VirtualBox

source: vbox/trunk/src/VBox/VMM/TM.cpp@ 19717

最後變更 在這個檔案從19717是 19717,由 vboxsync 提交於 16 年 前

Alignment fixes

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id
檔案大小: 105.2 KB
 
1/* $Id: TM.cpp 19717 2009-05-15 09:00:30Z vboxsync $ */
2/** @file
3 * TM - Time Manager.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22/** @page pg_tm TM - The Time Manager
23 *
24 * The Time Manager abstracts the CPU clocks and manages timers used by the VMM,
25 * device and drivers.
26 *
27 * @see grp_tm
28 *
29 *
30 * @section sec_tm_clocks Clocks
31 *
32 * There are currently 4 clocks:
33 * - Virtual (guest).
34 * - Synchronous virtual (guest).
35 * - CPU Tick (TSC) (guest). Only current use is rdtsc emulation. Usually a
36 * function of the virtual clock.
37 * - Real (host). This is only used for display updates atm.
38 *
39 * The most important clocks are the three first ones and of these the second is
40 * the most interesting.
41 *
42 *
43 * The synchronous virtual clock is tied to the virtual clock except that it
44 * will take into account timer delivery lag caused by host scheduling. It will
45 * normally never advance beyond the head timer, and when lagging too far behind
46 * it will gradually speed up to catch up with the virtual clock. All devices
47 * implementing time sources accessible to and used by the guest is using this
48 * clock (for timers and other things). This ensures consistency between the
49 * time sources.
50 *
51 * The virtual clock is implemented as an offset to a monotonic, high
52 * resolution, wall clock. The current time source is using the RTTimeNanoTS()
53 * machinery based upon the Global Info Pages (GIP), that is, we're using TSC
54 * deltas (usually 10 ms) to fill the gaps between GIP updates. The result is
55 * a fairly high res clock that works in all contexts and on all hosts. The
56 * virtual clock is paused when the VM isn't in the running state.
57 *
58 * The CPU tick (TSC) is normally virtualized as a function of the synchronous
59 * virtual clock, where the frequency defaults to the host cpu frequency (as we
60 * measure it). In this mode it is possible to configure the frequency. Another
61 * (non-default) option is to use the raw unmodified host TSC values. And yet
62 * another, to tie it to time spent executing guest code. All these things are
63 * configurable should non-default behavior be desirable.
64 *
65 * The real clock is a monotonic clock (when available) with relatively low
66 * resolution, though this a bit host specific. Note that we're currently not
67 * servicing timers using the real clock when the VM is not running, this is
68 * simply because it has not been needed yet therefore not implemented.
69 *
70 *
71 * @subsection subsec_tm_timesync Guest Time Sync / UTC time
72 *
73 * Guest time syncing is primarily taken care of by the VMM device. The
74 * principle is very simple, the guest additions periodically asks the VMM
75 * device what the current UTC time is and makes adjustments accordingly.
76 *
77 * A complicating factor is that the synchronous virtual clock might be doing
78 * catchups and the guest perception is currently a little bit behind the world
79 * but it will (hopefully) be catching up soon as we're feeding timer interrupts
80 * at a slightly higher rate. Adjusting the guest clock to the current wall
81 * time in the real world would be a bad idea then because the guest will be
82 * advancing too fast and run ahead of world time (if the catchup works out).
83 * To solve this problem TM provides the VMM device with an UTC time source that
84 * gets adjusted with the current lag, so that when the guest eventually catches
85 * up the lag it will be showing correct real world time.
86 *
87 *
88 * @section sec_tm_timers Timers
89 *
90 * The timers can use any of the TM clocks described in the previous section.
91 * Each clock has its own scheduling facility, or timer queue if you like.
92 * There are a few factors which makes it a bit complex. First, there is the
93 * usual R0 vs R3 vs. RC thing. Then there are multiple threads, and then there
94 * is the timer thread that periodically checks whether any timers has expired
95 * without EMT noticing. On the API level, all but the create and save APIs
96 * must be mulithreaded. EMT will always run the timers.
97 *
98 * The design is using a doubly linked list of active timers which is ordered
99 * by expire date. This list is only modified by the EMT thread. Updates to
100 * the list are batched in a singly linked list, which is then processed by the
101 * EMT thread at the first opportunity (immediately, next time EMT modifies a
102 * timer on that clock, or next timer timeout). Both lists are offset based and
103 * all the elements are therefore allocated from the hyper heap.
104 *
105 * For figuring out when there is need to schedule and run timers TM will:
106 * - Poll whenever somebody queries the virtual clock.
107 * - Poll the virtual clocks from the EM and REM loops.
108 * - Poll the virtual clocks from trap exit path.
109 * - Poll the virtual clocks and calculate first timeout from the halt loop.
110 * - Employ a thread which periodically (100Hz) polls all the timer queues.
111 *
112 *
113 * @image html TMTIMER-Statechart-Diagram.gif
114 *
115 * @section sec_tm_timer Logging
116 *
117 * Level 2: Logs a most of the timer state transitions and queue servicing.
118 * Level 3: Logs a few oddments.
119 * Level 4: Logs TMCLOCK_VIRTUAL_SYNC catch-up events.
120 *
121 */
122
123/*******************************************************************************
124* Header Files *
125*******************************************************************************/
126#define LOG_GROUP LOG_GROUP_TM
127#include <VBox/tm.h>
128#include <VBox/vmm.h>
129#include <VBox/mm.h>
130#include <VBox/ssm.h>
131#include <VBox/dbgf.h>
132#include <VBox/rem.h>
133#include <VBox/pdm.h>
134#include "TMInternal.h"
135#include <VBox/vm.h>
136
137#include <VBox/param.h>
138#include <VBox/err.h>
139
140#include <VBox/log.h>
141#include <iprt/asm.h>
142#include <iprt/assert.h>
143#include <iprt/thread.h>
144#include <iprt/time.h>
145#include <iprt/timer.h>
146#include <iprt/semaphore.h>
147#include <iprt/string.h>
148#include <iprt/env.h>
149
150
151/*******************************************************************************
152* Defined Constants And Macros *
153*******************************************************************************/
154/** The current saved state version.*/
155#define TM_SAVED_STATE_VERSION 3
156
157
158/*******************************************************************************
159* Internal Functions *
160*******************************************************************************/
161static bool tmR3HasFixedTSC(PVM pVM);
162static uint64_t tmR3CalibrateTSC(PVM pVM);
163static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM);
164static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version);
165static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t iTick);
166static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue);
167static void tmR3TimerQueueRunVirtualSync(PVM pVM);
168static DECLCALLBACK(int) tmR3SetWarpDrive(PVM pVM, uint32_t u32Percent);
169static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
170static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
171static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
172
173
174/**
175 * Initializes the TM.
176 *
177 * @returns VBox status code.
178 * @param pVM The VM to operate on.
179 */
180VMMR3DECL(int) TMR3Init(PVM pVM)
181{
182 LogFlow(("TMR3Init:\n"));
183
184 /*
185 * Assert alignment and sizes.
186 */
187 AssertCompileMemberAlignment(VM, tm.s, 32);
188 AssertCompile(sizeof(pVM->tm.s) <= sizeof(pVM->tm.padding));
189 AssertCompileMemberAlignment(TM, EmtLock, 8);
190 AssertCompileMemberAlignment(TM, VirtualSyncLock, 8);
191
192 /*
193 * Init the structure.
194 */
195 void *pv;
196 int rc = MMHyperAlloc(pVM, sizeof(pVM->tm.s.paTimerQueuesR3[0]) * TMCLOCK_MAX, 0, MM_TAG_TM, &pv);
197 AssertRCReturn(rc, rc);
198 pVM->tm.s.paTimerQueuesR3 = (PTMTIMERQUEUE)pv;
199 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pv);
200 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pv);
201
202 pVM->tm.s.offVM = RT_OFFSETOF(VM, tm.s);
203 pVM->tm.s.idTimerCpu = pVM->cCPUs - 1; /* The last CPU. */
204 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].enmClock = TMCLOCK_VIRTUAL;
205 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].u64Expire = INT64_MAX;
206 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].enmClock = TMCLOCK_VIRTUAL_SYNC;
207 pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].u64Expire = INT64_MAX;
208 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].enmClock = TMCLOCK_REAL;
209 pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].u64Expire = INT64_MAX;
210 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].enmClock = TMCLOCK_TSC;
211 pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].u64Expire = INT64_MAX;
212
213
214 /*
215 * We directly use the GIP to calculate the virtual time. We map the
216 * the GIP into the guest context so we can do this calculation there
217 * as well and save costly world switches.
218 */
219 pVM->tm.s.pvGIPR3 = (void *)g_pSUPGlobalInfoPage;
220 AssertMsgReturn(pVM->tm.s.pvGIPR3, ("GIP support is now required!\n"), VERR_INTERNAL_ERROR);
221 RTHCPHYS HCPhysGIP;
222 rc = SUPGipGetPhys(&HCPhysGIP);
223 AssertMsgRCReturn(rc, ("Failed to get GIP physical address!\n"), rc);
224
225 RTGCPTR GCPtr;
226 rc = MMR3HyperMapHCPhys(pVM, pVM->tm.s.pvGIPR3, NIL_RTR0PTR, HCPhysGIP, PAGE_SIZE, "GIP", &GCPtr);
227 if (RT_FAILURE(rc))
228 {
229 AssertMsgFailed(("Failed to map GIP into GC, rc=%Rrc!\n", rc));
230 return rc;
231 }
232 pVM->tm.s.pvGIPRC = GCPtr;
233 LogFlow(("TMR3Init: HCPhysGIP=%RHp at %RRv\n", HCPhysGIP, pVM->tm.s.pvGIPRC));
234 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
235
236 /* Check assumptions made in TMAllVirtual.cpp about the GIP update interval. */
237 if ( g_pSUPGlobalInfoPage->u32Magic == SUPGLOBALINFOPAGE_MAGIC
238 && g_pSUPGlobalInfoPage->u32UpdateIntervalNS >= 250000000 /* 0.25s */)
239 return VMSetError(pVM, VERR_INTERNAL_ERROR, RT_SRC_POS,
240 N_("The GIP update interval is too big. u32UpdateIntervalNS=%RU32 (u32UpdateHz=%RU32)"),
241 g_pSUPGlobalInfoPage->u32UpdateIntervalNS, g_pSUPGlobalInfoPage->u32UpdateHz);
242 LogRel(("TM: GIP - u32Mode=%d (%s) u32UpdateHz=%u\n", g_pSUPGlobalInfoPage->u32Mode,
243 g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC ? "SyncTSC"
244 : g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_ASYNC_TSC ? "AsyncTSC" : "Unknown",
245 g_pSUPGlobalInfoPage->u32UpdateHz));
246
247 /*
248 * Setup the VirtualGetRaw backend.
249 */
250 pVM->tm.s.VirtualGetRawDataR3.pu64Prev = &pVM->tm.s.u64VirtualRawPrev;
251 pVM->tm.s.VirtualGetRawDataR3.pfnBad = tmVirtualNanoTSBad;
252 pVM->tm.s.VirtualGetRawDataR3.pfnRediscover = tmVirtualNanoTSRediscover;
253 if (ASMCpuId_EDX(1) & X86_CPUID_FEATURE_EDX_SSE2)
254 {
255 if (g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC)
256 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLFenceSync;
257 else
258 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLFenceAsync;
259 }
260 else
261 {
262 if (g_pSUPGlobalInfoPage->u32Mode == SUPGIPMODE_SYNC_TSC)
263 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLegacySync;
264 else
265 pVM->tm.s.pfnVirtualGetRawR3 = RTTimeNanoTSLegacyAsync;
266 }
267
268 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
269 pVM->tm.s.VirtualGetRawDataR0.pu64Prev = MMHyperR3ToR0(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
270 AssertReturn(pVM->tm.s.VirtualGetRawDataR0.pu64Prev, VERR_INTERNAL_ERROR);
271 /* The rest is done in TMR3InitFinalize since it's too early to call PDM. */
272
273 /*
274 * Init the locks.
275 */
276 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.EmtLock, "TM EMT Lock");
277 if (RT_FAILURE(rc))
278 return rc;
279 rc = PDMR3CritSectInit(pVM, &pVM->tm.s.VirtualSyncLock, "TM VirtualSync Lock");
280 if (RT_FAILURE(rc))
281 return rc;
282
283 /*
284 * Get our CFGM node, create it if necessary.
285 */
286 PCFGMNODE pCfgHandle = CFGMR3GetChild(CFGMR3GetRoot(pVM), "TM");
287 if (!pCfgHandle)
288 {
289 rc = CFGMR3InsertNode(CFGMR3GetRoot(pVM), "TM", &pCfgHandle);
290 AssertRCReturn(rc, rc);
291 }
292
293 /*
294 * Determin the TSC configuration and frequency.
295 */
296 /* mode */
297 /** @cfgm{/TM/TSCVirtualized,bool,true}
298 * Use a virtualize TSC, i.e. trap all TSC access. */
299 rc = CFGMR3QueryBool(pCfgHandle, "TSCVirtualized", &pVM->tm.s.fTSCVirtualized);
300 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
301 pVM->tm.s.fTSCVirtualized = true; /* trap rdtsc */
302 else if (RT_FAILURE(rc))
303 return VMSetError(pVM, rc, RT_SRC_POS,
304 N_("Configuration error: Failed to querying bool value \"UseRealTSC\""));
305
306 /* source */
307 /** @cfgm{/TM/UseRealTSC,bool,false}
308 * Use the real TSC as time source for the TSC instead of the synchronous
309 * virtual clock (false, default). */
310 rc = CFGMR3QueryBool(pCfgHandle, "UseRealTSC", &pVM->tm.s.fTSCUseRealTSC);
311 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
312 pVM->tm.s.fTSCUseRealTSC = false; /* use virtual time */
313 else if (RT_FAILURE(rc))
314 return VMSetError(pVM, rc, RT_SRC_POS,
315 N_("Configuration error: Failed to querying bool value \"UseRealTSC\""));
316 if (!pVM->tm.s.fTSCUseRealTSC)
317 pVM->tm.s.fTSCVirtualized = true;
318
319 /* TSC reliability */
320 /** @cfgm{/TM/MaybeUseOffsettedHostTSC,bool,detect}
321 * Whether the CPU has a fixed TSC rate and may be used in offsetted mode with
322 * VT-x/AMD-V execution. This is autodetected in a very restrictive way by
323 * default. */
324 rc = CFGMR3QueryBool(pCfgHandle, "MaybeUseOffsettedHostTSC", &pVM->tm.s.fMaybeUseOffsettedHostTSC);
325 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
326 {
327 if (!pVM->tm.s.fTSCUseRealTSC)
328 {
329 /* @todo simple case for guest SMP; always emulate RDTSC */
330 if (pVM->cCPUs == 1)
331 pVM->tm.s.fMaybeUseOffsettedHostTSC = tmR3HasFixedTSC(pVM);
332 }
333 else
334 pVM->tm.s.fMaybeUseOffsettedHostTSC = true;
335 }
336
337 /** @cfgm{TM/TSCTicksPerSecond, uint32_t, Current TSC frequency from GIP}
338 * The number of TSC ticks per second (i.e. the TSC frequency). This will
339 * override TSCUseRealTSC, TSCVirtualized and MaybeUseOffsettedHostTSC.
340 */
341 rc = CFGMR3QueryU64(pCfgHandle, "TSCTicksPerSecond", &pVM->tm.s.cTSCTicksPerSecond);
342 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
343 {
344 pVM->tm.s.cTSCTicksPerSecond = tmR3CalibrateTSC(pVM);
345 if ( !pVM->tm.s.fTSCUseRealTSC
346 && pVM->tm.s.cTSCTicksPerSecond >= _4G)
347 {
348 pVM->tm.s.cTSCTicksPerSecond = _4G - 1; /* (A limitation of our math code) */
349 pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
350 }
351 }
352 else if (RT_FAILURE(rc))
353 return VMSetError(pVM, rc, RT_SRC_POS,
354 N_("Configuration error: Failed to querying uint64_t value \"TSCTicksPerSecond\""));
355 else if ( pVM->tm.s.cTSCTicksPerSecond < _1M
356 || pVM->tm.s.cTSCTicksPerSecond >= _4G)
357 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
358 N_("Configuration error: \"TSCTicksPerSecond\" = %RI64 is not in the range 1MHz..4GHz-1"),
359 pVM->tm.s.cTSCTicksPerSecond);
360 else
361 {
362 pVM->tm.s.fTSCUseRealTSC = pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
363 pVM->tm.s.fTSCVirtualized = true;
364 }
365
366 /** @cfgm{TM/TSCTiedToExecution, bool, false}
367 * Whether the TSC should be tied to execution. This will exclude most of the
368 * virtualization overhead, but will by default include the time spent in the
369 * halt state (see TM/TSCNotTiedToHalt). This setting will override all other
370 * TSC settings except for TSCTicksPerSecond and TSCNotTiedToHalt, which should
371 * be used avoided or used with great care. Note that this will only work right
372 * together with VT-x or AMD-V, and with a single virtual CPU. */
373 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCTiedToExecution", &pVM->tm.s.fTSCTiedToExecution, false);
374 if (RT_FAILURE(rc))
375 return VMSetError(pVM, rc, RT_SRC_POS,
376 N_("Configuration error: Failed to querying bool value \"TSCTiedToExecution\""));
377 if (pVM->tm.s.fTSCTiedToExecution)
378 {
379 /* tied to execution, override all other settings. */
380 pVM->tm.s.fTSCVirtualized = true;
381 pVM->tm.s.fTSCUseRealTSC = true;
382 pVM->tm.s.fMaybeUseOffsettedHostTSC = false;
383 }
384
385 /** @cfgm{TM/TSCNotTiedToHalt, bool, true}
386 * For overriding the default of TM/TSCTiedToExecution, i.e. set this to false
387 * to make the TSC freeze during HLT. */
388 rc = CFGMR3QueryBoolDef(pCfgHandle, "TSCNotTiedToHalt", &pVM->tm.s.fTSCNotTiedToHalt, false);
389 if (RT_FAILURE(rc))
390 return VMSetError(pVM, rc, RT_SRC_POS,
391 N_("Configuration error: Failed to querying bool value \"TSCNotTiedToHalt\""));
392
393 /* setup and report */
394 if (pVM->tm.s.fTSCVirtualized)
395 CPUMR3SetCR4Feature(pVM, X86_CR4_TSD, ~X86_CR4_TSD);
396 else
397 CPUMR3SetCR4Feature(pVM, 0, ~X86_CR4_TSD);
398 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool\n"
399 "TM: fMaybeUseOffsettedHostTSC=%RTbool TSCTiedToExecution=%RTbool TSCNotTiedToHalt=%RTbool\n",
400 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC,
401 pVM->tm.s.fMaybeUseOffsettedHostTSC, pVM->tm.s.fTSCTiedToExecution, pVM->tm.s.fTSCNotTiedToHalt));
402
403 /*
404 * Configure the timer synchronous virtual time.
405 */
406 /** @cfgm{TM/ScheduleSlack, uint32_t, ns, 0, UINT32_MAX, 100000}
407 * Scheduling slack when processing timers. */
408 rc = CFGMR3QueryU32(pCfgHandle, "ScheduleSlack", &pVM->tm.s.u32VirtualSyncScheduleSlack);
409 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
410 pVM->tm.s.u32VirtualSyncScheduleSlack = 100000; /* 0.100ms (ASSUMES virtual time is nanoseconds) */
411 else if (RT_FAILURE(rc))
412 return VMSetError(pVM, rc, RT_SRC_POS,
413 N_("Configuration error: Failed to querying 32-bit integer value \"ScheduleSlack\""));
414
415 /** @cfgm{TM/CatchUpStopThreshold, uint64_t, ns, 0, UINT64_MAX, 500000}
416 * When to stop a catch-up, considering it successful. */
417 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStopThreshold", &pVM->tm.s.u64VirtualSyncCatchUpStopThreshold);
418 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
419 pVM->tm.s.u64VirtualSyncCatchUpStopThreshold = 500000; /* 0.5ms */
420 else if (RT_FAILURE(rc))
421 return VMSetError(pVM, rc, RT_SRC_POS,
422 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpStopThreshold\""));
423
424 /** @cfgm{TM/CatchUpGiveUpThreshold, uint64_t, ns, 0, UINT64_MAX, 60000000000}
425 * When to give up a catch-up attempt. */
426 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpGiveUpThreshold", &pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold);
427 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
428 pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold = UINT64_C(60000000000); /* 60 sec */
429 else if (RT_FAILURE(rc))
430 return VMSetError(pVM, rc, RT_SRC_POS,
431 N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpGiveUpThreshold\""));
432
433
434 /** @cfgm{TM/CatchUpPrecentage[0..9], uint32_t, %, 1, 2000, various}
435 * The catch-up percent for a given period. */
436 /** @cfgm{TM/CatchUpStartThreshold[0..9], uint64_t, ns, 0, UINT64_MAX,
437 * The catch-up period threshold, or if you like, when a period starts. */
438#define TM_CFG_PERIOD(iPeriod, DefStart, DefPct) \
439 do \
440 { \
441 uint64_t u64; \
442 rc = CFGMR3QueryU64(pCfgHandle, "CatchUpStartThreshold" #iPeriod, &u64); \
443 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
444 u64 = UINT64_C(DefStart); \
445 else if (RT_FAILURE(rc)) \
446 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 64-bit integer value \"CatchUpThreshold" #iPeriod "\"")); \
447 if ( (iPeriod > 0 && u64 <= pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod - 1].u64Start) \
448 || u64 >= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold) \
449 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS, N_("Configuration error: Invalid start of period #" #iPeriod ": %RU64"), u64); \
450 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u64Start = u64; \
451 rc = CFGMR3QueryU32(pCfgHandle, "CatchUpPrecentage" #iPeriod, &pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage); \
452 if (rc == VERR_CFGM_VALUE_NOT_FOUND) \
453 pVM->tm.s.aVirtualSyncCatchUpPeriods[iPeriod].u32Percentage = (DefPct); \
454 else if (RT_FAILURE(rc)) \
455 return VMSetError(pVM, rc, RT_SRC_POS, N_("Configuration error: Failed to querying 32-bit integer value \"CatchUpPrecentage" #iPeriod "\"")); \
456 } while (0)
457 /* This needs more tuning. Not sure if we really need so many period and be so gentle. */
458 TM_CFG_PERIOD(0, 750000, 5); /* 0.75ms at 1.05x */
459 TM_CFG_PERIOD(1, 1500000, 10); /* 1.50ms at 1.10x */
460 TM_CFG_PERIOD(2, 8000000, 25); /* 8ms at 1.25x */
461 TM_CFG_PERIOD(3, 30000000, 50); /* 30ms at 1.50x */
462 TM_CFG_PERIOD(4, 75000000, 75); /* 75ms at 1.75x */
463 TM_CFG_PERIOD(5, 175000000, 100); /* 175ms at 2x */
464 TM_CFG_PERIOD(6, 500000000, 200); /* 500ms at 3x */
465 TM_CFG_PERIOD(7, 3000000000, 300); /* 3s at 4x */
466 TM_CFG_PERIOD(8,30000000000, 400); /* 30s at 5x */
467 TM_CFG_PERIOD(9,55000000000, 500); /* 55s at 6x */
468 AssertCompile(RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods) == 10);
469#undef TM_CFG_PERIOD
470
471 /*
472 * Configure real world time (UTC).
473 */
474 /** @cfgm{TM/UTCOffset, int64_t, ns, INT64_MIN, INT64_MAX, 0}
475 * The UTC offset. This is used to put the guest back or forwards in time. */
476 rc = CFGMR3QueryS64(pCfgHandle, "UTCOffset", &pVM->tm.s.offUTC);
477 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
478 pVM->tm.s.offUTC = 0; /* ns */
479 else if (RT_FAILURE(rc))
480 return VMSetError(pVM, rc, RT_SRC_POS,
481 N_("Configuration error: Failed to querying 64-bit integer value \"UTCOffset\""));
482
483 /*
484 * Setup the warp drive.
485 */
486 /** @cfgm{TM/WarpDrivePercentage, uint32_t, %, 0, 20000, 100}
487 * The warp drive percentage, 100% is normal speed. This is used to speed up
488 * or slow down the virtual clock, which can be useful for fast forwarding
489 * borring periods during tests. */
490 rc = CFGMR3QueryU32(pCfgHandle, "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage);
491 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
492 rc = CFGMR3QueryU32(CFGMR3GetRoot(pVM), "WarpDrivePercentage", &pVM->tm.s.u32VirtualWarpDrivePercentage); /* legacy */
493 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
494 pVM->tm.s.u32VirtualWarpDrivePercentage = 100;
495 else if (RT_FAILURE(rc))
496 return VMSetError(pVM, rc, RT_SRC_POS,
497 N_("Configuration error: Failed to querying uint32_t value \"WarpDrivePercent\""));
498 else if ( pVM->tm.s.u32VirtualWarpDrivePercentage < 2
499 || pVM->tm.s.u32VirtualWarpDrivePercentage > 20000)
500 return VMSetError(pVM, VERR_INVALID_PARAMETER, RT_SRC_POS,
501 N_("Configuration error: \"WarpDrivePercent\" = %RI32 is not in the range 2..20000"),
502 pVM->tm.s.u32VirtualWarpDrivePercentage);
503 pVM->tm.s.fVirtualWarpDrive = pVM->tm.s.u32VirtualWarpDrivePercentage != 100;
504 if (pVM->tm.s.fVirtualWarpDrive)
505 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32\n", pVM->tm.s.u32VirtualWarpDrivePercentage));
506
507 /*
508 * Start the timer (guard against REM not yielding).
509 */
510 /** @cfgm{TM/TimerMillies, uint32_t, ms, 1, 1000, 10}
511 * The watchdog timer interval. */
512 uint32_t u32Millies;
513 rc = CFGMR3QueryU32(pCfgHandle, "TimerMillies", &u32Millies);
514 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
515 u32Millies = 10;
516 else if (RT_FAILURE(rc))
517 return VMSetError(pVM, rc, RT_SRC_POS,
518 N_("Configuration error: Failed to query uint32_t value \"TimerMillies\""));
519 rc = RTTimerCreate(&pVM->tm.s.pTimer, u32Millies, tmR3TimerCallback, pVM);
520 if (RT_FAILURE(rc))
521 {
522 AssertMsgFailed(("Failed to create timer, u32Millies=%d rc=%Rrc.\n", u32Millies, rc));
523 return rc;
524 }
525 Log(("TM: Created timer %p firing every %d millieseconds\n", pVM->tm.s.pTimer, u32Millies));
526 pVM->tm.s.u32TimerMillies = u32Millies;
527
528 /*
529 * Register saved state.
530 */
531 rc = SSMR3RegisterInternal(pVM, "tm", 1, TM_SAVED_STATE_VERSION, sizeof(uint64_t) * 8,
532 NULL, tmR3Save, NULL,
533 NULL, tmR3Load, NULL);
534 if (RT_FAILURE(rc))
535 return rc;
536
537 /*
538 * Register statistics.
539 */
540 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.c1nsSteps,STAMTYPE_U32, "/TM/R3/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
541 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR3.cBadPrev, STAMTYPE_U32, "/TM/R3/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
542 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.c1nsSteps,STAMTYPE_U32, "/TM/R0/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
543 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataR0.cBadPrev, STAMTYPE_U32, "/TM/R0/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
544 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.c1nsSteps,STAMTYPE_U32, "/TM/GC/1nsSteps", STAMUNIT_OCCURENCES, "Virtual time 1ns steps (due to TSC / GIP variations).");
545 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.VirtualGetRawDataRC.cBadPrev, STAMTYPE_U32, "/TM/GC/cBadPrev", STAMUNIT_OCCURENCES, "Times the previous virtual time was considered erratic (shouldn't ever happen).");
546 STAM_REL_REG( pVM,(void*)&pVM->tm.s.offVirtualSync, STAMTYPE_U64, "/TM/VirtualSync/CurrentOffset", STAMUNIT_NS, "The current offset. (subtract GivenUp to get the lag)");
547 STAM_REL_REG_USED(pVM,(void*)&pVM->tm.s.offVirtualSyncGivenUp, STAMTYPE_U64, "/TM/VirtualSync/GivenUp", STAMUNIT_NS, "Nanoseconds of the 'CurrentOffset' that's been given up and won't ever be attemted caught up with.");
548
549#ifdef VBOX_WITH_STATISTICS
550 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cExpired, STAMTYPE_U32, "/TM/R3/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
551 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR3.cUpdateRaces,STAMTYPE_U32, "/TM/R3/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
552 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cExpired, STAMTYPE_U32, "/TM/R0/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
553 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataR0.cUpdateRaces,STAMTYPE_U32, "/TM/R0/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
554 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cExpired, STAMTYPE_U32, "/TM/GC/cExpired", STAMUNIT_OCCURENCES, "Times the TSC interval expired (overlaps 1ns steps).");
555 STAM_REG_USED(pVM,(void *)&pVM->tm.s.VirtualGetRawDataRC.cUpdateRaces,STAMTYPE_U32, "/TM/GC/cUpdateRaces", STAMUNIT_OCCURENCES, "Thread races when updating the previous timestamp.");
556 STAM_REG(pVM, &pVM->tm.s.StatDoQueues, STAMTYPE_PROFILE, "/TM/DoQueues", STAMUNIT_TICKS_PER_CALL, "Profiling timer TMR3TimerQueuesDo.");
557 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Virtual", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual clock queue.");
558 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/VirtualSync", STAMUNIT_TICKS_PER_CALL, "Time spent on the virtual sync clock queue.");
559 STAM_REG(pVM, &pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], STAMTYPE_PROFILE_ADV, "/TM/DoQueues/Real", STAMUNIT_TICKS_PER_CALL, "Time spent on the real clock queue.");
560
561 STAM_REG(pVM, &pVM->tm.s.StatPoll, STAMTYPE_COUNTER, "/TM/Poll", STAMUNIT_OCCURENCES, "TMTimerPoll calls.");
562 STAM_REG(pVM, &pVM->tm.s.StatPollAlreadySet, STAMTYPE_COUNTER, "/TM/Poll/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the FF was already set.");
563 STAM_REG(pVM, &pVM->tm.s.StatPollVirtual, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL queue.");
564 STAM_REG(pVM, &pVM->tm.s.StatPollVirtualSync, STAMTYPE_COUNTER, "/TM/Poll/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPoll found an expired TMCLOCK_VIRTUAL_SYNC queue.");
565 STAM_REG(pVM, &pVM->tm.s.StatPollMiss, STAMTYPE_COUNTER, "/TM/Poll/Miss", STAMUNIT_OCCURENCES, "TMTimerPoll calls where nothing had expired.");
566 STAM_REG(pVM, &pVM->tm.s.StatPollRunning, STAMTYPE_COUNTER, "/TM/Poll/Running", STAMUNIT_OCCURENCES, "TMTimerPoll calls where the queues were being run.");
567
568 STAM_REG(pVM, &pVM->tm.s.StatPollGIP, STAMTYPE_COUNTER, "/TM/PollGIP", STAMUNIT_OCCURENCES, "TMTimerPollGIP calls.");
569 STAM_REG(pVM, &pVM->tm.s.StatPollGIPAlreadySet, STAMTYPE_COUNTER, "/TM/PollGIP/AlreadySet", STAMUNIT_OCCURENCES, "TMTimerPollGIP calls where the FF was already set.");
570 STAM_REG(pVM, &pVM->tm.s.StatPollGIPVirtual, STAMTYPE_COUNTER, "/TM/PollGIP/HitsVirtual", STAMUNIT_OCCURENCES, "The number of times TMTimerPollGIP found an expired TMCLOCK_VIRTUAL queue.");
571 STAM_REG(pVM, &pVM->tm.s.StatPollGIPVirtualSync, STAMTYPE_COUNTER, "/TM/PollGIP/HitsVirtualSync", STAMUNIT_OCCURENCES, "The number of times TMTimerPollGIP found an expired TMCLOCK_VIRTUAL_SYNC queue.");
572 STAM_REG(pVM, &pVM->tm.s.StatPollGIPMiss, STAMTYPE_COUNTER, "/TM/PollGIP/Miss", STAMUNIT_OCCURENCES, "TMTimerPollGIP calls where nothing had expired.");
573 STAM_REG(pVM, &pVM->tm.s.StatPollGIPRunning, STAMTYPE_COUNTER, "/TM/PollGIP/Running", STAMUNIT_OCCURENCES, "TMTimerPollGIP calls where the queues were being run.");
574
575 STAM_REG(pVM, &pVM->tm.s.StatPostponedR3, STAMTYPE_COUNTER, "/TM/PostponedR3", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-3.");
576 STAM_REG(pVM, &pVM->tm.s.StatPostponedRZ, STAMTYPE_COUNTER, "/TM/PostponedRZ", STAMUNIT_OCCURENCES, "Postponed due to unschedulable state, in ring-0 / RC.");
577
578 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneR3, STAMTYPE_PROFILE, "/TM/ScheduleOneR3", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
579 STAM_REG(pVM, &pVM->tm.s.StatScheduleOneRZ, STAMTYPE_PROFILE, "/TM/ScheduleOneRZ", STAMUNIT_TICKS_PER_CALL, "Profiling the scheduling of one queue during a TMTimer* call in EMT.");
580 STAM_REG(pVM, &pVM->tm.s.StatScheduleSetFF, STAMTYPE_COUNTER, "/TM/ScheduleSetFF", STAMUNIT_OCCURENCES, "The number of times the timer FF was set instead of doing scheduling.");
581
582 STAM_REG(pVM, &pVM->tm.s.StatTimerSetR3, STAMTYPE_PROFILE, "/TM/TimerSetR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-3.");
583 STAM_REG(pVM, &pVM->tm.s.StatTimerSetRZ, STAMTYPE_PROFILE, "/TM/TimerSetRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerSet calls made in ring-0 / RC.");
584
585 STAM_REG(pVM, &pVM->tm.s.StatTimerStopR3, STAMTYPE_PROFILE, "/TM/TimerStopR3", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-3.");
586 STAM_REG(pVM, &pVM->tm.s.StatTimerStopRZ, STAMTYPE_PROFILE, "/TM/TimerStopRZ", STAMUNIT_TICKS_PER_CALL, "Profiling TMTimerStop calls made in ring-0 / RC.");
587
588 STAM_REG(pVM, &pVM->tm.s.StatVirtualGet, STAMTYPE_COUNTER, "/TM/VirtualGet", STAMUNIT_OCCURENCES, "The number of times TMTimerGet was called when the clock was running.");
589 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGet.");
590 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSync, STAMTYPE_COUNTER, "/TM/VirtualGetSync", STAMUNIT_OCCURENCES, "The number of times TMTimerGetSync was called when the clock was running.");
591 STAM_REG(pVM, &pVM->tm.s.StatVirtualGetSyncSetFF, STAMTYPE_COUNTER, "/TM/VirtualGetSyncSetFF", STAMUNIT_OCCURENCES, "Times we set the FF when calling TMTimerGetSync.");
592 STAM_REG(pVM, &pVM->tm.s.StatVirtualPause, STAMTYPE_COUNTER, "/TM/VirtualPause", STAMUNIT_OCCURENCES, "The number of times TMR3TimerPause was called.");
593 STAM_REG(pVM, &pVM->tm.s.StatVirtualResume, STAMTYPE_COUNTER, "/TM/VirtualResume", STAMUNIT_OCCURENCES, "The number of times TMR3TimerResume was called.");
594
595 STAM_REG(pVM, &pVM->tm.s.StatTimerCallbackSetFF, STAMTYPE_COUNTER, "/TM/CallbackSetFF", STAMUNIT_OCCURENCES, "The number of times the timer callback set FF.");
596
597 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE010, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE010", STAMUNIT_OCCURENCES, "In catch-up mode, 10% or lower.");
598 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE025, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE025", STAMUNIT_OCCURENCES, "In catch-up mode, 25%-11%.");
599 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupLE100, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupLE100", STAMUNIT_OCCURENCES, "In catch-up mode, 100%-26%.");
600 STAM_REG(pVM, &pVM->tm.s.StatTSCCatchupOther, STAMTYPE_COUNTER, "/TM/TSC/Intercept/CatchupOther", STAMUNIT_OCCURENCES, "In catch-up mode, > 100%.");
601 STAM_REG(pVM, &pVM->tm.s.StatTSCNotFixed, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotFixed", STAMUNIT_OCCURENCES, "TSC is not fixed, it may run at variable speed.");
602 STAM_REG(pVM, &pVM->tm.s.StatTSCNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/NotTicking", STAMUNIT_OCCURENCES, "TSC is not ticking.");
603 STAM_REG(pVM, &pVM->tm.s.StatTSCSyncNotTicking, STAMTYPE_COUNTER, "/TM/TSC/Intercept/SyncNotTicking", STAMUNIT_OCCURENCES, "VirtualSync isn't ticking.");
604 STAM_REG(pVM, &pVM->tm.s.StatTSCWarp, STAMTYPE_COUNTER, "/TM/TSC/Intercept/Warp", STAMUNIT_OCCURENCES, "Warpdrive is active.");
605
606
607 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncCatchup, STAMTYPE_PROFILE_ADV, "/TM/VirtualSync/CatchUp", STAMUNIT_TICKS_PER_OCCURENCE, "Counting and measuring the times spent catching up.");
608 STAM_REG(pVM, (void *)&pVM->tm.s.fVirtualSyncCatchUp, STAMTYPE_U8, "/TM/VirtualSync/CatchUpActive", STAMUNIT_NONE, "Catch-Up active indicator.");
609 STAM_REG(pVM, (void *)&pVM->tm.s.u32VirtualSyncCatchUpPercentage, STAMTYPE_U32, "/TM/VirtualSync/CatchUpPercentage", STAMUNIT_PCT, "The catch-up percentage. (+100/100 to get clock multiplier)");
610 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncFF, STAMTYPE_PROFILE, "/TM/VirtualSync/FF", STAMUNIT_TICKS_PER_OCCURENCE, "Time spent in TMR3VirtualSyncFF by all but the dedicate timer EMT.");
611 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUp, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUp", STAMUNIT_OCCURENCES, "Times the catch-up was abandoned.");
612 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting, STAMTYPE_COUNTER, "/TM/VirtualSync/GiveUpBeforeStarting",STAMUNIT_OCCURENCES, "Times the catch-up was abandoned before even starting. (Typically debugging++.)");
613 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRun, STAMTYPE_COUNTER, "/TM/VirtualSync/Run", STAMUNIT_OCCURENCES, "Times the virtual sync timer queue was considered.");
614 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunRestart, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Restarts", STAMUNIT_OCCURENCES, "Times the clock was restarted after a run.");
615 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStop, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/Stop", STAMUNIT_OCCURENCES, "Times the clock was stopped when calculating the current time before examining the timers.");
616 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunStoppedAlready, STAMTYPE_COUNTER, "/TM/VirtualSync/Run/StoppedAlready", STAMUNIT_OCCURENCES, "Times the clock was already stopped elsewhere (TMVirtualSyncGet).");
617 STAM_REG(pVM, &pVM->tm.s.StatVirtualSyncRunSlack, STAMTYPE_PROFILE, "/TM/VirtualSync/Run/Slack", STAMUNIT_NS_PER_OCCURENCE, "The scheduling slack. (Catch-up handed out when running timers.)");
618 for (unsigned i = 0; i < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods); i++)
619 {
620 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage, STAMTYPE_U32, STAMVISIBILITY_ALWAYS, STAMUNIT_PCT, "The catch-up percentage.", "/TM/VirtualSync/Periods/%u", i);
621 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupAdjust[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times adjusted to this period.", "/TM/VirtualSync/Periods/%u/Adjust", i);
622 STAMR3RegisterF(pVM, &pVM->tm.s.aStatVirtualSyncCatchupInitial[i], STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, "Times started in this period.", "/TM/VirtualSync/Periods/%u/Initial", i);
623 STAMR3RegisterF(pVM, &pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u64Start, STAMTYPE_U64, STAMVISIBILITY_ALWAYS, STAMUNIT_NS, "Start of this period (lag).", "/TM/VirtualSync/Periods/%u/Start", i);
624 }
625
626#endif /* VBOX_WITH_STATISTICS */
627
628 /*
629 * Register info handlers.
630 */
631 DBGFR3InfoRegisterInternalEx(pVM, "timers", "Dumps all timers. No arguments.", tmR3TimerInfo, DBGFINFO_FLAGS_RUN_ON_EMT);
632 DBGFR3InfoRegisterInternalEx(pVM, "activetimers", "Dumps active all timers. No arguments.", tmR3TimerInfoActive, DBGFINFO_FLAGS_RUN_ON_EMT);
633 DBGFR3InfoRegisterInternalEx(pVM, "clocks", "Display the time of the various clocks.", tmR3InfoClocks, DBGFINFO_FLAGS_RUN_ON_EMT);
634
635 return VINF_SUCCESS;
636}
637
638
639/**
640 * Initializes the per-VCPU TM.
641 *
642 * @returns VBox status code.
643 * @param pVM The VM to operate on.
644 */
645VMMR3DECL(int) TMR3InitCPU(PVM pVM)
646{
647 LogFlow(("TMR3InitCPU\n"));
648 return VINF_SUCCESS;
649}
650
651
652/**
653 * Checks if the host CPU has a fixed TSC frequency.
654 *
655 * @returns true if it has, false if it hasn't.
656 *
657 * @remark This test doesn't bother with very old CPUs that don't do power
658 * management or any other stuff that might influence the TSC rate.
659 * This isn't currently relevant.
660 */
661static bool tmR3HasFixedTSC(PVM pVM)
662{
663 if (ASMHasCpuId())
664 {
665 uint32_t uEAX, uEBX, uECX, uEDX;
666
667 if (CPUMGetCPUVendor(pVM) == CPUMCPUVENDOR_AMD)
668 {
669 /*
670 * AuthenticAMD - Check for APM support and that TscInvariant is set.
671 *
672 * This test isn't correct with respect to fixed/non-fixed TSC and
673 * older models, but this isn't relevant since the result is currently
674 * only used for making a descision on AMD-V models.
675 */
676 ASMCpuId(0x80000000, &uEAX, &uEBX, &uECX, &uEDX);
677 if (uEAX >= 0x80000007)
678 {
679 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
680
681 ASMCpuId(0x80000007, &uEAX, &uEBX, &uECX, &uEDX);
682 if ( (uEDX & X86_CPUID_AMD_ADVPOWER_EDX_TSCINVAR) /* TscInvariant */
683 && pGip->u32Mode == SUPGIPMODE_SYNC_TSC /* no fixed tsc if the gip timer is in async mode */)
684 return true;
685 }
686 }
687 else if (CPUMGetCPUVendor(pVM) == CPUMCPUVENDOR_INTEL)
688 {
689 /*
690 * GenuineIntel - Check the model number.
691 *
692 * This test is lacking in the same way and for the same reasons
693 * as the AMD test above.
694 */
695 ASMCpuId(1, &uEAX, &uEBX, &uECX, &uEDX);
696 unsigned uModel = (uEAX >> 4) & 0x0f;
697 unsigned uFamily = (uEAX >> 8) & 0x0f;
698 if (uFamily == 0x0f)
699 uFamily += (uEAX >> 20) & 0xff;
700 if (uFamily >= 0x06)
701 uModel += ((uEAX >> 16) & 0x0f) << 4;
702 if ( (uFamily == 0x0f /*P4*/ && uModel >= 0x03)
703 || (uFamily == 0x06 /*P2/P3*/ && uModel >= 0x0e))
704 return true;
705 }
706 }
707 return false;
708}
709
710
711/**
712 * Calibrate the CPU tick.
713 *
714 * @returns Number of ticks per second.
715 */
716static uint64_t tmR3CalibrateTSC(PVM pVM)
717{
718 /*
719 * Use GIP when available present.
720 */
721 uint64_t u64Hz;
722 PSUPGLOBALINFOPAGE pGip = g_pSUPGlobalInfoPage;
723 if ( pGip
724 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC)
725 {
726 unsigned iCpu = pGip->u32Mode != SUPGIPMODE_ASYNC_TSC ? 0 : ASMGetApicId();
727 if (iCpu >= RT_ELEMENTS(pGip->aCPUs))
728 AssertReleaseMsgFailed(("iCpu=%d - the ApicId is too high. send VBox.log and hardware specs!\n", iCpu));
729 else
730 {
731 if (tmR3HasFixedTSC(pVM))
732 /* Sleep a bit to get a more reliable CpuHz value. */
733 RTThreadSleep(32);
734 else
735 {
736 /* Spin for 40ms to try push up the CPU frequency and get a more reliable CpuHz value. */
737 const uint64_t u64 = RTTimeMilliTS();
738 while ((RTTimeMilliTS() - u64) < 40 /*ms*/)
739 /* nothing */;
740 }
741
742 pGip = g_pSUPGlobalInfoPage;
743 if ( pGip
744 && pGip->u32Magic == SUPGLOBALINFOPAGE_MAGIC
745 && (u64Hz = pGip->aCPUs[iCpu].u64CpuHz)
746 && u64Hz != ~(uint64_t)0)
747 return u64Hz;
748 }
749 }
750
751 /* call this once first to make sure it's initialized. */
752 RTTimeNanoTS();
753
754 /*
755 * Yield the CPU to increase our chances of getting
756 * a correct value.
757 */
758 RTThreadYield(); /* Try avoid interruptions between TSC and NanoTS samplings. */
759 static const unsigned s_auSleep[5] = { 50, 30, 30, 40, 40 };
760 uint64_t au64Samples[5];
761 unsigned i;
762 for (i = 0; i < RT_ELEMENTS(au64Samples); i++)
763 {
764 unsigned cMillies;
765 int cTries = 5;
766 uint64_t u64Start = ASMReadTSC();
767 uint64_t u64End;
768 uint64_t StartTS = RTTimeNanoTS();
769 uint64_t EndTS;
770 do
771 {
772 RTThreadSleep(s_auSleep[i]);
773 u64End = ASMReadTSC();
774 EndTS = RTTimeNanoTS();
775 cMillies = (unsigned)((EndTS - StartTS + 500000) / 1000000);
776 } while ( cMillies == 0 /* the sleep may be interrupted... */
777 || (cMillies < 20 && --cTries > 0));
778 uint64_t u64Diff = u64End - u64Start;
779
780 au64Samples[i] = (u64Diff * 1000) / cMillies;
781 AssertMsg(cTries > 0, ("cMillies=%d i=%d\n", cMillies, i));
782 }
783
784 /*
785 * Discard the highest and lowest results and calculate the average.
786 */
787 unsigned iHigh = 0;
788 unsigned iLow = 0;
789 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
790 {
791 if (au64Samples[i] < au64Samples[iLow])
792 iLow = i;
793 if (au64Samples[i] > au64Samples[iHigh])
794 iHigh = i;
795 }
796 au64Samples[iLow] = 0;
797 au64Samples[iHigh] = 0;
798
799 u64Hz = au64Samples[0];
800 for (i = 1; i < RT_ELEMENTS(au64Samples); i++)
801 u64Hz += au64Samples[i];
802 u64Hz /= RT_ELEMENTS(au64Samples) - 2;
803
804 return u64Hz;
805}
806
807
808/**
809 * Finalizes the TM initialization.
810 *
811 * @returns VBox status code.
812 * @param pVM The VM to operate on.
813 */
814VMMR3DECL(int) TMR3InitFinalize(PVM pVM)
815{
816 int rc;
817
818 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
819 AssertRCReturn(rc, rc);
820 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
821 AssertRCReturn(rc, rc);
822 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
823 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawRC);
824 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
825 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawRC);
826 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
827 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawRC);
828 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
829 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawRC);
830 else
831 AssertFatalFailed();
832 AssertRCReturn(rc, rc);
833
834 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataR0.pfnBad);
835 AssertRCReturn(rc, rc);
836 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataR0.pfnRediscover);
837 AssertRCReturn(rc, rc);
838 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
839 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawR0);
840 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
841 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawR0);
842 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
843 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawR0);
844 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
845 rc = PDMR3LdrGetSymbolR0Lazy(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawR0);
846 else
847 AssertFatalFailed();
848 AssertRCReturn(rc, rc);
849
850 return VINF_SUCCESS;
851}
852
853
854/**
855 * Applies relocations to data and code managed by this
856 * component. This function will be called at init and
857 * whenever the VMM need to relocate it self inside the GC.
858 *
859 * @param pVM The VM.
860 * @param offDelta Relocation delta relative to old location.
861 */
862VMMR3DECL(void) TMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
863{
864 int rc;
865 LogFlow(("TMR3Relocate\n"));
866
867 pVM->tm.s.pvGIPRC = MMHyperR3ToRC(pVM, pVM->tm.s.pvGIPR3);
868 pVM->tm.s.paTimerQueuesRC = MMHyperR3ToRC(pVM, pVM->tm.s.paTimerQueuesR3);
869 pVM->tm.s.paTimerQueuesR0 = MMHyperR3ToR0(pVM, pVM->tm.s.paTimerQueuesR3);
870
871 pVM->tm.s.VirtualGetRawDataRC.pu64Prev = MMHyperR3ToRC(pVM, (void *)&pVM->tm.s.u64VirtualRawPrev);
872 AssertFatal(pVM->tm.s.VirtualGetRawDataRC.pu64Prev);
873 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSBad", &pVM->tm.s.VirtualGetRawDataRC.pfnBad);
874 AssertFatalRC(rc);
875 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "tmVirtualNanoTSRediscover", &pVM->tm.s.VirtualGetRawDataRC.pfnRediscover);
876 AssertFatalRC(rc);
877
878 if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceSync)
879 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceSync", &pVM->tm.s.pfnVirtualGetRawRC);
880 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLFenceAsync)
881 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLFenceAsync", &pVM->tm.s.pfnVirtualGetRawRC);
882 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacySync)
883 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacySync", &pVM->tm.s.pfnVirtualGetRawRC);
884 else if (pVM->tm.s.pfnVirtualGetRawR3 == RTTimeNanoTSLegacyAsync)
885 rc = PDMR3LdrGetSymbolRCLazy(pVM, NULL, "RTTimeNanoTSLegacyAsync", &pVM->tm.s.pfnVirtualGetRawRC);
886 else
887 AssertFatalFailed();
888 AssertFatalRC(rc);
889
890 /*
891 * Iterate the timers updating the pVMRC pointers.
892 */
893 for (PTMTIMER pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
894 {
895 pTimer->pVMRC = pVM->pVMRC;
896 pTimer->pVMR0 = pVM->pVMR0;
897 }
898}
899
900
901/**
902 * Terminates the TM.
903 *
904 * Termination means cleaning up and freeing all resources,
905 * the VM it self is at this point powered off or suspended.
906 *
907 * @returns VBox status code.
908 * @param pVM The VM to operate on.
909 */
910VMMR3DECL(int) TMR3Term(PVM pVM)
911{
912 AssertMsg(pVM->tm.s.offVM, ("bad init order!\n"));
913 if (pVM->tm.s.pTimer)
914 {
915 int rc = RTTimerDestroy(pVM->tm.s.pTimer);
916 AssertRC(rc);
917 pVM->tm.s.pTimer = NULL;
918 }
919
920 return VINF_SUCCESS;
921}
922
923
924/**
925 * Terminates the per-VCPU TM.
926 *
927 * Termination means cleaning up and freeing all resources,
928 * the VM it self is at this point powered off or suspended.
929 *
930 * @returns VBox status code.
931 * @param pVM The VM to operate on.
932 */
933VMMR3DECL(int) TMR3TermCPU(PVM pVM)
934{
935 return 0;
936}
937
938
939/**
940 * The VM is being reset.
941 *
942 * For the TM component this means that a rescheduling is preformed,
943 * the FF is cleared and but without running the queues. We'll have to
944 * check if this makes sense or not, but it seems like a good idea now....
945 *
946 * @param pVM VM handle.
947 */
948VMMR3DECL(void) TMR3Reset(PVM pVM)
949{
950 LogFlow(("TMR3Reset:\n"));
951 VM_ASSERT_EMT(pVM);
952 tmLock(pVM);
953
954 /*
955 * Abort any pending catch up.
956 * This isn't perfect,
957 */
958 if (pVM->tm.s.fVirtualSyncCatchUp)
959 {
960 const uint64_t offVirtualNow = TMVirtualGetNoCheck(pVM);
961 const uint64_t offVirtualSyncNow = TMVirtualSyncGetNoCheck(pVM);
962 if (pVM->tm.s.fVirtualSyncCatchUp)
963 {
964 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
965
966 const uint64_t offOld = pVM->tm.s.offVirtualSyncGivenUp;
967 const uint64_t offNew = offVirtualNow - offVirtualSyncNow;
968 Assert(offOld <= offNew);
969 ASMAtomicXchgU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
970 ASMAtomicXchgU64((uint64_t volatile *)&pVM->tm.s.offVirtualSync, offNew);
971 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
972 LogRel(("TM: Aborting catch-up attempt on reset with a %RU64 ns lag on reset; new total: %RU64 ns\n", offNew - offOld, offNew));
973 }
974 }
975
976 /*
977 * Process the queues.
978 */
979 for (int i = 0; i < TMCLOCK_MAX; i++)
980 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[i]);
981#ifdef VBOX_STRICT
982 tmTimerQueuesSanityChecks(pVM, "TMR3Reset");
983#endif
984
985 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
986 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /** @todo FIXME: this isn't right. */
987 tmUnlock(pVM);
988}
989
990
991/**
992 * Resolve a builtin RC symbol.
993 * Called by PDM when loading or relocating GC modules.
994 *
995 * @returns VBox status
996 * @param pVM VM Handle.
997 * @param pszSymbol Symbol to resolve.
998 * @param pRCPtrValue Where to store the symbol value.
999 * @remark This has to work before TMR3Relocate() is called.
1000 */
1001VMMR3DECL(int) TMR3GetImportRC(PVM pVM, const char *pszSymbol, PRTRCPTR pRCPtrValue)
1002{
1003 if (!strcmp(pszSymbol, "g_pSUPGlobalInfoPage"))
1004 *pRCPtrValue = MMHyperR3ToRC(pVM, &pVM->tm.s.pvGIPRC);
1005 //else if (..)
1006 else
1007 return VERR_SYMBOL_NOT_FOUND;
1008 return VINF_SUCCESS;
1009}
1010
1011
1012/**
1013 * Execute state save operation.
1014 *
1015 * @returns VBox status code.
1016 * @param pVM VM Handle.
1017 * @param pSSM SSM operation handle.
1018 */
1019static DECLCALLBACK(int) tmR3Save(PVM pVM, PSSMHANDLE pSSM)
1020{
1021 LogFlow(("tmR3Save:\n"));
1022#ifdef VBOX_STRICT
1023 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
1024 {
1025 PVMCPU pVCpu = &pVM->aCpus[i];
1026 Assert(!pVCpu->tm.s.fTSCTicking);
1027 }
1028 Assert(!pVM->tm.s.cVirtualTicking);
1029 Assert(!pVM->tm.s.fVirtualSyncTicking);
1030#endif
1031
1032 /*
1033 * Save the virtual clocks.
1034 */
1035 /* the virtual clock. */
1036 SSMR3PutU64(pSSM, TMCLOCK_FREQ_VIRTUAL);
1037 SSMR3PutU64(pSSM, pVM->tm.s.u64Virtual);
1038
1039 /* the virtual timer synchronous clock. */
1040 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSync);
1041 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSync);
1042 SSMR3PutU64(pSSM, pVM->tm.s.offVirtualSyncGivenUp);
1043 SSMR3PutU64(pSSM, pVM->tm.s.u64VirtualSyncCatchUpPrev);
1044 SSMR3PutBool(pSSM, pVM->tm.s.fVirtualSyncCatchUp);
1045
1046 /* real time clock */
1047 SSMR3PutU64(pSSM, TMCLOCK_FREQ_REAL);
1048
1049 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
1050 {
1051 PVMCPU pVCpu = &pVM->aCpus[i];
1052
1053 /* the cpu tick clock. */
1054 SSMR3PutU64(pSSM, TMCpuTickGet(pVCpu));
1055 }
1056 return SSMR3PutU64(pSSM, pVM->tm.s.cTSCTicksPerSecond);
1057}
1058
1059
1060/**
1061 * Execute state load operation.
1062 *
1063 * @returns VBox status code.
1064 * @param pVM VM Handle.
1065 * @param pSSM SSM operation handle.
1066 * @param u32Version Data layout version.
1067 */
1068static DECLCALLBACK(int) tmR3Load(PVM pVM, PSSMHANDLE pSSM, uint32_t u32Version)
1069{
1070 LogFlow(("tmR3Load:\n"));
1071
1072#ifdef VBOX_STRICT
1073 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
1074 {
1075 PVMCPU pVCpu = &pVM->aCpus[i];
1076 Assert(!pVCpu->tm.s.fTSCTicking);
1077 }
1078 Assert(!pVM->tm.s.cVirtualTicking);
1079 Assert(!pVM->tm.s.fVirtualSyncTicking);
1080#endif
1081
1082 /*
1083 * Validate version.
1084 */
1085 if (u32Version != TM_SAVED_STATE_VERSION)
1086 {
1087 AssertMsgFailed(("tmR3Load: Invalid version u32Version=%d!\n", u32Version));
1088 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
1089 }
1090
1091 /*
1092 * Load the virtual clock.
1093 */
1094 pVM->tm.s.cVirtualTicking = 0;
1095 /* the virtual clock. */
1096 uint64_t u64Hz;
1097 int rc = SSMR3GetU64(pSSM, &u64Hz);
1098 if (RT_FAILURE(rc))
1099 return rc;
1100 if (u64Hz != TMCLOCK_FREQ_VIRTUAL)
1101 {
1102 AssertMsgFailed(("The virtual clock frequency differs! Saved: %RU64 Binary: %RU64\n",
1103 u64Hz, TMCLOCK_FREQ_VIRTUAL));
1104 return VERR_SSM_VIRTUAL_CLOCK_HZ;
1105 }
1106 SSMR3GetU64(pSSM, &pVM->tm.s.u64Virtual);
1107 pVM->tm.s.u64VirtualOffset = 0;
1108
1109 /* the virtual timer synchronous clock. */
1110 pVM->tm.s.fVirtualSyncTicking = false;
1111 uint64_t u64;
1112 SSMR3GetU64(pSSM, &u64);
1113 pVM->tm.s.u64VirtualSync = u64;
1114 SSMR3GetU64(pSSM, &u64);
1115 pVM->tm.s.offVirtualSync = u64;
1116 SSMR3GetU64(pSSM, &u64);
1117 pVM->tm.s.offVirtualSyncGivenUp = u64;
1118 SSMR3GetU64(pSSM, &u64);
1119 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64;
1120 bool f;
1121 SSMR3GetBool(pSSM, &f);
1122 pVM->tm.s.fVirtualSyncCatchUp = f;
1123
1124 /* the real clock */
1125 rc = SSMR3GetU64(pSSM, &u64Hz);
1126 if (RT_FAILURE(rc))
1127 return rc;
1128 if (u64Hz != TMCLOCK_FREQ_REAL)
1129 {
1130 AssertMsgFailed(("The real clock frequency differs! Saved: %RU64 Binary: %RU64\n",
1131 u64Hz, TMCLOCK_FREQ_REAL));
1132 return VERR_SSM_VIRTUAL_CLOCK_HZ; /* missleading... */
1133 }
1134
1135 /* the cpu tick clock. */
1136 for (VMCPUID i = 0; i < pVM->cCPUs; i++)
1137 {
1138 PVMCPU pVCpu = &pVM->aCpus[i];
1139
1140 pVCpu->tm.s.fTSCTicking = false;
1141 SSMR3GetU64(pSSM, &pVCpu->tm.s.u64TSC);
1142
1143 if (pVM->tm.s.fTSCUseRealTSC)
1144 pVCpu->tm.s.u64TSCOffset = 0; /** @todo TSC restore stuff and HWACC. */
1145 }
1146
1147 rc = SSMR3GetU64(pSSM, &u64Hz);
1148 if (RT_FAILURE(rc))
1149 return rc;
1150 if (!pVM->tm.s.fTSCUseRealTSC)
1151 pVM->tm.s.cTSCTicksPerSecond = u64Hz;
1152
1153 LogRel(("TM: cTSCTicksPerSecond=%#RX64 (%RU64) fTSCVirtualized=%RTbool fTSCUseRealTSC=%RTbool (state load)\n",
1154 pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.cTSCTicksPerSecond, pVM->tm.s.fTSCVirtualized, pVM->tm.s.fTSCUseRealTSC));
1155
1156 /*
1157 * Make sure timers get rescheduled immediately.
1158 */
1159 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1160 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1161
1162 return VINF_SUCCESS;
1163}
1164
1165
1166/**
1167 * Internal TMR3TimerCreate worker.
1168 *
1169 * @returns VBox status code.
1170 * @param pVM The VM handle.
1171 * @param enmClock The timer clock.
1172 * @param pszDesc The timer description.
1173 * @param ppTimer Where to store the timer pointer on success.
1174 */
1175static int tmr3TimerCreate(PVM pVM, TMCLOCK enmClock, const char *pszDesc, PPTMTIMERR3 ppTimer)
1176{
1177 VM_ASSERT_EMT(pVM);
1178
1179 /*
1180 * Allocate the timer.
1181 */
1182 PTMTIMERR3 pTimer = NULL;
1183 if (pVM->tm.s.pFree && VM_IS_EMT(pVM))
1184 {
1185 pTimer = pVM->tm.s.pFree;
1186 pVM->tm.s.pFree = pTimer->pBigNext;
1187 Log3(("TM: Recycling timer %p, new free head %p.\n", pTimer, pTimer->pBigNext));
1188 }
1189
1190 if (!pTimer)
1191 {
1192 int rc = MMHyperAlloc(pVM, sizeof(*pTimer), 0, MM_TAG_TM, (void **)&pTimer);
1193 if (RT_FAILURE(rc))
1194 return rc;
1195 Log3(("TM: Allocated new timer %p\n", pTimer));
1196 }
1197
1198 /*
1199 * Initialize it.
1200 */
1201 pTimer->u64Expire = 0;
1202 pTimer->enmClock = enmClock;
1203 pTimer->pVMR3 = pVM;
1204 pTimer->pVMR0 = pVM->pVMR0;
1205 pTimer->pVMRC = pVM->pVMRC;
1206 pTimer->enmState = TMTIMERSTATE_STOPPED;
1207 pTimer->offScheduleNext = 0;
1208 pTimer->offNext = 0;
1209 pTimer->offPrev = 0;
1210 pTimer->pszDesc = pszDesc;
1211
1212 /* insert into the list of created timers. */
1213 tmLock(pVM);
1214 pTimer->pBigPrev = NULL;
1215 pTimer->pBigNext = pVM->tm.s.pCreated;
1216 pVM->tm.s.pCreated = pTimer;
1217 if (pTimer->pBigNext)
1218 pTimer->pBigNext->pBigPrev = pTimer;
1219#ifdef VBOX_STRICT
1220 tmTimerQueuesSanityChecks(pVM, "tmR3TimerCreate");
1221#endif
1222 tmUnlock(pVM);
1223
1224 *ppTimer = pTimer;
1225 return VINF_SUCCESS;
1226}
1227
1228
1229/**
1230 * Creates a device timer.
1231 *
1232 * @returns VBox status.
1233 * @param pVM The VM to create the timer in.
1234 * @param pDevIns Device instance.
1235 * @param enmClock The clock to use on this timer.
1236 * @param pfnCallback Callback function.
1237 * @param pszDesc Pointer to description string which must stay around
1238 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1239 * @param ppTimer Where to store the timer on success.
1240 */
1241VMMR3DECL(int) TMR3TimerCreateDevice(PVM pVM, PPDMDEVINS pDevIns, TMCLOCK enmClock, PFNTMTIMERDEV pfnCallback, const char *pszDesc, PPTMTIMERR3 ppTimer)
1242{
1243 /*
1244 * Allocate and init stuff.
1245 */
1246 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1247 if (RT_SUCCESS(rc))
1248 {
1249 (*ppTimer)->enmType = TMTIMERTYPE_DEV;
1250 (*ppTimer)->u.Dev.pfnTimer = pfnCallback;
1251 (*ppTimer)->u.Dev.pDevIns = pDevIns;
1252 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1253 }
1254
1255 return rc;
1256}
1257
1258
1259/**
1260 * Creates a driver timer.
1261 *
1262 * @returns VBox status.
1263 * @param pVM The VM to create the timer in.
1264 * @param pDrvIns Driver instance.
1265 * @param enmClock The clock to use on this timer.
1266 * @param pfnCallback Callback function.
1267 * @param pszDesc Pointer to description string which must stay around
1268 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1269 * @param ppTimer Where to store the timer on success.
1270 */
1271VMMR3DECL(int) TMR3TimerCreateDriver(PVM pVM, PPDMDRVINS pDrvIns, TMCLOCK enmClock, PFNTMTIMERDRV pfnCallback, const char *pszDesc, PPTMTIMERR3 ppTimer)
1272{
1273 /*
1274 * Allocate and init stuff.
1275 */
1276 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, ppTimer);
1277 if (RT_SUCCESS(rc))
1278 {
1279 (*ppTimer)->enmType = TMTIMERTYPE_DRV;
1280 (*ppTimer)->u.Drv.pfnTimer = pfnCallback;
1281 (*ppTimer)->u.Drv.pDrvIns = pDrvIns;
1282 Log(("TM: Created device timer %p clock %d callback %p '%s'\n", (*ppTimer), enmClock, pfnCallback, pszDesc));
1283 }
1284
1285 return rc;
1286}
1287
1288
1289/**
1290 * Creates an internal timer.
1291 *
1292 * @returns VBox status.
1293 * @param pVM The VM to create the timer in.
1294 * @param enmClock The clock to use on this timer.
1295 * @param pfnCallback Callback function.
1296 * @param pvUser User argument to be passed to the callback.
1297 * @param pszDesc Pointer to description string which must stay around
1298 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1299 * @param ppTimer Where to store the timer on success.
1300 */
1301VMMR3DECL(int) TMR3TimerCreateInternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMERINT pfnCallback, void *pvUser, const char *pszDesc, PPTMTIMERR3 ppTimer)
1302{
1303 /*
1304 * Allocate and init stuff.
1305 */
1306 PTMTIMER pTimer;
1307 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1308 if (RT_SUCCESS(rc))
1309 {
1310 pTimer->enmType = TMTIMERTYPE_INTERNAL;
1311 pTimer->u.Internal.pfnTimer = pfnCallback;
1312 pTimer->u.Internal.pvUser = pvUser;
1313 *ppTimer = pTimer;
1314 Log(("TM: Created internal timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1315 }
1316
1317 return rc;
1318}
1319
1320/**
1321 * Creates an external timer.
1322 *
1323 * @returns Timer handle on success.
1324 * @returns NULL on failure.
1325 * @param pVM The VM to create the timer in.
1326 * @param enmClock The clock to use on this timer.
1327 * @param pfnCallback Callback function.
1328 * @param pvUser User argument.
1329 * @param pszDesc Pointer to description string which must stay around
1330 * until the timer is fully destroyed (i.e. a bit after TMTimerDestroy()).
1331 */
1332VMMR3DECL(PTMTIMERR3) TMR3TimerCreateExternal(PVM pVM, TMCLOCK enmClock, PFNTMTIMEREXT pfnCallback, void *pvUser, const char *pszDesc)
1333{
1334 /*
1335 * Allocate and init stuff.
1336 */
1337 PTMTIMERR3 pTimer;
1338 int rc = tmr3TimerCreate(pVM, enmClock, pszDesc, &pTimer);
1339 if (RT_SUCCESS(rc))
1340 {
1341 pTimer->enmType = TMTIMERTYPE_EXTERNAL;
1342 pTimer->u.External.pfnTimer = pfnCallback;
1343 pTimer->u.External.pvUser = pvUser;
1344 Log(("TM: Created external timer %p clock %d callback %p '%s'\n", pTimer, enmClock, pfnCallback, pszDesc));
1345 return pTimer;
1346 }
1347
1348 return NULL;
1349}
1350
1351
1352/**
1353 * Destroy a timer
1354 *
1355 * @returns VBox status.
1356 * @param pTimer Timer handle as returned by one of the create functions.
1357 */
1358VMMR3DECL(int) TMR3TimerDestroy(PTMTIMER pTimer)
1359{
1360 /*
1361 * Be extra careful here.
1362 */
1363 if (!pTimer)
1364 return VINF_SUCCESS;
1365 AssertPtr(pTimer);
1366 Assert((unsigned)pTimer->enmClock < (unsigned)TMCLOCK_MAX);
1367
1368 PVM pVM = pTimer->CTX_SUFF(pVM);
1369 PTMTIMERQUEUE pQueue = &pVM->tm.s.CTX_SUFF(paTimerQueues)[pTimer->enmClock];
1370 bool fActive = false;
1371 bool fPending = false;
1372
1373 /*
1374 * The rest of the game happens behind the lock, just
1375 * like create does. All the work is done here.
1376 */
1377 tmLock(pVM);
1378 for (int cRetries = 1000;; cRetries--)
1379 {
1380 /*
1381 * Change to the DESTROY state.
1382 */
1383 TMTIMERSTATE enmState = pTimer->enmState;
1384 TMTIMERSTATE enmNewState = enmState;
1385 Log2(("TMTimerDestroy: %p:{.enmState=%s, .pszDesc='%s'} cRetries=%d\n",
1386 pTimer, tmTimerState(enmState), R3STRING(pTimer->pszDesc), cRetries));
1387 switch (enmState)
1388 {
1389 case TMTIMERSTATE_STOPPED:
1390 case TMTIMERSTATE_EXPIRED:
1391 break;
1392
1393 case TMTIMERSTATE_ACTIVE:
1394 fActive = true;
1395 break;
1396
1397 case TMTIMERSTATE_PENDING_STOP:
1398 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
1399 case TMTIMERSTATE_PENDING_RESCHEDULE:
1400 fActive = true;
1401 fPending = true;
1402 break;
1403
1404 case TMTIMERSTATE_PENDING_SCHEDULE:
1405 fPending = true;
1406 break;
1407
1408 /*
1409 * This shouldn't happen as the caller should make sure there are no races.
1410 */
1411 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
1412 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
1413 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1414 tmUnlock(pVM);
1415 if (!RTThreadYield())
1416 RTThreadSleep(1);
1417 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1418 VERR_TM_UNSTABLE_STATE);
1419 tmLock(pVM);
1420 continue;
1421
1422 /*
1423 * Invalid states.
1424 */
1425 case TMTIMERSTATE_FREE:
1426 case TMTIMERSTATE_DESTROY:
1427 tmUnlock(pVM);
1428 AssertLogRelMsgFailedReturn(("pTimer=%p %s\n", pTimer, tmTimerState(enmState)), VERR_TM_INVALID_STATE);
1429
1430 default:
1431 AssertMsgFailed(("Unknown timer state %d (%s)\n", enmState, R3STRING(pTimer->pszDesc)));
1432 tmUnlock(pVM);
1433 return VERR_TM_UNKNOWN_STATE;
1434 }
1435
1436 /*
1437 * Try switch to the destroy state.
1438 * This should always succeed as the caller should make sure there are no race.
1439 */
1440 bool fRc;
1441 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_DESTROY, enmState, fRc);
1442 if (fRc)
1443 break;
1444 AssertMsgFailed(("%p:.enmState=%s %s\n", pTimer, tmTimerState(enmState), pTimer->pszDesc));
1445 tmUnlock(pVM);
1446 AssertMsgReturn(cRetries > 0, ("Failed waiting for stable state. state=%d (%s)\n", pTimer->enmState, pTimer->pszDesc),
1447 VERR_TM_UNSTABLE_STATE);
1448 tmLock(pVM);
1449 }
1450
1451 /*
1452 * Unlink from the active list.
1453 */
1454 if (fActive)
1455 {
1456 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1457 const PTMTIMER pNext = TMTIMER_GET_NEXT(pTimer);
1458 if (pPrev)
1459 TMTIMER_SET_NEXT(pPrev, pNext);
1460 else
1461 {
1462 TMTIMER_SET_HEAD(pQueue, pNext);
1463 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1464 }
1465 if (pNext)
1466 TMTIMER_SET_PREV(pNext, pPrev);
1467 pTimer->offNext = 0;
1468 pTimer->offPrev = 0;
1469 }
1470
1471 /*
1472 * Unlink from the schedule list by running it.
1473 */
1474 if (fPending)
1475 {
1476 Log3(("TMR3TimerDestroy: tmTimerQueueSchedule\n"));
1477 STAM_PROFILE_START(&pVM->tm.s.CTXALLSUFF(StatScheduleOne), a);
1478 Assert(pQueue->offSchedule);
1479 tmTimerQueueSchedule(pVM, pQueue);
1480 }
1481
1482 /*
1483 * Read to move the timer from the created list and onto the free list.
1484 */
1485 Assert(!pTimer->offNext); Assert(!pTimer->offPrev); Assert(!pTimer->offScheduleNext);
1486
1487 /* unlink from created list */
1488 if (pTimer->pBigPrev)
1489 pTimer->pBigPrev->pBigNext = pTimer->pBigNext;
1490 else
1491 pVM->tm.s.pCreated = pTimer->pBigNext;
1492 if (pTimer->pBigNext)
1493 pTimer->pBigNext->pBigPrev = pTimer->pBigPrev;
1494 pTimer->pBigNext = 0;
1495 pTimer->pBigPrev = 0;
1496
1497 /* free */
1498 Log2(("TM: Inserting %p into the free list ahead of %p!\n", pTimer, pVM->tm.s.pFree));
1499 TM_SET_STATE(pTimer, TMTIMERSTATE_FREE);
1500 pTimer->pBigNext = pVM->tm.s.pFree;
1501 pVM->tm.s.pFree = pTimer;
1502
1503#ifdef VBOX_STRICT
1504 tmTimerQueuesSanityChecks(pVM, "TMR3TimerDestroy");
1505#endif
1506 tmUnlock(pVM);
1507 return VINF_SUCCESS;
1508}
1509
1510
1511/**
1512 * Destroy all timers owned by a device.
1513 *
1514 * @returns VBox status.
1515 * @param pVM VM handle.
1516 * @param pDevIns Device which timers should be destroyed.
1517 */
1518VMMR3DECL(int) TMR3TimerDestroyDevice(PVM pVM, PPDMDEVINS pDevIns)
1519{
1520 LogFlow(("TMR3TimerDestroyDevice: pDevIns=%p\n", pDevIns));
1521 if (!pDevIns)
1522 return VERR_INVALID_PARAMETER;
1523
1524 tmLock(pVM);
1525 PTMTIMER pCur = pVM->tm.s.pCreated;
1526 while (pCur)
1527 {
1528 PTMTIMER pDestroy = pCur;
1529 pCur = pDestroy->pBigNext;
1530 if ( pDestroy->enmType == TMTIMERTYPE_DEV
1531 && pDestroy->u.Dev.pDevIns == pDevIns)
1532 {
1533 int rc = TMR3TimerDestroy(pDestroy);
1534 AssertRC(rc);
1535 }
1536 }
1537 tmUnlock(pVM);
1538
1539 LogFlow(("TMR3TimerDestroyDevice: returns VINF_SUCCESS\n"));
1540 return VINF_SUCCESS;
1541}
1542
1543
1544/**
1545 * Destroy all timers owned by a driver.
1546 *
1547 * @returns VBox status.
1548 * @param pVM VM handle.
1549 * @param pDrvIns Driver which timers should be destroyed.
1550 */
1551VMMR3DECL(int) TMR3TimerDestroyDriver(PVM pVM, PPDMDRVINS pDrvIns)
1552{
1553 LogFlow(("TMR3TimerDestroyDriver: pDrvIns=%p\n", pDrvIns));
1554 if (!pDrvIns)
1555 return VERR_INVALID_PARAMETER;
1556
1557 tmLock(pVM);
1558 PTMTIMER pCur = pVM->tm.s.pCreated;
1559 while (pCur)
1560 {
1561 PTMTIMER pDestroy = pCur;
1562 pCur = pDestroy->pBigNext;
1563 if ( pDestroy->enmType == TMTIMERTYPE_DRV
1564 && pDestroy->u.Drv.pDrvIns == pDrvIns)
1565 {
1566 int rc = TMR3TimerDestroy(pDestroy);
1567 AssertRC(rc);
1568 }
1569 }
1570 tmUnlock(pVM);
1571
1572 LogFlow(("TMR3TimerDestroyDriver: returns VINF_SUCCESS\n"));
1573 return VINF_SUCCESS;
1574}
1575
1576
1577/**
1578 * Internal function for getting the clock time.
1579 *
1580 * @returns clock time.
1581 * @param pVM The VM handle.
1582 * @param enmClock The clock.
1583 */
1584DECLINLINE(uint64_t) tmClock(PVM pVM, TMCLOCK enmClock)
1585{
1586 switch (enmClock)
1587 {
1588 case TMCLOCK_VIRTUAL: return TMVirtualGet(pVM);
1589 case TMCLOCK_VIRTUAL_SYNC: return TMVirtualSyncGet(pVM);
1590 case TMCLOCK_REAL: return TMRealGet(pVM);
1591 case TMCLOCK_TSC: return TMCpuTickGet(&pVM->aCpus[0] /* just take VCPU 0 */);
1592 default:
1593 AssertMsgFailed(("enmClock=%d\n", enmClock));
1594 return ~(uint64_t)0;
1595 }
1596}
1597
1598
1599/**
1600 * Checks if the sync queue has one or more expired timers.
1601 *
1602 * @returns true / false.
1603 *
1604 * @param pVM The VM handle.
1605 * @param enmClock The queue.
1606 */
1607DECLINLINE(bool) tmR3HasExpiredTimer(PVM pVM, TMCLOCK enmClock)
1608{
1609 const uint64_t u64Expire = pVM->tm.s.CTX_SUFF(paTimerQueues)[enmClock].u64Expire;
1610 return u64Expire != INT64_MAX && u64Expire <= tmClock(pVM, enmClock);
1611}
1612
1613
1614/**
1615 * Checks for expired timers in all the queues.
1616 *
1617 * @returns true / false.
1618 * @param pVM The VM handle.
1619 */
1620DECLINLINE(bool) tmR3AnyExpiredTimers(PVM pVM)
1621{
1622 /*
1623 * Combine the time calculation for the first two since we're not on EMT
1624 * TMVirtualSyncGet only permits EMT.
1625 */
1626 uint64_t u64Now = TMVirtualGetNoCheck(pVM);
1627 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL].u64Expire <= u64Now)
1628 return true;
1629 u64Now = pVM->tm.s.fVirtualSyncTicking
1630 ? u64Now - pVM->tm.s.offVirtualSync
1631 : pVM->tm.s.u64VirtualSync;
1632 if (pVM->tm.s.CTX_SUFF(paTimerQueues)[TMCLOCK_VIRTUAL_SYNC].u64Expire <= u64Now)
1633 return true;
1634
1635 /*
1636 * The remaining timers.
1637 */
1638 if (tmR3HasExpiredTimer(pVM, TMCLOCK_REAL))
1639 return true;
1640 if (tmR3HasExpiredTimer(pVM, TMCLOCK_TSC))
1641 return true;
1642 return false;
1643}
1644
1645
1646/**
1647 * Schedulation timer callback.
1648 *
1649 * @param pTimer Timer handle.
1650 * @param pvUser VM handle.
1651 * @thread Timer thread.
1652 *
1653 * @remark We cannot do the scheduling and queues running from a timer handler
1654 * since it's not executing in EMT, and even if it was it would be async
1655 * and we wouldn't know the state of the affairs.
1656 * So, we'll just raise the timer FF and force any REM execution to exit.
1657 */
1658static DECLCALLBACK(void) tmR3TimerCallback(PRTTIMER pTimer, void *pvUser, uint64_t /*iTick*/)
1659{
1660 PVM pVM = (PVM)pvUser;
1661 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1662
1663 AssertCompile(TMCLOCK_MAX == 4);
1664#ifdef DEBUG_Sander /* very annoying, keep it private. */
1665 if (VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER))
1666 Log(("tmR3TimerCallback: timer event still pending!!\n"));
1667#endif
1668 if ( !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER)
1669 && ( pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule /** @todo FIXME - reconsider offSchedule as a reason for running the timer queues. */
1670 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule
1671 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule
1672 || pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offSchedule
1673 || tmR3AnyExpiredTimers(pVM)
1674 )
1675 && !VMCPU_FF_ISSET(pVCpuDst, VMCPU_FF_TIMER)
1676 && !pVM->tm.s.fRunningQueues
1677 )
1678 {
1679 Log5(("TM(%u): FF: 0 -> 1\n", __LINE__));
1680 VMCPU_FF_SET(pVCpuDst, VMCPU_FF_TIMER);
1681 REMR3NotifyTimerPending(pVM, pVCpuDst);
1682 VMR3NotifyCpuFFU(pVCpuDst->pUVCpu, VMNOTIFYFF_FLAGS_DONE_REM /** @todo | VMNOTIFYFF_FLAGS_POKE ?*/);
1683 STAM_COUNTER_INC(&pVM->tm.s.StatTimerCallbackSetFF);
1684 }
1685}
1686
1687
1688/**
1689 * Schedules and runs any pending timers.
1690 *
1691 * This is normally called from a forced action handler in EMT.
1692 *
1693 * @param pVM The VM to run the timers for.
1694 *
1695 * @thread EMT (actually EMT0, but we fend off the others)
1696 */
1697VMMR3DECL(void) TMR3TimerQueuesDo(PVM pVM)
1698{
1699 /*
1700 * Only the dedicated timer EMT should do stuff here.
1701 * (fRunningQueues is only used as an indicator.)
1702 */
1703 Assert(pVM->tm.s.idTimerCpu < pVM->cCPUs);
1704 PVMCPU pVCpuDst = &pVM->aCpus[pVM->tm.s.idTimerCpu];
1705 if (VMMGetCpu(pVM) != pVCpuDst)
1706 {
1707 Assert(pVM->cCPUs > 1);
1708 return;
1709 }
1710 STAM_PROFILE_START(&pVM->tm.s.StatDoQueues, a);
1711 Log2(("TMR3TimerQueuesDo:\n"));
1712 Assert(!pVM->tm.s.fRunningQueues);
1713 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, true);
1714 tmLock(pVM);
1715
1716 /*
1717 * Process the queues.
1718 */
1719 AssertCompile(TMCLOCK_MAX == 4);
1720
1721 /* TMCLOCK_VIRTUAL_SYNC (see also TMR3VirtualSyncFF) */
1722 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
1723 tmVirtualSyncLock(pVM);
1724 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
1725 VMCPU_FF_CLEAR(pVCpuDst, VMCPU_FF_TIMER); /* Clear the FF once we started working for real. */
1726
1727 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule)
1728 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]);
1729 tmR3TimerQueueRunVirtualSync(pVM);
1730 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
1731 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
1732
1733 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
1734 tmVirtualSyncUnlock(pVM);
1735 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL_SYNC], s1);
1736
1737 /* TMCLOCK_VIRTUAL */
1738 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
1739 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL].offSchedule)
1740 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1741 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL]);
1742 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_VIRTUAL], s2);
1743
1744 /* TMCLOCK_TSC */
1745 Assert(!pVM->tm.s.paTimerQueuesR3[TMCLOCK_TSC].offActive); /* not used */
1746
1747 /* TMCLOCK_REAL */
1748 STAM_PROFILE_ADV_START(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
1749 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL].offSchedule)
1750 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1751 tmR3TimerQueueRun(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_REAL]);
1752 STAM_PROFILE_ADV_STOP(&pVM->tm.s.aStatDoQueues[TMCLOCK_REAL], s3);
1753
1754#ifdef VBOX_STRICT
1755 /* check that we didn't screwup. */
1756 tmTimerQueuesSanityChecks(pVM, "TMR3TimerQueuesDo");
1757#endif
1758
1759 /* done */
1760 Log2(("TMR3TimerQueuesDo: returns void\n"));
1761 ASMAtomicWriteBool(&pVM->tm.s.fRunningQueues, false);
1762 tmUnlock(pVM);
1763 STAM_PROFILE_STOP(&pVM->tm.s.StatDoQueues, a);
1764}
1765
1766//__BEGIN_DECLS
1767//int iomLock(PVM pVM);
1768//void iomUnlock(PVM pVM);
1769//__END_DECLS
1770
1771
1772/**
1773 * Schedules and runs any pending times in the specified queue.
1774 *
1775 * This is normally called from a forced action handler in EMT.
1776 *
1777 * @param pVM The VM to run the timers for.
1778 * @param pQueue The queue to run.
1779 */
1780static void tmR3TimerQueueRun(PVM pVM, PTMTIMERQUEUE pQueue)
1781{
1782 VM_ASSERT_EMT(pVM);
1783
1784 /*
1785 * Run timers.
1786 *
1787 * We check the clock once and run all timers which are ACTIVE
1788 * and have an expire time less or equal to the time we read.
1789 *
1790 * N.B. A generic unlink must be applied since other threads
1791 * are allowed to mess with any active timer at any time.
1792 * However, we only allow EMT to handle EXPIRED_PENDING
1793 * timers, thus enabling the timer handler function to
1794 * arm the timer again.
1795 */
1796 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1797 if (!pNext)
1798 return;
1799 const uint64_t u64Now = tmClock(pVM, pQueue->enmClock);
1800 while (pNext && pNext->u64Expire <= u64Now)
1801 {
1802 PTMTIMER pTimer = pNext;
1803 pNext = TMTIMER_GET_NEXT(pTimer);
1804 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
1805 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
1806 bool fRc;
1807 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED, TMTIMERSTATE_ACTIVE, fRc);
1808 if (fRc)
1809 {
1810 Assert(!pTimer->offScheduleNext); /* this can trigger falsely */
1811
1812 /* unlink */
1813 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1814 if (pPrev)
1815 TMTIMER_SET_NEXT(pPrev, pNext);
1816 else
1817 {
1818 TMTIMER_SET_HEAD(pQueue, pNext);
1819 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1820 }
1821 if (pNext)
1822 TMTIMER_SET_PREV(pNext, pPrev);
1823 pTimer->offNext = 0;
1824 pTimer->offPrev = 0;
1825
1826
1827 /* fire */
1828// tmUnlock(pVM);
1829 switch (pTimer->enmType)
1830 {
1831 case TMTIMERTYPE_DEV:
1832// iomLock(pVM);
1833 pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer);
1834// iomUnlock(pVM);
1835 break;
1836
1837 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer); break;
1838 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->u.Internal.pvUser); break;
1839 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->u.External.pvUser); break;
1840 default:
1841 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
1842 break;
1843 }
1844// tmLock(pVM);
1845
1846 /* change the state if it wasn't changed already in the handler. */
1847 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED, fRc);
1848 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
1849 }
1850 } /* run loop */
1851}
1852
1853
1854/**
1855 * Schedules and runs any pending times in the timer queue for the
1856 * synchronous virtual clock.
1857 *
1858 * This scheduling is a bit different from the other queues as it need
1859 * to implement the special requirements of the timer synchronous virtual
1860 * clock, thus this 2nd queue run funcion.
1861 *
1862 * @param pVM The VM to run the timers for.
1863 */
1864static void tmR3TimerQueueRunVirtualSync(PVM pVM)
1865{
1866 PTMTIMERQUEUE const pQueue = &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC];
1867 VM_ASSERT_EMT(pVM);
1868
1869 /*
1870 * Any timers?
1871 */
1872 PTMTIMER pNext = TMTIMER_GET_HEAD(pQueue);
1873 if (RT_UNLIKELY(!pNext))
1874 {
1875 Assert(pVM->tm.s.fVirtualSyncTicking || !pVM->tm.s.cVirtualTicking);
1876 return;
1877 }
1878 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRun);
1879
1880 /*
1881 * Calculate the time frame for which we will dispatch timers.
1882 *
1883 * We use a time frame ranging from the current sync time (which is most likely the
1884 * same as the head timer) and some configurable period (100000ns) up towards the
1885 * current virtual time. This period might also need to be restricted by the catch-up
1886 * rate so frequent calls to this function won't accelerate the time too much, however
1887 * this will be implemented at a later point if neccessary.
1888 *
1889 * Without this frame we would 1) having to run timers much more frequently
1890 * and 2) lag behind at a steady rate.
1891 */
1892 const uint64_t u64VirtualNow = TMVirtualGetNoCheck(pVM);
1893 uint64_t u64Now;
1894 if (!pVM->tm.s.fVirtualSyncTicking)
1895 {
1896 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStoppedAlready);
1897 u64Now = pVM->tm.s.u64VirtualSync;
1898 Assert(u64Now <= pNext->u64Expire);
1899 }
1900 else
1901 {
1902 /* Calc 'now'. (update order doesn't really matter here) */
1903 uint64_t off = pVM->tm.s.offVirtualSync;
1904 if (pVM->tm.s.fVirtualSyncCatchUp)
1905 {
1906 uint64_t u64Delta = u64VirtualNow - pVM->tm.s.u64VirtualSyncCatchUpPrev;
1907 if (RT_LIKELY(!(u64Delta >> 32)))
1908 {
1909 uint64_t u64Sub = ASMMultU64ByU32DivByU32(u64Delta, pVM->tm.s.u32VirtualSyncCatchUpPercentage, 100);
1910 if (off > u64Sub + pVM->tm.s.offVirtualSyncGivenUp)
1911 {
1912 off -= u64Sub;
1913 Log4(("TM: %RU64/%RU64: sub %RU64 (run)\n", u64VirtualNow - off, off - pVM->tm.s.offVirtualSyncGivenUp, u64Sub));
1914 }
1915 else
1916 {
1917 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
1918 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
1919 off = pVM->tm.s.offVirtualSyncGivenUp;
1920 Log4(("TM: %RU64/0: caught up (run)\n", u64VirtualNow));
1921 }
1922 }
1923 ASMAtomicXchgU64(&pVM->tm.s.offVirtualSync, off);
1924 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow;
1925 }
1926 u64Now = u64VirtualNow - off;
1927
1928 /* Check if stopped by expired timer. */
1929 if (u64Now >= pNext->u64Expire)
1930 {
1931 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunStop);
1932 u64Now = pNext->u64Expire;
1933 ASMAtomicXchgU64(&pVM->tm.s.u64VirtualSync, u64Now);
1934 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncTicking, false);
1935 Log4(("TM: %RU64/%RU64: exp tmr (run)\n", u64Now, u64VirtualNow - u64Now - pVM->tm.s.offVirtualSyncGivenUp));
1936
1937 }
1938 }
1939
1940 /* calc end of frame. */
1941 uint64_t u64Max = u64Now + pVM->tm.s.u32VirtualSyncScheduleSlack;
1942 if (u64Max > u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp)
1943 u64Max = u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp;
1944
1945 /* assert sanity */
1946 Assert(u64Now <= u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp);
1947 Assert(u64Max <= u64VirtualNow - pVM->tm.s.offVirtualSyncGivenUp);
1948 Assert(u64Now <= u64Max);
1949
1950 /*
1951 * Process the expired timers moving the clock along as we progress.
1952 */
1953#ifdef VBOX_STRICT
1954 uint64_t u64Prev = u64Now; NOREF(u64Prev);
1955#endif
1956 while (pNext && pNext->u64Expire <= u64Max)
1957 {
1958 PTMTIMER pTimer = pNext;
1959 pNext = TMTIMER_GET_NEXT(pTimer);
1960 Log2(("tmR3TimerQueueRun: %p:{.enmState=%s, .enmClock=%d, .enmType=%d, u64Expire=%llx (now=%llx) .pszDesc=%s}\n",
1961 pTimer, tmTimerState(pTimer->enmState), pTimer->enmClock, pTimer->enmType, pTimer->u64Expire, u64Now, pTimer->pszDesc));
1962 bool fRc;
1963 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_EXPIRED, TMTIMERSTATE_ACTIVE, fRc);
1964 if (fRc)
1965 {
1966 /* unlink */
1967 const PTMTIMER pPrev = TMTIMER_GET_PREV(pTimer);
1968 if (pPrev)
1969 TMTIMER_SET_NEXT(pPrev, pNext);
1970 else
1971 {
1972 TMTIMER_SET_HEAD(pQueue, pNext);
1973 pQueue->u64Expire = pNext ? pNext->u64Expire : INT64_MAX;
1974 }
1975 if (pNext)
1976 TMTIMER_SET_PREV(pNext, pPrev);
1977 pTimer->offNext = 0;
1978 pTimer->offPrev = 0;
1979
1980 /* advance the clock - don't permit timers to be out of order or armed in the 'past'. */
1981#ifdef VBOX_STRICT
1982 AssertMsg(pTimer->u64Expire >= u64Prev, ("%RU64 < %RU64 %s\n", pTimer->u64Expire, u64Prev, pTimer->pszDesc));
1983 u64Prev = pTimer->u64Expire;
1984#endif
1985 ASMAtomicXchgSize(&pVM->tm.s.fVirtualSyncTicking, false);
1986 ASMAtomicXchgU64(&pVM->tm.s.u64VirtualSync, pTimer->u64Expire);
1987
1988 /* fire */
1989 switch (pTimer->enmType)
1990 {
1991 case TMTIMERTYPE_DEV: pTimer->u.Dev.pfnTimer(pTimer->u.Dev.pDevIns, pTimer); break;
1992 case TMTIMERTYPE_DRV: pTimer->u.Drv.pfnTimer(pTimer->u.Drv.pDrvIns, pTimer); break;
1993 case TMTIMERTYPE_INTERNAL: pTimer->u.Internal.pfnTimer(pVM, pTimer, pTimer->u.Internal.pvUser); break;
1994 case TMTIMERTYPE_EXTERNAL: pTimer->u.External.pfnTimer(pTimer->u.External.pvUser); break;
1995 default:
1996 AssertMsgFailed(("Invalid timer type %d (%s)\n", pTimer->enmType, pTimer->pszDesc));
1997 break;
1998 }
1999
2000 /* change the state if it wasn't changed already in the handler. */
2001 TM_TRY_SET_STATE(pTimer, TMTIMERSTATE_STOPPED, TMTIMERSTATE_EXPIRED, fRc);
2002 Log2(("tmR3TimerQueueRun: new state %s\n", tmTimerState(pTimer->enmState)));
2003 }
2004 } /* run loop */
2005
2006 /*
2007 * Restart the clock if it was stopped to serve any timers,
2008 * and start/adjust catch-up if necessary.
2009 */
2010 if ( !pVM->tm.s.fVirtualSyncTicking
2011 && pVM->tm.s.cVirtualTicking)
2012 {
2013 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncRunRestart);
2014
2015 /* calc the slack we've handed out. */
2016 const uint64_t u64VirtualNow2 = TMVirtualGetNoCheck(pVM);
2017 Assert(u64VirtualNow2 >= u64VirtualNow);
2018 AssertMsg(pVM->tm.s.u64VirtualSync >= u64Now, ("%RU64 < %RU64\n", pVM->tm.s.u64VirtualSync, u64Now));
2019 const uint64_t offSlack = pVM->tm.s.u64VirtualSync - u64Now;
2020 STAM_STATS({
2021 if (offSlack)
2022 {
2023 PSTAMPROFILE p = &pVM->tm.s.StatVirtualSyncRunSlack;
2024 p->cPeriods++;
2025 p->cTicks += offSlack;
2026 if (p->cTicksMax < offSlack) p->cTicksMax = offSlack;
2027 if (p->cTicksMin > offSlack) p->cTicksMin = offSlack;
2028 }
2029 });
2030
2031 /* Let the time run a little bit while we were busy running timers(?). */
2032 uint64_t u64Elapsed;
2033#define MAX_ELAPSED 30000 /* ns */
2034 if (offSlack > MAX_ELAPSED)
2035 u64Elapsed = 0;
2036 else
2037 {
2038 u64Elapsed = u64VirtualNow2 - u64VirtualNow;
2039 if (u64Elapsed > MAX_ELAPSED)
2040 u64Elapsed = MAX_ELAPSED;
2041 u64Elapsed = u64Elapsed > offSlack ? u64Elapsed - offSlack : 0;
2042 }
2043#undef MAX_ELAPSED
2044
2045 /* Calc the current offset. */
2046 uint64_t offNew = u64VirtualNow2 - pVM->tm.s.u64VirtualSync - u64Elapsed;
2047 Assert(!(offNew & RT_BIT_64(63)));
2048 uint64_t offLag = offNew - pVM->tm.s.offVirtualSyncGivenUp;
2049 Assert(!(offLag & RT_BIT_64(63)));
2050
2051 /*
2052 * Deal with starting, adjusting and stopping catchup.
2053 */
2054 if (pVM->tm.s.fVirtualSyncCatchUp)
2055 {
2056 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpStopThreshold)
2057 {
2058 /* stop */
2059 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2060 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2061 Log4(("TM: %RU64/%RU64: caught up\n", u64VirtualNow2 - offNew, offLag));
2062 }
2063 else if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2064 {
2065 /* adjust */
2066 unsigned i = 0;
2067 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2068 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2069 i++;
2070 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage < pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage)
2071 {
2072 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupAdjust[i]);
2073 ASMAtomicXchgU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2074 Log4(("TM: %RU64/%RU64: adj %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2075 }
2076 pVM->tm.s.u64VirtualSyncCatchUpPrev = u64VirtualNow2;
2077 }
2078 else
2079 {
2080 /* give up */
2081 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUp);
2082 STAM_PROFILE_ADV_STOP(&pVM->tm.s.StatVirtualSyncCatchup, c);
2083 ASMAtomicXchgU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2084 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, false);
2085 Log4(("TM: %RU64/%RU64: give up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2086 LogRel(("TM: Giving up catch-up attempt at a %RU64 ns lag; new total: %RU64 ns\n", offLag, offNew));
2087 }
2088 }
2089 else if (offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[0].u64Start)
2090 {
2091 if (offLag <= pVM->tm.s.u64VirtualSyncCatchUpGiveUpThreshold)
2092 {
2093 /* start */
2094 STAM_PROFILE_ADV_START(&pVM->tm.s.StatVirtualSyncCatchup, c);
2095 unsigned i = 0;
2096 while ( i + 1 < RT_ELEMENTS(pVM->tm.s.aVirtualSyncCatchUpPeriods)
2097 && offLag >= pVM->tm.s.aVirtualSyncCatchUpPeriods[i + 1].u64Start)
2098 i++;
2099 STAM_COUNTER_INC(&pVM->tm.s.aStatVirtualSyncCatchupInitial[i]);
2100 ASMAtomicXchgU32(&pVM->tm.s.u32VirtualSyncCatchUpPercentage, pVM->tm.s.aVirtualSyncCatchUpPeriods[i].u32Percentage);
2101 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncCatchUp, true);
2102 Log4(("TM: %RU64/%RU64: catch-up %u%%\n", u64VirtualNow2 - offNew, offLag, pVM->tm.s.u32VirtualSyncCatchUpPercentage));
2103 }
2104 else
2105 {
2106 /* don't bother */
2107 STAM_COUNTER_INC(&pVM->tm.s.StatVirtualSyncGiveUpBeforeStarting);
2108 ASMAtomicXchgU64((uint64_t volatile *)&pVM->tm.s.offVirtualSyncGivenUp, offNew);
2109 Log4(("TM: %RU64/%RU64: give up\n", u64VirtualNow2 - offNew, offLag));
2110 LogRel(("TM: Not bothering to attempt catching up a %RU64 ns lag; new total: %RU64\n", offLag, offNew));
2111 }
2112 }
2113
2114 /*
2115 * Update the offset and restart the clock.
2116 */
2117 Assert(!(offNew & RT_BIT_64(63)));
2118 ASMAtomicXchgU64(&pVM->tm.s.offVirtualSync, offNew);
2119 ASMAtomicXchgBool(&pVM->tm.s.fVirtualSyncTicking, true);
2120 }
2121}
2122
2123
2124/**
2125 * Deals with stopped Virtual Sync clock.
2126 *
2127 * This is called by the forced action flag handling code in EM when it
2128 * encounters the VM_FF_TM_VIRTUAL_SYNC flag. It is called by all VCPUs and they
2129 * will block on the VirtualSyncLock until the pending timers has been executed
2130 * and the clock restarted.
2131 *
2132 * @param pVM The VM to run the timers for.
2133 * @param pVCpu The virtual CPU we're running at.
2134 *
2135 * @thread EMTs
2136 */
2137VMMR3DECL(void) TMR3VirtualSyncFF(PVM pVM, PVMCPU pVCpu)
2138{
2139 Log2(("TMR3VirtualSyncFF:\n"));
2140
2141 /*
2142 * The EMT doing the timers is diverted to them.
2143 */
2144 if (pVCpu->idCpu == pVM->tm.s.idTimerCpu)
2145 TMR3TimerQueuesDo(pVM);
2146 /*
2147 * The other EMTs will block on the virtual sync lock and the first owner
2148 * will run the queue and thus restarting the clock.
2149 *
2150 * Note! This is very suboptimal code wrt to resuming execution when there
2151 * are more than two Virtual CPUs, since they will all have to enter
2152 * the critical section one by one. But it's a very simple solution
2153 * which will have to do the job for now.
2154 */
2155 else
2156 {
2157 STAM_PROFILE_START(&pVM->tm.s.StatVirtualSyncFF, a);
2158 tmVirtualSyncLock(pVM);
2159 if (pVM->tm.s.fVirtualSyncTicking)
2160 {
2161 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2162 tmVirtualSyncUnlock(pVM);
2163 Log2(("TMR3VirtualSyncFF: ticking\n"));
2164 }
2165 else
2166 {
2167 tmVirtualSyncUnlock(pVM);
2168
2169 /* try run it. */
2170 tmLock(pVM);
2171 tmVirtualSyncLock(pVM);
2172 if (pVM->tm.s.fVirtualSyncTicking)
2173 Log2(("TMR3VirtualSyncFF: ticking (2)\n"));
2174 else
2175 {
2176 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, true);
2177 Log2(("TMR3VirtualSyncFF: running queue\n"));
2178
2179 if (pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC].offSchedule)
2180 tmTimerQueueSchedule(pVM, &pVM->tm.s.paTimerQueuesR3[TMCLOCK_VIRTUAL_SYNC]);
2181 tmR3TimerQueueRunVirtualSync(pVM);
2182 if (pVM->tm.s.fVirtualSyncTicking) /** @todo move into tmR3TimerQueueRunVirtualSync - FIXME */
2183 VM_FF_CLEAR(pVM, VM_FF_TM_VIRTUAL_SYNC);
2184
2185 ASMAtomicWriteBool(&pVM->tm.s.fRunningVirtualSyncQueue, false);
2186 }
2187 STAM_PROFILE_STOP(&pVM->tm.s.StatVirtualSyncFF, a); /* before the unlock! */
2188 tmVirtualSyncUnlock(pVM);
2189 tmUnlock(pVM);
2190 }
2191 }
2192}
2193
2194
2195/**
2196 * Saves the state of a timer to a saved state.
2197 *
2198 * @returns VBox status.
2199 * @param pTimer Timer to save.
2200 * @param pSSM Save State Manager handle.
