VirtualBox

source: vbox/trunk/src/VBox/VMM/PGMInternal.h@ 16174

最後變更 在這個檔案從16174是 16172,由 vboxsync 提交於 16 年 前

Moved amd64 paging data to unified shadow paging section.

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id
檔案大小: 190.8 KB
 
1/* $Id: PGMInternal.h 16172 2009-01-22 15:09:31Z vboxsync $ */
2/** @file
3 * PGM - Internal header file.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22#ifndef ___PGMInternal_h
23#define ___PGMInternal_h
24
25#include <VBox/cdefs.h>
26#include <VBox/types.h>
27#include <VBox/err.h>
28#include <VBox/stam.h>
29#include <VBox/param.h>
30#include <VBox/vmm.h>
31#include <VBox/mm.h>
32#include <VBox/pdmcritsect.h>
33#include <VBox/pdmapi.h>
34#include <VBox/dis.h>
35#include <VBox/dbgf.h>
36#include <VBox/log.h>
37#include <VBox/gmm.h>
38#include <VBox/hwaccm.h>
39#include <iprt/avl.h>
40#include <iprt/assert.h>
41#include <iprt/critsect.h>
42
43
44
45/** @defgroup grp_pgm_int Internals
46 * @ingroup grp_pgm
47 * @internal
48 * @{
49 */
50
51
52/** @name PGM Compile Time Config
53 * @{
54 */
55
56/**
57 * Solve page is out of sync issues inside Guest Context (in PGMGC.cpp).
58 * Comment it if it will break something.
59 */
60#define PGM_OUT_OF_SYNC_IN_GC
61
62/**
63 * Check and skip global PDEs for non-global flushes
64 */
65#define PGM_SKIP_GLOBAL_PAGEDIRS_ON_NONGLOBAL_FLUSH
66
67/**
68 * Sync N pages instead of a whole page table
69 */
70#define PGM_SYNC_N_PAGES
71
72/**
73 * Number of pages to sync during a page fault
74 *
75 * When PGMPOOL_WITH_GCPHYS_TRACKING is enabled using high values here
76 * causes a lot of unnecessary extents and also is slower than taking more \#PFs.
77 */
78#define PGM_SYNC_NR_PAGES 8
79
80/**
81 * Number of PGMPhysRead/Write cache entries (must be <= sizeof(uint64_t))
82 */
83#define PGM_MAX_PHYSCACHE_ENTRIES 64
84#define PGM_MAX_PHYSCACHE_ENTRIES_MASK (PGM_MAX_PHYSCACHE_ENTRIES-1)
85
86/**
87 * Enable caching of PGMR3PhysRead/WriteByte/Word/Dword
88 */
89#define PGM_PHYSMEMACCESS_CACHING
90
91/** @def PGMPOOL_WITH_CACHE
92 * Enable agressive caching using the page pool.
93 *
94 * This requires PGMPOOL_WITH_USER_TRACKING and PGMPOOL_WITH_MONITORING.
95 */
96#define PGMPOOL_WITH_CACHE
97
98/** @def PGMPOOL_WITH_MIXED_PT_CR3
99 * When defined, we'll deal with 'uncachable' pages.
100 */
101#ifdef PGMPOOL_WITH_CACHE
102# define PGMPOOL_WITH_MIXED_PT_CR3
103#endif
104
105/** @def PGMPOOL_WITH_MONITORING
106 * Monitor the guest pages which are shadowed.
107 * When this is enabled, PGMPOOL_WITH_CACHE or PGMPOOL_WITH_GCPHYS_TRACKING must
108 * be enabled as well.
109 * @remark doesn't really work without caching now. (Mixed PT/CR3 change.)
110 */
111#ifdef PGMPOOL_WITH_CACHE
112# define PGMPOOL_WITH_MONITORING
113#endif
114
115/** @def PGMPOOL_WITH_GCPHYS_TRACKING
116 * Tracking the of shadow pages mapping guest physical pages.
117 *
118 * This is very expensive, the current cache prototype is trying to figure out
119 * whether it will be acceptable with an agressive caching policy.
120 */
121#if defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
122# define PGMPOOL_WITH_GCPHYS_TRACKING
123#endif
124
125/** @def PGMPOOL_WITH_USER_TRACKING
126 * Tracking users of shadow pages. This is required for the linking of shadow page
127 * tables and physical guest addresses.
128 */
129#if defined(PGMPOOL_WITH_GCPHYS_TRACKING) || defined(PGMPOOL_WITH_CACHE) || defined(PGMPOOL_WITH_MONITORING)
130# define PGMPOOL_WITH_USER_TRACKING
131#endif
132
133/** @def PGMPOOL_CFG_MAX_GROW
134 * The maximum number of pages to add to the pool in one go.
135 */
136#define PGMPOOL_CFG_MAX_GROW (_256K >> PAGE_SHIFT)
137
138/** @def VBOX_STRICT_PGM_HANDLER_VIRTUAL
139 * Enables some extra assertions for virtual handlers (mainly phys2virt related).
140 */
141#ifdef VBOX_STRICT
142# define VBOX_STRICT_PGM_HANDLER_VIRTUAL
143#endif
144/** @} */
145
146
147/** @name PDPT and PML4 flags.
148 * These are placed in the three bits available for system programs in
149 * the PDPT and PML4 entries.
150 * @{ */
151/** The entry is a permanent one and it's must always be present.
152 * Never free such an entry. */
153#define PGM_PLXFLAGS_PERMANENT RT_BIT_64(10)
154/** Mapping (hypervisor allocated pagetable). */
155#define PGM_PLXFLAGS_MAPPING RT_BIT_64(11)
156/** @} */
157
158/** @name Page directory flags.
159 * These are placed in the three bits available for system programs in
160 * the page directory entries.
161 * @{ */
162/** Mapping (hypervisor allocated pagetable). */
163#define PGM_PDFLAGS_MAPPING RT_BIT_64(10)
164/** Made read-only to facilitate dirty bit tracking. */
165#define PGM_PDFLAGS_TRACK_DIRTY RT_BIT_64(11)
166/** @} */
167
168/** @name Page flags.
169 * These are placed in the three bits available for system programs in
170 * the page entries.
171 * @{ */
172/** Made read-only to facilitate dirty bit tracking. */
173#define PGM_PTFLAGS_TRACK_DIRTY RT_BIT_64(9)
174
175#ifndef PGM_PTFLAGS_CSAM_VALIDATED
176/** Scanned and approved by CSAM (tm).
177 * NOTE: Must be identical to the one defined in CSAMInternal.h!!
178 * @todo Move PGM_PTFLAGS_* and PGM_PDFLAGS_* to VBox/pgm.h. */
179#define PGM_PTFLAGS_CSAM_VALIDATED RT_BIT_64(11)
180#endif
181/** @} */
182
183/** @name Defines used to indicate the shadow and guest paging in the templates.
184 * @{ */
185#define PGM_TYPE_REAL 1
186#define PGM_TYPE_PROT 2
187#define PGM_TYPE_32BIT 3
188#define PGM_TYPE_PAE 4
189#define PGM_TYPE_AMD64 5
190#define PGM_TYPE_NESTED 6
191#define PGM_TYPE_EPT 7
192#define PGM_TYPE_MAX PGM_TYPE_EPT
193/** @} */
194
195/** Macro for checking if the guest is using paging.
196 * @param uGstType PGM_TYPE_*
197 * @param uShwType PGM_TYPE_*
198 * @remark ASSUMES certain order of the PGM_TYPE_* values.
199 */
200#define PGM_WITH_PAGING(uGstType, uShwType) \
201 ( (uGstType) >= PGM_TYPE_32BIT \
202 && (uShwType) != PGM_TYPE_NESTED \
203 && (uShwType) != PGM_TYPE_EPT)
204
205/** Macro for checking if the guest supports the NX bit.
206 * @param uGstType PGM_TYPE_*
207 * @param uShwType PGM_TYPE_*
208 * @remark ASSUMES certain order of the PGM_TYPE_* values.
209 */
210#define PGM_WITH_NX(uGstType, uShwType) \
211 ( (uGstType) >= PGM_TYPE_PAE \
212 && (uShwType) != PGM_TYPE_NESTED \
213 && (uShwType) != PGM_TYPE_EPT)
214
215
216/** @def PGM_HCPHYS_2_PTR
217 * Maps a HC physical page pool address to a virtual address.
218 *
219 * @returns VBox status code.
220 * @param pVM The VM handle.
221 * @param HCPhys The HC physical address to map to a virtual one.
222 * @param ppv Where to store the virtual address. No need to cast this.
223 *
224 * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
225 * small page window employeed by that function. Be careful.
226 * @remark There is no need to assert on the result.
227 */
228#ifdef IN_RC
229# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
230 PGMDynMapHCPage(pVM, HCPhys, (void **)(ppv))
231#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
232# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
233 pgmR0DynMapHCPageInlined(&(pVM)->pgm.s, HCPhys, (void **)(ppv))
234#else
235# define PGM_HCPHYS_2_PTR(pVM, HCPhys, ppv) \
236 MMPagePhys2PageEx(pVM, HCPhys, (void **)(ppv))
237#endif
238
239/** @def PGM_HCPHYS_2_PTR_BY_PGM
240 * Maps a HC physical page pool address to a virtual address.
241 *
242 * @returns VBox status code.
243 * @param pPGM The PGM instance data.
244 * @param HCPhys The HC physical address to map to a virtual one.
245 * @param ppv Where to store the virtual address. No need to cast this.
246 *
247 * @remark In GC this uses PGMGCDynMapHCPage(), so it will consume of the
248 * small page window employeed by that function. Be careful.
249 * @remark There is no need to assert on the result.
250 */
251#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
252# define PGM_HCPHYS_2_PTR_BY_PGM(pPGM, HCPhys, ppv) \
253 pgmR0DynMapHCPageInlined(pPGM, HCPhys, (void **)(ppv))
254#else
255# define PGM_HCPHYS_2_PTR_BY_PGM(pPGM, HCPhys, ppv) \
256 PGM_HCPHYS_2_PTR(PGM2VM(pPGM), HCPhys, (void **)(ppv))
257#endif
258
259/** @def PGM_GCPHYS_2_PTR
260 * Maps a GC physical page address to a virtual address.
261 *
262 * @returns VBox status code.
263 * @param pVM The VM handle.
264 * @param GCPhys The GC physical address to map to a virtual one.
265 * @param ppv Where to store the virtual address. No need to cast this.
266 *
267 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
268 * small page window employeed by that function. Be careful.
269 * @remark There is no need to assert on the result.
270 */
271#ifdef IN_RC
272# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
273 PGMDynMapGCPage(pVM, GCPhys, (void **)(ppv))
274#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
275# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
276 pgmR0DynMapGCPageInlined(&(pVM)->pgm.s, GCPhys, (void **)(ppv))
277#else
278# define PGM_GCPHYS_2_PTR(pVM, GCPhys, ppv) \
279 PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1 /* one page only */, (PRTR3PTR)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
280#endif
281
282/** @def PGM_GCPHYS_2_PTR_BY_PGM
283 * Maps a GC physical page address to a virtual address.
284 *
285 * @returns VBox status code.
286 * @param pPGM Pointer to the PGM instance data.
287 * @param GCPhys The GC physical address to map to a virtual one.
288 * @param ppv Where to store the virtual address. No need to cast this.
289 *
290 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
291 * small page window employeed by that function. Be careful.
292 * @remark There is no need to assert on the result.
293 */
294#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
295# define PGM_GCPHYS_2_PTR_BY_PGM(pPGM, GCPhys, ppv) \
296 pgmR0DynMapGCPageInlined(pPGM, GCPhys, (void **)(ppv))
297#else
298# define PGM_GCPHYS_2_PTR_BY_PGM(pPGM, GCPhys, ppv) \
299 PGM_GCPHYS_2_PTR(PGM2VM(pPGM), GCPhys, ppv)
300#endif
301
302/** @def PGM_GCPHYS_2_PTR_EX
303 * Maps a unaligned GC physical page address to a virtual address.
304 *
305 * @returns VBox status code.
306 * @param pVM The VM handle.
307 * @param GCPhys The GC physical address to map to a virtual one.
308 * @param ppv Where to store the virtual address. No need to cast this.
309 *
310 * @remark In GC this uses PGMGCDynMapGCPage(), so it will consume of the
311 * small page window employeed by that function. Be careful.
312 * @remark There is no need to assert on the result.
313 */
314#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
315# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \
316 PGMDynMapGCPageOff(pVM, GCPhys, (void **)(ppv))
317#else
318# define PGM_GCPHYS_2_PTR_EX(pVM, GCPhys, ppv) \
319 PGMPhysGCPhys2R3Ptr(pVM, GCPhys, 1 /* one page only */, (PRTR3PTR)(ppv)) /** @todo this isn't asserting, use PGMRamGCPhys2HCPtr! */
320#endif
321
322/** @def PGM_INVL_PG
323 * Invalidates a page when in GC does nothing in HC.
324 *
325 * @param GCVirt The virtual address of the page to invalidate.
326 */
327#ifdef IN_RC
328# define PGM_INVL_PG(GCVirt) ASMInvalidatePage((void *)(GCVirt))
329#elif defined(IN_RING0)
330# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
331#else
332# define PGM_INVL_PG(GCVirt) HWACCMInvalidatePage(pVM, (RTGCPTR)(GCVirt))
333#endif
334
335/** @def PGM_INVL_BIG_PG
336 * Invalidates a 4MB page directory entry when in GC does nothing in HC.
337 *
338 * @param GCVirt The virtual address within the page directory to invalidate.
339 */
340#ifdef IN_RC
341# define PGM_INVL_BIG_PG(GCVirt) ASMReloadCR3()
342#elif defined(IN_RING0)
343# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
344#else
345# define PGM_INVL_BIG_PG(GCVirt) HWACCMFlushTLB(pVM)
346#endif
347
348/** @def PGM_INVL_GUEST_TLBS()
349 * Invalidates all guest TLBs.
350 */
351#ifdef IN_RC
352# define PGM_INVL_GUEST_TLBS() ASMReloadCR3()
353#elif defined(IN_RING0)
354# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
355#else
356# define PGM_INVL_GUEST_TLBS() HWACCMFlushTLB(pVM)
357#endif
358
359
360/**
361 * Structure for tracking GC Mappings.
362 *
363 * This structure is used by linked list in both GC and HC.
364 */
365typedef struct PGMMAPPING
366{
367 /** Pointer to next entry. */
368 R3PTRTYPE(struct PGMMAPPING *) pNextR3;
369 /** Pointer to next entry. */
370 R0PTRTYPE(struct PGMMAPPING *) pNextR0;
371 /** Pointer to next entry. */
372 RCPTRTYPE(struct PGMMAPPING *) pNextRC;
373#if GC_ARCH_BITS == 64
374 RTRCPTR padding0;
375#endif
376 /** Start Virtual address. */
377 RTGCPTR GCPtr;
378 /** Last Virtual address (inclusive). */
379 RTGCPTR GCPtrLast;
380 /** Range size (bytes). */
381 RTGCPTR cb;
382 /** Pointer to relocation callback function. */
383 R3PTRTYPE(PFNPGMRELOCATE) pfnRelocate;
384 /** User argument to the callback. */
385 R3PTRTYPE(void *) pvUser;
386 /** Mapping description / name. For easing debugging. */
387 R3PTRTYPE(const char *) pszDesc;
388 /** Number of page tables. */
389 RTUINT cPTs;
390#if HC_ARCH_BITS != GC_ARCH_BITS || GC_ARCH_BITS == 64
391 RTUINT uPadding1; /**< Alignment padding. */
392#endif
393 /** Array of page table mapping data. Each entry
394 * describes one page table. The array can be longer
395 * than the declared length.
396 */
397 struct
398 {
399 /** The HC physical address of the page table. */
400 RTHCPHYS HCPhysPT;
401 /** The HC physical address of the first PAE page table. */
402 RTHCPHYS HCPhysPaePT0;
403 /** The HC physical address of the second PAE page table. */
404 RTHCPHYS HCPhysPaePT1;
405 /** The HC virtual address of the 32-bit page table. */
406 R3PTRTYPE(PX86PT) pPTR3;
407 /** The HC virtual address of the two PAE page table. (i.e 1024 entries instead of 512) */
408 R3PTRTYPE(PX86PTPAE) paPaePTsR3;
409 /** The GC virtual address of the 32-bit page table. */
410 RCPTRTYPE(PX86PT) pPTRC;
411 /** The GC virtual address of the two PAE page table. */
412 RCPTRTYPE(PX86PTPAE) paPaePTsRC;
413 /** The GC virtual address of the 32-bit page table. */
414 R0PTRTYPE(PX86PT) pPTR0;
415 /** The GC virtual address of the two PAE page table. */
416 R0PTRTYPE(PX86PTPAE) paPaePTsR0;
417 } aPTs[1];
418} PGMMAPPING;
419/** Pointer to structure for tracking GC Mappings. */
420typedef struct PGMMAPPING *PPGMMAPPING;
421
422
423/**
424 * Physical page access handler structure.
425 *
426 * This is used to keep track of physical address ranges
427 * which are being monitored in some kind of way.
428 */
429typedef struct PGMPHYSHANDLER
430{
431 AVLROGCPHYSNODECORE Core;
432 /** Access type. */
433 PGMPHYSHANDLERTYPE enmType;
434 /** Number of pages to update. */
435 uint32_t cPages;
436 /** Pointer to R3 callback function. */
437 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnHandlerR3;
438 /** User argument for R3 handlers. */
439 R3PTRTYPE(void *) pvUserR3;
440 /** Pointer to R0 callback function. */
441 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnHandlerR0;
442 /** User argument for R0 handlers. */
443 R0PTRTYPE(void *) pvUserR0;
444 /** Pointer to GC callback function. */
445 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnHandlerRC;
446 /** User argument for RC handlers. */
447 RCPTRTYPE(void *) pvUserRC;
448 /** Description / Name. For easing debugging. */
449 R3PTRTYPE(const char *) pszDesc;
450#ifdef VBOX_WITH_STATISTICS
451 /** Profiling of this handler. */
452 STAMPROFILE Stat;
453#endif
454} PGMPHYSHANDLER;
455/** Pointer to a physical page access handler structure. */
456typedef PGMPHYSHANDLER *PPGMPHYSHANDLER;
457
458
459/**
460 * Cache node for the physical addresses covered by a virtual handler.
461 */
462typedef struct PGMPHYS2VIRTHANDLER
463{
464 /** Core node for the tree based on physical ranges. */
465 AVLROGCPHYSNODECORE Core;
466 /** Offset from this struct to the PGMVIRTHANDLER structure. */
467 int32_t offVirtHandler;
468 /** Offset of the next alias relative to this one.
469 * Bit 0 is used for indicating whether we're in the tree.
470 * Bit 1 is used for indicating that we're the head node.
471 */
472 int32_t offNextAlias;
473} PGMPHYS2VIRTHANDLER;
474/** Pointer to a phys to virtual handler structure. */
475typedef PGMPHYS2VIRTHANDLER *PPGMPHYS2VIRTHANDLER;
476
477/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
478 * node is in the tree. */
479#define PGMPHYS2VIRTHANDLER_IN_TREE RT_BIT(0)
480/** The bit in PGMPHYS2VIRTHANDLER::offNextAlias used to indicate that the
481 * node is in the head of an alias chain.
482 * The PGMPHYS2VIRTHANDLER_IN_TREE is always set if this bit is set. */
483#define PGMPHYS2VIRTHANDLER_IS_HEAD RT_BIT(1)
484/** The mask to apply to PGMPHYS2VIRTHANDLER::offNextAlias to get the offset. */
485#define PGMPHYS2VIRTHANDLER_OFF_MASK (~(int32_t)3)
486
487
488/**
489 * Virtual page access handler structure.
490 *
491 * This is used to keep track of virtual address ranges
492 * which are being monitored in some kind of way.
493 */
494typedef struct PGMVIRTHANDLER
495{
496 /** Core node for the tree based on virtual ranges. */
497 AVLROGCPTRNODECORE Core;
498 /** Size of the range (in bytes). */
499 RTGCPTR cb;
500 /** Number of cache pages. */
501 uint32_t cPages;
502 /** Access type. */
503 PGMVIRTHANDLERTYPE enmType;
504 /** Pointer to the RC callback function. */
505 RCPTRTYPE(PFNPGMRCVIRTHANDLER) pfnHandlerRC;
506#if HC_ARCH_BITS == 64
507 RTRCPTR padding;
508#endif
509 /** Pointer to the R3 callback function for invalidation. */
510 R3PTRTYPE(PFNPGMR3VIRTINVALIDATE) pfnInvalidateR3;
511 /** Pointer to the R3 callback function. */
512 R3PTRTYPE(PFNPGMR3VIRTHANDLER) pfnHandlerR3;
513 /** Description / Name. For easing debugging. */
514 R3PTRTYPE(const char *) pszDesc;
515#ifdef VBOX_WITH_STATISTICS
516 /** Profiling of this handler. */
517 STAMPROFILE Stat;
518#endif
519 /** Array of cached physical addresses for the monitored ranged. */
520 PGMPHYS2VIRTHANDLER aPhysToVirt[HC_ARCH_BITS == 32 ? 1 : 2];
521} PGMVIRTHANDLER;
522/** Pointer to a virtual page access handler structure. */
523typedef PGMVIRTHANDLER *PPGMVIRTHANDLER;
524
525
526/**
527 * Page type.
528 * @remarks This enum has to fit in a 3-bit field (see PGMPAGE::u3Type).
529 * @todo convert to \#defines.
530 */
531typedef enum PGMPAGETYPE
532{
533 /** The usual invalid zero entry. */
534 PGMPAGETYPE_INVALID = 0,
535 /** RAM page. (RWX) */
536 PGMPAGETYPE_RAM,
537 /** MMIO2 page. (RWX) */
538 PGMPAGETYPE_MMIO2,
539 /** Shadowed ROM. (RWX) */
540 PGMPAGETYPE_ROM_SHADOW,
541 /** ROM page. (R-X) */
542 PGMPAGETYPE_ROM,
543 /** MMIO page. (---) */
544 PGMPAGETYPE_MMIO,
545 /** End of valid entries. */
546 PGMPAGETYPE_END
547} PGMPAGETYPE;
548AssertCompile(PGMPAGETYPE_END < 7);
549
550/** @name Page type predicates.
551 * @{ */
552#define PGMPAGETYPE_IS_READABLE(type) ( (type) <= PGMPAGETYPE_ROM )
553#define PGMPAGETYPE_IS_WRITEABLE(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
554#define PGMPAGETYPE_IS_RWX(type) ( (type) <= PGMPAGETYPE_ROM_SHADOW )
555#define PGMPAGETYPE_IS_ROX(type) ( (type) == PGMPAGETYPE_ROM )
556#define PGMPAGETYPE_IS_NP(type) ( (type) == PGMPAGETYPE_MMIO )
557/** @} */
558
559
560/**
561 * A Physical Guest Page tracking structure.
562 *
563 * The format of this structure is complicated because we have to fit a lot
564 * of information into as few bits as possible. The format is also subject
565 * to change (there is one comming up soon). Which means that for we'll be
566 * using PGM_PAGE_GET_*, PGM_PAGE_IS_ and PGM_PAGE_SET_* macros for *all*
567 * accessess to the structure.
568 */
569typedef struct PGMPAGE
570{
571 /** The physical address and a whole lot of other stuff. All bits are used! */
572 RTHCPHYS HCPhys;
573 /** The page state. */
574 uint32_t u2StateX : 2;
575 /** Flag indicating that a write monitored page was written to when set. */
576 uint32_t fWrittenToX : 1;
577 /** For later. */
578 uint32_t fSomethingElse : 1;
579 /** The Page ID.
580 * @todo Merge with HCPhys once we've liberated HCPhys of its stuff.
581 * The HCPhys will be 100% static. */
582 uint32_t idPageX : 28;
583 /** The page type (PGMPAGETYPE). */
584 uint32_t u3Type : 3;
585 /** The physical handler state (PGM_PAGE_HNDL_PHYS_STATE*) */
586 uint32_t u2HandlerPhysStateX : 2;
587 /** The virtual handler state (PGM_PAGE_HNDL_VIRT_STATE*) */
588 uint32_t u2HandlerVirtStateX : 2;
589 uint32_t u29B : 25;
590} PGMPAGE;
591AssertCompileSize(PGMPAGE, 16);
592/** Pointer to a physical guest page. */
593typedef PGMPAGE *PPGMPAGE;
594/** Pointer to a const physical guest page. */
595typedef const PGMPAGE *PCPGMPAGE;
596/** Pointer to a physical guest page pointer. */
597typedef PPGMPAGE *PPPGMPAGE;
598
599
600/**
601 * Clears the page structure.
602 * @param pPage Pointer to the physical guest page tracking structure.
603 */
604#define PGM_PAGE_CLEAR(pPage) \
605 do { \
606 (pPage)->HCPhys = 0; \
607 (pPage)->u2StateX = 0; \
608 (pPage)->fWrittenToX = 0; \
609 (pPage)->fSomethingElse = 0; \
610 (pPage)->idPageX = 0; \
611 (pPage)->u3Type = 0; \
612 (pPage)->u29B = 0; \
613 } while (0)
614
615/**
616 * Initializes the page structure.
617 * @param pPage Pointer to the physical guest page tracking structure.
618 */
619#define PGM_PAGE_INIT(pPage, _HCPhys, _idPage, _uType, _uState) \
620 do { \
621 (pPage)->HCPhys = (_HCPhys); \
622 (pPage)->u2StateX = (_uState); \
623 (pPage)->fWrittenToX = 0; \
624 (pPage)->fSomethingElse = 0; \
625 (pPage)->idPageX = (_idPage); \
626 /*(pPage)->u3Type = (_uType); - later */ \
627 PGM_PAGE_SET_TYPE(pPage, _uType); \
628 (pPage)->u29B = 0; \
629 } while (0)
630
631/**
632 * Initializes the page structure of a ZERO page.
633 * @param pPage Pointer to the physical guest page tracking structure.
634 */
635#ifdef VBOX_WITH_NEW_PHYS_CODE
636# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
637 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
638#else
639# define PGM_PAGE_INIT_ZERO(pPage, pVM, _uType) \
640 PGM_PAGE_INIT(pPage, 0, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
641#endif
642/** Temporary hack. Replaced by PGM_PAGE_INIT_ZERO once the old code is kicked out. */
643# define PGM_PAGE_INIT_ZERO_REAL(pPage, pVM, _uType) \
644 PGM_PAGE_INIT(pPage, (pVM)->pgm.s.HCPhysZeroPg, NIL_GMM_PAGEID, (_uType), PGM_PAGE_STATE_ZERO)
645
646
647/** @name The Page state, PGMPAGE::u2StateX.
648 * @{ */
649/** The zero page.
650 * This is a per-VM page that's never ever mapped writable. */
651#define PGM_PAGE_STATE_ZERO 0
652/** A allocated page.
653 * This is a per-VM page allocated from the page pool (or wherever
654 * we get MMIO2 pages from if the type is MMIO2).
655 */
656#define PGM_PAGE_STATE_ALLOCATED 1
657/** A allocated page that's being monitored for writes.
658 * The shadow page table mappings are read-only. When a write occurs, the
659 * fWrittenTo member is set, the page remapped as read-write and the state
660 * moved back to allocated. */
661#define PGM_PAGE_STATE_WRITE_MONITORED 2
662/** The page is shared, aka. copy-on-write.
663 * This is a page that's shared with other VMs. */
664#define PGM_PAGE_STATE_SHARED 3
665/** @} */
666
667
668/**
669 * Gets the page state.
670 * @returns page state (PGM_PAGE_STATE_*).
671 * @param pPage Pointer to the physical guest page tracking structure.
672 */
673#define PGM_PAGE_GET_STATE(pPage) ( (pPage)->u2StateX )
674
675/**
676 * Sets the page state.
677 * @param pPage Pointer to the physical guest page tracking structure.
678 * @param _uState The new page state.
679 */
680#define PGM_PAGE_SET_STATE(pPage, _uState) \
681 do { (pPage)->u2StateX = (_uState); } while (0)
682
683
684/**
685 * Gets the host physical address of the guest page.
686 * @returns host physical address (RTHCPHYS).
687 * @param pPage Pointer to the physical guest page tracking structure.
688 */
689#define PGM_PAGE_GET_HCPHYS(pPage) ( (pPage)->HCPhys & UINT64_C(0x0000fffffffff000) )
690
691/**
692 * Sets the host physical address of the guest page.
693 * @param pPage Pointer to the physical guest page tracking structure.
694 * @param _HCPhys The new host physical address.
695 */
696#define PGM_PAGE_SET_HCPHYS(pPage, _HCPhys) \
697 do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0xffff000000000fff)) \
698 | ((_HCPhys) & UINT64_C(0x0000fffffffff000)); } while (0)
699
700/**
701 * Get the Page ID.
702 * @returns The Page ID; NIL_GMM_PAGEID if it's a ZERO page.
703 * @param pPage Pointer to the physical guest page tracking structure.
704 */
705#define PGM_PAGE_GET_PAGEID(pPage) ( (pPage)->idPageX )
706/* later:
707#define PGM_PAGE_GET_PAGEID(pPage) ( ((uint32_t)(pPage)->HCPhys >> (48 - 12))
708 | ((uint32_t)(pPage)->HCPhys & 0xfff) )
709*/
710/**
711 * Sets the Page ID.
712 * @param pPage Pointer to the physical guest page tracking structure.
713 */
714#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->idPageX = (_idPage); } while (0)
715/* later:
716#define PGM_PAGE_SET_PAGEID(pPage, _idPage) do { (pPage)->HCPhys = (((pPage)->HCPhys) & UINT64_C(0x0000fffffffff000)) \
717 | ((_idPage) & 0xfff) \
718 | (((_idPage) & 0x0ffff000) << (48-12)); } while (0)
719*/
720
721/**
722 * Get the Chunk ID.
723 * @returns The Chunk ID; NIL_GMM_CHUNKID if it's a ZERO page.
724 * @param pPage Pointer to the physical guest page tracking structure.
725 */
726#define PGM_PAGE_GET_CHUNKID(pPage) ( (pPage)->idPageX >> GMM_CHUNKID_SHIFT )
727/* later:
728#if GMM_CHUNKID_SHIFT == 12
729# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> 48) )
730#elif GMM_CHUNKID_SHIFT > 12
731# define PGM_PAGE_GET_CHUNKID(pPage) ( (uint32_t)((pPage)->HCPhys >> (48 + (GMM_CHUNKID_SHIFT - 12)) )
732#elif GMM_CHUNKID_SHIFT < 12
733# define PGM_PAGE_GET_CHUNKID(pPage) ( ( (uint32_t)((pPage)->HCPhys >> 48) << (12 - GMM_CHUNKID_SHIFT) ) \
734 | ( (uint32_t)((pPage)->HCPhys & 0xfff) >> GMM_CHUNKID_SHIFT ) )
735#else
736# error "GMM_CHUNKID_SHIFT isn't defined or something."
737#endif
738*/
739
740/**
741 * Get the index of the page within the allocaiton chunk.
742 * @returns The page index.
743 * @param pPage Pointer to the physical guest page tracking structure.
744 */
745#define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (pPage)->idPageX & GMM_PAGEID_IDX_MASK )
746/* later:
747#if GMM_CHUNKID_SHIFT <= 12
748# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & GMM_PAGEID_IDX_MASK) )
749#else
750# define PGM_PAGE_GET_PAGE_IN_CHUNK(pPage) ( (uint32_t)((pPage)->HCPhys & 0xfff) \
751 | ( (uint32_t)((pPage)->HCPhys >> 48) & (RT_BIT_32(GMM_CHUNKID_SHIFT - 12) - 1) ) )
752#endif
753*/
754
755
756/**
757 * Gets the page type.
758 * @returns The page type.
759 * @param pPage Pointer to the physical guest page tracking structure.
760 */
761#define PGM_PAGE_GET_TYPE(pPage) (pPage)->u3Type
762
763/**
764 * Sets the page type.
765 * @param pPage Pointer to the physical guest page tracking structure.
766 * @param _enmType The new page type (PGMPAGETYPE).
767 */
768#ifdef VBOX_WITH_NEW_PHYS_CODE
769#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
770 do { (pPage)->u3Type = (_enmType); } while (0)
771#else
772#define PGM_PAGE_SET_TYPE(pPage, _enmType) \
773 do { \
774 (pPage)->u3Type = (_enmType); \
775 if ((_enmType) == PGMPAGETYPE_ROM) \
776 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM; \
777 else if ((_enmType) == PGMPAGETYPE_ROM_SHADOW) \
778 (pPage)->HCPhys |= MM_RAM_FLAGS_ROM | MM_RAM_FLAGS_MMIO2; \
779 else if ((_enmType) == PGMPAGETYPE_MMIO2) \
780 (pPage)->HCPhys |= MM_RAM_FLAGS_MMIO2; \
781 } while (0)
782#endif
783
784
785/**
786 * Checks if the page is 'reserved'.
787 * @returns true/false.
788 * @param pPage Pointer to the physical guest page tracking structure.
789 */
790#define PGM_PAGE_IS_RESERVED(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_RESERVED) )
791
792/**
793 * Checks if the page is marked for MMIO.
794 * @returns true/false.
795 * @param pPage Pointer to the physical guest page tracking structure.
796 */
797#define PGM_PAGE_IS_MMIO(pPage) ( !!((pPage)->HCPhys & MM_RAM_FLAGS_MMIO) )
798
799/**
800 * Checks if the page is backed by the ZERO page.
801 * @returns true/false.
802 * @param pPage Pointer to the physical guest page tracking structure.
803 */
804#define PGM_PAGE_IS_ZERO(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_ZERO )
805
806/**
807 * Checks if the page is backed by a SHARED page.
808 * @returns true/false.
809 * @param pPage Pointer to the physical guest page tracking structure.
810 */
811#define PGM_PAGE_IS_SHARED(pPage) ( (pPage)->u2StateX == PGM_PAGE_STATE_SHARED )
812
813
814/**
815 * Marks the paget as written to (for GMM change monitoring).
816 * @param pPage Pointer to the physical guest page tracking structure.
817 */
818#define PGM_PAGE_SET_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 1; } while (0)
819
820/**
821 * Clears the written-to indicator.
822 * @param pPage Pointer to the physical guest page tracking structure.
823 */
824#define PGM_PAGE_CLEAR_WRITTEN_TO(pPage) do { (pPage)->fWrittenToX = 0; } while (0)
825
826/**
827 * Checks if the page was marked as written-to.
828 * @returns true/false.
829 * @param pPage Pointer to the physical guest page tracking structure.
830 */
831#define PGM_PAGE_IS_WRITTEN_TO(pPage) ( (pPage)->fWrittenToX )
832
833
834/** @name Physical Access Handler State values (PGMPAGE::u2HandlerPhysStateX).
835 *
836 * @remarks The values are assigned in order of priority, so we can calculate
837 * the correct state for a page with different handlers installed.
838 * @{ */
839/** No handler installed. */
840#define PGM_PAGE_HNDL_PHYS_STATE_NONE 0
841/** Monitoring is temporarily disabled. */
842#define PGM_PAGE_HNDL_PHYS_STATE_DISABLED 1
843/** Write access is monitored. */
844#define PGM_PAGE_HNDL_PHYS_STATE_WRITE 2
845/** All access is monitored. */
846#define PGM_PAGE_HNDL_PHYS_STATE_ALL 3
847/** @} */
848
849/**
850 * Gets the physical access handler state of a page.
851 * @returns PGM_PAGE_HNDL_PHYS_STATE_* value.
852 * @param pPage Pointer to the physical guest page tracking structure.
853 */
854#define PGM_PAGE_GET_HNDL_PHYS_STATE(pPage) ( (pPage)->u2HandlerPhysStateX )
855
856/**
857 * Sets the physical access handler state of a page.
858 * @param pPage Pointer to the physical guest page tracking structure.
859 * @param _uState The new state value.
860 */
861#define PGM_PAGE_SET_HNDL_PHYS_STATE(pPage, _uState) \
862 do { (pPage)->u2HandlerPhysStateX = (_uState); } while (0)
863
864/**
865 * Checks if the page has any physical access handlers, including temporariliy disabled ones.
866 * @returns true/false
867 * @param pPage Pointer to the physical guest page tracking structure.
868 */
869#define PGM_PAGE_HAS_ANY_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE )
870
871/**
872 * Checks if the page has any active physical access handlers.
873 * @returns true/false
874 * @param pPage Pointer to the physical guest page tracking structure.
875 */
876#define PGM_PAGE_HAS_ACTIVE_PHYSICAL_HANDLERS(pPage) ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE )
877
878
879/** @name Virtual Access Handler State values (PGMPAGE::u2HandlerVirtStateX).
880 *
881 * @remarks The values are assigned in order of priority, so we can calculate
882 * the correct state for a page with different handlers installed.
883 * @{ */
884/** No handler installed. */
885#define PGM_PAGE_HNDL_VIRT_STATE_NONE 0
886/* 1 is reserved so the lineup is identical with the physical ones. */
887/** Write access is monitored. */
888#define PGM_PAGE_HNDL_VIRT_STATE_WRITE 2
889/** All access is monitored. */
890#define PGM_PAGE_HNDL_VIRT_STATE_ALL 3
891/** @} */
892
893/**
894 * Gets the virtual access handler state of a page.
895 * @returns PGM_PAGE_HNDL_VIRT_STATE_* value.
896 * @param pPage Pointer to the physical guest page tracking structure.
897 */
898#define PGM_PAGE_GET_HNDL_VIRT_STATE(pPage) ( (pPage)->u2HandlerVirtStateX )
899
900/**
901 * Sets the virtual access handler state of a page.
902 * @param pPage Pointer to the physical guest page tracking structure.
903 * @param _uState The new state value.
904 */
905#define PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, _uState) \
906 do { (pPage)->u2HandlerVirtStateX = (_uState); } while (0)
907
908/**
909 * Checks if the page has any virtual access handlers.
910 * @returns true/false
911 * @param pPage Pointer to the physical guest page tracking structure.
912 */
913#define PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage) ( (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
914
915/**
916 * Same as PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS - can't disable pages in
917 * virtual handlers.
918 * @returns true/false
919 * @param pPage Pointer to the physical guest page tracking structure.
920 */
921#define PGM_PAGE_HAS_ACTIVE_VIRTUAL_HANDLERS(pPage) PGM_PAGE_HAS_ANY_VIRTUAL_HANDLERS(pPage)
922
923
924
925/**
926 * Checks if the page has any access handlers, including temporarily disabled ones.
927 * @returns true/false
928 * @param pPage Pointer to the physical guest page tracking structure.
929 */
930#define PGM_PAGE_HAS_ANY_HANDLERS(pPage) \
931 ( (pPage)->u2HandlerPhysStateX != PGM_PAGE_HNDL_PHYS_STATE_NONE \
932 || (pPage)->u2HandlerVirtStateX != PGM_PAGE_HNDL_VIRT_STATE_NONE )
933
934/**
935 * Checks if the page has any active access handlers.
936 * @returns true/false
937 * @param pPage Pointer to the physical guest page tracking structure.
938 */
939#define PGM_PAGE_HAS_ACTIVE_HANDLERS(pPage) \
940 ( (pPage)->u2HandlerPhysStateX >= PGM_PAGE_HNDL_PHYS_STATE_WRITE \
941 || (pPage)->u2HandlerVirtStateX >= PGM_PAGE_HNDL_VIRT_STATE_WRITE )
942
943/**
944 * Checks if the page has any active access handlers catching all accesses.
945 * @returns true/false
946 * @param pPage Pointer to the physical guest page tracking structure.
947 */
948#define PGM_PAGE_HAS_ACTIVE_ALL_HANDLERS(pPage) \
949 ( (pPage)->u2HandlerPhysStateX == PGM_PAGE_HNDL_PHYS_STATE_ALL \
950 || (pPage)->u2HandlerVirtStateX == PGM_PAGE_HNDL_VIRT_STATE_ALL )
951
952
953/**
954 * Ram range for GC Phys to HC Phys conversion.
955 *
956 * Can be used for HC Virt to GC Phys and HC Virt to HC Phys
957 * conversions too, but we'll let MM handle that for now.
958 *
959 * This structure is used by linked lists in both GC and HC.
960 */
961typedef struct PGMRAMRANGE
962{
963 /** Pointer to the next RAM range - for R3. */
964 R3PTRTYPE(struct PGMRAMRANGE *) pNextR3;
965 /** Pointer to the next RAM range - for R0. */
966 R0PTRTYPE(struct PGMRAMRANGE *) pNextR0;
967 /** Pointer to the next RAM range - for RC. */
968 RCPTRTYPE(struct PGMRAMRANGE *) pNextRC;
969 /** Pointer alignment. */
970 RTRCPTR RCPtrAlignment;
971 /** Start of the range. Page aligned. */
972 RTGCPHYS GCPhys;
973 /** Last address in the range (inclusive). Page aligned (-1). */
974 RTGCPHYS GCPhysLast;
975 /** Size of the range. (Page aligned of course). */
976 RTGCPHYS cb;
977 /** MM_RAM_* flags */
978 uint32_t fFlags;
979 uint32_t u32Alignment; /**< alignment. */
980#ifndef VBOX_WITH_NEW_PHYS_CODE
981 /** R3 virtual lookup ranges for chunks.
982 * Currently only used with MM_RAM_FLAGS_DYNAMIC_ALLOC ranges.
983 * @remarks This is occationally accessed from ring-0!! (not darwin) */
984# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
985 R3PTRTYPE(PRTR3UINTPTR) paChunkR3Ptrs;
986# else
987 R3R0PTRTYPE(PRTR3UINTPTR) paChunkR3Ptrs;
988# endif
989#endif
990 /** Start of the HC mapping of the range. This is only used for MMIO2. */
991 R3PTRTYPE(void *) pvR3;
992 /** The range description. */
993 R3PTRTYPE(const char *) pszDesc;
994
995 /** Padding to make aPage aligned on sizeof(PGMPAGE). */
996#ifdef VBOX_WITH_NEW_PHYS_CODE
997 uint32_t au32Reserved[2];
998#elif HC_ARCH_BITS == 32
999 uint32_t au32Reserved[1];
1000#endif
1001
1002 /** Array of physical guest page tracking structures. */
1003 PGMPAGE aPages[1];
1004} PGMRAMRANGE;
1005/** Pointer to Ram range for GC Phys to HC Phys conversion. */
1006typedef PGMRAMRANGE *PPGMRAMRANGE;
1007
1008/** Return hc ptr corresponding to the ram range and physical offset */
1009#define PGMRAMRANGE_GETHCPTR(pRam, off) \
1010 (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC) ? (RTHCPTR)((pRam)->paChunkR3Ptrs[(off) >> PGM_DYNAMIC_CHUNK_SHIFT] + ((off) & PGM_DYNAMIC_CHUNK_OFFSET_MASK)) \
1011 : (RTHCPTR)((RTR3UINTPTR)(pRam)->pvR3 + (off));
1012
1013/**
1014 * Per page tracking structure for ROM image.
1015 *
1016 * A ROM image may have a shadow page, in which case we may have
1017 * two pages backing it. This structure contains the PGMPAGE for
1018 * both while PGMRAMRANGE have a copy of the active one. It is
1019 * important that these aren't out of sync in any regard other
1020 * than page pool tracking data.
1021 */
1022typedef struct PGMROMPAGE
1023{
1024 /** The page structure for the virgin ROM page. */
1025 PGMPAGE Virgin;
1026 /** The page structure for the shadow RAM page. */
1027 PGMPAGE Shadow;
1028 /** The current protection setting. */
1029 PGMROMPROT enmProt;
1030 /** Pad the structure size to a multiple of 8. */
1031 uint32_t u32Padding;
1032} PGMROMPAGE;
1033/** Pointer to a ROM page tracking structure. */
1034typedef PGMROMPAGE *PPGMROMPAGE;
1035
1036
1037/**
1038 * A registered ROM image.
1039 *
1040 * This is needed to keep track of ROM image since they generally
1041 * intrude into a PGMRAMRANGE. It also keeps track of additional
1042 * info like the two page sets (read-only virgin and read-write shadow),
1043 * the current state of each page.
1044 *
1045 * Because access handlers cannot easily be executed in a different
1046 * context, the ROM ranges needs to be accessible and in all contexts.
1047 */
1048typedef struct PGMROMRANGE
1049{
1050 /** Pointer to the next range - R3. */
1051 R3PTRTYPE(struct PGMROMRANGE *) pNextR3;
1052 /** Pointer to the next range - R0. */
1053 R0PTRTYPE(struct PGMROMRANGE *) pNextR0;
1054 /** Pointer to the next range - RC. */
1055 RCPTRTYPE(struct PGMROMRANGE *) pNextRC;
1056 /** Pointer alignment */
1057 RTRCPTR GCPtrAlignment;
1058 /** Address of the range. */
1059 RTGCPHYS GCPhys;
1060 /** Address of the last byte in the range. */
1061 RTGCPHYS GCPhysLast;
1062 /** Size of the range. */
1063 RTGCPHYS cb;
1064 /** The flags (PGMPHYS_ROM_FLAG_*). */
1065 uint32_t fFlags;
1066 /** Alignment padding ensuring that aPages is sizeof(PGMROMPAGE) aligned. */
1067 uint32_t au32Alignemnt[HC_ARCH_BITS == 32 ? 7 : 3];
1068 /** Pointer to the original bits when PGMPHYS_ROM_FLAG_PERMANENT_BINARY was specified.
1069 * This is used for strictness checks. */
1070 R3PTRTYPE(const void *) pvOriginal;
1071 /** The ROM description. */
1072 R3PTRTYPE(const char *) pszDesc;
1073 /** The per page tracking structures. */
1074 PGMROMPAGE aPages[1];
1075} PGMROMRANGE;
1076/** Pointer to a ROM range. */
1077typedef PGMROMRANGE *PPGMROMRANGE;
1078
1079
1080/**
1081 * A registered MMIO2 (= Device RAM) range.
1082 *
1083 * There are a few reason why we need to keep track of these
1084 * registrations. One of them is the deregistration & cleanup
1085 * stuff, while another is that the PGMRAMRANGE associated with
1086 * such a region may have to be removed from the ram range list.
1087 *
1088 * Overlapping with a RAM range has to be 100% or none at all. The
1089 * pages in the existing RAM range must not be ROM nor MMIO. A guru
1090 * meditation will be raised if a partial overlap or an overlap of
1091 * ROM pages is encountered. On an overlap we will free all the
1092 * existing RAM pages and put in the ram range pages instead.
1093 */
1094typedef struct PGMMMIO2RANGE
1095{
1096 /** The owner of the range. (a device) */
1097 PPDMDEVINSR3 pDevInsR3;
1098 /** Pointer to the ring-3 mapping of the allocation. */
1099 RTR3PTR pvR3;
1100 /** Pointer to the next range - R3. */
1101 R3PTRTYPE(struct PGMMMIO2RANGE *) pNextR3;
1102 /** Whether it's mapped or not. */
1103 bool fMapped;
1104 /** Whether it's overlapping or not. */
1105 bool fOverlapping;
1106 /** The PCI region number.
1107 * @remarks This ASSUMES that nobody will ever really need to have multiple
1108 * PCI devices with matching MMIO region numbers on a single device. */
1109 uint8_t iRegion;
1110 /** Alignment padding for putting the ram range on a PGMPAGE alignment boundrary. */
1111 uint8_t abAlignemnt[HC_ARCH_BITS == 32 ? 1 : 5];
1112 /** The associated RAM range. */
1113 PGMRAMRANGE RamRange;
1114} PGMMMIO2RANGE;
1115/** Pointer to a MMIO2 range. */
1116typedef PGMMMIO2RANGE *PPGMMMIO2RANGE;
1117
1118
1119
1120
1121/**
1122 * PGMPhysRead/Write cache entry
1123 */
1124typedef struct PGMPHYSCACHEENTRY
1125{
1126 /** R3 pointer to physical page. */
1127 R3PTRTYPE(uint8_t *) pbR3;
1128 /** GC Physical address for cache entry */
1129 RTGCPHYS GCPhys;
1130#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
1131 RTGCPHYS u32Padding0; /**< alignment padding. */
1132#endif
1133} PGMPHYSCACHEENTRY;
1134
1135/**
1136 * PGMPhysRead/Write cache to reduce REM memory access overhead
1137 */
1138typedef struct PGMPHYSCACHE
1139{
1140 /** Bitmap of valid cache entries */
1141 uint64_t aEntries;
1142 /** Cache entries */
1143 PGMPHYSCACHEENTRY Entry[PGM_MAX_PHYSCACHE_ENTRIES];
1144} PGMPHYSCACHE;
1145
1146
1147/** Pointer to an allocation chunk ring-3 mapping. */
1148typedef struct PGMCHUNKR3MAP *PPGMCHUNKR3MAP;
1149/** Pointer to an allocation chunk ring-3 mapping pointer. */
1150typedef PPGMCHUNKR3MAP *PPPGMCHUNKR3MAP;
1151
1152/**
1153 * Ring-3 tracking structore for an allocation chunk ring-3 mapping.
1154 *
1155 * The primary tree (Core) uses the chunk id as key.
1156 * The secondary tree (AgeCore) is used for ageing and uses ageing sequence number as key.
1157 */
1158typedef struct PGMCHUNKR3MAP
1159{
1160 /** The key is the chunk id. */
1161 AVLU32NODECORE Core;
1162 /** The key is the ageing sequence number. */
1163 AVLLU32NODECORE AgeCore;
1164 /** The current age thingy. */
1165 uint32_t iAge;
1166 /** The current reference count. */
1167 uint32_t volatile cRefs;
1168 /** The current permanent reference count. */
1169 uint32_t volatile cPermRefs;
1170 /** The mapping address. */
1171 void *pv;
1172} PGMCHUNKR3MAP;
1173
1174/**
1175 * Allocation chunk ring-3 mapping TLB entry.
1176 */
1177typedef struct PGMCHUNKR3MAPTLBE
1178{
1179 /** The chunk id. */
1180 uint32_t volatile idChunk;
1181#if HC_ARCH_BITS == 64
1182 uint32_t u32Padding; /**< alignment padding. */
1183#endif
1184 /** The chunk map. */
1185#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1186 R3PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1187#else
1188 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pChunk;
1189#endif
1190} PGMCHUNKR3MAPTLBE;
1191/** Pointer to the an allocation chunk ring-3 mapping TLB entry. */
1192typedef PGMCHUNKR3MAPTLBE *PPGMCHUNKR3MAPTLBE;
1193
1194/** The number of TLB entries in PGMCHUNKR3MAPTLB.
1195 * @remark Must be a power of two value. */
1196#define PGM_CHUNKR3MAPTLB_ENTRIES 32
1197
1198/**
1199 * Allocation chunk ring-3 mapping TLB.
1200 *
1201 * @remarks We use a TLB to speed up lookups by avoiding walking the AVL.
1202 * At first glance this might look kinda odd since AVL trees are
1203 * supposed to give the most optimial lookup times of all trees
1204 * due to their balancing. However, take a tree with 1023 nodes
1205 * in it, that's 10 levels, meaning that most searches has to go
1206 * down 9 levels before they find what they want. This isn't fast
1207 * compared to a TLB hit. There is the factor of cache misses,
1208 * and of course the problem with trees and branch prediction.
1209 * This is why we use TLBs in front of most of the trees.
1210 *
1211 * @todo Generalize this TLB + AVL stuff, shouldn't be all that
1212 * difficult when we switch to the new inlined AVL trees (from kStuff).
1213 */
1214typedef struct PGMCHUNKR3MAPTLB
1215{
1216 /** The TLB entries. */
1217 PGMCHUNKR3MAPTLBE aEntries[PGM_CHUNKR3MAPTLB_ENTRIES];
1218} PGMCHUNKR3MAPTLB;
1219
1220/**
1221 * Calculates the index of a guest page in the Ring-3 Chunk TLB.
1222 * @returns Chunk TLB index.
1223 * @param idChunk The Chunk ID.
1224 */
1225#define PGM_CHUNKR3MAPTLB_IDX(idChunk) ( (idChunk) & (PGM_CHUNKR3MAPTLB_ENTRIES - 1) )
1226
1227
1228/**
1229 * Ring-3 guest page mapping TLB entry.
1230 * @remarks used in ring-0 as well at the moment.
1231 */
1232typedef struct PGMPAGER3MAPTLBE
1233{
1234 /** Address of the page. */
1235 RTGCPHYS volatile GCPhys;
1236 /** The guest page. */
1237#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1238 R3PTRTYPE(PPGMPAGE) volatile pPage;
1239#else
1240 R3R0PTRTYPE(PPGMPAGE) volatile pPage;
1241#endif
1242 /** Pointer to the page mapping tracking structure, PGMCHUNKR3MAP. */
1243#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1244 R3PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1245#else
1246 R3R0PTRTYPE(PPGMCHUNKR3MAP) volatile pMap;
1247#endif
1248 /** The address */
1249#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1250 R3PTRTYPE(void *) volatile pv;
1251#else
1252 R3R0PTRTYPE(void *) volatile pv;
1253#endif
1254#if HC_ARCH_BITS == 32
1255 uint32_t u32Padding; /**< alignment padding. */
1256#endif
1257} PGMPAGER3MAPTLBE;
1258/** Pointer to an entry in the HC physical TLB. */
1259typedef PGMPAGER3MAPTLBE *PPGMPAGER3MAPTLBE;
1260
1261
1262/** The number of entries in the ring-3 guest page mapping TLB.
1263 * @remarks The value must be a power of two. */
1264#define PGM_PAGER3MAPTLB_ENTRIES 64
1265
1266/**
1267 * Ring-3 guest page mapping TLB.
1268 * @remarks used in ring-0 as well at the moment.
1269 */
1270typedef struct PGMPAGER3MAPTLB
1271{
1272 /** The TLB entries. */
1273 PGMPAGER3MAPTLBE aEntries[PGM_PAGER3MAPTLB_ENTRIES];
1274} PGMPAGER3MAPTLB;
1275/** Pointer to the ring-3 guest page mapping TLB. */
1276typedef PGMPAGER3MAPTLB *PPGMPAGER3MAPTLB;
1277
1278/**
1279 * Calculates the index of the TLB entry for the specified guest page.
1280 * @returns Physical TLB index.
1281 * @param GCPhys The guest physical address.
1282 */
1283#define PGM_PAGER3MAPTLB_IDX(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGM_PAGER3MAPTLB_ENTRIES - 1) )
1284
1285
1286/**
1287 * Mapping cache usage set entry.
1288 *
1289 * @remarks 16-bit ints was choosen as the set is not expected to be used beyond
1290 * the dynamic ring-0 and (to some extent) raw-mode context mapping
1291 * cache. If it's extended to include ring-3, well, then something will
1292 * have be changed here...
1293 */
1294typedef struct PGMMAPSETENTRY
1295{
1296 /** The mapping cache index. */
1297 uint16_t iPage;
1298 /** The number of references.
1299 * The max is UINT16_MAX - 1. */
1300 uint16_t cRefs;
1301 /** Pointer to the page. */
1302 RTR0PTR pvPage;
1303 /** The physical address for this entry. */
1304 RTHCPHYS HCPhys;
1305} PGMMAPSETENTRY;
1306/** Pointer to a mapping cache usage set entry. */
1307typedef PGMMAPSETENTRY *PPGMMAPSETENTRY;
1308
1309/**
1310 * Mapping cache usage set.
1311 *
1312 * This is used in ring-0 and the raw-mode context to track dynamic mappings
1313 * done during exits / traps. The set is
1314 */
1315typedef struct PGMMAPSET
1316{
1317 /** The number of occupied entries.
1318 * This is PGMMAPSET_CLOSED if the set is closed and we're not supposed to do
1319 * dynamic mappings. */
1320 uint32_t cEntries;
1321 /** The start of the current subset.
1322 * This is UINT32_MAX if no subset is currently open. */
1323 uint32_t iSubset;
1324 /** The index of the current CPU, only valid if the set is open. */
1325 int32_t iCpu;
1326 /** The entries. */
1327 PGMMAPSETENTRY aEntries[64];
1328 /** HCPhys -> iEntry fast lookup table.
1329 * Use PGMMAPSET_HASH for hashing.
1330 * The entries may or may not be valid, check against cEntries. */
1331 uint8_t aiHashTable[128];
1332} PGMMAPSET;
1333/** Pointer to the mapping cache set. */
1334typedef PGMMAPSET *PPGMMAPSET;
1335
1336/** PGMMAPSET::cEntries value for a closed set. */
1337#define PGMMAPSET_CLOSED UINT32_C(0xdeadc0fe)
1338
1339/** Hash function for aiHashTable. */
1340#define PGMMAPSET_HASH(HCPhys) (((HCPhys) >> PAGE_SHIFT) & 127)
1341
1342/** The max fill size (strict builds). */
1343#define PGMMAPSET_MAX_FILL (64U * 80U / 100U)
1344
1345
1346/** @name Context neutrual page mapper TLB.
1347 *
1348 * Hoping to avoid some code and bug duplication parts of the GCxxx->CCPtr
1349 * code is writting in a kind of context neutrual way. Time will show whether
1350 * this actually makes sense or not...
1351 *
1352 * @todo this needs to be reconsidered and dropped/redone since the ring-0
1353 * context ends up using a global mapping cache on some platforms
1354 * (darwin).
1355 *
1356 * @{ */
1357/** @typedef PPGMPAGEMAPTLB
1358 * The page mapper TLB pointer type for the current context. */
1359/** @typedef PPGMPAGEMAPTLB
1360 * The page mapper TLB entry pointer type for the current context. */
1361/** @typedef PPGMPAGEMAPTLB
1362 * The page mapper TLB entry pointer pointer type for the current context. */
1363/** @def PGM_PAGEMAPTLB_ENTRIES
1364 * The number of TLB entries in the page mapper TLB for the current context. */
1365/** @def PGM_PAGEMAPTLB_IDX
1366 * Calculate the TLB index for a guest physical address.
1367 * @returns The TLB index.
1368 * @param GCPhys The guest physical address. */
1369/** @typedef PPGMPAGEMAP
1370 * Pointer to a page mapper unit for current context. */
1371/** @typedef PPPGMPAGEMAP
1372 * Pointer to a page mapper unit pointer for current context. */
1373#ifdef IN_RC
1374// typedef PPGMPAGEGCMAPTLB PPGMPAGEMAPTLB;
1375// typedef PPGMPAGEGCMAPTLBE PPGMPAGEMAPTLBE;
1376// typedef PPGMPAGEGCMAPTLBE *PPPGMPAGEMAPTLBE;
1377# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGEGCMAPTLB_ENTRIES
1378# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGEGCMAPTLB_IDX(GCPhys)
1379 typedef void * PPGMPAGEMAP;
1380 typedef void ** PPPGMPAGEMAP;
1381//#elif IN_RING0
1382// typedef PPGMPAGER0MAPTLB PPGMPAGEMAPTLB;
1383// typedef PPGMPAGER0MAPTLBE PPGMPAGEMAPTLBE;
1384// typedef PPGMPAGER0MAPTLBE *PPPGMPAGEMAPTLBE;
1385//# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER0MAPTLB_ENTRIES
1386//# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER0MAPTLB_IDX(GCPhys)
1387// typedef PPGMCHUNKR0MAP PPGMPAGEMAP;
1388// typedef PPPGMCHUNKR0MAP PPPGMPAGEMAP;
1389#else
1390 typedef PPGMPAGER3MAPTLB PPGMPAGEMAPTLB;
1391 typedef PPGMPAGER3MAPTLBE PPGMPAGEMAPTLBE;
1392 typedef PPGMPAGER3MAPTLBE *PPPGMPAGEMAPTLBE;
1393# define PGM_PAGEMAPTLB_ENTRIES PGM_PAGER3MAPTLB_ENTRIES
1394# define PGM_PAGEMAPTLB_IDX(GCPhys) PGM_PAGER3MAPTLB_IDX(GCPhys)
1395 typedef PPGMCHUNKR3MAP PPGMPAGEMAP;
1396 typedef PPPGMCHUNKR3MAP PPPGMPAGEMAP;
1397#endif
1398/** @} */
1399
1400
1401/** @name PGM Pool Indexes.
1402 * Aka. the unique shadow page identifier.
1403 * @{ */
1404/** NIL page pool IDX. */
1405#define NIL_PGMPOOL_IDX 0
1406/** The first normal index. */
1407#define PGMPOOL_IDX_FIRST_SPECIAL 1
1408/** Page directory (32-bit root). */
1409#define PGMPOOL_IDX_PD 1
1410#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
1411/** Page directory (32-bit root). */
1412#define PGMPOOL_IDX_PD 1
1413/** Page Directory Pointer Table (PAE root). */
1414#define PGMPOOL_IDX_PDPT 2
1415/** AMD64 CR3 level index.*/
1416#define PGMPOOL_IDX_AMD64_CR3 3
1417/** Nested paging root.*/
1418#define PGMPOOL_IDX_NESTED_ROOT 4
1419/** The first normal index. */
1420#define PGMPOOL_IDX_FIRST 5
1421#else
1422/** The extended PAE page directory (2048 entries, works as root currently). */
1423#define PGMPOOL_IDX_PAE_PD 2
1424/** PAE Page Directory Table 0. */
1425#define PGMPOOL_IDX_PAE_PD_0 3
1426/** PAE Page Directory Table 1. */
1427#define PGMPOOL_IDX_PAE_PD_1 4
1428/** PAE Page Directory Table 2. */
1429#define PGMPOOL_IDX_PAE_PD_2 5
1430/** PAE Page Directory Table 3. */
1431#define PGMPOOL_IDX_PAE_PD_3 6
1432/** Page Directory Pointer Table (PAE root, not currently used). */
1433#define PGMPOOL_IDX_PDPT 7
1434/** AMD64 CR3 level index.*/
1435#define PGMPOOL_IDX_AMD64_CR3 8
1436/** Nested paging root.*/
1437#define PGMPOOL_IDX_NESTED_ROOT 9
1438/** The first normal index. */
1439#define PGMPOOL_IDX_FIRST 10
1440#endif
1441/** The last valid index. (inclusive, 14 bits) */
1442#define PGMPOOL_IDX_LAST 0x3fff
1443/** @} */
1444
1445/** The NIL index for the parent chain. */
1446#define NIL_PGMPOOL_USER_INDEX ((uint16_t)0xffff)
1447
1448/**
1449 * Node in the chain linking a shadowed page to it's parent (user).
1450 */
1451#pragma pack(1)
1452typedef struct PGMPOOLUSER
1453{
1454 /** The index to the next item in the chain. NIL_PGMPOOL_USER_INDEX is no next. */
1455 uint16_t iNext;
1456 /** The user page index. */
1457 uint16_t iUser;
1458 /** Index into the user table. */
1459 uint32_t iUserTable;
1460} PGMPOOLUSER, *PPGMPOOLUSER;
1461typedef const PGMPOOLUSER *PCPGMPOOLUSER;
1462#pragma pack()
1463
1464
1465/** The NIL index for the phys ext chain. */
1466#define NIL_PGMPOOL_PHYSEXT_INDEX ((uint16_t)0xffff)
1467
1468/**
1469 * Node in the chain of physical cross reference extents.
1470 */
1471#pragma pack(1)
1472typedef struct PGMPOOLPHYSEXT
1473{
1474 /** The index to the next item in the chain. NIL_PGMPOOL_PHYSEXT_INDEX is no next. */
1475 uint16_t iNext;
1476 /** The user page index. */
1477 uint16_t aidx[3];
1478} PGMPOOLPHYSEXT, *PPGMPOOLPHYSEXT;
1479typedef const PGMPOOLPHYSEXT *PCPGMPOOLPHYSEXT;
1480#pragma pack()
1481
1482
1483/**
1484 * The kind of page that's being shadowed.
1485 */
1486typedef enum PGMPOOLKIND
1487{
1488 /** The virtual invalid 0 entry. */
1489 PGMPOOLKIND_INVALID = 0,
1490 /** The entry is free (=unused). */
1491 PGMPOOLKIND_FREE,
1492
1493 /** Shw: 32-bit page table; Gst: no paging */
1494 PGMPOOLKIND_32BIT_PT_FOR_PHYS,
1495 /** Shw: 32-bit page table; Gst: 32-bit page table. */
1496 PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT,
1497 /** Shw: 32-bit page table; Gst: 4MB page. */
1498 PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB,
1499 /** Shw: PAE page table; Gst: no paging */
1500 PGMPOOLKIND_PAE_PT_FOR_PHYS,
1501 /** Shw: PAE page table; Gst: 32-bit page table. */
1502 PGMPOOLKIND_PAE_PT_FOR_32BIT_PT,
1503 /** Shw: PAE page table; Gst: Half of a 4MB page. */
1504 PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB,
1505 /** Shw: PAE page table; Gst: PAE page table. */
1506 PGMPOOLKIND_PAE_PT_FOR_PAE_PT,
1507 /** Shw: PAE page table; Gst: 2MB page. */
1508 PGMPOOLKIND_PAE_PT_FOR_PAE_2MB,
1509
1510 /** Shw: 32-bit page directory. Gst: 32-bit page directory. */
1511 PGMPOOLKIND_32BIT_PD,
1512 /** Shw: 32-bit page directory. Gst: real mode. */
1513 PGMPOOLKIND_32BIT_PD_PHYS_REAL,
1514 /** Shw: 32-bit page directory. Gst: protected mode without paging. */
1515 PGMPOOLKIND_32BIT_PD_PHYS_PROT,
1516 /** Shw: PAE page directory; Gst: 32-bit page directory. */
1517 PGMPOOLKIND_PAE_PD_FOR_32BIT_PD,
1518 /** Shw: PAE page directory; Gst: PAE page directory. */
1519 PGMPOOLKIND_PAE_PD_FOR_PAE_PD,
1520 /** Shw: PAE page directory; Gst: real mode. */
1521 PGMPOOLKIND_PAE_PD_PHYS_REAL,
1522 /** Shw: PAE page directory; Gst: protected mode without paging. */
1523 PGMPOOLKIND_PAE_PD_PHYS_PROT,
1524
1525 /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst 32 bits paging. */
1526 PGMPOOLKIND_PAE_PDPT_FOR_32BIT,
1527 /** Shw: PAE page directory pointer table (legacy, 4 entries); Gst PAE PDPT. */
1528 PGMPOOLKIND_PAE_PDPT,
1529
1530 /** Shw: 64-bit page directory pointer table; Gst: 64-bit page directory pointer table. */
1531 PGMPOOLKIND_64BIT_PDPT_FOR_64BIT_PDPT,
1532 /** Shw: 64-bit page directory pointer table; Gst: no paging */
1533 PGMPOOLKIND_64BIT_PDPT_FOR_PHYS,
1534 /** Shw: 64-bit page directory table; Gst: 64-bit page directory table. */
1535 PGMPOOLKIND_64BIT_PD_FOR_64BIT_PD,
1536 /** Shw: 64-bit page directory table; Gst: no paging */
1537 PGMPOOLKIND_64BIT_PD_FOR_PHYS,
1538
1539 /** Shw: 64-bit PML4; Gst: 64-bit PML4. */
1540 PGMPOOLKIND_64BIT_PML4_FOR_64BIT_PML4,
1541
1542 /** Shw: EPT page directory pointer table; Gst: no paging */
1543 PGMPOOLKIND_EPT_PDPT_FOR_PHYS,
1544 /** Shw: EPT page directory table; Gst: no paging */
1545 PGMPOOLKIND_EPT_PD_FOR_PHYS,
1546 /** Shw: EPT page table; Gst: no paging */
1547 PGMPOOLKIND_EPT_PT_FOR_PHYS,
1548
1549#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
1550 /** Shw: Root 32-bit page directory. */
1551 PGMPOOLKIND_ROOT_32BIT_PD,
1552 /** Shw: Root PAE page directory */
1553 PGMPOOLKIND_ROOT_PAE_PD,
1554 /** Shw: Root PAE page directory pointer table (legacy, 4 entries). */
1555 PGMPOOLKIND_ROOT_PDPT,
1556#endif
1557 /** Shw: Root Nested paging table. */
1558 PGMPOOLKIND_ROOT_NESTED,
1559
1560 /** The last valid entry. */
1561 PGMPOOLKIND_LAST = PGMPOOLKIND_ROOT_NESTED
1562} PGMPOOLKIND;
1563
1564
1565/**
1566 * The tracking data for a page in the pool.
1567 */
1568typedef struct PGMPOOLPAGE
1569{
1570 /** AVL node code with the (R3) physical address of this page. */
1571 AVLOHCPHYSNODECORE Core;
1572 /** Pointer to the R3 mapping of the page. */
1573#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
1574 R3PTRTYPE(void *) pvPageR3;
1575#else
1576 R3R0PTRTYPE(void *) pvPageR3;
1577#endif
1578 /** The guest physical address. */
1579#if HC_ARCH_BITS == 32 && GC_ARCH_BITS == 64
1580 uint32_t Alignment0;
1581#endif
1582 RTGCPHYS GCPhys;
1583 /** The kind of page we're shadowing. (This is really a PGMPOOLKIND enum.) */
1584 uint8_t enmKind;
1585 uint8_t bPadding;
1586 /** The index of this page. */
1587 uint16_t idx;
1588 /** The next entry in the list this page currently resides in.
1589 * It's either in the free list or in the GCPhys hash. */
1590 uint16_t iNext;
1591#ifdef PGMPOOL_WITH_USER_TRACKING
1592 /** Head of the user chain. NIL_PGMPOOL_USER_INDEX if not currently in use. */
1593 uint16_t iUserHead;
1594 /** The number of present entries. */
1595 uint16_t cPresent;
1596 /** The first entry in the table which is present. */
1597 uint16_t iFirstPresent;
1598#endif
1599#ifdef PGMPOOL_WITH_MONITORING
1600 /** The number of modifications to the monitored page. */
1601 uint16_t cModifications;
1602 /** The next modified page. NIL_PGMPOOL_IDX if tail. */
1603 uint16_t iModifiedNext;
1604 /** The previous modified page. NIL_PGMPOOL_IDX if head. */
1605 uint16_t iModifiedPrev;
1606 /** The next page sharing access handler. NIL_PGMPOOL_IDX if tail. */
1607 uint16_t iMonitoredNext;
1608 /** The previous page sharing access handler. NIL_PGMPOOL_IDX if head. */
1609 uint16_t iMonitoredPrev;
1610#endif
1611#ifdef PGMPOOL_WITH_CACHE
1612 /** The next page in the age list. */
1613 uint16_t iAgeNext;
1614 /** The previous page in the age list. */
1615 uint16_t iAgePrev;
1616#endif /* PGMPOOL_WITH_CACHE */
1617 /** Used to indicate that the page is zeroed. */
1618 bool fZeroed;
1619 /** Used to indicate that a PT has non-global entries. */
1620 bool fSeenNonGlobal;
1621 /** Used to indicate that we're monitoring writes to the guest page. */
1622 bool fMonitored;
1623 /** Used to indicate that the page is in the cache (e.g. in the GCPhys hash).
1624 * (All pages are in the age list.) */
1625 bool fCached;
1626 /** This is used by the R3 access handlers when invoked by an async thread.
1627 * It's a hack required because of REMR3NotifyHandlerPhysicalDeregister. */
1628 bool volatile fReusedFlushPending;
1629 /** Used to indicate that the guest is mapping the page is also used as a CR3.
1630 * In these cases the access handler acts differently and will check
1631 * for mapping conflicts like the normal CR3 handler.
1632 * @todo When we change the CR3 shadowing to use pool pages, this flag can be
1633 * replaced by a list of pages which share access handler.
1634 */
1635 bool fCR3Mix;
1636} PGMPOOLPAGE, *PPGMPOOLPAGE, **PPPGMPOOLPAGE;
1637
1638
1639#ifdef PGMPOOL_WITH_CACHE
1640/** The hash table size. */
1641# define PGMPOOL_HASH_SIZE 0x40
1642/** The hash function. */
1643# define PGMPOOL_HASH(GCPhys) ( ((GCPhys) >> PAGE_SHIFT) & (PGMPOOL_HASH_SIZE - 1) )
1644#endif
1645
1646
1647/**
1648 * The shadow page pool instance data.
1649 *
1650 * It's all one big allocation made at init time, except for the
1651 * pages that is. The user nodes follows immediatly after the
1652 * page structures.
1653 */
1654typedef struct PGMPOOL
1655{
1656 /** The VM handle - R3 Ptr. */
1657 PVMR3 pVMR3;
1658 /** The VM handle - R0 Ptr. */
1659 PVMR0 pVMR0;
1660 /** The VM handle - RC Ptr. */
1661 PVMRC pVMRC;
1662 /** The max pool size. This includes the special IDs. */
1663 uint16_t cMaxPages;
1664 /** The current pool size. */
1665 uint16_t cCurPages;
1666 /** The head of the free page list. */
1667 uint16_t iFreeHead;
1668 /* Padding. */
1669 uint16_t u16Padding;
1670#ifdef PGMPOOL_WITH_USER_TRACKING
1671 /** Head of the chain of free user nodes. */
1672 uint16_t iUserFreeHead;
1673 /** The number of user nodes we've allocated. */
1674 uint16_t cMaxUsers;
1675 /** The number of present page table entries in the entire pool. */
1676 uint32_t cPresent;
1677 /** Pointer to the array of user nodes - RC pointer. */
1678 RCPTRTYPE(PPGMPOOLUSER) paUsersRC;
1679 /** Pointer to the array of user nodes - R3 pointer. */
1680 R3PTRTYPE(PPGMPOOLUSER) paUsersR3;
1681 /** Pointer to the array of user nodes - R0 pointer. */
1682 R0PTRTYPE(PPGMPOOLUSER) paUsersR0;
1683#endif /* PGMPOOL_WITH_USER_TRACKING */
1684#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1685 /** Head of the chain of free phys ext nodes. */
1686 uint16_t iPhysExtFreeHead;
1687 /** The number of user nodes we've allocated. */
1688 uint16_t cMaxPhysExts;
1689 /** Pointer to the array of physical xref extent - RC pointer. */
1690 RCPTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsRC;
1691 /** Pointer to the array of physical xref extent nodes - R3 pointer. */
1692 R3PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR3;
1693 /** Pointer to the array of physical xref extent nodes - R0 pointer. */
1694 R0PTRTYPE(PPGMPOOLPHYSEXT) paPhysExtsR0;
1695#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
1696#ifdef PGMPOOL_WITH_CACHE
1697 /** Hash table for GCPhys addresses. */
1698 uint16_t aiHash[PGMPOOL_HASH_SIZE];
1699 /** The head of the age list. */
1700 uint16_t iAgeHead;
1701 /** The tail of the age list. */
1702 uint16_t iAgeTail;
1703 /** Set if the cache is enabled. */
1704 bool fCacheEnabled;
1705#endif /* PGMPOOL_WITH_CACHE */
1706#ifdef PGMPOOL_WITH_MONITORING
1707 /** Head of the list of modified pages. */
1708 uint16_t iModifiedHead;
1709 /** The current number of modified pages. */
1710 uint16_t cModifiedPages;
1711 /** Access handler, RC. */
1712 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnAccessHandlerRC;
1713 /** Access handler, R0. */
1714 R0PTRTYPE(PFNPGMR0PHYSHANDLER) pfnAccessHandlerR0;
1715 /** Access handler, R3. */
1716 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnAccessHandlerR3;
1717 /** The access handler description (HC ptr). */
1718 R3PTRTYPE(const char *) pszAccessHandler;
1719#endif /* PGMPOOL_WITH_MONITORING */
1720 /** The number of pages currently in use. */
1721 uint16_t cUsedPages;
1722#ifdef VBOX_WITH_STATISTICS
1723 /** The high wather mark for cUsedPages. */
1724 uint16_t cUsedPagesHigh;
1725 uint32_t Alignment1; /**< Align the next member on a 64-bit boundrary. */
1726 /** Profiling pgmPoolAlloc(). */
1727 STAMPROFILEADV StatAlloc;
1728 /** Profiling pgmPoolClearAll(). */
1729 STAMPROFILE StatClearAll;
1730 /** Profiling pgmPoolFlushAllInt(). */
1731 STAMPROFILE StatFlushAllInt;
1732 /** Profiling pgmPoolFlushPage(). */
1733 STAMPROFILE StatFlushPage;
1734 /** Profiling pgmPoolFree(). */
1735 STAMPROFILE StatFree;
1736 /** Profiling time spent zeroing pages. */
1737 STAMPROFILE StatZeroPage;
1738# ifdef PGMPOOL_WITH_USER_TRACKING
1739 /** Profiling of pgmPoolTrackDeref. */
1740 STAMPROFILE StatTrackDeref;
1741 /** Profiling pgmTrackFlushGCPhysPT. */
1742 STAMPROFILE StatTrackFlushGCPhysPT;
1743 /** Profiling pgmTrackFlushGCPhysPTs. */
1744 STAMPROFILE StatTrackFlushGCPhysPTs;
1745 /** Profiling pgmTrackFlushGCPhysPTsSlow. */
1746 STAMPROFILE StatTrackFlushGCPhysPTsSlow;
1747 /** Number of times we've been out of user records. */
1748 STAMCOUNTER StatTrackFreeUpOneUser;
1749# endif
1750# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1751 /** Profiling deref activity related tracking GC physical pages. */
1752 STAMPROFILE StatTrackDerefGCPhys;
1753 /** Number of linear searches for a HCPhys in the ram ranges. */
1754 STAMCOUNTER StatTrackLinearRamSearches;
1755 /** The number of failing pgmPoolTrackPhysExtAlloc calls. */
1756 STAMCOUNTER StamTrackPhysExtAllocFailures;
1757# endif
1758# ifdef PGMPOOL_WITH_MONITORING
1759 /** Profiling the RC/R0 access handler. */
1760 STAMPROFILE StatMonitorRZ;
1761 /** Times we've failed interpreting the instruction. */
1762 STAMCOUNTER StatMonitorRZEmulateInstr;
1763 /** Profiling the pgmPoolFlushPage calls made from the RC/R0 access handler. */
1764 STAMPROFILE StatMonitorRZFlushPage;
1765 /** Times we've detected fork(). */
1766 STAMCOUNTER StatMonitorRZFork;
1767 /** Profiling the RC/R0 access we've handled (except REP STOSD). */
1768 STAMPROFILE StatMonitorRZHandled;
1769 /** Times we've failed interpreting a patch code instruction. */
1770 STAMCOUNTER StatMonitorRZIntrFailPatch1;
1771 /** Times we've failed interpreting a patch code instruction during flushing. */
1772 STAMCOUNTER StatMonitorRZIntrFailPatch2;
1773 /** The number of times we've seen rep prefixes we can't handle. */
1774 STAMCOUNTER StatMonitorRZRepPrefix;
1775 /** Profiling the REP STOSD cases we've handled. */
1776 STAMPROFILE StatMonitorRZRepStosd;
1777
1778 /** Profiling the R3 access handler. */
1779 STAMPROFILE StatMonitorR3;
1780 /** Times we've failed interpreting the instruction. */
1781 STAMCOUNTER StatMonitorR3EmulateInstr;
1782 /** Profiling the pgmPoolFlushPage calls made from the R3 access handler. */
1783 STAMPROFILE StatMonitorR3FlushPage;
1784 /** Times we've detected fork(). */
1785 STAMCOUNTER StatMonitorR3Fork;
1786 /** Profiling the R3 access we've handled (except REP STOSD). */
1787 STAMPROFILE StatMonitorR3Handled;
1788 /** The number of times we've seen rep prefixes we can't handle. */
1789 STAMCOUNTER StatMonitorR3RepPrefix;
1790 /** Profiling the REP STOSD cases we've handled. */
1791 STAMPROFILE StatMonitorR3RepStosd;
1792 /** The number of times we're called in an async thread an need to flush. */
1793 STAMCOUNTER StatMonitorR3Async;
1794 /** The high wather mark for cModifiedPages. */
1795 uint16_t cModifiedPagesHigh;
1796 uint16_t Alignment2[3]; /**< Align the next member on a 64-bit boundrary. */
1797# endif
1798# ifdef PGMPOOL_WITH_CACHE
1799 /** The number of cache hits. */
1800 STAMCOUNTER StatCacheHits;
1801 /** The number of cache misses. */
1802 STAMCOUNTER StatCacheMisses;
1803 /** The number of times we've got a conflict of 'kind' in the cache. */
1804 STAMCOUNTER StatCacheKindMismatches;
1805 /** Number of times we've been out of pages. */
1806 STAMCOUNTER StatCacheFreeUpOne;
1807 /** The number of cacheable allocations. */
1808 STAMCOUNTER StatCacheCacheable;
1809 /** The number of uncacheable allocations. */
1810 STAMCOUNTER StatCacheUncacheable;
1811# endif
1812#elif HC_ARCH_BITS == 64
1813 uint32_t Alignment3; /**< Align the next member on a 64-bit boundrary. */
1814#endif
1815 /** The AVL tree for looking up a page by its HC physical address. */
1816 AVLOHCPHYSTREE HCPhysTree;
1817 uint32_t Alignment4; /**< Align the next member on a 64-bit boundrary. */
1818 /** Array of pages. (cMaxPages in length)
1819 * The Id is the index into thist array.
1820 */
1821 PGMPOOLPAGE aPages[PGMPOOL_IDX_FIRST];
1822} PGMPOOL, *PPGMPOOL, **PPPGMPOOL;
1823
1824
1825#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1826DECLINLINE(void *) pgmPoolMapPageInlined(PVM pVM, PPGMPOOLPAGE pPage);
1827#endif
1828
1829/** @def PGMPOOL_PAGE_2_PTR
1830 * Maps a pool page pool into the current context.
1831 *
1832 * @returns VBox status code.
1833 * @param pVM The VM handle.
1834 * @param pPage The pool page.
1835 *
1836 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
1837 * small page window employeed by that function. Be careful.
1838 * @remark There is no need to assert on the result.
1839 */
1840#if defined(IN_RC)
1841# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageInlined(&(pVM)->pgm.s, (pPage))
1842#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1843# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageInlined(&(pVM)->pgm.s, (pPage))
1844#elif defined(VBOX_STRICT)
1845# define PGMPOOL_PAGE_2_PTR(pVM, pPage) pgmPoolMapPageStrict(pPage)
1846DECLINLINE(void *) pgmPoolMapPageStrict(PPGMPOOLPAGE pPage)
1847{
1848 Assert(pPage->pvPageR3);
1849 return pPage->pvPageR3;
1850}
1851#else
1852# define PGMPOOL_PAGE_2_PTR(pVM, pPage) ((pPage)->pvPageR3)
1853#endif
1854
1855/** @def PGMPOOL_PAGE_2_PTR_BY_PGM
1856 * Maps a pool page pool into the current context.
1857 *
1858 * @returns VBox status code.
1859 * @param pPGM Pointer to the PGM instance data.
1860 * @param pPage The pool page.
1861 *
1862 * @remark In RC this uses PGMGCDynMapHCPage(), so it will consume of the
1863 * small page window employeed by that function. Be careful.
1864 * @remark There is no need to assert on the result.
1865 */
1866#if defined(IN_RC)
1867# define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) pgmPoolMapPageInlined((pPGM), (pPage))
1868#elif defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
1869# define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) pgmPoolMapPageInlined((pPGM), (pPage))
1870#else
1871# define PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPage) PGMPOOL_PAGE_2_PTR(PGM2VM(pPGM), pPage)
1872#endif
1873
1874
1875
1876/**
1877 * Trees are using self relative offsets as pointers.
1878 * So, all its data, including the root pointer, must be in the heap for HC and GC
1879 * to have the same layout.
1880 */
1881typedef struct PGMTREES
1882{
1883 /** Physical access handlers (AVL range+offsetptr tree). */
1884 AVLROGCPHYSTREE PhysHandlers;
1885 /** Virtual access handlers (AVL range + GC ptr tree). */
1886 AVLROGCPTRTREE VirtHandlers;
1887 /** Virtual access handlers (Phys range AVL range + offsetptr tree). */
1888 AVLROGCPHYSTREE PhysToVirtHandlers;
1889 /** Virtual access handlers for the hypervisor (AVL range + GC ptr tree). */
1890 AVLROGCPTRTREE HyperVirtHandlers;
1891} PGMTREES;
1892/** Pointer to PGM trees. */
1893typedef PGMTREES *PPGMTREES;
1894
1895
1896/** @name Paging mode macros
1897 * @{ */
1898#ifdef IN_RC
1899# define PGM_CTX(a,b) a##RC##b
1900# define PGM_CTX_STR(a,b) a "GC" b
1901# define PGM_CTX_DECL(type) VMMRCDECL(type)
1902#else
1903# ifdef IN_RING3
1904# define PGM_CTX(a,b) a##R3##b
1905# define PGM_CTX_STR(a,b) a "R3" b
1906# define PGM_CTX_DECL(type) DECLCALLBACK(type)
1907# else
1908# define PGM_CTX(a,b) a##R0##b
1909# define PGM_CTX_STR(a,b) a "R0" b
1910# define PGM_CTX_DECL(type) VMMDECL(type)
1911# endif
1912#endif
1913
1914#define PGM_GST_NAME_REAL(name) PGM_CTX(pgm,GstReal##name)
1915#define PGM_GST_NAME_RC_REAL_STR(name) "pgmRCGstReal" #name
1916#define PGM_GST_NAME_R0_REAL_STR(name) "pgmR0GstReal" #name
1917#define PGM_GST_NAME_PROT(name) PGM_CTX(pgm,GstProt##name)
1918#define PGM_GST_NAME_RC_PROT_STR(name) "pgmRCGstProt" #name
1919#define PGM_GST_NAME_R0_PROT_STR(name) "pgmR0GstProt" #name
1920#define PGM_GST_NAME_32BIT(name) PGM_CTX(pgm,Gst32Bit##name)
1921#define PGM_GST_NAME_RC_32BIT_STR(name) "pgmRCGst32Bit" #name
1922#define PGM_GST_NAME_R0_32BIT_STR(name) "pgmR0Gst32Bit" #name
1923#define PGM_GST_NAME_PAE(name) PGM_CTX(pgm,GstPAE##name)
1924#define PGM_GST_NAME_RC_PAE_STR(name) "pgmRCGstPAE" #name
1925#define PGM_GST_NAME_R0_PAE_STR(name) "pgmR0GstPAE" #name
1926#define PGM_GST_NAME_AMD64(name) PGM_CTX(pgm,GstAMD64##name)
1927#define PGM_GST_NAME_RC_AMD64_STR(name) "pgmRCGstAMD64" #name
1928#define PGM_GST_NAME_R0_AMD64_STR(name) "pgmR0GstAMD64" #name
1929#define PGM_GST_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Gst##name))
1930#define PGM_GST_DECL(type, name) PGM_CTX_DECL(type) PGM_GST_NAME(name)
1931
1932#define PGM_SHW_NAME_32BIT(name) PGM_CTX(pgm,Shw32Bit##name)
1933#define PGM_SHW_NAME_RC_32BIT_STR(name) "pgmRCShw32Bit" #name
1934#define PGM_SHW_NAME_R0_32BIT_STR(name) "pgmR0Shw32Bit" #name
1935#define PGM_SHW_NAME_PAE(name) PGM_CTX(pgm,ShwPAE##name)
1936#define PGM_SHW_NAME_RC_PAE_STR(name) "pgmRCShwPAE" #name
1937#define PGM_SHW_NAME_R0_PAE_STR(name) "pgmR0ShwPAE" #name
1938#define PGM_SHW_NAME_AMD64(name) PGM_CTX(pgm,ShwAMD64##name)
1939#define PGM_SHW_NAME_RC_AMD64_STR(name) "pgmRCShwAMD64" #name
1940#define PGM_SHW_NAME_R0_AMD64_STR(name) "pgmR0ShwAMD64" #name
1941#define PGM_SHW_NAME_NESTED(name) PGM_CTX(pgm,ShwNested##name)
1942#define PGM_SHW_NAME_RC_NESTED_STR(name) "pgmRCShwNested" #name
1943#define PGM_SHW_NAME_R0_NESTED_STR(name) "pgmR0ShwNested" #name
1944#define PGM_SHW_NAME_EPT(name) PGM_CTX(pgm,ShwEPT##name)
1945#define PGM_SHW_NAME_RC_EPT_STR(name) "pgmRCShwEPT" #name
1946#define PGM_SHW_NAME_R0_EPT_STR(name) "pgmR0ShwEPT" #name
1947#define PGM_SHW_DECL(type, name) PGM_CTX_DECL(type) PGM_SHW_NAME(name)
1948#define PGM_SHW_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Shw##name))
1949
1950/* Shw_Gst */
1951#define PGM_BTH_NAME_32BIT_REAL(name) PGM_CTX(pgm,Bth32BitReal##name)
1952#define PGM_BTH_NAME_32BIT_PROT(name) PGM_CTX(pgm,Bth32BitProt##name)
1953#define PGM_BTH_NAME_32BIT_32BIT(name) PGM_CTX(pgm,Bth32Bit32Bit##name)
1954#define PGM_BTH_NAME_PAE_REAL(name) PGM_CTX(pgm,BthPAEReal##name)
1955#define PGM_BTH_NAME_PAE_PROT(name) PGM_CTX(pgm,BthPAEProt##name)
1956#define PGM_BTH_NAME_PAE_32BIT(name) PGM_CTX(pgm,BthPAE32Bit##name)
1957#define PGM_BTH_NAME_PAE_PAE(name) PGM_CTX(pgm,BthPAEPAE##name)
1958#define PGM_BTH_NAME_AMD64_PROT(name) PGM_CTX(pgm,BthAMD64Prot##name)
1959#define PGM_BTH_NAME_AMD64_AMD64(name) PGM_CTX(pgm,BthAMD64AMD64##name)
1960#define PGM_BTH_NAME_NESTED_REAL(name) PGM_CTX(pgm,BthNestedReal##name)
1961#define PGM_BTH_NAME_NESTED_PROT(name) PGM_CTX(pgm,BthNestedProt##name)
1962#define PGM_BTH_NAME_NESTED_32BIT(name) PGM_CTX(pgm,BthNested32Bit##name)
1963#define PGM_BTH_NAME_NESTED_PAE(name) PGM_CTX(pgm,BthNestedPAE##name)
1964#define PGM_BTH_NAME_NESTED_AMD64(name) PGM_CTX(pgm,BthNestedAMD64##name)
1965#define PGM_BTH_NAME_EPT_REAL(name) PGM_CTX(pgm,BthEPTReal##name)
1966#define PGM_BTH_NAME_EPT_PROT(name) PGM_CTX(pgm,BthEPTProt##name)
1967#define PGM_BTH_NAME_EPT_32BIT(name) PGM_CTX(pgm,BthEPT32Bit##name)
1968#define PGM_BTH_NAME_EPT_PAE(name) PGM_CTX(pgm,BthEPTPAE##name)
1969#define PGM_BTH_NAME_EPT_AMD64(name) PGM_CTX(pgm,BthEPTAMD64##name)
1970
1971#define PGM_BTH_NAME_RC_32BIT_REAL_STR(name) "pgmRCBth32BitReal" #name
1972#define PGM_BTH_NAME_RC_32BIT_PROT_STR(name) "pgmRCBth32BitProt" #name
1973#define PGM_BTH_NAME_RC_32BIT_32BIT_STR(name) "pgmRCBth32Bit32Bit" #name
1974#define PGM_BTH_NAME_RC_PAE_REAL_STR(name) "pgmRCBthPAEReal" #name
1975#define PGM_BTH_NAME_RC_PAE_PROT_STR(name) "pgmRCBthPAEProt" #name
1976#define PGM_BTH_NAME_RC_PAE_32BIT_STR(name) "pgmRCBthPAE32Bit" #name
1977#define PGM_BTH_NAME_RC_PAE_PAE_STR(name) "pgmRCBthPAEPAE" #name
1978#define PGM_BTH_NAME_RC_AMD64_AMD64_STR(name) "pgmRCBthAMD64AMD64" #name
1979#define PGM_BTH_NAME_RC_NESTED_REAL_STR(name) "pgmRCBthNestedReal" #name
1980#define PGM_BTH_NAME_RC_NESTED_PROT_STR(name) "pgmRCBthNestedProt" #name
1981#define PGM_BTH_NAME_RC_NESTED_32BIT_STR(name) "pgmRCBthNested32Bit" #name
1982#define PGM_BTH_NAME_RC_NESTED_PAE_STR(name) "pgmRCBthNestedPAE" #name
1983#define PGM_BTH_NAME_RC_NESTED_AMD64_STR(name) "pgmRCBthNestedAMD64" #name
1984#define PGM_BTH_NAME_RC_EPT_REAL_STR(name) "pgmRCBthEPTReal" #name
1985#define PGM_BTH_NAME_RC_EPT_PROT_STR(name) "pgmRCBthEPTProt" #name
1986#define PGM_BTH_NAME_RC_EPT_32BIT_STR(name) "pgmRCBthEPT32Bit" #name
1987#define PGM_BTH_NAME_RC_EPT_PAE_STR(name) "pgmRCBthEPTPAE" #name
1988#define PGM_BTH_NAME_RC_EPT_AMD64_STR(name) "pgmRCBthEPTAMD64" #name
1989#define PGM_BTH_NAME_R0_32BIT_REAL_STR(name) "pgmR0Bth32BitReal" #name
1990#define PGM_BTH_NAME_R0_32BIT_PROT_STR(name) "pgmR0Bth32BitProt" #name
1991#define PGM_BTH_NAME_R0_32BIT_32BIT_STR(name) "pgmR0Bth32Bit32Bit" #name
1992#define PGM_BTH_NAME_R0_PAE_REAL_STR(name) "pgmR0BthPAEReal" #name
1993#define PGM_BTH_NAME_R0_PAE_PROT_STR(name) "pgmR0BthPAEProt" #name
1994#define PGM_BTH_NAME_R0_PAE_32BIT_STR(name) "pgmR0BthPAE32Bit" #name
1995#define PGM_BTH_NAME_R0_PAE_PAE_STR(name) "pgmR0BthPAEPAE" #name
1996#define PGM_BTH_NAME_R0_AMD64_PROT_STR(name) "pgmR0BthAMD64Prot" #name
1997#define PGM_BTH_NAME_R0_AMD64_AMD64_STR(name) "pgmR0BthAMD64AMD64" #name
1998#define PGM_BTH_NAME_R0_NESTED_REAL_STR(name) "pgmR0BthNestedReal" #name
1999#define PGM_BTH_NAME_R0_NESTED_PROT_STR(name) "pgmR0BthNestedProt" #name
2000#define PGM_BTH_NAME_R0_NESTED_32BIT_STR(name) "pgmR0BthNested32Bit" #name
2001#define PGM_BTH_NAME_R0_NESTED_PAE_STR(name) "pgmR0BthNestedPAE" #name
2002#define PGM_BTH_NAME_R0_NESTED_AMD64_STR(name) "pgmR0BthNestedAMD64" #name
2003#define PGM_BTH_NAME_R0_EPT_REAL_STR(name) "pgmR0BthEPTReal" #name
2004#define PGM_BTH_NAME_R0_EPT_PROT_STR(name) "pgmR0BthEPTProt" #name
2005#define PGM_BTH_NAME_R0_EPT_32BIT_STR(name) "pgmR0BthEPT32Bit" #name
2006#define PGM_BTH_NAME_R0_EPT_PAE_STR(name) "pgmR0BthEPTPAE" #name
2007#define PGM_BTH_NAME_R0_EPT_AMD64_STR(name) "pgmR0BthEPTAMD64" #name
2008
2009#define PGM_BTH_DECL(type, name) PGM_CTX_DECL(type) PGM_BTH_NAME(name)
2010#define PGM_BTH_PFN(name, pVM) ((pVM)->pgm.s.PGM_CTX(pfn,Bth##name))
2011/** @} */
2012
2013/**
2014 * Data for each paging mode.
2015 */
2016typedef struct PGMMODEDATA
2017{
2018 /** The guest mode type. */
2019 uint32_t uGstType;
2020 /** The shadow mode type. */
2021 uint32_t uShwType;
2022
2023 /** @name Function pointers for Shadow paging.
2024 * @{
2025 */
2026 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCPTR offDelta));
2027 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
2028 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2029 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2030
2031 DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2032 DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2033
2034 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2035 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2036 /** @} */
2037
2038 /** @name Function pointers for Guest paging.
2039 * @{
2040 */
2041 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCPTR offDelta));
2042 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
2043 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2044 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2045 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2046#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2047 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2048 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
2049#endif
2050 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2051 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
2052#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2053 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
2054 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
2055 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
2056 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
2057#endif
2058 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2059 DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2060 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2061#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2062 DECLRCCALLBACKMEMBER(int, pfnRCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2063 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmonitorCR3,(PVM pVM));
2064#endif
2065 DECLRCCALLBACKMEMBER(int, pfnRCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2066 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmapCR3,(PVM pVM));
2067#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2068 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstWriteHandlerCR3;
2069 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstPAEWriteHandlerCR3;
2070#endif
2071 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2072 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2073 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2074#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2075 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2076 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
2077#endif
2078 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2079 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
2080#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2081 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
2082 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
2083#endif
2084 /** @} */
2085
2086 /** @name Function pointers for Both Shadow and Guest paging.
2087 * @{
2088 */
2089 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCPTR offDelta));
2090 /* no pfnR3BthTrap0eHandler */
2091 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2092 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2093 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2094 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2095 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2096#ifdef VBOX_STRICT
2097 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2098#endif
2099
2100 DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2101 DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2102 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2103 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2104 DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2105 DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2106#ifdef VBOX_STRICT
2107 DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2108#endif
2109
2110 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2111 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2112 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2113 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2114 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2115 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2116#ifdef VBOX_STRICT
2117 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2118#endif
2119 /** @} */
2120} PGMMODEDATA, *PPGMMODEDATA;
2121
2122
2123
2124/**
2125 * Converts a PGM pointer into a VM pointer.
2126 * @returns Pointer to the VM structure the PGM is part of.
2127 * @param pPGM Pointer to PGM instance data.
2128 */
2129#define PGM2VM(pPGM) ( (PVM)((char*)pPGM - pPGM->offVM) )
2130
2131/**
2132 * PGM Data (part of VM)
2133 */
2134typedef struct PGM
2135{
2136 /** Offset to the VM structure. */
2137 RTINT offVM;
2138 /** Offset of the PGMCPU structure relative to VMCPU. */
2139 int32_t offVCpu;
2140 /** Alignment padding. */
2141 int32_t i32Alignment;
2142
2143 /*
2144 * This will be redefined at least two more times before we're done, I'm sure.
2145 * The current code is only to get on with the coding.
2146 * - 2004-06-10: initial version, bird.
2147 * - 2004-07-02: 1st time, bird.
2148 * - 2004-10-18: 2nd time, bird.
2149 * - 2005-07-xx: 3rd time, bird.
2150 */
2151
2152 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
2153 RCPTRTYPE(PX86PTE) paDynPageMap32BitPTEsGC;
2154 /** Pointer to the page table entries for the dynamic page mapping area - GCPtr. */
2155 RCPTRTYPE(PX86PTEPAE) paDynPageMapPaePTEsGC;
2156
2157 /** The host paging mode. (This is what SUPLib reports.) */
2158 SUPPAGINGMODE enmHostMode;
2159 /** The shadow paging mode. */
2160 PGMMODE enmShadowMode;
2161 /** The guest paging mode. */
2162 PGMMODE enmGuestMode;
2163
2164 /** The current physical address representing in the guest CR3 register. */
2165 RTGCPHYS GCPhysCR3;
2166 /** Pointer to the 5 page CR3 content mapping.
2167 * The first page is always the CR3 (in some form) while the 4 other pages
2168 * are used of the PDs in PAE mode. */
2169 RTGCPTR GCPtrCR3Mapping;
2170#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2171 uint32_t u32Alignment;
2172#endif
2173 /** The physical address of the currently monitored guest CR3 page.
2174 * When this value is NIL_RTGCPHYS no page is being monitored. */
2175 RTGCPHYS GCPhysGstCR3Monitored;
2176
2177 /** @name 32-bit Guest Paging.
2178 * @{ */
2179 /** The guest's page directory, R3 pointer. */
2180 R3PTRTYPE(PX86PD) pGst32BitPdR3;
2181#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2182 /** The guest's page directory, R0 pointer. */
2183 R0PTRTYPE(PX86PD) pGst32BitPdR0;
2184#endif
2185 /** The guest's page directory, static RC mapping. */
2186 RCPTRTYPE(PX86PD) pGst32BitPdRC;
2187 /** @} */
2188
2189 /** @name PAE Guest Paging.
2190 * @{ */
2191 /** The guest's page directory pointer table, static RC mapping. */
2192 RCPTRTYPE(PX86PDPT) pGstPaePdptRC;
2193 /** The guest's page directory pointer table, R3 pointer. */
2194 R3PTRTYPE(PX86PDPT) pGstPaePdptR3;
2195#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2196 /** The guest's page directory pointer table, R0 pointer. */
2197 R0PTRTYPE(PX86PDPT) pGstPaePdptR0;
2198#endif
2199
2200 /** The guest's page directories, R3 pointers.
2201 * These are individual pointers and don't have to be adjecent.
2202 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
2203 R3PTRTYPE(PX86PDPAE) apGstPaePDsR3[4];
2204 /** The guest's page directories, R0 pointers.
2205 * Same restrictions as apGstPaePDsR3. */
2206#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2207 R0PTRTYPE(PX86PDPAE) apGstPaePDsR0[4];
2208#endif
2209 /** The guest's page directories, static GC mapping.
2210 * Unlike the R3/R0 array the first entry can be accessed as a 2048 entry PD.
2211 * These don't have to be up-to-date - use pgmGstGetPaePD() to access them. */
2212 RCPTRTYPE(PX86PDPAE) apGstPaePDsRC[4];
2213 /** The physical addresses of the guest page directories (PAE) pointed to by apGstPagePDsHC/GC. */
2214 RTGCPHYS aGCPhysGstPaePDs[4];
2215 /** The physical addresses of the monitored guest page directories (PAE). */
2216 RTGCPHYS aGCPhysGstPaePDsMonitored[4];
2217 /** @} */
2218
2219 /** @name AMD64 Guest Paging.
2220 * @{ */
2221 /** The guest's page directory pointer table, R3 pointer. */
2222 R3PTRTYPE(PX86PML4) pGstAmd64Pml4R3;
2223#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2224 /** The guest's page directory pointer table, R0 pointer. */
2225 R0PTRTYPE(PX86PML4) pGstAmd64Pml4R0;
2226#endif
2227 /** @} */
2228
2229 /** @name Shadow paging
2230 * @{ */
2231 /** The root page table - R3 Ptr. */
2232 R3PTRTYPE(void *) pShwRootR3;
2233# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2234 /** The root page table - R0 Ptr. */
2235 R0PTRTYPE(void *) pShwRootR0;
2236# endif
2237 /** The Physical Address (HC) of the current active shadow CR3. */
2238 RTHCPHYS HCPhysShwCR3;
2239 /** Pointer to the page of the current active CR3 - R3 Ptr. */
2240 R3PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R3;
2241 /** Pointer to the page of the current active CR3 - R0 Ptr. */
2242 R0PTRTYPE(PPGMPOOLPAGE) pShwPageCR3R0;
2243 /** Pointer to the page of the current active CR3 - RC Ptr. */
2244 RCPTRTYPE(PPGMPOOLPAGE) pShwPageCR3RC;
2245# if HC_ARCH_BITS == 64
2246 RTRCPTR alignment6; /**< structure size alignment. */
2247# endif
2248 /** @} */
2249#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2250 /** @name 32-bit Shadow Paging
2251 * @{ */
2252 /** The 32-Bit PD - R3 Ptr. */
2253 R3PTRTYPE(PX86PD) pShw32BitPdR3;
2254 /** The 32-Bit PD - R0 Ptr. */
2255 R0PTRTYPE(PX86PD) pShw32BitPdR0;
2256 /** The 32-Bit PD - RC Ptr. */
2257 RCPTRTYPE(PX86PD) pShw32BitPdRC;
2258# if HC_ARCH_BITS == 64
2259 uint32_t u32Padding1; /**< alignment padding. */
2260# endif
2261 /** The Physical Address (HC) of the 32-Bit PD. */
2262 RTHCPHYS HCPhysShw32BitPD;
2263 /** @} */
2264
2265 /** @name PAE Shadow Paging
2266 * @{ */
2267 /** The four PDs for the low 4GB - R3 Ptr.
2268 * Even though these are 4 pointers, what they point at is a single table.
2269 * Thus, it's possible to walk the 2048 entries starting where apHCPaePDs[0] points. */
2270 R3PTRTYPE(PX86PDPAE) apShwPaePDsR3[4];
2271# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2272 /** The four PDs for the low 4GB - R0 Ptr.
2273 * Same kind of mapping as apHCPaePDs. */
2274 R0PTRTYPE(PX86PDPAE) apShwPaePDsR0[4];
2275# endif
2276 /** The four PDs for the low 4GB - RC Ptr.
2277 * Same kind of mapping as apHCPaePDs. */
2278 RCPTRTYPE(PX86PDPAE) apShwPaePDsRC[4];
2279 /** The Physical Address (HC) of the four PDs for the low 4GB.
2280 * These are *NOT* 4 contiguous pages. */
2281 RTHCPHYS aHCPhysPaePDs[4];
2282 /** The Physical Address (HC) of the PAE PDPT. */
2283 RTHCPHYS HCPhysShwPaePdpt;
2284 /** The PAE PDPT - R3 Ptr. */
2285 R3PTRTYPE(PX86PDPT) pShwPaePdptR3;
2286 /** The PAE PDPT - R0 Ptr. */
2287 R0PTRTYPE(PX86PDPT) pShwPaePdptR0;
2288 /** The PAE PDPT - RC Ptr. */
2289 RCPTRTYPE(PX86PDPT) pShwPaePdptRC;
2290 /** @} */
2291# if HC_ARCH_BITS == 64
2292 RTRCPTR alignment5; /**< structure size alignment. */
2293# endif
2294
2295 /** @name Nested Shadow Paging
2296 * @{ */
2297 /** Root table; format depends on the host paging mode (AMD-V) or EPT - R3 pointer. */
2298 RTR3PTR pShwNestedRootR3;
2299# ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
2300 /** Root table; format depends on the host paging mode (AMD-V) or EPT - R0 pointer. */
2301 RTR0PTR pShwNestedRootR0;
2302# endif
2303 /** The Physical Address (HC) of the nested paging root. */
2304 RTHCPHYS HCPhysShwNestedRoot;
2305#endif
2306 /** @} */
2307
2308 /** @name Function pointers for Shadow paging.
2309 * @{
2310 */
2311 DECLR3CALLBACKMEMBER(int, pfnR3ShwRelocate,(PVM pVM, RTGCPTR offDelta));
2312 DECLR3CALLBACKMEMBER(int, pfnR3ShwExit,(PVM pVM));
2313 DECLR3CALLBACKMEMBER(int, pfnR3ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2314 DECLR3CALLBACKMEMBER(int, pfnR3ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2315
2316 DECLRCCALLBACKMEMBER(int, pfnRCShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2317 DECLRCCALLBACKMEMBER(int, pfnRCShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2318
2319 DECLR0CALLBACKMEMBER(int, pfnR0ShwGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTHCPHYS pHCPhys));
2320 DECLR0CALLBACKMEMBER(int, pfnR0ShwModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2321
2322 /** @} */
2323
2324 /** @name Function pointers for Guest paging.
2325 * @{
2326 */
2327 DECLR3CALLBACKMEMBER(int, pfnR3GstRelocate,(PVM pVM, RTGCPTR offDelta));
2328 DECLR3CALLBACKMEMBER(int, pfnR3GstExit,(PVM pVM));
2329 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2330 DECLR3CALLBACKMEMBER(int, pfnR3GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2331 DECLR3CALLBACKMEMBER(int, pfnR3GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2332#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2333 DECLR3CALLBACKMEMBER(int, pfnR3GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2334 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmonitorCR3,(PVM pVM));
2335#endif
2336 DECLR3CALLBACKMEMBER(int, pfnR3GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2337 DECLR3CALLBACKMEMBER(int, pfnR3GstUnmapCR3,(PVM pVM));
2338#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2339 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstWriteHandlerCR3;
2340 R3PTRTYPE(const char *) pszR3GstWriteHandlerCR3;
2341 R3PTRTYPE(PFNPGMR3PHYSHANDLER) pfnR3GstPAEWriteHandlerCR3;
2342 R3PTRTYPE(const char *) pszR3GstPAEWriteHandlerCR3;
2343#endif
2344 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2345 DECLRCCALLBACKMEMBER(int, pfnRCGstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2346 DECLRCCALLBACKMEMBER(int, pfnRCGstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2347#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2348 DECLRCCALLBACKMEMBER(int, pfnRCGstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2349 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmonitorCR3,(PVM pVM));
2350#endif
2351 DECLRCCALLBACKMEMBER(int, pfnRCGstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2352 DECLRCCALLBACKMEMBER(int, pfnRCGstUnmapCR3,(PVM pVM));
2353#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2354 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstWriteHandlerCR3;
2355 RCPTRTYPE(PFNPGMRCPHYSHANDLER) pfnRCGstPAEWriteHandlerCR3;
2356#endif
2357#if HC_ARCH_BITS == 64
2358 RTRCPTR alignment3; /**< structure size alignment. */
2359#endif
2360
2361 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPage,(PVM pVM, RTGCPTR GCPtr, uint64_t *pfFlags, PRTGCPHYS pGCPhys));
2362 DECLR0CALLBACKMEMBER(int, pfnR0GstModifyPage,(PVM pVM, RTGCPTR GCPtr, size_t cbPages, uint64_t fFlags, uint64_t fMask));
2363 DECLR0CALLBACKMEMBER(int, pfnR0GstGetPDE,(PVM pVM, RTGCPTR GCPtr, PX86PDEPAE pPde));
2364#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2365 DECLR0CALLBACKMEMBER(int, pfnR0GstMonitorCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2366 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmonitorCR3,(PVM pVM));
2367#endif
2368 DECLR0CALLBACKMEMBER(int, pfnR0GstMapCR3,(PVM pVM, RTGCPHYS GCPhysCR3));
2369 DECLR0CALLBACKMEMBER(int, pfnR0GstUnmapCR3,(PVM pVM));
2370#ifndef VBOX_WITH_PGMPOOL_PAGING_ONLY
2371 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstWriteHandlerCR3;
2372 R0PTRTYPE(PFNPGMRCPHYSHANDLER) pfnR0GstPAEWriteHandlerCR3;
2373#endif
2374 /** @} */
2375
2376 /** @name Function pointers for Both Shadow and Guest paging.
2377 * @{
2378 */
2379 DECLR3CALLBACKMEMBER(int, pfnR3BthRelocate,(PVM pVM, RTGCPTR offDelta));
2380 /* no pfnR3BthTrap0eHandler */
2381 DECLR3CALLBACKMEMBER(int, pfnR3BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2382 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2383 DECLR3CALLBACKMEMBER(int, pfnR3BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2384 DECLR3CALLBACKMEMBER(int, pfnR3BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2385 DECLR3CALLBACKMEMBER(int, pfnR3BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2386 DECLR3CALLBACKMEMBER(unsigned, pfnR3BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2387
2388 DECLR0CALLBACKMEMBER(int, pfnR0BthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2389 DECLR0CALLBACKMEMBER(int, pfnR0BthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2390 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2391 DECLR0CALLBACKMEMBER(int, pfnR0BthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2392 DECLR0CALLBACKMEMBER(int, pfnR0BthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2393 DECLR0CALLBACKMEMBER(int, pfnR0BthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2394 DECLR0CALLBACKMEMBER(unsigned, pfnR0BthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2395
2396 DECLRCCALLBACKMEMBER(int, pfnRCBthTrap0eHandler,(PVM pVM, RTGCUINT uErr, PCPUMCTXCORE pRegFrame, RTGCPTR pvFault));
2397 DECLRCCALLBACKMEMBER(int, pfnRCBthInvalidatePage,(PVM pVM, RTGCPTR GCPtrPage));
2398 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncCR3,(PVM pVM, uint64_t cr0, uint64_t cr3, uint64_t cr4, bool fGlobal));
2399 DECLRCCALLBACKMEMBER(int, pfnRCBthSyncPage,(PVM pVM, X86PDE PdeSrc, RTGCPTR GCPtrPage, unsigned cPages, unsigned uError));
2400 DECLRCCALLBACKMEMBER(int, pfnRCBthPrefetchPage,(PVM pVM, RTGCPTR GCPtrPage));
2401 DECLRCCALLBACKMEMBER(int, pfnRCBthVerifyAccessSyncPage,(PVM pVM, RTGCPTR GCPtrPage, unsigned fFlags, unsigned uError));
2402 DECLRCCALLBACKMEMBER(unsigned, pfnRCBthAssertCR3,(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPTR GCPtr, RTGCPTR cb));
2403#if HC_ARCH_BITS == 64
2404 RTRCPTR alignment2; /**< structure size alignment. */
2405#endif
2406 /** @} */
2407
2408 /** Pointer to SHW+GST mode data (function pointers).
2409 * The index into this table is made up from */
2410 R3PTRTYPE(PPGMMODEDATA) paModeData;
2411
2412 /** Pointer to the list of RAM ranges (Phys GC -> Phys HC conversion) - for R3.
2413 * This is sorted by physical address and contains no overlapping ranges. */
2414 R3PTRTYPE(PPGMRAMRANGE) pRamRangesR3;
2415 /** R0 pointer corresponding to PGM::pRamRangesR3. */
2416 R0PTRTYPE(PPGMRAMRANGE) pRamRangesR0;
2417 /** RC pointer corresponding to PGM::pRamRangesR3. */
2418 RCPTRTYPE(PPGMRAMRANGE) pRamRangesRC;
2419 /** The configured RAM size. */
2420 RTUINT cbRamSize;
2421
2422 /** Pointer to the list of ROM ranges - for R3.
2423 * This is sorted by physical address and contains no overlapping ranges. */
2424 R3PTRTYPE(PPGMROMRANGE) pRomRangesR3;
2425 /** R0 pointer corresponding to PGM::pRomRangesR3. */
2426 R0PTRTYPE(PPGMROMRANGE) pRomRangesR0;
2427 /** RC pointer corresponding to PGM::pRomRangesR3. */
2428 RCPTRTYPE(PPGMROMRANGE) pRomRangesRC;
2429 /** Alignment padding. */
2430 RTRCPTR GCPtrPadding2;
2431
2432 /** Pointer to the list of MMIO2 ranges - for R3.
2433 * Registration order. */
2434 R3PTRTYPE(PPGMMMIO2RANGE) pMmio2RangesR3;
2435
2436 /** PGM offset based trees - R3 Ptr. */
2437 R3PTRTYPE(PPGMTREES) pTreesR3;
2438 /** PGM offset based trees - R0 Ptr. */
2439 R0PTRTYPE(PPGMTREES) pTreesR0;
2440 /** PGM offset based trees - RC Ptr. */
2441 RCPTRTYPE(PPGMTREES) pTreesRC;
2442
2443 /** Linked list of GC mappings - for RC.
2444 * The list is sorted ascending on address.
2445 */
2446 RCPTRTYPE(PPGMMAPPING) pMappingsRC;
2447 /** Linked list of GC mappings - for HC.
2448 * The list is sorted ascending on address.
2449 */
2450 R3PTRTYPE(PPGMMAPPING) pMappingsR3;
2451 /** Linked list of GC mappings - for R0.
2452 * The list is sorted ascending on address.
2453 */
2454 R0PTRTYPE(PPGMMAPPING) pMappingsR0;
2455
2456 /** If set no conflict checks are required. (boolean) */
2457 bool fMappingsFixed;
2458 /** If set, then no mappings are put into the shadow page table. (boolean) */
2459 bool fDisableMappings;
2460 /** Size of fixed mapping */
2461 uint32_t cbMappingFixed;
2462 /** Base address (GC) of fixed mapping */
2463 RTGCPTR GCPtrMappingFixed;
2464#if HC_ARCH_BITS == 64 && GC_ARCH_BITS == 32
2465 uint32_t u32Padding0; /**< alignment padding. */
2466#endif
2467
2468
2469 /** @name Intermediate Context
2470 * @{ */
2471 /** Pointer to the intermediate page directory - Normal. */
2472 R3PTRTYPE(PX86PD) pInterPD;
2473 /** Pointer to the intermedate page tables - Normal.
2474 * There are two page tables, one for the identity mapping and one for
2475 * the host context mapping (of the core code). */
2476 R3PTRTYPE(PX86PT) apInterPTs[2];
2477 /** Pointer to the intermedate page tables - PAE. */
2478 R3PTRTYPE(PX86PTPAE) apInterPaePTs[2];
2479 /** Pointer to the intermedate page directory - PAE. */
2480 R3PTRTYPE(PX86PDPAE) apInterPaePDs[4];
2481 /** Pointer to the intermedate page directory - PAE. */
2482 R3PTRTYPE(PX86PDPT) pInterPaePDPT;
2483 /** Pointer to the intermedate page-map level 4 - AMD64. */
2484 R3PTRTYPE(PX86PML4) pInterPaePML4;
2485 /** Pointer to the intermedate page directory - AMD64. */
2486 R3PTRTYPE(PX86PDPT) pInterPaePDPT64;
2487 /** The Physical Address (HC) of the intermediate Page Directory - Normal. */
2488 RTHCPHYS HCPhysInterPD;
2489 /** The Physical Address (HC) of the intermediate Page Directory Pointer Table - PAE. */
2490 RTHCPHYS HCPhysInterPaePDPT;
2491 /** The Physical Address (HC) of the intermediate Page Map Level 4 table - AMD64. */
2492 RTHCPHYS HCPhysInterPaePML4;
2493 /** @} */
2494
2495 /** Base address of the dynamic page mapping area.
2496 * The array is MM_HYPER_DYNAMIC_SIZE bytes big.
2497 */
2498 RCPTRTYPE(uint8_t *) pbDynPageMapBaseGC;
2499 /** The index of the last entry used in the dynamic page mapping area. */
2500 RTUINT iDynPageMapLast;
2501 /** Cache containing the last entries in the dynamic page mapping area.
2502 * The cache size is covering half of the mapping area. */
2503 RTHCPHYS aHCPhysDynPageMapCache[MM_HYPER_DYNAMIC_SIZE >> (PAGE_SHIFT + 1)];
2504
2505 /** The address of the ring-0 mapping cache if we're making use of it. */
2506 RTR0PTR pvR0DynMapUsed;
2507#if HC_ARCH_BITS == 32
2508 RTR0PTR R0PtrPadding0; /**< Alignment. */
2509#endif
2510
2511
2512 /** 4 MB page mask; 32 or 36 bits depending on PSE-36 */
2513 RTGCPHYS GCPhys4MBPSEMask;
2514
2515 /** A20 gate mask.
2516 * Our current approach to A20 emulation is to let REM do it and don't bother
2517 * anywhere else. The interesting Guests will be operating with it enabled anyway.
2518 * But whould need arrise, we'll subject physical addresses to this mask. */
2519 RTGCPHYS GCPhysA20Mask;
2520 /** A20 gate state - boolean! */
2521 RTUINT fA20Enabled;
2522
2523 /** What needs syncing (PGM_SYNC_*).
2524 * This is used to queue operations for PGMSyncCR3, PGMInvalidatePage,
2525 * PGMFlushTLB, and PGMR3Load. */
2526 RTUINT fSyncFlags;
2527
2528 /** PGM critical section.
2529 * This protects the physical & virtual access handlers, ram ranges,
2530 * and the page flag updating (some of it anyway).
2531 */
2532 PDMCRITSECT CritSect;
2533
2534 /** Shadow Page Pool - R3 Ptr. */
2535 R3PTRTYPE(PPGMPOOL) pPoolR3;
2536 /** Shadow Page Pool - R0 Ptr. */
2537 R0PTRTYPE(PPGMPOOL) pPoolR0;
2538 /** Shadow Page Pool - RC Ptr. */
2539 RCPTRTYPE(PPGMPOOL) pPoolRC;
2540
2541 /** We're not in a state which permits writes to guest memory.
2542 * (Only used in strict builds.) */
2543 bool fNoMorePhysWrites;
2544
2545 /** Flush the cache on the next access. */
2546 bool fPhysCacheFlushPending;
2547/** @todo r=bird: Fix member names!*/
2548 /** PGMPhysRead cache */
2549 PGMPHYSCACHE pgmphysreadcache;
2550 /** PGMPhysWrite cache */
2551 PGMPHYSCACHE pgmphyswritecache;
2552
2553 /**
2554 * Data associated with managing the ring-3 mappings of the allocation chunks.
2555 */
2556 struct
2557 {
2558 /** The chunk tree, ordered by chunk id. */
2559#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2560 R3PTRTYPE(PAVLU32NODECORE) pTree;
2561#else
2562 R3R0PTRTYPE(PAVLU32NODECORE) pTree;
2563#endif
2564 /** The chunk mapping TLB. */
2565 PGMCHUNKR3MAPTLB Tlb;
2566 /** The number of mapped chunks. */
2567 uint32_t c;
2568 /** The maximum number of mapped chunks.
2569 * @cfgm PGM/MaxRing3Chunks */
2570 uint32_t cMax;
2571 /** The chunk age tree, ordered by ageing sequence number. */
2572 R3PTRTYPE(PAVLLU32NODECORE) pAgeTree;
2573 /** The current time. */
2574 uint32_t iNow;
2575 /** Number of pgmR3PhysChunkFindUnmapCandidate calls left to the next ageing. */
2576 uint32_t AgeingCountdown;
2577 } ChunkR3Map;
2578
2579 /**
2580 * The page mapping TLB for ring-3 and (for the time being) ring-0.
2581 */
2582 PGMPAGER3MAPTLB PhysTlbHC;
2583
2584 /** @name The zero page.
2585 * @{ */
2586 /** The host physical address of the zero page. */
2587 RTHCPHYS HCPhysZeroPg;
2588 /** The ring-3 mapping of the zero page. */
2589 RTR3PTR pvZeroPgR3;
2590 /** The ring-0 mapping of the zero page. */
2591 RTR0PTR pvZeroPgR0;
2592 /** The GC mapping of the zero page. */
2593 RTGCPTR pvZeroPgGC;
2594#if GC_ARCH_BITS != 32
2595 uint32_t u32ZeroAlignment; /**< Alignment padding. */
2596#endif
2597 /** @}*/
2598
2599 /** The number of handy pages. */
2600 uint32_t cHandyPages;
2601 /**
2602 * Array of handy pages.
2603 *
2604 * This array is used in a two way communication between pgmPhysAllocPage
2605 * and GMMR0AllocateHandyPages, with PGMR3PhysAllocateHandyPages serving as
2606 * an intermediary.
2607 *
2608 * The size of this array is important, see pgmPhysEnsureHandyPage for details.
2609 * (The current size of 32 pages, means 128 KB of handy memory.)
2610 */
2611 GMMPAGEDESC aHandyPages[32];
2612
2613 /** @name Release Statistics
2614 * @{ */
2615 uint32_t cAllPages; /**< The total number of pages. (Should be Private + Shared + Zero.) */
2616 uint32_t cPrivatePages; /**< The number of private pages. */
2617 uint32_t cSharedPages; /**< The number of shared pages. */
2618 uint32_t cZeroPages; /**< The number of zero backed pages. */
2619 /** The number of times the guest has switched mode since last reset or statistics reset. */
2620 STAMCOUNTER cGuestModeChanges;
2621 /** @} */
2622
2623#ifdef VBOX_WITH_STATISTICS /** @todo move this chunk to the heap. */
2624 /** RC: Which statistic this \#PF should be attributed to. */
2625 RCPTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionRC;
2626 RTRCPTR padding0;
2627 /** R0: Which statistic this \#PF should be attributed to. */
2628 R0PTRTYPE(PSTAMPROFILE) pStatTrap0eAttributionR0;
2629 RTR0PTR padding1;
2630
2631 /* Common */
2632# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
2633 STAMCOUNTER StatTrackVirgin; /**< The number of first time shadowings. */
2634 STAMCOUNTER StatTrackAliased; /**< The number of times switching to cRef2, i.e. the page is being shadowed by two PTs. */
2635 STAMCOUNTER StatTrackAliasedMany; /**< The number of times we're tracking using cRef2. */
2636 STAMCOUNTER StatTrackAliasedLots; /**< The number of times we're hitting pages which has overflowed cRef2. */
2637 STAMCOUNTER StatTrackOverflows; /**< The number of times the extent list grows to long. */
2638 STAMPROFILE StatTrackDeref; /**< Profiling of SyncPageWorkerTrackDeref (expensive). */
2639# endif
2640 STAMCOUNTER StatSyncPtPD[X86_PG_ENTRIES]; /**< SyncPT - PD distribution. */
2641 STAMCOUNTER StatSyncPagePD[X86_PG_ENTRIES]; /**< SyncPage - PD distribution. */
2642
2643 /* R3 only: */
2644 STAMCOUNTER StatR3DetectedConflicts; /**< R3: Number of times PGMR3MapHasConflicts() detected a conflict. */
2645 STAMPROFILE StatR3ResolveConflict; /**< R3: pgmR3SyncPTResolveConflict() profiling (includes the entire relocation). */
2646 STAMCOUNTER StatR3GuestPDWrite; /**< R3: The total number of times pgmHCGuestPDWriteHandler() was called. */
2647 STAMCOUNTER StatR3GuestPDWriteConflict; /**< R3: The number of times GuestPDWriteContlict() detected a conflict. */
2648 STAMCOUNTER StatR3DynRamTotal; /**< R3: Allocated MBs of guest ram */
2649 STAMCOUNTER StatR3DynRamGrow; /**< R3: Nr of pgmr3PhysGrowRange calls. */
2650
2651 /* R0 only: */
2652 STAMCOUNTER StatR0DynMapMigrateInvlPg; /**< R0: invlpg in PGMDynMapMigrateAutoSet. */
2653 STAMPROFILE StatR0DynMapGCPageInl; /**< R0: Calls to pgmR0DynMapGCPageInlined. */
2654 STAMCOUNTER StatR0DynMapGCPageInlHits; /**< R0: Hash table lookup hits. */
2655 STAMCOUNTER StatR0DynMapGCPageInlMisses; /**< R0: Misses that falls back to code common with PGMDynMapHCPage. */
2656 STAMCOUNTER StatR0DynMapGCPageInlRamHits; /**< R0: 1st ram range hits. */
2657 STAMCOUNTER StatR0DynMapGCPageInlRamMisses; /**< R0: 1st ram range misses, takes slow path. */
2658 STAMPROFILE StatR0DynMapHCPageInl; /**< R0: Calls to pgmR0DynMapHCPageInlined. */
2659 STAMCOUNTER StatR0DynMapHCPageInlHits; /**< R0: Hash table lookup hits. */
2660 STAMCOUNTER StatR0DynMapHCPageInlMisses; /**< R0: Misses that falls back to code common with PGMDynMapHCPage. */
2661 STAMPROFILE StatR0DynMapHCPage; /**< R0: Calls to PGMDynMapHCPage. */
2662 STAMCOUNTER StatR0DynMapSetOptimize; /**< R0: Calls to pgmDynMapOptimizeAutoSet. */
2663 STAMCOUNTER StatR0DynMapSetSearchFlushes; /**< R0: Set search restorting to subset flushes. */
2664 STAMCOUNTER StatR0DynMapSetSearchHits; /**< R0: Set search hits. */
2665 STAMCOUNTER StatR0DynMapSetSearchMisses; /**< R0: Set search misses. */
2666 STAMCOUNTER StatR0DynMapPage; /**< R0: Calls to pgmR0DynMapPage. */
2667 STAMCOUNTER StatR0DynMapPageHits0; /**< R0: Hits at iPage+0. */
2668 STAMCOUNTER StatR0DynMapPageHits1; /**< R0: Hits at iPage+1. */
2669 STAMCOUNTER StatR0DynMapPageHits2; /**< R0: Hits at iPage+2. */
2670 STAMCOUNTER StatR0DynMapPageInvlPg; /**< R0: invlpg. */
2671 STAMCOUNTER StatR0DynMapPageSlow; /**< R0: Calls to pgmR0DynMapPageSlow. */
2672 STAMCOUNTER StatR0DynMapPageSlowLoopHits; /**< R0: Hits in the pgmR0DynMapPageSlow search loop. */
2673 STAMCOUNTER StatR0DynMapPageSlowLoopMisses; /**< R0: Misses in the pgmR0DynMapPageSlow search loop. */
2674 //STAMCOUNTER StatR0DynMapPageSlowLostHits; /**< R0: Lost hits. */
2675 STAMCOUNTER StatR0DynMapSubsets; /**< R0: Times PGMDynMapPushAutoSubset was called. */
2676 STAMCOUNTER StatR0DynMapPopFlushes; /**< R0: Times PGMDynMapPopAutoSubset flushes the subset. */
2677 STAMCOUNTER aStatR0DynMapSetSize[11]; /**< R0: Set size distribution. */
2678
2679 /* RC only: */
2680 STAMCOUNTER StatRCDynMapCacheMisses; /**< RC: The number of dynamic page mapping cache hits */
2681 STAMCOUNTER StatRCDynMapCacheHits; /**< RC: The number of dynamic page mapping cache misses */
2682 STAMCOUNTER StatRCInvlPgConflict; /**< RC: Number of times PGMInvalidatePage() detected a mapping conflict. */
2683 STAMCOUNTER StatRCInvlPgSyncMonCR3; /**< RC: Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3. */
2684
2685 /* RZ only: */
2686 STAMPROFILE StatRZTrap0e; /**< RC/R0: PGMTrap0eHandler() profiling. */
2687 STAMPROFILE StatRZTrap0eTimeCheckPageFault;
2688 STAMPROFILE StatRZTrap0eTimeSyncPT;
2689 STAMPROFILE StatRZTrap0eTimeMapping;
2690 STAMPROFILE StatRZTrap0eTimeOutOfSync;
2691 STAMPROFILE StatRZTrap0eTimeHandlers;
2692 STAMPROFILE StatRZTrap0eTime2CSAM; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is CSAM. */
2693 STAMPROFILE StatRZTrap0eTime2DirtyAndAccessed; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation. */
2694 STAMPROFILE StatRZTrap0eTime2GuestTrap; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a guest trap. */
2695 STAMPROFILE StatRZTrap0eTime2HndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a physical handler. */
2696 STAMPROFILE StatRZTrap0eTime2HndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is a virtual handler. */
2697 STAMPROFILE StatRZTrap0eTime2HndUnhandled; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page. */
2698 STAMPROFILE StatRZTrap0eTime2Misc; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is not known. */
2699 STAMPROFILE StatRZTrap0eTime2OutOfSync; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync page. */
2700 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndPhys; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page. */
2701 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndVirt; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page. */
2702 STAMPROFILE StatRZTrap0eTime2OutOfSyncHndObs; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is an obsolete handler page. */
2703 STAMPROFILE StatRZTrap0eTime2SyncPT; /**< RC/R0: Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT. */
2704 STAMCOUNTER StatRZTrap0eConflicts; /**< RC/R0: The number of times \#PF was caused by an undetected conflict. */
2705 STAMCOUNTER StatRZTrap0eHandlersMapping; /**< RC/R0: Number of traps due to access handlers in mappings. */
2706 STAMCOUNTER StatRZTrap0eHandlersOutOfSync; /**< RC/R0: Number of out-of-sync handled pages. */
2707 STAMCOUNTER StatRZTrap0eHandlersPhysical; /**< RC/R0: Number of traps due to physical access handlers. */
2708 STAMCOUNTER StatRZTrap0eHandlersVirtual; /**< RC/R0: Number of traps due to virtual access handlers. */
2709 STAMCOUNTER StatRZTrap0eHandlersVirtualByPhys; /**< RC/R0: Number of traps due to virtual access handlers found by physical address. */
2710 STAMCOUNTER StatRZTrap0eHandlersVirtualUnmarked;/**< RC/R0: Number of traps due to virtual access handlers found by virtual address (without proper physical flags). */
2711 STAMCOUNTER StatRZTrap0eHandlersUnhandled; /**< RC/R0: Number of traps due to access outside range of monitored page(s). */
2712 STAMCOUNTER StatRZTrap0eHandlersInvalid; /**< RC/R0: Number of traps due to access to invalid physical memory. */
2713 STAMCOUNTER StatRZTrap0eUSNotPresentRead; /**< RC/R0: #PF err kind */
2714 STAMCOUNTER StatRZTrap0eUSNotPresentWrite; /**< RC/R0: #PF err kind */
2715 STAMCOUNTER StatRZTrap0eUSWrite; /**< RC/R0: #PF err kind */
2716 STAMCOUNTER StatRZTrap0eUSReserved; /**< RC/R0: #PF err kind */
2717 STAMCOUNTER StatRZTrap0eUSNXE; /**< RC/R0: #PF err kind */
2718 STAMCOUNTER StatRZTrap0eUSRead; /**< RC/R0: #PF err kind */
2719 STAMCOUNTER StatRZTrap0eSVNotPresentRead; /**< RC/R0: #PF err kind */
2720 STAMCOUNTER StatRZTrap0eSVNotPresentWrite; /**< RC/R0: #PF err kind */
2721 STAMCOUNTER StatRZTrap0eSVWrite; /**< RC/R0: #PF err kind */
2722 STAMCOUNTER StatRZTrap0eSVReserved; /**< RC/R0: #PF err kind */
2723 STAMCOUNTER StatRZTrap0eSNXE; /**< RC/R0: #PF err kind */
2724 STAMCOUNTER StatRZTrap0eGuestPF; /**< RC/R0: Real guest #PFs. */
2725 STAMCOUNTER StatRZTrap0eGuestPFUnh; /**< RC/R0: Real guest #PF ending up at the end of the #PF code. */
2726 STAMCOUNTER StatRZTrap0eGuestPFMapping; /**< RC/R0: Real guest #PF to HMA or other mapping. */
2727 STAMCOUNTER StatRZTrap0eWPEmulInRZ; /**< RC/R0: WP=0 virtualization trap, handled. */
2728 STAMCOUNTER StatRZTrap0eWPEmulToR3; /**< RC/R0: WP=0 virtualization trap, chickened out. */
2729 STAMCOUNTER StatRZTrap0ePD[X86_PG_ENTRIES]; /**< RC/R0: PD distribution of the #PFs. */
2730 STAMCOUNTER StatRZGuestCR3WriteHandled; /**< RC/R0: The number of times WriteHandlerCR3() was successfully called. */
2731 STAMCOUNTER StatRZGuestCR3WriteUnhandled; /**< RC/R0: The number of times WriteHandlerCR3() was called and we had to fall back to the recompiler. */
2732 STAMCOUNTER StatRZGuestCR3WriteConflict; /**< RC/R0: The number of times WriteHandlerCR3() was called and a conflict was detected. */
2733 STAMCOUNTER StatRZGuestROMWriteHandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was successfully called. */
2734 STAMCOUNTER StatRZGuestROMWriteUnhandled; /**< RC/R0: The number of times pgmPhysRomWriteHandler() was called and we had to fall back to the recompiler */
2735
2736 /* HC - R3 and (maybe) R0: */
2737
2738 /* RZ & R3: */
2739 STAMPROFILE StatRZSyncCR3; /**< RC/R0: PGMSyncCR3() profiling. */
2740 STAMPROFILE StatRZSyncCR3Handlers; /**< RC/R0: Profiling of the PGMSyncCR3() update handler section. */
2741 STAMPROFILE StatRZSyncCR3HandlerVirtualReset; /**< RC/R0: Profiling of the virtual handler resets. */
2742 STAMPROFILE StatRZSyncCR3HandlerVirtualUpdate; /**< RC/R0: Profiling of the virtual handler updates. */
2743 STAMCOUNTER StatRZSyncCR3Global; /**< RC/R0: The number of global CR3 syncs. */
2744 STAMCOUNTER StatRZSyncCR3NotGlobal; /**< RC/R0: The number of non-global CR3 syncs. */
2745 STAMCOUNTER StatRZSyncCR3DstCacheHit; /**< RC/R0: The number of times we got some kind of cache hit on a page table. */
2746 STAMCOUNTER StatRZSyncCR3DstFreed; /**< RC/R0: The number of times we've had to free a shadow entry. */
2747 STAMCOUNTER StatRZSyncCR3DstFreedSrcNP; /**< RC/R0: The number of times we've had to free a shadow entry for which the source entry was not present. */
2748 STAMCOUNTER StatRZSyncCR3DstNotPresent; /**< RC/R0: The number of times we've encountered a not present shadow entry for a present guest entry. */
2749 STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPD; /**< RC/R0: The number of times a global page directory wasn't flushed. */
2750 STAMCOUNTER StatRZSyncCR3DstSkippedGlobalPT; /**< RC/R0: The number of times a page table with only global entries wasn't flushed. */
2751 STAMPROFILE StatRZSyncPT; /**< RC/R0: PGMSyncPT() profiling. */
2752 STAMCOUNTER StatRZSyncPTFailed; /**< RC/R0: The number of times PGMSyncPT() failed. */
2753 STAMCOUNTER StatRZSyncPT4K; /**< RC/R0: Number of 4KB syncs. */
2754 STAMCOUNTER StatRZSyncPT4M; /**< RC/R0: Number of 4MB syncs. */
2755 STAMCOUNTER StatRZSyncPagePDNAs; /**< RC/R0: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2756 STAMCOUNTER StatRZSyncPagePDOutOfSync; /**< RC/R0: The number of time we've encountered an out-of-sync PD in SyncPage. */
2757 STAMCOUNTER StatRZAccessedPage; /**< RC/R0: The number of pages marked not present for accessed bit emulation. */
2758 STAMPROFILE StatRZDirtyBitTracking; /**< RC/R0: Profiling the dirty bit tracking in CheckPageFault().. */
2759 STAMCOUNTER StatRZDirtyPage; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */
2760 STAMCOUNTER StatRZDirtyPageBig; /**< RC/R0: The number of pages marked read-only for dirty bit tracking. */
2761 STAMCOUNTER StatRZDirtyPageSkipped; /**< RC/R0: The number of pages already dirty or readonly. */
2762 STAMCOUNTER StatRZDirtyPageTrap; /**< RC/R0: The number of traps generated for dirty bit tracking. */
2763 STAMCOUNTER StatRZDirtyTrackRealPF; /**< RC/R0: The number of real pages faults during dirty bit tracking. */
2764 STAMCOUNTER StatRZDirtiedPage; /**< RC/R0: The number of pages marked dirty because of write accesses. */
2765 STAMCOUNTER StatRZPageAlreadyDirty; /**< RC/R0: The number of pages already marked dirty because of write accesses. */
2766 STAMPROFILE StatRZInvalidatePage; /**< RC/R0: PGMInvalidatePage() profiling. */
2767 STAMCOUNTER StatRZInvalidatePage4KBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4KB page. */
2768 STAMCOUNTER StatRZInvalidatePage4MBPages; /**< RC/R0: The number of times PGMInvalidatePage() was called for a 4MB page. */
2769 STAMCOUNTER StatRZInvalidatePage4MBPagesSkip; /**< RC/R0: The number of times PGMInvalidatePage() skipped a 4MB page. */
2770 STAMCOUNTER StatRZInvalidatePagePDMappings; /**< RC/R0: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */
2771 STAMCOUNTER StatRZInvalidatePagePDNAs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not accessed page directory. */
2772 STAMCOUNTER StatRZInvalidatePagePDNPs; /**< RC/R0: The number of times PGMInvalidatePage() was called for a not present page directory. */
2773 STAMCOUNTER StatRZInvalidatePagePDOutOfSync; /**< RC/R0: The number of times PGMInvalidatePage() was called for an out of sync page directory. */
2774 STAMCOUNTER StatRZInvalidatePageSkipped; /**< RC/R0: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2775 STAMPROFILE StatRZVirtHandlerSearchByPhys; /**< RC/R0: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2776 STAMCOUNTER StatRZPhysHandlerReset; /**< RC/R0: The number of times PGMHandlerPhysicalReset is called. */
2777 STAMCOUNTER StatRZPageOutOfSyncUser; /**< RC/R0: The number of times user page is out of sync was detected in #PF or VerifyAccessSyncPage. */
2778 STAMCOUNTER StatRZPageOutOfSyncSupervisor; /**< RC/R0: The number of times supervisor page is out of sync was detected in in #PF or VerifyAccessSyncPage. */
2779 STAMPROFILE StatRZPrefetch; /**< RC/R0: PGMPrefetchPage. */
2780 STAMCOUNTER StatRZChunkR3MapTlbHits; /**< RC/R0: Ring-3/0 chunk mapper TLB hits. */
2781 STAMCOUNTER StatRZChunkR3MapTlbMisses; /**< RC/R0: Ring-3/0 chunk mapper TLB misses. */
2782 STAMCOUNTER StatRZPageMapTlbHits; /**< RC/R0: Ring-3/0 page mapper TLB hits. */
2783 STAMCOUNTER StatRZPageMapTlbMisses; /**< RC/R0: Ring-3/0 page mapper TLB misses. */
2784 STAMCOUNTER StatRZPageReplaceShared; /**< RC/R0: Times a shared page has been replaced by a private one. */
2785 STAMCOUNTER StatRZPageReplaceZero; /**< RC/R0: Times the zero page has been replaced by a private one. */
2786/// @todo STAMCOUNTER StatRZPageHandyAllocs; /**< RC/R0: The number of times we've executed GMMR3AllocateHandyPages. */
2787 STAMPROFILE StatRZFlushTLB; /**< RC/R0: Profiling of the PGMFlushTLB() body. */
2788 STAMCOUNTER StatRZFlushTLBNewCR3; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2789 STAMCOUNTER StatRZFlushTLBNewCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2790 STAMCOUNTER StatRZFlushTLBSameCR3; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2791 STAMCOUNTER StatRZFlushTLBSameCR3Global; /**< RC/R0: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2792 STAMPROFILE StatRZGstModifyPage; /**< RC/R0: Profiling of the PGMGstModifyPage() body */
2793
2794 STAMPROFILE StatR3SyncCR3; /**< R3: PGMSyncCR3() profiling. */
2795 STAMPROFILE StatR3SyncCR3Handlers; /**< R3: Profiling of the PGMSyncCR3() update handler section. */
2796 STAMPROFILE StatR3SyncCR3HandlerVirtualReset; /**< R3: Profiling of the virtual handler resets. */
2797 STAMPROFILE StatR3SyncCR3HandlerVirtualUpdate; /**< R3: Profiling of the virtual handler updates. */
2798 STAMCOUNTER StatR3SyncCR3Global; /**< R3: The number of global CR3 syncs. */
2799 STAMCOUNTER StatR3SyncCR3NotGlobal; /**< R3: The number of non-global CR3 syncs. */
2800 STAMCOUNTER StatR3SyncCR3DstFreed; /**< R3: The number of times we've had to free a shadow entry. */
2801 STAMCOUNTER StatR3SyncCR3DstFreedSrcNP; /**< R3: The number of times we've had to free a shadow entry for which the source entry was not present. */
2802 STAMCOUNTER StatR3SyncCR3DstNotPresent; /**< R3: The number of times we've encountered a not present shadow entry for a present guest entry. */
2803 STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPD; /**< R3: The number of times a global page directory wasn't flushed. */
2804 STAMCOUNTER StatR3SyncCR3DstSkippedGlobalPT; /**< R3: The number of times a page table with only global entries wasn't flushed. */
2805 STAMCOUNTER StatR3SyncCR3DstCacheHit; /**< R3: The number of times we got some kind of cache hit on a page table. */
2806 STAMPROFILE StatR3SyncPT; /**< R3: PGMSyncPT() profiling. */
2807 STAMCOUNTER StatR3SyncPTFailed; /**< R3: The number of times PGMSyncPT() failed. */
2808 STAMCOUNTER StatR3SyncPT4K; /**< R3: Number of 4KB syncs. */
2809 STAMCOUNTER StatR3SyncPT4M; /**< R3: Number of 4MB syncs. */
2810 STAMCOUNTER StatR3SyncPagePDNAs; /**< R3: The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit. */
2811 STAMCOUNTER StatR3SyncPagePDOutOfSync; /**< R3: The number of time we've encountered an out-of-sync PD in SyncPage. */
2812 STAMCOUNTER StatR3AccessedPage; /**< R3: The number of pages marked not present for accessed bit emulation. */
2813 STAMPROFILE StatR3DirtyBitTracking; /**< R3: Profiling the dirty bit tracking in CheckPageFault(). */
2814 STAMCOUNTER StatR3DirtyPage; /**< R3: The number of pages marked read-only for dirty bit tracking. */
2815 STAMCOUNTER StatR3DirtyPageBig; /**< R3: The number of pages marked read-only for dirty bit tracking. */
2816 STAMCOUNTER StatR3DirtyPageSkipped; /**< R3: The number of pages already dirty or readonly. */
2817 STAMCOUNTER StatR3DirtyPageTrap; /**< R3: The number of traps generated for dirty bit tracking. */
2818 STAMCOUNTER StatR3DirtyTrackRealPF; /**< R3: The number of real pages faults during dirty bit tracking. */
2819 STAMCOUNTER StatR3DirtiedPage; /**< R3: The number of pages marked dirty because of write accesses. */
2820 STAMCOUNTER StatR3PageAlreadyDirty; /**< R3: The number of pages already marked dirty because of write accesses. */
2821 STAMPROFILE StatR3InvalidatePage; /**< R3: PGMInvalidatePage() profiling. */
2822 STAMCOUNTER StatR3InvalidatePage4KBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4KB page. */
2823 STAMCOUNTER StatR3InvalidatePage4MBPages; /**< R3: The number of times PGMInvalidatePage() was called for a 4MB page. */
2824 STAMCOUNTER StatR3InvalidatePage4MBPagesSkip; /**< R3: The number of times PGMInvalidatePage() skipped a 4MB page. */
2825 STAMCOUNTER StatR3InvalidatePagePDNAs; /**< R3: The number of times PGMInvalidatePage() was called for a not accessed page directory. */
2826 STAMCOUNTER StatR3InvalidatePagePDNPs; /**< R3: The number of times PGMInvalidatePage() was called for a not present page directory. */
2827 STAMCOUNTER StatR3InvalidatePagePDMappings; /**< R3: The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict). */
2828 STAMCOUNTER StatR3InvalidatePagePDOutOfSync; /**< R3: The number of times PGMInvalidatePage() was called for an out of sync page directory. */
2829 STAMCOUNTER StatR3InvalidatePageSkipped; /**< R3: The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3. */
2830 STAMPROFILE StatR3VirtHandlerSearchByPhys; /**< R3: Profiling of pgmHandlerVirtualFindByPhysAddr. */
2831 STAMCOUNTER StatR3PhysHandlerReset; /**< R3: The number of times PGMHandlerPhysicalReset is called. */
2832 STAMCOUNTER StatR3PageOutOfSyncUser; /**< R3: The number of times user page is out of sync was detected in #PF or VerifyAccessSyncPage. */
2833 STAMCOUNTER StatR3PageOutOfSyncSupervisor; /**< R3: The number of times supervisor page is out of sync was detected in in #PF or VerifyAccessSyncPage. */
2834 STAMPROFILE StatR3Prefetch; /**< R3: PGMPrefetchPage. */
2835 STAMCOUNTER StatR3ChunkR3MapTlbHits; /**< R3: Ring-3/0 chunk mapper TLB hits. */
2836 STAMCOUNTER StatR3ChunkR3MapTlbMisses; /**< R3: Ring-3/0 chunk mapper TLB misses. */
2837 STAMCOUNTER StatR3PageMapTlbHits; /**< R3: Ring-3/0 page mapper TLB hits. */
2838 STAMCOUNTER StatR3PageMapTlbMisses; /**< R3: Ring-3/0 page mapper TLB misses. */
2839 STAMCOUNTER StatR3PageReplaceShared; /**< R3: Times a shared page has been replaced by a private one. */
2840 STAMCOUNTER StatR3PageReplaceZero; /**< R3: Times the zero page has been replaced by a private one. */
2841/// @todo STAMCOUNTER StatR3PageHandyAllocs; /**< R3: The number of times we've executed GMMR3AllocateHandyPages. */
2842 STAMPROFILE StatR3FlushTLB; /**< R3: Profiling of the PGMFlushTLB() body. */
2843 STAMCOUNTER StatR3FlushTLBNewCR3; /**< R3: The number of times PGMFlushTLB was called with a new CR3, non-global. (switch) */
2844 STAMCOUNTER StatR3FlushTLBNewCR3Global; /**< R3: The number of times PGMFlushTLB was called with a new CR3, global. (switch) */
2845 STAMCOUNTER StatR3FlushTLBSameCR3; /**< R3: The number of times PGMFlushTLB was called with the same CR3, non-global. (flush) */
2846 STAMCOUNTER StatR3FlushTLBSameCR3Global; /**< R3: The number of times PGMFlushTLB was called with the same CR3, global. (flush) */
2847 STAMPROFILE StatR3GstModifyPage; /**< R3: Profiling of the PGMGstModifyPage() body */
2848#endif /* VBOX_WITH_STATISTICS */
2849} PGM;
2850/** Pointer to the PGM instance data. */
2851typedef PGM *PPGM;
2852
2853
2854/**
2855 * PGMCPU Data (part of VMCPU).
2856 */
2857typedef struct PGMCPU
2858{
2859 /** Offset to the VMCPU structure. */
2860 RTINT offVMCPU;
2861 /** Automatically tracked physical memory mapping set.
2862 * Ring-0 and strict raw-mode builds. */
2863 PGMMAPSET AutoSet;
2864} PGMCPU;
2865/** Pointer to the per-cpu PGM data. */
2866typedef PGMCPU *PPGMCPU;
2867
2868
2869/** @name PGM::fSyncFlags Flags
2870 * @{
2871 */
2872/** Updates the virtual access handler state bit in PGMPAGE. */
2873#define PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL RT_BIT(0)
2874/** Always sync CR3. */
2875#define PGM_SYNC_ALWAYS RT_BIT(1)
2876/** Check monitoring on next CR3 (re)load and invalidate page. */
2877#define PGM_SYNC_MONITOR_CR3 RT_BIT(2)
2878/** Check guest mapping in SyncCR3. */
2879#define PGM_SYNC_MAP_CR3 RT_BIT(3)
2880/** Clear the page pool (a light weight flush). */
2881#define PGM_SYNC_CLEAR_PGM_POOL RT_BIT(8)
2882/** @} */
2883
2884
2885__BEGIN_DECLS
2886
2887int pgmLock(PVM pVM);
2888void pgmUnlock(PVM pVM);
2889
2890VMMRCDECL(int) pgmGCGuestPDWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2891VMMDECL(int) pgmPhysRomWriteHandler(PVM pVM, RTGCUINT uErrorCode, PCPUMCTXCORE pRegFrame, void *pvFault, RTGCPHYS GCPhysFault, void *pvUser);
2892
2893int pgmR3SyncPTResolveConflict(PVM pVM, PPGMMAPPING pMapping, PX86PD pPDSrc, RTGCPTR GCPtrOldMapping);
2894int pgmR3SyncPTResolveConflictPAE(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping);
2895PPGMMAPPING pgmGetMapping(PVM pVM, RTGCPTR GCPtr);
2896void pgmR3MapRelocate(PVM pVM, PPGMMAPPING pMapping, RTGCPTR GCPtrOldMapping, RTGCPTR GCPtrNewMapping);
2897DECLCALLBACK(void) pgmR3MapInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2898
2899void pgmR3HandlerPhysicalUpdateAll(PVM pVM);
2900bool pgmHandlerPhysicalIsAll(PVM pVM, RTGCPHYS GCPhys);
2901int pgmHandlerVirtualFindByPhysAddr(PVM pVM, RTGCPHYS GCPhys, PPGMVIRTHANDLER *ppVirt, unsigned *piPage);
2902DECLCALLBACK(int) pgmHandlerVirtualResetOne(PAVLROGCPTRNODECORE pNode, void *pvUser);
2903#if defined(VBOX_STRICT) || defined(LOG_ENABLED)
2904void pgmHandlerVirtualDumpPhysPages(PVM pVM);
2905#else
2906# define pgmHandlerVirtualDumpPhysPages(a) do { } while (0)
2907#endif
2908DECLCALLBACK(void) pgmR3InfoHandlers(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
2909
2910
2911void pgmPhysFreePage(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2912int pgmPhysPageLoadIntoTlb(PPGM pPGM, RTGCPHYS GCPhys);
2913int pgmPhysPageMakeWritable(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys);
2914int pgmPhysPageMap(PVM pVM, PPGMPAGE pPage, RTGCPHYS GCPhys, PPPGMPAGEMAP ppMap, void **ppv);
2915#ifdef IN_RING3
2916int pgmR3PhysChunkMap(PVM pVM, uint32_t idChunk, PPPGMCHUNKR3MAP ppChunk);
2917int pgmR3PhysRamReset(PVM pVM);
2918int pgmR3PhysRomReset(PVM pVM);
2919# ifndef VBOX_WITH_NEW_PHYS_CODE
2920int pgmr3PhysGrowRange(PVM pVM, RTGCPHYS GCPhys);
2921# endif
2922
2923int pgmR3PoolInit(PVM pVM);
2924void pgmR3PoolRelocate(PVM pVM);
2925void pgmR3PoolReset(PVM pVM);
2926
2927#endif /* IN_RING3 */
2928#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
2929int pgmR0DynMapHCPageCommon(PVM pVM, PPGMMAPSET pSet, RTHCPHYS HCPhys, void **ppv);
2930#endif
2931#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
2932void *pgmPoolMapPageFallback(PPGM pPGM, PPGMPOOLPAGE pPage);
2933#endif
2934int pgmPoolAlloc(PVM pVM, RTGCPHYS GCPhys, PGMPOOLKIND enmKind, uint16_t iUser, uint32_t iUserTable, PPPGMPOOLPAGE ppPage);
2935PPGMPOOLPAGE pgmPoolGetPageByHCPhys(PVM pVM, RTHCPHYS HCPhys);
2936void pgmPoolFree(PVM pVM, RTHCPHYS HCPhys, uint16_t iUser, uint32_t iUserTable);
2937void pgmPoolFreeByPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage, uint16_t iUser, uint32_t iUserTable);
2938int pgmPoolFlushPage(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2939void pgmPoolFlushAll(PVM pVM);
2940void pgmPoolClearAll(PVM pVM);
2941int pgmPoolSyncCR3(PVM pVM);
2942void pgmPoolTrackFlushGCPhysPT(PVM pVM, PPGMPAGE pPhysPage, uint16_t iShw, uint16_t cRefs);
2943void pgmPoolTrackFlushGCPhysPTs(PVM pVM, PPGMPAGE pPhysPage, uint16_t iPhysExt);
2944int pgmPoolTrackFlushGCPhysPTsSlow(PVM pVM, PPGMPAGE pPhysPage);
2945PPGMPOOLPHYSEXT pgmPoolTrackPhysExtAlloc(PVM pVM, uint16_t *piPhysExt);
2946void pgmPoolTrackPhysExtFree(PVM pVM, uint16_t iPhysExt);
2947void pgmPoolTrackPhysExtFreeList(PVM pVM, uint16_t iPhysExt);
2948uint16_t pgmPoolTrackPhysExtAddref(PVM pVM, uint16_t u16, uint16_t iShwPT);
2949void pgmPoolTrackPhysExtDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage);
2950#ifdef PGMPOOL_WITH_MONITORING
2951# ifdef IN_RING3
2952void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTHCPTR pvAddress, PDISCPUSTATE pCpu);
2953# else
2954void pgmPoolMonitorChainChanging(PPGMPOOL pPool, PPGMPOOLPAGE pPage, RTGCPHYS GCPhysFault, RTGCPTR pvAddress, PDISCPUSTATE pCpu);
2955# endif
2956int pgmPoolMonitorChainFlush(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2957void pgmPoolMonitorModifiedInsert(PPGMPOOL pPool, PPGMPOOLPAGE pPage);
2958void pgmPoolMonitorModifiedClearAll(PVM pVM);
2959int pgmPoolMonitorMonitorCR3(PPGMPOOL pPool, uint16_t idxRoot, RTGCPHYS GCPhysCR3);
2960int pgmPoolMonitorUnmonitorCR3(PPGMPOOL pPool, uint16_t idxRoot);
2961#endif
2962
2963__END_DECLS
2964
2965
2966/**
2967 * Gets the PGMRAMRANGE structure for a guest page.
2968 *
2969 * @returns Pointer to the RAM range on success.
2970 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
2971 *
2972 * @param pPGM PGM handle.
2973 * @param GCPhys The GC physical address.
2974 */
2975DECLINLINE(PPGMRAMRANGE) pgmPhysGetRange(PPGM pPGM, RTGCPHYS GCPhys)
2976{
2977 /*
2978 * Optimize for the first range.
2979 */
2980 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
2981 RTGCPHYS off = GCPhys - pRam->GCPhys;
2982 if (RT_UNLIKELY(off >= pRam->cb))
2983 {
2984 do
2985 {
2986 pRam = pRam->CTX_SUFF(pNext);
2987 if (RT_UNLIKELY(!pRam))
2988 break;
2989 off = GCPhys - pRam->GCPhys;
2990 } while (off >= pRam->cb);
2991 }
2992 return pRam;
2993}
2994
2995
2996/**
2997 * Gets the PGMPAGE structure for a guest page.
2998 *
2999 * @returns Pointer to the page on success.
3000 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3001 *
3002 * @param pPGM PGM handle.
3003 * @param GCPhys The GC physical address.
3004 */
3005DECLINLINE(PPGMPAGE) pgmPhysGetPage(PPGM pPGM, RTGCPHYS GCPhys)
3006{
3007 /*
3008 * Optimize for the first range.
3009 */
3010 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3011 RTGCPHYS off = GCPhys - pRam->GCPhys;
3012 if (RT_UNLIKELY(off >= pRam->cb))
3013 {
3014 do
3015 {
3016 pRam = pRam->CTX_SUFF(pNext);
3017 if (RT_UNLIKELY(!pRam))
3018 return NULL;
3019 off = GCPhys - pRam->GCPhys;
3020 } while (off >= pRam->cb);
3021 }
3022 return &pRam->aPages[off >> PAGE_SHIFT];
3023}
3024
3025
3026/**
3027 * Gets the PGMPAGE structure for a guest page.
3028 *
3029 * Old Phys code: Will make sure the page is present.
3030 *
3031 * @returns VBox status code.
3032 * @retval VINF_SUCCESS and a valid *ppPage on success.
3033 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
3034 *
3035 * @param pPGM PGM handle.
3036 * @param GCPhys The GC physical address.
3037 * @param ppPage Where to store the page poitner on success.
3038 */
3039DECLINLINE(int) pgmPhysGetPageEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage)
3040{
3041 /*
3042 * Optimize for the first range.
3043 */
3044 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3045 RTGCPHYS off = GCPhys - pRam->GCPhys;
3046 if (RT_UNLIKELY(off >= pRam->cb))
3047 {
3048 do
3049 {
3050 pRam = pRam->CTX_SUFF(pNext);
3051 if (RT_UNLIKELY(!pRam))
3052 {
3053 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
3054 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3055 }
3056 off = GCPhys - pRam->GCPhys;
3057 } while (off >= pRam->cb);
3058 }
3059 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3060#ifndef VBOX_WITH_NEW_PHYS_CODE
3061
3062 /*
3063 * Make sure it's present.
3064 */
3065 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3066 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3067 {
3068#ifdef IN_RING3
3069 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3070#else
3071 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3072#endif
3073 if (RT_FAILURE(rc))
3074 {
3075 *ppPage = NULL; /* avoid incorrect and very annoying GCC warnings */
3076 return rc;
3077 }
3078 Assert(rc == VINF_SUCCESS);
3079 }
3080#endif
3081 return VINF_SUCCESS;
3082}
3083
3084
3085
3086
3087/**
3088 * Gets the PGMPAGE structure for a guest page.
3089 *
3090 * Old Phys code: Will make sure the page is present.
3091 *
3092 * @returns VBox status code.
3093 * @retval VINF_SUCCESS and a valid *ppPage on success.
3094 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if the address isn't valid.
3095 *
3096 * @param pPGM PGM handle.
3097 * @param GCPhys The GC physical address.
3098 * @param ppPage Where to store the page poitner on success.
3099 * @param ppRamHint Where to read and store the ram list hint.
3100 * The caller initializes this to NULL before the call.
3101 */
3102DECLINLINE(int) pgmPhysGetPageWithHintEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRamHint)
3103{
3104 RTGCPHYS off;
3105 PPGMRAMRANGE pRam = *ppRamHint;
3106 if ( !pRam
3107 || RT_UNLIKELY((off = GCPhys - pRam->GCPhys) >= pRam->cb))
3108 {
3109 pRam = pPGM->CTX_SUFF(pRamRanges);
3110 off = GCPhys - pRam->GCPhys;
3111 if (RT_UNLIKELY(off >= pRam->cb))
3112 {
3113 do
3114 {
3115 pRam = pRam->CTX_SUFF(pNext);
3116 if (RT_UNLIKELY(!pRam))
3117 {
3118 *ppPage = NULL; /* Kill the incorrect and extremely annoying GCC warnings. */
3119 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3120 }
3121 off = GCPhys - pRam->GCPhys;
3122 } while (off >= pRam->cb);
3123 }
3124 *ppRamHint = pRam;
3125 }
3126 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3127#ifndef VBOX_WITH_NEW_PHYS_CODE
3128
3129 /*
3130 * Make sure it's present.
3131 */
3132 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3133 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3134 {
3135#ifdef IN_RING3
3136 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3137#else
3138 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3139#endif
3140 if (RT_FAILURE(rc))
3141 {
3142 *ppPage = NULL; /* Shut up annoying smart ass. */
3143 return rc;
3144 }
3145 Assert(rc == VINF_SUCCESS);
3146 }
3147#endif
3148 return VINF_SUCCESS;
3149}
3150
3151
3152/**
3153 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
3154 *
3155 * @returns Pointer to the page on success.
3156 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3157 *
3158 * @param pPGM PGM handle.
3159 * @param GCPhys The GC physical address.
3160 * @param ppRam Where to store the pointer to the PGMRAMRANGE.
3161 */
3162DECLINLINE(PPGMPAGE) pgmPhysGetPageAndRange(PPGM pPGM, RTGCPHYS GCPhys, PPGMRAMRANGE *ppRam)
3163{
3164 /*
3165 * Optimize for the first range.
3166 */
3167 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3168 RTGCPHYS off = GCPhys - pRam->GCPhys;
3169 if (RT_UNLIKELY(off >= pRam->cb))
3170 {
3171 do
3172 {
3173 pRam = pRam->CTX_SUFF(pNext);
3174 if (RT_UNLIKELY(!pRam))
3175 return NULL;
3176 off = GCPhys - pRam->GCPhys;
3177 } while (off >= pRam->cb);
3178 }
3179 *ppRam = pRam;
3180 return &pRam->aPages[off >> PAGE_SHIFT];
3181}
3182
3183
3184/**
3185 * Gets the PGMPAGE structure for a guest page together with the PGMRAMRANGE.
3186 *
3187 * @returns Pointer to the page on success.
3188 * @returns NULL on a VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS condition.
3189 *
3190 * @param pPGM PGM handle.
3191 * @param GCPhys The GC physical address.
3192 * @param ppPage Where to store the pointer to the PGMPAGE structure.
3193 * @param ppRam Where to store the pointer to the PGMRAMRANGE structure.
3194 */
3195DECLINLINE(int) pgmPhysGetPageAndRangeEx(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGE ppPage, PPGMRAMRANGE *ppRam)
3196{
3197 /*
3198 * Optimize for the first range.
3199 */
3200 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3201 RTGCPHYS off = GCPhys - pRam->GCPhys;
3202 if (RT_UNLIKELY(off >= pRam->cb))
3203 {
3204 do
3205 {
3206 pRam = pRam->CTX_SUFF(pNext);
3207 if (RT_UNLIKELY(!pRam))
3208 {
3209 *ppRam = NULL; /* Shut up silly GCC warnings. */
3210 *ppPage = NULL; /* ditto */
3211 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3212 }
3213 off = GCPhys - pRam->GCPhys;
3214 } while (off >= pRam->cb);
3215 }
3216 *ppRam = pRam;
3217 *ppPage = &pRam->aPages[off >> PAGE_SHIFT];
3218#ifndef VBOX_WITH_NEW_PHYS_CODE
3219
3220 /*
3221 * Make sure it's present.
3222 */
3223 if (RT_UNLIKELY( !PGM_PAGE_GET_HCPHYS(*ppPage)
3224 && (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)))
3225 {
3226#ifdef IN_RING3
3227 int rc = pgmr3PhysGrowRange(PGM2VM(pPGM), GCPhys);
3228#else
3229 int rc = CTXALLMID(VMM, CallHost)(PGM2VM(pPGM), VMMCALLHOST_PGM_RAM_GROW_RANGE, GCPhys);
3230#endif
3231 if (RT_FAILURE(rc))
3232 {
3233 *ppPage = NULL; /* Shut up silly GCC warnings. */
3234 *ppPage = NULL; /* ditto */
3235 return rc;
3236 }
3237 Assert(rc == VINF_SUCCESS);
3238
3239 }
3240#endif
3241 return VINF_SUCCESS;
3242}
3243
3244
3245/**
3246 * Convert GC Phys to HC Phys.
3247 *
3248 * @returns VBox status.
3249 * @param pPGM PGM handle.
3250 * @param GCPhys The GC physical address.
3251 * @param pHCPhys Where to store the corresponding HC physical address.
3252 *
3253 * @deprecated Doesn't deal with zero, shared or write monitored pages.
3254 * Avoid when writing new code!
3255 */
3256DECLINLINE(int) pgmRamGCPhys2HCPhys(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPHYS pHCPhys)
3257{
3258 PPGMPAGE pPage;
3259 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3260 if (RT_FAILURE(rc))
3261 return rc;
3262 *pHCPhys = PGM_PAGE_GET_HCPHYS(pPage) | (GCPhys & PAGE_OFFSET_MASK);
3263 return VINF_SUCCESS;
3264}
3265
3266#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3267
3268/**
3269 * Inlined version of the ring-0 version of PGMDynMapHCPage that
3270 * optimizes access to pages already in the set.
3271 *
3272 * @returns VINF_SUCCESS. Will bail out to ring-3 on failure.
3273 * @param pPGM Pointer to the PVM instance data.
3274 * @param HCPhys The physical address of the page.
3275 * @param ppv Where to store the mapping address.
3276 */
3277DECLINLINE(int) pgmR0DynMapHCPageInlined(PPGM pPGM, RTHCPHYS HCPhys, void **ppv)
3278{
3279 STAM_PROFILE_START(&pPGM->StatR0DynMapHCPageInl, a);
3280 PPGMMAPSET pSet = &((PPGMCPU)((uint8_t *)VMMGetCpu(PGM2VM(pPGM)) + pPGM->offVCpu))->AutoSet; /* very pretty ;-) */
3281 Assert(!(HCPhys & PAGE_OFFSET_MASK));
3282 Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries));
3283
3284 unsigned iHash = PGMMAPSET_HASH(HCPhys);
3285 unsigned iEntry = pSet->aiHashTable[iHash];
3286 if ( iEntry < pSet->cEntries
3287 && pSet->aEntries[iEntry].HCPhys == HCPhys)
3288 {
3289 *ppv = pSet->aEntries[iEntry].pvPage;
3290 STAM_COUNTER_INC(&pPGM->StatR0DynMapHCPageInlHits);
3291 }
3292 else
3293 {
3294 STAM_COUNTER_INC(&pPGM->StatR0DynMapHCPageInlMisses);
3295 pgmR0DynMapHCPageCommon(PGM2VM(pPGM), pSet, HCPhys, ppv);
3296 }
3297
3298 STAM_PROFILE_STOP(&pPGM->StatR0DynMapHCPageInl, a);
3299 return VINF_SUCCESS;
3300}
3301
3302
3303/**
3304 * Inlined version of the ring-0 version of PGMDynMapGCPage that optimizes
3305 * access to pages already in the set.
3306 *
3307 * @returns See PGMDynMapGCPage.
3308 * @param pPGM Pointer to the PVM instance data.
3309 * @param HCPhys The physical address of the page.
3310 * @param ppv Where to store the mapping address.
3311 */
3312DECLINLINE(int) pgmR0DynMapGCPageInlined(PPGM pPGM, RTGCPHYS GCPhys, void **ppv)
3313{
3314 STAM_PROFILE_START(&pPGM->StatR0DynMapGCPageInl, a);
3315 Assert(!(GCPhys & PAGE_OFFSET_MASK));
3316
3317 /*
3318 * Get the ram range.
3319 */
3320 PPGMRAMRANGE pRam = pPGM->CTX_SUFF(pRamRanges);
3321 RTGCPHYS off = GCPhys - pRam->GCPhys;
3322 if (RT_UNLIKELY(off >= pRam->cb
3323 /** @todo || page state stuff */))
3324 {
3325 /* This case is not counted into StatR0DynMapGCPageInl. */
3326 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlRamMisses);
3327 return PGMDynMapGCPage(PGM2VM(pPGM), GCPhys, ppv);
3328 }
3329
3330 RTHCPHYS HCPhys = PGM_PAGE_GET_HCPHYS(&pRam->aPages[off >> PAGE_SHIFT]);
3331 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlRamHits);
3332
3333 /*
3334 * pgmR0DynMapHCPageInlined with out stats.
3335 */
3336 PPGMMAPSET pSet = &((PPGMCPU)((uint8_t *)VMMGetCpu(PGM2VM(pPGM)) + pPGM->offVCpu))->AutoSet; /* very pretty ;-) */
3337 Assert(!(HCPhys & PAGE_OFFSET_MASK));
3338 Assert(pSet->cEntries <= RT_ELEMENTS(pSet->aEntries));
3339
3340 unsigned iHash = PGMMAPSET_HASH(HCPhys);
3341 unsigned iEntry = pSet->aiHashTable[iHash];
3342 if ( iEntry < pSet->cEntries
3343 && pSet->aEntries[iEntry].HCPhys == HCPhys)
3344 {
3345 *ppv = pSet->aEntries[iEntry].pvPage;
3346 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlHits);
3347 }
3348 else
3349 {
3350 STAM_COUNTER_INC(&pPGM->StatR0DynMapGCPageInlMisses);
3351 pgmR0DynMapHCPageCommon(PGM2VM(pPGM), pSet, HCPhys, ppv);
3352 }
3353
3354 STAM_PROFILE_STOP(&pPGM->StatR0DynMapGCPageInl, a);
3355 return VINF_SUCCESS;
3356}
3357
3358#endif /* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 */
3359
3360#if defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) || defined(IN_RC)
3361/**
3362 * Temporarily maps one host page specified by HC physical address, returning
3363 * pointer within the page.
3364 *
3365 * Be WARNED that the dynamic page mapping area is small, 8 pages, thus the space is
3366 * reused after 8 mappings (or perhaps a few more if you score with the cache).
3367 *
3368 * @returns The address corresponding to HCPhys.
3369 * @param pPGM Pointer to the PVM instance data.
3370 * @param HCPhys HC Physical address of the page.
3371 */
3372DECLINLINE(void *) pgmDynMapHCPageOff(PPGM pPGM, RTHCPHYS HCPhys)
3373{
3374 void *pv;
3375# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3376 pgmR0DynMapHCPageInlined(pPGM, HCPhys & ~(RTHCPHYS)PAGE_OFFSET_MASK, &pv);
3377# else
3378 PGMDynMapHCPage(PGM2VM(pPGM), HCPhys & ~(RTHCPHYS)PAGE_OFFSET_MASK, &pv);
3379# endif
3380 pv = (void *)((uintptr_t)pv | (HCPhys & PAGE_OFFSET_MASK));
3381 return pv;
3382}
3383#endif /* VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0 || IN_RC */
3384
3385
3386#ifndef IN_RC
3387/**
3388 * Queries the Physical TLB entry for a physical guest page,
3389 * attemting to load the TLB entry if necessary.
3390 *
3391 * @returns VBox status code.
3392 * @retval VINF_SUCCESS on success
3393 * @retval VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS if it's not a valid physical address.
3394 * @param pPGM The PGM instance handle.
3395 * @param GCPhys The address of the guest page.
3396 * @param ppTlbe Where to store the pointer to the TLB entry.
3397 */
3398
3399DECLINLINE(int) pgmPhysPageQueryTlbe(PPGM pPGM, RTGCPHYS GCPhys, PPPGMPAGEMAPTLBE ppTlbe)
3400{
3401 int rc;
3402 PPGMPAGEMAPTLBE pTlbe = &pPGM->CTXSUFF(PhysTlb).aEntries[PGM_PAGEMAPTLB_IDX(GCPhys)];
3403 if (pTlbe->GCPhys == (GCPhys & X86_PTE_PAE_PG_MASK))
3404 {
3405 STAM_COUNTER_INC(&pPGM->CTX_MID_Z(Stat,PageMapTlbHits));
3406 rc = VINF_SUCCESS;
3407 }
3408 else
3409 rc = pgmPhysPageLoadIntoTlb(pPGM, GCPhys);
3410 *ppTlbe = pTlbe;
3411 return rc;
3412}
3413#endif /* !IN_RC */
3414
3415#if !defined(IN_RC) && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
3416
3417# ifndef VBOX_WITH_NEW_PHYS_CODE
3418/**
3419 * Convert GC Phys to HC Virt.
3420 *
3421 * @returns VBox status.
3422 * @param pPGM PGM handle.
3423 * @param GCPhys The GC physical address.
3424 * @param pHCPtr Where to store the corresponding HC virtual address.
3425 *
3426 * @deprecated This will be eliminated by PGMPhysGCPhys2CCPtr. Only user is
3427 * pgmPoolMonitorGCPtr2CCPtr.
3428 */
3429DECLINLINE(int) pgmRamGCPhys2HCPtr(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr)
3430{
3431 PPGMRAMRANGE pRam;
3432 PPGMPAGE pPage;
3433 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3434 if (RT_FAILURE(rc))
3435 {
3436 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3437 return rc;
3438 }
3439 RTGCPHYS off = GCPhys - pRam->GCPhys;
3440
3441 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3442 {
3443 unsigned iChunk = off >> PGM_DYNAMIC_CHUNK_SHIFT;
3444 *pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[iChunk] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3445 return VINF_SUCCESS;
3446 }
3447 if (pRam->pvR3)
3448 {
3449 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvR3 + off);
3450 return VINF_SUCCESS;
3451 }
3452 *pHCPtr = 0; /* Shut up silly GCC warnings. */
3453 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3454}
3455# endif /* !VBOX_WITH_NEW_PHYS_CODE */
3456#endif /* !IN_RC && !defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) */
3457
3458/**
3459 * Convert GC Phys to HC Virt and HC Phys.
3460 *
3461 * @returns VBox status.
3462 * @param pPGM PGM handle.
3463 * @param GCPhys The GC physical address.
3464 * @param pHCPtr Where to store the corresponding HC virtual address.
3465 * @param pHCPhys Where to store the HC Physical address and its flags.
3466 *
3467 * @deprecated Will go away or be changed. Only user is MapCR3. MapCR3 will have to do ring-3
3468 * and ring-0 locking of the CR3 in a lazy fashion I'm fear... or perhaps not. we'll see.
3469 */
3470DECLINLINE(int) pgmRamGCPhys2HCPtrAndHCPhysWithFlags(PPGM pPGM, RTGCPHYS GCPhys, PRTHCPTR pHCPtr, PRTHCPHYS pHCPhys)
3471{
3472 PPGMRAMRANGE pRam;
3473 PPGMPAGE pPage;
3474 int rc = pgmPhysGetPageAndRangeEx(pPGM, GCPhys, &pPage, &pRam);
3475 if (RT_FAILURE(rc))
3476 {
3477 *pHCPtr = 0; /* Shut up crappy GCC warnings */
3478 *pHCPhys = 0; /* ditto */
3479 return rc;
3480 }
3481 RTGCPHYS off = GCPhys - pRam->GCPhys;
3482
3483 *pHCPhys = pPage->HCPhys; /** @todo PAGE FLAGS */
3484 if (pRam->fFlags & MM_RAM_FLAGS_DYNAMIC_ALLOC)
3485 {
3486 unsigned idx = (off >> PGM_DYNAMIC_CHUNK_SHIFT);
3487#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0) /* ASSUMES only MapCR3 usage. */
3488 PRTR3UINTPTR paChunkR3Ptrs = (PRTR3UINTPTR)MMHyperR3ToCC(PGM2VM(pPGM), pRam->paChunkR3Ptrs);
3489 *pHCPtr = (RTHCPTR)(paChunkR3Ptrs[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3490#else
3491 *pHCPtr = (RTHCPTR)(pRam->paChunkR3Ptrs[idx] + (off & PGM_DYNAMIC_CHUNK_OFFSET_MASK));
3492#endif
3493 return VINF_SUCCESS;
3494 }
3495 if (pRam->pvR3)
3496 {
3497 *pHCPtr = (RTHCPTR)((RTHCUINTPTR)pRam->pvR3 + off);
3498 return VINF_SUCCESS;
3499 }
3500 *pHCPtr = 0;
3501 return VERR_PGM_INVALID_GC_PHYSICAL_ADDRESS;
3502}
3503
3504
3505/**
3506 * Clears flags associated with a RAM address.
3507 *
3508 * @returns VBox status code.
3509 * @param pPGM PGM handle.
3510 * @param GCPhys Guest context physical address.
3511 * @param fFlags fFlags to clear. (Bits 0-11.)
3512 */
3513DECLINLINE(int) pgmRamFlagsClearByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3514{
3515 PPGMPAGE pPage;
3516 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3517 if (RT_FAILURE(rc))
3518 return rc;
3519
3520 fFlags &= ~X86_PTE_PAE_PG_MASK;
3521 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3522 return VINF_SUCCESS;
3523}
3524
3525
3526/**
3527 * Clears flags associated with a RAM address.
3528 *
3529 * @returns VBox status code.
3530 * @param pPGM PGM handle.
3531 * @param GCPhys Guest context physical address.
3532 * @param fFlags fFlags to clear. (Bits 0-11.)
3533 * @param ppRamHint Where to read and store the ram list hint.
3534 * The caller initializes this to NULL before the call.
3535 */
3536DECLINLINE(int) pgmRamFlagsClearByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3537{
3538 PPGMPAGE pPage;
3539 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3540 if (RT_FAILURE(rc))
3541 return rc;
3542
3543 fFlags &= ~X86_PTE_PAE_PG_MASK;
3544 pPage->HCPhys &= ~(RTHCPHYS)fFlags; /** @todo PAGE FLAGS */
3545 return VINF_SUCCESS;
3546}
3547
3548
3549/**
3550 * Sets (bitwise OR) flags associated with a RAM address.
3551 *
3552 * @returns VBox status code.
3553 * @param pPGM PGM handle.
3554 * @param GCPhys Guest context physical address.
3555 * @param fFlags fFlags to set clear. (Bits 0-11.)
3556 */
3557DECLINLINE(int) pgmRamFlagsSetByGCPhys(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags)
3558{
3559 PPGMPAGE pPage;
3560 int rc = pgmPhysGetPageEx(pPGM, GCPhys, &pPage);
3561 if (RT_FAILURE(rc))
3562 return rc;
3563
3564 fFlags &= ~X86_PTE_PAE_PG_MASK;
3565 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3566 return VINF_SUCCESS;
3567}
3568
3569
3570/**
3571 * Sets (bitwise OR) flags associated with a RAM address.
3572 *
3573 * @returns VBox status code.
3574 * @param pPGM PGM handle.
3575 * @param GCPhys Guest context physical address.
3576 * @param fFlags fFlags to set clear. (Bits 0-11.)
3577 * @param ppRamHint Where to read and store the ram list hint.
3578 * The caller initializes this to NULL before the call.
3579 */
3580DECLINLINE(int) pgmRamFlagsSetByGCPhysWithHint(PPGM pPGM, RTGCPHYS GCPhys, unsigned fFlags, PPGMRAMRANGE *ppRamHint)
3581{
3582 PPGMPAGE pPage;
3583 int rc = pgmPhysGetPageWithHintEx(pPGM, GCPhys, &pPage, ppRamHint);
3584 if (RT_FAILURE(rc))
3585 return rc;
3586
3587 fFlags &= ~X86_PTE_PAE_PG_MASK;
3588 pPage->HCPhys |= fFlags; /** @todo PAGE FLAGS */
3589 return VINF_SUCCESS;
3590}
3591
3592
3593/**
3594 * Calculated the guest physical address of the large (4 MB) page in 32 bits paging mode.
3595 * Takes PSE-36 into account.
3596 *
3597 * @returns guest physical address
3598 * @param pPGM Pointer to the PGM instance data.
3599 * @param Pde Guest Pde
3600 */
3601DECLINLINE(RTGCPHYS) pgmGstGet4MBPhysPage(PPGM pPGM, X86PDE Pde)
3602{
3603 RTGCPHYS GCPhys = Pde.u & X86_PDE4M_PG_MASK;
3604 GCPhys |= (RTGCPHYS)Pde.b.u8PageNoHigh << 32;
3605
3606 return GCPhys & pPGM->GCPhys4MBPSEMask;
3607}
3608
3609
3610/**
3611 * Gets the page directory entry for the specified address (32-bit paging).
3612 *
3613 * @returns The page directory entry in question.
3614 * @param pPGM Pointer to the PGM instance data.
3615 * @param GCPtr The address.
3616 */
3617DECLINLINE(X86PDE) pgmGstGet32bitPDE(PPGM pPGM, RTGCPTR GCPtr)
3618{
3619#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3620 PCX86PD pGuestPD = 0;
3621 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPD);
3622 if (RT_FAILURE(rc))
3623 {
3624 X86PDE ZeroPde = {0};
3625 AssertMsgFailedReturn(("%Rrc\n", rc), ZeroPde);
3626 }
3627 return pGuestPD->a[GCPtr >> X86_PD_SHIFT];
3628#else
3629 return pPGM->CTX_SUFF(pGst32BitPd)->a[GCPtr >> X86_PD_SHIFT];
3630#endif
3631}
3632
3633
3634/**
3635 * Gets the address of a specific page directory entry (32-bit paging).
3636 *
3637 * @returns Pointer the page directory entry in question.
3638 * @param pPGM Pointer to the PGM instance data.
3639 * @param GCPtr The address.
3640 */
3641DECLINLINE(PX86PDE) pgmGstGet32bitPDEPtr(PPGM pPGM, RTGCPTR GCPtr)
3642{
3643#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3644 PX86PD pGuestPD = 0;
3645 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPD);
3646 AssertRCReturn(rc, 0);
3647 return &pGuestPD->a[GCPtr >> X86_PD_SHIFT];
3648#else
3649 return &pPGM->CTX_SUFF(pGst32BitPd)->a[GCPtr >> X86_PD_SHIFT];
3650#endif
3651}
3652
3653
3654/**
3655 * Gets the address the guest page directory (32-bit paging).
3656 *
3657 * @returns Pointer the page directory entry in question.
3658 * @param pPGM Pointer to the PGM instance data.
3659 */
3660DECLINLINE(PX86PD) pgmGstGet32bitPDPtr(PPGM pPGM)
3661{
3662#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3663 PX86PD pGuestPD = 0;
3664 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPD);
3665 AssertRCReturn(rc, 0);
3666 return pGuestPD;
3667#else
3668 return pPGM->CTX_SUFF(pGst32BitPd);
3669#endif
3670}
3671
3672
3673/**
3674 * Gets the guest page directory pointer table.
3675 *
3676 * @returns Pointer to the page directory in question.
3677 * @returns NULL if the page directory is not present or on an invalid page.
3678 * @param pPGM Pointer to the PGM instance data.
3679 */
3680DECLINLINE(PX86PDPT) pgmGstGetPaePDPTPtr(PPGM pPGM)
3681{
3682#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3683 PX86PDPT pGuestPDPT = 0;
3684 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPDPT);
3685 AssertRCReturn(rc, 0);
3686 return pGuestPDPT;
3687#else
3688 return pPGM->CTX_SUFF(pGstPaePdpt);
3689#endif
3690}
3691
3692
3693/**
3694 * Gets the guest page directory pointer table entry for the specified address.
3695 *
3696 * @returns Pointer to the page directory in question.
3697 * @returns NULL if the page directory is not present or on an invalid page.
3698 * @param pPGM Pointer to the PGM instance data.
3699 * @param GCPtr The address.
3700 */
3701DECLINLINE(PX86PDPE) pgmGstGetPaePDPEPtr(PPGM pPGM, RTGCPTR GCPtr)
3702{
3703 AssertGCPtr32(GCPtr);
3704
3705#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3706 PX86PDPT pGuestPDPT = 0;
3707 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPDPT);
3708 AssertRCReturn(rc, 0);
3709 return &pGuestPDPT->a[(GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
3710#else
3711 return &pPGM->CTX_SUFF(pGstPaePdpt)->a[(GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE];
3712#endif
3713}
3714
3715
3716/**
3717 * Gets the page directory for the specified address.
3718 *
3719 * @returns Pointer to the page directory in question.
3720 * @returns NULL if the page directory is not present or on an invalid page.
3721 * @param pPGM Pointer to the PGM instance data.
3722 * @param GCPtr The address.
3723 */
3724DECLINLINE(PX86PDPAE) pgmGstGetPaePD(PPGM pPGM, RTGCPTR GCPtr)
3725{
3726 AssertGCPtr32(GCPtr);
3727
3728#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3729 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3730 AssertReturn(pGuestPDPT, 0);
3731#else
3732 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3733#endif
3734 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3735 if (pGuestPDPT->a[iPdPt].n.u1Present)
3736 {
3737#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3738 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3739 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt];
3740#endif
3741
3742 /* cache is out-of-sync. */
3743 PX86PDPAE pPD;
3744 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3745 if (RT_SUCCESS(rc))
3746 return pPD;
3747 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt].u));
3748 /* returning NULL is ok if we assume it's just an invalid page of some kind emulated as all 0s. (not quite true) */
3749 }
3750 return NULL;
3751}
3752
3753
3754/**
3755 * Gets the page directory entry for the specified address.
3756 *
3757 * @returns Pointer to the page directory entry in question.
3758 * @returns NULL if the page directory is not present or on an invalid page.
3759 * @param pPGM Pointer to the PGM instance data.
3760 * @param GCPtr The address.
3761 */
3762DECLINLINE(PX86PDEPAE) pgmGstGetPaePDEPtr(PPGM pPGM, RTGCPTR GCPtr)
3763{
3764 AssertGCPtr32(GCPtr);
3765
3766#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3767 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3768 AssertReturn(pGuestPDPT, 0);
3769#else
3770 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3771#endif
3772 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3773 if (pGuestPDPT->a[iPdPt].n.u1Present)
3774 {
3775 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3776#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3777 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3778 return &pPGM->CTX_SUFF(apGstPaePDs)[iPdPt]->a[iPD];
3779#endif
3780
3781 /* The cache is out-of-sync. */
3782 PX86PDPAE pPD;
3783 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3784 if (RT_SUCCESS(rc))
3785 return &pPD->a[iPD];
3786 AssertMsgFailed(("Impossible! rc=%Rrc PDPE=%RX64\n", rc, pGuestPDPT->a[iPdPt].u));
3787 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page or something which we'll emulate as all 0s. (not quite true) */
3788 }
3789 return NULL;
3790}
3791
3792
3793/**
3794 * Gets the page directory entry for the specified address.
3795 *
3796 * @returns The page directory entry in question.
3797 * @returns A non-present entry if the page directory is not present or on an invalid page.
3798 * @param pPGM Pointer to the PGM instance data.
3799 * @param GCPtr The address.
3800 */
3801DECLINLINE(X86PDEPAE) pgmGstGetPaePDE(PPGM pPGM, RTGCPTR GCPtr)
3802{
3803 AssertGCPtr32(GCPtr);
3804
3805#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3806 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3807 if (RT_LIKELY(pGuestPDPT))
3808#else
3809 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3810#endif
3811 {
3812 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3813 if (pGuestPDPT->a[iPdPt].n.u1Present)
3814 {
3815 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3816#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3817 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3818 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt]->a[iPD];
3819#endif
3820
3821 /* cache is out-of-sync. */
3822 PX86PDPAE pPD;
3823 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3824 if (RT_SUCCESS(rc))
3825 return pPD->a[iPD];
3826 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt]));
3827 }
3828 }
3829 X86PDEPAE ZeroPde = {0};
3830 return ZeroPde;
3831}
3832
3833
3834/**
3835 * Gets the page directory pointer table entry for the specified address
3836 * and returns the index into the page directory
3837 *
3838 * @returns Pointer to the page directory in question.
3839 * @returns NULL if the page directory is not present or on an invalid page.
3840 * @param pPGM Pointer to the PGM instance data.
3841 * @param GCPtr The address.
3842 * @param piPD Receives the index into the returned page directory
3843 * @param pPdpe Receives the page directory pointer entry. Optional.
3844 */
3845DECLINLINE(PX86PDPAE) pgmGstGetPaePDPtr(PPGM pPGM, RTGCPTR GCPtr, unsigned *piPD, PX86PDPE pPdpe)
3846{
3847 AssertGCPtr32(GCPtr);
3848
3849#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3850 PX86PDPT pGuestPDPT = pgmGstGetPaePDPTPtr(pPGM);
3851 AssertReturn(pGuestPDPT, 0);
3852#else
3853 PX86PDPT pGuestPDPT = pPGM->CTX_SUFF(pGstPaePdpt);
3854#endif
3855 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
3856 if (pPdpe)
3857 *pPdpe = pGuestPDPT->a[iPdPt];
3858 if (pGuestPDPT->a[iPdPt].n.u1Present)
3859 {
3860 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
3861#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3862 if ((pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK) == pPGM->aGCPhysGstPaePDs[iPdPt])
3863 {
3864 *piPD = iPD;
3865 return pPGM->CTX_SUFF(apGstPaePDs)[iPdPt];
3866 }
3867#endif
3868
3869 /* cache is out-of-sync. */
3870 PX86PDPAE pPD;
3871 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPDPT->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
3872 if (RT_SUCCESS(rc))
3873 {
3874 *piPD = iPD;
3875 return pPD;
3876 }
3877 AssertMsgFailed(("Impossible! rc=%d PDPE=%#llx\n", rc, pGuestPDPT->a[iPdPt].u));
3878 /* returning NIL_RTGCPHYS is ok if we assume it's just an invalid page of some kind emulated as all 0s. */
3879 }
3880 return NULL;
3881}
3882
3883#ifndef IN_RC
3884
3885/**
3886 * Gets the page map level-4 pointer for the guest.
3887 *
3888 * @returns Pointer to the PML4 page.
3889 * @param pPGM Pointer to the PGM instance data.
3890 */
3891DECLINLINE(PX86PML4) pgmGstGetLongModePML4Ptr(PPGM pPGM)
3892{
3893#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3894 PX86PML4 pGuestPml4;
3895 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPml4);
3896 AssertRCReturn(rc, NULL);
3897 return pGuestPml4;
3898#else
3899 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
3900 return pPGM->CTX_SUFF(pGstAmd64Pml4);
3901#endif
3902}
3903
3904
3905/**
3906 * Gets the pointer to a page map level-4 entry.
3907 *
3908 * @returns Pointer to the PML4 entry.
3909 * @param pPGM Pointer to the PGM instance data.
3910 * @param iPml4 The index.
3911 */
3912DECLINLINE(PX86PML4E) pgmGstGetLongModePML4EPtr(PPGM pPGM, unsigned int iPml4)
3913{
3914#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3915 PX86PML4 pGuestPml4;
3916 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPml4);
3917 AssertRCReturn(rc, NULL);
3918 return &pGuestPml4->a[iPml4];
3919#else
3920 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
3921 return &pPGM->CTX_SUFF(pGstAmd64Pml4)->a[iPml4];
3922#endif
3923}
3924
3925
3926/**
3927 * Gets a page map level-4 entry.
3928 *
3929 * @returns The PML4 entry.
3930 * @param pPGM Pointer to the PGM instance data.
3931 * @param iPml4 The index.
3932 */
3933DECLINLINE(X86PML4E) pgmGstGetLongModePML4E(PPGM pPGM, unsigned int iPml4)
3934{
3935#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
3936 PX86PML4 pGuestPml4;
3937 int rc = pgmR0DynMapGCPageInlined(pPGM, pPGM->GCPhysCR3, (void **)&pGuestPml4);
3938 if (RT_FAILURE(rc))
3939 {
3940 X86PML4E ZeroPml4e = {0};
3941 AssertMsgFailedReturn(("%Rrc\n", rc), ZeroPml4e);
3942 }
3943 return pGuestPml4->a[iPml4];
3944#else
3945 Assert(pPGM->CTX_SUFF(pGstAmd64Pml4));
3946 return pPGM->CTX_SUFF(pGstAmd64Pml4)->a[iPml4];
3947#endif
3948}
3949
3950
3951/**
3952 * Gets the page directory pointer entry for the specified address.
3953 *
3954 * @returns Pointer to the page directory pointer entry in question.
3955 * @returns NULL if the page directory is not present or on an invalid page.
3956 * @param pPGM Pointer to the PGM instance data.
3957 * @param GCPtr The address.
3958 * @param ppPml4e Page Map Level-4 Entry (out)
3959 */
3960DECLINLINE(PX86PDPE) pgmGstGetLongModePDPTPtr(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e)
3961{
3962 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
3963 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3964 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
3965 if (pPml4e->n.u1Present)
3966 {
3967 PX86PDPT pPdpt;
3968 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdpt);
3969 AssertRCReturn(rc, NULL);
3970
3971 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
3972 return &pPdpt->a[iPdPt];
3973 }
3974 return NULL;
3975}
3976
3977
3978/**
3979 * Gets the page directory entry for the specified address.
3980 *
3981 * @returns The page directory entry in question.
3982 * @returns A non-present entry if the page directory is not present or on an invalid page.
3983 * @param pPGM Pointer to the PGM instance data.
3984 * @param GCPtr The address.
3985 * @param ppPml4e Page Map Level-4 Entry (out)
3986 * @param pPdpe Page directory pointer table entry (out)
3987 */
3988DECLINLINE(X86PDEPAE) pgmGstGetLongModePDEEx(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe)
3989{
3990 X86PDEPAE ZeroPde = {0};
3991 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
3992 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
3993 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
3994 if (pPml4e->n.u1Present)
3995 {
3996 PCX86PDPT pPdptTemp;
3997 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp);
3998 AssertRCReturn(rc, ZeroPde);
3999
4000 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4001 *pPdpe = pPdptTemp->a[iPdPt];
4002 if (pPdptTemp->a[iPdPt].n.u1Present)
4003 {
4004 PCX86PDPAE pPD;
4005 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4006 AssertRCReturn(rc, ZeroPde);
4007
4008 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4009 return pPD->a[iPD];
4010 }
4011 }
4012
4013 return ZeroPde;
4014}
4015
4016
4017/**
4018 * Gets the page directory entry for the specified address.
4019 *
4020 * @returns The page directory entry in question.
4021 * @returns A non-present entry if the page directory is not present or on an invalid page.
4022 * @param pPGM Pointer to the PGM instance data.
4023 * @param GCPtr The address.
4024 */
4025DECLINLINE(X86PDEPAE) pgmGstGetLongModePDE(PPGM pPGM, RTGCPTR64 GCPtr)
4026{
4027 X86PDEPAE ZeroPde = {0};
4028 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4029 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4030 if (pGuestPml4->a[iPml4].n.u1Present)
4031 {
4032 PCX86PDPT pPdptTemp;
4033 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4034 AssertRCReturn(rc, ZeroPde);
4035
4036 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4037 if (pPdptTemp->a[iPdPt].n.u1Present)
4038 {
4039 PCX86PDPAE pPD;
4040 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4041 AssertRCReturn(rc, ZeroPde);
4042
4043 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4044 return pPD->a[iPD];
4045 }
4046 }
4047 return ZeroPde;
4048}
4049
4050
4051/**
4052 * Gets the page directory entry for the specified address.
4053 *
4054 * @returns Pointer to the page directory entry in question.
4055 * @returns NULL if the page directory is not present or on an invalid page.
4056 * @param pPGM Pointer to the PGM instance data.
4057 * @param GCPtr The address.
4058 */
4059DECLINLINE(PX86PDEPAE) pgmGstGetLongModePDEPtr(PPGM pPGM, RTGCPTR64 GCPtr)
4060{
4061 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4062 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4063 if (pGuestPml4->a[iPml4].n.u1Present)
4064 {
4065 PCX86PDPT pPdptTemp;
4066 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4067 AssertRCReturn(rc, NULL);
4068
4069 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4070 if (pPdptTemp->a[iPdPt].n.u1Present)
4071 {
4072 PX86PDPAE pPD;
4073 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4074 AssertRCReturn(rc, NULL);
4075
4076 const unsigned iPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4077 return &pPD->a[iPD];
4078 }
4079 }
4080 return NULL;
4081}
4082
4083
4084/**
4085 * Gets the GUEST page directory pointer for the specified address.
4086 *
4087 * @returns The page directory in question.
4088 * @returns NULL if the page directory is not present or on an invalid page.
4089 * @param pPGM Pointer to the PGM instance data.
4090 * @param GCPtr The address.
4091 * @param ppPml4e Page Map Level-4 Entry (out)
4092 * @param pPdpe Page directory pointer table entry (out)
4093 * @param piPD Receives the index into the returned page directory
4094 */
4095DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCPTR64 GCPtr, PX86PML4E *ppPml4e, PX86PDPE pPdpe, unsigned *piPD)
4096{
4097 PX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4098 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4099 PCX86PML4E pPml4e = *ppPml4e = &pGuestPml4->a[iPml4];
4100 if (pPml4e->n.u1Present)
4101 {
4102 PCX86PDPT pPdptTemp;
4103 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPml4e->u & X86_PML4E_PG_MASK, &pPdptTemp);
4104 AssertRCReturn(rc, NULL);
4105
4106 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4107 *pPdpe = pPdptTemp->a[iPdPt];
4108 if (pPdptTemp->a[iPdPt].n.u1Present)
4109 {
4110 PX86PDPAE pPD;
4111 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4112 AssertRCReturn(rc, NULL);
4113
4114 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4115 return pPD;
4116 }
4117 }
4118 return 0;
4119}
4120
4121#endif /* !IN_RC */
4122
4123
4124/**
4125 * Gets the shadow page directory, 32-bit.
4126 *
4127 * @returns Pointer to the shadow 32-bit PD.
4128 * @param pPGM Pointer to the PGM instance data.
4129 */
4130DECLINLINE(PX86PD) pgmShwGet32BitPDPtr(PPGM pPGM)
4131{
4132#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4133 return (PX86PD)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
4134#else
4135# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4136 PX86PD pShwPd;
4137 Assert(pPGM->HCPhysShw32BitPD != 0 && pPGM->HCPhysShw32BitPD != NIL_RTHCPHYS);
4138 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->HCPhysShw32BitPD, &pShwPd);
4139 AssertRCReturn(rc, NULL);
4140 return pShwPd;
4141# else
4142 return pPGM->CTX_SUFF(pShw32BitPd);
4143# endif
4144#endif
4145}
4146
4147
4148/**
4149 * Gets the shadow page directory entry for the specified address, 32-bit.
4150 *
4151 * @returns Shadow 32-bit PDE.
4152 * @param pPGM Pointer to the PGM instance data.
4153 * @param GCPtr The address.
4154 */
4155DECLINLINE(X86PDE) pgmShwGet32BitPDE(PPGM pPGM, RTGCPTR GCPtr)
4156{
4157 const unsigned iPd = (GCPtr >> X86_PD_SHIFT) & X86_PD_MASK;
4158
4159 PX86PD pShwPde = pgmShwGet32BitPDPtr(pPGM);
4160 if (!pShwPde)
4161 {
4162 X86PDE ZeroPde = {0};
4163 return ZeroPde;
4164 }
4165 return pShwPde->a[iPd];
4166}
4167
4168
4169/**
4170 * Gets the pointer to the shadow page directory entry for the specified
4171 * address, 32-bit.
4172 *
4173 * @returns Pointer to the shadow 32-bit PDE.
4174 * @param pPGM Pointer to the PGM instance data.
4175 * @param GCPtr The address.
4176 */
4177DECLINLINE(PX86PDE) pgmShwGet32BitPDEPtr(PPGM pPGM, RTGCPTR GCPtr)
4178{
4179 const unsigned iPd = (GCPtr >> X86_PD_SHIFT) & X86_PD_MASK;
4180
4181 PX86PD pPde = pgmShwGet32BitPDPtr(pPGM);
4182 AssertReturn(pPde, NULL);
4183 return &pPde->a[iPd];
4184}
4185
4186
4187/**
4188 * Gets the shadow page pointer table, PAE.
4189 *
4190 * @returns Pointer to the shadow PAE PDPT.
4191 * @param pPGM Pointer to the PGM instance data.
4192 */
4193DECLINLINE(PX86PDPT) pgmShwGetPaePDPTPtr(PPGM pPGM)
4194{
4195#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4196 return (PX86PDPT)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
4197#else
4198# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4199 PX86PDPT pShwPdpt;
4200 Assert(pPGM->HCPhysShwPaePdpt != 0 && pPGM->HCPhysShwPaePdpt != NIL_RTHCPHYS);
4201 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->HCPhysShwPaePdpt, &pShwPdpt);
4202 AssertRCReturn(rc, 0);
4203 return pShwPdpt;
4204# else
4205 return pPGM->CTX_SUFF(pShwPaePdpt);
4206# endif
4207#endif
4208}
4209
4210
4211/**
4212 * Gets the shadow page directory for the specified address, PAE.
4213 *
4214 * @returns Pointer to the shadow PD.
4215 * @param pPGM Pointer to the PGM instance data.
4216 * @param GCPtr The address.
4217 */
4218DECLINLINE(PX86PDPAE) pgmShwGetPaePDPtr(PPGM pPGM, RTGCPTR GCPtr)
4219{
4220#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4221 const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
4222 PX86PDPT pPdpt = pgmShwGetPaePDPTPtr(pPGM);
4223
4224 /* Fetch the pgm pool shadow descriptor. */
4225 PPGMPOOLPAGE pShwPde = pgmPoolGetPageByHCPhys(PGM2VM(pPGM), pPdpt->a[iPdpt].u & X86_PDPE_PG_MASK);
4226 AssertReturn(pShwPde, NULL);
4227
4228 return (PX86PDPAE)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pShwPde);
4229#else
4230 const unsigned iPdpt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_PAE;
4231# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4232 PX86PDPAE pPD;
4233 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->aHCPhysPaePDs[iPdpt], &pPD);
4234 AssertRCReturn(rc, 0);
4235 return pPD;
4236# else
4237 PX86PDPAE pPD = pPGM->CTX_SUFF(apShwPaePDs)[iPdpt];
4238 Assert(pPD);
4239 return pPD;
4240# endif
4241#endif
4242}
4243
4244
4245/**
4246 * Gets the shadow page directory entry, PAE.
4247 *
4248 * @returns PDE.
4249 * @param pPGM Pointer to the PGM instance data.
4250 * @param GCPtr The address.
4251 */
4252DECLINLINE(X86PDEPAE) pgmShwGetPaePDE(PPGM pPGM, RTGCPTR GCPtr)
4253{
4254 const unsigned iPd = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4255
4256 PX86PDPAE pShwPde = pgmShwGetPaePDPtr(pPGM, GCPtr);
4257 if (!pShwPde)
4258 {
4259 X86PDEPAE ZeroPde = {0};
4260 return ZeroPde;
4261 }
4262 return pShwPde->a[iPd];
4263}
4264
4265
4266/**
4267 * Gets the pointer to the shadow page directory entry for an address, PAE.
4268 *
4269 * @returns Pointer to the PDE.
4270 * @param pPGM Pointer to the PGM instance data.
4271 * @param GCPtr The address.
4272 */
4273DECLINLINE(PX86PDEPAE) pgmShwGetPaePDEPtr(PPGM pPGM, RTGCPTR GCPtr)
4274{
4275 const unsigned iPd = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4276
4277 PX86PDPAE pPde = pgmShwGetPaePDPtr(pPGM, GCPtr);
4278 AssertReturn(pPde, NULL);
4279 return &pPde->a[iPd];
4280}
4281
4282#ifndef IN_RC
4283
4284/**
4285 * Gets the shadow page map level-4 pointer.
4286 *
4287 * @returns Pointer to the shadow PML4.
4288 * @param pPGM Pointer to the PGM instance data.
4289 */
4290DECLINLINE(PX86PML4) pgmShwGetLongModePML4Ptr(PPGM pPGM)
4291{
4292#ifdef VBOX_WITH_PGMPOOL_PAGING_ONLY
4293 return (PX86PML4)PGMPOOL_PAGE_2_PTR_BY_PGM(pPGM, pPGM->CTX_SUFF(pShwPageCR3));
4294#else
4295# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4296 PX86PML4 pShwPml4;
4297 Assert(pPGM->HCPhysShwPaePml4 != 0 && pPGM->HCPhysShwPaePml4 != NIL_RTHCPHYS);
4298 int rc = PGM_HCPHYS_2_PTR_BY_PGM(pPGM, pPGM->HCPhysShwPaePml4, &pShwPml4);
4299 AssertRCReturn(rc, 0);
4300 return pShwPml4;
4301# else
4302 Assert(pPGM->CTX_SUFF(pShwRoot));
4303 return (PX86PML4)pPGM->CTX_SUFF(pShwRoot);
4304# endif
4305#endif
4306}
4307
4308
4309/**
4310 * Gets the shadow page map level-4 entry for the specified address.
4311 *
4312 * @returns The entry.
4313 * @param pPGM Pointer to the PGM instance data.
4314 * @param GCPtr The address.
4315 */
4316DECLINLINE(X86PML4E) pgmShwGetLongModePML4E(PPGM pPGM, RTGCPTR GCPtr)
4317{
4318 const unsigned iPml4 = ((RTGCUINTPTR64)GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4319 PX86PML4 pShwPml4 = pgmShwGetLongModePML4Ptr(pPGM);
4320
4321 if (!pShwPml4)
4322 {
4323 X86PML4E ZeroPml4e = {0};
4324 return ZeroPml4e;
4325 }
4326 return pShwPml4->a[iPml4];
4327}
4328
4329
4330/**
4331 * Gets the pointer to the specified shadow page map level-4 entry.
4332 *
4333 * @returns The entry.
4334 * @param pPGM Pointer to the PGM instance data.
4335 * @param iPml4 The PML4 index.
4336 */
4337DECLINLINE(PX86PML4E) pgmShwGetLongModePML4EPtr(PPGM pPGM, unsigned int iPml4)
4338{
4339 PX86PML4 pShwPml4 = pgmShwGetLongModePML4Ptr(pPGM);
4340 if (!pShwPml4)
4341 return NULL;
4342 return &pShwPml4->a[iPml4];
4343}
4344
4345
4346/**
4347 * Gets the GUEST page directory pointer for the specified address.
4348 *
4349 * @returns The page directory in question.
4350 * @returns NULL if the page directory is not present or on an invalid page.
4351 * @param pPGM Pointer to the PGM instance data.
4352 * @param GCPtr The address.
4353 * @param piPD Receives the index into the returned page directory
4354 */
4355DECLINLINE(PX86PDPAE) pgmGstGetLongModePDPtr(PPGM pPGM, RTGCPTR64 GCPtr, unsigned *piPD)
4356{
4357 PCX86PML4 pGuestPml4 = pgmGstGetLongModePML4Ptr(pPGM);
4358 const unsigned iPml4 = (GCPtr >> X86_PML4_SHIFT) & X86_PML4_MASK;
4359 if (pGuestPml4->a[iPml4].n.u1Present)
4360 {
4361 PCX86PDPT pPdptTemp;
4362 int rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pGuestPml4->a[iPml4].u & X86_PML4E_PG_MASK, &pPdptTemp);
4363 AssertRCReturn(rc, NULL);
4364
4365 const unsigned iPdPt = (GCPtr >> X86_PDPT_SHIFT) & X86_PDPT_MASK_AMD64;
4366 if (pPdptTemp->a[iPdPt].n.u1Present)
4367 {
4368 PX86PDPAE pPD;
4369 rc = PGM_GCPHYS_2_PTR_BY_PGM(pPGM, pPdptTemp->a[iPdPt].u & X86_PDPE_PG_MASK, &pPD);
4370 AssertRCReturn(rc, NULL);
4371
4372 *piPD = (GCPtr >> X86_PD_PAE_SHIFT) & X86_PD_PAE_MASK;
4373 return pPD;
4374 }
4375 }
4376 return NULL;
4377}
4378
4379#endif /* !IN_RC */
4380
4381/**
4382 * Checks if any of the specified page flags are set for the given page.
4383 *
4384 * @returns true if any of the flags are set.
4385 * @returns false if all the flags are clear.
4386 * @param pPGM PGM handle.
4387 * @param GCPhys The GC physical address.
4388 * @param fFlags The flags to check for.
4389 */
4390DECLINLINE(bool) pgmRamTestFlags(PPGM pPGM, RTGCPHYS GCPhys, uint64_t fFlags)
4391{
4392 PPGMPAGE pPage = pgmPhysGetPage(pPGM, GCPhys);
4393 return pPage
4394 && (pPage->HCPhys & fFlags) != 0; /** @todo PAGE FLAGS */
4395}
4396
4397
4398/**
4399 * Gets the page state for a physical handler.
4400 *
4401 * @returns The physical handler page state.
4402 * @param pCur The physical handler in question.
4403 */
4404DECLINLINE(unsigned) pgmHandlerPhysicalCalcState(PPGMPHYSHANDLER pCur)
4405{
4406 switch (pCur->enmType)
4407 {
4408 case PGMPHYSHANDLERTYPE_PHYSICAL_WRITE:
4409 return PGM_PAGE_HNDL_PHYS_STATE_WRITE;
4410
4411 case PGMPHYSHANDLERTYPE_MMIO:
4412 case PGMPHYSHANDLERTYPE_PHYSICAL_ALL:
4413 return PGM_PAGE_HNDL_PHYS_STATE_ALL;
4414
4415 default:
4416 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
4417 }
4418}
4419
4420
4421/**
4422 * Gets the page state for a virtual handler.
4423 *
4424 * @returns The virtual handler page state.
4425 * @param pCur The virtual handler in question.
4426 * @remarks This should never be used on a hypervisor access handler.
4427 */
4428DECLINLINE(unsigned) pgmHandlerVirtualCalcState(PPGMVIRTHANDLER pCur)
4429{
4430 switch (pCur->enmType)
4431 {
4432 case PGMVIRTHANDLERTYPE_WRITE:
4433 return PGM_PAGE_HNDL_VIRT_STATE_WRITE;
4434 case PGMVIRTHANDLERTYPE_ALL:
4435 return PGM_PAGE_HNDL_VIRT_STATE_ALL;
4436 default:
4437 AssertFatalMsgFailed(("Invalid type %d\n", pCur->enmType));
4438 }
4439}
4440
4441
4442/**
4443 * Clears one physical page of a virtual handler
4444 *
4445 * @param pPGM Pointer to the PGM instance.
4446 * @param pCur Virtual handler structure
4447 * @param iPage Physical page index
4448 *
4449 * @remark Only used when PGM_SYNC_UPDATE_PAGE_BIT_VIRTUAL is being set, so no
4450 * need to care about other handlers in the same page.
4451 */
4452DECLINLINE(void) pgmHandlerVirtualClearPage(PPGM pPGM, PPGMVIRTHANDLER pCur, unsigned iPage)
4453{
4454 const PPGMPHYS2VIRTHANDLER pPhys2Virt = &pCur->aPhysToVirt[iPage];
4455
4456 /*
4457 * Remove the node from the tree (it's supposed to be in the tree if we get here!).
4458 */
4459#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4460 AssertReleaseMsg(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
4461 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4462 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
4463#endif
4464 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_IS_HEAD)
4465 {
4466 /* We're the head of the alias chain. */
4467 PPGMPHYS2VIRTHANDLER pRemove = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysRemove(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key); NOREF(pRemove);
4468#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4469 AssertReleaseMsg(pRemove != NULL,
4470 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4471 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias));
4472 AssertReleaseMsg(pRemove == pPhys2Virt,
4473 ("wanted: pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4474 " got: pRemove=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4475 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias,
4476 pRemove, pRemove->Core.Key, pRemove->Core.KeyLast, pRemove->offVirtHandler, pRemove->offNextAlias));
4477#endif
4478 if (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4479 {
4480 /* Insert the next list in the alias chain into the tree. */
4481 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4482#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4483 AssertReleaseMsg(pNext->offNextAlias & PGMPHYS2VIRTHANDLER_IN_TREE,
4484 ("pNext=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4485 pNext, pNext->Core.Key, pNext->Core.KeyLast, pNext->offVirtHandler, pNext->offNextAlias));
4486#endif
4487 pNext->offNextAlias |= PGMPHYS2VIRTHANDLER_IS_HEAD;
4488 bool fRc = RTAvlroGCPhysInsert(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, &pNext->Core);
4489 AssertRelease(fRc);
4490 }
4491 }
4492 else
4493 {
4494 /* Locate the previous node in the alias chain. */
4495 PPGMPHYS2VIRTHANDLER pPrev = (PPGMPHYS2VIRTHANDLER)RTAvlroGCPhysGet(&pPGM->CTX_SUFF(pTrees)->PhysToVirtHandlers, pPhys2Virt->Core.Key);
4496#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4497 AssertReleaseMsg(pPrev != pPhys2Virt,
4498 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
4499 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
4500#endif
4501 for (;;)
4502 {
4503 PPGMPHYS2VIRTHANDLER pNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPrev + (pPrev->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4504 if (pNext == pPhys2Virt)
4505 {
4506 /* unlink. */
4507 LogFlow(("pgmHandlerVirtualClearPage: removed %p:{.offNextAlias=%#RX32} from alias chain. prev %p:{.offNextAlias=%#RX32} [%RGp-%RGp]\n",
4508 pPhys2Virt, pPhys2Virt->offNextAlias, pPrev, pPrev->offNextAlias, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast));
4509 if (!(pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4510 pPrev->offNextAlias &= ~PGMPHYS2VIRTHANDLER_OFF_MASK;
4511 else
4512 {
4513 PPGMPHYS2VIRTHANDLER pNewNext = (PPGMPHYS2VIRTHANDLER)((intptr_t)pPhys2Virt + (pPhys2Virt->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4514 pPrev->offNextAlias = ((intptr_t)pNewNext - (intptr_t)pPrev)
4515 | (pPrev->offNextAlias & ~PGMPHYS2VIRTHANDLER_OFF_MASK);
4516 }
4517 break;
4518 }
4519
4520 /* next */
4521 if (pNext == pPrev)
4522 {
4523#ifdef VBOX_STRICT_PGM_HANDLER_VIRTUAL
4524 AssertReleaseMsg(pNext != pPrev,
4525 ("pPhys2Virt=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32} pPrev=%p\n",
4526 pPhys2Virt, pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offVirtHandler, pPhys2Virt->offNextAlias, pPrev));
4527#endif
4528 break;
4529 }
4530 pPrev = pNext;
4531 }
4532 }
4533 Log2(("PHYS2VIRT: Removing %RGp-%RGp %#RX32 %s\n",
4534 pPhys2Virt->Core.Key, pPhys2Virt->Core.KeyLast, pPhys2Virt->offNextAlias, R3STRING(pCur->pszDesc)));
4535 pPhys2Virt->offNextAlias = 0;
4536 pPhys2Virt->Core.KeyLast = NIL_RTGCPHYS; /* require reinsert */
4537
4538 /*
4539 * Clear the ram flags for this page.
4540 */
4541 PPGMPAGE pPage = pgmPhysGetPage(pPGM, pPhys2Virt->Core.Key);
4542 AssertReturnVoid(pPage);
4543 PGM_PAGE_SET_HNDL_VIRT_STATE(pPage, PGM_PAGE_HNDL_VIRT_STATE_NONE);
4544}
4545
4546
4547/**
4548 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4549 *
4550 * @returns Pointer to the shadow page structure.
4551 * @param pPool The pool.
4552 * @param HCPhys The HC physical address of the shadow page.
4553 */
4554DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPage(PPGMPOOL pPool, RTHCPHYS HCPhys)
4555{
4556 /*
4557 * Look up the page.
4558 */
4559 PPGMPOOLPAGE pPage = (PPGMPOOLPAGE)RTAvloHCPhysGet(&pPool->HCPhysTree, HCPhys & X86_PTE_PAE_PG_MASK);
4560 AssertFatalMsg(pPage && pPage->enmKind != PGMPOOLKIND_FREE, ("HCPhys=%RHp pPage=%p idx=%d\n", HCPhys, pPage, (pPage) ? pPage->idx : 0));
4561 return pPage;
4562}
4563
4564
4565/**
4566 * Internal worker for finding a 'in-use' shadow page give by it's physical address.
4567 *
4568 * @returns Pointer to the shadow page structure.
4569 * @param pPool The pool.
4570 * @param idx The pool page index.
4571 */
4572DECLINLINE(PPGMPOOLPAGE) pgmPoolGetPageByIdx(PPGMPOOL pPool, unsigned idx)
4573{
4574 AssertFatalMsg(idx >= PGMPOOL_IDX_FIRST && idx < pPool->cCurPages, ("idx=%d\n", idx));
4575 return &pPool->aPages[idx];
4576}
4577
4578
4579#ifdef PGMPOOL_WITH_GCPHYS_TRACKING
4580/**
4581 * Clear references to guest physical memory.
4582 *
4583 * @param pPool The pool.
4584 * @param pPoolPage The pool page.
4585 * @param pPhysPage The physical guest page tracking structure.
4586 */
4587DECLINLINE(void) pgmTrackDerefGCPhys(PPGMPOOL pPool, PPGMPOOLPAGE pPoolPage, PPGMPAGE pPhysPage)
4588{
4589 /*
4590 * Just deal with the simple case here.
4591 */
4592# ifdef LOG_ENABLED
4593 const RTHCPHYS HCPhysOrg = pPhysPage->HCPhys; /** @todo PAGE FLAGS */
4594# endif
4595 const unsigned cRefs = pPhysPage->HCPhys >> MM_RAM_FLAGS_CREFS_SHIFT; /** @todo PAGE FLAGS */
4596 if (cRefs == 1)
4597 {
4598 Assert(pPoolPage->idx == ((pPhysPage->HCPhys >> MM_RAM_FLAGS_IDX_SHIFT) & MM_RAM_FLAGS_IDX_MASK));
4599 pPhysPage->HCPhys = pPhysPage->HCPhys & MM_RAM_FLAGS_NO_REFS_MASK;
4600 }
4601 else
4602 pgmPoolTrackPhysExtDerefGCPhys(pPool, pPoolPage, pPhysPage);
4603 LogFlow(("pgmTrackDerefGCPhys: HCPhys=%RHp -> %RHp\n", HCPhysOrg, pPhysPage->HCPhys));
4604}
4605#endif /* PGMPOOL_WITH_GCPHYS_TRACKING */
4606
4607
4608#ifdef PGMPOOL_WITH_CACHE
4609/**
4610 * Moves the page to the head of the age list.
4611 *
4612 * This is done when the cached page is used in one way or another.
4613 *
4614 * @param pPool The pool.
4615 * @param pPage The cached page.
4616 * @todo inline in PGMInternal.h!
4617 */
4618DECLINLINE(void) pgmPoolCacheUsed(PPGMPOOL pPool, PPGMPOOLPAGE pPage)
4619{
4620 /*
4621 * Move to the head of the age list.
4622 */
4623 if (pPage->iAgePrev != NIL_PGMPOOL_IDX)
4624 {
4625 /* unlink */
4626 pPool->aPages[pPage->iAgePrev].iAgeNext = pPage->iAgeNext;
4627 if (pPage->iAgeNext != NIL_PGMPOOL_IDX)
4628 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->iAgePrev;
4629 else
4630 pPool->iAgeTail = pPage->iAgePrev;
4631
4632 /* insert at head */
4633 pPage->iAgePrev = NIL_PGMPOOL_IDX;
4634 pPage->iAgeNext = pPool->iAgeHead;
4635 Assert(pPage->iAgeNext != NIL_PGMPOOL_IDX); /* we would've already been head then */
4636 pPool->iAgeHead = pPage->idx;
4637 pPool->aPages[pPage->iAgeNext].iAgePrev = pPage->idx;
4638 }
4639}
4640#endif /* PGMPOOL_WITH_CACHE */
4641
4642
4643#if defined(IN_RC) || defined(VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0)
4644/**
4645 * Maps the page into current context (RC and maybe R0).
4646 *
4647 * @returns pointer to the mapping.
4648 * @param pVM Pointer to the PGM instance data.
4649 * @param pPage The page.
4650 */
4651DECLINLINE(void *) pgmPoolMapPageInlined(PPGM pPGM, PPGMPOOLPAGE pPage)
4652{
4653 if (pPage->idx >= PGMPOOL_IDX_FIRST)
4654 {
4655 Assert(pPage->idx < pPGM->CTX_SUFF(pPool)->cCurPages);
4656 void *pv;
4657# ifdef VBOX_WITH_2X_4GB_ADDR_SPACE_IN_R0
4658 pgmR0DynMapHCPageInlined(pPGM, pPage->Core.Key, &pv);
4659# else
4660 PGMDynMapHCPage(PGM2VM(pPGM), pPage->Core.Key, &pv);
4661# endif
4662 return pv;
4663 }
4664 return pgmPoolMapPageFallback(pPGM, pPage);
4665}
4666#endif
4667
4668
4669/**
4670 * Tells if mappings are to be put into the shadow page table or not
4671 *
4672 * @returns boolean result
4673 * @param pVM VM handle.
4674 */
4675
4676DECLINLINE(bool) pgmMapAreMappingsEnabled(PPGM pPGM)
4677{
4678#ifdef IN_RING0
4679 /* There are no mappings in VT-x and AMD-V mode. */
4680 Assert(pPGM->fDisableMappings);
4681 return false;
4682#else
4683 return !pPGM->fDisableMappings;
4684#endif
4685}
4686
4687/** @} */
4688
4689#endif
4690
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette