEFAULT;
9859}
9860
9861
9862# ifndef IN_RING3
9863/**
9864 * @callback_method_impl{FNPGMRZPHYSPFHANDLER,
9865 * \#PF access handler callback for guest VMX APIC-access page.}
9866 */
9867DECLCALLBACK(VBOXSTRICTRC) iemVmxApicAccessPagePfHandler(PVMCC pVM, PVMCPUCC pVCpu, RTGCUINT uErr, PCPUMCTX pCtx,
9868 RTGCPTR pvFault, RTGCPHYS GCPhysFault, uint64_t uUser)
9869
9870{
9871 RT_NOREF3(pVM, pCtx, uUser);
9872
9873 /*
9874 * Handle the VMX APIC-access page only when the guest is in VMX non-root mode.
9875 * Otherwise we must deregister the page and allow regular RAM access.
9876 * Failing to do so lands us with endless EPT VM-exits.
9877 */
9878 RTGCPHYS const GCPhysPage = GCPhysFault & ~(RTGCPHYS)GUEST_PAGE_OFFSET_MASK;
9879 if (CPUMIsGuestInVmxNonRootMode(IEM_GET_CTX(pVCpu)))
9880 {
9881 Assert(CPUMIsGuestVmxProcCtls2Set(IEM_GET_CTX(pVCpu), VMX_PROC_CTLS2_VIRT_APIC_ACCESS));
9882 Assert(CPUMGetGuestVmxApicAccessPageAddrEx(IEM_GET_CTX(pVCpu)) == GCPhysPage);
9883
9884 /*
9885 * Check if the access causes an APIC-access VM-exit.
9886 */
9887 uint32_t fAccess;
9888 if (uErr & X86_TRAP_PF_ID)
9889 fAccess = IEM_ACCESS_INSTRUCTION;
9890 else if (uErr & X86_TRAP_PF_RW)
9891 fAccess = IEM_ACCESS_DATA_W;
9892 else
9893 fAccess = IEM_ACCESS_DATA_R;
9894
9895 RTGCPHYS const GCPhysNestedFault = (RTGCPHYS)pvFault;
9896 uint16_t const offAccess = GCPhysNestedFault & GUEST_PAGE_OFFSET_MASK;
9897 bool const fIntercept = iemVmxVirtApicIsMemAccessIntercepted(pVCpu, offAccess, 1 /* cbAccess */, fAccess);
9898 LogFlowFunc(("#PF at %#RGp (GCPhysNestedFault=%#RGp offAccess=%#x)\n", GCPhysFault, GCPhysNestedFault, offAccess));
9899 if (fIntercept)
9900 {
9901 /*
9902 * Query the source VM-exit (from the execution engine) that caused this access
9903 * within the APIC-access page. Currently only HM is supported.
9904 */
9905 AssertMsg(VM_IS_HM_ENABLED(pVM),
9906 ("VM-exit auxiliary info. fetching not supported for execution engine %d\n", pVM->bMainExecutionEngine));
9907
9908 HMEXITAUX HmExitAux;
9909 RT_ZERO(HmExitAux);
9910 int const rc = HMR0GetExitAuxInfo(pVCpu, &HmExitAux, HMVMX_READ_EXIT_INSTR_LEN
9911 | HMVMX_READ_EXIT_QUALIFICATION
9912 | HMVMX_READ_IDT_VECTORING_INFO
9913 | HMVMX_READ_IDT_VECTORING_ERROR_CODE);
9914 AssertRC(rc);
9915
9916 /*
9917 * Verify the VM-exit reason must be an EPT violation.
9918 * Other accesses should go through the other handler (iemVmxApicAccessPageHandler).
9919 * Refer to @bugref{10092#c33s} for a more detailed explanation.
9920 */
9921 AssertMsgReturn(HmExitAux.Vmx.uReason == VMX_EXIT_EPT_VIOLATION,
9922 ("Unexpected call to APIC-access page #PF handler for %#RGp offAcesss=%u uErr=%#RGx uReason=%u\n",
9923 GCPhysPage, offAccess, uErr, HmExitAux.Vmx.uReason), VERR_IEM_IPE_7);
9924
9925 /*
9926 * Construct the virtual APIC-access VM-exit.
9927 */
9928 VMXAPICACCESS enmAccess;
9929 if (HmExitAux.Vmx.u64Qual & VMX_EXIT_QUAL_EPT_LINEAR_ADDR_VALID)
9930 {
9931 if (VMX_IDT_VECTORING_INFO_IS_VALID(HmExitAux.Vmx.uIdtVectoringInfo))
9932 enmAccess = VMXAPICACCESS_LINEAR_EVENT_DELIVERY;
9933 else if (fAccess == IEM_ACCESS_INSTRUCTION)
9934 enmAccess = VMXAPICACCESS_LINEAR_INSTR_FETCH;
9935 else if (fAccess & IEM_ACCESS_TYPE_WRITE)
9936 enmAccess = VMXAPICACCESS_LINEAR_WRITE;
9937 else
9938 enmAccess = VMXAPICACCESS_LINEAR_READ;
9939
9940 /* For linear-address accesss the instruction length must be valid. */
9941 AssertMsg(HmExitAux.Vmx.cbInstr > 0,
9942 ("Invalid APIC-access VM-exit instruction length. cbInstr=%u\n", HmExitAux.Vmx.cbInstr));
9943 }
9944 else
9945 {
9946 if (VMX_IDT_VECTORING_INFO_IS_VALID(HmExitAux.Vmx.uIdtVectoringInfo))
9947 enmAccess = VMXAPICACCESS_PHYSICAL_EVENT_DELIVERY;
9948 else
9949 {
9950 /** @todo How to distinguish between monitoring/trace vs other instructions
9951 * here? */
9952 enmAccess = VMXAPICACCESS_PHYSICAL_INSTR;
9953 }
9954
9955 /* For physical accesses the instruction length is undefined, we zero it for safety and consistency. */
9956 HmExitAux.Vmx.cbInstr = 0;
9957 }
9958
9959 /*
9960 * Raise the APIC-access VM-exit.
9961 */
9962 LogFlowFunc(("Raising APIC-access VM-exit from #PF handler at offset %#x\n", offAccess));
9963 VMXVEXITINFO const ExitInfo
9964 = VMXVEXITINFO_INIT_WITH_QUAL_AND_INSTR_LEN(VMX_EXIT_APIC_ACCESS,
9965 RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_OFFSET, offAccess)
9966 | RT_BF_MAKE(VMX_BF_EXIT_QUAL_APIC_ACCESS_TYPE, enmAccess),
9967 HmExitAux.Vmx.cbInstr);
9968 VMXVEXITEVENTINFO const ExitEventInfo = VMXVEXITEVENTINFO_INIT_ONLY_IDT(HmExitAux.Vmx.uIdtVectoringInfo,
9969 HmExitAux.Vmx.uIdtVectoringErrCode);
9970 VBOXSTRICTRC const rcStrict = iemVmxVmexitApicAccessWithInfo(pVCpu, &ExitInfo, &ExitEventInfo);
9971 return iemExecStatusCodeFiddling(pVCpu, rcStrict);
9972 }
9973
9974 /*
9975 * The access isn't intercepted, which means it needs to be virtualized.
9976 *
9977 * This requires emulating the instruction because we need the bytes being
9978 * read/written by the instruction not just the offset being accessed within
9979 * the APIC-access page (which we derive from the faulting address).
9980 */
9981 LogFlowFunc(("Access at offset %#x not intercepted -> VINF_EM_RAW_EMULATE_INSTR\n", offAccess));
9982 return VINF_EM_RAW_EMULATE_INSTR;
9983 }
9984
9985 /** @todo This isn't ideal but works for now as nested-hypervisors generally play
9986 * nice because the spec states that this page should be modified only when
9987 * no CPU refers to it VMX non-root mode. Nonetheless, we could use an atomic
9988 * reference counter to ensure the aforementioned condition before
9989 * de-registering the page. */
9990 LogFunc(("Accessed outside VMX non-root mode, deregistering page handler for %#RGp\n", GCPhysPage));
9991 int const rc = PGMHandlerPhysicalDeregister(pVM, GCPhysPage);
9992 if (RT_FAILURE(rc))
9993 return rc;
9994
9995 return VINF_SUCCESS;
9996}
9997# endif /* !IN_RING3 */
9998
9999#endif /* VBOX_WITH_NESTED_HWVIRT_VMX */
10000
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette