1 | /* $Id: CPUMAllRegs.cpp 97220 2022-10-18 22:50:03Z vboxsync $ */
|
---|
2 | /** @file
|
---|
3 | * CPUM - CPU Monitor(/Manager) - Getters and Setters.
|
---|
4 | */
|
---|
5 |
|
---|
6 | /*
|
---|
7 | * Copyright (C) 2006-2022 Oracle and/or its affiliates.
|
---|
8 | *
|
---|
9 | * This file is part of VirtualBox base platform packages, as
|
---|
10 | * available from https://www.alldomusa.eu.org.
|
---|
11 | *
|
---|
12 | * This program is free software; you can redistribute it and/or
|
---|
13 | * modify it under the terms of the GNU General Public License
|
---|
14 | * as published by the Free Software Foundation, in version 3 of the
|
---|
15 | * License.
|
---|
16 | *
|
---|
17 | * This program is distributed in the hope that it will be useful, but
|
---|
18 | * WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
19 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
---|
20 | * General Public License for more details.
|
---|
21 | *
|
---|
22 | * You should have received a copy of the GNU General Public License
|
---|
23 | * along with this program; if not, see <https://www.gnu.org/licenses>.
|
---|
24 | *
|
---|
25 | * SPDX-License-Identifier: GPL-3.0-only
|
---|
26 | */
|
---|
27 |
|
---|
28 |
|
---|
29 | /*********************************************************************************************************************************
|
---|
30 | * Header Files *
|
---|
31 | *********************************************************************************************************************************/
|
---|
32 | #define LOG_GROUP LOG_GROUP_CPUM
|
---|
33 | #include <VBox/vmm/cpum.h>
|
---|
34 | #include <VBox/vmm/dbgf.h>
|
---|
35 | #include <VBox/vmm/apic.h>
|
---|
36 | #include <VBox/vmm/pgm.h>
|
---|
37 | #include <VBox/vmm/mm.h>
|
---|
38 | #include <VBox/vmm/em.h>
|
---|
39 | #include <VBox/vmm/nem.h>
|
---|
40 | #include <VBox/vmm/hm.h>
|
---|
41 | #include "CPUMInternal.h"
|
---|
42 | #include <VBox/vmm/vmcc.h>
|
---|
43 | #include <VBox/err.h>
|
---|
44 | #include <VBox/dis.h>
|
---|
45 | #include <VBox/log.h>
|
---|
46 | #include <VBox/vmm/hm.h>
|
---|
47 | #include <VBox/vmm/tm.h>
|
---|
48 | #include <iprt/assert.h>
|
---|
49 | #include <iprt/asm.h>
|
---|
50 | #if defined(RT_ARCH_AMD64) || defined(RT_ARCH_X86)
|
---|
51 | # include <iprt/asm-amd64-x86.h>
|
---|
52 | #endif
|
---|
53 | #ifdef IN_RING3
|
---|
54 | # include <iprt/thread.h>
|
---|
55 | #endif
|
---|
56 |
|
---|
57 | /** Disable stack frame pointer generation here. */
|
---|
58 | #if defined(_MSC_VER) && !defined(DEBUG) && defined(RT_ARCH_X86)
|
---|
59 | # pragma optimize("y", off)
|
---|
60 | #endif
|
---|
61 |
|
---|
62 | AssertCompile2MemberOffsets(VM, cpum.s.GuestFeatures, cpum.ro.GuestFeatures);
|
---|
63 |
|
---|
64 |
|
---|
65 | /*********************************************************************************************************************************
|
---|
66 | * Defined Constants And Macros *
|
---|
67 | *********************************************************************************************************************************/
|
---|
68 | /**
|
---|
69 | * Converts a CPUMCPU::Guest pointer into a VMCPU pointer.
|
---|
70 | *
|
---|
71 | * @returns Pointer to the Virtual CPU.
|
---|
72 | * @param a_pGuestCtx Pointer to the guest context.
|
---|
73 | */
|
---|
74 | #define CPUM_GUEST_CTX_TO_VMCPU(a_pGuestCtx) RT_FROM_MEMBER(a_pGuestCtx, VMCPU, cpum.s.Guest)
|
---|
75 |
|
---|
76 | /**
|
---|
77 | * Lazily loads the hidden parts of a selector register when using raw-mode.
|
---|
78 | */
|
---|
79 | #define CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(a_pVCpu, a_pSReg) \
|
---|
80 | Assert(CPUMSELREG_ARE_HIDDEN_PARTS_VALID(a_pVCpu, a_pSReg))
|
---|
81 |
|
---|
82 | /** @def CPUM_INT_ASSERT_NOT_EXTRN
|
---|
83 | * Macro for asserting that @a a_fNotExtrn are present.
|
---|
84 | *
|
---|
85 | * @param a_pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
86 | * @param a_fNotExtrn Mask of CPUMCTX_EXTRN_XXX bits to check.
|
---|
87 | */
|
---|
88 | #define CPUM_INT_ASSERT_NOT_EXTRN(a_pVCpu, a_fNotExtrn) \
|
---|
89 | AssertMsg(!((a_pVCpu)->cpum.s.Guest.fExtrn & (a_fNotExtrn)), \
|
---|
90 | ("%#RX64; a_fNotExtrn=%#RX64\n", (a_pVCpu)->cpum.s.Guest.fExtrn, (a_fNotExtrn)))
|
---|
91 |
|
---|
92 |
|
---|
93 | VMMDECL(void) CPUMSetHyperCR3(PVMCPU pVCpu, uint32_t cr3)
|
---|
94 | {
|
---|
95 | pVCpu->cpum.s.Hyper.cr3 = cr3;
|
---|
96 | }
|
---|
97 |
|
---|
98 | VMMDECL(uint32_t) CPUMGetHyperCR3(PVMCPU pVCpu)
|
---|
99 | {
|
---|
100 | return pVCpu->cpum.s.Hyper.cr3;
|
---|
101 | }
|
---|
102 |
|
---|
103 |
|
---|
104 | /** @def MAYBE_LOAD_DRx
|
---|
105 | * Macro for updating DRx values in raw-mode and ring-0 contexts.
|
---|
106 | */
|
---|
107 | #ifdef IN_RING0
|
---|
108 | # define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { a_fnLoad(a_uValue); } while (0)
|
---|
109 | #else
|
---|
110 | # define MAYBE_LOAD_DRx(a_pVCpu, a_fnLoad, a_uValue) do { } while (0)
|
---|
111 | #endif
|
---|
112 |
|
---|
113 | VMMDECL(void) CPUMSetHyperDR0(PVMCPU pVCpu, RTGCUINTREG uDr0)
|
---|
114 | {
|
---|
115 | pVCpu->cpum.s.Hyper.dr[0] = uDr0;
|
---|
116 | MAYBE_LOAD_DRx(pVCpu, ASMSetDR0, uDr0);
|
---|
117 | }
|
---|
118 |
|
---|
119 |
|
---|
120 | VMMDECL(void) CPUMSetHyperDR1(PVMCPU pVCpu, RTGCUINTREG uDr1)
|
---|
121 | {
|
---|
122 | pVCpu->cpum.s.Hyper.dr[1] = uDr1;
|
---|
123 | MAYBE_LOAD_DRx(pVCpu, ASMSetDR1, uDr1);
|
---|
124 | }
|
---|
125 |
|
---|
126 |
|
---|
127 | VMMDECL(void) CPUMSetHyperDR2(PVMCPU pVCpu, RTGCUINTREG uDr2)
|
---|
128 | {
|
---|
129 | pVCpu->cpum.s.Hyper.dr[2] = uDr2;
|
---|
130 | MAYBE_LOAD_DRx(pVCpu, ASMSetDR2, uDr2);
|
---|
131 | }
|
---|
132 |
|
---|
133 |
|
---|
134 | VMMDECL(void) CPUMSetHyperDR3(PVMCPU pVCpu, RTGCUINTREG uDr3)
|
---|
135 | {
|
---|
136 | pVCpu->cpum.s.Hyper.dr[3] = uDr3;
|
---|
137 | MAYBE_LOAD_DRx(pVCpu, ASMSetDR3, uDr3);
|
---|
138 | }
|
---|
139 |
|
---|
140 |
|
---|
141 | VMMDECL(void) CPUMSetHyperDR6(PVMCPU pVCpu, RTGCUINTREG uDr6)
|
---|
142 | {
|
---|
143 | pVCpu->cpum.s.Hyper.dr[6] = uDr6;
|
---|
144 | }
|
---|
145 |
|
---|
146 |
|
---|
147 | VMMDECL(void) CPUMSetHyperDR7(PVMCPU pVCpu, RTGCUINTREG uDr7)
|
---|
148 | {
|
---|
149 | pVCpu->cpum.s.Hyper.dr[7] = uDr7;
|
---|
150 | }
|
---|
151 |
|
---|
152 |
|
---|
153 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR0(PVMCPU pVCpu)
|
---|
154 | {
|
---|
155 | return pVCpu->cpum.s.Hyper.dr[0];
|
---|
156 | }
|
---|
157 |
|
---|
158 |
|
---|
159 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR1(PVMCPU pVCpu)
|
---|
160 | {
|
---|
161 | return pVCpu->cpum.s.Hyper.dr[1];
|
---|
162 | }
|
---|
163 |
|
---|
164 |
|
---|
165 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR2(PVMCPU pVCpu)
|
---|
166 | {
|
---|
167 | return pVCpu->cpum.s.Hyper.dr[2];
|
---|
168 | }
|
---|
169 |
|
---|
170 |
|
---|
171 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR3(PVMCPU pVCpu)
|
---|
172 | {
|
---|
173 | return pVCpu->cpum.s.Hyper.dr[3];
|
---|
174 | }
|
---|
175 |
|
---|
176 |
|
---|
177 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR6(PVMCPU pVCpu)
|
---|
178 | {
|
---|
179 | return pVCpu->cpum.s.Hyper.dr[6];
|
---|
180 | }
|
---|
181 |
|
---|
182 |
|
---|
183 | VMMDECL(RTGCUINTREG) CPUMGetHyperDR7(PVMCPU pVCpu)
|
---|
184 | {
|
---|
185 | return pVCpu->cpum.s.Hyper.dr[7];
|
---|
186 | }
|
---|
187 |
|
---|
188 |
|
---|
189 | /**
|
---|
190 | * Queries the pointer to the internal CPUMCTX structure.
|
---|
191 | *
|
---|
192 | * @returns The CPUMCTX pointer.
|
---|
193 | * @param pVCpu The cross context virtual CPU structure.
|
---|
194 | */
|
---|
195 | VMMDECL(PCPUMCTX) CPUMQueryGuestCtxPtr(PVMCPU pVCpu)
|
---|
196 | {
|
---|
197 | return &pVCpu->cpum.s.Guest;
|
---|
198 | }
|
---|
199 |
|
---|
200 |
|
---|
201 | /**
|
---|
202 | * Queries the pointer to the internal CPUMCTXMSRS structure.
|
---|
203 | *
|
---|
204 | * This is for NEM only.
|
---|
205 | *
|
---|
206 | * @returns The CPUMCTX pointer.
|
---|
207 | * @param pVCpu The cross context virtual CPU structure.
|
---|
208 | */
|
---|
209 | VMM_INT_DECL(PCPUMCTXMSRS) CPUMQueryGuestCtxMsrsPtr(PVMCPU pVCpu)
|
---|
210 | {
|
---|
211 | return &pVCpu->cpum.s.GuestMsrs;
|
---|
212 | }
|
---|
213 |
|
---|
214 |
|
---|
215 | VMMDECL(int) CPUMSetGuestGDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
|
---|
216 | {
|
---|
217 | pVCpu->cpum.s.Guest.gdtr.cbGdt = cbLimit;
|
---|
218 | pVCpu->cpum.s.Guest.gdtr.pGdt = GCPtrBase;
|
---|
219 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_GDTR;
|
---|
220 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GDTR;
|
---|
221 | return VINF_SUCCESS; /* formality, consider it void. */
|
---|
222 | }
|
---|
223 |
|
---|
224 |
|
---|
225 | VMMDECL(int) CPUMSetGuestIDTR(PVMCPU pVCpu, uint64_t GCPtrBase, uint16_t cbLimit)
|
---|
226 | {
|
---|
227 | pVCpu->cpum.s.Guest.idtr.cbIdt = cbLimit;
|
---|
228 | pVCpu->cpum.s.Guest.idtr.pIdt = GCPtrBase;
|
---|
229 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_IDTR;
|
---|
230 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_IDTR;
|
---|
231 | return VINF_SUCCESS; /* formality, consider it void. */
|
---|
232 | }
|
---|
233 |
|
---|
234 |
|
---|
235 | VMMDECL(int) CPUMSetGuestTR(PVMCPU pVCpu, uint16_t tr)
|
---|
236 | {
|
---|
237 | pVCpu->cpum.s.Guest.tr.Sel = tr;
|
---|
238 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_TR;
|
---|
239 | return VINF_SUCCESS; /* formality, consider it void. */
|
---|
240 | }
|
---|
241 |
|
---|
242 |
|
---|
243 | VMMDECL(int) CPUMSetGuestLDTR(PVMCPU pVCpu, uint16_t ldtr)
|
---|
244 | {
|
---|
245 | pVCpu->cpum.s.Guest.ldtr.Sel = ldtr;
|
---|
246 | /* The caller will set more hidden bits if it has them. */
|
---|
247 | pVCpu->cpum.s.Guest.ldtr.ValidSel = 0;
|
---|
248 | pVCpu->cpum.s.Guest.ldtr.fFlags = 0;
|
---|
249 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_LDTR;
|
---|
250 | return VINF_SUCCESS; /* formality, consider it void. */
|
---|
251 | }
|
---|
252 |
|
---|
253 |
|
---|
254 | /**
|
---|
255 | * Set the guest CR0.
|
---|
256 | *
|
---|
257 | * When called in GC, the hyper CR0 may be updated if that is
|
---|
258 | * required. The caller only has to take special action if AM,
|
---|
259 | * WP, PG or PE changes.
|
---|
260 | *
|
---|
261 | * @returns VINF_SUCCESS (consider it void).
|
---|
262 | * @param pVCpu The cross context virtual CPU structure.
|
---|
263 | * @param cr0 The new CR0 value.
|
---|
264 | */
|
---|
265 | VMMDECL(int) CPUMSetGuestCR0(PVMCPUCC pVCpu, uint64_t cr0)
|
---|
266 | {
|
---|
267 | /*
|
---|
268 | * Check for changes causing TLB flushes (for REM).
|
---|
269 | * The caller is responsible for calling PGM when appropriate.
|
---|
270 | */
|
---|
271 | if ( (cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE))
|
---|
272 | != (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PG | X86_CR0_WP | X86_CR0_PE)))
|
---|
273 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
|
---|
274 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR0;
|
---|
275 |
|
---|
276 | /*
|
---|
277 | * Let PGM know if the WP goes from 0 to 1 (netware WP0+RO+US hack)
|
---|
278 | */
|
---|
279 | if (((cr0 ^ pVCpu->cpum.s.Guest.cr0) & X86_CR0_WP) && (cr0 & X86_CR0_WP))
|
---|
280 | PGMCr0WpEnabled(pVCpu);
|
---|
281 |
|
---|
282 | /* The ET flag is settable on a 386 and hardwired on 486+. */
|
---|
283 | if ( !(cr0 & X86_CR0_ET)
|
---|
284 | && pVCpu->CTX_SUFF(pVM)->cpum.s.GuestFeatures.enmMicroarch != kCpumMicroarch_Intel_80386)
|
---|
285 | cr0 |= X86_CR0_ET;
|
---|
286 |
|
---|
287 | pVCpu->cpum.s.Guest.cr0 = cr0;
|
---|
288 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR0;
|
---|
289 | return VINF_SUCCESS;
|
---|
290 | }
|
---|
291 |
|
---|
292 |
|
---|
293 | VMMDECL(int) CPUMSetGuestCR2(PVMCPU pVCpu, uint64_t cr2)
|
---|
294 | {
|
---|
295 | pVCpu->cpum.s.Guest.cr2 = cr2;
|
---|
296 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR2;
|
---|
297 | return VINF_SUCCESS;
|
---|
298 | }
|
---|
299 |
|
---|
300 |
|
---|
301 | VMMDECL(int) CPUMSetGuestCR3(PVMCPU pVCpu, uint64_t cr3)
|
---|
302 | {
|
---|
303 | pVCpu->cpum.s.Guest.cr3 = cr3;
|
---|
304 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR3;
|
---|
305 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR3;
|
---|
306 | return VINF_SUCCESS;
|
---|
307 | }
|
---|
308 |
|
---|
309 |
|
---|
310 | VMMDECL(int) CPUMSetGuestCR4(PVMCPU pVCpu, uint64_t cr4)
|
---|
311 | {
|
---|
312 | /* Note! We don't bother with OSXSAVE and legacy CPUID patches. */
|
---|
313 |
|
---|
314 | if ( (cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE))
|
---|
315 | != (pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PGE | X86_CR4_PAE | X86_CR4_PSE)))
|
---|
316 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_GLOBAL_TLB_FLUSH;
|
---|
317 |
|
---|
318 | pVCpu->cpum.s.fChanged |= CPUM_CHANGED_CR4;
|
---|
319 | pVCpu->cpum.s.Guest.cr4 = cr4;
|
---|
320 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR4;
|
---|
321 | return VINF_SUCCESS;
|
---|
322 | }
|
---|
323 |
|
---|
324 |
|
---|
325 | VMMDECL(int) CPUMSetGuestEFlags(PVMCPU pVCpu, uint32_t eflags)
|
---|
326 | {
|
---|
327 | pVCpu->cpum.s.Guest.eflags.u = eflags;
|
---|
328 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_RFLAGS;
|
---|
329 | return VINF_SUCCESS;
|
---|
330 | }
|
---|
331 |
|
---|
332 |
|
---|
333 | VMMDECL(int) CPUMSetGuestEIP(PVMCPU pVCpu, uint32_t eip)
|
---|
334 | {
|
---|
335 | pVCpu->cpum.s.Guest.eip = eip;
|
---|
336 | return VINF_SUCCESS;
|
---|
337 | }
|
---|
338 |
|
---|
339 |
|
---|
340 | VMMDECL(int) CPUMSetGuestEAX(PVMCPU pVCpu, uint32_t eax)
|
---|
341 | {
|
---|
342 | pVCpu->cpum.s.Guest.eax = eax;
|
---|
343 | return VINF_SUCCESS;
|
---|
344 | }
|
---|
345 |
|
---|
346 |
|
---|
347 | VMMDECL(int) CPUMSetGuestEBX(PVMCPU pVCpu, uint32_t ebx)
|
---|
348 | {
|
---|
349 | pVCpu->cpum.s.Guest.ebx = ebx;
|
---|
350 | return VINF_SUCCESS;
|
---|
351 | }
|
---|
352 |
|
---|
353 |
|
---|
354 | VMMDECL(int) CPUMSetGuestECX(PVMCPU pVCpu, uint32_t ecx)
|
---|
355 | {
|
---|
356 | pVCpu->cpum.s.Guest.ecx = ecx;
|
---|
357 | return VINF_SUCCESS;
|
---|
358 | }
|
---|
359 |
|
---|
360 |
|
---|
361 | VMMDECL(int) CPUMSetGuestEDX(PVMCPU pVCpu, uint32_t edx)
|
---|
362 | {
|
---|
363 | pVCpu->cpum.s.Guest.edx = edx;
|
---|
364 | return VINF_SUCCESS;
|
---|
365 | }
|
---|
366 |
|
---|
367 |
|
---|
368 | VMMDECL(int) CPUMSetGuestESP(PVMCPU pVCpu, uint32_t esp)
|
---|
369 | {
|
---|
370 | pVCpu->cpum.s.Guest.esp = esp;
|
---|
371 | return VINF_SUCCESS;
|
---|
372 | }
|
---|
373 |
|
---|
374 |
|
---|
375 | VMMDECL(int) CPUMSetGuestEBP(PVMCPU pVCpu, uint32_t ebp)
|
---|
376 | {
|
---|
377 | pVCpu->cpum.s.Guest.ebp = ebp;
|
---|
378 | return VINF_SUCCESS;
|
---|
379 | }
|
---|
380 |
|
---|
381 |
|
---|
382 | VMMDECL(int) CPUMSetGuestESI(PVMCPU pVCpu, uint32_t esi)
|
---|
383 | {
|
---|
384 | pVCpu->cpum.s.Guest.esi = esi;
|
---|
385 | return VINF_SUCCESS;
|
---|
386 | }
|
---|
387 |
|
---|
388 |
|
---|
389 | VMMDECL(int) CPUMSetGuestEDI(PVMCPU pVCpu, uint32_t edi)
|
---|
390 | {
|
---|
391 | pVCpu->cpum.s.Guest.edi = edi;
|
---|
392 | return VINF_SUCCESS;
|
---|
393 | }
|
---|
394 |
|
---|
395 |
|
---|
396 | VMMDECL(int) CPUMSetGuestSS(PVMCPU pVCpu, uint16_t ss)
|
---|
397 | {
|
---|
398 | pVCpu->cpum.s.Guest.ss.Sel = ss;
|
---|
399 | return VINF_SUCCESS;
|
---|
400 | }
|
---|
401 |
|
---|
402 |
|
---|
403 | VMMDECL(int) CPUMSetGuestCS(PVMCPU pVCpu, uint16_t cs)
|
---|
404 | {
|
---|
405 | pVCpu->cpum.s.Guest.cs.Sel = cs;
|
---|
406 | return VINF_SUCCESS;
|
---|
407 | }
|
---|
408 |
|
---|
409 |
|
---|
410 | VMMDECL(int) CPUMSetGuestDS(PVMCPU pVCpu, uint16_t ds)
|
---|
411 | {
|
---|
412 | pVCpu->cpum.s.Guest.ds.Sel = ds;
|
---|
413 | return VINF_SUCCESS;
|
---|
414 | }
|
---|
415 |
|
---|
416 |
|
---|
417 | VMMDECL(int) CPUMSetGuestES(PVMCPU pVCpu, uint16_t es)
|
---|
418 | {
|
---|
419 | pVCpu->cpum.s.Guest.es.Sel = es;
|
---|
420 | return VINF_SUCCESS;
|
---|
421 | }
|
---|
422 |
|
---|
423 |
|
---|
424 | VMMDECL(int) CPUMSetGuestFS(PVMCPU pVCpu, uint16_t fs)
|
---|
425 | {
|
---|
426 | pVCpu->cpum.s.Guest.fs.Sel = fs;
|
---|
427 | return VINF_SUCCESS;
|
---|
428 | }
|
---|
429 |
|
---|
430 |
|
---|
431 | VMMDECL(int) CPUMSetGuestGS(PVMCPU pVCpu, uint16_t gs)
|
---|
432 | {
|
---|
433 | pVCpu->cpum.s.Guest.gs.Sel = gs;
|
---|
434 | return VINF_SUCCESS;
|
---|
435 | }
|
---|
436 |
|
---|
437 |
|
---|
438 | VMMDECL(void) CPUMSetGuestEFER(PVMCPU pVCpu, uint64_t val)
|
---|
439 | {
|
---|
440 | pVCpu->cpum.s.Guest.msrEFER = val;
|
---|
441 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_EFER;
|
---|
442 | }
|
---|
443 |
|
---|
444 |
|
---|
445 | VMMDECL(RTGCPTR) CPUMGetGuestIDTR(PCVMCPU pVCpu, uint16_t *pcbLimit)
|
---|
446 | {
|
---|
447 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_IDTR);
|
---|
448 | if (pcbLimit)
|
---|
449 | *pcbLimit = pVCpu->cpum.s.Guest.idtr.cbIdt;
|
---|
450 | return pVCpu->cpum.s.Guest.idtr.pIdt;
|
---|
451 | }
|
---|
452 |
|
---|
453 |
|
---|
454 | VMMDECL(RTSEL) CPUMGetGuestTR(PCVMCPU pVCpu, PCPUMSELREGHID pHidden)
|
---|
455 | {
|
---|
456 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_TR);
|
---|
457 | if (pHidden)
|
---|
458 | *pHidden = pVCpu->cpum.s.Guest.tr;
|
---|
459 | return pVCpu->cpum.s.Guest.tr.Sel;
|
---|
460 | }
|
---|
461 |
|
---|
462 |
|
---|
463 | VMMDECL(RTSEL) CPUMGetGuestCS(PCVMCPU pVCpu)
|
---|
464 | {
|
---|
465 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS);
|
---|
466 | return pVCpu->cpum.s.Guest.cs.Sel;
|
---|
467 | }
|
---|
468 |
|
---|
469 |
|
---|
470 | VMMDECL(RTSEL) CPUMGetGuestDS(PCVMCPU pVCpu)
|
---|
471 | {
|
---|
472 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DS);
|
---|
473 | return pVCpu->cpum.s.Guest.ds.Sel;
|
---|
474 | }
|
---|
475 |
|
---|
476 |
|
---|
477 | VMMDECL(RTSEL) CPUMGetGuestES(PCVMCPU pVCpu)
|
---|
478 | {
|
---|
479 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_ES);
|
---|
480 | return pVCpu->cpum.s.Guest.es.Sel;
|
---|
481 | }
|
---|
482 |
|
---|
483 |
|
---|
484 | VMMDECL(RTSEL) CPUMGetGuestFS(PCVMCPU pVCpu)
|
---|
485 | {
|
---|
486 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_FS);
|
---|
487 | return pVCpu->cpum.s.Guest.fs.Sel;
|
---|
488 | }
|
---|
489 |
|
---|
490 |
|
---|
491 | VMMDECL(RTSEL) CPUMGetGuestGS(PCVMCPU pVCpu)
|
---|
492 | {
|
---|
493 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GS);
|
---|
494 | return pVCpu->cpum.s.Guest.gs.Sel;
|
---|
495 | }
|
---|
496 |
|
---|
497 |
|
---|
498 | VMMDECL(RTSEL) CPUMGetGuestSS(PCVMCPU pVCpu)
|
---|
499 | {
|
---|
500 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_SS);
|
---|
501 | return pVCpu->cpum.s.Guest.ss.Sel;
|
---|
502 | }
|
---|
503 |
|
---|
504 |
|
---|
505 | VMMDECL(uint64_t) CPUMGetGuestFlatPC(PVMCPU pVCpu)
|
---|
506 | {
|
---|
507 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
|
---|
508 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
|
---|
509 | if ( !CPUMIsGuestInLongMode(pVCpu)
|
---|
510 | || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long)
|
---|
511 | return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.cs.u64Base;
|
---|
512 | return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.cs.u64Base;
|
---|
513 | }
|
---|
514 |
|
---|
515 |
|
---|
516 | VMMDECL(uint64_t) CPUMGetGuestFlatSP(PVMCPU pVCpu)
|
---|
517 | {
|
---|
518 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP | CPUMCTX_EXTRN_SS | CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
|
---|
519 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.ss);
|
---|
520 | if ( !CPUMIsGuestInLongMode(pVCpu)
|
---|
521 | || !pVCpu->cpum.s.Guest.cs.Attr.n.u1Long)
|
---|
522 | return pVCpu->cpum.s.Guest.eip + (uint32_t)pVCpu->cpum.s.Guest.ss.u64Base;
|
---|
523 | return pVCpu->cpum.s.Guest.rip + pVCpu->cpum.s.Guest.ss.u64Base;
|
---|
524 | }
|
---|
525 |
|
---|
526 |
|
---|
527 | VMMDECL(RTSEL) CPUMGetGuestLDTR(PCVMCPU pVCpu)
|
---|
528 | {
|
---|
529 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR);
|
---|
530 | return pVCpu->cpum.s.Guest.ldtr.Sel;
|
---|
531 | }
|
---|
532 |
|
---|
533 |
|
---|
534 | VMMDECL(RTSEL) CPUMGetGuestLdtrEx(PCVMCPU pVCpu, uint64_t *pGCPtrBase, uint32_t *pcbLimit)
|
---|
535 | {
|
---|
536 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_LDTR);
|
---|
537 | *pGCPtrBase = pVCpu->cpum.s.Guest.ldtr.u64Base;
|
---|
538 | *pcbLimit = pVCpu->cpum.s.Guest.ldtr.u32Limit;
|
---|
539 | return pVCpu->cpum.s.Guest.ldtr.Sel;
|
---|
540 | }
|
---|
541 |
|
---|
542 |
|
---|
543 | VMMDECL(uint64_t) CPUMGetGuestCR0(PCVMCPU pVCpu)
|
---|
544 | {
|
---|
545 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
546 | return pVCpu->cpum.s.Guest.cr0;
|
---|
547 | }
|
---|
548 |
|
---|
549 |
|
---|
550 | VMMDECL(uint64_t) CPUMGetGuestCR2(PCVMCPU pVCpu)
|
---|
551 | {
|
---|
552 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2);
|
---|
553 | return pVCpu->cpum.s.Guest.cr2;
|
---|
554 | }
|
---|
555 |
|
---|
556 |
|
---|
557 | VMMDECL(uint64_t) CPUMGetGuestCR3(PCVMCPU pVCpu)
|
---|
558 | {
|
---|
559 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3);
|
---|
560 | return pVCpu->cpum.s.Guest.cr3;
|
---|
561 | }
|
---|
562 |
|
---|
563 |
|
---|
564 | VMMDECL(uint64_t) CPUMGetGuestCR4(PCVMCPU pVCpu)
|
---|
565 | {
|
---|
566 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
|
---|
567 | return pVCpu->cpum.s.Guest.cr4;
|
---|
568 | }
|
---|
569 |
|
---|
570 |
|
---|
571 | VMMDECL(uint64_t) CPUMGetGuestCR8(PCVMCPUCC pVCpu)
|
---|
572 | {
|
---|
573 | uint64_t u64;
|
---|
574 | int rc = CPUMGetGuestCRx(pVCpu, DISCREG_CR8, &u64);
|
---|
575 | if (RT_FAILURE(rc))
|
---|
576 | u64 = 0;
|
---|
577 | return u64;
|
---|
578 | }
|
---|
579 |
|
---|
580 |
|
---|
581 | VMMDECL(void) CPUMGetGuestGDTR(PCVMCPU pVCpu, PVBOXGDTR pGDTR)
|
---|
582 | {
|
---|
583 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_GDTR);
|
---|
584 | *pGDTR = pVCpu->cpum.s.Guest.gdtr;
|
---|
585 | }
|
---|
586 |
|
---|
587 |
|
---|
588 | VMMDECL(uint32_t) CPUMGetGuestEIP(PCVMCPU pVCpu)
|
---|
589 | {
|
---|
590 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP);
|
---|
591 | return pVCpu->cpum.s.Guest.eip;
|
---|
592 | }
|
---|
593 |
|
---|
594 |
|
---|
595 | VMMDECL(uint64_t) CPUMGetGuestRIP(PCVMCPU pVCpu)
|
---|
596 | {
|
---|
597 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RIP);
|
---|
598 | return pVCpu->cpum.s.Guest.rip;
|
---|
599 | }
|
---|
600 |
|
---|
601 |
|
---|
602 | VMMDECL(uint32_t) CPUMGetGuestEAX(PCVMCPU pVCpu)
|
---|
603 | {
|
---|
604 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RAX);
|
---|
605 | return pVCpu->cpum.s.Guest.eax;
|
---|
606 | }
|
---|
607 |
|
---|
608 |
|
---|
609 | VMMDECL(uint32_t) CPUMGetGuestEBX(PCVMCPU pVCpu)
|
---|
610 | {
|
---|
611 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBX);
|
---|
612 | return pVCpu->cpum.s.Guest.ebx;
|
---|
613 | }
|
---|
614 |
|
---|
615 |
|
---|
616 | VMMDECL(uint32_t) CPUMGetGuestECX(PCVMCPU pVCpu)
|
---|
617 | {
|
---|
618 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RCX);
|
---|
619 | return pVCpu->cpum.s.Guest.ecx;
|
---|
620 | }
|
---|
621 |
|
---|
622 |
|
---|
623 | VMMDECL(uint32_t) CPUMGetGuestEDX(PCVMCPU pVCpu)
|
---|
624 | {
|
---|
625 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDX);
|
---|
626 | return pVCpu->cpum.s.Guest.edx;
|
---|
627 | }
|
---|
628 |
|
---|
629 |
|
---|
630 | VMMDECL(uint32_t) CPUMGetGuestESI(PCVMCPU pVCpu)
|
---|
631 | {
|
---|
632 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSI);
|
---|
633 | return pVCpu->cpum.s.Guest.esi;
|
---|
634 | }
|
---|
635 |
|
---|
636 |
|
---|
637 | VMMDECL(uint32_t) CPUMGetGuestEDI(PCVMCPU pVCpu)
|
---|
638 | {
|
---|
639 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RDI);
|
---|
640 | return pVCpu->cpum.s.Guest.edi;
|
---|
641 | }
|
---|
642 |
|
---|
643 |
|
---|
644 | VMMDECL(uint32_t) CPUMGetGuestESP(PCVMCPU pVCpu)
|
---|
645 | {
|
---|
646 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RSP);
|
---|
647 | return pVCpu->cpum.s.Guest.esp;
|
---|
648 | }
|
---|
649 |
|
---|
650 |
|
---|
651 | VMMDECL(uint32_t) CPUMGetGuestEBP(PCVMCPU pVCpu)
|
---|
652 | {
|
---|
653 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RBP);
|
---|
654 | return pVCpu->cpum.s.Guest.ebp;
|
---|
655 | }
|
---|
656 |
|
---|
657 |
|
---|
658 | VMMDECL(uint32_t) CPUMGetGuestEFlags(PCVMCPU pVCpu)
|
---|
659 | {
|
---|
660 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_RFLAGS);
|
---|
661 | return pVCpu->cpum.s.Guest.eflags.u;
|
---|
662 | }
|
---|
663 |
|
---|
664 |
|
---|
665 | VMMDECL(int) CPUMGetGuestCRx(PCVMCPUCC pVCpu, unsigned iReg, uint64_t *pValue)
|
---|
666 | {
|
---|
667 | switch (iReg)
|
---|
668 | {
|
---|
669 | case DISCREG_CR0:
|
---|
670 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
671 | *pValue = pVCpu->cpum.s.Guest.cr0;
|
---|
672 | break;
|
---|
673 |
|
---|
674 | case DISCREG_CR2:
|
---|
675 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR2);
|
---|
676 | *pValue = pVCpu->cpum.s.Guest.cr2;
|
---|
677 | break;
|
---|
678 |
|
---|
679 | case DISCREG_CR3:
|
---|
680 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3);
|
---|
681 | *pValue = pVCpu->cpum.s.Guest.cr3;
|
---|
682 | break;
|
---|
683 |
|
---|
684 | case DISCREG_CR4:
|
---|
685 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
|
---|
686 | *pValue = pVCpu->cpum.s.Guest.cr4;
|
---|
687 | break;
|
---|
688 |
|
---|
689 | case DISCREG_CR8:
|
---|
690 | {
|
---|
691 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_APIC_TPR);
|
---|
692 | uint8_t u8Tpr;
|
---|
693 | int rc = APICGetTpr(pVCpu, &u8Tpr, NULL /* pfPending */, NULL /* pu8PendingIrq */);
|
---|
694 | if (RT_FAILURE(rc))
|
---|
695 | {
|
---|
696 | AssertMsg(rc == VERR_PDM_NO_APIC_INSTANCE, ("%Rrc\n", rc));
|
---|
697 | *pValue = 0;
|
---|
698 | return rc;
|
---|
699 | }
|
---|
700 | *pValue = u8Tpr >> 4; /* bits 7-4 contain the task priority that go in cr8, bits 3-0 */
|
---|
701 | break;
|
---|
702 | }
|
---|
703 |
|
---|
704 | default:
|
---|
705 | return VERR_INVALID_PARAMETER;
|
---|
706 | }
|
---|
707 | return VINF_SUCCESS;
|
---|
708 | }
|
---|
709 |
|
---|
710 |
|
---|
711 | VMMDECL(uint64_t) CPUMGetGuestDR0(PCVMCPU pVCpu)
|
---|
712 | {
|
---|
713 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
|
---|
714 | return pVCpu->cpum.s.Guest.dr[0];
|
---|
715 | }
|
---|
716 |
|
---|
717 |
|
---|
718 | VMMDECL(uint64_t) CPUMGetGuestDR1(PCVMCPU pVCpu)
|
---|
719 | {
|
---|
720 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
|
---|
721 | return pVCpu->cpum.s.Guest.dr[1];
|
---|
722 | }
|
---|
723 |
|
---|
724 |
|
---|
725 | VMMDECL(uint64_t) CPUMGetGuestDR2(PCVMCPU pVCpu)
|
---|
726 | {
|
---|
727 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
|
---|
728 | return pVCpu->cpum.s.Guest.dr[2];
|
---|
729 | }
|
---|
730 |
|
---|
731 |
|
---|
732 | VMMDECL(uint64_t) CPUMGetGuestDR3(PCVMCPU pVCpu)
|
---|
733 | {
|
---|
734 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR0_DR3);
|
---|
735 | return pVCpu->cpum.s.Guest.dr[3];
|
---|
736 | }
|
---|
737 |
|
---|
738 |
|
---|
739 | VMMDECL(uint64_t) CPUMGetGuestDR6(PCVMCPU pVCpu)
|
---|
740 | {
|
---|
741 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR6);
|
---|
742 | return pVCpu->cpum.s.Guest.dr[6];
|
---|
743 | }
|
---|
744 |
|
---|
745 |
|
---|
746 | VMMDECL(uint64_t) CPUMGetGuestDR7(PCVMCPU pVCpu)
|
---|
747 | {
|
---|
748 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR7);
|
---|
749 | return pVCpu->cpum.s.Guest.dr[7];
|
---|
750 | }
|
---|
751 |
|
---|
752 |
|
---|
753 | VMMDECL(int) CPUMGetGuestDRx(PCVMCPU pVCpu, uint32_t iReg, uint64_t *pValue)
|
---|
754 | {
|
---|
755 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_DR_MASK);
|
---|
756 | AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER);
|
---|
757 | /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
|
---|
758 | if (iReg == 4 || iReg == 5)
|
---|
759 | iReg += 2;
|
---|
760 | *pValue = pVCpu->cpum.s.Guest.dr[iReg];
|
---|
761 | return VINF_SUCCESS;
|
---|
762 | }
|
---|
763 |
|
---|
764 |
|
---|
765 | VMMDECL(uint64_t) CPUMGetGuestEFER(PCVMCPU pVCpu)
|
---|
766 | {
|
---|
767 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
|
---|
768 | return pVCpu->cpum.s.Guest.msrEFER;
|
---|
769 | }
|
---|
770 |
|
---|
771 |
|
---|
772 | /**
|
---|
773 | * Looks up a CPUID leaf in the CPUID leaf array, no subleaf.
|
---|
774 | *
|
---|
775 | * @returns Pointer to the leaf if found, NULL if not.
|
---|
776 | *
|
---|
777 | * @param pVM The cross context VM structure.
|
---|
778 | * @param uLeaf The leaf to get.
|
---|
779 | */
|
---|
780 | PCPUMCPUIDLEAF cpumCpuIdGetLeaf(PVM pVM, uint32_t uLeaf)
|
---|
781 | {
|
---|
782 | unsigned iEnd = RT_MIN(pVM->cpum.s.GuestInfo.cCpuIdLeaves, RT_ELEMENTS(pVM->cpum.s.GuestInfo.aCpuIdLeaves));
|
---|
783 | if (iEnd)
|
---|
784 | {
|
---|
785 | unsigned iStart = 0;
|
---|
786 | PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.aCpuIdLeaves;
|
---|
787 | for (;;)
|
---|
788 | {
|
---|
789 | unsigned i = iStart + (iEnd - iStart) / 2U;
|
---|
790 | if (uLeaf < paLeaves[i].uLeaf)
|
---|
791 | {
|
---|
792 | if (i <= iStart)
|
---|
793 | return NULL;
|
---|
794 | iEnd = i;
|
---|
795 | }
|
---|
796 | else if (uLeaf > paLeaves[i].uLeaf)
|
---|
797 | {
|
---|
798 | i += 1;
|
---|
799 | if (i >= iEnd)
|
---|
800 | return NULL;
|
---|
801 | iStart = i;
|
---|
802 | }
|
---|
803 | else
|
---|
804 | {
|
---|
805 | if (RT_LIKELY(paLeaves[i].fSubLeafMask == 0 && paLeaves[i].uSubLeaf == 0))
|
---|
806 | return &paLeaves[i];
|
---|
807 |
|
---|
808 | /* This shouldn't normally happen. But in case the it does due
|
---|
809 | to user configuration overrids or something, just return the
|
---|
810 | first sub-leaf. */
|
---|
811 | AssertMsgFailed(("uLeaf=%#x fSubLeafMask=%#x uSubLeaf=%#x\n",
|
---|
812 | uLeaf, paLeaves[i].fSubLeafMask, paLeaves[i].uSubLeaf));
|
---|
813 | while ( paLeaves[i].uSubLeaf != 0
|
---|
814 | && i > 0
|
---|
815 | && uLeaf == paLeaves[i - 1].uLeaf)
|
---|
816 | i--;
|
---|
817 | return &paLeaves[i];
|
---|
818 | }
|
---|
819 | }
|
---|
820 | }
|
---|
821 |
|
---|
822 | return NULL;
|
---|
823 | }
|
---|
824 |
|
---|
825 |
|
---|
826 | /**
|
---|
827 | * Looks up a CPUID leaf in the CPUID leaf array.
|
---|
828 | *
|
---|
829 | * @returns Pointer to the leaf if found, NULL if not.
|
---|
830 | *
|
---|
831 | * @param pVM The cross context VM structure.
|
---|
832 | * @param uLeaf The leaf to get.
|
---|
833 | * @param uSubLeaf The subleaf, if applicable. Just pass 0 if it
|
---|
834 | * isn't.
|
---|
835 | * @param pfExactSubLeafHit Whether we've got an exact subleaf hit or not.
|
---|
836 | */
|
---|
837 | PCPUMCPUIDLEAF cpumCpuIdGetLeafEx(PVM pVM, uint32_t uLeaf, uint32_t uSubLeaf, bool *pfExactSubLeafHit)
|
---|
838 | {
|
---|
839 | unsigned iEnd = RT_MIN(pVM->cpum.s.GuestInfo.cCpuIdLeaves, RT_ELEMENTS(pVM->cpum.s.GuestInfo.aCpuIdLeaves));
|
---|
840 | if (iEnd)
|
---|
841 | {
|
---|
842 | unsigned iStart = 0;
|
---|
843 | PCPUMCPUIDLEAF paLeaves = pVM->cpum.s.GuestInfo.aCpuIdLeaves;
|
---|
844 | for (;;)
|
---|
845 | {
|
---|
846 | unsigned i = iStart + (iEnd - iStart) / 2U;
|
---|
847 | if (uLeaf < paLeaves[i].uLeaf)
|
---|
848 | {
|
---|
849 | if (i <= iStart)
|
---|
850 | return NULL;
|
---|
851 | iEnd = i;
|
---|
852 | }
|
---|
853 | else if (uLeaf > paLeaves[i].uLeaf)
|
---|
854 | {
|
---|
855 | i += 1;
|
---|
856 | if (i >= iEnd)
|
---|
857 | return NULL;
|
---|
858 | iStart = i;
|
---|
859 | }
|
---|
860 | else
|
---|
861 | {
|
---|
862 | uSubLeaf &= paLeaves[i].fSubLeafMask;
|
---|
863 | if (uSubLeaf == paLeaves[i].uSubLeaf)
|
---|
864 | *pfExactSubLeafHit = true;
|
---|
865 | else
|
---|
866 | {
|
---|
867 | /* Find the right subleaf. We return the last one before
|
---|
868 | uSubLeaf if we don't find an exact match. */
|
---|
869 | if (uSubLeaf < paLeaves[i].uSubLeaf)
|
---|
870 | while ( i > 0
|
---|
871 | && uLeaf == paLeaves[i - 1].uLeaf
|
---|
872 | && uSubLeaf <= paLeaves[i - 1].uSubLeaf)
|
---|
873 | i--;
|
---|
874 | else
|
---|
875 | while ( i + 1 < pVM->cpum.s.GuestInfo.cCpuIdLeaves
|
---|
876 | && uLeaf == paLeaves[i + 1].uLeaf
|
---|
877 | && uSubLeaf >= paLeaves[i + 1].uSubLeaf)
|
---|
878 | i++;
|
---|
879 | *pfExactSubLeafHit = uSubLeaf == paLeaves[i].uSubLeaf;
|
---|
880 | }
|
---|
881 | return &paLeaves[i];
|
---|
882 | }
|
---|
883 | }
|
---|
884 | }
|
---|
885 |
|
---|
886 | *pfExactSubLeafHit = false;
|
---|
887 | return NULL;
|
---|
888 | }
|
---|
889 |
|
---|
890 |
|
---|
891 | /**
|
---|
892 | * Gets a CPUID leaf.
|
---|
893 | *
|
---|
894 | * @param pVCpu The cross context virtual CPU structure.
|
---|
895 | * @param uLeaf The CPUID leaf to get.
|
---|
896 | * @param uSubLeaf The CPUID sub-leaf to get, if applicable.
|
---|
897 | * @param f64BitMode A tristate indicate if the caller is in 64-bit mode or
|
---|
898 | * not: 1=true, 0=false, 1=whatever. This affect how the
|
---|
899 | * X86_CPUID_EXT_FEATURE_EDX_SYSCALL flag is returned on
|
---|
900 | * Intel CPUs, where it's only returned in 64-bit mode.
|
---|
901 | * @param pEax Where to store the EAX value.
|
---|
902 | * @param pEbx Where to store the EBX value.
|
---|
903 | * @param pEcx Where to store the ECX value.
|
---|
904 | * @param pEdx Where to store the EDX value.
|
---|
905 | */
|
---|
906 | VMMDECL(void) CPUMGetGuestCpuId(PVMCPUCC pVCpu, uint32_t uLeaf, uint32_t uSubLeaf, int f64BitMode,
|
---|
907 | uint32_t *pEax, uint32_t *pEbx, uint32_t *pEcx, uint32_t *pEdx)
|
---|
908 | {
|
---|
909 | bool fExactSubLeafHit;
|
---|
910 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
911 | PCCPUMCPUIDLEAF pLeaf = cpumCpuIdGetLeafEx(pVM, uLeaf, uSubLeaf, &fExactSubLeafHit);
|
---|
912 | if (pLeaf)
|
---|
913 | {
|
---|
914 | AssertMsg(pLeaf->uLeaf == uLeaf, ("%#x %#x\n", pLeaf->uLeaf, uLeaf));
|
---|
915 | if (fExactSubLeafHit)
|
---|
916 | {
|
---|
917 | *pEax = pLeaf->uEax;
|
---|
918 | *pEbx = pLeaf->uEbx;
|
---|
919 | *pEcx = pLeaf->uEcx;
|
---|
920 | *pEdx = pLeaf->uEdx;
|
---|
921 |
|
---|
922 | /*
|
---|
923 | * Deal with CPU specific information.
|
---|
924 | */
|
---|
925 | if (pLeaf->fFlags & ( CPUMCPUIDLEAF_F_CONTAINS_APIC_ID
|
---|
926 | | CPUMCPUIDLEAF_F_CONTAINS_OSXSAVE
|
---|
927 | | CPUMCPUIDLEAF_F_CONTAINS_APIC ))
|
---|
928 | {
|
---|
929 | if (uLeaf == 1)
|
---|
930 | {
|
---|
931 | /* EBX: Bits 31-24: Initial APIC ID. */
|
---|
932 | Assert(pVCpu->idCpu <= 255);
|
---|
933 | AssertMsg((pLeaf->uEbx >> 24) == 0, ("%#x\n", pLeaf->uEbx)); /* raw-mode assumption */
|
---|
934 | *pEbx = (pLeaf->uEbx & UINT32_C(0x00ffffff)) | (pVCpu->idCpu << 24);
|
---|
935 |
|
---|
936 | /* EDX: Bit 9: AND with APICBASE.EN. */
|
---|
937 | if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible && (pLeaf->fFlags & CPUMCPUIDLEAF_F_CONTAINS_APIC))
|
---|
938 | *pEdx &= ~X86_CPUID_FEATURE_EDX_APIC;
|
---|
939 |
|
---|
940 | /* ECX: Bit 27: CR4.OSXSAVE mirror. */
|
---|
941 | *pEcx = (pLeaf->uEcx & ~X86_CPUID_FEATURE_ECX_OSXSAVE)
|
---|
942 | | (pVCpu->cpum.s.Guest.cr4 & X86_CR4_OSXSAVE ? X86_CPUID_FEATURE_ECX_OSXSAVE : 0);
|
---|
943 | }
|
---|
944 | else if (uLeaf == 0xb)
|
---|
945 | {
|
---|
946 | /* EDX: Initial extended APIC ID. */
|
---|
947 | AssertMsg(pLeaf->uEdx == 0, ("%#x\n", pLeaf->uEdx)); /* raw-mode assumption */
|
---|
948 | *pEdx = pVCpu->idCpu;
|
---|
949 | Assert(!(pLeaf->fFlags & ~(CPUMCPUIDLEAF_F_CONTAINS_APIC_ID | CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES)));
|
---|
950 | }
|
---|
951 | else if (uLeaf == UINT32_C(0x8000001e))
|
---|
952 | {
|
---|
953 | /* EAX: Initial extended APIC ID. */
|
---|
954 | AssertMsg(pLeaf->uEax == 0, ("%#x\n", pLeaf->uEax)); /* raw-mode assumption */
|
---|
955 | *pEax = pVCpu->idCpu;
|
---|
956 | Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC_ID));
|
---|
957 | }
|
---|
958 | else if (uLeaf == UINT32_C(0x80000001))
|
---|
959 | {
|
---|
960 | /* EDX: Bit 9: AND with APICBASE.EN. */
|
---|
961 | if (!pVCpu->cpum.s.fCpuIdApicFeatureVisible)
|
---|
962 | *pEdx &= ~X86_CPUID_AMD_FEATURE_EDX_APIC;
|
---|
963 | Assert(!(pLeaf->fFlags & ~CPUMCPUIDLEAF_F_CONTAINS_APIC));
|
---|
964 | }
|
---|
965 | else
|
---|
966 | AssertMsgFailed(("uLeaf=%#x\n", uLeaf));
|
---|
967 | }
|
---|
968 |
|
---|
969 | /* Intel CPUs supresses the SYSCALL bit when not executing in 64-bit mode: */
|
---|
970 | if ( uLeaf == UINT32_C(0x80000001)
|
---|
971 | && f64BitMode == false
|
---|
972 | && (*pEdx & X86_CPUID_EXT_FEATURE_EDX_SYSCALL)
|
---|
973 | && ( pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_INTEL
|
---|
974 | || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_VIA /*?*/
|
---|
975 | || pVM->cpum.s.GuestFeatures.enmCpuVendor == CPUMCPUVENDOR_SHANGHAI /*?*/ ) )
|
---|
976 | *pEdx &= ~X86_CPUID_EXT_FEATURE_EDX_SYSCALL;
|
---|
977 |
|
---|
978 | }
|
---|
979 | /*
|
---|
980 | * Out of range sub-leaves aren't quite as easy and pretty as we emulate
|
---|
981 | * them here, but we do the best we can here...
|
---|
982 | */
|
---|
983 | else
|
---|
984 | {
|
---|
985 | *pEax = *pEbx = *pEcx = *pEdx = 0;
|
---|
986 | if (pLeaf->fFlags & CPUMCPUIDLEAF_F_INTEL_TOPOLOGY_SUBLEAVES)
|
---|
987 | {
|
---|
988 | *pEcx = uSubLeaf & 0xff;
|
---|
989 | *pEdx = pVCpu->idCpu;
|
---|
990 | }
|
---|
991 | }
|
---|
992 | }
|
---|
993 | else
|
---|
994 | {
|
---|
995 | /*
|
---|
996 | * Different CPUs have different ways of dealing with unknown CPUID leaves.
|
---|
997 | */
|
---|
998 | switch (pVM->cpum.s.GuestInfo.enmUnknownCpuIdMethod)
|
---|
999 | {
|
---|
1000 | default:
|
---|
1001 | AssertFailed();
|
---|
1002 | RT_FALL_THRU();
|
---|
1003 | case CPUMUNKNOWNCPUID_DEFAULTS:
|
---|
1004 | case CPUMUNKNOWNCPUID_LAST_STD_LEAF: /* ASSUME this is executed */
|
---|
1005 | case CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX: /** @todo Implement CPUMUNKNOWNCPUID_LAST_STD_LEAF_WITH_ECX */
|
---|
1006 | *pEax = pVM->cpum.s.GuestInfo.DefCpuId.uEax;
|
---|
1007 | *pEbx = pVM->cpum.s.GuestInfo.DefCpuId.uEbx;
|
---|
1008 | *pEcx = pVM->cpum.s.GuestInfo.DefCpuId.uEcx;
|
---|
1009 | *pEdx = pVM->cpum.s.GuestInfo.DefCpuId.uEdx;
|
---|
1010 | break;
|
---|
1011 | case CPUMUNKNOWNCPUID_PASSTHRU:
|
---|
1012 | *pEax = uLeaf;
|
---|
1013 | *pEbx = 0;
|
---|
1014 | *pEcx = uSubLeaf;
|
---|
1015 | *pEdx = 0;
|
---|
1016 | break;
|
---|
1017 | }
|
---|
1018 | }
|
---|
1019 | Log2(("CPUMGetGuestCpuId: uLeaf=%#010x/%#010x %RX32 %RX32 %RX32 %RX32\n", uLeaf, uSubLeaf, *pEax, *pEbx, *pEcx, *pEdx));
|
---|
1020 | }
|
---|
1021 |
|
---|
1022 |
|
---|
1023 | /**
|
---|
1024 | * Sets the visibility of the X86_CPUID_FEATURE_EDX_APIC and
|
---|
1025 | * X86_CPUID_AMD_FEATURE_EDX_APIC CPUID bits.
|
---|
1026 | *
|
---|
1027 | * @returns Previous value.
|
---|
1028 | * @param pVCpu The cross context virtual CPU structure to make the
|
---|
1029 | * change on. Usually the calling EMT.
|
---|
1030 | * @param fVisible Whether to make it visible (true) or hide it (false).
|
---|
1031 | *
|
---|
1032 | * @remarks This is "VMMDECL" so that it still links with
|
---|
1033 | * the old APIC code which is in VBoxDD2 and not in
|
---|
1034 | * the VMM module.
|
---|
1035 | */
|
---|
1036 | VMMDECL(bool) CPUMSetGuestCpuIdPerCpuApicFeature(PVMCPU pVCpu, bool fVisible)
|
---|
1037 | {
|
---|
1038 | bool fOld = pVCpu->cpum.s.fCpuIdApicFeatureVisible;
|
---|
1039 | pVCpu->cpum.s.fCpuIdApicFeatureVisible = fVisible;
|
---|
1040 | return fOld;
|
---|
1041 | }
|
---|
1042 |
|
---|
1043 |
|
---|
1044 | /**
|
---|
1045 | * Gets the host CPU vendor.
|
---|
1046 | *
|
---|
1047 | * @returns CPU vendor.
|
---|
1048 | * @param pVM The cross context VM structure.
|
---|
1049 | */
|
---|
1050 | VMMDECL(CPUMCPUVENDOR) CPUMGetHostCpuVendor(PVM pVM)
|
---|
1051 | {
|
---|
1052 | return (CPUMCPUVENDOR)pVM->cpum.s.HostFeatures.enmCpuVendor;
|
---|
1053 | }
|
---|
1054 |
|
---|
1055 |
|
---|
1056 | /**
|
---|
1057 | * Gets the host CPU microarchitecture.
|
---|
1058 | *
|
---|
1059 | * @returns CPU microarchitecture.
|
---|
1060 | * @param pVM The cross context VM structure.
|
---|
1061 | */
|
---|
1062 | VMMDECL(CPUMMICROARCH) CPUMGetHostMicroarch(PCVM pVM)
|
---|
1063 | {
|
---|
1064 | return pVM->cpum.s.HostFeatures.enmMicroarch;
|
---|
1065 | }
|
---|
1066 |
|
---|
1067 |
|
---|
1068 | /**
|
---|
1069 | * Gets the guest CPU vendor.
|
---|
1070 | *
|
---|
1071 | * @returns CPU vendor.
|
---|
1072 | * @param pVM The cross context VM structure.
|
---|
1073 | */
|
---|
1074 | VMMDECL(CPUMCPUVENDOR) CPUMGetGuestCpuVendor(PVM pVM)
|
---|
1075 | {
|
---|
1076 | return (CPUMCPUVENDOR)pVM->cpum.s.GuestFeatures.enmCpuVendor;
|
---|
1077 | }
|
---|
1078 |
|
---|
1079 |
|
---|
1080 | /**
|
---|
1081 | * Gets the guest CPU microarchitecture.
|
---|
1082 | *
|
---|
1083 | * @returns CPU microarchitecture.
|
---|
1084 | * @param pVM The cross context VM structure.
|
---|
1085 | */
|
---|
1086 | VMMDECL(CPUMMICROARCH) CPUMGetGuestMicroarch(PCVM pVM)
|
---|
1087 | {
|
---|
1088 | return pVM->cpum.s.GuestFeatures.enmMicroarch;
|
---|
1089 | }
|
---|
1090 |
|
---|
1091 |
|
---|
1092 | /**
|
---|
1093 | * Gets the maximum number of physical and linear address bits supported by the
|
---|
1094 | * guest.
|
---|
1095 | *
|
---|
1096 | * @param pVM The cross context VM structure.
|
---|
1097 | * @param pcPhysAddrWidth Where to store the physical address width.
|
---|
1098 | * @param pcLinearAddrWidth Where to store the linear address width.
|
---|
1099 | */
|
---|
1100 | VMMDECL(void) CPUMGetGuestAddrWidths(PCVM pVM, uint8_t *pcPhysAddrWidth, uint8_t *pcLinearAddrWidth)
|
---|
1101 | {
|
---|
1102 | AssertPtr(pVM);
|
---|
1103 | AssertReturnVoid(pcPhysAddrWidth);
|
---|
1104 | AssertReturnVoid(pcLinearAddrWidth);
|
---|
1105 | *pcPhysAddrWidth = pVM->cpum.s.GuestFeatures.cMaxPhysAddrWidth;
|
---|
1106 | *pcLinearAddrWidth = pVM->cpum.s.GuestFeatures.cMaxLinearAddrWidth;
|
---|
1107 | }
|
---|
1108 |
|
---|
1109 |
|
---|
1110 | VMMDECL(int) CPUMSetGuestDR0(PVMCPUCC pVCpu, uint64_t uDr0)
|
---|
1111 | {
|
---|
1112 | pVCpu->cpum.s.Guest.dr[0] = uDr0;
|
---|
1113 | return CPUMRecalcHyperDRx(pVCpu, 0);
|
---|
1114 | }
|
---|
1115 |
|
---|
1116 |
|
---|
1117 | VMMDECL(int) CPUMSetGuestDR1(PVMCPUCC pVCpu, uint64_t uDr1)
|
---|
1118 | {
|
---|
1119 | pVCpu->cpum.s.Guest.dr[1] = uDr1;
|
---|
1120 | return CPUMRecalcHyperDRx(pVCpu, 1);
|
---|
1121 | }
|
---|
1122 |
|
---|
1123 |
|
---|
1124 | VMMDECL(int) CPUMSetGuestDR2(PVMCPUCC pVCpu, uint64_t uDr2)
|
---|
1125 | {
|
---|
1126 | pVCpu->cpum.s.Guest.dr[2] = uDr2;
|
---|
1127 | return CPUMRecalcHyperDRx(pVCpu, 2);
|
---|
1128 | }
|
---|
1129 |
|
---|
1130 |
|
---|
1131 | VMMDECL(int) CPUMSetGuestDR3(PVMCPUCC pVCpu, uint64_t uDr3)
|
---|
1132 | {
|
---|
1133 | pVCpu->cpum.s.Guest.dr[3] = uDr3;
|
---|
1134 | return CPUMRecalcHyperDRx(pVCpu, 3);
|
---|
1135 | }
|
---|
1136 |
|
---|
1137 |
|
---|
1138 | VMMDECL(int) CPUMSetGuestDR6(PVMCPU pVCpu, uint64_t uDr6)
|
---|
1139 | {
|
---|
1140 | pVCpu->cpum.s.Guest.dr[6] = uDr6;
|
---|
1141 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR6;
|
---|
1142 | return VINF_SUCCESS; /* No need to recalc. */
|
---|
1143 | }
|
---|
1144 |
|
---|
1145 |
|
---|
1146 | VMMDECL(int) CPUMSetGuestDR7(PVMCPUCC pVCpu, uint64_t uDr7)
|
---|
1147 | {
|
---|
1148 | pVCpu->cpum.s.Guest.dr[7] = uDr7;
|
---|
1149 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_DR7;
|
---|
1150 | return CPUMRecalcHyperDRx(pVCpu, 7);
|
---|
1151 | }
|
---|
1152 |
|
---|
1153 |
|
---|
1154 | VMMDECL(int) CPUMSetGuestDRx(PVMCPUCC pVCpu, uint32_t iReg, uint64_t Value)
|
---|
1155 | {
|
---|
1156 | AssertReturn(iReg <= DISDREG_DR7, VERR_INVALID_PARAMETER);
|
---|
1157 | /* DR4 is an alias for DR6, and DR5 is an alias for DR7. */
|
---|
1158 | if (iReg == 4 || iReg == 5)
|
---|
1159 | iReg += 2;
|
---|
1160 | pVCpu->cpum.s.Guest.dr[iReg] = Value;
|
---|
1161 | return CPUMRecalcHyperDRx(pVCpu, iReg);
|
---|
1162 | }
|
---|
1163 |
|
---|
1164 |
|
---|
1165 | /**
|
---|
1166 | * Recalculates the hypervisor DRx register values based on current guest
|
---|
1167 | * registers and DBGF breakpoints, updating changed registers depending on the
|
---|
1168 | * context.
|
---|
1169 | *
|
---|
1170 | * This is called whenever a guest DRx register is modified (any context) and
|
---|
1171 | * when DBGF sets a hardware breakpoint (ring-3 only, rendezvous).
|
---|
1172 | *
|
---|
1173 | * In raw-mode context this function will reload any (hyper) DRx registers which
|
---|
1174 | * comes out with a different value. It may also have to save the host debug
|
---|
1175 | * registers if that haven't been done already. In this context though, we'll
|
---|
1176 | * be intercepting and emulating all DRx accesses, so the hypervisor DRx values
|
---|
1177 | * are only important when breakpoints are actually enabled.
|
---|
1178 | *
|
---|
1179 | * In ring-0 (HM) context DR0-3 will be relocated by us, while DR7 will be
|
---|
1180 | * reloaded by the HM code if it changes. Further more, we will only use the
|
---|
1181 | * combined register set when the VBox debugger is actually using hardware BPs,
|
---|
1182 | * when it isn't we'll keep the guest DR0-3 + (maybe) DR6 loaded (DR6 doesn't
|
---|
1183 | * concern us here).
|
---|
1184 | *
|
---|
1185 | * In ring-3 we won't be loading anything, so well calculate hypervisor values
|
---|
1186 | * all the time.
|
---|
1187 | *
|
---|
1188 | * @returns VINF_SUCCESS.
|
---|
1189 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1190 | * @param iGstReg The guest debug register number that was modified.
|
---|
1191 | * UINT8_MAX if not guest register.
|
---|
1192 | */
|
---|
1193 | VMMDECL(int) CPUMRecalcHyperDRx(PVMCPUCC pVCpu, uint8_t iGstReg)
|
---|
1194 | {
|
---|
1195 | PVM pVM = pVCpu->CTX_SUFF(pVM);
|
---|
1196 | #ifndef IN_RING0
|
---|
1197 | RT_NOREF_PV(iGstReg);
|
---|
1198 | #endif
|
---|
1199 |
|
---|
1200 | /*
|
---|
1201 | * Compare the DR7s first.
|
---|
1202 | *
|
---|
1203 | * We only care about the enabled flags. GD is virtualized when we
|
---|
1204 | * dispatch the #DB, we never enable it. The DBGF DR7 value is will
|
---|
1205 | * always have the LE and GE bits set, so no need to check and disable
|
---|
1206 | * stuff if they're cleared like we have to for the guest DR7.
|
---|
1207 | */
|
---|
1208 | RTGCUINTREG uGstDr7 = CPUMGetGuestDR7(pVCpu);
|
---|
1209 | /** @todo This isn't correct. BPs work without setting LE and GE under AMD-V. They are also documented as unsupported by P6+. */
|
---|
1210 | if (!(uGstDr7 & (X86_DR7_LE | X86_DR7_GE)))
|
---|
1211 | uGstDr7 = 0;
|
---|
1212 | else if (!(uGstDr7 & X86_DR7_LE))
|
---|
1213 | uGstDr7 &= ~X86_DR7_LE_ALL;
|
---|
1214 | else if (!(uGstDr7 & X86_DR7_GE))
|
---|
1215 | uGstDr7 &= ~X86_DR7_GE_ALL;
|
---|
1216 |
|
---|
1217 | const RTGCUINTREG uDbgfDr7 = DBGFBpGetDR7(pVM);
|
---|
1218 | if ((uGstDr7 | uDbgfDr7) & X86_DR7_ENABLED_MASK)
|
---|
1219 | {
|
---|
1220 | Assert(!CPUMIsGuestDebugStateActive(pVCpu));
|
---|
1221 |
|
---|
1222 | /*
|
---|
1223 | * Ok, something is enabled. Recalc each of the breakpoints, taking
|
---|
1224 | * the VM debugger ones of the guest ones. In raw-mode context we will
|
---|
1225 | * not allow breakpoints with values inside the hypervisor area.
|
---|
1226 | */
|
---|
1227 | RTGCUINTREG uNewDr7 = X86_DR7_GE | X86_DR7_LE | X86_DR7_RA1_MASK;
|
---|
1228 |
|
---|
1229 | /* bp 0 */
|
---|
1230 | RTGCUINTREG uNewDr0;
|
---|
1231 | if (uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0))
|
---|
1232 | {
|
---|
1233 | uNewDr7 |= uDbgfDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
|
---|
1234 | uNewDr0 = DBGFBpGetDR0(pVM);
|
---|
1235 | }
|
---|
1236 | else if (uGstDr7 & (X86_DR7_L0 | X86_DR7_G0))
|
---|
1237 | {
|
---|
1238 | uNewDr0 = CPUMGetGuestDR0(pVCpu);
|
---|
1239 | uNewDr7 |= uGstDr7 & (X86_DR7_L0 | X86_DR7_G0 | X86_DR7_RW0_MASK | X86_DR7_LEN0_MASK);
|
---|
1240 | }
|
---|
1241 | else
|
---|
1242 | uNewDr0 = 0;
|
---|
1243 |
|
---|
1244 | /* bp 1 */
|
---|
1245 | RTGCUINTREG uNewDr1;
|
---|
1246 | if (uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1))
|
---|
1247 | {
|
---|
1248 | uNewDr7 |= uDbgfDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
|
---|
1249 | uNewDr1 = DBGFBpGetDR1(pVM);
|
---|
1250 | }
|
---|
1251 | else if (uGstDr7 & (X86_DR7_L1 | X86_DR7_G1))
|
---|
1252 | {
|
---|
1253 | uNewDr1 = CPUMGetGuestDR1(pVCpu);
|
---|
1254 | uNewDr7 |= uGstDr7 & (X86_DR7_L1 | X86_DR7_G1 | X86_DR7_RW1_MASK | X86_DR7_LEN1_MASK);
|
---|
1255 | }
|
---|
1256 | else
|
---|
1257 | uNewDr1 = 0;
|
---|
1258 |
|
---|
1259 | /* bp 2 */
|
---|
1260 | RTGCUINTREG uNewDr2;
|
---|
1261 | if (uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2))
|
---|
1262 | {
|
---|
1263 | uNewDr7 |= uDbgfDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
|
---|
1264 | uNewDr2 = DBGFBpGetDR2(pVM);
|
---|
1265 | }
|
---|
1266 | else if (uGstDr7 & (X86_DR7_L2 | X86_DR7_G2))
|
---|
1267 | {
|
---|
1268 | uNewDr2 = CPUMGetGuestDR2(pVCpu);
|
---|
1269 | uNewDr7 |= uGstDr7 & (X86_DR7_L2 | X86_DR7_G2 | X86_DR7_RW2_MASK | X86_DR7_LEN2_MASK);
|
---|
1270 | }
|
---|
1271 | else
|
---|
1272 | uNewDr2 = 0;
|
---|
1273 |
|
---|
1274 | /* bp 3 */
|
---|
1275 | RTGCUINTREG uNewDr3;
|
---|
1276 | if (uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3))
|
---|
1277 | {
|
---|
1278 | uNewDr7 |= uDbgfDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
|
---|
1279 | uNewDr3 = DBGFBpGetDR3(pVM);
|
---|
1280 | }
|
---|
1281 | else if (uGstDr7 & (X86_DR7_L3 | X86_DR7_G3))
|
---|
1282 | {
|
---|
1283 | uNewDr3 = CPUMGetGuestDR3(pVCpu);
|
---|
1284 | uNewDr7 |= uGstDr7 & (X86_DR7_L3 | X86_DR7_G3 | X86_DR7_RW3_MASK | X86_DR7_LEN3_MASK);
|
---|
1285 | }
|
---|
1286 | else
|
---|
1287 | uNewDr3 = 0;
|
---|
1288 |
|
---|
1289 | /*
|
---|
1290 | * Apply the updates.
|
---|
1291 | */
|
---|
1292 | pVCpu->cpum.s.fUseFlags |= CPUM_USE_DEBUG_REGS_HYPER;
|
---|
1293 | if (uNewDr3 != pVCpu->cpum.s.Hyper.dr[3])
|
---|
1294 | CPUMSetHyperDR3(pVCpu, uNewDr3);
|
---|
1295 | if (uNewDr2 != pVCpu->cpum.s.Hyper.dr[2])
|
---|
1296 | CPUMSetHyperDR2(pVCpu, uNewDr2);
|
---|
1297 | if (uNewDr1 != pVCpu->cpum.s.Hyper.dr[1])
|
---|
1298 | CPUMSetHyperDR1(pVCpu, uNewDr1);
|
---|
1299 | if (uNewDr0 != pVCpu->cpum.s.Hyper.dr[0])
|
---|
1300 | CPUMSetHyperDR0(pVCpu, uNewDr0);
|
---|
1301 | if (uNewDr7 != pVCpu->cpum.s.Hyper.dr[7])
|
---|
1302 | CPUMSetHyperDR7(pVCpu, uNewDr7);
|
---|
1303 | }
|
---|
1304 | #ifdef IN_RING0
|
---|
1305 | else if (CPUMIsGuestDebugStateActive(pVCpu))
|
---|
1306 | {
|
---|
1307 | /*
|
---|
1308 | * Reload the register that was modified. Normally this won't happen
|
---|
1309 | * as we won't intercept DRx writes when not having the hyper debug
|
---|
1310 | * state loaded, but in case we do for some reason we'll simply deal
|
---|
1311 | * with it.
|
---|
1312 | */
|
---|
1313 | switch (iGstReg)
|
---|
1314 | {
|
---|
1315 | case 0: ASMSetDR0(CPUMGetGuestDR0(pVCpu)); break;
|
---|
1316 | case 1: ASMSetDR1(CPUMGetGuestDR1(pVCpu)); break;
|
---|
1317 | case 2: ASMSetDR2(CPUMGetGuestDR2(pVCpu)); break;
|
---|
1318 | case 3: ASMSetDR3(CPUMGetGuestDR3(pVCpu)); break;
|
---|
1319 | default:
|
---|
1320 | AssertReturn(iGstReg != UINT8_MAX, VERR_INTERNAL_ERROR_3);
|
---|
1321 | }
|
---|
1322 | }
|
---|
1323 | #endif
|
---|
1324 | else
|
---|
1325 | {
|
---|
1326 | /*
|
---|
1327 | * No active debug state any more. In raw-mode this means we have to
|
---|
1328 | * make sure DR7 has everything disabled now, if we armed it already.
|
---|
1329 | * In ring-0 we might end up here when just single stepping.
|
---|
1330 | */
|
---|
1331 | #ifdef IN_RING0
|
---|
1332 | if (pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER)
|
---|
1333 | {
|
---|
1334 | if (pVCpu->cpum.s.Hyper.dr[0])
|
---|
1335 | ASMSetDR0(0);
|
---|
1336 | if (pVCpu->cpum.s.Hyper.dr[1])
|
---|
1337 | ASMSetDR1(0);
|
---|
1338 | if (pVCpu->cpum.s.Hyper.dr[2])
|
---|
1339 | ASMSetDR2(0);
|
---|
1340 | if (pVCpu->cpum.s.Hyper.dr[3])
|
---|
1341 | ASMSetDR3(0);
|
---|
1342 | pVCpu->cpum.s.fUseFlags &= ~CPUM_USED_DEBUG_REGS_HYPER;
|
---|
1343 | }
|
---|
1344 | #endif
|
---|
1345 | pVCpu->cpum.s.fUseFlags &= ~CPUM_USE_DEBUG_REGS_HYPER;
|
---|
1346 |
|
---|
1347 | /* Clear all the registers. */
|
---|
1348 | pVCpu->cpum.s.Hyper.dr[7] = X86_DR7_RA1_MASK;
|
---|
1349 | pVCpu->cpum.s.Hyper.dr[3] = 0;
|
---|
1350 | pVCpu->cpum.s.Hyper.dr[2] = 0;
|
---|
1351 | pVCpu->cpum.s.Hyper.dr[1] = 0;
|
---|
1352 | pVCpu->cpum.s.Hyper.dr[0] = 0;
|
---|
1353 |
|
---|
1354 | }
|
---|
1355 | Log2(("CPUMRecalcHyperDRx: fUseFlags=%#x %RGr %RGr %RGr %RGr %RGr %RGr\n",
|
---|
1356 | pVCpu->cpum.s.fUseFlags, pVCpu->cpum.s.Hyper.dr[0], pVCpu->cpum.s.Hyper.dr[1],
|
---|
1357 | pVCpu->cpum.s.Hyper.dr[2], pVCpu->cpum.s.Hyper.dr[3], pVCpu->cpum.s.Hyper.dr[6],
|
---|
1358 | pVCpu->cpum.s.Hyper.dr[7]));
|
---|
1359 |
|
---|
1360 | return VINF_SUCCESS;
|
---|
1361 | }
|
---|
1362 |
|
---|
1363 |
|
---|
1364 | /**
|
---|
1365 | * Set the guest XCR0 register.
|
---|
1366 | *
|
---|
1367 | * Will load additional state if the FPU state is already loaded (in ring-0 &
|
---|
1368 | * raw-mode context).
|
---|
1369 | *
|
---|
1370 | * @returns VINF_SUCCESS on success, VERR_CPUM_RAISE_GP_0 on invalid input
|
---|
1371 | * value.
|
---|
1372 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1373 | * @param uNewValue The new value.
|
---|
1374 | * @thread EMT(pVCpu)
|
---|
1375 | */
|
---|
1376 | VMM_INT_DECL(int) CPUMSetGuestXcr0(PVMCPUCC pVCpu, uint64_t uNewValue)
|
---|
1377 | {
|
---|
1378 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_XCRx);
|
---|
1379 | if ( (uNewValue & ~pVCpu->CTX_SUFF(pVM)->cpum.s.fXStateGuestMask) == 0
|
---|
1380 | /* The X87 bit cannot be cleared. */
|
---|
1381 | && (uNewValue & XSAVE_C_X87)
|
---|
1382 | /* AVX requires SSE. */
|
---|
1383 | && (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM)) != XSAVE_C_YMM
|
---|
1384 | /* AVX-512 requires YMM, SSE and all of its three components to be enabled. */
|
---|
1385 | && ( (uNewValue & (XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI)) == 0
|
---|
1386 | || (uNewValue & (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI))
|
---|
1387 | == (XSAVE_C_SSE | XSAVE_C_YMM | XSAVE_C_OPMASK | XSAVE_C_ZMM_HI256 | XSAVE_C_ZMM_16HI) )
|
---|
1388 | )
|
---|
1389 | {
|
---|
1390 | pVCpu->cpum.s.Guest.aXcr[0] = uNewValue;
|
---|
1391 |
|
---|
1392 | /* If more state components are enabled, we need to take care to load
|
---|
1393 | them if the FPU/SSE state is already loaded. May otherwise leak
|
---|
1394 | host state to the guest. */
|
---|
1395 | uint64_t fNewComponents = ~pVCpu->cpum.s.Guest.fXStateMask & uNewValue;
|
---|
1396 | if (fNewComponents)
|
---|
1397 | {
|
---|
1398 | #ifdef IN_RING0
|
---|
1399 | if (pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST)
|
---|
1400 | {
|
---|
1401 | if (pVCpu->cpum.s.Guest.fXStateMask != 0)
|
---|
1402 | /* Adding more components. */
|
---|
1403 | ASMXRstor(&pVCpu->cpum.s.Guest.XState, fNewComponents);
|
---|
1404 | else
|
---|
1405 | {
|
---|
1406 | /* We're switching from FXSAVE/FXRSTOR to XSAVE/XRSTOR. */
|
---|
1407 | pVCpu->cpum.s.Guest.fXStateMask |= XSAVE_C_X87 | XSAVE_C_SSE;
|
---|
1408 | if (uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE))
|
---|
1409 | ASMXRstor(&pVCpu->cpum.s.Guest.XState, uNewValue & ~(XSAVE_C_X87 | XSAVE_C_SSE));
|
---|
1410 | }
|
---|
1411 | }
|
---|
1412 | #endif
|
---|
1413 | pVCpu->cpum.s.Guest.fXStateMask |= uNewValue;
|
---|
1414 | }
|
---|
1415 | return VINF_SUCCESS;
|
---|
1416 | }
|
---|
1417 | return VERR_CPUM_RAISE_GP_0;
|
---|
1418 | }
|
---|
1419 |
|
---|
1420 |
|
---|
1421 | /**
|
---|
1422 | * Tests if the guest has No-Execute Page Protection Enabled (NXE).
|
---|
1423 | *
|
---|
1424 | * @returns true if in real mode, otherwise false.
|
---|
1425 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1426 | */
|
---|
1427 | VMMDECL(bool) CPUMIsGuestNXEnabled(PCVMCPU pVCpu)
|
---|
1428 | {
|
---|
1429 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
|
---|
1430 | return !!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_NXE);
|
---|
1431 | }
|
---|
1432 |
|
---|
1433 |
|
---|
1434 | /**
|
---|
1435 | * Tests if the guest has the Page Size Extension enabled (PSE).
|
---|
1436 | *
|
---|
1437 | * @returns true if in real mode, otherwise false.
|
---|
1438 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1439 | */
|
---|
1440 | VMMDECL(bool) CPUMIsGuestPageSizeExtEnabled(PCVMCPU pVCpu)
|
---|
1441 | {
|
---|
1442 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4);
|
---|
1443 | /* PAE or AMD64 implies support for big pages regardless of CR4.PSE */
|
---|
1444 | return !!(pVCpu->cpum.s.Guest.cr4 & (X86_CR4_PSE | X86_CR4_PAE));
|
---|
1445 | }
|
---|
1446 |
|
---|
1447 |
|
---|
1448 | /**
|
---|
1449 | * Tests if the guest has the paging enabled (PG).
|
---|
1450 | *
|
---|
1451 | * @returns true if in real mode, otherwise false.
|
---|
1452 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1453 | */
|
---|
1454 | VMMDECL(bool) CPUMIsGuestPagingEnabled(PCVMCPU pVCpu)
|
---|
1455 | {
|
---|
1456 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
1457 | return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG);
|
---|
1458 | }
|
---|
1459 |
|
---|
1460 |
|
---|
1461 | /**
|
---|
1462 | * Tests if the guest has the paging enabled (PG).
|
---|
1463 | *
|
---|
1464 | * @returns true if in real mode, otherwise false.
|
---|
1465 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1466 | */
|
---|
1467 | VMMDECL(bool) CPUMIsGuestR0WriteProtEnabled(PCVMCPU pVCpu)
|
---|
1468 | {
|
---|
1469 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
1470 | return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_WP);
|
---|
1471 | }
|
---|
1472 |
|
---|
1473 |
|
---|
1474 | /**
|
---|
1475 | * Tests if the guest is running in real mode or not.
|
---|
1476 | *
|
---|
1477 | * @returns true if in real mode, otherwise false.
|
---|
1478 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1479 | */
|
---|
1480 | VMMDECL(bool) CPUMIsGuestInRealMode(PCVMCPU pVCpu)
|
---|
1481 | {
|
---|
1482 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
1483 | return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
|
---|
1484 | }
|
---|
1485 |
|
---|
1486 |
|
---|
1487 | /**
|
---|
1488 | * Tests if the guest is running in real or virtual 8086 mode.
|
---|
1489 | *
|
---|
1490 | * @returns @c true if it is, @c false if not.
|
---|
1491 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1492 | */
|
---|
1493 | VMMDECL(bool) CPUMIsGuestInRealOrV86Mode(PCVMCPU pVCpu)
|
---|
1494 | {
|
---|
1495 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS);
|
---|
1496 | return !(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)
|
---|
1497 | || pVCpu->cpum.s.Guest.eflags.Bits.u1VM; /** @todo verify that this cannot be set in long mode. */
|
---|
1498 | }
|
---|
1499 |
|
---|
1500 |
|
---|
1501 | /**
|
---|
1502 | * Tests if the guest is running in protected or not.
|
---|
1503 | *
|
---|
1504 | * @returns true if in protected mode, otherwise false.
|
---|
1505 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1506 | */
|
---|
1507 | VMMDECL(bool) CPUMIsGuestInProtectedMode(PCVMCPU pVCpu)
|
---|
1508 | {
|
---|
1509 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
1510 | return !!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE);
|
---|
1511 | }
|
---|
1512 |
|
---|
1513 |
|
---|
1514 | /**
|
---|
1515 | * Tests if the guest is running in paged protected or not.
|
---|
1516 | *
|
---|
1517 | * @returns true if in paged protected mode, otherwise false.
|
---|
1518 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1519 | */
|
---|
1520 | VMMDECL(bool) CPUMIsGuestInPagedProtectedMode(PCVMCPU pVCpu)
|
---|
1521 | {
|
---|
1522 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0);
|
---|
1523 | return (pVCpu->cpum.s.Guest.cr0 & (X86_CR0_PE | X86_CR0_PG)) == (X86_CR0_PE | X86_CR0_PG);
|
---|
1524 | }
|
---|
1525 |
|
---|
1526 |
|
---|
1527 | /**
|
---|
1528 | * Tests if the guest is running in long mode or not.
|
---|
1529 | *
|
---|
1530 | * @returns true if in long mode, otherwise false.
|
---|
1531 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1532 | */
|
---|
1533 | VMMDECL(bool) CPUMIsGuestInLongMode(PCVMCPU pVCpu)
|
---|
1534 | {
|
---|
1535 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_EFER);
|
---|
1536 | return (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA) == MSR_K6_EFER_LMA;
|
---|
1537 | }
|
---|
1538 |
|
---|
1539 |
|
---|
1540 | /**
|
---|
1541 | * Tests if the guest is running in PAE mode or not.
|
---|
1542 | *
|
---|
1543 | * @returns true if in PAE mode, otherwise false.
|
---|
1544 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1545 | */
|
---|
1546 | VMMDECL(bool) CPUMIsGuestInPAEMode(PCVMCPU pVCpu)
|
---|
1547 | {
|
---|
1548 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR4 | CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER);
|
---|
1549 | /* Intel mentions EFER.LMA and EFER.LME in different parts of their spec. We shall use EFER.LMA rather
|
---|
1550 | than EFER.LME as it reflects if the CPU has entered paging with EFER.LME set. */
|
---|
1551 | return (pVCpu->cpum.s.Guest.cr4 & X86_CR4_PAE)
|
---|
1552 | && (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PG)
|
---|
1553 | && !(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA);
|
---|
1554 | }
|
---|
1555 |
|
---|
1556 |
|
---|
1557 | /**
|
---|
1558 | * Tests if the guest is running in 64 bits mode or not.
|
---|
1559 | *
|
---|
1560 | * @returns true if in 64 bits protected mode, otherwise false.
|
---|
1561 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1562 | */
|
---|
1563 | VMMDECL(bool) CPUMIsGuestIn64BitCode(PVMCPU pVCpu)
|
---|
1564 | {
|
---|
1565 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CS | CPUMCTX_EXTRN_EFER);
|
---|
1566 | if (!CPUMIsGuestInLongMode(pVCpu))
|
---|
1567 | return false;
|
---|
1568 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
|
---|
1569 | return pVCpu->cpum.s.Guest.cs.Attr.n.u1Long;
|
---|
1570 | }
|
---|
1571 |
|
---|
1572 |
|
---|
1573 | /**
|
---|
1574 | * Helper for CPUMIsGuestIn64BitCodeEx that handles lazy resolving of hidden CS
|
---|
1575 | * registers.
|
---|
1576 | *
|
---|
1577 | * @returns true if in 64 bits protected mode, otherwise false.
|
---|
1578 | * @param pCtx Pointer to the current guest CPU context.
|
---|
1579 | */
|
---|
1580 | VMM_INT_DECL(bool) CPUMIsGuestIn64BitCodeSlow(PCPUMCTX pCtx)
|
---|
1581 | {
|
---|
1582 | return CPUMIsGuestIn64BitCode(CPUM_GUEST_CTX_TO_VMCPU(pCtx));
|
---|
1583 | }
|
---|
1584 |
|
---|
1585 |
|
---|
1586 | /**
|
---|
1587 | * Sets the specified changed flags (CPUM_CHANGED_*).
|
---|
1588 | *
|
---|
1589 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1590 | * @param fChangedAdd The changed flags to add.
|
---|
1591 | */
|
---|
1592 | VMMDECL(void) CPUMSetChangedFlags(PVMCPU pVCpu, uint32_t fChangedAdd)
|
---|
1593 | {
|
---|
1594 | pVCpu->cpum.s.fChanged |= fChangedAdd;
|
---|
1595 | }
|
---|
1596 |
|
---|
1597 |
|
---|
1598 | /**
|
---|
1599 | * Checks if the CPU supports the XSAVE and XRSTOR instruction.
|
---|
1600 | *
|
---|
1601 | * @returns true if supported.
|
---|
1602 | * @returns false if not supported.
|
---|
1603 | * @param pVM The cross context VM structure.
|
---|
1604 | */
|
---|
1605 | VMMDECL(bool) CPUMSupportsXSave(PVM pVM)
|
---|
1606 | {
|
---|
1607 | return pVM->cpum.s.HostFeatures.fXSaveRstor != 0;
|
---|
1608 | }
|
---|
1609 |
|
---|
1610 |
|
---|
1611 | /**
|
---|
1612 | * Checks if the host OS uses the SYSENTER / SYSEXIT instructions.
|
---|
1613 | * @returns true if used.
|
---|
1614 | * @returns false if not used.
|
---|
1615 | * @param pVM The cross context VM structure.
|
---|
1616 | */
|
---|
1617 | VMMDECL(bool) CPUMIsHostUsingSysEnter(PVM pVM)
|
---|
1618 | {
|
---|
1619 | return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSENTER);
|
---|
1620 | }
|
---|
1621 |
|
---|
1622 |
|
---|
1623 | /**
|
---|
1624 | * Checks if the host OS uses the SYSCALL / SYSRET instructions.
|
---|
1625 | * @returns true if used.
|
---|
1626 | * @returns false if not used.
|
---|
1627 | * @param pVM The cross context VM structure.
|
---|
1628 | */
|
---|
1629 | VMMDECL(bool) CPUMIsHostUsingSysCall(PVM pVM)
|
---|
1630 | {
|
---|
1631 | return RT_BOOL(pVM->cpum.s.fHostUseFlags & CPUM_USE_SYSCALL);
|
---|
1632 | }
|
---|
1633 |
|
---|
1634 |
|
---|
1635 | /**
|
---|
1636 | * Checks if we activated the FPU/XMM state of the guest OS.
|
---|
1637 | *
|
---|
1638 | * Obsolete: This differs from CPUMIsGuestFPUStateLoaded() in that it refers to
|
---|
1639 | * the next time we'll be executing guest code, so it may return true for
|
---|
1640 | * 64-on-32 when we still haven't actually loaded the FPU status, just scheduled
|
---|
1641 | * it to be loaded the next time we go thru the world switcher
|
---|
1642 | * (CPUM_SYNC_FPU_STATE).
|
---|
1643 | *
|
---|
1644 | * @returns true / false.
|
---|
1645 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1646 | */
|
---|
1647 | VMMDECL(bool) CPUMIsGuestFPUStateActive(PVMCPU pVCpu)
|
---|
1648 | {
|
---|
1649 | bool fRet = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST);
|
---|
1650 | AssertMsg(fRet == pVCpu->cpum.s.Guest.fUsedFpuGuest, ("fRet=%d\n", fRet));
|
---|
1651 | return fRet;
|
---|
1652 | }
|
---|
1653 |
|
---|
1654 |
|
---|
1655 | /**
|
---|
1656 | * Checks if we've really loaded the FPU/XMM state of the guest OS.
|
---|
1657 | *
|
---|
1658 | * @returns true / false.
|
---|
1659 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1660 | */
|
---|
1661 | VMMDECL(bool) CPUMIsGuestFPUStateLoaded(PVMCPU pVCpu)
|
---|
1662 | {
|
---|
1663 | bool fRet = RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_GUEST);
|
---|
1664 | AssertMsg(fRet == pVCpu->cpum.s.Guest.fUsedFpuGuest, ("fRet=%d\n", fRet));
|
---|
1665 | return fRet;
|
---|
1666 | }
|
---|
1667 |
|
---|
1668 |
|
---|
1669 | /**
|
---|
1670 | * Checks if we saved the FPU/XMM state of the host OS.
|
---|
1671 | *
|
---|
1672 | * @returns true / false.
|
---|
1673 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1674 | */
|
---|
1675 | VMMDECL(bool) CPUMIsHostFPUStateSaved(PVMCPU pVCpu)
|
---|
1676 | {
|
---|
1677 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_FPU_HOST);
|
---|
1678 | }
|
---|
1679 |
|
---|
1680 |
|
---|
1681 | /**
|
---|
1682 | * Checks if the guest debug state is active.
|
---|
1683 | *
|
---|
1684 | * @returns boolean
|
---|
1685 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1686 | */
|
---|
1687 | VMMDECL(bool) CPUMIsGuestDebugStateActive(PVMCPU pVCpu)
|
---|
1688 | {
|
---|
1689 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_GUEST);
|
---|
1690 | }
|
---|
1691 |
|
---|
1692 |
|
---|
1693 | /**
|
---|
1694 | * Checks if the hyper debug state is active.
|
---|
1695 | *
|
---|
1696 | * @returns boolean
|
---|
1697 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1698 | */
|
---|
1699 | VMMDECL(bool) CPUMIsHyperDebugStateActive(PVMCPU pVCpu)
|
---|
1700 | {
|
---|
1701 | return RT_BOOL(pVCpu->cpum.s.fUseFlags & CPUM_USED_DEBUG_REGS_HYPER);
|
---|
1702 | }
|
---|
1703 |
|
---|
1704 |
|
---|
1705 | /**
|
---|
1706 | * Mark the guest's debug state as inactive.
|
---|
1707 | *
|
---|
1708 | * @returns boolean
|
---|
1709 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1710 | * @todo This API doesn't make sense any more.
|
---|
1711 | */
|
---|
1712 | VMMDECL(void) CPUMDeactivateGuestDebugState(PVMCPU pVCpu)
|
---|
1713 | {
|
---|
1714 | Assert(!(pVCpu->cpum.s.fUseFlags & (CPUM_USED_DEBUG_REGS_GUEST | CPUM_USED_DEBUG_REGS_HYPER | CPUM_USED_DEBUG_REGS_HOST)));
|
---|
1715 | NOREF(pVCpu);
|
---|
1716 | }
|
---|
1717 |
|
---|
1718 |
|
---|
1719 | /**
|
---|
1720 | * Get the current privilege level of the guest.
|
---|
1721 | *
|
---|
1722 | * @returns CPL
|
---|
1723 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1724 | */
|
---|
1725 | VMMDECL(uint32_t) CPUMGetGuestCPL(PVMCPU pVCpu)
|
---|
1726 | {
|
---|
1727 | /*
|
---|
1728 | * CPL can reliably be found in SS.DPL (hidden regs valid) or SS if not.
|
---|
1729 | *
|
---|
1730 | * Note! We used to check CS.DPL here, assuming it was always equal to
|
---|
1731 | * CPL even if a conforming segment was loaded. But this turned out to
|
---|
1732 | * only apply to older AMD-V. With VT-x we had an ACP2 regression
|
---|
1733 | * during install after a far call to ring 2 with VT-x. Then on newer
|
---|
1734 | * AMD-V CPUs we have to move the VMCB.guest.u8CPL into cs.Attr.n.u2Dpl
|
---|
1735 | * as well as ss.Attr.n.u2Dpl to make this (and other) code work right.
|
---|
1736 | *
|
---|
1737 | * So, forget CS.DPL, always use SS.DPL.
|
---|
1738 | *
|
---|
1739 | * Note! The SS RPL is always equal to the CPL, while the CS RPL
|
---|
1740 | * isn't necessarily equal if the segment is conforming.
|
---|
1741 | * See section 4.11.1 in the AMD manual.
|
---|
1742 | *
|
---|
1743 | * Update: Where the heck does it say CS.RPL can differ from CPL other than
|
---|
1744 | * right after real->prot mode switch and when in V8086 mode? That
|
---|
1745 | * section says the RPL specified in a direct transfere (call, jmp,
|
---|
1746 | * ret) is not the one loaded into CS. Besides, if CS.RPL != CPL
|
---|
1747 | * it would be impossible for an exception handle or the iret
|
---|
1748 | * instruction to figure out whether SS:ESP are part of the frame
|
---|
1749 | * or not. VBox or qemu bug must've lead to this misconception.
|
---|
1750 | *
|
---|
1751 | * Update2: On an AMD bulldozer system here, I've no trouble loading a null
|
---|
1752 | * selector into SS with an RPL other than the CPL when CPL != 3 and
|
---|
1753 | * we're in 64-bit mode. The intel dev box doesn't allow this, on
|
---|
1754 | * RPL = CPL. Weird.
|
---|
1755 | */
|
---|
1756 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_SS);
|
---|
1757 | uint32_t uCpl;
|
---|
1758 | if (pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE)
|
---|
1759 | {
|
---|
1760 | if (!pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
|
---|
1761 | {
|
---|
1762 | if (CPUMSELREG_ARE_HIDDEN_PARTS_VALID(pVCpu, &pVCpu->cpum.s.Guest.ss))
|
---|
1763 | uCpl = pVCpu->cpum.s.Guest.ss.Attr.n.u2Dpl;
|
---|
1764 | else
|
---|
1765 | uCpl = (pVCpu->cpum.s.Guest.ss.Sel & X86_SEL_RPL);
|
---|
1766 | }
|
---|
1767 | else
|
---|
1768 | uCpl = 3; /* V86 has CPL=3; REM doesn't set DPL=3 in V8086 mode. See @bugref{5130}. */
|
---|
1769 | }
|
---|
1770 | else
|
---|
1771 | uCpl = 0; /* Real mode is zero; CPL set to 3 for VT-x real-mode emulation. */
|
---|
1772 | return uCpl;
|
---|
1773 | }
|
---|
1774 |
|
---|
1775 |
|
---|
1776 | /**
|
---|
1777 | * Gets the current guest CPU mode.
|
---|
1778 | *
|
---|
1779 | * If paging mode is what you need, check out PGMGetGuestMode().
|
---|
1780 | *
|
---|
1781 | * @returns The CPU mode.
|
---|
1782 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1783 | */
|
---|
1784 | VMMDECL(CPUMMODE) CPUMGetGuestMode(PVMCPU pVCpu)
|
---|
1785 | {
|
---|
1786 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER);
|
---|
1787 | CPUMMODE enmMode;
|
---|
1788 | if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
|
---|
1789 | enmMode = CPUMMODE_REAL;
|
---|
1790 | else if (!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
|
---|
1791 | enmMode = CPUMMODE_PROTECTED;
|
---|
1792 | else
|
---|
1793 | enmMode = CPUMMODE_LONG;
|
---|
1794 |
|
---|
1795 | return enmMode;
|
---|
1796 | }
|
---|
1797 |
|
---|
1798 |
|
---|
1799 | /**
|
---|
1800 | * Figure whether the CPU is currently executing 16, 32 or 64 bit code.
|
---|
1801 | *
|
---|
1802 | * @returns 16, 32 or 64.
|
---|
1803 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
1804 | */
|
---|
1805 | VMMDECL(uint32_t) CPUMGetGuestCodeBits(PVMCPU pVCpu)
|
---|
1806 | {
|
---|
1807 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS);
|
---|
1808 |
|
---|
1809 | if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
|
---|
1810 | return 16;
|
---|
1811 |
|
---|
1812 | if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
|
---|
1813 | {
|
---|
1814 | Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA));
|
---|
1815 | return 16;
|
---|
1816 | }
|
---|
1817 |
|
---|
1818 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
|
---|
1819 | if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long
|
---|
1820 | && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
|
---|
1821 | return 64;
|
---|
1822 |
|
---|
1823 | if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig)
|
---|
1824 | return 32;
|
---|
1825 |
|
---|
1826 | return 16;
|
---|
1827 | }
|
---|
1828 |
|
---|
1829 |
|
---|
1830 | VMMDECL(DISCPUMODE) CPUMGetGuestDisMode(PVMCPU pVCpu)
|
---|
1831 | {
|
---|
1832 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR0 | CPUMCTX_EXTRN_EFER | CPUMCTX_EXTRN_RFLAGS | CPUMCTX_EXTRN_CS);
|
---|
1833 |
|
---|
1834 | if (!(pVCpu->cpum.s.Guest.cr0 & X86_CR0_PE))
|
---|
1835 | return DISCPUMODE_16BIT;
|
---|
1836 |
|
---|
1837 | if (pVCpu->cpum.s.Guest.eflags.Bits.u1VM)
|
---|
1838 | {
|
---|
1839 | Assert(!(pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA));
|
---|
1840 | return DISCPUMODE_16BIT;
|
---|
1841 | }
|
---|
1842 |
|
---|
1843 | CPUMSELREG_LAZY_LOAD_HIDDEN_PARTS(pVCpu, &pVCpu->cpum.s.Guest.cs);
|
---|
1844 | if ( pVCpu->cpum.s.Guest.cs.Attr.n.u1Long
|
---|
1845 | && (pVCpu->cpum.s.Guest.msrEFER & MSR_K6_EFER_LMA))
|
---|
1846 | return DISCPUMODE_64BIT;
|
---|
1847 |
|
---|
1848 | if (pVCpu->cpum.s.Guest.cs.Attr.n.u1DefBig)
|
---|
1849 | return DISCPUMODE_32BIT;
|
---|
1850 |
|
---|
1851 | return DISCPUMODE_16BIT;
|
---|
1852 | }
|
---|
1853 |
|
---|
1854 |
|
---|
1855 | /**
|
---|
1856 | * Gets the guest MXCSR_MASK value.
|
---|
1857 | *
|
---|
1858 | * This does not access the x87 state, but the value we determined at VM
|
---|
1859 | * initialization.
|
---|
1860 | *
|
---|
1861 | * @returns MXCSR mask.
|
---|
1862 | * @param pVM The cross context VM structure.
|
---|
1863 | */
|
---|
1864 | VMMDECL(uint32_t) CPUMGetGuestMxCsrMask(PVM pVM)
|
---|
1865 | {
|
---|
1866 | return pVM->cpum.s.GuestInfo.fMxCsrMask;
|
---|
1867 | }
|
---|
1868 |
|
---|
1869 |
|
---|
1870 | /**
|
---|
1871 | * Returns whether the guest has physical interrupts enabled.
|
---|
1872 | *
|
---|
1873 | * @returns @c true if interrupts are enabled, @c false otherwise.
|
---|
1874 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1875 | *
|
---|
1876 | * @remarks Warning! This function does -not- take into account the global-interrupt
|
---|
1877 | * flag (GIF).
|
---|
1878 | */
|
---|
1879 | VMM_INT_DECL(bool) CPUMIsGuestPhysIntrEnabled(PVMCPU pVCpu)
|
---|
1880 | {
|
---|
1881 | switch (CPUMGetGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest))
|
---|
1882 | {
|
---|
1883 | case CPUMHWVIRT_NONE:
|
---|
1884 | default:
|
---|
1885 | return pVCpu->cpum.s.Guest.eflags.Bits.u1IF;
|
---|
1886 | case CPUMHWVIRT_VMX:
|
---|
1887 | return CPUMIsGuestVmxPhysIntrEnabled(&pVCpu->cpum.s.Guest);
|
---|
1888 | case CPUMHWVIRT_SVM:
|
---|
1889 | return CPUMIsGuestSvmPhysIntrEnabled(pVCpu, &pVCpu->cpum.s.Guest);
|
---|
1890 | }
|
---|
1891 | }
|
---|
1892 |
|
---|
1893 |
|
---|
1894 | /**
|
---|
1895 | * Returns whether the nested-guest has virtual interrupts enabled.
|
---|
1896 | *
|
---|
1897 | * @returns @c true if interrupts are enabled, @c false otherwise.
|
---|
1898 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1899 | *
|
---|
1900 | * @remarks Warning! This function does -not- take into account the global-interrupt
|
---|
1901 | * flag (GIF).
|
---|
1902 | */
|
---|
1903 | VMM_INT_DECL(bool) CPUMIsGuestVirtIntrEnabled(PVMCPU pVCpu)
|
---|
1904 | {
|
---|
1905 | PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
|
---|
1906 | Assert(CPUMIsGuestInNestedHwvirtMode(pCtx));
|
---|
1907 |
|
---|
1908 | if (CPUMIsGuestInVmxNonRootMode(pCtx))
|
---|
1909 | return CPUMIsGuestVmxVirtIntrEnabled(pCtx);
|
---|
1910 |
|
---|
1911 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
|
---|
1912 | return CPUMIsGuestSvmVirtIntrEnabled(pVCpu, pCtx);
|
---|
1913 | }
|
---|
1914 |
|
---|
1915 |
|
---|
1916 | /**
|
---|
1917 | * Calculates the interruptiblity of the guest.
|
---|
1918 | *
|
---|
1919 | * @returns Interruptibility level.
|
---|
1920 | * @param pVCpu The cross context virtual CPU structure.
|
---|
1921 | */
|
---|
1922 | VMM_INT_DECL(CPUMINTERRUPTIBILITY) CPUMGetGuestInterruptibility(PVMCPU pVCpu)
|
---|
1923 | {
|
---|
1924 | #if 1
|
---|
1925 | /* Global-interrupt flag blocks pretty much everything we care about here. */
|
---|
1926 | if (CPUMGetGuestGif(&pVCpu->cpum.s.Guest))
|
---|
1927 | {
|
---|
1928 | /*
|
---|
1929 | * Physical interrupts are primarily blocked using EFLAGS. However, we cannot access
|
---|
1930 | * it directly here. If and how EFLAGS are used depends on the context (nested-guest
|
---|
1931 | * or raw-mode). Hence we use the function below which handles the details.
|
---|
1932 | */
|
---|
1933 | if ( pVCpu->cpum.s.Guest.fInhibit == 0
|
---|
1934 | || ( !(pVCpu->cpum.s.Guest.fInhibit & CPUMCTX_INHIBIT_NMI)
|
---|
1935 | && pVCpu->cpum.s.Guest.uRipInhibitInt != pVCpu->cpum.s.Guest.rip))
|
---|
1936 | {
|
---|
1937 | /** @todo OPT: this next call should be inlined! */
|
---|
1938 | if (CPUMIsGuestPhysIntrEnabled(pVCpu))
|
---|
1939 | {
|
---|
1940 | /** @todo OPT: type this out as it repeats tests. */
|
---|
1941 | if ( !CPUMIsGuestInNestedHwvirtMode(&pVCpu->cpum.s.Guest)
|
---|
1942 | || CPUMIsGuestVirtIntrEnabled(pVCpu))
|
---|
1943 | return CPUMINTERRUPTIBILITY_UNRESTRAINED;
|
---|
1944 |
|
---|
1945 | /* Physical interrupts are enabled, but nested-guest virtual interrupts are disabled. */
|
---|
1946 | return CPUMINTERRUPTIBILITY_VIRT_INT_DISABLED;
|
---|
1947 | }
|
---|
1948 | return CPUMINTERRUPTIBILITY_INT_DISABLED;
|
---|
1949 | }
|
---|
1950 |
|
---|
1951 | /*
|
---|
1952 | * Blocking the delivery of NMIs during an interrupt shadow is CPU implementation
|
---|
1953 | * specific. Therefore, in practice, we can't deliver an NMI in an interrupt shadow.
|
---|
1954 | * However, there is some uncertainity regarding the converse, i.e. whether
|
---|
1955 | * NMI-blocking until IRET blocks delivery of physical interrupts.
|
---|
1956 | *
|
---|
1957 | * See Intel spec. 25.4.1 "Event Blocking".
|
---|
1958 | */
|
---|
1959 | /** @todo r=bird: The above comment mixes up VMX root-mode and non-root. Section
|
---|
1960 | * 25.4.1 is only applicable to VMX non-root mode. In root mode /
|
---|
1961 | * non-VMX mode, I have not see any evidence in the intel manuals that
|
---|
1962 | * NMIs are not blocked when in an interrupt shadow. Section "6.7
|
---|
1963 | * NONMASKABLE INTERRUPT (NMI)" in SDM 3A seems pretty clear to me.
|
---|
1964 | */
|
---|
1965 | if (!(pVCpu->cpum.s.Guest.fInhibit & CPUMCTX_INHIBIT_NMI))
|
---|
1966 | return CPUMINTERRUPTIBILITY_INT_INHIBITED;
|
---|
1967 | return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
|
---|
1968 | }
|
---|
1969 | return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
|
---|
1970 | #else
|
---|
1971 | if (pVCpu->cpum.s.Guest.rflags.Bits.u1IF)
|
---|
1972 | {
|
---|
1973 | if (pVCpu->cpum.s.Guest.hwvirt.fGif)
|
---|
1974 | {
|
---|
1975 | if (!VMCPU_FF_IS_ANY_SET(pVCpu, VMCPU_FF_BLOCK_NMIS | VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1976 | return CPUMINTERRUPTIBILITY_UNRESTRAINED;
|
---|
1977 |
|
---|
1978 | /** @todo does blocking NMIs mean interrupts are also inhibited? */
|
---|
1979 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_INHIBIT_INTERRUPTS))
|
---|
1980 | {
|
---|
1981 | if (!VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
1982 | return CPUMINTERRUPTIBILITY_INT_INHIBITED;
|
---|
1983 | return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
|
---|
1984 | }
|
---|
1985 | AssertFailed();
|
---|
1986 | return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
|
---|
1987 | }
|
---|
1988 | return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
|
---|
1989 | }
|
---|
1990 | else
|
---|
1991 | {
|
---|
1992 | if (pVCpu->cpum.s.Guest.hwvirt.fGif)
|
---|
1993 | {
|
---|
1994 | if (VMCPU_FF_IS_SET(pVCpu, VMCPU_FF_BLOCK_NMIS))
|
---|
1995 | return CPUMINTERRUPTIBILITY_NMI_INHIBIT;
|
---|
1996 | return CPUMINTERRUPTIBILITY_INT_DISABLED;
|
---|
1997 | }
|
---|
1998 | return CPUMINTERRUPTIBILITY_GLOBAL_INHIBIT;
|
---|
1999 | }
|
---|
2000 | #endif
|
---|
2001 | }
|
---|
2002 |
|
---|
2003 |
|
---|
2004 | /**
|
---|
2005 | * Checks whether the SVM nested-guest has physical interrupts enabled.
|
---|
2006 | *
|
---|
2007 | * @returns true if interrupts are enabled, false otherwise.
|
---|
2008 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2009 | * @param pCtx The guest-CPU context.
|
---|
2010 | *
|
---|
2011 | * @remarks This does -not- take into account the global-interrupt flag.
|
---|
2012 | */
|
---|
2013 | VMM_INT_DECL(bool) CPUMIsGuestSvmPhysIntrEnabled(PCVMCPU pVCpu, PCCPUMCTX pCtx)
|
---|
2014 | {
|
---|
2015 | /** @todo Optimization: Avoid this function call and use a pointer to the
|
---|
2016 | * relevant eflags instead (setup during VMRUN instruction emulation). */
|
---|
2017 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
|
---|
2018 |
|
---|
2019 | X86EFLAGS fEFlags;
|
---|
2020 | if (CPUMIsGuestSvmVirtIntrMasking(pVCpu, pCtx))
|
---|
2021 | fEFlags.u = pCtx->hwvirt.svm.HostState.rflags.u;
|
---|
2022 | else
|
---|
2023 | fEFlags.u = pCtx->eflags.u;
|
---|
2024 |
|
---|
2025 | return fEFlags.Bits.u1IF;
|
---|
2026 | }
|
---|
2027 |
|
---|
2028 |
|
---|
2029 | /**
|
---|
2030 | * Checks whether the SVM nested-guest is in a state to receive virtual (setup
|
---|
2031 | * for injection by VMRUN instruction) interrupts.
|
---|
2032 | *
|
---|
2033 | * @returns VBox status code.
|
---|
2034 | * @retval true if it's ready, false otherwise.
|
---|
2035 | *
|
---|
2036 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2037 | * @param pCtx The guest-CPU context.
|
---|
2038 | */
|
---|
2039 | VMM_INT_DECL(bool) CPUMIsGuestSvmVirtIntrEnabled(PCVMCPU pVCpu, PCCPUMCTX pCtx)
|
---|
2040 | {
|
---|
2041 | RT_NOREF(pVCpu);
|
---|
2042 | Assert(CPUMIsGuestInSvmNestedHwVirtMode(pCtx));
|
---|
2043 |
|
---|
2044 | PCSVMVMCBCTRL pVmcbCtrl = &pCtx->hwvirt.svm.Vmcb.ctrl;
|
---|
2045 | PCSVMINTCTRL pVmcbIntCtrl = &pVmcbCtrl->IntCtrl;
|
---|
2046 | Assert(!pVmcbIntCtrl->n.u1VGifEnable); /* We don't support passing virtual-GIF feature to the guest yet. */
|
---|
2047 | if ( !pVmcbIntCtrl->n.u1IgnoreTPR
|
---|
2048 | && pVmcbIntCtrl->n.u4VIntrPrio <= pVmcbIntCtrl->n.u8VTPR)
|
---|
2049 | return false;
|
---|
2050 |
|
---|
2051 | return RT_BOOL(pCtx->eflags.u & X86_EFL_IF);
|
---|
2052 | }
|
---|
2053 |
|
---|
2054 |
|
---|
2055 | /**
|
---|
2056 | * Gets the pending SVM nested-guest interruptvector.
|
---|
2057 | *
|
---|
2058 | * @returns The nested-guest interrupt to inject.
|
---|
2059 | * @param pCtx The guest-CPU context.
|
---|
2060 | */
|
---|
2061 | VMM_INT_DECL(uint8_t) CPUMGetGuestSvmVirtIntrVector(PCCPUMCTX pCtx)
|
---|
2062 | {
|
---|
2063 | return pCtx->hwvirt.svm.Vmcb.ctrl.IntCtrl.n.u8VIntrVector;
|
---|
2064 | }
|
---|
2065 |
|
---|
2066 |
|
---|
2067 | /**
|
---|
2068 | * Restores the host-state from the host-state save area as part of a \#VMEXIT.
|
---|
2069 | *
|
---|
2070 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2071 | * @param pCtx The guest-CPU context.
|
---|
2072 | */
|
---|
2073 | VMM_INT_DECL(void) CPUMSvmVmExitRestoreHostState(PVMCPUCC pVCpu, PCPUMCTX pCtx)
|
---|
2074 | {
|
---|
2075 | /*
|
---|
2076 | * Reload the guest's "host state".
|
---|
2077 | */
|
---|
2078 | PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
|
---|
2079 | pCtx->es = pHostState->es;
|
---|
2080 | pCtx->cs = pHostState->cs;
|
---|
2081 | pCtx->ss = pHostState->ss;
|
---|
2082 | pCtx->ds = pHostState->ds;
|
---|
2083 | pCtx->gdtr = pHostState->gdtr;
|
---|
2084 | pCtx->idtr = pHostState->idtr;
|
---|
2085 | CPUMSetGuestEferMsrNoChecks(pVCpu, pCtx->msrEFER, pHostState->uEferMsr);
|
---|
2086 | CPUMSetGuestCR0(pVCpu, pHostState->uCr0 | X86_CR0_PE);
|
---|
2087 | pCtx->cr3 = pHostState->uCr3;
|
---|
2088 | CPUMSetGuestCR4(pVCpu, pHostState->uCr4);
|
---|
2089 | pCtx->rflags.u = pHostState->rflags.u;
|
---|
2090 | pCtx->rflags.Bits.u1VM = 0;
|
---|
2091 | pCtx->rip = pHostState->uRip;
|
---|
2092 | pCtx->rsp = pHostState->uRsp;
|
---|
2093 | pCtx->rax = pHostState->uRax;
|
---|
2094 | pCtx->dr[7] &= ~(X86_DR7_ENABLED_MASK | X86_DR7_RAZ_MASK | X86_DR7_MBZ_MASK);
|
---|
2095 | pCtx->dr[7] |= X86_DR7_RA1_MASK;
|
---|
2096 | Assert(pCtx->ss.Attr.n.u2Dpl == 0);
|
---|
2097 |
|
---|
2098 | /** @todo if RIP is not canonical or outside the CS segment limit, we need to
|
---|
2099 | * raise \#GP(0) in the guest. */
|
---|
2100 |
|
---|
2101 | /** @todo check the loaded host-state for consistency. Figure out what
|
---|
2102 | * exactly this involves? */
|
---|
2103 | }
|
---|
2104 |
|
---|
2105 |
|
---|
2106 | /**
|
---|
2107 | * Saves the host-state to the host-state save area as part of a VMRUN.
|
---|
2108 | *
|
---|
2109 | * @param pCtx The guest-CPU context.
|
---|
2110 | * @param cbInstr The length of the VMRUN instruction in bytes.
|
---|
2111 | */
|
---|
2112 | VMM_INT_DECL(void) CPUMSvmVmRunSaveHostState(PCPUMCTX pCtx, uint8_t cbInstr)
|
---|
2113 | {
|
---|
2114 | PSVMHOSTSTATE pHostState = &pCtx->hwvirt.svm.HostState;
|
---|
2115 | pHostState->es = pCtx->es;
|
---|
2116 | pHostState->cs = pCtx->cs;
|
---|
2117 | pHostState->ss = pCtx->ss;
|
---|
2118 | pHostState->ds = pCtx->ds;
|
---|
2119 | pHostState->gdtr = pCtx->gdtr;
|
---|
2120 | pHostState->idtr = pCtx->idtr;
|
---|
2121 | pHostState->uEferMsr = pCtx->msrEFER;
|
---|
2122 | pHostState->uCr0 = pCtx->cr0;
|
---|
2123 | pHostState->uCr3 = pCtx->cr3;
|
---|
2124 | pHostState->uCr4 = pCtx->cr4;
|
---|
2125 | pHostState->rflags.u = pCtx->rflags.u;
|
---|
2126 | pHostState->uRip = pCtx->rip + cbInstr;
|
---|
2127 | pHostState->uRsp = pCtx->rsp;
|
---|
2128 | pHostState->uRax = pCtx->rax;
|
---|
2129 | }
|
---|
2130 |
|
---|
2131 |
|
---|
2132 | /**
|
---|
2133 | * Applies the TSC offset of a nested-guest if any and returns the TSC value for the
|
---|
2134 | * nested-guest.
|
---|
2135 | *
|
---|
2136 | * @returns The TSC offset after applying any nested-guest TSC offset.
|
---|
2137 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2138 | * @param uTscValue The guest TSC.
|
---|
2139 | *
|
---|
2140 | * @sa CPUMRemoveNestedGuestTscOffset.
|
---|
2141 | */
|
---|
2142 | VMM_INT_DECL(uint64_t) CPUMApplyNestedGuestTscOffset(PCVMCPU pVCpu, uint64_t uTscValue)
|
---|
2143 | {
|
---|
2144 | PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
|
---|
2145 | if (CPUMIsGuestInVmxNonRootMode(pCtx))
|
---|
2146 | {
|
---|
2147 | if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_TSC_OFFSETTING))
|
---|
2148 | return uTscValue + pCtx->hwvirt.vmx.Vmcs.u64TscOffset.u;
|
---|
2149 | return uTscValue;
|
---|
2150 | }
|
---|
2151 |
|
---|
2152 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
2153 | {
|
---|
2154 | uint64_t offTsc;
|
---|
2155 | if (!HMGetGuestSvmTscOffset(pVCpu, &offTsc))
|
---|
2156 | offTsc = pCtx->hwvirt.svm.Vmcb.ctrl.u64TSCOffset;
|
---|
2157 | return uTscValue + offTsc;
|
---|
2158 | }
|
---|
2159 | return uTscValue;
|
---|
2160 | }
|
---|
2161 |
|
---|
2162 |
|
---|
2163 | /**
|
---|
2164 | * Removes the TSC offset of a nested-guest if any and returns the TSC value for the
|
---|
2165 | * guest.
|
---|
2166 | *
|
---|
2167 | * @returns The TSC offset after removing any nested-guest TSC offset.
|
---|
2168 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2169 | * @param uTscValue The nested-guest TSC.
|
---|
2170 | *
|
---|
2171 | * @sa CPUMApplyNestedGuestTscOffset.
|
---|
2172 | */
|
---|
2173 | VMM_INT_DECL(uint64_t) CPUMRemoveNestedGuestTscOffset(PCVMCPU pVCpu, uint64_t uTscValue)
|
---|
2174 | {
|
---|
2175 | PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
|
---|
2176 | if (CPUMIsGuestInVmxNonRootMode(pCtx))
|
---|
2177 | {
|
---|
2178 | if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_TSC_OFFSETTING))
|
---|
2179 | return uTscValue - pCtx->hwvirt.vmx.Vmcs.u64TscOffset.u;
|
---|
2180 | return uTscValue;
|
---|
2181 | }
|
---|
2182 |
|
---|
2183 | if (CPUMIsGuestInSvmNestedHwVirtMode(pCtx))
|
---|
2184 | {
|
---|
2185 | uint64_t offTsc;
|
---|
2186 | if (!HMGetGuestSvmTscOffset(pVCpu, &offTsc))
|
---|
2187 | offTsc = pCtx->hwvirt.svm.Vmcb.ctrl.u64TSCOffset;
|
---|
2188 | return uTscValue - offTsc;
|
---|
2189 | }
|
---|
2190 | return uTscValue;
|
---|
2191 | }
|
---|
2192 |
|
---|
2193 |
|
---|
2194 | /**
|
---|
2195 | * Used to dynamically imports state residing in NEM or HM.
|
---|
2196 | *
|
---|
2197 | * This is a worker for the CPUM_IMPORT_EXTRN_RET() macro and various IEM ones.
|
---|
2198 | *
|
---|
2199 | * @returns VBox status code.
|
---|
2200 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2201 | * @param fExtrnImport The fields to import.
|
---|
2202 | * @thread EMT(pVCpu)
|
---|
2203 | */
|
---|
2204 | VMM_INT_DECL(int) CPUMImportGuestStateOnDemand(PVMCPUCC pVCpu, uint64_t fExtrnImport)
|
---|
2205 | {
|
---|
2206 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
2207 | if (pVCpu->cpum.s.Guest.fExtrn & fExtrnImport)
|
---|
2208 | {
|
---|
2209 | switch (pVCpu->cpum.s.Guest.fExtrn & CPUMCTX_EXTRN_KEEPER_MASK)
|
---|
2210 | {
|
---|
2211 | case CPUMCTX_EXTRN_KEEPER_NEM:
|
---|
2212 | {
|
---|
2213 | int rc = NEMImportStateOnDemand(pVCpu, fExtrnImport);
|
---|
2214 | Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc));
|
---|
2215 | return rc;
|
---|
2216 | }
|
---|
2217 |
|
---|
2218 | case CPUMCTX_EXTRN_KEEPER_HM:
|
---|
2219 | {
|
---|
2220 | #ifdef IN_RING0
|
---|
2221 | int rc = HMR0ImportStateOnDemand(pVCpu, fExtrnImport);
|
---|
2222 | Assert(rc == VINF_SUCCESS || RT_FAILURE_NP(rc));
|
---|
2223 | return rc;
|
---|
2224 | #else
|
---|
2225 | AssertLogRelMsgFailed(("TODO Fetch HM state: %#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport));
|
---|
2226 | return VINF_SUCCESS;
|
---|
2227 | #endif
|
---|
2228 | }
|
---|
2229 | default:
|
---|
2230 | AssertLogRelMsgFailedReturn(("%#RX64 vs %#RX64\n", pVCpu->cpum.s.Guest.fExtrn, fExtrnImport), VERR_CPUM_IPE_2);
|
---|
2231 | }
|
---|
2232 | }
|
---|
2233 | return VINF_SUCCESS;
|
---|
2234 | }
|
---|
2235 |
|
---|
2236 |
|
---|
2237 | /**
|
---|
2238 | * Gets valid CR4 bits for the guest.
|
---|
2239 | *
|
---|
2240 | * @returns Valid CR4 bits.
|
---|
2241 | * @param pVM The cross context VM structure.
|
---|
2242 | */
|
---|
2243 | VMM_INT_DECL(uint64_t) CPUMGetGuestCR4ValidMask(PVM pVM)
|
---|
2244 | {
|
---|
2245 | PCCPUMFEATURES pGuestFeatures = &pVM->cpum.s.GuestFeatures;
|
---|
2246 | uint64_t fMask = X86_CR4_VME | X86_CR4_PVI
|
---|
2247 | | X86_CR4_TSD | X86_CR4_DE
|
---|
2248 | | X86_CR4_MCE | X86_CR4_PCE;
|
---|
2249 | if (pGuestFeatures->fPae)
|
---|
2250 | fMask |= X86_CR4_PAE;
|
---|
2251 | if (pGuestFeatures->fPge)
|
---|
2252 | fMask |= X86_CR4_PGE;
|
---|
2253 | if (pGuestFeatures->fPse)
|
---|
2254 | fMask |= X86_CR4_PSE;
|
---|
2255 | if (pGuestFeatures->fFxSaveRstor)
|
---|
2256 | fMask |= X86_CR4_OSFXSR;
|
---|
2257 | if (pGuestFeatures->fVmx)
|
---|
2258 | fMask |= X86_CR4_VMXE;
|
---|
2259 | if (pGuestFeatures->fXSaveRstor)
|
---|
2260 | fMask |= X86_CR4_OSXSAVE;
|
---|
2261 | if (pGuestFeatures->fPcid)
|
---|
2262 | fMask |= X86_CR4_PCIDE;
|
---|
2263 | if (pGuestFeatures->fFsGsBase)
|
---|
2264 | fMask |= X86_CR4_FSGSBASE;
|
---|
2265 | if (pGuestFeatures->fSse)
|
---|
2266 | fMask |= X86_CR4_OSXMMEEXCPT;
|
---|
2267 | return fMask;
|
---|
2268 | }
|
---|
2269 |
|
---|
2270 |
|
---|
2271 | /**
|
---|
2272 | * Sets the PAE PDPEs for the guest.
|
---|
2273 | *
|
---|
2274 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2275 | * @param paPaePdpes The PAE PDPEs to set.
|
---|
2276 | */
|
---|
2277 | VMM_INT_DECL(void) CPUMSetGuestPaePdpes(PVMCPU pVCpu, PCX86PDPE paPaePdpes)
|
---|
2278 | {
|
---|
2279 | Assert(paPaePdpes);
|
---|
2280 | for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->cpum.s.Guest.aPaePdpes); i++)
|
---|
2281 | pVCpu->cpum.s.Guest.aPaePdpes[i].u = paPaePdpes[i].u;
|
---|
2282 | pVCpu->cpum.s.Guest.fExtrn &= ~CPUMCTX_EXTRN_CR3;
|
---|
2283 | }
|
---|
2284 |
|
---|
2285 |
|
---|
2286 | /**
|
---|
2287 | * Gets the PAE PDPTEs for the guest.
|
---|
2288 | *
|
---|
2289 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2290 | * @param paPaePdpes Where to store the PAE PDPEs.
|
---|
2291 | */
|
---|
2292 | VMM_INT_DECL(void) CPUMGetGuestPaePdpes(PVMCPU pVCpu, PX86PDPE paPaePdpes)
|
---|
2293 | {
|
---|
2294 | Assert(paPaePdpes);
|
---|
2295 | CPUM_INT_ASSERT_NOT_EXTRN(pVCpu, CPUMCTX_EXTRN_CR3);
|
---|
2296 | for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->cpum.s.Guest.aPaePdpes); i++)
|
---|
2297 | paPaePdpes[i].u = pVCpu->cpum.s.Guest.aPaePdpes[i].u;
|
---|
2298 | }
|
---|
2299 |
|
---|
2300 |
|
---|
2301 | /**
|
---|
2302 | * Starts a VMX-preemption timer to expire as specified by the nested hypervisor.
|
---|
2303 | *
|
---|
2304 | * @returns VBox status code.
|
---|
2305 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2306 | * @param uTimer The VMCS preemption timer value.
|
---|
2307 | * @param cShift The VMX-preemption timer shift (usually based on guest
|
---|
2308 | * VMX MSR rate).
|
---|
2309 | * @param pu64EntryTick Where to store the current tick when the timer is
|
---|
2310 | * programmed.
|
---|
2311 | * @thread EMT(pVCpu)
|
---|
2312 | */
|
---|
2313 | VMM_INT_DECL(int) CPUMStartGuestVmxPremptTimer(PVMCPUCC pVCpu, uint32_t uTimer, uint8_t cShift, uint64_t *pu64EntryTick)
|
---|
2314 | {
|
---|
2315 | Assert(uTimer);
|
---|
2316 | Assert(cShift <= 31);
|
---|
2317 | Assert(pu64EntryTick);
|
---|
2318 | VMCPU_ASSERT_EMT(pVCpu);
|
---|
2319 | uint64_t const cTicksToNext = uTimer << cShift;
|
---|
2320 | return TMTimerSetRelative(pVCpu->CTX_SUFF(pVM), pVCpu->cpum.s.hNestedVmxPreemptTimer, cTicksToNext, pu64EntryTick);
|
---|
2321 | }
|
---|
2322 |
|
---|
2323 |
|
---|
2324 | /**
|
---|
2325 | * Stops the VMX-preemption timer from firing.
|
---|
2326 | *
|
---|
2327 | * @returns VBox status code.
|
---|
2328 | * @param pVCpu The cross context virtual CPU structure of the calling thread.
|
---|
2329 | * @thread EMT.
|
---|
2330 | *
|
---|
2331 | * @remarks This can be called during VM reset, so we cannot assume it will be on
|
---|
2332 | * the EMT corresponding to @c pVCpu.
|
---|
2333 | */
|
---|
2334 | VMM_INT_DECL(int) CPUMStopGuestVmxPremptTimer(PVMCPUCC pVCpu)
|
---|
2335 | {
|
---|
2336 | /*
|
---|
2337 | * CPUM gets initialized before TM, so we defer creation of timers till CPUMR3InitCompleted().
|
---|
2338 | * However, we still get called during CPUMR3Init() and hence we need to check if we have
|
---|
2339 | * a valid timer object before trying to stop it.
|
---|
2340 | */
|
---|
2341 | int rc;
|
---|
2342 | TMTIMERHANDLE hTimer = pVCpu->cpum.s.hNestedVmxPreemptTimer;
|
---|
2343 | if (hTimer != NIL_TMTIMERHANDLE)
|
---|
2344 | {
|
---|
2345 | PVMCC pVM = pVCpu->CTX_SUFF(pVM);
|
---|
2346 | rc = TMTimerLock(pVM, hTimer, VERR_IGNORED);
|
---|
2347 | if (rc == VINF_SUCCESS)
|
---|
2348 | {
|
---|
2349 | if (TMTimerIsActive(pVM, hTimer))
|
---|
2350 | TMTimerStop(pVM, hTimer);
|
---|
2351 | TMTimerUnlock(pVM, hTimer);
|
---|
2352 | }
|
---|
2353 | }
|
---|
2354 | else
|
---|
2355 | rc = VERR_NOT_FOUND;
|
---|
2356 | return rc;
|
---|
2357 | }
|
---|
2358 |
|
---|
2359 |
|
---|
2360 | /**
|
---|
2361 | * Gets the read and write permission bits for an MSR in an MSR bitmap.
|
---|
2362 | *
|
---|
2363 | * @returns VMXMSRPM_XXX - the MSR permission.
|
---|
2364 | * @param pvMsrBitmap Pointer to the MSR bitmap.
|
---|
2365 | * @param idMsr The MSR to get permissions for.
|
---|
2366 | *
|
---|
2367 | * @sa hmR0VmxSetMsrPermission.
|
---|
2368 | */
|
---|
2369 | VMM_INT_DECL(uint32_t) CPUMGetVmxMsrPermission(void const *pvMsrBitmap, uint32_t idMsr)
|
---|
2370 | {
|
---|
2371 | AssertPtrReturn(pvMsrBitmap, VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR);
|
---|
2372 |
|
---|
2373 | uint8_t const * const pbMsrBitmap = (uint8_t const * const)pvMsrBitmap;
|
---|
2374 |
|
---|
2375 | /*
|
---|
2376 | * MSR Layout:
|
---|
2377 | * Byte index MSR range Interpreted as
|
---|
2378 | * 0x000 - 0x3ff 0x00000000 - 0x00001fff Low MSR read bits.
|
---|
2379 | * 0x400 - 0x7ff 0xc0000000 - 0xc0001fff High MSR read bits.
|
---|
2380 | * 0x800 - 0xbff 0x00000000 - 0x00001fff Low MSR write bits.
|
---|
2381 | * 0xc00 - 0xfff 0xc0000000 - 0xc0001fff High MSR write bits.
|
---|
2382 | *
|
---|
2383 | * A bit corresponding to an MSR within the above range causes a VM-exit
|
---|
2384 | * if the bit is 1 on executions of RDMSR/WRMSR. If an MSR falls out of
|
---|
2385 | * the MSR range, it always cause a VM-exit.
|
---|
2386 | *
|
---|
2387 | * See Intel spec. 24.6.9 "MSR-Bitmap Address".
|
---|
2388 | */
|
---|
2389 | uint32_t const offBitmapRead = 0;
|
---|
2390 | uint32_t const offBitmapWrite = 0x800;
|
---|
2391 | uint32_t offMsr;
|
---|
2392 | uint32_t iBit;
|
---|
2393 | if (idMsr <= UINT32_C(0x00001fff))
|
---|
2394 | {
|
---|
2395 | offMsr = 0;
|
---|
2396 | iBit = idMsr;
|
---|
2397 | }
|
---|
2398 | else if (idMsr - UINT32_C(0xc0000000) <= UINT32_C(0x00001fff))
|
---|
2399 | {
|
---|
2400 | offMsr = 0x400;
|
---|
2401 | iBit = idMsr - UINT32_C(0xc0000000);
|
---|
2402 | }
|
---|
2403 | else
|
---|
2404 | {
|
---|
2405 | LogFunc(("Warning! Out of range MSR %#RX32\n", idMsr));
|
---|
2406 | return VMXMSRPM_EXIT_RD | VMXMSRPM_EXIT_WR;
|
---|
2407 | }
|
---|
2408 |
|
---|
2409 | /*
|
---|
2410 | * Get the MSR read permissions.
|
---|
2411 | */
|
---|
2412 | uint32_t fRet;
|
---|
2413 | uint32_t const offMsrRead = offBitmapRead + offMsr;
|
---|
2414 | Assert(offMsrRead + (iBit >> 3) < offBitmapWrite);
|
---|
2415 | if (ASMBitTest(pbMsrBitmap, (offMsrRead << 3) + iBit))
|
---|
2416 | fRet = VMXMSRPM_EXIT_RD;
|
---|
2417 | else
|
---|
2418 | fRet = VMXMSRPM_ALLOW_RD;
|
---|
2419 |
|
---|
2420 | /*
|
---|
2421 | * Get the MSR write permissions.
|
---|
2422 | */
|
---|
2423 | uint32_t const offMsrWrite = offBitmapWrite + offMsr;
|
---|
2424 | Assert(offMsrWrite + (iBit >> 3) < X86_PAGE_4K_SIZE);
|
---|
2425 | if (ASMBitTest(pbMsrBitmap, (offMsrWrite << 3) + iBit))
|
---|
2426 | fRet |= VMXMSRPM_EXIT_WR;
|
---|
2427 | else
|
---|
2428 | fRet |= VMXMSRPM_ALLOW_WR;
|
---|
2429 |
|
---|
2430 | Assert(VMXMSRPM_IS_FLAG_VALID(fRet));
|
---|
2431 | return fRet;
|
---|
2432 | }
|
---|
2433 |
|
---|
2434 |
|
---|
2435 | /**
|
---|
2436 | * Checks the permission bits for the specified I/O port from the given I/O bitmap
|
---|
2437 | * to see if causes a VM-exit.
|
---|
2438 | *
|
---|
2439 | * @returns @c true if the I/O port access must cause a VM-exit, @c false otherwise.
|
---|
2440 | * @param pbIoBitmap Pointer to I/O bitmap.
|
---|
2441 | * @param uPort The I/O port being accessed.
|
---|
2442 | * @param cbAccess e size of the I/O access in bytes (1, 2 or 4 bytes).
|
---|
2443 | */
|
---|
2444 | static bool cpumGetVmxIoBitmapPermission(uint8_t const *pbIoBitmap, uint16_t uPort, uint8_t cbAccess)
|
---|
2445 | {
|
---|
2446 | Assert(cbAccess == 1 || cbAccess == 2 || cbAccess == 4);
|
---|
2447 |
|
---|
2448 | /*
|
---|
2449 | * If the I/O port access wraps around the 16-bit port I/O space, we must cause a
|
---|
2450 | * VM-exit.
|
---|
2451 | *
|
---|
2452 | * Reading 1, 2, 4 bytes at ports 0xffff, 0xfffe and 0xfffc are valid and do not
|
---|
2453 | * constitute a wrap around. However, reading 2 bytes at port 0xffff or 4 bytes
|
---|
2454 | * from port 0xffff/0xfffe/0xfffd constitute a wrap around. In other words, any
|
---|
2455 | * access to -both- ports 0xffff and port 0 is a wrap around.
|
---|
2456 | *
|
---|
2457 | * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
|
---|
2458 | */
|
---|
2459 | uint32_t const uPortLast = uPort + cbAccess;
|
---|
2460 | if (uPortLast > 0x10000)
|
---|
2461 | return true;
|
---|
2462 |
|
---|
2463 | /*
|
---|
2464 | * If any bit corresponding to the I/O access is set, we must cause a VM-exit.
|
---|
2465 | */
|
---|
2466 | uint16_t const offPerm = uPort >> 3; /* Byte offset of the port. */
|
---|
2467 | uint16_t const idxPermBit = uPort - (offPerm << 3); /* Bit offset within byte. */
|
---|
2468 | Assert(idxPermBit < 8);
|
---|
2469 | static const uint8_t s_afMask[] = { 0x0, 0x1, 0x3, 0x7, 0xf }; /* Bit-mask for all access sizes. */
|
---|
2470 | uint16_t const fMask = s_afMask[cbAccess] << idxPermBit; /* Bit-mask of the access. */
|
---|
2471 |
|
---|
2472 | /* Fetch 8 or 16-bits depending on whether the access spans 8-bit boundary. */
|
---|
2473 | RTUINT16U uPerm;
|
---|
2474 | uPerm.s.Lo = pbIoBitmap[offPerm];
|
---|
2475 | if (idxPermBit + cbAccess > 8)
|
---|
2476 | uPerm.s.Hi = pbIoBitmap[offPerm + 1];
|
---|
2477 | else
|
---|
2478 | uPerm.s.Hi = 0;
|
---|
2479 |
|
---|
2480 | /* If any bit for the access is 1, we must cause a VM-exit. */
|
---|
2481 | if (uPerm.u & fMask)
|
---|
2482 | return true;
|
---|
2483 |
|
---|
2484 | return false;
|
---|
2485 | }
|
---|
2486 |
|
---|
2487 |
|
---|
2488 | /**
|
---|
2489 | * Returns whether the given VMCS field is valid and supported for the guest.
|
---|
2490 | *
|
---|
2491 | * @param pVM The cross context VM structure.
|
---|
2492 | * @param u64VmcsField The VMCS field.
|
---|
2493 | *
|
---|
2494 | * @remarks This takes into account the CPU features exposed to the guest.
|
---|
2495 | */
|
---|
2496 | VMM_INT_DECL(bool) CPUMIsGuestVmxVmcsFieldValid(PVMCC pVM, uint64_t u64VmcsField)
|
---|
2497 | {
|
---|
2498 | uint32_t const uFieldEncHi = RT_HI_U32(u64VmcsField);
|
---|
2499 | uint32_t const uFieldEncLo = RT_LO_U32(u64VmcsField);
|
---|
2500 | if (!uFieldEncHi)
|
---|
2501 | { /* likely */ }
|
---|
2502 | else
|
---|
2503 | return false;
|
---|
2504 |
|
---|
2505 | PCCPUMFEATURES pFeat = &pVM->cpum.s.GuestFeatures;
|
---|
2506 | switch (uFieldEncLo)
|
---|
2507 | {
|
---|
2508 | /*
|
---|
2509 | * 16-bit fields.
|
---|
2510 | */
|
---|
2511 | /* Control fields. */
|
---|
2512 | case VMX_VMCS16_VPID: return pFeat->fVmxVpid;
|
---|
2513 | case VMX_VMCS16_POSTED_INT_NOTIFY_VECTOR: return pFeat->fVmxPostedInt;
|
---|
2514 | case VMX_VMCS16_EPTP_INDEX: return pFeat->fVmxEptXcptVe;
|
---|
2515 |
|
---|
2516 | /* Guest-state fields. */
|
---|
2517 | case VMX_VMCS16_GUEST_ES_SEL:
|
---|
2518 | case VMX_VMCS16_GUEST_CS_SEL:
|
---|
2519 | case VMX_VMCS16_GUEST_SS_SEL:
|
---|
2520 | case VMX_VMCS16_GUEST_DS_SEL:
|
---|
2521 | case VMX_VMCS16_GUEST_FS_SEL:
|
---|
2522 | case VMX_VMCS16_GUEST_GS_SEL:
|
---|
2523 | case VMX_VMCS16_GUEST_LDTR_SEL:
|
---|
2524 | case VMX_VMCS16_GUEST_TR_SEL: return true;
|
---|
2525 | case VMX_VMCS16_GUEST_INTR_STATUS: return pFeat->fVmxVirtIntDelivery;
|
---|
2526 | case VMX_VMCS16_GUEST_PML_INDEX: return pFeat->fVmxPml;
|
---|
2527 |
|
---|
2528 | /* Host-state fields. */
|
---|
2529 | case VMX_VMCS16_HOST_ES_SEL:
|
---|
2530 | case VMX_VMCS16_HOST_CS_SEL:
|
---|
2531 | case VMX_VMCS16_HOST_SS_SEL:
|
---|
2532 | case VMX_VMCS16_HOST_DS_SEL:
|
---|
2533 | case VMX_VMCS16_HOST_FS_SEL:
|
---|
2534 | case VMX_VMCS16_HOST_GS_SEL:
|
---|
2535 | case VMX_VMCS16_HOST_TR_SEL: return true;
|
---|
2536 |
|
---|
2537 | /*
|
---|
2538 | * 64-bit fields.
|
---|
2539 | */
|
---|
2540 | /* Control fields. */
|
---|
2541 | case VMX_VMCS64_CTRL_IO_BITMAP_A_FULL:
|
---|
2542 | case VMX_VMCS64_CTRL_IO_BITMAP_A_HIGH:
|
---|
2543 | case VMX_VMCS64_CTRL_IO_BITMAP_B_FULL:
|
---|
2544 | case VMX_VMCS64_CTRL_IO_BITMAP_B_HIGH: return pFeat->fVmxUseIoBitmaps;
|
---|
2545 | case VMX_VMCS64_CTRL_MSR_BITMAP_FULL:
|
---|
2546 | case VMX_VMCS64_CTRL_MSR_BITMAP_HIGH: return pFeat->fVmxUseMsrBitmaps;
|
---|
2547 | case VMX_VMCS64_CTRL_EXIT_MSR_STORE_FULL:
|
---|
2548 | case VMX_VMCS64_CTRL_EXIT_MSR_STORE_HIGH:
|
---|
2549 | case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_FULL:
|
---|
2550 | case VMX_VMCS64_CTRL_EXIT_MSR_LOAD_HIGH:
|
---|
2551 | case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_FULL:
|
---|
2552 | case VMX_VMCS64_CTRL_ENTRY_MSR_LOAD_HIGH:
|
---|
2553 | case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_FULL:
|
---|
2554 | case VMX_VMCS64_CTRL_EXEC_VMCS_PTR_HIGH: return true;
|
---|
2555 | case VMX_VMCS64_CTRL_EXEC_PML_ADDR_FULL:
|
---|
2556 | case VMX_VMCS64_CTRL_EXEC_PML_ADDR_HIGH: return pFeat->fVmxPml;
|
---|
2557 | case VMX_VMCS64_CTRL_TSC_OFFSET_FULL:
|
---|
2558 | case VMX_VMCS64_CTRL_TSC_OFFSET_HIGH: return true;
|
---|
2559 | case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_FULL:
|
---|
2560 | case VMX_VMCS64_CTRL_VIRT_APIC_PAGEADDR_HIGH: return pFeat->fVmxUseTprShadow;
|
---|
2561 | case VMX_VMCS64_CTRL_APIC_ACCESSADDR_FULL:
|
---|
2562 | case VMX_VMCS64_CTRL_APIC_ACCESSADDR_HIGH: return pFeat->fVmxVirtApicAccess;
|
---|
2563 | case VMX_VMCS64_CTRL_POSTED_INTR_DESC_FULL:
|
---|
2564 | case VMX_VMCS64_CTRL_POSTED_INTR_DESC_HIGH: return pFeat->fVmxPostedInt;
|
---|
2565 | case VMX_VMCS64_CTRL_VMFUNC_CTRLS_FULL:
|
---|
2566 | case VMX_VMCS64_CTRL_VMFUNC_CTRLS_HIGH: return pFeat->fVmxVmFunc;
|
---|
2567 | case VMX_VMCS64_CTRL_EPTP_FULL:
|
---|
2568 | case VMX_VMCS64_CTRL_EPTP_HIGH: return pFeat->fVmxEpt;
|
---|
2569 | case VMX_VMCS64_CTRL_EOI_BITMAP_0_FULL:
|
---|
2570 | case VMX_VMCS64_CTRL_EOI_BITMAP_0_HIGH:
|
---|
2571 | case VMX_VMCS64_CTRL_EOI_BITMAP_1_FULL:
|
---|
2572 | case VMX_VMCS64_CTRL_EOI_BITMAP_1_HIGH:
|
---|
2573 | case VMX_VMCS64_CTRL_EOI_BITMAP_2_FULL:
|
---|
2574 | case VMX_VMCS64_CTRL_EOI_BITMAP_2_HIGH:
|
---|
2575 | case VMX_VMCS64_CTRL_EOI_BITMAP_3_FULL:
|
---|
2576 | case VMX_VMCS64_CTRL_EOI_BITMAP_3_HIGH: return pFeat->fVmxVirtIntDelivery;
|
---|
2577 | case VMX_VMCS64_CTRL_EPTP_LIST_FULL:
|
---|
2578 | case VMX_VMCS64_CTRL_EPTP_LIST_HIGH:
|
---|
2579 | {
|
---|
2580 | PCVMCPU pVCpu = pVM->CTX_SUFF(apCpus)[0];
|
---|
2581 | uint64_t const uVmFuncMsr = pVCpu->cpum.s.Guest.hwvirt.vmx.Msrs.u64VmFunc;
|
---|
2582 | return RT_BOOL(RT_BF_GET(uVmFuncMsr, VMX_BF_VMFUNC_EPTP_SWITCHING));
|
---|
2583 | }
|
---|
2584 | case VMX_VMCS64_CTRL_VMREAD_BITMAP_FULL:
|
---|
2585 | case VMX_VMCS64_CTRL_VMREAD_BITMAP_HIGH:
|
---|
2586 | case VMX_VMCS64_CTRL_VMWRITE_BITMAP_FULL:
|
---|
2587 | case VMX_VMCS64_CTRL_VMWRITE_BITMAP_HIGH: return pFeat->fVmxVmcsShadowing;
|
---|
2588 | case VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_FULL:
|
---|
2589 | case VMX_VMCS64_CTRL_VE_XCPT_INFO_ADDR_HIGH: return pFeat->fVmxEptXcptVe;
|
---|
2590 | case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_FULL:
|
---|
2591 | case VMX_VMCS64_CTRL_XSS_EXITING_BITMAP_HIGH: return pFeat->fVmxXsavesXrstors;
|
---|
2592 | case VMX_VMCS64_CTRL_TSC_MULTIPLIER_FULL:
|
---|
2593 | case VMX_VMCS64_CTRL_TSC_MULTIPLIER_HIGH: return pFeat->fVmxUseTscScaling;
|
---|
2594 | case VMX_VMCS64_CTRL_PROC_EXEC3_FULL:
|
---|
2595 | case VMX_VMCS64_CTRL_PROC_EXEC3_HIGH: return pFeat->fVmxTertiaryExecCtls;
|
---|
2596 |
|
---|
2597 | /* Read-only data fields. */
|
---|
2598 | case VMX_VMCS64_RO_GUEST_PHYS_ADDR_FULL:
|
---|
2599 | case VMX_VMCS64_RO_GUEST_PHYS_ADDR_HIGH: return pFeat->fVmxEpt;
|
---|
2600 |
|
---|
2601 | /* Guest-state fields. */
|
---|
2602 | case VMX_VMCS64_GUEST_VMCS_LINK_PTR_FULL:
|
---|
2603 | case VMX_VMCS64_GUEST_VMCS_LINK_PTR_HIGH:
|
---|
2604 | case VMX_VMCS64_GUEST_DEBUGCTL_FULL:
|
---|
2605 | case VMX_VMCS64_GUEST_DEBUGCTL_HIGH: return true;
|
---|
2606 | case VMX_VMCS64_GUEST_PAT_FULL:
|
---|
2607 | case VMX_VMCS64_GUEST_PAT_HIGH: return pFeat->fVmxEntryLoadPatMsr || pFeat->fVmxExitSavePatMsr;
|
---|
2608 | case VMX_VMCS64_GUEST_EFER_FULL:
|
---|
2609 | case VMX_VMCS64_GUEST_EFER_HIGH: return pFeat->fVmxEntryLoadEferMsr || pFeat->fVmxExitSaveEferMsr;
|
---|
2610 | case VMX_VMCS64_GUEST_PDPTE0_FULL:
|
---|
2611 | case VMX_VMCS64_GUEST_PDPTE0_HIGH:
|
---|
2612 | case VMX_VMCS64_GUEST_PDPTE1_FULL:
|
---|
2613 | case VMX_VMCS64_GUEST_PDPTE1_HIGH:
|
---|
2614 | case VMX_VMCS64_GUEST_PDPTE2_FULL:
|
---|
2615 | case VMX_VMCS64_GUEST_PDPTE2_HIGH:
|
---|
2616 | case VMX_VMCS64_GUEST_PDPTE3_FULL:
|
---|
2617 | case VMX_VMCS64_GUEST_PDPTE3_HIGH: return pFeat->fVmxEpt;
|
---|
2618 |
|
---|
2619 | /* Host-state fields. */
|
---|
2620 | case VMX_VMCS64_HOST_PAT_FULL:
|
---|
2621 | case VMX_VMCS64_HOST_PAT_HIGH: return pFeat->fVmxExitLoadPatMsr;
|
---|
2622 | case VMX_VMCS64_HOST_EFER_FULL:
|
---|
2623 | case VMX_VMCS64_HOST_EFER_HIGH: return pFeat->fVmxExitLoadEferMsr;
|
---|
2624 |
|
---|
2625 | /*
|
---|
2626 | * 32-bit fields.
|
---|
2627 | */
|
---|
2628 | /* Control fields. */
|
---|
2629 | case VMX_VMCS32_CTRL_PIN_EXEC:
|
---|
2630 | case VMX_VMCS32_CTRL_PROC_EXEC:
|
---|
2631 | case VMX_VMCS32_CTRL_EXCEPTION_BITMAP:
|
---|
2632 | case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MASK:
|
---|
2633 | case VMX_VMCS32_CTRL_PAGEFAULT_ERROR_MATCH:
|
---|
2634 | case VMX_VMCS32_CTRL_CR3_TARGET_COUNT:
|
---|
2635 | case VMX_VMCS32_CTRL_EXIT:
|
---|
2636 | case VMX_VMCS32_CTRL_EXIT_MSR_STORE_COUNT:
|
---|
2637 | case VMX_VMCS32_CTRL_EXIT_MSR_LOAD_COUNT:
|
---|
2638 | case VMX_VMCS32_CTRL_ENTRY:
|
---|
2639 | case VMX_VMCS32_CTRL_ENTRY_MSR_LOAD_COUNT:
|
---|
2640 | case VMX_VMCS32_CTRL_ENTRY_INTERRUPTION_INFO:
|
---|
2641 | case VMX_VMCS32_CTRL_ENTRY_EXCEPTION_ERRCODE:
|
---|
2642 | case VMX_VMCS32_CTRL_ENTRY_INSTR_LENGTH: return true;
|
---|
2643 | case VMX_VMCS32_CTRL_TPR_THRESHOLD: return pFeat->fVmxUseTprShadow;
|
---|
2644 | case VMX_VMCS32_CTRL_PROC_EXEC2: return pFeat->fVmxSecondaryExecCtls;
|
---|
2645 | case VMX_VMCS32_CTRL_PLE_GAP:
|
---|
2646 | case VMX_VMCS32_CTRL_PLE_WINDOW: return pFeat->fVmxPauseLoopExit;
|
---|
2647 |
|
---|
2648 | /* Read-only data fields. */
|
---|
2649 | case VMX_VMCS32_RO_VM_INSTR_ERROR:
|
---|
2650 | case VMX_VMCS32_RO_EXIT_REASON:
|
---|
2651 | case VMX_VMCS32_RO_EXIT_INTERRUPTION_INFO:
|
---|
2652 | case VMX_VMCS32_RO_EXIT_INTERRUPTION_ERROR_CODE:
|
---|
2653 | case VMX_VMCS32_RO_IDT_VECTORING_INFO:
|
---|
2654 | case VMX_VMCS32_RO_IDT_VECTORING_ERROR_CODE:
|
---|
2655 | case VMX_VMCS32_RO_EXIT_INSTR_LENGTH:
|
---|
2656 | case VMX_VMCS32_RO_EXIT_INSTR_INFO: return true;
|
---|
2657 |
|
---|
2658 | /* Guest-state fields. */
|
---|
2659 | case VMX_VMCS32_GUEST_ES_LIMIT:
|
---|
2660 | case VMX_VMCS32_GUEST_CS_LIMIT:
|
---|
2661 | case VMX_VMCS32_GUEST_SS_LIMIT:
|
---|
2662 | case VMX_VMCS32_GUEST_DS_LIMIT:
|
---|
2663 | case VMX_VMCS32_GUEST_FS_LIMIT:
|
---|
2664 | case VMX_VMCS32_GUEST_GS_LIMIT:
|
---|
2665 | case VMX_VMCS32_GUEST_LDTR_LIMIT:
|
---|
2666 | case VMX_VMCS32_GUEST_TR_LIMIT:
|
---|
2667 | case VMX_VMCS32_GUEST_GDTR_LIMIT:
|
---|
2668 | case VMX_VMCS32_GUEST_IDTR_LIMIT:
|
---|
2669 | case VMX_VMCS32_GUEST_ES_ACCESS_RIGHTS:
|
---|
2670 | case VMX_VMCS32_GUEST_CS_ACCESS_RIGHTS:
|
---|
2671 | case VMX_VMCS32_GUEST_SS_ACCESS_RIGHTS:
|
---|
2672 | case VMX_VMCS32_GUEST_DS_ACCESS_RIGHTS:
|
---|
2673 | case VMX_VMCS32_GUEST_FS_ACCESS_RIGHTS:
|
---|
2674 | case VMX_VMCS32_GUEST_GS_ACCESS_RIGHTS:
|
---|
2675 | case VMX_VMCS32_GUEST_LDTR_ACCESS_RIGHTS:
|
---|
2676 | case VMX_VMCS32_GUEST_TR_ACCESS_RIGHTS:
|
---|
2677 | case VMX_VMCS32_GUEST_INT_STATE:
|
---|
2678 | case VMX_VMCS32_GUEST_ACTIVITY_STATE:
|
---|
2679 | case VMX_VMCS32_GUEST_SMBASE:
|
---|
2680 | case VMX_VMCS32_GUEST_SYSENTER_CS: return true;
|
---|
2681 | case VMX_VMCS32_PREEMPT_TIMER_VALUE: return pFeat->fVmxPreemptTimer;
|
---|
2682 |
|
---|
2683 | /* Host-state fields. */
|
---|
2684 | case VMX_VMCS32_HOST_SYSENTER_CS: return true;
|
---|
2685 |
|
---|
2686 | /*
|
---|
2687 | * Natural-width fields.
|
---|
2688 | */
|
---|
2689 | /* Control fields. */
|
---|
2690 | case VMX_VMCS_CTRL_CR0_MASK:
|
---|
2691 | case VMX_VMCS_CTRL_CR4_MASK:
|
---|
2692 | case VMX_VMCS_CTRL_CR0_READ_SHADOW:
|
---|
2693 | case VMX_VMCS_CTRL_CR4_READ_SHADOW:
|
---|
2694 | case VMX_VMCS_CTRL_CR3_TARGET_VAL0:
|
---|
2695 | case VMX_VMCS_CTRL_CR3_TARGET_VAL1:
|
---|
2696 | case VMX_VMCS_CTRL_CR3_TARGET_VAL2:
|
---|
2697 | case VMX_VMCS_CTRL_CR3_TARGET_VAL3: return true;
|
---|
2698 |
|
---|
2699 | /* Read-only data fields. */
|
---|
2700 | case VMX_VMCS_RO_EXIT_QUALIFICATION:
|
---|
2701 | case VMX_VMCS_RO_IO_RCX:
|
---|
2702 | case VMX_VMCS_RO_IO_RSI:
|
---|
2703 | case VMX_VMCS_RO_IO_RDI:
|
---|
2704 | case VMX_VMCS_RO_IO_RIP:
|
---|
2705 | case VMX_VMCS_RO_GUEST_LINEAR_ADDR: return true;
|
---|
2706 |
|
---|
2707 | /* Guest-state fields. */
|
---|
2708 | case VMX_VMCS_GUEST_CR0:
|
---|
2709 | case VMX_VMCS_GUEST_CR3:
|
---|
2710 | case VMX_VMCS_GUEST_CR4:
|
---|
2711 | case VMX_VMCS_GUEST_ES_BASE:
|
---|
2712 | case VMX_VMCS_GUEST_CS_BASE:
|
---|
2713 | case VMX_VMCS_GUEST_SS_BASE:
|
---|
2714 | case VMX_VMCS_GUEST_DS_BASE:
|
---|
2715 | case VMX_VMCS_GUEST_FS_BASE:
|
---|
2716 | case VMX_VMCS_GUEST_GS_BASE:
|
---|
2717 | case VMX_VMCS_GUEST_LDTR_BASE:
|
---|
2718 | case VMX_VMCS_GUEST_TR_BASE:
|
---|
2719 | case VMX_VMCS_GUEST_GDTR_BASE:
|
---|
2720 | case VMX_VMCS_GUEST_IDTR_BASE:
|
---|
2721 | case VMX_VMCS_GUEST_DR7:
|
---|
2722 | case VMX_VMCS_GUEST_RSP:
|
---|
2723 | case VMX_VMCS_GUEST_RIP:
|
---|
2724 | case VMX_VMCS_GUEST_RFLAGS:
|
---|
2725 | case VMX_VMCS_GUEST_PENDING_DEBUG_XCPTS:
|
---|
2726 | case VMX_VMCS_GUEST_SYSENTER_ESP:
|
---|
2727 | case VMX_VMCS_GUEST_SYSENTER_EIP: return true;
|
---|
2728 |
|
---|
2729 | /* Host-state fields. */
|
---|
2730 | case VMX_VMCS_HOST_CR0:
|
---|
2731 | case VMX_VMCS_HOST_CR3:
|
---|
2732 | case VMX_VMCS_HOST_CR4:
|
---|
2733 | case VMX_VMCS_HOST_FS_BASE:
|
---|
2734 | case VMX_VMCS_HOST_GS_BASE:
|
---|
2735 | case VMX_VMCS_HOST_TR_BASE:
|
---|
2736 | case VMX_VMCS_HOST_GDTR_BASE:
|
---|
2737 | case VMX_VMCS_HOST_IDTR_BASE:
|
---|
2738 | case VMX_VMCS_HOST_SYSENTER_ESP:
|
---|
2739 | case VMX_VMCS_HOST_SYSENTER_EIP:
|
---|
2740 | case VMX_VMCS_HOST_RSP:
|
---|
2741 | case VMX_VMCS_HOST_RIP: return true;
|
---|
2742 | }
|
---|
2743 |
|
---|
2744 | return false;
|
---|
2745 | }
|
---|
2746 |
|
---|
2747 |
|
---|
2748 | /**
|
---|
2749 | * Checks whether the given I/O access should cause a nested-guest VM-exit.
|
---|
2750 | *
|
---|
2751 | * @returns @c true if it causes a VM-exit, @c false otherwise.
|
---|
2752 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2753 | * @param u16Port The I/O port being accessed.
|
---|
2754 | * @param cbAccess The size of the I/O access in bytes (1, 2 or 4 bytes).
|
---|
2755 | */
|
---|
2756 | VMM_INT_DECL(bool) CPUMIsGuestVmxIoInterceptSet(PCVMCPU pVCpu, uint16_t u16Port, uint8_t cbAccess)
|
---|
2757 | {
|
---|
2758 | PCCPUMCTX pCtx = &pVCpu->cpum.s.Guest;
|
---|
2759 | if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_UNCOND_IO_EXIT))
|
---|
2760 | return true;
|
---|
2761 |
|
---|
2762 | if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_USE_IO_BITMAPS))
|
---|
2763 | return cpumGetVmxIoBitmapPermission(pCtx->hwvirt.vmx.abIoBitmap, u16Port, cbAccess);
|
---|
2764 |
|
---|
2765 | return false;
|
---|
2766 | }
|
---|
2767 |
|
---|
2768 |
|
---|
2769 | /**
|
---|
2770 | * Checks whether the Mov-to-CR3 instruction causes a nested-guest VM-exit.
|
---|
2771 | *
|
---|
2772 | * @returns @c true if it causes a VM-exit, @c false otherwise.
|
---|
2773 | * @param pVCpu The cross context virtual CPU structure of the calling EMT.
|
---|
2774 | * @param uNewCr3 The CR3 value being written.
|
---|
2775 | */
|
---|
2776 | VMM_INT_DECL(bool) CPUMIsGuestVmxMovToCr3InterceptSet(PVMCPU pVCpu, uint64_t uNewCr3)
|
---|
2777 | {
|
---|
2778 | /*
|
---|
2779 | * If the CR3-load exiting control is set and the new CR3 value does not
|
---|
2780 | * match any of the CR3-target values in the VMCS, we must cause a VM-exit.
|
---|
2781 | *
|
---|
2782 | * See Intel spec. 25.1.3 "Instructions That Cause VM Exits Conditionally".
|
---|
2783 | */
|
---|
2784 | PCCPUMCTX const pCtx = &pVCpu->cpum.s.Guest;
|
---|
2785 | if (CPUMIsGuestVmxProcCtlsSet(pCtx, VMX_PROC_CTLS_CR3_LOAD_EXIT))
|
---|
2786 | {
|
---|
2787 | uint32_t const uCr3TargetCount = pCtx->hwvirt.vmx.Vmcs.u32Cr3TargetCount;
|
---|
2788 | Assert(uCr3TargetCount <= VMX_V_CR3_TARGET_COUNT);
|
---|
2789 |
|
---|
2790 | /* If the CR3-target count is 0, cause a VM-exit. */
|
---|
2791 | if (uCr3TargetCount == 0)
|
---|
2792 | return true;
|
---|
2793 |
|
---|
2794 | /* If the CR3 being written doesn't match any of the target values, cause a VM-exit. */
|
---|
2795 | AssertCompile(VMX_V_CR3_TARGET_COUNT == 4);
|
---|
2796 | if ( uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target0.u
|
---|
2797 | && uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target1.u
|
---|
2798 | && uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target2.u
|
---|
2799 | && uNewCr3 != pCtx->hwvirt.vmx.Vmcs.u64Cr3Target3.u)
|
---|
2800 | return true;
|
---|
2801 | }
|
---|
2802 | return false;
|
---|
2803 | }
|
---|
2804 |
|
---|
2805 |
|
---|
2806 | /**
|
---|
2807 | * Checks whether a VMREAD or VMWRITE instruction for the given VMCS field causes a
|
---|
2808 | * VM-exit or not.
|
---|
2809 | *
|
---|
2810 | * @returns @c true if the VMREAD/VMWRITE is intercepted, @c false otherwise.
|
---|
2811 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2812 | * @param uExitReason The VM-exit reason (VMX_EXIT_VMREAD or
|
---|
2813 | * VMX_EXIT_VMREAD).
|
---|
2814 | * @param u64VmcsField The VMCS field.
|
---|
2815 | */
|
---|
2816 | VMM_INT_DECL(bool) CPUMIsGuestVmxVmreadVmwriteInterceptSet(PCVMCPU pVCpu, uint32_t uExitReason, uint64_t u64VmcsField)
|
---|
2817 | {
|
---|
2818 | Assert(CPUMIsGuestInVmxNonRootMode(&pVCpu->cpum.s.Guest));
|
---|
2819 | Assert( uExitReason == VMX_EXIT_VMREAD
|
---|
2820 | || uExitReason == VMX_EXIT_VMWRITE);
|
---|
2821 |
|
---|
2822 | /*
|
---|
2823 | * Without VMCS shadowing, all VMREAD and VMWRITE instructions are intercepted.
|
---|
2824 | */
|
---|
2825 | if (!CPUMIsGuestVmxProcCtls2Set(&pVCpu->cpum.s.Guest, VMX_PROC_CTLS2_VMCS_SHADOWING))
|
---|
2826 | return true;
|
---|
2827 |
|
---|
2828 | /*
|
---|
2829 | * If any reserved bit in the 64-bit VMCS field encoding is set, the VMREAD/VMWRITE
|
---|
2830 | * is intercepted. This excludes any reserved bits in the valid parts of the field
|
---|
2831 | * encoding (i.e. bit 12).
|
---|
2832 | */
|
---|
2833 | if (u64VmcsField & VMX_VMCSFIELD_RSVD_MASK)
|
---|
2834 | return true;
|
---|
2835 |
|
---|
2836 | /*
|
---|
2837 | * Finally, consult the VMREAD/VMWRITE bitmap whether to intercept the instruction or not.
|
---|
2838 | */
|
---|
2839 | uint32_t const u32VmcsField = RT_LO_U32(u64VmcsField);
|
---|
2840 | uint8_t const * const pbBitmap = uExitReason == VMX_EXIT_VMREAD
|
---|
2841 | ? &pVCpu->cpum.s.Guest.hwvirt.vmx.abVmreadBitmap[0]
|
---|
2842 | : &pVCpu->cpum.s.Guest.hwvirt.vmx.abVmwriteBitmap[0];
|
---|
2843 | Assert(pbBitmap);
|
---|
2844 | Assert(u32VmcsField >> 3 < VMX_V_VMREAD_VMWRITE_BITMAP_SIZE);
|
---|
2845 | return ASMBitTest(pbBitmap, (u32VmcsField << 3) + (u32VmcsField & 7));
|
---|
2846 | }
|
---|
2847 |
|
---|
2848 |
|
---|
2849 |
|
---|
2850 | /**
|
---|
2851 | * Determines whether the given I/O access should cause a nested-guest \#VMEXIT.
|
---|
2852 | *
|
---|
2853 | * @param pvIoBitmap Pointer to the nested-guest IO bitmap.
|
---|
2854 | * @param u16Port The IO port being accessed.
|
---|
2855 | * @param enmIoType The type of IO access.
|
---|
2856 | * @param cbReg The IO operand size in bytes.
|
---|
2857 | * @param cAddrSizeBits The address size bits (for 16, 32 or 64).
|
---|
2858 | * @param iEffSeg The effective segment number.
|
---|
2859 | * @param fRep Whether this is a repeating IO instruction (REP prefix).
|
---|
2860 | * @param fStrIo Whether this is a string IO instruction.
|
---|
2861 | * @param pIoExitInfo Pointer to the SVMIOIOEXITINFO struct to be filled.
|
---|
2862 | * Optional, can be NULL.
|
---|
2863 | */
|
---|
2864 | VMM_INT_DECL(bool) CPUMIsSvmIoInterceptSet(void *pvIoBitmap, uint16_t u16Port, SVMIOIOTYPE enmIoType, uint8_t cbReg,
|
---|
2865 | uint8_t cAddrSizeBits, uint8_t iEffSeg, bool fRep, bool fStrIo,
|
---|
2866 | PSVMIOIOEXITINFO pIoExitInfo)
|
---|
2867 | {
|
---|
2868 | Assert(cAddrSizeBits == 16 || cAddrSizeBits == 32 || cAddrSizeBits == 64);
|
---|
2869 | Assert(cbReg == 1 || cbReg == 2 || cbReg == 4 || cbReg == 8);
|
---|
2870 |
|
---|
2871 | /*
|
---|
2872 | * The IOPM layout:
|
---|
2873 | * Each bit represents one 8-bit port. That makes a total of 0..65535 bits or
|
---|
2874 | * two 4K pages.
|
---|
2875 | *
|
---|
2876 | * For IO instructions that access more than a single byte, the permission bits
|
---|
2877 | * for all bytes are checked; if any bit is set to 1, the IO access is intercepted.
|
---|
2878 | *
|
---|
2879 | * Since it's possible to do a 32-bit IO access at port 65534 (accessing 4 bytes),
|
---|
2880 | * we need 3 extra bits beyond the second 4K page.
|
---|
2881 | */
|
---|
2882 | static const uint16_t s_auSizeMasks[] = { 0, 1, 3, 0, 0xf, 0, 0, 0 };
|
---|
2883 |
|
---|
2884 | uint16_t const offIopm = u16Port >> 3;
|
---|
2885 | uint16_t const fSizeMask = s_auSizeMasks[(cAddrSizeBits >> SVM_IOIO_OP_SIZE_SHIFT) & 7];
|
---|
2886 | uint8_t const cShift = u16Port - (offIopm << 3);
|
---|
2887 | uint16_t const fIopmMask = (1 << cShift) | (fSizeMask << cShift);
|
---|
2888 |
|
---|
2889 | uint8_t const *pbIopm = (uint8_t *)pvIoBitmap;
|
---|
2890 | Assert(pbIopm);
|
---|
2891 | pbIopm += offIopm;
|
---|
2892 | uint16_t const u16Iopm = *(uint16_t *)pbIopm;
|
---|
2893 | if (u16Iopm & fIopmMask)
|
---|
2894 | {
|
---|
2895 | if (pIoExitInfo)
|
---|
2896 | {
|
---|
2897 | static const uint32_t s_auIoOpSize[] =
|
---|
2898 | { SVM_IOIO_32_BIT_OP, SVM_IOIO_8_BIT_OP, SVM_IOIO_16_BIT_OP, 0, SVM_IOIO_32_BIT_OP, 0, 0, 0 };
|
---|
2899 |
|
---|
2900 | static const uint32_t s_auIoAddrSize[] =
|
---|
2901 | { 0, SVM_IOIO_16_BIT_ADDR, SVM_IOIO_32_BIT_ADDR, 0, SVM_IOIO_64_BIT_ADDR, 0, 0, 0 };
|
---|
2902 |
|
---|
2903 | pIoExitInfo->u = s_auIoOpSize[cbReg & 7];
|
---|
2904 | pIoExitInfo->u |= s_auIoAddrSize[(cAddrSizeBits >> 4) & 7];
|
---|
2905 | pIoExitInfo->n.u1Str = fStrIo;
|
---|
2906 | pIoExitInfo->n.u1Rep = fRep;
|
---|
2907 | pIoExitInfo->n.u3Seg = iEffSeg & 7;
|
---|
2908 | pIoExitInfo->n.u1Type = enmIoType;
|
---|
2909 | pIoExitInfo->n.u16Port = u16Port;
|
---|
2910 | }
|
---|
2911 | return true;
|
---|
2912 | }
|
---|
2913 |
|
---|
2914 | /** @todo remove later (for debugging as VirtualBox always traps all IO
|
---|
2915 | * intercepts). */
|
---|
2916 | AssertMsgFailed(("CPUMSvmIsIOInterceptActive: We expect an IO intercept here!\n"));
|
---|
2917 | return false;
|
---|
2918 | }
|
---|
2919 |
|
---|
2920 |
|
---|
2921 | /**
|
---|
2922 | * Gets the MSR permission bitmap byte and bit offset for the specified MSR.
|
---|
2923 | *
|
---|
2924 | * @returns VBox status code.
|
---|
2925 | * @param idMsr The MSR being requested.
|
---|
2926 | * @param pbOffMsrpm Where to store the byte offset in the MSR permission
|
---|
2927 | * bitmap for @a idMsr.
|
---|
2928 | * @param puMsrpmBit Where to store the bit offset starting at the byte
|
---|
2929 | * returned in @a pbOffMsrpm.
|
---|
2930 | */
|
---|
2931 | VMM_INT_DECL(int) CPUMGetSvmMsrpmOffsetAndBit(uint32_t idMsr, uint16_t *pbOffMsrpm, uint8_t *puMsrpmBit)
|
---|
2932 | {
|
---|
2933 | Assert(pbOffMsrpm);
|
---|
2934 | Assert(puMsrpmBit);
|
---|
2935 |
|
---|
2936 | /*
|
---|
2937 | * MSRPM Layout:
|
---|
2938 | * Byte offset MSR range
|
---|
2939 | * 0x000 - 0x7ff 0x00000000 - 0x00001fff
|
---|
2940 | * 0x800 - 0xfff 0xc0000000 - 0xc0001fff
|
---|
2941 | * 0x1000 - 0x17ff 0xc0010000 - 0xc0011fff
|
---|
2942 | * 0x1800 - 0x1fff Reserved
|
---|
2943 | *
|
---|
2944 | * Each MSR is represented by 2 permission bits (read and write).
|
---|
2945 | */
|
---|
2946 | if (idMsr <= 0x00001fff)
|
---|
2947 | {
|
---|
2948 | /* Pentium-compatible MSRs. */
|
---|
2949 | uint32_t const bitoffMsr = idMsr << 1;
|
---|
2950 | *pbOffMsrpm = bitoffMsr >> 3;
|
---|
2951 | *puMsrpmBit = bitoffMsr & 7;
|
---|
2952 | return VINF_SUCCESS;
|
---|
2953 | }
|
---|
2954 |
|
---|
2955 | if ( idMsr >= 0xc0000000
|
---|
2956 | && idMsr <= 0xc0001fff)
|
---|
2957 | {
|
---|
2958 | /* AMD Sixth Generation x86 Processor MSRs. */
|
---|
2959 | uint32_t const bitoffMsr = (idMsr - 0xc0000000) << 1;
|
---|
2960 | *pbOffMsrpm = 0x800 + (bitoffMsr >> 3);
|
---|
2961 | *puMsrpmBit = bitoffMsr & 7;
|
---|
2962 | return VINF_SUCCESS;
|
---|
2963 | }
|
---|
2964 |
|
---|
2965 | if ( idMsr >= 0xc0010000
|
---|
2966 | && idMsr <= 0xc0011fff)
|
---|
2967 | {
|
---|
2968 | /* AMD Seventh and Eighth Generation Processor MSRs. */
|
---|
2969 | uint32_t const bitoffMsr = (idMsr - 0xc0010000) << 1;
|
---|
2970 | *pbOffMsrpm = 0x1000 + (bitoffMsr >> 3);
|
---|
2971 | *puMsrpmBit = bitoffMsr & 7;
|
---|
2972 | return VINF_SUCCESS;
|
---|
2973 | }
|
---|
2974 |
|
---|
2975 | *pbOffMsrpm = 0;
|
---|
2976 | *puMsrpmBit = 0;
|
---|
2977 | return VERR_OUT_OF_RANGE;
|
---|
2978 | }
|
---|
2979 |
|
---|
2980 |
|
---|
2981 | /**
|
---|
2982 | * Checks whether the guest is in VMX non-root mode and using EPT paging.
|
---|
2983 | *
|
---|
2984 | * @returns @c true if in VMX non-root operation with EPT, @c false otherwise.
|
---|
2985 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2986 | */
|
---|
2987 | VMM_INT_DECL(bool) CPUMIsGuestVmxEptPagingEnabled(PCVMCPUCC pVCpu)
|
---|
2988 | {
|
---|
2989 | return CPUMIsGuestVmxEptPagingEnabledEx(&pVCpu->cpum.s.Guest);
|
---|
2990 | }
|
---|
2991 |
|
---|
2992 |
|
---|
2993 | /**
|
---|
2994 | * Checks whether the guest is in VMX non-root mode and using EPT paging and the
|
---|
2995 | * nested-guest is in PAE mode.
|
---|
2996 | *
|
---|
2997 | * @returns @c true if in VMX non-root operation with EPT, @c false otherwise.
|
---|
2998 | * @param pVCpu The cross context virtual CPU structure.
|
---|
2999 | */
|
---|
3000 | VMM_INT_DECL(bool) CPUMIsGuestVmxEptPaePagingEnabled(PCVMCPUCC pVCpu)
|
---|
3001 | {
|
---|
3002 | return CPUMIsGuestVmxEptPagingEnabledEx(&pVCpu->cpum.s.Guest)
|
---|
3003 | && CPUMIsGuestInPAEModeEx(&pVCpu->cpum.s.Guest);
|
---|
3004 | }
|
---|
3005 |
|
---|
3006 |
|
---|
3007 | /**
|
---|
3008 | * Returns the guest-physical address of the APIC-access page when executing a
|
---|
3009 | * nested-guest.
|
---|
3010 | *
|
---|
3011 | * @returns The APIC-access page guest-physical address.
|
---|
3012 | * @param pVCpu The cross context virtual CPU structure.
|
---|
3013 | */
|
---|
3014 | VMM_INT_DECL(uint64_t) CPUMGetGuestVmxApicAccessPageAddr(PCVMCPUCC pVCpu)
|
---|
3015 | {
|
---|
3016 | return CPUMGetGuestVmxApicAccessPageAddrEx(&pVCpu->cpum.s.Guest);
|
---|
3017 | }
|
---|
3018 |
|
---|