2201 */
2202VMMR3DECL(int) TMR3TimerSave(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2203{
2204 LogFlow(("TMR3TimerSave: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2205 switch (pTimer->enmState)
2206 {
2207 case TMTIMERSTATE_STOPPED:
2208 case TMTIMERSTATE_PENDING_STOP:
2209 case TMTIMERSTATE_PENDING_STOP_SCHEDULE:
2210 return SSMR3PutU8(pSSM, (uint8_t)TMTIMERSTATE_PENDING_STOP);
2211
2212 case TMTIMERSTATE_PENDING_SCHEDULE_SET_EXPIRE:
2213 case TMTIMERSTATE_PENDING_RESCHEDULE_SET_EXPIRE:
2214 AssertMsgFailed(("u64Expire is being updated! (%s)\n", pTimer->pszDesc));
2215 if (!RTThreadYield())
2216 RTThreadSleep(1);
2217 /* fall thru */
2218 case TMTIMERSTATE_ACTIVE:
2219 case TMTIMERSTATE_PENDING_SCHEDULE:
2220 case TMTIMERSTATE_PENDING_RESCHEDULE:
2221 SSMR3PutU8(pSSM, (uint8_t)TMTIMERSTATE_PENDING_SCHEDULE);
2222 return SSMR3PutU64(pSSM, pTimer->u64Expire);
2223
2224 case TMTIMERSTATE_EXPIRED:
2225 case TMTIMERSTATE_DESTROY:
2226 case TMTIMERSTATE_FREE:
2227 AssertMsgFailed(("Invalid timer state %d %s (%s)\n", pTimer->enmState, tmTimerState(pTimer->enmState), pTimer->pszDesc));
2228 return SSMR3HandleSetStatus(pSSM, VERR_TM_INVALID_STATE);
2229 }
2230
2231 AssertMsgFailed(("Unknown timer state %d (%s)\n", pTimer->enmState, pTimer->pszDesc));
2232 return SSMR3HandleSetStatus(pSSM, VERR_TM_UNKNOWN_STATE);
2233}
2234
2235
2236/**
2237 * Loads the state of a timer from a saved state.
2238 *
2239 * @returns VBox status.
2240 * @param pTimer Timer to restore.
2241 * @param pSSM Save State Manager handle.
2242 */
2243VMMR3DECL(int) TMR3TimerLoad(PTMTIMERR3 pTimer, PSSMHANDLE pSSM)
2244{
2245 Assert(pTimer); Assert(pSSM); VM_ASSERT_EMT(pTimer->pVMR3);
2246 LogFlow(("TMR3TimerLoad: %p:{enmState=%s, .pszDesc={%s}} pSSM=%p\n", pTimer, tmTimerState(pTimer->enmState), pTimer->pszDesc, pSSM));
2247
2248 /*
2249 * Load the state and validate it.
2250 */
2251 uint8_t u8State;
2252 int rc = SSMR3GetU8(pSSM, &u8State);
2253 if (RT_FAILURE(rc))
2254 return rc;
2255 TMTIMERSTATE enmState = (TMTIMERSTATE)u8State;
2256 if ( enmState != TMTIMERSTATE_PENDING_STOP
2257 && enmState != TMTIMERSTATE_PENDING_SCHEDULE
2258 && enmState != TMTIMERSTATE_PENDING_STOP_SCHEDULE)
2259 {
2260 AssertMsgFailed(("enmState=%d %s\n", enmState, tmTimerState(enmState)));
2261 return SSMR3HandleSetStatus(pSSM, VERR_TM_LOAD_STATE);
2262 }
2263
2264 if (enmState == TMTIMERSTATE_PENDING_SCHEDULE)
2265 {
2266 /*
2267 * Load the expire time.
2268 */
2269 uint64_t u64Expire;
2270 rc = SSMR3GetU64(pSSM, &u64Expire);
2271 if (RT_FAILURE(rc))
2272 return rc;
2273
2274 /*
2275 * Set it.
2276 */
2277 Log(("enmState=%d %s u64Expire=%llu\n", enmState, tmTimerState(enmState), u64Expire));
2278 rc = TMTimerSet(pTimer, u64Expire);
2279 }
2280 else
2281 {
2282 /*
2283 * Stop it.
2284 */
2285 Log(("enmState=%d %s\n", enmState, tmTimerState(enmState)));
2286 rc = TMTimerStop(pTimer);
2287 }
2288
2289 /*
2290 * On failure set SSM status.
2291 */
2292 if (RT_FAILURE(rc))
2293 rc = SSMR3HandleSetStatus(pSSM, rc);
2294 return rc;
2295}
2296
2297
2298/**
2299 * Get the real world UTC time adjusted for VM lag.
2300 *
2301 * @returns pTime.
2302 * @param pVM The VM instance.
2303 * @param pTime Where to store the time.
2304 */
2305VMMR3DECL(PRTTIMESPEC) TMR3UTCNow(PVM pVM, PRTTIMESPEC pTime)
2306{
2307 RTTimeNow(pTime);
2308 RTTimeSpecSubNano(pTime, pVM->tm.s.offVirtualSync - pVM->tm.s.offVirtualSyncGivenUp);
2309 RTTimeSpecAddNano(pTime, pVM->tm.s.offUTC);
2310 return pTime;
2311}
2312
2313
2314/**
2315 * Sets the warp drive percent of the virtual time.
2316 *
2317 * @returns VBox status code.
2318 * @param pVM The VM handle.
2319 * @param u32Percent The new percentage. 100 means normal operation.
2320 *
2321 * @todo Move to Ring-3!
2322 */
2323VMMDECL(int) TMR3SetWarpDrive(PVM pVM, uint32_t u32Percent)
2324{
2325 PVMREQ pReq;
2326 int rc = VMR3ReqCall(pVM, VMCPUID_ANY, &pReq, RT_INDEFINITE_WAIT,
2327 (PFNRT)tmR3SetWarpDrive, 2, pVM, u32Percent);
2328 if (RT_SUCCESS(rc))
2329 rc = pReq->iStatus;
2330 VMR3ReqFree(pReq);
2331 return rc;
2332}
2333
2334
2335/**
2336 * EMT worker for TMR3SetWarpDrive.
2337 *
2338 * @returns VBox status code.
2339 * @param pVM The VM handle.
2340 * @param u32Percent See TMR3SetWarpDrive().
2341 * @internal
2342 */
2343static DECLCALLBACK(int) tmR3SetWarpDrive(PVM pVM, uint32_t u32Percent)
2344{
2345 PVMCPU pVCpu = VMMGetCpu(pVM);
2346
2347 /*
2348 * Validate it.
2349 */
2350 AssertMsgReturn(u32Percent >= 2 && u32Percent <= 20000,
2351 ("%RX32 is not between 2 and 20000 (inclusive).\n", u32Percent),
2352 VERR_INVALID_PARAMETER);
2353 tmLock(pVM); /* paranoia */
2354
2355/** @todo This isn't a feature specific to virtual time, move the variables to
2356 * TM level and make it affect TMR3UCTNow as well! */
2357
2358 /*
2359 * If the time is running we'll have to pause it before we can change
2360 * the warp drive settings.
2361 */
2362 bool fPaused = !!pVM->tm.s.cVirtualTicking;
2363 if (fPaused)
2364 {
2365 int rc = TMVirtualPause(pVM);
2366 AssertRC(rc);
2367 rc = TMCpuTickPause(pVCpu);
2368 AssertRC(rc);
2369 }
2370
2371 pVM->tm.s.u32VirtualWarpDrivePercentage = u32Percent;
2372 pVM->tm.s.fVirtualWarpDrive = u32Percent != 100;
2373 LogRel(("TM: u32VirtualWarpDrivePercentage=%RI32 fVirtualWarpDrive=%RTbool\n",
2374 pVM->tm.s.u32VirtualWarpDrivePercentage, pVM->tm.s.fVirtualWarpDrive));
2375
2376 if (fPaused)
2377 {
2378 int rc = TMVirtualResume(pVM);
2379 AssertRC(rc);
2380 rc = TMCpuTickResume(pVCpu);
2381 AssertRC(rc);
2382 }
2383
2384 tmUnlock(pVM);
2385 return VINF_SUCCESS;
2386}
2387
2388
2389
2390
2391/**
2392 * Display all timers.
2393 *
2394 * @param pVM VM Handle.
2395 * @param pHlp The info helpers.
2396 * @param pszArgs Arguments, ignored.
2397 */
2398static DECLCALLBACK(void) tmR3TimerInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2399{
2400 NOREF(pszArgs);
2401 pHlp->pfnPrintf(pHlp,
2402 "Timers (pVM=%p)\n"
2403 "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
2404 pVM,
2405 sizeof(RTR3PTR) * 2, "pTimerR3 ",
2406 sizeof(int32_t) * 2, "offNext ",
2407 sizeof(int32_t) * 2, "offPrev ",
2408 sizeof(int32_t) * 2, "offSched ",
2409 "Time",
2410 "Expire",
2411 "State");
2412 tmLock(pVM);
2413 for (PTMTIMERR3 pTimer = pVM->tm.s.pCreated; pTimer; pTimer = pTimer->pBigNext)
2414 {
2415 pHlp->pfnPrintf(pHlp,
2416 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
2417 pTimer,
2418 pTimer->offNext,
2419 pTimer->offPrev,
2420 pTimer->offScheduleNext,
2421 pTimer->enmClock == TMCLOCK_REAL ? "Real " : "Virt ",
2422 TMTimerGet(pTimer),
2423 pTimer->u64Expire,
2424 tmTimerState(pTimer->enmState),
2425 pTimer->pszDesc);
2426 }
2427 tmUnlock(pVM);
2428}
2429
2430
2431/**
2432 * Display all active timers.
2433 *
2434 * @param pVM VM Handle.
2435 * @param pHlp The info helpers.
2436 * @param pszArgs Arguments, ignored.
2437 */
2438static DECLCALLBACK(void) tmR3TimerInfoActive(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2439{
2440 NOREF(pszArgs);
2441 pHlp->pfnPrintf(pHlp,
2442 "Active Timers (pVM=%p)\n"
2443 "%.*s %.*s %.*s %.*s Clock %-18s %-18s %-25s Description\n",
2444 pVM,
2445 sizeof(RTR3PTR) * 2, "pTimerR3 ",
2446 sizeof(int32_t) * 2, "offNext ",
2447 sizeof(int32_t) * 2, "offPrev ",
2448 sizeof(int32_t) * 2, "offSched ",
2449 "Time",
2450 "Expire",
2451 "State");
2452 for (unsigned iQueue = 0; iQueue < TMCLOCK_MAX; iQueue++)
2453 {
2454 tmLock(pVM);
2455 for (PTMTIMERR3 pTimer = TMTIMER_GET_HEAD(&pVM->tm.s.paTimerQueuesR3[iQueue]);
2456 pTimer;
2457 pTimer = TMTIMER_GET_NEXT(pTimer))
2458 {
2459 pHlp->pfnPrintf(pHlp,
2460 "%p %08RX32 %08RX32 %08RX32 %s %18RU64 %18RU64 %-25s %s\n",
2461 pTimer,
2462 pTimer->offNext,
2463 pTimer->offPrev,
2464 pTimer->offScheduleNext,
2465 pTimer->enmClock == TMCLOCK_REAL
2466 ? "Real "
2467 : pTimer->enmClock == TMCLOCK_VIRTUAL
2468 ? "Virt "
2469 : pTimer->enmClock == TMCLOCK_VIRTUAL_SYNC
2470 ? "VrSy "
2471 : "TSC ",
2472 TMTimerGet(pTimer),
2473 pTimer->u64Expire,
2474 tmTimerState(pTimer->enmState),
2475 pTimer->pszDesc);
2476 }
2477 tmUnlock(pVM);
2478 }
2479}
2480
2481
2482/**
2483 * Display all clocks.
2484 *
2485 * @param pVM VM Handle.
2486 * @param pHlp The info helpers.
2487 * @param pszArgs Arguments, ignored.
2488 */
2489static DECLCALLBACK(void) tmR3InfoClocks(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2490{
2491 NOREF(pszArgs);
2492
2493 /*
2494 * Read the times first to avoid more than necessary time variation.
2495 */
2496 const uint64_t u64Virtual = TMVirtualGet(pVM);
2497 const uint64_t u64VirtualSync = TMVirtualSyncGet(pVM);
2498 const uint64_t u64Real = TMRealGet(pVM);
2499
2500 for (unsigned i = 0; i < pVM->cCPUs; i++)
2501 {
2502 PVMCPU pVCpu = &pVM->aCpus[i];
2503 uint64_t u64TSC = TMCpuTickGet(pVCpu);
2504
2505 /*
2506 * TSC
2507 */
2508 pHlp->pfnPrintf(pHlp,
2509 "Cpu Tick: %18RU64 (%#016RX64) %RU64Hz %s%s",
2510 u64TSC, u64TSC, TMCpuTicksPerSecond(pVM),
2511 pVCpu->tm.s.fTSCTicking ? "ticking" : "paused",
2512 pVM->tm.s.fTSCVirtualized ? " - virtualized" : "");
2513 if (pVM->tm.s.fTSCUseRealTSC)
2514 {
2515 pHlp->pfnPrintf(pHlp, " - real tsc");
2516 if (pVCpu->tm.s.u64TSCOffset)
2517 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVCpu->tm.s.u64TSCOffset);
2518 }
2519 else
2520 pHlp->pfnPrintf(pHlp, " - virtual clock");
2521 pHlp->pfnPrintf(pHlp, "\n");
2522 }
2523
2524 /*
2525 * virtual
2526 */
2527 pHlp->pfnPrintf(pHlp,
2528 " Virtual: %18RU64 (%#016RX64) %RU64Hz %s",
2529 u64Virtual, u64Virtual, TMVirtualGetFreq(pVM),
2530 pVM->tm.s.cVirtualTicking ? "ticking" : "paused");
2531 if (pVM->tm.s.fVirtualWarpDrive)
2532 pHlp->pfnPrintf(pHlp, " WarpDrive %RU32 %%", pVM->tm.s.u32VirtualWarpDrivePercentage);
2533 pHlp->pfnPrintf(pHlp, "\n");
2534
2535 /*
2536 * virtual sync
2537 */
2538 pHlp->pfnPrintf(pHlp,
2539 "VirtSync: %18RU64 (%#016RX64) %s%s",
2540 u64VirtualSync, u64VirtualSync,
2541 pVM->tm.s.fVirtualSyncTicking ? "ticking" : "paused",
2542 pVM->tm.s.fVirtualSyncCatchUp ? " - catchup" : "");
2543 if (pVM->tm.s.offVirtualSync)
2544 {
2545 pHlp->pfnPrintf(pHlp, "\n offset %RU64", pVM->tm.s.offVirtualSync);
2546 if (pVM->tm.s.u32VirtualSyncCatchUpPercentage)
2547 pHlp->pfnPrintf(pHlp, " catch-up rate %u %%", pVM->tm.s.u32VirtualSyncCatchUpPercentage);
2548 }
2549 pHlp->pfnPrintf(pHlp, "\n");
2550
2551 /*
2552 * real
2553 */
2554 pHlp->pfnPrintf(pHlp,
2555 " Real: %18RU64 (%#016RX64) %RU64Hz\n",
2556 u64Real, u64Real, TMRealGetFreq(pVM));
2557}
2558
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette