VirtualBox

source: vbox/trunk/src/VBox/VMM/PGM.cpp@ 26112

最後變更 在這個檔案從26112是 26107,由 vboxsync 提交於 15 年 前

PGM: Some harmless page counting error and factored out the pure MMIO pages from the zero page count. (should probably drop all MMIO pages out of the zero page count later)

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id
檔案大小: 216.0 KB
 
1/* $Id: PGM.cpp 26107 2010-01-30 14:18:03Z vboxsync $ */
2/** @file
3 * PGM - Page Manager and Monitor. (Mixing stuff here, not good?)
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
18 * Clara, CA 95054 USA or visit http://www.sun.com if you need
19 * additional information or have any questions.
20 */
21
22
23/** @page pg_pgm PGM - The Page Manager and Monitor
24 *
25 * @see grp_pgm,
26 * @ref pg_pgm_pool,
27 * @ref pg_pgm_phys.
28 *
29 *
30 * @section sec_pgm_modes Paging Modes
31 *
32 * There are three memory contexts: Host Context (HC), Guest Context (GC)
33 * and intermediate context. When talking about paging HC can also be refered to
34 * as "host paging", and GC refered to as "shadow paging".
35 *
36 * We define three basic paging modes: 32-bit, PAE and AMD64. The host paging mode
37 * is defined by the host operating system. The mode used in the shadow paging mode
38 * depends on the host paging mode and what the mode the guest is currently in. The
39 * following relation between the two is defined:
40 *
41 * @verbatim
42 Host > 32-bit | PAE | AMD64 |
43 Guest | | | |
44 ==v================================
45 32-bit 32-bit PAE PAE
46 -------|--------|--------|--------|
47 PAE PAE PAE PAE
48 -------|--------|--------|--------|
49 AMD64 AMD64 AMD64 AMD64
50 -------|--------|--------|--------| @endverbatim
51 *
52 * All configuration except those in the diagonal (upper left) are expected to
53 * require special effort from the switcher (i.e. a bit slower).
54 *
55 *
56 *
57 *
58 * @section sec_pgm_shw The Shadow Memory Context
59 *
60 *
61 * [..]
62 *
63 * Because of guest context mappings requires PDPT and PML4 entries to allow
64 * writing on AMD64, the two upper levels will have fixed flags whatever the
65 * guest is thinking of using there. So, when shadowing the PD level we will
66 * calculate the effective flags of PD and all the higher levels. In legacy
67 * PAE mode this only applies to the PWT and PCD bits (the rest are
68 * ignored/reserved/MBZ). We will ignore those bits for the present.
69 *
70 *
71 *
72 * @section sec_pgm_int The Intermediate Memory Context
73 *
74 * The world switch goes thru an intermediate memory context which purpose it is
75 * to provide different mappings of the switcher code. All guest mappings are also
76 * present in this context.
77 *
78 * The switcher code is mapped at the same location as on the host, at an
79 * identity mapped location (physical equals virtual address), and at the
80 * hypervisor location. The identity mapped location is for when the world
81 * switches that involves disabling paging.
82 *
83 * PGM maintain page tables for 32-bit, PAE and AMD64 paging modes. This
84 * simplifies switching guest CPU mode and consistency at the cost of more
85 * code to do the work. All memory use for those page tables is located below
86 * 4GB (this includes page tables for guest context mappings).
87 *
88 *
89 * @subsection subsec_pgm_int_gc Guest Context Mappings
90 *
91 * During assignment and relocation of a guest context mapping the intermediate
92 * memory context is used to verify the new location.
93 *
94 * Guest context mappings are currently restricted to below 4GB, for reasons
95 * of simplicity. This may change when we implement AMD64 support.
96 *
97 *
98 *
99 *
100 * @section sec_pgm_misc Misc
101 *
102 * @subsection subsec_pgm_misc_diff Differences Between Legacy PAE and Long Mode PAE
103 *
104 * The differences between legacy PAE and long mode PAE are:
105 * -# PDPE bits 1, 2, 5 and 6 are defined differently. In leagcy mode they are
106 * all marked down as must-be-zero, while in long mode 1, 2 and 5 have the
107 * usual meanings while 6 is ignored (AMD). This means that upon switching to
108 * legacy PAE mode we'll have to clear these bits and when going to long mode
109 * they must be set. This applies to both intermediate and shadow contexts,
110 * however we don't need to do it for the intermediate one since we're
111 * executing with CR0.WP at that time.
112 * -# CR3 allows a 32-byte aligned address in legacy mode, while in long mode
113 * a page aligned one is required.
114 *
115 *
116 * @section sec_pgm_handlers Access Handlers
117 *
118 * Placeholder.
119 *
120 *
121 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
122 *
123 * Placeholder.
124 *
125 *
126 * @subsection sec_pgm_handlers_virt Virtual Access Handlers
127 *
128 * We currently implement three types of virtual access handlers: ALL, WRITE
129 * and HYPERVISOR (WRITE). See PGMVIRTHANDLERTYPE for some more details.
130 *
131 * The HYPERVISOR access handlers is kept in a separate tree since it doesn't apply
132 * to physical pages (PGMTREES::HyperVirtHandlers) and only needs to be consulted in
133 * a special \#PF case. The ALL and WRITE are in the PGMTREES::VirtHandlers tree, the
134 * rest of this section is going to be about these handlers.
135 *
136 * We'll go thru the life cycle of a handler and try make sense of it all, don't know
137 * how successfull this is gonna be...
138 *
139 * 1. A handler is registered thru the PGMR3HandlerVirtualRegister and
140 * PGMHandlerVirtualRegisterEx APIs. We check for conflicting virtual handlers
141 * and create a new node that is inserted into the AVL tree (range key). Then
142 * a full PGM resync is flagged (clear pool, sync cr3, update virtual bit of PGMPAGE).
143 *
144 * 2. The following PGMSyncCR3/SyncCR3 operation will first make invoke HandlerVirtualUpdate.
145 *
146 * 2a. HandlerVirtualUpdate will will lookup all the pages covered by virtual handlers
147 * via the current guest CR3 and update the physical page -> virtual handler
148 * translation. Needless to say, this doesn't exactly scale very well. If any changes
149 * are detected, it will flag a virtual bit update just like we did on registration.
150 * PGMPHYS pages with changes will have their virtual handler state reset to NONE.
151 *
152 * 2b. The virtual bit update process will iterate all the pages covered by all the
153 * virtual handlers and update the PGMPAGE virtual handler state to the max of all
154 * virtual handlers on that page.
155 *
156 * 2c. Back in SyncCR3 we will now flush the entire shadow page cache to make sure
157 * we don't miss any alias mappings of the monitored pages.
158 *
159 * 2d. SyncCR3 will then proceed with syncing the CR3 table.
160 *
161 * 3. \#PF(np,read) on a page in the range. This will cause it to be synced
162 * read-only and resumed if it's a WRITE handler. If it's an ALL handler we
163 * will call the handlers like in the next step. If the physical mapping has
164 * changed we will - some time in the future - perform a handler callback
165 * (optional) and update the physical -> virtual handler cache.
166 *
167 * 4. \#PF(,write) on a page in the range. This will cause the handler to
168 * be invoked.
169 *
170 * 5. The guest invalidates the page and changes the physical backing or
171 * unmaps it. This should cause the invalidation callback to be invoked
172 * (it might not yet be 100% perfect). Exactly what happens next... is
173 * this where we mess up and end up out of sync for a while?
174 *
175 * 6. The handler is deregistered by the client via PGMHandlerVirtualDeregister.
176 * We will then set all PGMPAGEs in the physical -> virtual handler cache for
177 * this handler to NONE and trigger a full PGM resync (basically the same
178 * as int step 1). Which means 2 is executed again.
179 *
180 *
181 * @subsubsection sub_sec_pgm_handler_virt_todo TODOs
182 *
183 * There is a bunch of things that needs to be done to make the virtual handlers
184 * work 100% correctly and work more efficiently.
185 *
186 * The first bit hasn't been implemented yet because it's going to slow the
187 * whole mess down even more, and besides it seems to be working reliably for
188 * our current uses. OTOH, some of the optimizations might end up more or less
189 * implementing the missing bits, so we'll see.
190 *
191 * On the optimization side, the first thing to do is to try avoid unnecessary
192 * cache flushing. Then try team up with the shadowing code to track changes
193 * in mappings by means of access to them (shadow in), updates to shadows pages,
194 * invlpg, and shadow PT discarding (perhaps).
195 *
196 * Some idea that have popped up for optimization for current and new features:
197 * - bitmap indicating where there are virtual handlers installed.
198 * (4KB => 2**20 pages, page 2**12 => covers 32-bit address space 1:1!)
199 * - Further optimize this by min/max (needs min/max avl getters).
200 * - Shadow page table entry bit (if any left)?
201 *
202 */
203
204
205/** @page pg_pgm_phys PGM Physical Guest Memory Management
206 *
207 *
208 * Objectives:
209 * - Guest RAM over-commitment using memory ballooning,
210 * zero pages and general page sharing.
211 * - Moving or mirroring a VM onto a different physical machine.
212 *
213 *
214 * @subsection subsec_pgmPhys_Definitions Definitions
215 *
216 * Allocation chunk - A RTR0MemObjAllocPhysNC object and the tracking
217 * machinery assoicated with it.
218 *
219 *
220 *
221 *
222 * @subsection subsec_pgmPhys_AllocPage Allocating a page.
223 *
224 * Initially we map *all* guest memory to the (per VM) zero page, which
225 * means that none of the read functions will cause pages to be allocated.
226 *
227 * Exception, access bit in page tables that have been shared. This must
228 * be handled, but we must also make sure PGMGst*Modify doesn't make
229 * unnecessary modifications.
230 *
231 * Allocation points:
232 * - PGMPhysSimpleWriteGCPhys and PGMPhysWrite.
233 * - Replacing a zero page mapping at \#PF.
234 * - Replacing a shared page mapping at \#PF.
235 * - ROM registration (currently MMR3RomRegister).
236 * - VM restore (pgmR3Load).
237 *
238 * For the first three it would make sense to keep a few pages handy
239 * until we've reached the max memory commitment for the VM.
240 *
241 * For the ROM registration, we know exactly how many pages we need
242 * and will request these from ring-0. For restore, we will save
243 * the number of non-zero pages in the saved state and allocate
244 * them up front. This would allow the ring-0 component to refuse
245 * the request if the isn't sufficient memory available for VM use.
246 *
247 * Btw. for both ROM and restore allocations we won't be requiring
248 * zeroed pages as they are going to be filled instantly.
249 *
250 *
251 * @subsection subsec_pgmPhys_FreePage Freeing a page
252 *
253 * There are a few points where a page can be freed:
254 * - After being replaced by the zero page.
255 * - After being replaced by a shared page.
256 * - After being ballooned by the guest additions.
257 * - At reset.
258 * - At restore.
259 *
260 * When freeing one or more pages they will be returned to the ring-0
261 * component and replaced by the zero page.
262 *
263 * The reasoning for clearing out all the pages on reset is that it will
264 * return us to the exact same state as on power on, and may thereby help
265 * us reduce the memory load on the system. Further it might have a
266 * (temporary) positive influence on memory fragmentation (@see subsec_pgmPhys_Fragmentation).
267 *
268 * On restore, as mention under the allocation topic, pages should be
269 * freed / allocated depending on how many is actually required by the
270 * new VM state. The simplest approach is to do like on reset, and free
271 * all non-ROM pages and then allocate what we need.
272 *
273 * A measure to prevent some fragmentation, would be to let each allocation
274 * chunk have some affinity towards the VM having allocated the most pages
275 * from it. Also, try make sure to allocate from allocation chunks that
276 * are almost full. Admittedly, both these measures might work counter to
277 * our intentions and its probably not worth putting a lot of effort,
278 * cpu time or memory into this.
279 *
280 *
281 * @subsection subsec_pgmPhys_SharePage Sharing a page
282 *
283 * The basic idea is that there there will be a idle priority kernel
284 * thread walking the non-shared VM pages hashing them and looking for
285 * pages with the same checksum. If such pages are found, it will compare
286 * them byte-by-byte to see if they actually are identical. If found to be
287 * identical it will allocate a shared page, copy the content, check that
288 * the page didn't change while doing this, and finally request both the
289 * VMs to use the shared page instead. If the page is all zeros (special
290 * checksum and byte-by-byte check) it will request the VM that owns it
291 * to replace it with the zero page.
292 *
293 * To make this efficient, we will have to make sure not to try share a page
294 * that will change its contents soon. This part requires the most work.
295 * A simple idea would be to request the VM to write monitor the page for
296 * a while to make sure it isn't modified any time soon. Also, it may
297 * make sense to skip pages that are being write monitored since this
298 * information is readily available to the thread if it works on the
299 * per-VM guest memory structures (presently called PGMRAMRANGE).
300 *
301 *
302 * @subsection subsec_pgmPhys_Fragmentation Fragmentation Concerns and Counter Measures
303 *
304 * The pages are organized in allocation chunks in ring-0, this is a necessity
305 * if we wish to have an OS agnostic approach to this whole thing. (On Linux we
306 * could easily work on a page-by-page basis if we liked. Whether this is possible
307 * or efficient on NT I don't quite know.) Fragmentation within these chunks may
308 * become a problem as part of the idea here is that we wish to return memory to
309 * the host system.
310 *
311 * For instance, starting two VMs at the same time, they will both allocate the
312 * guest memory on-demand and if permitted their page allocations will be
313 * intermixed. Shut down one of the two VMs and it will be difficult to return
314 * any memory to the host system because the page allocation for the two VMs are
315 * mixed up in the same allocation chunks.
316 *
317 * To further complicate matters, when pages are freed because they have been
318 * ballooned or become shared/zero the whole idea is that the page is supposed
319 * to be reused by another VM or returned to the host system. This will cause
320 * allocation chunks to contain pages belonging to different VMs and prevent
321 * returning memory to the host when one of those VM shuts down.
322 *
323 * The only way to really deal with this problem is to move pages. This can
324 * either be done at VM shutdown and or by the idle priority worker thread
325 * that will be responsible for finding sharable/zero pages. The mechanisms
326 * involved for coercing a VM to move a page (or to do it for it) will be
327 * the same as when telling it to share/zero a page.
328 *
329 *
330 * @subsection subsec_pgmPhys_Tracking Tracking Structures And Their Cost
331 *
332 * There's a difficult balance between keeping the per-page tracking structures
333 * (global and guest page) easy to use and keeping them from eating too much
334 * memory. We have limited virtual memory resources available when operating in
335 * 32-bit kernel space (on 64-bit there'll it's quite a different story). The
336 * tracking structures will be attemted designed such that we can deal with up
337 * to 32GB of memory on a 32-bit system and essentially unlimited on 64-bit ones.
338 *
339 *
340 * @subsubsection subsubsec_pgmPhys_Tracking_Kernel Kernel Space
341 *
342 * @see pg_GMM
343 *
344 * @subsubsection subsubsec_pgmPhys_Tracking_PerVM Per-VM
345 *
346 * Fixed info is the physical address of the page (HCPhys) and the page id
347 * (described above). Theoretically we'll need 48(-12) bits for the HCPhys part.
348 * Today we've restricting ourselves to 40(-12) bits because this is the current
349 * restrictions of all AMD64 implementations (I think Barcelona will up this
350 * to 48(-12) bits, not that it really matters) and I needed the bits for
351 * tracking mappings of a page. 48-12 = 36. That leaves 28 bits, which means a
352 * decent range for the page id: 2^(28+12) = 1024TB.
353 *
354 * In additions to these, we'll have to keep maintaining the page flags as we
355 * currently do. Although it wouldn't harm to optimize these quite a bit, like
356 * for instance the ROM shouldn't depend on having a write handler installed
357 * in order for it to become read-only. A RO/RW bit should be considered so
358 * that the page syncing code doesn't have to mess about checking multiple
359 * flag combinations (ROM || RW handler || write monitored) in order to
360 * figure out how to setup a shadow PTE. But this of course, is second
361 * priority at present. Current this requires 12 bits, but could probably
362 * be optimized to ~8.
363 *
364 * Then there's the 24 bits used to track which shadow page tables are
365 * currently mapping a page for the purpose of speeding up physical
366 * access handlers, and thereby the page pool cache. More bit for this
367 * purpose wouldn't hurt IIRC.
368 *
369 * Then there is a new bit in which we need to record what kind of page
370 * this is, shared, zero, normal or write-monitored-normal. This'll
371 * require 2 bits. One bit might be needed for indicating whether a
372 * write monitored page has been written to. And yet another one or
373 * two for tracking migration status. 3-4 bits total then.
374 *
375 * Whatever is left will can be used to record the sharabilitiy of a
376 * page. The page checksum will not be stored in the per-VM table as
377 * the idle thread will not be permitted to do modifications to it.
378 * It will instead have to keep its own working set of potentially
379 * shareable pages and their check sums and stuff.
380 *
381 * For the present we'll keep the current packing of the
382 * PGMRAMRANGE::aHCPhys to keep the changes simple, only of course,
383 * we'll have to change it to a struct with a total of 128-bits at
384 * our disposal.
385 *
386 * The initial layout will be like this:
387 * @verbatim
388 RTHCPHYS HCPhys; The current stuff.
389 63:40 Current shadow PT tracking stuff.
390 39:12 The physical page frame number.
391 11:0 The current flags.
392 uint32_t u28PageId : 28; The page id.
393 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
394 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
395 uint32_t u1Reserved : 1; Reserved for later.
396 uint32_t u32Reserved; Reserved for later, mostly sharing stats.
397 @endverbatim
398 *
399 * The final layout will be something like this:
400 * @verbatim
401 RTHCPHYS HCPhys; The current stuff.
402 63:48 High page id (12+).
403 47:12 The physical page frame number.
404 11:0 Low page id.
405 uint32_t fReadOnly : 1; Whether it's readonly page (rom or monitored in some way).
406 uint32_t u3Type : 3; The page type {RESERVED, MMIO, MMIO2, ROM, shadowed ROM, RAM}.
407 uint32_t u2PhysMon : 2; Physical access handler type {none, read, write, all}.
408 uint32_t u2VirtMon : 2; Virtual access handler type {none, read, write, all}..
409 uint32_t u2State : 2; The page state { zero, shared, normal, write monitored }.
410 uint32_t fWrittenTo : 1; Whether a write monitored page was written to.
411 uint32_t u20Reserved : 20; Reserved for later, mostly sharing stats.
412 uint32_t u32Tracking; The shadow PT tracking stuff, roughly.
413 @endverbatim
414 *
415 * Cost wise, this means we'll double the cost for guest memory. There isn't anyway
416 * around that I'm afraid. It means that the cost of dealing out 32GB of memory
417 * to one or more VMs is: (32GB >> PAGE_SHIFT) * 16 bytes, or 128MBs. Or another
418 * example, the VM heap cost when assigning 1GB to a VM will be: 4MB.
419 *
420 * A couple of cost examples for the total cost per-VM + kernel.
421 * 32-bit Windows and 32-bit linux:
422 * 1GB guest ram, 256K pages: 4MB + 2MB(+) = 6MB
423 * 4GB guest ram, 1M pages: 16MB + 8MB(+) = 24MB
424 * 32GB guest ram, 8M pages: 128MB + 64MB(+) = 192MB
425 * 64-bit Windows and 64-bit linux:
426 * 1GB guest ram, 256K pages: 4MB + 3MB(+) = 7MB
427 * 4GB guest ram, 1M pages: 16MB + 12MB(+) = 28MB
428 * 32GB guest ram, 8M pages: 128MB + 96MB(+) = 224MB
429 *
430 * UPDATE - 2007-09-27:
431 * Will need a ballooned flag/state too because we cannot
432 * trust the guest 100% and reporting the same page as ballooned more
433 * than once will put the GMM off balance.
434 *
435 *
436 * @subsection subsec_pgmPhys_Serializing Serializing Access
437 *
438 * Initially, we'll try a simple scheme:
439 *
440 * - The per-VM RAM tracking structures (PGMRAMRANGE) is only modified
441 * by the EMT thread of that VM while in the pgm critsect.
442 * - Other threads in the VM process that needs to make reliable use of
443 * the per-VM RAM tracking structures will enter the critsect.
444 * - No process external thread or kernel thread will ever try enter
445 * the pgm critical section, as that just won't work.
446 * - The idle thread (and similar threads) doesn't not need 100% reliable
447 * data when performing it tasks as the EMT thread will be the one to
448 * do the actual changes later anyway. So, as long as it only accesses
449 * the main ram range, it can do so by somehow preventing the VM from
450 * being destroyed while it works on it...
451 *
452 * - The over-commitment management, including the allocating/freeing
453 * chunks, is serialized by a ring-0 mutex lock (a fast one since the
454 * more mundane mutex implementation is broken on Linux).
455 * - A separeate mutex is protecting the set of allocation chunks so
456 * that pages can be shared or/and freed up while some other VM is
457 * allocating more chunks. This mutex can be take from under the other
458 * one, but not the otherway around.
459 *
460 *
461 * @subsection subsec_pgmPhys_Request VM Request interface
462 *
463 * When in ring-0 it will become necessary to send requests to a VM so it can
464 * for instance move a page while defragmenting during VM destroy. The idle
465 * thread will make use of this interface to request VMs to setup shared
466 * pages and to perform write monitoring of pages.
467 *
468 * I would propose an interface similar to the current VMReq interface, similar
469 * in that it doesn't require locking and that the one sending the request may
470 * wait for completion if it wishes to. This shouldn't be very difficult to
471 * realize.
472 *
473 * The requests themselves are also pretty simple. They are basically:
474 * -# Check that some precondition is still true.
475 * -# Do the update.
476 * -# Update all shadow page tables involved with the page.
477 *
478 * The 3rd step is identical to what we're already doing when updating a
479 * physical handler, see pgmHandlerPhysicalSetRamFlagsAndFlushShadowPTs.
480 *
481 *
482 *
483 * @section sec_pgmPhys_MappingCaches Mapping Caches
484 *
485 * In order to be able to map in and out memory and to be able to support
486 * guest with more RAM than we've got virtual address space, we'll employing
487 * a mapping cache. There is already a tiny one for GC (see PGMGCDynMapGCPageEx)
488 * and we'll create a similar one for ring-0 unless we decide to setup a dedicate
489 * memory context for the HWACCM execution.
490 *
491 *
492 * @subsection subsec_pgmPhys_MappingCaches_R3 Ring-3
493 *
494 * We've considered implementing the ring-3 mapping cache page based but found
495 * that this was bother some when one had to take into account TLBs+SMP and
496 * portability (missing the necessary APIs on several platforms). There were
497 * also some performance concerns with this approach which hadn't quite been
498 * worked out.
499 *
500 * Instead, we'll be mapping allocation chunks into the VM process. This simplifies
501 * matters greatly quite a bit since we don't need to invent any new ring-0 stuff,
502 * only some minor RTR0MEMOBJ mapping stuff. The main concern here is that mapping
503 * compared to the previous idea is that mapping or unmapping a 1MB chunk is more
504 * costly than a single page, although how much more costly is uncertain. We'll
505 * try address this by using a very big cache, preferably bigger than the actual
506 * VM RAM size if possible. The current VM RAM sizes should give some idea for
507 * 32-bit boxes, while on 64-bit we can probably get away with employing an
508 * unlimited cache.
509 *
510 * The cache have to parts, as already indicated, the ring-3 side and the
511 * ring-0 side.
512 *
513 * The ring-0 will be tied to the page allocator since it will operate on the
514 * memory objects it contains. It will therefore require the first ring-0 mutex
515 * discussed in @ref subsec_pgmPhys_Serializing. We
516 * some double house keeping wrt to who has mapped what I think, since both
517 * VMMR0.r0 and RTR0MemObj will keep track of mapping relataions
518 *
519 * The ring-3 part will be protected by the pgm critsect. For simplicity, we'll
520 * require anyone that desires to do changes to the mapping cache to do that
521 * from within this critsect. Alternatively, we could employ a separate critsect
522 * for serializing changes to the mapping cache as this would reduce potential
523 * contention with other threads accessing mappings unrelated to the changes
524 * that are in process. We can see about this later, contention will show
525 * up in the statistics anyway, so it'll be simple to tell.
526 *
527 * The organization of the ring-3 part will be very much like how the allocation
528 * chunks are organized in ring-0, that is in an AVL tree by chunk id. To avoid
529 * having to walk the tree all the time, we'll have a couple of lookaside entries
530 * like in we do for I/O ports and MMIO in IOM.
531 *
532 * The simplified flow of a PGMPhysRead/Write function:
533 * -# Enter the PGM critsect.
534 * -# Lookup GCPhys in the ram ranges and get the Page ID.
535 * -# Calc the Allocation Chunk ID from the Page ID.
536 * -# Check the lookaside entries and then the AVL tree for the Chunk ID.
537 * If not found in cache:
538 * -# Call ring-0 and request it to be mapped and supply
539 * a chunk to be unmapped if the cache is maxed out already.
540 * -# Insert the new mapping into the AVL tree (id + R3 address).
541 * -# Update the relevant lookaside entry and return the mapping address.
542 * -# Do the read/write according to monitoring flags and everything.
543 * -# Leave the critsect.
544 *
545 *
546 * @section sec_pgmPhys_Fallback Fallback
547 *
548 * Current all the "second tier" hosts will not support the RTR0MemObjAllocPhysNC
549 * API and thus require a fallback.
550 *
551 * So, when RTR0MemObjAllocPhysNC returns VERR_NOT_SUPPORTED the page allocator
552 * will return to the ring-3 caller (and later ring-0) and asking it to seed
553 * the page allocator with some fresh pages (VERR_GMM_SEED_ME). Ring-3 will
554 * then perform an SUPR3PageAlloc(cbChunk >> PAGE_SHIFT) call and make a
555 * "SeededAllocPages" call to ring-0.
556 *
557 * The first time ring-0 sees the VERR_NOT_SUPPORTED failure it will disable
558 * all page sharing (zero page detection will continue). It will also force
559 * all allocations to come from the VM which seeded the page. Both these
560 * measures are taken to make sure that there will never be any need for
561 * mapping anything into ring-3 - everything will be mapped already.
562 *
563 * Whether we'll continue to use the current MM locked memory management
564 * for this I don't quite know (I'd prefer not to and just ditch that all
565 * togther), we'll see what's simplest to do.
566 *
567 *
568 *
569 * @section sec_pgmPhys_Changes Changes
570 *
571 * Breakdown of the changes involved?
572 */
573
574/*******************************************************************************
575* Header Files *
576*******************************************************************************/
577#define LOG_GROUP LOG_GROUP_PGM
578#include <VBox/dbgf.h>
579#include <VBox/pgm.h>
580#include <VBox/cpum.h>
581#include <VBox/iom.h>
582#include <VBox/sup.h>
583#include <VBox/mm.h>
584#include <VBox/em.h>
585#include <VBox/stam.h>
586#include <VBox/rem.h>
587#include <VBox/selm.h>
588#include <VBox/ssm.h>
589#include <VBox/hwaccm.h>
590#include "PGMInternal.h"
591#include <VBox/vm.h>
592
593#include <VBox/dbg.h>
594#include <VBox/param.h>
595#include <VBox/err.h>
596
597#include <iprt/asm.h>
598#include <iprt/assert.h>
599#include <iprt/env.h>
600#include <iprt/mem.h>
601#include <iprt/file.h>
602#include <iprt/string.h>
603#include <iprt/thread.h>
604
605
606/*******************************************************************************
607* Defined Constants And Macros *
608*******************************************************************************/
609/** Saved state data unit version for 2.5.x and later. */
610#define PGM_SAVED_STATE_VERSION 9
611/** Saved state data unit version for 2.2.2 and later. */
612#define PGM_SAVED_STATE_VERSION_2_2_2 8
613/** Saved state data unit version for 2.2.0. */
614#define PGM_SAVED_STATE_VERSION_RR_DESC 7
615/** Saved state data unit version. */
616#define PGM_SAVED_STATE_VERSION_OLD_PHYS_CODE 6
617
618
619/*******************************************************************************
620* Internal Functions *
621*******************************************************************************/
622static int pgmR3InitPaging(PVM pVM);
623static void pgmR3InitStats(PVM pVM);
624static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
625static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
626static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs);
627static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser);
628static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
629static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser);
630#ifdef VBOX_STRICT
631static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser);
632#endif
633static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0);
634static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst);
635static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher);
636
637#ifdef VBOX_WITH_DEBUGGER
638/** @todo Convert the first two commands to 'info' items. */
639static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
640static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
641static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
642static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
643# ifdef VBOX_STRICT
644static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
645# endif
646static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult);
647#endif
648
649
650/*******************************************************************************
651* Global Variables *
652*******************************************************************************/
653#ifdef VBOX_WITH_DEBUGGER
654/** Argument descriptors for '.pgmerror' and '.pgmerroroff'. */
655static const DBGCVARDESC g_aPgmErrorArgs[] =
656{
657 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
658 { 0, 1, DBGCVAR_CAT_STRING, 0, "where", "Error injection location." },
659};
660
661static const DBGCVARDESC g_aPgmPhysToFileArgs[] =
662{
663 /* cTimesMin, cTimesMax, enmCategory, fFlags, pszName, pszDescription */
664 { 1, 1, DBGCVAR_CAT_STRING, 0, "file", "The file name." },
665 { 0, 1, DBGCVAR_CAT_STRING, 0, "nozero", "If present, zero pages are skipped." },
666};
667
668/** Command descriptors. */
669static const DBGCCMD g_aCmds[] =
670{
671 /* pszCmd, cArgsMin, cArgsMax, paArgDesc, cArgDescs, pResultDesc, fFlags, pfnHandler pszSyntax, ....pszDescription */
672 { "pgmram", 0, 0, NULL, 0, NULL, 0, pgmR3CmdRam, "", "Display the ram ranges." },
673 { "pgmsync", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSync, "", "Sync the CR3 page." },
674 { "pgmerror", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Enables inject runtime of errors into parts of PGM." },
675 { "pgmerroroff", 0, 1, &g_aPgmErrorArgs[0], 1, NULL, 0, pgmR3CmdError, "", "Disables inject runtime errors into parts of PGM." },
676#ifdef VBOX_STRICT
677 { "pgmassertcr3", 0, 0, NULL, 0, NULL, 0, pgmR3CmdAssertCR3, "", "Check the shadow CR3 mapping." },
678#endif
679 { "pgmsyncalways", 0, 0, NULL, 0, NULL, 0, pgmR3CmdSyncAlways, "", "Toggle permanent CR3 syncing." },
680 { "pgmphystofile", 1, 2, &g_aPgmPhysToFileArgs[0], 2, NULL, 0, pgmR3CmdPhysToFile, "", "Save the physical memory to file." },
681};
682#endif
683
684
685
686
687/*
688 * Shadow - 32-bit mode
689 */
690#define PGM_SHW_TYPE PGM_TYPE_32BIT
691#define PGM_SHW_NAME(name) PGM_SHW_NAME_32BIT(name)
692#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_32BIT_STR(name)
693#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_32BIT_STR(name)
694#include "PGMShw.h"
695
696/* Guest - real mode */
697#define PGM_GST_TYPE PGM_TYPE_REAL
698#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
699#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
700#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
701#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_REAL(name)
702#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_REAL_STR(name)
703#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_REAL_STR(name)
704#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
705#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
706#include "PGMBth.h"
707#include "PGMGstDefs.h"
708#include "PGMGst.h"
709#undef BTH_PGMPOOLKIND_PT_FOR_PT
710#undef BTH_PGMPOOLKIND_ROOT
711#undef PGM_BTH_NAME
712#undef PGM_BTH_NAME_RC_STR
713#undef PGM_BTH_NAME_R0_STR
714#undef PGM_GST_TYPE
715#undef PGM_GST_NAME
716#undef PGM_GST_NAME_RC_STR
717#undef PGM_GST_NAME_R0_STR
718
719/* Guest - protected mode */
720#define PGM_GST_TYPE PGM_TYPE_PROT
721#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
722#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
723#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
724#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_PROT(name)
725#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_PROT_STR(name)
726#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_PROT_STR(name)
727#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_PHYS
728#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD_PHYS
729#include "PGMBth.h"
730#include "PGMGstDefs.h"
731#include "PGMGst.h"
732#undef BTH_PGMPOOLKIND_PT_FOR_PT
733#undef BTH_PGMPOOLKIND_ROOT
734#undef PGM_BTH_NAME
735#undef PGM_BTH_NAME_RC_STR
736#undef PGM_BTH_NAME_R0_STR
737#undef PGM_GST_TYPE
738#undef PGM_GST_NAME
739#undef PGM_GST_NAME_RC_STR
740#undef PGM_GST_NAME_R0_STR
741
742/* Guest - 32-bit mode */
743#define PGM_GST_TYPE PGM_TYPE_32BIT
744#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
745#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
746#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
747#define PGM_BTH_NAME(name) PGM_BTH_NAME_32BIT_32BIT(name)
748#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_32BIT_32BIT_STR(name)
749#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_32BIT_32BIT_STR(name)
750#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_32BIT_PT_FOR_32BIT_PT
751#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_32BIT_PT_FOR_32BIT_4MB
752#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_32BIT_PD
753#include "PGMBth.h"
754#include "PGMGstDefs.h"
755#include "PGMGst.h"
756#undef BTH_PGMPOOLKIND_PT_FOR_BIG
757#undef BTH_PGMPOOLKIND_PT_FOR_PT
758#undef BTH_PGMPOOLKIND_ROOT
759#undef PGM_BTH_NAME
760#undef PGM_BTH_NAME_RC_STR
761#undef PGM_BTH_NAME_R0_STR
762#undef PGM_GST_TYPE
763#undef PGM_GST_NAME
764#undef PGM_GST_NAME_RC_STR
765#undef PGM_GST_NAME_R0_STR
766
767#undef PGM_SHW_TYPE
768#undef PGM_SHW_NAME
769#undef PGM_SHW_NAME_RC_STR
770#undef PGM_SHW_NAME_R0_STR
771
772
773/*
774 * Shadow - PAE mode
775 */
776#define PGM_SHW_TYPE PGM_TYPE_PAE
777#define PGM_SHW_NAME(name) PGM_SHW_NAME_PAE(name)
778#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_PAE_STR(name)
779#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_PAE_STR(name)
780#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
781#include "PGMShw.h"
782
783/* Guest - real mode */
784#define PGM_GST_TYPE PGM_TYPE_REAL
785#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
786#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
787#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
788#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_REAL(name)
789#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_REAL_STR(name)
790#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_REAL_STR(name)
791#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
792#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
793#include "PGMGstDefs.h"
794#include "PGMBth.h"
795#undef BTH_PGMPOOLKIND_PT_FOR_PT
796#undef BTH_PGMPOOLKIND_ROOT
797#undef PGM_BTH_NAME
798#undef PGM_BTH_NAME_RC_STR
799#undef PGM_BTH_NAME_R0_STR
800#undef PGM_GST_TYPE
801#undef PGM_GST_NAME
802#undef PGM_GST_NAME_RC_STR
803#undef PGM_GST_NAME_R0_STR
804
805/* Guest - protected mode */
806#define PGM_GST_TYPE PGM_TYPE_PROT
807#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
808#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
809#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
810#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PROT(name)
811#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PROT_STR(name)
812#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PROT_STR(name)
813#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
814#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_PHYS
815#include "PGMGstDefs.h"
816#include "PGMBth.h"
817#undef BTH_PGMPOOLKIND_PT_FOR_PT
818#undef BTH_PGMPOOLKIND_ROOT
819#undef PGM_BTH_NAME
820#undef PGM_BTH_NAME_RC_STR
821#undef PGM_BTH_NAME_R0_STR
822#undef PGM_GST_TYPE
823#undef PGM_GST_NAME
824#undef PGM_GST_NAME_RC_STR
825#undef PGM_GST_NAME_R0_STR
826
827/* Guest - 32-bit mode */
828#define PGM_GST_TYPE PGM_TYPE_32BIT
829#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
830#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
831#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
832#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_32BIT(name)
833#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_32BIT_STR(name)
834#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_32BIT_STR(name)
835#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
836#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
837#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT_FOR_32BIT
838#include "PGMGstDefs.h"
839#include "PGMBth.h"
840#undef BTH_PGMPOOLKIND_PT_FOR_BIG
841#undef BTH_PGMPOOLKIND_PT_FOR_PT
842#undef BTH_PGMPOOLKIND_ROOT
843#undef PGM_BTH_NAME
844#undef PGM_BTH_NAME_RC_STR
845#undef PGM_BTH_NAME_R0_STR
846#undef PGM_GST_TYPE
847#undef PGM_GST_NAME
848#undef PGM_GST_NAME_RC_STR
849#undef PGM_GST_NAME_R0_STR
850
851/* Guest - PAE mode */
852#define PGM_GST_TYPE PGM_TYPE_PAE
853#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
854#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
855#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
856#define PGM_BTH_NAME(name) PGM_BTH_NAME_PAE_PAE(name)
857#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_PAE_PAE_STR(name)
858#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_PAE_PAE_STR(name)
859#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
860#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
861#define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_PAE_PDPT
862#include "PGMBth.h"
863#include "PGMGstDefs.h"
864#include "PGMGst.h"
865#undef BTH_PGMPOOLKIND_PT_FOR_BIG
866#undef BTH_PGMPOOLKIND_PT_FOR_PT
867#undef BTH_PGMPOOLKIND_ROOT
868#undef PGM_BTH_NAME
869#undef PGM_BTH_NAME_RC_STR
870#undef PGM_BTH_NAME_R0_STR
871#undef PGM_GST_TYPE
872#undef PGM_GST_NAME
873#undef PGM_GST_NAME_RC_STR
874#undef PGM_GST_NAME_R0_STR
875
876#undef PGM_SHW_TYPE
877#undef PGM_SHW_NAME
878#undef PGM_SHW_NAME_RC_STR
879#undef PGM_SHW_NAME_R0_STR
880
881
882/*
883 * Shadow - AMD64 mode
884 */
885#define PGM_SHW_TYPE PGM_TYPE_AMD64
886#define PGM_SHW_NAME(name) PGM_SHW_NAME_AMD64(name)
887#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_AMD64_STR(name)
888#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_AMD64_STR(name)
889#include "PGMShw.h"
890
891#ifdef VBOX_WITH_64_BITS_GUESTS
892/* Guest - AMD64 mode */
893# define PGM_GST_TYPE PGM_TYPE_AMD64
894# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
895# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
896# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
897# define PGM_BTH_NAME(name) PGM_BTH_NAME_AMD64_AMD64(name)
898# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_AMD64_AMD64_STR(name)
899# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_AMD64_AMD64_STR(name)
900# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
901# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
902# define BTH_PGMPOOLKIND_ROOT PGMPOOLKIND_64BIT_PML4
903# include "PGMBth.h"
904# include "PGMGstDefs.h"
905# include "PGMGst.h"
906# undef BTH_PGMPOOLKIND_PT_FOR_BIG
907# undef BTH_PGMPOOLKIND_PT_FOR_PT
908# undef BTH_PGMPOOLKIND_ROOT
909# undef PGM_BTH_NAME
910# undef PGM_BTH_NAME_RC_STR
911# undef PGM_BTH_NAME_R0_STR
912# undef PGM_GST_TYPE
913# undef PGM_GST_NAME
914# undef PGM_GST_NAME_RC_STR
915# undef PGM_GST_NAME_R0_STR
916#endif /* VBOX_WITH_64_BITS_GUESTS */
917
918#undef PGM_SHW_TYPE
919#undef PGM_SHW_NAME
920#undef PGM_SHW_NAME_RC_STR
921#undef PGM_SHW_NAME_R0_STR
922
923
924/*
925 * Shadow - Nested paging mode
926 */
927#define PGM_SHW_TYPE PGM_TYPE_NESTED
928#define PGM_SHW_NAME(name) PGM_SHW_NAME_NESTED(name)
929#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_NESTED_STR(name)
930#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_NESTED_STR(name)
931#include "PGMShw.h"
932
933/* Guest - real mode */
934#define PGM_GST_TYPE PGM_TYPE_REAL
935#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
936#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
937#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
938#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_REAL(name)
939#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_REAL_STR(name)
940#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_REAL_STR(name)
941#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
942#include "PGMGstDefs.h"
943#include "PGMBth.h"
944#undef BTH_PGMPOOLKIND_PT_FOR_PT
945#undef PGM_BTH_NAME
946#undef PGM_BTH_NAME_RC_STR
947#undef PGM_BTH_NAME_R0_STR
948#undef PGM_GST_TYPE
949#undef PGM_GST_NAME
950#undef PGM_GST_NAME_RC_STR
951#undef PGM_GST_NAME_R0_STR
952
953/* Guest - protected mode */
954#define PGM_GST_TYPE PGM_TYPE_PROT
955#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
956#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
957#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
958#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PROT(name)
959#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PROT_STR(name)
960#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PROT_STR(name)
961#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
962#include "PGMGstDefs.h"
963#include "PGMBth.h"
964#undef BTH_PGMPOOLKIND_PT_FOR_PT
965#undef PGM_BTH_NAME
966#undef PGM_BTH_NAME_RC_STR
967#undef PGM_BTH_NAME_R0_STR
968#undef PGM_GST_TYPE
969#undef PGM_GST_NAME
970#undef PGM_GST_NAME_RC_STR
971#undef PGM_GST_NAME_R0_STR
972
973/* Guest - 32-bit mode */
974#define PGM_GST_TYPE PGM_TYPE_32BIT
975#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
976#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
977#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
978#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_32BIT(name)
979#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_32BIT_STR(name)
980#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_32BIT_STR(name)
981#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
982#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
983#include "PGMGstDefs.h"
984#include "PGMBth.h"
985#undef BTH_PGMPOOLKIND_PT_FOR_BIG
986#undef BTH_PGMPOOLKIND_PT_FOR_PT
987#undef PGM_BTH_NAME
988#undef PGM_BTH_NAME_RC_STR
989#undef PGM_BTH_NAME_R0_STR
990#undef PGM_GST_TYPE
991#undef PGM_GST_NAME
992#undef PGM_GST_NAME_RC_STR
993#undef PGM_GST_NAME_R0_STR
994
995/* Guest - PAE mode */
996#define PGM_GST_TYPE PGM_TYPE_PAE
997#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
998#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
999#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1000#define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_PAE(name)
1001#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_PAE_STR(name)
1002#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_PAE_STR(name)
1003#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1004#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1005#include "PGMGstDefs.h"
1006#include "PGMBth.h"
1007#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1008#undef BTH_PGMPOOLKIND_PT_FOR_PT
1009#undef PGM_BTH_NAME
1010#undef PGM_BTH_NAME_RC_STR
1011#undef PGM_BTH_NAME_R0_STR
1012#undef PGM_GST_TYPE
1013#undef PGM_GST_NAME
1014#undef PGM_GST_NAME_RC_STR
1015#undef PGM_GST_NAME_R0_STR
1016
1017#ifdef VBOX_WITH_64_BITS_GUESTS
1018/* Guest - AMD64 mode */
1019# define PGM_GST_TYPE PGM_TYPE_AMD64
1020# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1021# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1022# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1023# define PGM_BTH_NAME(name) PGM_BTH_NAME_NESTED_AMD64(name)
1024# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_NESTED_AMD64_STR(name)
1025# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_NESTED_AMD64_STR(name)
1026# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1027# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1028# include "PGMGstDefs.h"
1029# include "PGMBth.h"
1030# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1031# undef BTH_PGMPOOLKIND_PT_FOR_PT
1032# undef PGM_BTH_NAME
1033# undef PGM_BTH_NAME_RC_STR
1034# undef PGM_BTH_NAME_R0_STR
1035# undef PGM_GST_TYPE
1036# undef PGM_GST_NAME
1037# undef PGM_GST_NAME_RC_STR
1038# undef PGM_GST_NAME_R0_STR
1039#endif /* VBOX_WITH_64_BITS_GUESTS */
1040
1041#undef PGM_SHW_TYPE
1042#undef PGM_SHW_NAME
1043#undef PGM_SHW_NAME_RC_STR
1044#undef PGM_SHW_NAME_R0_STR
1045
1046
1047/*
1048 * Shadow - EPT
1049 */
1050#define PGM_SHW_TYPE PGM_TYPE_EPT
1051#define PGM_SHW_NAME(name) PGM_SHW_NAME_EPT(name)
1052#define PGM_SHW_NAME_RC_STR(name) PGM_SHW_NAME_RC_EPT_STR(name)
1053#define PGM_SHW_NAME_R0_STR(name) PGM_SHW_NAME_R0_EPT_STR(name)
1054#include "PGMShw.h"
1055
1056/* Guest - real mode */
1057#define PGM_GST_TYPE PGM_TYPE_REAL
1058#define PGM_GST_NAME(name) PGM_GST_NAME_REAL(name)
1059#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_REAL_STR(name)
1060#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_REAL_STR(name)
1061#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_REAL(name)
1062#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_REAL_STR(name)
1063#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_REAL_STR(name)
1064#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1065#include "PGMGstDefs.h"
1066#include "PGMBth.h"
1067#undef BTH_PGMPOOLKIND_PT_FOR_PT
1068#undef PGM_BTH_NAME
1069#undef PGM_BTH_NAME_RC_STR
1070#undef PGM_BTH_NAME_R0_STR
1071#undef PGM_GST_TYPE
1072#undef PGM_GST_NAME
1073#undef PGM_GST_NAME_RC_STR
1074#undef PGM_GST_NAME_R0_STR
1075
1076/* Guest - protected mode */
1077#define PGM_GST_TYPE PGM_TYPE_PROT
1078#define PGM_GST_NAME(name) PGM_GST_NAME_PROT(name)
1079#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PROT_STR(name)
1080#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PROT_STR(name)
1081#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PROT(name)
1082#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PROT_STR(name)
1083#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PROT_STR(name)
1084#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PHYS
1085#include "PGMGstDefs.h"
1086#include "PGMBth.h"
1087#undef BTH_PGMPOOLKIND_PT_FOR_PT
1088#undef PGM_BTH_NAME
1089#undef PGM_BTH_NAME_RC_STR
1090#undef PGM_BTH_NAME_R0_STR
1091#undef PGM_GST_TYPE
1092#undef PGM_GST_NAME
1093#undef PGM_GST_NAME_RC_STR
1094#undef PGM_GST_NAME_R0_STR
1095
1096/* Guest - 32-bit mode */
1097#define PGM_GST_TYPE PGM_TYPE_32BIT
1098#define PGM_GST_NAME(name) PGM_GST_NAME_32BIT(name)
1099#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_32BIT_STR(name)
1100#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_32BIT_STR(name)
1101#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_32BIT(name)
1102#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_32BIT_STR(name)
1103#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_32BIT_STR(name)
1104#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_32BIT_PT
1105#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_32BIT_4MB
1106#include "PGMGstDefs.h"
1107#include "PGMBth.h"
1108#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1109#undef BTH_PGMPOOLKIND_PT_FOR_PT
1110#undef PGM_BTH_NAME
1111#undef PGM_BTH_NAME_RC_STR
1112#undef PGM_BTH_NAME_R0_STR
1113#undef PGM_GST_TYPE
1114#undef PGM_GST_NAME
1115#undef PGM_GST_NAME_RC_STR
1116#undef PGM_GST_NAME_R0_STR
1117
1118/* Guest - PAE mode */
1119#define PGM_GST_TYPE PGM_TYPE_PAE
1120#define PGM_GST_NAME(name) PGM_GST_NAME_PAE(name)
1121#define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_PAE_STR(name)
1122#define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_PAE_STR(name)
1123#define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_PAE(name)
1124#define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_PAE_STR(name)
1125#define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_PAE_STR(name)
1126#define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1127#define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1128#include "PGMGstDefs.h"
1129#include "PGMBth.h"
1130#undef BTH_PGMPOOLKIND_PT_FOR_BIG
1131#undef BTH_PGMPOOLKIND_PT_FOR_PT
1132#undef PGM_BTH_NAME
1133#undef PGM_BTH_NAME_RC_STR
1134#undef PGM_BTH_NAME_R0_STR
1135#undef PGM_GST_TYPE
1136#undef PGM_GST_NAME
1137#undef PGM_GST_NAME_RC_STR
1138#undef PGM_GST_NAME_R0_STR
1139
1140#ifdef VBOX_WITH_64_BITS_GUESTS
1141/* Guest - AMD64 mode */
1142# define PGM_GST_TYPE PGM_TYPE_AMD64
1143# define PGM_GST_NAME(name) PGM_GST_NAME_AMD64(name)
1144# define PGM_GST_NAME_RC_STR(name) PGM_GST_NAME_RC_AMD64_STR(name)
1145# define PGM_GST_NAME_R0_STR(name) PGM_GST_NAME_R0_AMD64_STR(name)
1146# define PGM_BTH_NAME(name) PGM_BTH_NAME_EPT_AMD64(name)
1147# define PGM_BTH_NAME_RC_STR(name) PGM_BTH_NAME_RC_EPT_AMD64_STR(name)
1148# define PGM_BTH_NAME_R0_STR(name) PGM_BTH_NAME_R0_EPT_AMD64_STR(name)
1149# define BTH_PGMPOOLKIND_PT_FOR_PT PGMPOOLKIND_PAE_PT_FOR_PAE_PT
1150# define BTH_PGMPOOLKIND_PT_FOR_BIG PGMPOOLKIND_PAE_PT_FOR_PAE_2MB
1151# include "PGMGstDefs.h"
1152# include "PGMBth.h"
1153# undef BTH_PGMPOOLKIND_PT_FOR_BIG
1154# undef BTH_PGMPOOLKIND_PT_FOR_PT
1155# undef PGM_BTH_NAME
1156# undef PGM_BTH_NAME_RC_STR
1157# undef PGM_BTH_NAME_R0_STR
1158# undef PGM_GST_TYPE
1159# undef PGM_GST_NAME
1160# undef PGM_GST_NAME_RC_STR
1161# undef PGM_GST_NAME_R0_STR
1162#endif /* VBOX_WITH_64_BITS_GUESTS */
1163
1164#undef PGM_SHW_TYPE
1165#undef PGM_SHW_NAME
1166#undef PGM_SHW_NAME_RC_STR
1167#undef PGM_SHW_NAME_R0_STR
1168
1169
1170
1171/**
1172 * Initiates the paging of VM.
1173 *
1174 * @returns VBox status code.
1175 * @param pVM Pointer to VM structure.
1176 */
1177VMMR3DECL(int) PGMR3Init(PVM pVM)
1178{
1179 LogFlow(("PGMR3Init:\n"));
1180 PCFGMNODE pCfgPGM = CFGMR3GetChild(CFGMR3GetRoot(pVM), "/PGM");
1181 int rc;
1182
1183 /*
1184 * Assert alignment and sizes.
1185 */
1186 AssertCompile(sizeof(pVM->pgm.s) <= sizeof(pVM->pgm.padding));
1187 AssertCompile(sizeof(pVM->aCpus[0].pgm.s) <= sizeof(pVM->aCpus[0].pgm.padding));
1188 AssertCompileMemberAlignment(PGM, CritSect, sizeof(uintptr_t));
1189
1190 /*
1191 * Init the structure.
1192 */
1193 pVM->pgm.s.offVM = RT_OFFSETOF(VM, pgm.s);
1194 pVM->pgm.s.offVCpuPGM = RT_OFFSETOF(VMCPU, pgm.s);
1195
1196 /* Init the per-CPU part. */
1197 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1198 {
1199 PVMCPU pVCpu = &pVM->aCpus[idCpu];
1200 PPGMCPU pPGM = &pVCpu->pgm.s;
1201
1202 pPGM->offVM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)pVM;
1203 pPGM->offVCpu = RT_OFFSETOF(VMCPU, pgm.s);
1204 pPGM->offPGM = (uintptr_t)&pVCpu->pgm.s - (uintptr_t)&pVM->pgm.s;
1205
1206 pPGM->enmShadowMode = PGMMODE_INVALID;
1207 pPGM->enmGuestMode = PGMMODE_INVALID;
1208
1209 pPGM->GCPhysCR3 = NIL_RTGCPHYS;
1210
1211 pPGM->pGstPaePdptR3 = NULL;
1212#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1213 pPGM->pGstPaePdptR0 = NIL_RTR0PTR;
1214#endif
1215 pPGM->pGstPaePdptRC = NIL_RTRCPTR;
1216 for (unsigned i = 0; i < RT_ELEMENTS(pVCpu->pgm.s.apGstPaePDsR3); i++)
1217 {
1218 pPGM->apGstPaePDsR3[i] = NULL;
1219#ifndef VBOX_WITH_2X_4GB_ADDR_SPACE
1220 pPGM->apGstPaePDsR0[i] = NIL_RTR0PTR;
1221#endif
1222 pPGM->apGstPaePDsRC[i] = NIL_RTRCPTR;
1223 pPGM->aGCPhysGstPaePDs[i] = NIL_RTGCPHYS;
1224 pPGM->aGCPhysGstPaePDsMonitored[i] = NIL_RTGCPHYS;
1225 }
1226
1227 pPGM->fA20Enabled = true;
1228 }
1229
1230 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1231 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1; /* default; checked later */
1232 pVM->pgm.s.GCPtrPrevRamRangeMapping = MM_HYPER_AREA_ADDRESS;
1233
1234 rc = CFGMR3QueryBoolDef(CFGMR3GetRoot(pVM), "RamPreAlloc", &pVM->pgm.s.fRamPreAlloc,
1235#ifdef VBOX_WITH_PREALLOC_RAM_BY_DEFAULT
1236 true
1237#else
1238 false
1239#endif
1240 );
1241 AssertLogRelRCReturn(rc, rc);
1242
1243#if HC_ARCH_BITS == 64 || 1 /** @todo 4GB/32-bit: remove || 1 later and adjust the limit. */
1244 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, UINT32_MAX);
1245#else
1246 rc = CFGMR3QueryU32Def(pCfgPGM, "MaxRing3Chunks", &pVM->pgm.s.ChunkR3Map.cMax, _1G / GMM_CHUNK_SIZE);
1247#endif
1248 AssertLogRelRCReturn(rc, rc);
1249 for (uint32_t i = 0; i < RT_ELEMENTS(pVM->pgm.s.ChunkR3Map.Tlb.aEntries); i++)
1250 pVM->pgm.s.ChunkR3Map.Tlb.aEntries[i].idChunk = NIL_GMM_CHUNKID;
1251
1252 /*
1253 * Get the configured RAM size - to estimate saved state size.
1254 */
1255 uint64_t cbRam;
1256 rc = CFGMR3QueryU64(CFGMR3GetRoot(pVM), "RamSize", &cbRam);
1257 if (rc == VERR_CFGM_VALUE_NOT_FOUND)
1258 cbRam = 0;
1259 else if (RT_SUCCESS(rc))
1260 {
1261 if (cbRam < PAGE_SIZE)
1262 cbRam = 0;
1263 cbRam = RT_ALIGN_64(cbRam, PAGE_SIZE);
1264 }
1265 else
1266 {
1267 AssertMsgFailed(("Configuration error: Failed to query integer \"RamSize\", rc=%Rrc.\n", rc));
1268 return rc;
1269 }
1270
1271 /*
1272 * Register callbacks, string formatters and the saved state data unit.
1273 */
1274#ifdef VBOX_STRICT
1275 VMR3AtStateRegister(pVM, pgmR3ResetNoMorePhysWritesFlag, NULL);
1276#endif
1277 PGMRegisterStringFormatTypes();
1278
1279 rc = pgmR3InitSavedState(pVM, cbRam);
1280 if (RT_FAILURE(rc))
1281 return rc;
1282
1283 /*
1284 * Initialize the PGM critical section and flush the phys TLBs
1285 */
1286 rc = PDMR3CritSectInit(pVM, &pVM->pgm.s.CritSect, RT_SRC_POS, "PGM");
1287 AssertRCReturn(rc, rc);
1288
1289 PGMR3PhysChunkInvalidateTLB(pVM);
1290 PGMPhysInvalidatePageMapTLB(pVM);
1291
1292 /*
1293 * For the time being we sport a full set of handy pages in addition to the base
1294 * memory to simplify things.
1295 */
1296 rc = MMR3ReserveHandyPages(pVM, RT_ELEMENTS(pVM->pgm.s.aHandyPages)); /** @todo this should be changed to PGM_HANDY_PAGES_MIN but this needs proper testing... */
1297 AssertRCReturn(rc, rc);
1298
1299 /*
1300 * Trees
1301 */
1302 rc = MMHyperAlloc(pVM, sizeof(PGMTREES), 0, MM_TAG_PGM, (void **)&pVM->pgm.s.pTreesR3);
1303 if (RT_SUCCESS(rc))
1304 {
1305 pVM->pgm.s.pTreesR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pTreesR3);
1306 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
1307
1308 /*
1309 * Alocate the zero page.
1310 */
1311 rc = MMHyperAlloc(pVM, PAGE_SIZE, PAGE_SIZE, MM_TAG_PGM, &pVM->pgm.s.pvZeroPgR3);
1312 }
1313 if (RT_SUCCESS(rc))
1314 {
1315 pVM->pgm.s.pvZeroPgRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pvZeroPgR3);
1316 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
1317 pVM->pgm.s.HCPhysZeroPg = MMR3HyperHCVirt2HCPhys(pVM, pVM->pgm.s.pvZeroPgR3);
1318 AssertRelease(pVM->pgm.s.HCPhysZeroPg != NIL_RTHCPHYS);
1319
1320 /*
1321 * Init the paging.
1322 */
1323 rc = pgmR3InitPaging(pVM);
1324 }
1325 if (RT_SUCCESS(rc))
1326 {
1327 /*
1328 * Init the page pool.
1329 */
1330 rc = pgmR3PoolInit(pVM);
1331 }
1332 if (RT_SUCCESS(rc))
1333 {
1334 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1335 {
1336 PVMCPU pVCpu = &pVM->aCpus[i];
1337 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
1338 if (RT_FAILURE(rc))
1339 break;
1340 }
1341 }
1342
1343 if (RT_SUCCESS(rc))
1344 {
1345 /*
1346 * Info & statistics
1347 */
1348 DBGFR3InfoRegisterInternal(pVM, "mode",
1349 "Shows the current paging mode. "
1350 "Recognizes 'all', 'guest', 'shadow' and 'host' as arguments, defaulting to 'all' if nothing's given.",
1351 pgmR3InfoMode);
1352 DBGFR3InfoRegisterInternal(pVM, "pgmcr3",
1353 "Dumps all the entries in the top level paging table. No arguments.",
1354 pgmR3InfoCr3);
1355 DBGFR3InfoRegisterInternal(pVM, "phys",
1356 "Dumps all the physical address ranges. No arguments.",
1357 pgmR3PhysInfo);
1358 DBGFR3InfoRegisterInternal(pVM, "handlers",
1359 "Dumps physical, virtual and hyper virtual handlers. "
1360 "Pass 'phys', 'virt', 'hyper' as argument if only one kind is wanted."
1361 "Add 'nost' if the statistics are unwanted, use together with 'all' or explicit selection.",
1362 pgmR3InfoHandlers);
1363 DBGFR3InfoRegisterInternal(pVM, "mappings",
1364 "Dumps guest mappings.",
1365 pgmR3MapInfo);
1366
1367 pgmR3InitStats(pVM);
1368
1369#ifdef VBOX_WITH_DEBUGGER
1370 /*
1371 * Debugger commands.
1372 */
1373 static bool s_fRegisteredCmds = false;
1374 if (!s_fRegisteredCmds)
1375 {
1376 int rc2 = DBGCRegisterCommands(&g_aCmds[0], RT_ELEMENTS(g_aCmds));
1377 if (RT_SUCCESS(rc2))
1378 s_fRegisteredCmds = true;
1379 }
1380#endif
1381 return VINF_SUCCESS;
1382 }
1383
1384 /* Almost no cleanup necessary, MM frees all memory. */
1385 PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
1386
1387 return rc;
1388}
1389
1390
1391/**
1392 * Initializes the per-VCPU PGM.
1393 *
1394 * @returns VBox status code.
1395 * @param pVM The VM to operate on.
1396 */
1397VMMR3DECL(int) PGMR3InitCPU(PVM pVM)
1398{
1399 LogFlow(("PGMR3InitCPU\n"));
1400 return VINF_SUCCESS;
1401}
1402
1403
1404/**
1405 * Init paging.
1406 *
1407 * Since we need to check what mode the host is operating in before we can choose
1408 * the right paging functions for the host we have to delay this until R0 has
1409 * been initialized.
1410 *
1411 * @returns VBox status code.
1412 * @param pVM VM handle.
1413 */
1414static int pgmR3InitPaging(PVM pVM)
1415{
1416 /*
1417 * Force a recalculation of modes and switcher so everyone gets notified.
1418 */
1419 for (VMCPUID i = 0; i < pVM->cCpus; i++)
1420 {
1421 PVMCPU pVCpu = &pVM->aCpus[i];
1422
1423 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
1424 pVCpu->pgm.s.enmGuestMode = PGMMODE_INVALID;
1425 }
1426
1427 pVM->pgm.s.enmHostMode = SUPPAGINGMODE_INVALID;
1428
1429 /*
1430 * Allocate static mapping space for whatever the cr3 register
1431 * points to and in the case of PAE mode to the 4 PDs.
1432 */
1433 int rc = MMR3HyperReserve(pVM, PAGE_SIZE * 5, "CR3 mapping", &pVM->pgm.s.GCPtrCR3Mapping);
1434 if (RT_FAILURE(rc))
1435 {
1436 AssertMsgFailed(("Failed to reserve two pages for cr mapping in HMA, rc=%Rrc\n", rc));
1437 return rc;
1438 }
1439 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1440
1441 /*
1442 * Allocate pages for the three possible intermediate contexts
1443 * (AMD64, PAE and plain 32-Bit). We maintain all three contexts
1444 * for the sake of simplicity. The AMD64 uses the PAE for the
1445 * lower levels, making the total number of pages 11 (3 + 7 + 1).
1446 *
1447 * We assume that two page tables will be enought for the core code
1448 * mappings (HC virtual and identity).
1449 */
1450 pVM->pgm.s.pInterPD = (PX86PD)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPD, VERR_NO_PAGE_MEMORY);
1451 pVM->pgm.s.apInterPTs[0] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[0], VERR_NO_PAGE_MEMORY);
1452 pVM->pgm.s.apInterPTs[1] = (PX86PT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.apInterPTs[1], VERR_NO_PAGE_MEMORY);
1453 pVM->pgm.s.apInterPaePTs[0] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[0], VERR_NO_PAGE_MEMORY);
1454 pVM->pgm.s.apInterPaePTs[1] = (PX86PTPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePTs[1], VERR_NO_PAGE_MEMORY);
1455 pVM->pgm.s.apInterPaePDs[0] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[0], VERR_NO_PAGE_MEMORY);
1456 pVM->pgm.s.apInterPaePDs[1] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[1], VERR_NO_PAGE_MEMORY);
1457 pVM->pgm.s.apInterPaePDs[2] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[2], VERR_NO_PAGE_MEMORY);
1458 pVM->pgm.s.apInterPaePDs[3] = (PX86PDPAE)MMR3PageAlloc(pVM); AssertReturn(pVM->pgm.s.apInterPaePDs[3], VERR_NO_PAGE_MEMORY);
1459 pVM->pgm.s.pInterPaePDPT = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT, VERR_NO_PAGE_MEMORY);
1460 pVM->pgm.s.pInterPaePDPT64 = (PX86PDPT)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePDPT64, VERR_NO_PAGE_MEMORY);
1461 pVM->pgm.s.pInterPaePML4 = (PX86PML4)MMR3PageAllocLow(pVM); AssertReturn(pVM->pgm.s.pInterPaePML4, VERR_NO_PAGE_MEMORY);
1462
1463 pVM->pgm.s.HCPhysInterPD = MMPage2Phys(pVM, pVM->pgm.s.pInterPD);
1464 AssertRelease(pVM->pgm.s.HCPhysInterPD != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPD & PAGE_OFFSET_MASK));
1465 pVM->pgm.s.HCPhysInterPaePDPT = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT);
1466 AssertRelease(pVM->pgm.s.HCPhysInterPaePDPT != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePDPT & PAGE_OFFSET_MASK));
1467 pVM->pgm.s.HCPhysInterPaePML4 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePML4);
1468 AssertRelease(pVM->pgm.s.HCPhysInterPaePML4 != NIL_RTHCPHYS && !(pVM->pgm.s.HCPhysInterPaePML4 & PAGE_OFFSET_MASK) && pVM->pgm.s.HCPhysInterPaePML4 < 0xffffffff);
1469
1470 /*
1471 * Initialize the pages, setting up the PML4 and PDPT for repetitive 4GB action.
1472 */
1473 ASMMemZeroPage(pVM->pgm.s.pInterPD);
1474 ASMMemZeroPage(pVM->pgm.s.apInterPTs[0]);
1475 ASMMemZeroPage(pVM->pgm.s.apInterPTs[1]);
1476
1477 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[0]);
1478 ASMMemZeroPage(pVM->pgm.s.apInterPaePTs[1]);
1479
1480 ASMMemZeroPage(pVM->pgm.s.pInterPaePDPT);
1481 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.apInterPaePDs); i++)
1482 {
1483 ASMMemZeroPage(pVM->pgm.s.apInterPaePDs[i]);
1484 pVM->pgm.s.pInterPaePDPT->a[i].u = X86_PDPE_P | PGM_PLXFLAGS_PERMANENT
1485 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[i]);
1486 }
1487
1488 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePDPT64->a); i++)
1489 {
1490 const unsigned iPD = i % RT_ELEMENTS(pVM->pgm.s.apInterPaePDs);
1491 pVM->pgm.s.pInterPaePDPT64->a[i].u = X86_PDPE_P | X86_PDPE_RW | X86_PDPE_US | X86_PDPE_A | PGM_PLXFLAGS_PERMANENT
1492 | MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[iPD]);
1493 }
1494
1495 RTHCPHYS HCPhysInterPaePDPT64 = MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64);
1496 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.pInterPaePML4->a); i++)
1497 pVM->pgm.s.pInterPaePML4->a[i].u = X86_PML4E_P | X86_PML4E_RW | X86_PML4E_US | X86_PML4E_A | PGM_PLXFLAGS_PERMANENT
1498 | HCPhysInterPaePDPT64;
1499
1500 /*
1501 * Initialize paging workers and mode from current host mode
1502 * and the guest running in real mode.
1503 */
1504 pVM->pgm.s.enmHostMode = SUPR3GetPagingMode();
1505 switch (pVM->pgm.s.enmHostMode)
1506 {
1507 case SUPPAGINGMODE_32_BIT:
1508 case SUPPAGINGMODE_32_BIT_GLOBAL:
1509 case SUPPAGINGMODE_PAE:
1510 case SUPPAGINGMODE_PAE_GLOBAL:
1511 case SUPPAGINGMODE_PAE_NX:
1512 case SUPPAGINGMODE_PAE_GLOBAL_NX:
1513 break;
1514
1515 case SUPPAGINGMODE_AMD64:
1516 case SUPPAGINGMODE_AMD64_GLOBAL:
1517 case SUPPAGINGMODE_AMD64_NX:
1518 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
1519#ifndef VBOX_WITH_HYBRID_32BIT_KERNEL
1520 if (ARCH_BITS != 64)
1521 {
1522 AssertMsgFailed(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1523 LogRel(("Host mode %d (64-bit) is not supported by non-64bit builds\n", pVM->pgm.s.enmHostMode));
1524 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1525 }
1526#endif
1527 break;
1528 default:
1529 AssertMsgFailed(("Host mode %d is not supported\n", pVM->pgm.s.enmHostMode));
1530 return VERR_PGM_UNSUPPORTED_HOST_PAGING_MODE;
1531 }
1532 rc = pgmR3ModeDataInit(pVM, false /* don't resolve GC and R0 syms yet */);
1533 if (RT_SUCCESS(rc))
1534 {
1535 LogFlow(("pgmR3InitPaging: returns successfully\n"));
1536#if HC_ARCH_BITS == 64
1537 LogRel(("Debug: HCPhysInterPD=%RHp HCPhysInterPaePDPT=%RHp HCPhysInterPaePML4=%RHp\n",
1538 pVM->pgm.s.HCPhysInterPD, pVM->pgm.s.HCPhysInterPaePDPT, pVM->pgm.s.HCPhysInterPaePML4));
1539 LogRel(("Debug: apInterPTs={%RHp,%RHp} apInterPaePTs={%RHp,%RHp} apInterPaePDs={%RHp,%RHp,%RHp,%RHp} pInterPaePDPT64=%RHp\n",
1540 MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPTs[1]),
1541 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePTs[1]),
1542 MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[0]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[1]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[2]), MMPage2Phys(pVM, pVM->pgm.s.apInterPaePDs[3]),
1543 MMPage2Phys(pVM, pVM->pgm.s.pInterPaePDPT64)));
1544#endif
1545
1546 return VINF_SUCCESS;
1547 }
1548
1549 LogFlow(("pgmR3InitPaging: returns %Rrc\n", rc));
1550 return rc;
1551}
1552
1553
1554/**
1555 * Init statistics
1556 */
1557static void pgmR3InitStats(PVM pVM)
1558{
1559 PPGM pPGM = &pVM->pgm.s;
1560 int rc;
1561
1562 /* Common - misc variables */
1563 STAM_REL_REG(pVM, &pPGM->cAllPages, STAMTYPE_U32, "/PGM/Page/cAllPages", STAMUNIT_COUNT, "The total number of pages.");
1564 STAM_REL_REG(pVM, &pPGM->cPrivatePages, STAMTYPE_U32, "/PGM/Page/cPrivatePages", STAMUNIT_COUNT, "The number of private pages.");
1565 STAM_REL_REG(pVM, &pPGM->cSharedPages, STAMTYPE_U32, "/PGM/Page/cSharedPages", STAMUNIT_COUNT, "The number of shared pages.");
1566 STAM_REL_REG(pVM, &pPGM->cZeroPages, STAMTYPE_U32, "/PGM/Page/cZeroPages", STAMUNIT_COUNT, "The number of zero backed pages.");
1567 STAM_REL_REG(pVM, &pPGM->cPureMmioPages, STAMTYPE_U32, "/PGM/Page/cPureMmioPages", STAMUNIT_COUNT, "The number of pure MMIO pages.");
1568 STAM_REL_REG(pVM, &pPGM->cMonitoredPages, STAMTYPE_U32, "/PGM/Page/cMonitoredPages", STAMUNIT_COUNT, "The number of write monitored pages.");
1569 STAM_REL_REG(pVM, &pPGM->cWrittenToPages, STAMTYPE_U32, "/PGM/Page/cWrittenToPages", STAMUNIT_COUNT, "The number of previously write monitored pages that have been written to.");
1570 STAM_REL_REG(pVM, &pPGM->cWriteLockedPages, STAMTYPE_U32, "/PGM/Page/cWriteLockedPages", STAMUNIT_COUNT, "The number of write(/read) locked pages.");
1571 STAM_REL_REG(pVM, &pPGM->cReadLockedPages, STAMTYPE_U32, "/PGM/Page/cReadLockedPages", STAMUNIT_COUNT, "The number of read (only) locked pages.");
1572 STAM_REL_REG(pVM, &pPGM->cHandyPages, STAMTYPE_U32, "/PGM/Page/cHandyPages", STAMUNIT_COUNT, "The number of handy pages (not included in cAllPages).");
1573 STAM_REL_REG(pVM, &pPGM->cRelocations, STAMTYPE_COUNTER, "/PGM/cRelocations", STAMUNIT_OCCURENCES,"Number of hypervisor relocations.");
1574 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.c, STAMTYPE_U32, "/PGM/ChunkR3Map/c", STAMUNIT_COUNT, "Number of mapped chunks.");
1575 STAM_REL_REG(pVM, &pPGM->ChunkR3Map.cMax, STAMTYPE_U32, "/PGM/ChunkR3Map/cMax", STAMUNIT_COUNT, "Maximum number of mapped chunks.");
1576
1577 /* Live save */
1578 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.fActive, STAMTYPE_U8, "/PGM/LiveSave/fActive", STAMUNIT_COUNT, "Active or not.");
1579 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cIgnoredPages, STAMTYPE_U32, "/PGM/LiveSave/cIgnoredPages", STAMUNIT_COUNT, "The number of ignored pages in the RAM ranges (i.e. MMIO, MMIO2 and ROM).");
1580 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesLong, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesLong", STAMUNIT_COUNT, "Longer term dirty page average.");
1581 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cDirtyPagesShort, STAMTYPE_U32, "/PGM/LiveSave/cDirtyPagesShort", STAMUNIT_COUNT, "Short term dirty page average.");
1582 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cPagesPerSecond, STAMTYPE_U32, "/PGM/LiveSave/cPagesPerSecond", STAMUNIT_COUNT, "Pages per second.");
1583 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.cSavedPages, STAMTYPE_U64, "/PGM/LiveSave/cSavedPages", STAMUNIT_COUNT, "The total number of saved pages.");
1584 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cReadPages", STAMUNIT_COUNT, "RAM: Ready pages.");
1585 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cDirtyPages", STAMUNIT_COUNT, "RAM: Dirty pages.");
1586 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cZeroPages", STAMUNIT_COUNT, "RAM: Ready zero pages.");
1587 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Ram.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Ram/cMonitoredPages", STAMUNIT_COUNT, "RAM: Write monitored pages.");
1588 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cReadPages", STAMUNIT_COUNT, "ROM: Ready pages.");
1589 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cDirtyPages", STAMUNIT_COUNT, "ROM: Dirty pages.");
1590 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cZeroPages", STAMUNIT_COUNT, "ROM: Ready zero pages.");
1591 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Rom.cMonitoredPages, STAMTYPE_U32, "/PGM/LiveSave/Rom/cMonitoredPages", STAMUNIT_COUNT, "ROM: Write monitored pages.");
1592 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cReadyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cReadPages", STAMUNIT_COUNT, "MMIO2: Ready pages.");
1593 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cDirtyPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cDirtyPages", STAMUNIT_COUNT, "MMIO2: Dirty pages.");
1594 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cZeroPages, STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cZeroPages", STAMUNIT_COUNT, "MMIO2: Ready zero pages.");
1595 STAM_REL_REG_USED(pVM, &pPGM->LiveSave.Mmio2.cMonitoredPages,STAMTYPE_U32, "/PGM/LiveSave/Mmio2/cMonitoredPages",STAMUNIT_COUNT, "MMIO2: Write monitored pages.");
1596
1597#ifdef VBOX_WITH_STATISTICS
1598
1599# define PGM_REG_COUNTER(a, b, c) \
1600 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b); \
1601 AssertRC(rc);
1602
1603# define PGM_REG_COUNTER_BYTES(a, b, c) \
1604 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_BYTES, c, b); \
1605 AssertRC(rc);
1606
1607# define PGM_REG_PROFILE(a, b, c) \
1608 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b); \
1609 AssertRC(rc);
1610
1611 PGM_REG_COUNTER(&pPGM->StatR3DetectedConflicts, "/PGM/R3/DetectedConflicts", "The number of times PGMR3CheckMappingConflicts() detected a conflict.");
1612 PGM_REG_PROFILE(&pPGM->StatR3ResolveConflict, "/PGM/R3/ResolveConflict", "pgmR3SyncPTResolveConflict() profiling (includes the entire relocation).");
1613 PGM_REG_COUNTER(&pPGM->StatR3PhysRead, "/PGM/R3/Phys/Read", "The number of times PGMPhysRead was called.");
1614 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysReadBytes, "/PGM/R3/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1615 PGM_REG_COUNTER(&pPGM->StatR3PhysWrite, "/PGM/R3/Phys/Write", "The number of times PGMPhysWrite was called.");
1616 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysWriteBytes, "/PGM/R3/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1617 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleRead, "/PGM/R3/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1618 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleReadBytes, "/PGM/R3/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1619 PGM_REG_COUNTER(&pPGM->StatR3PhysSimpleWrite, "/PGM/R3/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1620 PGM_REG_COUNTER_BYTES(&pPGM->StatR3PhysSimpleWriteBytes, "/PGM/R3/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1621
1622 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsRZ", "TLB hits.");
1623 PGM_REG_COUNTER(&pPGM->StatRZChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesRZ", "TLB misses.");
1624 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbHits, "/PGM/RZ/Page/MapTlbHits", "TLB hits.");
1625 PGM_REG_COUNTER(&pPGM->StatRZPageMapTlbMisses, "/PGM/RZ/Page/MapTlbMisses", "TLB misses.");
1626 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbHits, "/PGM/ChunkR3Map/TlbHitsR3", "TLB hits.");
1627 PGM_REG_COUNTER(&pPGM->StatR3ChunkR3MapTlbMisses, "/PGM/ChunkR3Map/TlbMissesR3", "TLB misses.");
1628 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbHits, "/PGM/R3/Page/MapTlbHits", "TLB hits.");
1629 PGM_REG_COUNTER(&pPGM->StatR3PageMapTlbMisses, "/PGM/R3/Page/MapTlbMisses", "TLB misses.");
1630 PGM_REG_COUNTER(&pPGM->StatPageMapTlbFlushes, "/PGM/R3/Page/MapTlbFlushes", "TLB flushes (all contexts).");
1631 PGM_REG_COUNTER(&pPGM->StatPageMapTlbFlushEntry, "/PGM/R3/Page/MapTlbFlushEntry", "TLB entry flushes (all contexts).");
1632
1633 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualUpdate, "/PGM/RZ/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1634 PGM_REG_PROFILE(&pPGM->StatRZSyncCR3HandlerVirtualReset, "/PGM/RZ/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1635 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualUpdate, "/PGM/R3/SyncCR3/Handlers/VirtualUpdate", "Profiling of the virtual handler updates.");
1636 PGM_REG_PROFILE(&pPGM->StatR3SyncCR3HandlerVirtualReset, "/PGM/R3/SyncCR3/Handlers/VirtualReset", "Profiling of the virtual handler resets.");
1637
1638 PGM_REG_COUNTER(&pPGM->StatRZPhysHandlerReset, "/PGM/RZ/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1639 PGM_REG_COUNTER(&pPGM->StatR3PhysHandlerReset, "/PGM/R3/PhysHandlerReset", "The number of times PGMHandlerPhysicalReset is called.");
1640 PGM_REG_PROFILE(&pPGM->StatRZVirtHandlerSearchByPhys, "/PGM/RZ/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1641 PGM_REG_PROFILE(&pPGM->StatR3VirtHandlerSearchByPhys, "/PGM/R3/VirtHandlerSearchByPhys", "Profiling of pgmHandlerVirtualFindByPhysAddr.");
1642
1643 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceShared, "/PGM/RZ/Page/ReplacedShared", "Times a shared page was replaced.");
1644 PGM_REG_COUNTER(&pPGM->StatRZPageReplaceZero, "/PGM/RZ/Page/ReplacedZero", "Times the zero page was replaced.");
1645/// @todo PGM_REG_COUNTER(&pPGM->StatRZPageHandyAllocs, "/PGM/RZ/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1646 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceShared, "/PGM/R3/Page/ReplacedShared", "Times a shared page was replaced.");
1647 PGM_REG_COUNTER(&pPGM->StatR3PageReplaceZero, "/PGM/R3/Page/ReplacedZero", "Times the zero page was replaced.");
1648/// @todo PGM_REG_COUNTER(&pPGM->StatR3PageHandyAllocs, "/PGM/R3/Page/HandyAllocs", "Number of times we've allocated more handy pages.");
1649
1650 PGM_REG_COUNTER(&pPGM->StatRZPhysRead, "/PGM/RZ/Phys/Read", "The number of times PGMPhysRead was called.");
1651 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysReadBytes, "/PGM/RZ/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1652 PGM_REG_COUNTER(&pPGM->StatRZPhysWrite, "/PGM/RZ/Phys/Write", "The number of times PGMPhysWrite was called.");
1653 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysWriteBytes, "/PGM/RZ/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1654 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleRead, "/PGM/RZ/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1655 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleReadBytes, "/PGM/RZ/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1656 PGM_REG_COUNTER(&pPGM->StatRZPhysSimpleWrite, "/PGM/RZ/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1657 PGM_REG_COUNTER_BYTES(&pPGM->StatRZPhysSimpleWriteBytes, "/PGM/RZ/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1658
1659 /* GC only: */
1660 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheHits, "/PGM/RC/DynMapCache/Hits" , "Number of dynamic page mapping cache hits.");
1661 PGM_REG_COUNTER(&pPGM->StatRCDynMapCacheMisses, "/PGM/RC/DynMapCache/Misses" , "Number of dynamic page mapping cache misses.");
1662 PGM_REG_COUNTER(&pPGM->StatRCInvlPgConflict, "/PGM/RC/InvlPgConflict", "Number of times PGMInvalidatePage() detected a mapping conflict.");
1663 PGM_REG_COUNTER(&pPGM->StatRCInvlPgSyncMonCR3, "/PGM/RC/InvlPgSyncMonitorCR3", "Number of times PGMInvalidatePage() ran into PGM_SYNC_MONITOR_CR3.");
1664
1665 PGM_REG_COUNTER(&pPGM->StatRCPhysRead, "/PGM/RC/Phys/Read", "The number of times PGMPhysRead was called.");
1666 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysReadBytes, "/PGM/RC/Phys/Read/Bytes", "The number of bytes read by PGMPhysRead.");
1667 PGM_REG_COUNTER(&pPGM->StatRCPhysWrite, "/PGM/RC/Phys/Write", "The number of times PGMPhysWrite was called.");
1668 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysWriteBytes, "/PGM/RC/Phys/Write/Bytes", "The number of bytes written by PGMPhysWrite.");
1669 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleRead, "/PGM/RC/Phys/Simple/Read", "The number of times PGMPhysSimpleReadGCPtr was called.");
1670 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleReadBytes, "/PGM/RC/Phys/Simple/Read/Bytes", "The number of bytes read by PGMPhysSimpleReadGCPtr.");
1671 PGM_REG_COUNTER(&pPGM->StatRCPhysSimpleWrite, "/PGM/RC/Phys/Simple/Write", "The number of times PGMPhysSimpleWriteGCPtr was called.");
1672 PGM_REG_COUNTER_BYTES(&pPGM->StatRCPhysSimpleWriteBytes, "/PGM/RC/Phys/Simple/Write/Bytes", "The number of bytes written by PGMPhysSimpleWriteGCPtr.");
1673
1674# ifdef PGMPOOL_WITH_GCPHYS_TRACKING
1675 PGM_REG_COUNTER(&pPGM->StatTrackVirgin, "/PGM/Track/Virgin", "The number of first time shadowings");
1676 PGM_REG_COUNTER(&pPGM->StatTrackAliased, "/PGM/Track/Aliased", "The number of times switching to cRef2, i.e. the page is being shadowed by two PTs.");
1677 PGM_REG_COUNTER(&pPGM->StatTrackAliasedMany, "/PGM/Track/AliasedMany", "The number of times we're tracking using cRef2.");
1678 PGM_REG_COUNTER(&pPGM->StatTrackAliasedLots, "/PGM/Track/AliasedLots", "The number of times we're hitting pages which has overflowed cRef2");
1679 PGM_REG_COUNTER(&pPGM->StatTrackOverflows, "/PGM/Track/Overflows", "The number of times the extent list grows too long.");
1680 PGM_REG_PROFILE(&pPGM->StatTrackDeref, "/PGM/Track/Deref", "Profiling of SyncPageWorkerTrackDeref (expensive).");
1681# endif
1682
1683# undef PGM_REG_COUNTER
1684# undef PGM_REG_PROFILE
1685#endif
1686
1687 /*
1688 * Note! The layout below matches the member layout exactly!
1689 */
1690
1691 /*
1692 * Common - stats
1693 */
1694 for (VMCPUID idCpu = 0; idCpu < pVM->cCpus; idCpu++)
1695 {
1696 PPGMCPU pPgmCpu = &pVM->aCpus[idCpu].pgm.s;
1697
1698#define PGM_REG_COUNTER(a, b, c) \
1699 rc = STAMR3RegisterF(pVM, a, STAMTYPE_COUNTER, STAMVISIBILITY_ALWAYS, STAMUNIT_OCCURENCES, c, b, idCpu); \
1700 AssertRC(rc);
1701#define PGM_REG_PROFILE(a, b, c) \
1702 rc = STAMR3RegisterF(pVM, a, STAMTYPE_PROFILE, STAMVISIBILITY_ALWAYS, STAMUNIT_TICKS_PER_CALL, c, b, idCpu); \
1703 AssertRC(rc);
1704
1705 PGM_REG_COUNTER(&pPgmCpu->cGuestModeChanges, "/PGM/CPU%u/cGuestModeChanges", "Number of guest mode changes.");
1706
1707#ifdef VBOX_WITH_STATISTICS
1708
1709# if 0 /* rarely useful; leave for debugging. */
1710 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPtPD); j++)
1711 STAMR3RegisterF(pVM, &pPgmCpu->StatSyncPtPD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1712 "The number of SyncPT per PD n.", "/PGM/CPU%u/PDSyncPT/%04X", i, j);
1713 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatSyncPagePD); j++)
1714 STAMR3RegisterF(pVM, &pPgmCpu->StatSyncPagePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1715 "The number of SyncPage per PD n.", "/PGM/CPU%u/PDSyncPage/%04X", i, j);
1716# endif
1717 /* R0 only: */
1718 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapMigrateInvlPg, "/PGM/CPU%u/R0/DynMapMigrateInvlPg", "invlpg count in PGMDynMapMigrateAutoSet.");
1719 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapGCPageInl, "/PGM/CPU%u/R0/DynMapPageGCPageInl", "Calls to pgmR0DynMapGCPageInlined.");
1720 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlHits, "/PGM/CPU%u/R0/DynMapPageGCPageInl/Hits", "Hash table lookup hits.");
1721 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlMisses, "/PGM/CPU%u/R0/DynMapPageGCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1722 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlRamHits, "/PGM/CPU%u/R0/DynMapPageGCPageInl/RamHits", "1st ram range hits.");
1723 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapGCPageInlRamMisses, "/PGM/CPU%u/R0/DynMapPageGCPageInl/RamMisses", "1st ram range misses, takes slow path.");
1724 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapHCPageInl, "/PGM/CPU%u/R0/DynMapPageHCPageInl", "Calls to pgmR0DynMapHCPageInlined.");
1725 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapHCPageInlHits, "/PGM/CPU%u/R0/DynMapPageHCPageInl/Hits", "Hash table lookup hits.");
1726 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapHCPageInlMisses, "/PGM/CPU%u/R0/DynMapPageHCPageInl/Misses", "Misses that falls back to code common with PGMDynMapHCPage.");
1727 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPage, "/PGM/CPU%u/R0/DynMapPage", "Calls to pgmR0DynMapPage");
1728 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetOptimize, "/PGM/CPU%u/R0/DynMapPage/SetOptimize", "Calls to pgmDynMapOptimizeAutoSet.");
1729 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchFlushes, "/PGM/CPU%u/R0/DynMapPage/SetSearchFlushes","Set search restorting to subset flushes.");
1730 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchHits, "/PGM/CPU%u/R0/DynMapPage/SetSearchHits", "Set search hits.");
1731 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSetSearchMisses, "/PGM/CPU%u/R0/DynMapPage/SetSearchMisses", "Set search misses.");
1732 PGM_REG_PROFILE(&pPgmCpu->StatR0DynMapHCPage, "/PGM/CPU%u/R0/DynMapPage/HCPage", "Calls to PGMDynMapHCPage (ring-0).");
1733 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits0, "/PGM/CPU%u/R0/DynMapPage/Hits0", "Hits at iPage+0");
1734 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits1, "/PGM/CPU%u/R0/DynMapPage/Hits1", "Hits at iPage+1");
1735 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageHits2, "/PGM/CPU%u/R0/DynMapPage/Hits2", "Hits at iPage+2");
1736 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageInvlPg, "/PGM/CPU%u/R0/DynMapPage/InvlPg", "invlpg count in pgmR0DynMapPageSlow.");
1737 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlow, "/PGM/CPU%u/R0/DynMapPage/Slow", "Calls to pgmR0DynMapPageSlow - subtract this from pgmR0DynMapPage to get 1st level hits.");
1738 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLoopHits, "/PGM/CPU%u/R0/DynMapPage/SlowLoopHits" , "Hits in the loop path.");
1739 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLoopMisses, "/PGM/CPU%u/R0/DynMapPage/SlowLoopMisses", "Misses in the loop path. NonLoopMisses = Slow - SlowLoopHit - SlowLoopMisses");
1740 //PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPageSlowLostHits, "/PGM/CPU%u/R0/DynMapPage/SlowLostHits", "Lost hits.");
1741 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapSubsets, "/PGM/CPU%u/R0/Subsets", "Times PGMDynMapPushAutoSubset was called.");
1742 PGM_REG_COUNTER(&pPgmCpu->StatR0DynMapPopFlushes, "/PGM/CPU%u/R0/SubsetPopFlushes", "Times PGMDynMapPopAutoSubset flushes the subset.");
1743 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[0], "/PGM/CPU%u/R0/SetSize000..09", "00-09% filled");
1744 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[1], "/PGM/CPU%u/R0/SetSize010..19", "10-19% filled");
1745 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[2], "/PGM/CPU%u/R0/SetSize020..29", "20-29% filled");
1746 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[3], "/PGM/CPU%u/R0/SetSize030..39", "30-39% filled");
1747 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[4], "/PGM/CPU%u/R0/SetSize040..49", "40-49% filled");
1748 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[5], "/PGM/CPU%u/R0/SetSize050..59", "50-59% filled");
1749 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[6], "/PGM/CPU%u/R0/SetSize060..69", "60-69% filled");
1750 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[7], "/PGM/CPU%u/R0/SetSize070..79", "70-79% filled");
1751 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[8], "/PGM/CPU%u/R0/SetSize080..89", "80-89% filled");
1752 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[9], "/PGM/CPU%u/R0/SetSize090..99", "90-99% filled");
1753 PGM_REG_COUNTER(&pPgmCpu->aStatR0DynMapSetSize[10], "/PGM/CPU%u/R0/SetSize100", "100% filled");
1754
1755 /* RZ only: */
1756 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0e, "/PGM/CPU%u/RZ/Trap0e", "Profiling of the PGMTrap0eHandler() body.");
1757 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeCheckPageFault, "/PGM/CPU%u/RZ/Trap0e/Time/CheckPageFault", "Profiling of checking for dirty/access emulation faults.");
1758 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeSyncPT, "/PGM/CPU%u/RZ/Trap0e/Time/SyncPT", "Profiling of lazy page table syncing.");
1759 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeMapping, "/PGM/CPU%u/RZ/Trap0e/Time/Mapping", "Profiling of checking virtual mappings.");
1760 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time/OutOfSync", "Profiling of out of sync page handling.");
1761 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTimeHandlers, "/PGM/CPU%u/RZ/Trap0e/Time/Handlers", "Profiling of checking handlers.");
1762 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2CSAM, "/PGM/CPU%u/RZ/Trap0e/Time2/CSAM", "Profiling of the Trap0eHandler body when the cause is CSAM.");
1763 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2DirtyAndAccessed, "/PGM/CPU%u/RZ/Trap0e/Time2/DirtyAndAccessedBits", "Profiling of the Trap0eHandler body when the cause is dirty and/or accessed bit emulation.");
1764 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2GuestTrap, "/PGM/CPU%u/RZ/Trap0e/Time2/GuestTrap", "Profiling of the Trap0eHandler body when the cause is a guest trap.");
1765 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerPhysical", "Profiling of the Trap0eHandler body when the cause is a physical handler.");
1766 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerVirtual", "Profiling of the Trap0eHandler body when the cause is a virtual handler.");
1767 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2HndUnhandled, "/PGM/CPU%u/RZ/Trap0e/Time2/HandlerUnhandled", "Profiling of the Trap0eHandler body when the cause is access outside the monitored areas of a monitored page.");
1768 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2Misc, "/PGM/CPU%u/RZ/Trap0e/Time2/Misc", "Profiling of the Trap0eHandler body when the cause is not known.");
1769 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSync, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSync", "Profiling of the Trap0eHandler body when the cause is an out-of-sync page.");
1770 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndPhys, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndPhys", "Profiling of the Trap0eHandler body when the cause is an out-of-sync physical handler page.");
1771 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndVirt, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncHndVirt", "Profiling of the Trap0eHandler body when the cause is an out-of-sync virtual handler page.");
1772 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2OutOfSyncHndObs, "/PGM/CPU%u/RZ/Trap0e/Time2/OutOfSyncObsHnd", "Profiling of the Trap0eHandler body when the cause is an obsolete handler page.");
1773 PGM_REG_PROFILE(&pPgmCpu->StatRZTrap0eTime2SyncPT, "/PGM/CPU%u/RZ/Trap0e/Time2/SyncPT", "Profiling of the Trap0eHandler body when the cause is lazy syncing of a PT.");
1774 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eConflicts, "/PGM/CPU%u/RZ/Trap0e/Conflicts", "The number of times #PF was caused by an undetected conflict.");
1775 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersMapping, "/PGM/CPU%u/RZ/Trap0e/Handlers/Mapping", "Number of traps due to access handlers in mappings.");
1776 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersOutOfSync, "/PGM/CPU%u/RZ/Trap0e/Handlers/OutOfSync", "Number of traps due to out-of-sync handled pages.");
1777 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersPhysical, "/PGM/CPU%u/RZ/Trap0e/Handlers/Physical", "Number of traps due to physical access handlers.");
1778 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtual, "/PGM/CPU%u/RZ/Trap0e/Handlers/Virtual", "Number of traps due to virtual access handlers.");
1779 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtualByPhys, "/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualByPhys", "Number of traps due to virtual access handlers by physical address.");
1780 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersVirtualUnmarked,"/PGM/CPU%u/RZ/Trap0e/Handlers/VirtualUnmarked","Number of traps due to virtual access handlers by virtual address (without proper physical flags).");
1781 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersUnhandled, "/PGM/CPU%u/RZ/Trap0e/Handlers/Unhandled", "Number of traps due to access outside range of monitored page(s).");
1782 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eHandlersInvalid, "/PGM/CPU%u/RZ/Trap0e/Handlers/Invalid", "Number of traps due to access to invalid physical memory.");
1783 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPRead", "Number of user mode not present read page faults.");
1784 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/NPWrite", "Number of user mode not present write page faults.");
1785 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSWrite, "/PGM/CPU%u/RZ/Trap0e/Err/User/Write", "Number of user mode write page faults.");
1786 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSReserved, "/PGM/CPU%u/RZ/Trap0e/Err/User/Reserved", "Number of user mode reserved bit page faults.");
1787 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/User/NXE", "Number of user mode NXE page faults.");
1788 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eUSRead, "/PGM/CPU%u/RZ/Trap0e/Err/User/Read", "Number of user mode read page faults.");
1789 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVNotPresentRead, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPRead", "Number of supervisor mode not present read page faults.");
1790 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVNotPresentWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NPWrite", "Number of supervisor mode not present write page faults.");
1791 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVWrite, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Write", "Number of supervisor mode write page faults.");
1792 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSVReserved, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/Reserved", "Number of supervisor mode reserved bit page faults.");
1793 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eSNXE, "/PGM/CPU%u/RZ/Trap0e/Err/Supervisor/NXE", "Number of supervisor mode NXE page faults.");
1794 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPF, "/PGM/CPU%u/RZ/Trap0e/GuestPF", "Number of real guest page faults.");
1795 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPFUnh, "/PGM/CPU%u/RZ/Trap0e/GuestPF/Unhandled", "Number of real guest page faults from the 'unhandled' case.");
1796 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eGuestPFMapping, "/PGM/CPU%u/RZ/Trap0e/GuestPF/InMapping", "Number of real guest page faults in a mapping.");
1797 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eWPEmulInRZ, "/PGM/CPU%u/RZ/Trap0e/WP/InRZ", "Number of guest page faults due to X86_CR0_WP emulation.");
1798 PGM_REG_COUNTER(&pPgmCpu->StatRZTrap0eWPEmulToR3, "/PGM/CPU%u/RZ/Trap0e/WP/ToR3", "Number of guest page faults due to X86_CR0_WP emulation (forward to R3 for emulation).");
1799#if 0 /* rarely useful; leave for debugging. */
1800 for (unsigned j = 0; j < RT_ELEMENTS(pPgmCpu->StatRZTrap0ePD); j++)
1801 STAMR3RegisterF(pVM, &pPgmCpu->StatRZTrap0ePD[i], STAMTYPE_COUNTER, STAMVISIBILITY_USED, STAMUNIT_OCCURENCES,
1802 "The number of traps in page directory n.", "/PGM/CPU%u/RZ/Trap0e/PD/%04X", i, j);
1803#endif
1804 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteHandled, "/PGM/CPU%u/RZ/CR3WriteHandled", "The number of times the Guest CR3 change was successfully handled.");
1805 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteUnhandled, "/PGM/CPU%u/RZ/CR3WriteUnhandled", "The number of times the Guest CR3 change was passed back to the recompiler.");
1806 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestCR3WriteConflict, "/PGM/CPU%u/RZ/CR3WriteConflict", "The number of times the Guest CR3 monitoring detected a conflict.");
1807 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestROMWriteHandled, "/PGM/CPU%u/RZ/ROMWriteHandled", "The number of times the Guest ROM change was successfully handled.");
1808 PGM_REG_COUNTER(&pPgmCpu->StatRZGuestROMWriteUnhandled, "/PGM/CPU%u/RZ/ROMWriteUnhandled", "The number of times the Guest ROM change was passed back to the recompiler.");
1809
1810 /* HC only: */
1811
1812 /* RZ & R3: */
1813 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncCR3, "/PGM/CPU%u/RZ/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1814 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncCR3Handlers, "/PGM/CPU%u/RZ/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1815 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3Global, "/PGM/CPU%u/RZ/SyncCR3/Global", "The number of global CR3 syncs.");
1816 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3NotGlobal, "/PGM/CPU%u/RZ/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1817 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstCacheHit, "/PGM/CPU%u/RZ/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1818 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstFreed, "/PGM/CPU%u/RZ/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1819 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstFreedSrcNP, "/PGM/CPU%u/RZ/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1820 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstNotPresent, "/PGM/CPU%u/RZ/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1821 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1822 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/RZ/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1823 PGM_REG_PROFILE(&pPgmCpu->StatRZSyncPT, "/PGM/CPU%u/RZ/SyncPT", "Profiling of the pfnSyncPT() body.");
1824 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPTFailed, "/PGM/CPU%u/RZ/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1825 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPT4K, "/PGM/CPU%u/RZ/SyncPT/4K", "Nr of 4K PT syncs");
1826 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPT4M, "/PGM/CPU%u/RZ/SyncPT/4M", "Nr of 4M PT syncs");
1827 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPagePDNAs, "/PGM/CPU%u/RZ/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1828 PGM_REG_COUNTER(&pPgmCpu->StatRZSyncPagePDOutOfSync, "/PGM/CPU%u/RZ/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1829 PGM_REG_COUNTER(&pPgmCpu->StatRZAccessedPage, "/PGM/CPU%u/RZ/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1830 PGM_REG_PROFILE(&pPgmCpu->StatRZDirtyBitTracking, "/PGM/CPU%u/RZ/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1831 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPage, "/PGM/CPU%u/RZ/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1832 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageBig, "/PGM/CPU%u/RZ/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1833 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageSkipped, "/PGM/CPU%u/RZ/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1834 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageTrap, "/PGM/CPU%u/RZ/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1835 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyPageStale, "/PGM/CPU%u/RZ/DirtyPage/Stale", "The number of traps generated for dirty bit tracking (stale tlb entries).");
1836 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtiedPage, "/PGM/CPU%u/RZ/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1837 PGM_REG_COUNTER(&pPgmCpu->StatRZDirtyTrackRealPF, "/PGM/CPU%u/RZ/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1838 PGM_REG_COUNTER(&pPgmCpu->StatRZPageAlreadyDirty, "/PGM/CPU%u/RZ/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1839 PGM_REG_PROFILE(&pPgmCpu->StatRZInvalidatePage, "/PGM/CPU%u/RZ/InvalidatePage", "PGMInvalidatePage() profiling.");
1840 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4KBPages, "/PGM/CPU%u/RZ/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1841 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4MBPages, "/PGM/CPU%u/RZ/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1842 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePage4MBPagesSkip, "/PGM/CPU%u/RZ/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1843 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDMappings, "/PGM/CPU%u/RZ/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1844 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDNAs, "/PGM/CPU%u/RZ/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1845 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDNPs, "/PGM/CPU%u/RZ/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1846 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePagePDOutOfSync, "/PGM/CPU%u/RZ/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1847 PGM_REG_COUNTER(&pPgmCpu->StatRZInvalidatePageSkipped, "/PGM/CPU%u/RZ/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1848 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncSupervisor, "/PGM/CPU%u/RZ/OutOfSync/SuperVisor", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1849 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncUser, "/PGM/CPU%u/RZ/OutOfSync/User", "Number of traps due to pages out of sync (P) and times VerifyAccessSyncPage calls SyncPage.");
1850 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncSupervisorWrite,"/PGM/CPU%u/RZ/OutOfSync/SuperVisorWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1851 PGM_REG_COUNTER(&pPgmCpu->StatRZPageOutOfSyncUserWrite, "/PGM/CPU%u/RZ/OutOfSync/UserWrite", "Number of traps due to pages out of sync (RW) and times VerifyAccessSyncPage calls SyncPage.");
1852 PGM_REG_PROFILE(&pPgmCpu->StatRZPrefetch, "/PGM/CPU%u/RZ/Prefetch", "PGMPrefetchPage profiling.");
1853 PGM_REG_PROFILE(&pPgmCpu->StatRZFlushTLB, "/PGM/CPU%u/RZ/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1854 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBNewCR3, "/PGM/CPU%u/RZ/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1855 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBNewCR3Global, "/PGM/CPU%u/RZ/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1856 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBSameCR3, "/PGM/CPU%u/RZ/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1857 PGM_REG_COUNTER(&pPgmCpu->StatRZFlushTLBSameCR3Global, "/PGM/CPU%u/RZ/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1858 PGM_REG_PROFILE(&pPgmCpu->StatRZGstModifyPage, "/PGM/CPU%u/RZ/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1859
1860 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncCR3, "/PGM/CPU%u/R3/SyncCR3", "Profiling of the PGMSyncCR3() body.");
1861 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncCR3Handlers, "/PGM/CPU%u/R3/SyncCR3/Handlers", "Profiling of the PGMSyncCR3() update handler section.");
1862 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3Global, "/PGM/CPU%u/R3/SyncCR3/Global", "The number of global CR3 syncs.");
1863 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3NotGlobal, "/PGM/CPU%u/R3/SyncCR3/NotGlobal", "The number of non-global CR3 syncs.");
1864 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstCacheHit, "/PGM/CPU%u/R3/SyncCR3/DstChacheHit", "The number of times we got some kind of a cache hit.");
1865 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstFreed, "/PGM/CPU%u/R3/SyncCR3/DstFreed", "The number of times we've had to free a shadow entry.");
1866 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstFreedSrcNP, "/PGM/CPU%u/R3/SyncCR3/DstFreedSrcNP", "The number of times we've had to free a shadow entry for which the source entry was not present.");
1867 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstNotPresent, "/PGM/CPU%u/R3/SyncCR3/DstNotPresent", "The number of times we've encountered a not present shadow entry for a present guest entry.");
1868 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstSkippedGlobalPD, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPD", "The number of times a global page directory wasn't flushed.");
1869 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncCR3DstSkippedGlobalPT, "/PGM/CPU%u/R3/SyncCR3/DstSkippedGlobalPT", "The number of times a page table with only global entries wasn't flushed.");
1870 PGM_REG_PROFILE(&pPgmCpu->StatR3SyncPT, "/PGM/CPU%u/R3/SyncPT", "Profiling of the pfnSyncPT() body.");
1871 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPTFailed, "/PGM/CPU%u/R3/SyncPT/Failed", "The number of times pfnSyncPT() failed.");
1872 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPT4K, "/PGM/CPU%u/R3/SyncPT/4K", "Nr of 4K PT syncs");
1873 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPT4M, "/PGM/CPU%u/R3/SyncPT/4M", "Nr of 4M PT syncs");
1874 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPagePDNAs, "/PGM/CPU%u/R3/SyncPagePDNAs", "The number of time we've marked a PD not present from SyncPage to virtualize the accessed bit.");
1875 PGM_REG_COUNTER(&pPgmCpu->StatR3SyncPagePDOutOfSync, "/PGM/CPU%u/R3/SyncPagePDOutOfSync", "The number of time we've encountered an out-of-sync PD in SyncPage.");
1876 PGM_REG_COUNTER(&pPgmCpu->StatR3AccessedPage, "/PGM/CPU%u/R3/AccessedPage", "The number of pages marked not present for accessed bit emulation.");
1877 PGM_REG_PROFILE(&pPgmCpu->StatR3DirtyBitTracking, "/PGM/CPU%u/R3/DirtyPage", "Profiling the dirty bit tracking in CheckPageFault().");
1878 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPage, "/PGM/CPU%u/R3/DirtyPage/Mark", "The number of pages marked read-only for dirty bit tracking.");
1879 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageBig, "/PGM/CPU%u/R3/DirtyPage/MarkBig", "The number of 4MB pages marked read-only for dirty bit tracking.");
1880 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageSkipped, "/PGM/CPU%u/R3/DirtyPage/Skipped", "The number of pages already dirty or readonly.");
1881 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyPageTrap, "/PGM/CPU%u/R3/DirtyPage/Trap", "The number of traps generated for dirty bit tracking.");
1882 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtiedPage, "/PGM/CPU%u/R3/DirtyPage/SetDirty", "The number of pages marked dirty because of write accesses.");
1883 PGM_REG_COUNTER(&pPgmCpu->StatR3DirtyTrackRealPF, "/PGM/CPU%u/R3/DirtyPage/RealPF", "The number of real pages faults during dirty bit tracking.");
1884 PGM_REG_COUNTER(&pPgmCpu->StatR3PageAlreadyDirty, "/PGM/CPU%u/R3/DirtyPage/AlreadySet", "The number of pages already marked dirty because of write accesses.");
1885 PGM_REG_PROFILE(&pPgmCpu->StatR3InvalidatePage, "/PGM/CPU%u/R3/InvalidatePage", "PGMInvalidatePage() profiling.");
1886 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4KBPages, "/PGM/CPU%u/R3/InvalidatePage/4KBPages", "The number of times PGMInvalidatePage() was called for a 4KB page.");
1887 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4MBPages, "/PGM/CPU%u/R3/InvalidatePage/4MBPages", "The number of times PGMInvalidatePage() was called for a 4MB page.");
1888 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePage4MBPagesSkip, "/PGM/CPU%u/R3/InvalidatePage/4MBPagesSkip","The number of times PGMInvalidatePage() skipped a 4MB page.");
1889 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDMappings, "/PGM/CPU%u/R3/InvalidatePage/PDMappings", "The number of times PGMInvalidatePage() was called for a page directory containing mappings (no conflict).");
1890 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDNAs, "/PGM/CPU%u/R3/InvalidatePage/PDNAs", "The number of times PGMInvalidatePage() was called for a not accessed page directory.");
1891 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDNPs, "/PGM/CPU%u/R3/InvalidatePage/PDNPs", "The number of times PGMInvalidatePage() was called for a not present page directory.");
1892 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePagePDOutOfSync, "/PGM/CPU%u/R3/InvalidatePage/PDOutOfSync", "The number of times PGMInvalidatePage() was called for an out of sync page directory.");
1893 PGM_REG_COUNTER(&pPgmCpu->StatR3InvalidatePageSkipped, "/PGM/CPU%u/R3/InvalidatePage/Skipped", "The number of times PGMInvalidatePage() was skipped due to not present shw or pending pending SyncCR3.");
1894 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncSupervisor, "/PGM/CPU%u/R3/OutOfSync/SuperVisor", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1895 PGM_REG_COUNTER(&pPgmCpu->StatR3PageOutOfSyncUser, "/PGM/CPU%u/R3/OutOfSync/User", "Number of traps due to pages out of sync and times VerifyAccessSyncPage calls SyncPage.");
1896 PGM_REG_PROFILE(&pPgmCpu->StatR3Prefetch, "/PGM/CPU%u/R3/Prefetch", "PGMPrefetchPage profiling.");
1897 PGM_REG_PROFILE(&pPgmCpu->StatR3FlushTLB, "/PGM/CPU%u/R3/FlushTLB", "Profiling of the PGMFlushTLB() body.");
1898 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBNewCR3, "/PGM/CPU%u/R3/FlushTLB/NewCR3", "The number of times PGMFlushTLB was called with a new CR3, non-global. (switch)");
1899 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBNewCR3Global, "/PGM/CPU%u/R3/FlushTLB/NewCR3Global", "The number of times PGMFlushTLB was called with a new CR3, global. (switch)");
1900 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBSameCR3, "/PGM/CPU%u/R3/FlushTLB/SameCR3", "The number of times PGMFlushTLB was called with the same CR3, non-global. (flush)");
1901 PGM_REG_COUNTER(&pPgmCpu->StatR3FlushTLBSameCR3Global, "/PGM/CPU%u/R3/FlushTLB/SameCR3Global", "The number of times PGMFlushTLB was called with the same CR3, global. (flush)");
1902 PGM_REG_PROFILE(&pPgmCpu->StatR3GstModifyPage, "/PGM/CPU%u/R3/GstModifyPage", "Profiling of the PGMGstModifyPage() body.");
1903#endif /* VBOX_WITH_STATISTICS */
1904
1905#undef PGM_REG_PROFILE
1906#undef PGM_REG_COUNTER
1907
1908 }
1909}
1910
1911
1912/**
1913 * Init the PGM bits that rely on VMMR0 and MM to be fully initialized.
1914 *
1915 * The dynamic mapping area will also be allocated and initialized at this
1916 * time. We could allocate it during PGMR3Init of course, but the mapping
1917 * wouldn't be allocated at that time preventing us from setting up the
1918 * page table entries with the dummy page.
1919 *
1920 * @returns VBox status code.
1921 * @param pVM VM handle.
1922 */
1923VMMR3DECL(int) PGMR3InitDynMap(PVM pVM)
1924{
1925 RTGCPTR GCPtr;
1926 int rc;
1927
1928 /*
1929 * Reserve space for the dynamic mappings.
1930 */
1931 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping", &GCPtr);
1932 if (RT_SUCCESS(rc))
1933 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1934
1935 if ( RT_SUCCESS(rc)
1936 && (pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) != ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT))
1937 {
1938 rc = MMR3HyperReserve(pVM, MM_HYPER_DYNAMIC_SIZE, "Dynamic mapping not crossing", &GCPtr);
1939 if (RT_SUCCESS(rc))
1940 pVM->pgm.s.pbDynPageMapBaseGC = GCPtr;
1941 }
1942 if (RT_SUCCESS(rc))
1943 {
1944 AssertRelease((pVM->pgm.s.pbDynPageMapBaseGC >> X86_PD_PAE_SHIFT) == ((pVM->pgm.s.pbDynPageMapBaseGC + MM_HYPER_DYNAMIC_SIZE - 1) >> X86_PD_PAE_SHIFT));
1945 MMR3HyperReserve(pVM, PAGE_SIZE, "fence", NULL);
1946 }
1947 return rc;
1948}
1949
1950
1951/**
1952 * Ring-3 init finalizing.
1953 *
1954 * @returns VBox status code.
1955 * @param pVM The VM handle.
1956 */
1957VMMR3DECL(int) PGMR3InitFinalize(PVM pVM)
1958{
1959 int rc;
1960
1961 /*
1962 * Reserve space for the dynamic mappings.
1963 * Initialize the dynamic mapping pages with dummy pages to simply the cache.
1964 */
1965 /* get the pointer to the page table entries. */
1966 PPGMMAPPING pMapping = pgmGetMapping(pVM, pVM->pgm.s.pbDynPageMapBaseGC);
1967 AssertRelease(pMapping);
1968 const uintptr_t off = pVM->pgm.s.pbDynPageMapBaseGC - pMapping->GCPtr;
1969 const unsigned iPT = off >> X86_PD_SHIFT;
1970 const unsigned iPG = (off >> X86_PT_SHIFT) & X86_PT_MASK;
1971 pVM->pgm.s.paDynPageMap32BitPTEsGC = pMapping->aPTs[iPT].pPTRC + iPG * sizeof(pMapping->aPTs[0].pPTR3->a[0]);
1972 pVM->pgm.s.paDynPageMapPaePTEsGC = pMapping->aPTs[iPT].paPaePTsRC + iPG * sizeof(pMapping->aPTs[0].paPaePTsR3->a[0]);
1973
1974 /* init cache */
1975 RTHCPHYS HCPhysDummy = MMR3PageDummyHCPhys(pVM);
1976 for (unsigned i = 0; i < RT_ELEMENTS(pVM->pgm.s.aHCPhysDynPageMapCache); i++)
1977 pVM->pgm.s.aHCPhysDynPageMapCache[i] = HCPhysDummy;
1978
1979 for (unsigned i = 0; i < MM_HYPER_DYNAMIC_SIZE; i += PAGE_SIZE)
1980 {
1981 rc = PGMMap(pVM, pVM->pgm.s.pbDynPageMapBaseGC + i, HCPhysDummy, PAGE_SIZE, 0);
1982 AssertRCReturn(rc, rc);
1983 }
1984
1985 /*
1986 * Note that AMD uses all the 8 reserved bits for the address (so 40 bits in total);
1987 * Intel only goes up to 36 bits, so we stick to 36 as well.
1988 */
1989 /** @todo How to test for the 40 bits support? Long mode seems to be the test criterium. */
1990 uint32_t u32Dummy, u32Features;
1991 CPUMGetGuestCpuId(VMMGetCpu(pVM), 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
1992
1993 if (u32Features & X86_CPUID_FEATURE_EDX_PSE36)
1994 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(36) - 1;
1995 else
1996 pVM->pgm.s.GCPhys4MBPSEMask = RT_BIT_64(32) - 1;
1997
1998 /*
1999 * Allocate memory if we're supposed to do that.
2000 */
2001 if (pVM->pgm.s.fRamPreAlloc)
2002 rc = pgmR3PhysRamPreAllocate(pVM);
2003
2004 LogRel(("PGMR3InitFinalize: 4 MB PSE mask %RGp\n", pVM->pgm.s.GCPhys4MBPSEMask));
2005 return rc;
2006}
2007
2008
2009/**
2010 * Applies relocations to data and code managed by this component.
2011 *
2012 * This function will be called at init and whenever the VMM need to relocate it
2013 * self inside the GC.
2014 *
2015 * @param pVM The VM.
2016 * @param offDelta Relocation delta relative to old location.
2017 */
2018VMMR3DECL(void) PGMR3Relocate(PVM pVM, RTGCINTPTR offDelta)
2019{
2020 LogFlow(("PGMR3Relocate %RGv to %RGv\n", pVM->pgm.s.GCPtrCR3Mapping, pVM->pgm.s.GCPtrCR3Mapping + offDelta));
2021
2022 /*
2023 * Paging stuff.
2024 */
2025 pVM->pgm.s.GCPtrCR3Mapping += offDelta;
2026
2027 pgmR3ModeDataInit(pVM, true /* resolve GC/R0 symbols */);
2028
2029 /* Shadow, guest and both mode switch & relocation for each VCPU. */
2030 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2031 {
2032 PVMCPU pVCpu = &pVM->aCpus[i];
2033
2034 pgmR3ModeDataSwitch(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
2035
2036 PGM_SHW_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2037 PGM_GST_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2038 PGM_BTH_PFN(Relocate, pVCpu)(pVCpu, offDelta);
2039 }
2040
2041 /*
2042 * Trees.
2043 */
2044 pVM->pgm.s.pTreesRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pTreesR3);
2045
2046 /*
2047 * Ram ranges.
2048 */
2049 if (pVM->pgm.s.pRamRangesR3)
2050 {
2051 /* Update the pSelfRC pointers and relink them. */
2052 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2053 if (!(pCur->fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2054 pCur->pSelfRC = MMHyperCCToRC(pVM, pCur);
2055 pgmR3PhysRelinkRamRanges(pVM);
2056 }
2057
2058 /*
2059 * Update the pSelfRC pointer of the MMIO2 ram ranges since they might not
2060 * be mapped and thus not included in the above exercise.
2061 */
2062 for (PPGMMMIO2RANGE pCur = pVM->pgm.s.pMmio2RangesR3; pCur; pCur = pCur->pNextR3)
2063 if (!(pCur->RamRange.fFlags & PGM_RAM_RANGE_FLAGS_FLOATING))
2064 pCur->RamRange.pSelfRC = MMHyperCCToRC(pVM, &pCur->RamRange);
2065
2066 /*
2067 * Update the two page directories with all page table mappings.
2068 * (One or more of them have changed, that's why we're here.)
2069 */
2070 pVM->pgm.s.pMappingsRC = MMHyperR3ToRC(pVM, pVM->pgm.s.pMappingsR3);
2071 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur->pNextR3; pCur = pCur->pNextR3)
2072 pCur->pNextRC = MMHyperR3ToRC(pVM, pCur->pNextR3);
2073
2074 /* Relocate GC addresses of Page Tables. */
2075 for (PPGMMAPPING pCur = pVM->pgm.s.pMappingsR3; pCur; pCur = pCur->pNextR3)
2076 {
2077 for (RTHCUINT i = 0; i < pCur->cPTs; i++)
2078 {
2079 pCur->aPTs[i].pPTRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].pPTR3);
2080 pCur->aPTs[i].paPaePTsRC = MMHyperR3ToRC(pVM, pCur->aPTs[i].paPaePTsR3);
2081 }
2082 }
2083
2084 /*
2085 * Dynamic page mapping area.
2086 */
2087 pVM->pgm.s.paDynPageMap32BitPTEsGC += offDelta;
2088 pVM->pgm.s.paDynPageMapPaePTEsGC += offDelta;
2089 pVM->pgm.s.pbDynPageMapBaseGC += offDelta;
2090
2091 /*
2092 * The Zero page.
2093 */
2094 pVM->pgm.s.pvZeroPgR0 = MMHyperR3ToR0(pVM, pVM->pgm.s.pvZeroPgR3);
2095#ifdef VBOX_WITH_2X_4GB_ADDR_SPACE
2096 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR || !VMMIsHwVirtExtForced(pVM));
2097#else
2098 AssertRelease(pVM->pgm.s.pvZeroPgR0 != NIL_RTR0PTR);
2099#endif
2100
2101 /*
2102 * Physical and virtual handlers.
2103 */
2104 RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3RelocatePhysHandler, &offDelta);
2105 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3RelocateVirtHandler, &offDelta);
2106 RTAvlroGCPtrDoWithAll(&pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3RelocateHyperVirtHandler, &offDelta);
2107
2108 /*
2109 * The page pool.
2110 */
2111 pgmR3PoolRelocate(pVM);
2112}
2113
2114
2115/**
2116 * Callback function for relocating a physical access handler.
2117 *
2118 * @returns 0 (continue enum)
2119 * @param pNode Pointer to a PGMPHYSHANDLER node.
2120 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2121 * not certain the delta will fit in a void pointer for all possible configs.
2122 */
2123static DECLCALLBACK(int) pgmR3RelocatePhysHandler(PAVLROGCPHYSNODECORE pNode, void *pvUser)
2124{
2125 PPGMPHYSHANDLER pHandler = (PPGMPHYSHANDLER)pNode;
2126 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2127 if (pHandler->pfnHandlerRC)
2128 pHandler->pfnHandlerRC += offDelta;
2129 if (pHandler->pvUserRC >= 0x10000)
2130 pHandler->pvUserRC += offDelta;
2131 return 0;
2132}
2133
2134
2135/**
2136 * Callback function for relocating a virtual access handler.
2137 *
2138 * @returns 0 (continue enum)
2139 * @param pNode Pointer to a PGMVIRTHANDLER node.
2140 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2141 * not certain the delta will fit in a void pointer for all possible configs.
2142 */
2143static DECLCALLBACK(int) pgmR3RelocateVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2144{
2145 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2146 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2147 Assert( pHandler->enmType == PGMVIRTHANDLERTYPE_ALL
2148 || pHandler->enmType == PGMVIRTHANDLERTYPE_WRITE);
2149 Assert(pHandler->pfnHandlerRC);
2150 pHandler->pfnHandlerRC += offDelta;
2151 return 0;
2152}
2153
2154
2155/**
2156 * Callback function for relocating a virtual access handler for the hypervisor mapping.
2157 *
2158 * @returns 0 (continue enum)
2159 * @param pNode Pointer to a PGMVIRTHANDLER node.
2160 * @param pvUser Pointer to the offDelta. This is a pointer to the delta since we're
2161 * not certain the delta will fit in a void pointer for all possible configs.
2162 */
2163static DECLCALLBACK(int) pgmR3RelocateHyperVirtHandler(PAVLROGCPTRNODECORE pNode, void *pvUser)
2164{
2165 PPGMVIRTHANDLER pHandler = (PPGMVIRTHANDLER)pNode;
2166 RTGCINTPTR offDelta = *(PRTGCINTPTR)pvUser;
2167 Assert(pHandler->enmType == PGMVIRTHANDLERTYPE_HYPERVISOR);
2168 Assert(pHandler->pfnHandlerRC);
2169 pHandler->pfnHandlerRC += offDelta;
2170 return 0;
2171}
2172
2173
2174/**
2175 * Resets a virtual CPU when unplugged.
2176 *
2177 * @param pVM The VM handle.
2178 * @param pVCpu The virtual CPU handle.
2179 */
2180VMMR3DECL(void) PGMR3ResetUnpluggedCpu(PVM pVM, PVMCPU pVCpu)
2181{
2182 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2183 AssertRC(rc);
2184
2185 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2186 AssertRC(rc);
2187
2188 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2189
2190 pgmR3PoolResetUnpluggedCpu(pVM, pVCpu);
2191
2192 /*
2193 * Re-init other members.
2194 */
2195 pVCpu->pgm.s.fA20Enabled = true;
2196
2197 /*
2198 * Clear the FFs PGM owns.
2199 */
2200 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2201 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2202}
2203
2204
2205/**
2206 * The VM is being reset.
2207 *
2208 * For the PGM component this means that any PD write monitors
2209 * needs to be removed.
2210 *
2211 * @param pVM VM handle.
2212 */
2213VMMR3DECL(void) PGMR3Reset(PVM pVM)
2214{
2215 int rc;
2216
2217 LogFlow(("PGMR3Reset:\n"));
2218 VM_ASSERT_EMT(pVM);
2219
2220 pgmLock(pVM);
2221
2222 /*
2223 * Unfix any fixed mappings and disable CR3 monitoring.
2224 */
2225 pVM->pgm.s.fMappingsFixed = false;
2226 pVM->pgm.s.fMappingsFixedRestored = false;
2227 pVM->pgm.s.GCPtrMappingFixed = NIL_RTGCPTR;
2228 pVM->pgm.s.cbMappingFixed = 0;
2229
2230 /*
2231 * Exit the guest paging mode before the pgm pool gets reset.
2232 * Important to clean up the amd64 case.
2233 */
2234 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2235 {
2236 PVMCPU pVCpu = &pVM->aCpus[i];
2237 rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
2238 AssertRC(rc);
2239 }
2240
2241#ifdef DEBUG
2242 DBGFR3InfoLog(pVM, "mappings", NULL);
2243 DBGFR3InfoLog(pVM, "handlers", "all nostat");
2244#endif
2245
2246 /*
2247 * Switch mode back to real mode. (before resetting the pgm pool!)
2248 */
2249 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2250 {
2251 PVMCPU pVCpu = &pVM->aCpus[i];
2252
2253 rc = PGMR3ChangeMode(pVM, pVCpu, PGMMODE_REAL);
2254 AssertRC(rc);
2255
2256 STAM_REL_COUNTER_RESET(&pVCpu->pgm.s.cGuestModeChanges);
2257 }
2258
2259 /*
2260 * Reset the shadow page pool.
2261 */
2262 pgmR3PoolReset(pVM);
2263
2264 for (VMCPUID i = 0; i < pVM->cCpus; i++)
2265 {
2266 PVMCPU pVCpu = &pVM->aCpus[i];
2267
2268 /*
2269 * Re-init other members.
2270 */
2271 pVCpu->pgm.s.fA20Enabled = true;
2272
2273 /*
2274 * Clear the FFs PGM owns.
2275 */
2276 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
2277 VMCPU_FF_CLEAR(pVCpu, VMCPU_FF_PGM_SYNC_CR3_NON_GLOBAL);
2278 }
2279
2280 /*
2281 * Reset (zero) RAM pages.
2282 */
2283 rc = pgmR3PhysRamReset(pVM);
2284 if (RT_SUCCESS(rc))
2285 {
2286 /*
2287 * Reset (zero) shadow ROM pages.
2288 */
2289 rc = pgmR3PhysRomReset(pVM);
2290 }
2291
2292 pgmUnlock(pVM);
2293 //return rc;
2294 AssertReleaseRC(rc);
2295}
2296
2297
2298#ifdef VBOX_STRICT
2299/**
2300 * VM state change callback for clearing fNoMorePhysWrites after
2301 * a snapshot has been created.
2302 */
2303static DECLCALLBACK(void) pgmR3ResetNoMorePhysWritesFlag(PVM pVM, VMSTATE enmState, VMSTATE enmOldState, void *pvUser)
2304{
2305 if ( enmState == VMSTATE_RUNNING
2306 || enmState == VMSTATE_RESUMING)
2307 pVM->pgm.s.fNoMorePhysWrites = false;
2308}
2309#endif
2310
2311
2312/**
2313 * Terminates the PGM.
2314 *
2315 * @returns VBox status code.
2316 * @param pVM Pointer to VM structure.
2317 */
2318VMMR3DECL(int) PGMR3Term(PVM pVM)
2319{
2320 PGMDeregisterStringFormatTypes();
2321 return PDMR3CritSectDelete(&pVM->pgm.s.CritSect);
2322}
2323
2324
2325/**
2326 * Terminates the per-VCPU PGM.
2327 *
2328 * Termination means cleaning up and freeing all resources,
2329 * the VM it self is at this point powered off or suspended.
2330 *
2331 * @returns VBox status code.
2332 * @param pVM The VM to operate on.
2333 */
2334VMMR3DECL(int) PGMR3TermCPU(PVM pVM)
2335{
2336 return 0;
2337}
2338
2339
2340/**
2341 * Show paging mode.
2342 *
2343 * @param pVM VM Handle.
2344 * @param pHlp The info helpers.
2345 * @param pszArgs "all" (default), "guest", "shadow" or "host".
2346 */
2347static DECLCALLBACK(void) pgmR3InfoMode(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2348{
2349 /* digest argument. */
2350 bool fGuest, fShadow, fHost;
2351 if (pszArgs)
2352 pszArgs = RTStrStripL(pszArgs);
2353 if (!pszArgs || !*pszArgs || strstr(pszArgs, "all"))
2354 fShadow = fHost = fGuest = true;
2355 else
2356 {
2357 fShadow = fHost = fGuest = false;
2358 if (strstr(pszArgs, "guest"))
2359 fGuest = true;
2360 if (strstr(pszArgs, "shadow"))
2361 fShadow = true;
2362 if (strstr(pszArgs, "host"))
2363 fHost = true;
2364 }
2365
2366 /** @todo SMP support! */
2367 /* print info. */
2368 if (fGuest)
2369 pHlp->pfnPrintf(pHlp, "Guest paging mode: %s, changed %RU64 times, A20 %s\n",
2370 PGMGetModeName(pVM->aCpus[0].pgm.s.enmGuestMode), pVM->aCpus[0].pgm.s.cGuestModeChanges.c,
2371 pVM->aCpus[0].pgm.s.fA20Enabled ? "enabled" : "disabled");
2372 if (fShadow)
2373 pHlp->pfnPrintf(pHlp, "Shadow paging mode: %s\n", PGMGetModeName(pVM->aCpus[0].pgm.s.enmShadowMode));
2374 if (fHost)
2375 {
2376 const char *psz;
2377 switch (pVM->pgm.s.enmHostMode)
2378 {
2379 case SUPPAGINGMODE_INVALID: psz = "invalid"; break;
2380 case SUPPAGINGMODE_32_BIT: psz = "32-bit"; break;
2381 case SUPPAGINGMODE_32_BIT_GLOBAL: psz = "32-bit+G"; break;
2382 case SUPPAGINGMODE_PAE: psz = "PAE"; break;
2383 case SUPPAGINGMODE_PAE_GLOBAL: psz = "PAE+G"; break;
2384 case SUPPAGINGMODE_PAE_NX: psz = "PAE+NX"; break;
2385 case SUPPAGINGMODE_PAE_GLOBAL_NX: psz = "PAE+G+NX"; break;
2386 case SUPPAGINGMODE_AMD64: psz = "AMD64"; break;
2387 case SUPPAGINGMODE_AMD64_GLOBAL: psz = "AMD64+G"; break;
2388 case SUPPAGINGMODE_AMD64_NX: psz = "AMD64+NX"; break;
2389 case SUPPAGINGMODE_AMD64_GLOBAL_NX: psz = "AMD64+G+NX"; break;
2390 default: psz = "unknown"; break;
2391 }
2392 pHlp->pfnPrintf(pHlp, "Host paging mode: %s\n", psz);
2393 }
2394}
2395
2396
2397/**
2398 * Dump registered MMIO ranges to the log.
2399 *
2400 * @param pVM VM Handle.
2401 * @param pHlp The info helpers.
2402 * @param pszArgs Arguments, ignored.
2403 */
2404static DECLCALLBACK(void) pgmR3PhysInfo(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2405{
2406 NOREF(pszArgs);
2407 pHlp->pfnPrintf(pHlp,
2408 "RAM ranges (pVM=%p)\n"
2409 "%.*s %.*s\n",
2410 pVM,
2411 sizeof(RTGCPHYS) * 4 + 1, "GC Phys Range ",
2412 sizeof(RTHCPTR) * 2, "pvHC ");
2413
2414 for (PPGMRAMRANGE pCur = pVM->pgm.s.pRamRangesR3; pCur; pCur = pCur->pNextR3)
2415 pHlp->pfnPrintf(pHlp,
2416 "%RGp-%RGp %RHv %s\n",
2417 pCur->GCPhys,
2418 pCur->GCPhysLast,
2419 pCur->pvR3,
2420 pCur->pszDesc);
2421}
2422
2423/**
2424 * Dump the page directory to the log.
2425 *
2426 * @param pVM VM Handle.
2427 * @param pHlp The info helpers.
2428 * @param pszArgs Arguments, ignored.
2429 */
2430static DECLCALLBACK(void) pgmR3InfoCr3(PVM pVM, PCDBGFINFOHLP pHlp, const char *pszArgs)
2431{
2432 /** @todo SMP support!! */
2433 PVMCPU pVCpu = &pVM->aCpus[0];
2434
2435/** @todo fix this! Convert the PGMR3DumpHierarchyHC functions to do guest stuff. */
2436 /* Big pages supported? */
2437 const bool fPSE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PSE);
2438
2439 /* Global pages supported? */
2440 const bool fPGE = !!(CPUMGetGuestCR4(pVCpu) & X86_CR4_PGE);
2441
2442 NOREF(pszArgs);
2443
2444 /*
2445 * Get page directory addresses.
2446 */
2447 PX86PD pPDSrc = pgmGstGet32bitPDPtr(&pVCpu->pgm.s);
2448 Assert(pPDSrc);
2449 Assert(PGMPhysGCPhys2R3PtrAssert(pVM, (RTGCPHYS)(CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK), sizeof(*pPDSrc)) == pPDSrc);
2450
2451 /*
2452 * Iterate the page directory.
2453 */
2454 for (unsigned iPD = 0; iPD < RT_ELEMENTS(pPDSrc->a); iPD++)
2455 {
2456 X86PDE PdeSrc = pPDSrc->a[iPD];
2457 if (PdeSrc.n.u1Present)
2458 {
2459 if (PdeSrc.b.u1Size && fPSE)
2460 pHlp->pfnPrintf(pHlp,
2461 "%04X - %RGp P=%d U=%d RW=%d G=%d - BIG\n",
2462 iPD,
2463 pgmGstGet4MBPhysPage(&pVM->pgm.s, PdeSrc),
2464 PdeSrc.b.u1Present, PdeSrc.b.u1User, PdeSrc.b.u1Write, PdeSrc.b.u1Global && fPGE);
2465 else
2466 pHlp->pfnPrintf(pHlp,
2467 "%04X - %RGp P=%d U=%d RW=%d [G=%d]\n",
2468 iPD,
2469 (RTGCPHYS)(PdeSrc.u & X86_PDE_PG_MASK),
2470 PdeSrc.n.u1Present, PdeSrc.n.u1User, PdeSrc.n.u1Write, PdeSrc.b.u1Global && fPGE);
2471 }
2472 }
2473}
2474
2475
2476/**
2477 * Service a VMMCALLRING3_PGM_LOCK call.
2478 *
2479 * @returns VBox status code.
2480 * @param pVM The VM handle.
2481 */
2482VMMR3DECL(int) PGMR3LockCall(PVM pVM)
2483{
2484 int rc = PDMR3CritSectEnterEx(&pVM->pgm.s.CritSect, true /* fHostCall */);
2485 AssertRC(rc);
2486 return rc;
2487}
2488
2489
2490/**
2491 * Converts a PGMMODE value to a PGM_TYPE_* \#define.
2492 *
2493 * @returns PGM_TYPE_*.
2494 * @param pgmMode The mode value to convert.
2495 */
2496DECLINLINE(unsigned) pgmModeToType(PGMMODE pgmMode)
2497{
2498 switch (pgmMode)
2499 {
2500 case PGMMODE_REAL: return PGM_TYPE_REAL;
2501 case PGMMODE_PROTECTED: return PGM_TYPE_PROT;
2502 case PGMMODE_32_BIT: return PGM_TYPE_32BIT;
2503 case PGMMODE_PAE:
2504 case PGMMODE_PAE_NX: return PGM_TYPE_PAE;
2505 case PGMMODE_AMD64:
2506 case PGMMODE_AMD64_NX: return PGM_TYPE_AMD64;
2507 case PGMMODE_NESTED: return PGM_TYPE_NESTED;
2508 case PGMMODE_EPT: return PGM_TYPE_EPT;
2509 default:
2510 AssertFatalMsgFailed(("pgmMode=%d\n", pgmMode));
2511 }
2512}
2513
2514
2515/**
2516 * Gets the index into the paging mode data array of a SHW+GST mode.
2517 *
2518 * @returns PGM::paPagingData index.
2519 * @param uShwType The shadow paging mode type.
2520 * @param uGstType The guest paging mode type.
2521 */
2522DECLINLINE(unsigned) pgmModeDataIndex(unsigned uShwType, unsigned uGstType)
2523{
2524 Assert(uShwType >= PGM_TYPE_32BIT && uShwType <= PGM_TYPE_MAX);
2525 Assert(uGstType >= PGM_TYPE_REAL && uGstType <= PGM_TYPE_AMD64);
2526 return (uShwType - PGM_TYPE_32BIT) * (PGM_TYPE_AMD64 - PGM_TYPE_REAL + 1)
2527 + (uGstType - PGM_TYPE_REAL);
2528}
2529
2530
2531/**
2532 * Gets the index into the paging mode data array of a SHW+GST mode.
2533 *
2534 * @returns PGM::paPagingData index.
2535 * @param enmShw The shadow paging mode.
2536 * @param enmGst The guest paging mode.
2537 */
2538DECLINLINE(unsigned) pgmModeDataIndexByMode(PGMMODE enmShw, PGMMODE enmGst)
2539{
2540 Assert(enmShw >= PGMMODE_32_BIT && enmShw <= PGMMODE_MAX);
2541 Assert(enmGst > PGMMODE_INVALID && enmGst < PGMMODE_MAX);
2542 return pgmModeDataIndex(pgmModeToType(enmShw), pgmModeToType(enmGst));
2543}
2544
2545
2546/**
2547 * Calculates the max data index.
2548 * @returns The number of entries in the paging data array.
2549 */
2550DECLINLINE(unsigned) pgmModeDataMaxIndex(void)
2551{
2552 return pgmModeDataIndex(PGM_TYPE_MAX, PGM_TYPE_AMD64) + 1;
2553}
2554
2555
2556/**
2557 * Initializes the paging mode data kept in PGM::paModeData.
2558 *
2559 * @param pVM The VM handle.
2560 * @param fResolveGCAndR0 Indicate whether or not GC and Ring-0 symbols can be resolved now.
2561 * This is used early in the init process to avoid trouble with PDM
2562 * not being initialized yet.
2563 */
2564static int pgmR3ModeDataInit(PVM pVM, bool fResolveGCAndR0)
2565{
2566 PPGMMODEDATA pModeData;
2567 int rc;
2568
2569 /*
2570 * Allocate the array on the first call.
2571 */
2572 if (!pVM->pgm.s.paModeData)
2573 {
2574 pVM->pgm.s.paModeData = (PPGMMODEDATA)MMR3HeapAllocZ(pVM, MM_TAG_PGM, sizeof(PGMMODEDATA) * pgmModeDataMaxIndex());
2575 AssertReturn(pVM->pgm.s.paModeData, VERR_NO_MEMORY);
2576 }
2577
2578 /*
2579 * Initialize the array entries.
2580 */
2581 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_REAL)];
2582 pModeData->uShwType = PGM_TYPE_32BIT;
2583 pModeData->uGstType = PGM_TYPE_REAL;
2584 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2585 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2586 rc = PGM_BTH_NAME_32BIT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2587
2588 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGMMODE_PROTECTED)];
2589 pModeData->uShwType = PGM_TYPE_32BIT;
2590 pModeData->uGstType = PGM_TYPE_PROT;
2591 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2592 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2593 rc = PGM_BTH_NAME_32BIT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2594
2595 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_32BIT, PGM_TYPE_32BIT)];
2596 pModeData->uShwType = PGM_TYPE_32BIT;
2597 pModeData->uGstType = PGM_TYPE_32BIT;
2598 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2599 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2600 rc = PGM_BTH_NAME_32BIT_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2601
2602 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_REAL)];
2603 pModeData->uShwType = PGM_TYPE_PAE;
2604 pModeData->uGstType = PGM_TYPE_REAL;
2605 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2606 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2607 rc = PGM_BTH_NAME_PAE_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2608
2609 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PROT)];
2610 pModeData->uShwType = PGM_TYPE_PAE;
2611 pModeData->uGstType = PGM_TYPE_PROT;
2612 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2613 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2614 rc = PGM_BTH_NAME_PAE_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2615
2616 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_32BIT)];
2617 pModeData->uShwType = PGM_TYPE_PAE;
2618 pModeData->uGstType = PGM_TYPE_32BIT;
2619 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2620 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2621 rc = PGM_BTH_NAME_PAE_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2622
2623 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_PAE, PGM_TYPE_PAE)];
2624 pModeData->uShwType = PGM_TYPE_PAE;
2625 pModeData->uGstType = PGM_TYPE_PAE;
2626 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2627 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2628 rc = PGM_BTH_NAME_PAE_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2629
2630#ifdef VBOX_WITH_64_BITS_GUESTS
2631 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_AMD64, PGM_TYPE_AMD64)];
2632 pModeData->uShwType = PGM_TYPE_AMD64;
2633 pModeData->uGstType = PGM_TYPE_AMD64;
2634 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2635 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2636 rc = PGM_BTH_NAME_AMD64_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2637#endif
2638
2639 /* The nested paging mode. */
2640 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_REAL)];
2641 pModeData->uShwType = PGM_TYPE_NESTED;
2642 pModeData->uGstType = PGM_TYPE_REAL;
2643 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2644 rc = PGM_BTH_NAME_NESTED_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2645
2646 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGMMODE_PROTECTED)];
2647 pModeData->uShwType = PGM_TYPE_NESTED;
2648 pModeData->uGstType = PGM_TYPE_PROT;
2649 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2650 rc = PGM_BTH_NAME_NESTED_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2651
2652 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_32BIT)];
2653 pModeData->uShwType = PGM_TYPE_NESTED;
2654 pModeData->uGstType = PGM_TYPE_32BIT;
2655 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2656 rc = PGM_BTH_NAME_NESTED_32BIT(InitData)(pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2657
2658 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_PAE)];
2659 pModeData->uShwType = PGM_TYPE_NESTED;
2660 pModeData->uGstType = PGM_TYPE_PAE;
2661 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2662 rc = PGM_BTH_NAME_NESTED_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2663
2664#ifdef VBOX_WITH_64_BITS_GUESTS
2665 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2666 pModeData->uShwType = PGM_TYPE_NESTED;
2667 pModeData->uGstType = PGM_TYPE_AMD64;
2668 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2669 rc = PGM_BTH_NAME_NESTED_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2670#endif
2671
2672 /* The shadow part of the nested callback mode depends on the host paging mode (AMD-V only). */
2673 switch (pVM->pgm.s.enmHostMode)
2674 {
2675#if HC_ARCH_BITS == 32
2676 case SUPPAGINGMODE_32_BIT:
2677 case SUPPAGINGMODE_32_BIT_GLOBAL:
2678 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2679 {
2680 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2681 rc = PGM_SHW_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2682 }
2683# ifdef VBOX_WITH_64_BITS_GUESTS
2684 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2685 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2686# endif
2687 break;
2688
2689 case SUPPAGINGMODE_PAE:
2690 case SUPPAGINGMODE_PAE_NX:
2691 case SUPPAGINGMODE_PAE_GLOBAL:
2692 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2693 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2694 {
2695 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2696 rc = PGM_SHW_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2697 }
2698# ifdef VBOX_WITH_64_BITS_GUESTS
2699 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, PGM_TYPE_AMD64)];
2700 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2701# endif
2702 break;
2703#endif /* HC_ARCH_BITS == 32 */
2704
2705#if HC_ARCH_BITS == 64 || defined(RT_OS_DARWIN)
2706 case SUPPAGINGMODE_AMD64:
2707 case SUPPAGINGMODE_AMD64_GLOBAL:
2708 case SUPPAGINGMODE_AMD64_NX:
2709 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2710# ifdef VBOX_WITH_64_BITS_GUESTS
2711 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_AMD64; i++)
2712# else
2713 for (unsigned i = PGM_TYPE_REAL; i <= PGM_TYPE_PAE; i++)
2714# endif
2715 {
2716 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_NESTED, i)];
2717 rc = PGM_SHW_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2718 }
2719 break;
2720#endif /* HC_ARCH_BITS == 64 || RT_OS_DARWIN */
2721
2722 default:
2723 AssertFailed();
2724 break;
2725 }
2726
2727 /* Extended paging (EPT) / Intel VT-x */
2728 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_REAL)];
2729 pModeData->uShwType = PGM_TYPE_EPT;
2730 pModeData->uGstType = PGM_TYPE_REAL;
2731 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2732 rc = PGM_GST_NAME_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2733 rc = PGM_BTH_NAME_EPT_REAL(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2734
2735 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PROT)];
2736 pModeData->uShwType = PGM_TYPE_EPT;
2737 pModeData->uGstType = PGM_TYPE_PROT;
2738 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2739 rc = PGM_GST_NAME_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2740 rc = PGM_BTH_NAME_EPT_PROT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2741
2742 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_32BIT)];
2743 pModeData->uShwType = PGM_TYPE_EPT;
2744 pModeData->uGstType = PGM_TYPE_32BIT;
2745 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2746 rc = PGM_GST_NAME_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2747 rc = PGM_BTH_NAME_EPT_32BIT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2748
2749 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_PAE)];
2750 pModeData->uShwType = PGM_TYPE_EPT;
2751 pModeData->uGstType = PGM_TYPE_PAE;
2752 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2753 rc = PGM_GST_NAME_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2754 rc = PGM_BTH_NAME_EPT_PAE(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2755
2756#ifdef VBOX_WITH_64_BITS_GUESTS
2757 pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndex(PGM_TYPE_EPT, PGM_TYPE_AMD64)];
2758 pModeData->uShwType = PGM_TYPE_EPT;
2759 pModeData->uGstType = PGM_TYPE_AMD64;
2760 rc = PGM_SHW_NAME_EPT(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2761 rc = PGM_GST_NAME_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2762 rc = PGM_BTH_NAME_EPT_AMD64(InitData)( pVM, pModeData, fResolveGCAndR0); AssertRCReturn(rc, rc);
2763#endif
2764 return VINF_SUCCESS;
2765}
2766
2767
2768/**
2769 * Switch to different (or relocated in the relocate case) mode data.
2770 *
2771 * @param pVM The VM handle.
2772 * @param pVCpu The VMCPU to operate on.
2773 * @param enmShw The the shadow paging mode.
2774 * @param enmGst The the guest paging mode.
2775 */
2776static void pgmR3ModeDataSwitch(PVM pVM, PVMCPU pVCpu, PGMMODE enmShw, PGMMODE enmGst)
2777{
2778 PPGMMODEDATA pModeData = &pVM->pgm.s.paModeData[pgmModeDataIndexByMode(enmShw, enmGst)];
2779
2780 Assert(pModeData->uGstType == pgmModeToType(enmGst));
2781 Assert(pModeData->uShwType == pgmModeToType(enmShw));
2782
2783 /* shadow */
2784 pVCpu->pgm.s.pfnR3ShwRelocate = pModeData->pfnR3ShwRelocate;
2785 pVCpu->pgm.s.pfnR3ShwExit = pModeData->pfnR3ShwExit;
2786 pVCpu->pgm.s.pfnR3ShwGetPage = pModeData->pfnR3ShwGetPage;
2787 Assert(pVCpu->pgm.s.pfnR3ShwGetPage);
2788 pVCpu->pgm.s.pfnR3ShwModifyPage = pModeData->pfnR3ShwModifyPage;
2789
2790 pVCpu->pgm.s.pfnRCShwGetPage = pModeData->pfnRCShwGetPage;
2791 pVCpu->pgm.s.pfnRCShwModifyPage = pModeData->pfnRCShwModifyPage;
2792
2793 pVCpu->pgm.s.pfnR0ShwGetPage = pModeData->pfnR0ShwGetPage;
2794 pVCpu->pgm.s.pfnR0ShwModifyPage = pModeData->pfnR0ShwModifyPage;
2795
2796
2797 /* guest */
2798 pVCpu->pgm.s.pfnR3GstRelocate = pModeData->pfnR3GstRelocate;
2799 pVCpu->pgm.s.pfnR3GstExit = pModeData->pfnR3GstExit;
2800 pVCpu->pgm.s.pfnR3GstGetPage = pModeData->pfnR3GstGetPage;
2801 Assert(pVCpu->pgm.s.pfnR3GstGetPage);
2802 pVCpu->pgm.s.pfnR3GstModifyPage = pModeData->pfnR3GstModifyPage;
2803 pVCpu->pgm.s.pfnR3GstGetPDE = pModeData->pfnR3GstGetPDE;
2804 pVCpu->pgm.s.pfnRCGstGetPage = pModeData->pfnRCGstGetPage;
2805 pVCpu->pgm.s.pfnRCGstModifyPage = pModeData->pfnRCGstModifyPage;
2806 pVCpu->pgm.s.pfnRCGstGetPDE = pModeData->pfnRCGstGetPDE;
2807 pVCpu->pgm.s.pfnR0GstGetPage = pModeData->pfnR0GstGetPage;
2808 pVCpu->pgm.s.pfnR0GstModifyPage = pModeData->pfnR0GstModifyPage;
2809 pVCpu->pgm.s.pfnR0GstGetPDE = pModeData->pfnR0GstGetPDE;
2810
2811 /* both */
2812 pVCpu->pgm.s.pfnR3BthRelocate = pModeData->pfnR3BthRelocate;
2813 pVCpu->pgm.s.pfnR3BthInvalidatePage = pModeData->pfnR3BthInvalidatePage;
2814 pVCpu->pgm.s.pfnR3BthSyncCR3 = pModeData->pfnR3BthSyncCR3;
2815 Assert(pVCpu->pgm.s.pfnR3BthSyncCR3);
2816 pVCpu->pgm.s.pfnR3BthSyncPage = pModeData->pfnR3BthSyncPage;
2817 pVCpu->pgm.s.pfnR3BthPrefetchPage = pModeData->pfnR3BthPrefetchPage;
2818 pVCpu->pgm.s.pfnR3BthVerifyAccessSyncPage = pModeData->pfnR3BthVerifyAccessSyncPage;
2819#ifdef VBOX_STRICT
2820 pVCpu->pgm.s.pfnR3BthAssertCR3 = pModeData->pfnR3BthAssertCR3;
2821#endif
2822 pVCpu->pgm.s.pfnR3BthMapCR3 = pModeData->pfnR3BthMapCR3;
2823 pVCpu->pgm.s.pfnR3BthUnmapCR3 = pModeData->pfnR3BthUnmapCR3;
2824
2825 pVCpu->pgm.s.pfnRCBthTrap0eHandler = pModeData->pfnRCBthTrap0eHandler;
2826 pVCpu->pgm.s.pfnRCBthInvalidatePage = pModeData->pfnRCBthInvalidatePage;
2827 pVCpu->pgm.s.pfnRCBthSyncCR3 = pModeData->pfnRCBthSyncCR3;
2828 pVCpu->pgm.s.pfnRCBthSyncPage = pModeData->pfnRCBthSyncPage;
2829 pVCpu->pgm.s.pfnRCBthPrefetchPage = pModeData->pfnRCBthPrefetchPage;
2830 pVCpu->pgm.s.pfnRCBthVerifyAccessSyncPage = pModeData->pfnRCBthVerifyAccessSyncPage;
2831#ifdef VBOX_STRICT
2832 pVCpu->pgm.s.pfnRCBthAssertCR3 = pModeData->pfnRCBthAssertCR3;
2833#endif
2834 pVCpu->pgm.s.pfnRCBthMapCR3 = pModeData->pfnRCBthMapCR3;
2835 pVCpu->pgm.s.pfnRCBthUnmapCR3 = pModeData->pfnRCBthUnmapCR3;
2836
2837 pVCpu->pgm.s.pfnR0BthTrap0eHandler = pModeData->pfnR0BthTrap0eHandler;
2838 pVCpu->pgm.s.pfnR0BthInvalidatePage = pModeData->pfnR0BthInvalidatePage;
2839 pVCpu->pgm.s.pfnR0BthSyncCR3 = pModeData->pfnR0BthSyncCR3;
2840 pVCpu->pgm.s.pfnR0BthSyncPage = pModeData->pfnR0BthSyncPage;
2841 pVCpu->pgm.s.pfnR0BthPrefetchPage = pModeData->pfnR0BthPrefetchPage;
2842 pVCpu->pgm.s.pfnR0BthVerifyAccessSyncPage = pModeData->pfnR0BthVerifyAccessSyncPage;
2843#ifdef VBOX_STRICT
2844 pVCpu->pgm.s.pfnR0BthAssertCR3 = pModeData->pfnR0BthAssertCR3;
2845#endif
2846 pVCpu->pgm.s.pfnR0BthMapCR3 = pModeData->pfnR0BthMapCR3;
2847 pVCpu->pgm.s.pfnR0BthUnmapCR3 = pModeData->pfnR0BthUnmapCR3;
2848}
2849
2850
2851/**
2852 * Calculates the shadow paging mode.
2853 *
2854 * @returns The shadow paging mode.
2855 * @param pVM VM handle.
2856 * @param enmGuestMode The guest mode.
2857 * @param enmHostMode The host mode.
2858 * @param enmShadowMode The current shadow mode.
2859 * @param penmSwitcher Where to store the switcher to use.
2860 * VMMSWITCHER_INVALID means no change.
2861 */
2862static PGMMODE pgmR3CalcShadowMode(PVM pVM, PGMMODE enmGuestMode, SUPPAGINGMODE enmHostMode, PGMMODE enmShadowMode, VMMSWITCHER *penmSwitcher)
2863{
2864 VMMSWITCHER enmSwitcher = VMMSWITCHER_INVALID;
2865 switch (enmGuestMode)
2866 {
2867 /*
2868 * When switching to real or protected mode we don't change
2869 * anything since it's likely that we'll switch back pretty soon.
2870 *
2871 * During pgmR3InitPaging we'll end up here with PGMMODE_INVALID
2872 * and is supposed to determine which shadow paging and switcher to
2873 * use during init.
2874 */
2875 case PGMMODE_REAL:
2876 case PGMMODE_PROTECTED:
2877 if ( enmShadowMode != PGMMODE_INVALID
2878 && !HWACCMIsEnabled(pVM) /* always switch in hwaccm mode! */)
2879 break; /* (no change) */
2880
2881 switch (enmHostMode)
2882 {
2883 case SUPPAGINGMODE_32_BIT:
2884 case SUPPAGINGMODE_32_BIT_GLOBAL:
2885 enmShadowMode = PGMMODE_32_BIT;
2886 enmSwitcher = VMMSWITCHER_32_TO_32;
2887 break;
2888
2889 case SUPPAGINGMODE_PAE:
2890 case SUPPAGINGMODE_PAE_NX:
2891 case SUPPAGINGMODE_PAE_GLOBAL:
2892 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2893 enmShadowMode = PGMMODE_PAE;
2894 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2895#ifdef DEBUG_bird
2896 if (RTEnvExist("VBOX_32BIT"))
2897 {
2898 enmShadowMode = PGMMODE_32_BIT;
2899 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2900 }
2901#endif
2902 break;
2903
2904 case SUPPAGINGMODE_AMD64:
2905 case SUPPAGINGMODE_AMD64_GLOBAL:
2906 case SUPPAGINGMODE_AMD64_NX:
2907 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2908 enmShadowMode = PGMMODE_PAE;
2909 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2910#ifdef DEBUG_bird
2911 if (RTEnvExist("VBOX_32BIT"))
2912 {
2913 enmShadowMode = PGMMODE_32_BIT;
2914 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
2915 }
2916#endif
2917 break;
2918
2919 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2920 }
2921 break;
2922
2923 case PGMMODE_32_BIT:
2924 switch (enmHostMode)
2925 {
2926 case SUPPAGINGMODE_32_BIT:
2927 case SUPPAGINGMODE_32_BIT_GLOBAL:
2928 enmShadowMode = PGMMODE_32_BIT;
2929 enmSwitcher = VMMSWITCHER_32_TO_32;
2930 break;
2931
2932 case SUPPAGINGMODE_PAE:
2933 case SUPPAGINGMODE_PAE_NX:
2934 case SUPPAGINGMODE_PAE_GLOBAL:
2935 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2936 enmShadowMode = PGMMODE_PAE;
2937 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2938#ifdef DEBUG_bird
2939 if (RTEnvExist("VBOX_32BIT"))
2940 {
2941 enmShadowMode = PGMMODE_32_BIT;
2942 enmSwitcher = VMMSWITCHER_PAE_TO_32;
2943 }
2944#endif
2945 break;
2946
2947 case SUPPAGINGMODE_AMD64:
2948 case SUPPAGINGMODE_AMD64_GLOBAL:
2949 case SUPPAGINGMODE_AMD64_NX:
2950 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2951 enmShadowMode = PGMMODE_PAE;
2952 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2953#ifdef DEBUG_bird
2954 if (RTEnvExist("VBOX_32BIT"))
2955 {
2956 enmShadowMode = PGMMODE_32_BIT;
2957 enmSwitcher = VMMSWITCHER_AMD64_TO_32;
2958 }
2959#endif
2960 break;
2961
2962 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2963 }
2964 break;
2965
2966 case PGMMODE_PAE:
2967 case PGMMODE_PAE_NX: /** @todo This might require more switchers and guest+both modes. */
2968 switch (enmHostMode)
2969 {
2970 case SUPPAGINGMODE_32_BIT:
2971 case SUPPAGINGMODE_32_BIT_GLOBAL:
2972 enmShadowMode = PGMMODE_PAE;
2973 enmSwitcher = VMMSWITCHER_32_TO_PAE;
2974 break;
2975
2976 case SUPPAGINGMODE_PAE:
2977 case SUPPAGINGMODE_PAE_NX:
2978 case SUPPAGINGMODE_PAE_GLOBAL:
2979 case SUPPAGINGMODE_PAE_GLOBAL_NX:
2980 enmShadowMode = PGMMODE_PAE;
2981 enmSwitcher = VMMSWITCHER_PAE_TO_PAE;
2982 break;
2983
2984 case SUPPAGINGMODE_AMD64:
2985 case SUPPAGINGMODE_AMD64_GLOBAL:
2986 case SUPPAGINGMODE_AMD64_NX:
2987 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
2988 enmShadowMode = PGMMODE_PAE;
2989 enmSwitcher = VMMSWITCHER_AMD64_TO_PAE;
2990 break;
2991
2992 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
2993 }
2994 break;
2995
2996 case PGMMODE_AMD64:
2997 case PGMMODE_AMD64_NX:
2998 switch (enmHostMode)
2999 {
3000 case SUPPAGINGMODE_32_BIT:
3001 case SUPPAGINGMODE_32_BIT_GLOBAL:
3002 enmShadowMode = PGMMODE_AMD64;
3003 enmSwitcher = VMMSWITCHER_32_TO_AMD64;
3004 break;
3005
3006 case SUPPAGINGMODE_PAE:
3007 case SUPPAGINGMODE_PAE_NX:
3008 case SUPPAGINGMODE_PAE_GLOBAL:
3009 case SUPPAGINGMODE_PAE_GLOBAL_NX:
3010 enmShadowMode = PGMMODE_AMD64;
3011 enmSwitcher = VMMSWITCHER_PAE_TO_AMD64;
3012 break;
3013
3014 case SUPPAGINGMODE_AMD64:
3015 case SUPPAGINGMODE_AMD64_GLOBAL:
3016 case SUPPAGINGMODE_AMD64_NX:
3017 case SUPPAGINGMODE_AMD64_GLOBAL_NX:
3018 enmShadowMode = PGMMODE_AMD64;
3019 enmSwitcher = VMMSWITCHER_AMD64_TO_AMD64;
3020 break;
3021
3022 default: AssertMsgFailed(("enmHostMode=%d\n", enmHostMode)); break;
3023 }
3024 break;
3025
3026
3027 default:
3028 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3029 *penmSwitcher = VMMSWITCHER_INVALID;
3030 return PGMMODE_INVALID;
3031 }
3032 /* Override the shadow mode is nested paging is active. */
3033 if (HWACCMIsNestedPagingActive(pVM))
3034 enmShadowMode = HWACCMGetShwPagingMode(pVM);
3035
3036 *penmSwitcher = enmSwitcher;
3037 return enmShadowMode;
3038}
3039
3040
3041/**
3042 * Performs the actual mode change.
3043 * This is called by PGMChangeMode and pgmR3InitPaging().
3044 *
3045 * @returns VBox status code. May suspend or power off the VM on error, but this
3046 * will trigger using FFs and not status codes.
3047 *
3048 * @param pVM VM handle.
3049 * @param pVCpu The VMCPU to operate on.
3050 * @param enmGuestMode The new guest mode. This is assumed to be different from
3051 * the current mode.
3052 */
3053VMMR3DECL(int) PGMR3ChangeMode(PVM pVM, PVMCPU pVCpu, PGMMODE enmGuestMode)
3054{
3055 bool fIsOldGuestPagingMode64Bits = (pVCpu->pgm.s.enmGuestMode >= PGMMODE_AMD64);
3056 bool fIsNewGuestPagingMode64Bits = (enmGuestMode >= PGMMODE_AMD64);
3057
3058 Log(("PGMR3ChangeMode: Guest mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmGuestMode), PGMGetModeName(enmGuestMode)));
3059 STAM_REL_COUNTER_INC(&pVCpu->pgm.s.cGuestModeChanges);
3060
3061 /*
3062 * Calc the shadow mode and switcher.
3063 */
3064 VMMSWITCHER enmSwitcher;
3065 PGMMODE enmShadowMode = pgmR3CalcShadowMode(pVM, enmGuestMode, pVM->pgm.s.enmHostMode, pVCpu->pgm.s.enmShadowMode, &enmSwitcher);
3066 if (enmSwitcher != VMMSWITCHER_INVALID)
3067 {
3068 /*
3069 * Select new switcher.
3070 */
3071 int rc = VMMR3SelectSwitcher(pVM, enmSwitcher);
3072 if (RT_FAILURE(rc))
3073 {
3074 AssertReleaseMsgFailed(("VMMR3SelectSwitcher(%d) -> %Rrc\n", enmSwitcher, rc));
3075 return rc;
3076 }
3077 }
3078
3079 /*
3080 * Exit old mode(s).
3081 */
3082#if HC_ARCH_BITS == 32
3083 /* The nested shadow paging mode for AMD-V does change when running 64 bits guests on 32 bits hosts; typically PAE <-> AMD64 */
3084 const bool fForceShwEnterExit = ( fIsOldGuestPagingMode64Bits != fIsNewGuestPagingMode64Bits
3085 && enmShadowMode == PGMMODE_NESTED);
3086#else
3087 const bool fForceShwEnterExit = false;
3088#endif
3089 /* shadow */
3090 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3091 || fForceShwEnterExit)
3092 {
3093 LogFlow(("PGMR3ChangeMode: Shadow mode: %s -> %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode), PGMGetModeName(enmShadowMode)));
3094 if (PGM_SHW_PFN(Exit, pVCpu))
3095 {
3096 int rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3097 if (RT_FAILURE(rc))
3098 {
3099 AssertMsgFailed(("Exit failed for shadow mode %d: %Rrc\n", pVCpu->pgm.s.enmShadowMode, rc));
3100 return rc;
3101 }
3102 }
3103
3104 }
3105 else
3106 LogFlow(("PGMR3ChangeMode: Shadow mode remains: %s\n", PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3107
3108 /* guest */
3109 if (PGM_GST_PFN(Exit, pVCpu))
3110 {
3111 int rc = PGM_GST_PFN(Exit, pVCpu)(pVCpu);
3112 if (RT_FAILURE(rc))
3113 {
3114 AssertMsgFailed(("Exit failed for guest mode %d: %Rrc\n", pVCpu->pgm.s.enmGuestMode, rc));
3115 return rc;
3116 }
3117 }
3118
3119 /*
3120 * Load new paging mode data.
3121 */
3122 pgmR3ModeDataSwitch(pVM, pVCpu, enmShadowMode, enmGuestMode);
3123
3124 /*
3125 * Enter new shadow mode (if changed).
3126 */
3127 if ( enmShadowMode != pVCpu->pgm.s.enmShadowMode
3128 || fForceShwEnterExit)
3129 {
3130 int rc;
3131 pVCpu->pgm.s.enmShadowMode = enmShadowMode;
3132 switch (enmShadowMode)
3133 {
3134 case PGMMODE_32_BIT:
3135 rc = PGM_SHW_NAME_32BIT(Enter)(pVCpu, false);
3136 break;
3137 case PGMMODE_PAE:
3138 case PGMMODE_PAE_NX:
3139 rc = PGM_SHW_NAME_PAE(Enter)(pVCpu, false);
3140 break;
3141 case PGMMODE_AMD64:
3142 case PGMMODE_AMD64_NX:
3143 rc = PGM_SHW_NAME_AMD64(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3144 break;
3145 case PGMMODE_NESTED:
3146 rc = PGM_SHW_NAME_NESTED(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3147 break;
3148 case PGMMODE_EPT:
3149 rc = PGM_SHW_NAME_EPT(Enter)(pVCpu, fIsNewGuestPagingMode64Bits);
3150 break;
3151 case PGMMODE_REAL:
3152 case PGMMODE_PROTECTED:
3153 default:
3154 AssertReleaseMsgFailed(("enmShadowMode=%d\n", enmShadowMode));
3155 return VERR_INTERNAL_ERROR;
3156 }
3157 if (RT_FAILURE(rc))
3158 {
3159 AssertReleaseMsgFailed(("Entering enmShadowMode=%d failed: %Rrc\n", enmShadowMode, rc));
3160 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3161 return rc;
3162 }
3163 }
3164
3165 /*
3166 * Always flag the necessary updates
3167 */
3168 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
3169
3170 /*
3171 * Enter the new guest and shadow+guest modes.
3172 */
3173 int rc = -1;
3174 int rc2 = -1;
3175 RTGCPHYS GCPhysCR3 = NIL_RTGCPHYS;
3176 pVCpu->pgm.s.enmGuestMode = enmGuestMode;
3177 switch (enmGuestMode)
3178 {
3179 case PGMMODE_REAL:
3180 rc = PGM_GST_NAME_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3181 switch (pVCpu->pgm.s.enmShadowMode)
3182 {
3183 case PGMMODE_32_BIT:
3184 rc2 = PGM_BTH_NAME_32BIT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3185 break;
3186 case PGMMODE_PAE:
3187 case PGMMODE_PAE_NX:
3188 rc2 = PGM_BTH_NAME_PAE_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3189 break;
3190 case PGMMODE_NESTED:
3191 rc2 = PGM_BTH_NAME_NESTED_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3192 break;
3193 case PGMMODE_EPT:
3194 rc2 = PGM_BTH_NAME_EPT_REAL(Enter)(pVCpu, NIL_RTGCPHYS);
3195 break;
3196 case PGMMODE_AMD64:
3197 case PGMMODE_AMD64_NX:
3198 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3199 default: AssertFailed(); break;
3200 }
3201 break;
3202
3203 case PGMMODE_PROTECTED:
3204 rc = PGM_GST_NAME_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3205 switch (pVCpu->pgm.s.enmShadowMode)
3206 {
3207 case PGMMODE_32_BIT:
3208 rc2 = PGM_BTH_NAME_32BIT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3209 break;
3210 case PGMMODE_PAE:
3211 case PGMMODE_PAE_NX:
3212 rc2 = PGM_BTH_NAME_PAE_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3213 break;
3214 case PGMMODE_NESTED:
3215 rc2 = PGM_BTH_NAME_NESTED_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3216 break;
3217 case PGMMODE_EPT:
3218 rc2 = PGM_BTH_NAME_EPT_PROT(Enter)(pVCpu, NIL_RTGCPHYS);
3219 break;
3220 case PGMMODE_AMD64:
3221 case PGMMODE_AMD64_NX:
3222 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3223 default: AssertFailed(); break;
3224 }
3225 break;
3226
3227 case PGMMODE_32_BIT:
3228 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAGE_MASK;
3229 rc = PGM_GST_NAME_32BIT(Enter)(pVCpu, GCPhysCR3);
3230 switch (pVCpu->pgm.s.enmShadowMode)
3231 {
3232 case PGMMODE_32_BIT:
3233 rc2 = PGM_BTH_NAME_32BIT_32BIT(Enter)(pVCpu, GCPhysCR3);
3234 break;
3235 case PGMMODE_PAE:
3236 case PGMMODE_PAE_NX:
3237 rc2 = PGM_BTH_NAME_PAE_32BIT(Enter)(pVCpu, GCPhysCR3);
3238 break;
3239 case PGMMODE_NESTED:
3240 rc2 = PGM_BTH_NAME_NESTED_32BIT(Enter)(pVCpu, GCPhysCR3);
3241 break;
3242 case PGMMODE_EPT:
3243 rc2 = PGM_BTH_NAME_EPT_32BIT(Enter)(pVCpu, GCPhysCR3);
3244 break;
3245 case PGMMODE_AMD64:
3246 case PGMMODE_AMD64_NX:
3247 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3248 default: AssertFailed(); break;
3249 }
3250 break;
3251
3252 case PGMMODE_PAE_NX:
3253 case PGMMODE_PAE:
3254 {
3255 uint32_t u32Dummy, u32Features;
3256
3257 CPUMGetGuestCpuId(pVCpu, 1, &u32Dummy, &u32Dummy, &u32Dummy, &u32Features);
3258 if (!(u32Features & X86_CPUID_FEATURE_EDX_PAE))
3259 return VMSetRuntimeError(pVM, VMSETRTERR_FLAGS_FATAL, "PAEmode",
3260 N_("The guest is trying to switch to the PAE mode which is currently disabled by default in VirtualBox. PAE support can be enabled using the VM settings (General/Advanced)"));
3261
3262 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & X86_CR3_PAE_PAGE_MASK;
3263 rc = PGM_GST_NAME_PAE(Enter)(pVCpu, GCPhysCR3);
3264 switch (pVCpu->pgm.s.enmShadowMode)
3265 {
3266 case PGMMODE_PAE:
3267 case PGMMODE_PAE_NX:
3268 rc2 = PGM_BTH_NAME_PAE_PAE(Enter)(pVCpu, GCPhysCR3);
3269 break;
3270 case PGMMODE_NESTED:
3271 rc2 = PGM_BTH_NAME_NESTED_PAE(Enter)(pVCpu, GCPhysCR3);
3272 break;
3273 case PGMMODE_EPT:
3274 rc2 = PGM_BTH_NAME_EPT_PAE(Enter)(pVCpu, GCPhysCR3);
3275 break;
3276 case PGMMODE_32_BIT:
3277 case PGMMODE_AMD64:
3278 case PGMMODE_AMD64_NX:
3279 AssertMsgFailed(("Should use PAE shadow mode!\n"));
3280 default: AssertFailed(); break;
3281 }
3282 break;
3283 }
3284
3285#ifdef VBOX_WITH_64_BITS_GUESTS
3286 case PGMMODE_AMD64_NX:
3287 case PGMMODE_AMD64:
3288 GCPhysCR3 = CPUMGetGuestCR3(pVCpu) & UINT64_C(0xfffffffffffff000); /** @todo define this mask! */
3289 rc = PGM_GST_NAME_AMD64(Enter)(pVCpu, GCPhysCR3);
3290 switch (pVCpu->pgm.s.enmShadowMode)
3291 {
3292 case PGMMODE_AMD64:
3293 case PGMMODE_AMD64_NX:
3294 rc2 = PGM_BTH_NAME_AMD64_AMD64(Enter)(pVCpu, GCPhysCR3);
3295 break;
3296 case PGMMODE_NESTED:
3297 rc2 = PGM_BTH_NAME_NESTED_AMD64(Enter)(pVCpu, GCPhysCR3);
3298 break;
3299 case PGMMODE_EPT:
3300 rc2 = PGM_BTH_NAME_EPT_AMD64(Enter)(pVCpu, GCPhysCR3);
3301 break;
3302 case PGMMODE_32_BIT:
3303 case PGMMODE_PAE:
3304 case PGMMODE_PAE_NX:
3305 AssertMsgFailed(("Should use AMD64 shadow mode!\n"));
3306 default: AssertFailed(); break;
3307 }
3308 break;
3309#endif
3310
3311 default:
3312 AssertReleaseMsgFailed(("enmGuestMode=%d\n", enmGuestMode));
3313 rc = VERR_NOT_IMPLEMENTED;
3314 break;
3315 }
3316
3317 /* status codes. */
3318 AssertRC(rc);
3319 AssertRC(rc2);
3320 if (RT_SUCCESS(rc))
3321 {
3322 rc = rc2;
3323 if (RT_SUCCESS(rc)) /* no informational status codes. */
3324 rc = VINF_SUCCESS;
3325 }
3326
3327 /* Notify HWACCM as well. */
3328 HWACCMR3PagingModeChanged(pVM, pVCpu, pVCpu->pgm.s.enmShadowMode, pVCpu->pgm.s.enmGuestMode);
3329 return rc;
3330}
3331
3332/**
3333 * Release the pgm lock if owned by the current VCPU
3334 *
3335 * @param pVM The VM to operate on.
3336 */
3337VMMR3DECL(void) PGMR3ReleaseOwnedLocks(PVM pVM)
3338{
3339 while (PDMCritSectIsOwner(&pVM->pgm.s.CritSect))
3340 PDMCritSectLeave(&pVM->pgm.s.CritSect);
3341}
3342
3343/**
3344 * Called by pgmPoolFlushAllInt prior to flushing the pool.
3345 *
3346 * @returns VBox status code, fully asserted.
3347 * @param pVM The VM handle.
3348 * @param pVCpu The VMCPU to operate on.
3349 */
3350int pgmR3ExitShadowModeBeforePoolFlush(PVM pVM, PVMCPU pVCpu)
3351{
3352 /* Unmap the old CR3 value before flushing everything. */
3353 int rc = PGM_BTH_PFN(UnmapCR3, pVCpu)(pVCpu);
3354 AssertRC(rc);
3355
3356 /* Exit the current shadow paging mode as well; nested paging and EPT use a root CR3 which will get flushed here. */
3357 rc = PGM_SHW_PFN(Exit, pVCpu)(pVCpu);
3358 AssertRC(rc);
3359 Assert(pVCpu->pgm.s.pShwPageCR3R3 == NULL);
3360 return rc;
3361}
3362
3363
3364/**
3365 * Called by pgmPoolFlushAllInt after flushing the pool.
3366 *
3367 * @returns VBox status code, fully asserted.
3368 * @param pVM The VM handle.
3369 * @param pVCpu The VMCPU to operate on.
3370 */
3371int pgmR3ReEnterShadowModeAfterPoolFlush(PVM pVM, PVMCPU pVCpu)
3372{
3373 pVCpu->pgm.s.enmShadowMode = PGMMODE_INVALID;
3374 int rc = PGMR3ChangeMode(pVM, pVCpu, PGMGetGuestMode(pVCpu));
3375 Assert(VMCPU_FF_ISSET(pVCpu, VMCPU_FF_PGM_SYNC_CR3));
3376 AssertRCReturn(rc, rc);
3377 AssertRCSuccessReturn(rc, VERR_IPE_UNEXPECTED_INFO_STATUS);
3378
3379 Assert(pVCpu->pgm.s.pShwPageCR3R3 != NULL);
3380 AssertMsg( pVCpu->pgm.s.enmShadowMode >= PGMMODE_NESTED
3381 || CPUMGetHyperCR3(pVCpu) == PGMGetHyperCR3(pVCpu),
3382 ("%RHp != %RHp %s\n", (RTHCPHYS)CPUMGetHyperCR3(pVCpu), PGMGetHyperCR3(pVCpu), PGMGetModeName(pVCpu->pgm.s.enmShadowMode)));
3383 return rc;
3384}
3385
3386
3387/**
3388 * Dumps a PAE shadow page table.
3389 *
3390 * @returns VBox status code (VINF_SUCCESS).
3391 * @param pVM The VM handle.
3392 * @param pPT Pointer to the page table.
3393 * @param u64Address The virtual address of the page table starts.
3394 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3395 * @param cMaxDepth The maxium depth.
3396 * @param pHlp Pointer to the output functions.
3397 */
3398static int pgmR3DumpHierarchyHCPaePT(PVM pVM, PX86PTPAE pPT, uint64_t u64Address, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3399{
3400 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3401 {
3402 X86PTEPAE Pte = pPT->a[i];
3403 if (Pte.n.u1Present)
3404 {
3405 pHlp->pfnPrintf(pHlp,
3406 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3407 ? "%016llx 3 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n"
3408 : "%08llx 2 | P %c %c %c %c %c %s %s %s %s 4K %c%c%c %016llx\n",
3409 u64Address + ((uint64_t)i << X86_PT_PAE_SHIFT),
3410 Pte.n.u1Write ? 'W' : 'R',
3411 Pte.n.u1User ? 'U' : 'S',
3412 Pte.n.u1Accessed ? 'A' : '-',
3413 Pte.n.u1Dirty ? 'D' : '-',
3414 Pte.n.u1Global ? 'G' : '-',
3415 Pte.n.u1WriteThru ? "WT" : "--",
3416 Pte.n.u1CacheDisable? "CD" : "--",
3417 Pte.n.u1PAT ? "AT" : "--",
3418 Pte.n.u1NoExecute ? "NX" : "--",
3419 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3420 Pte.u & RT_BIT(10) ? '1' : '0',
3421 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED? 'v' : '-',
3422 Pte.u & X86_PTE_PAE_PG_MASK);
3423 }
3424 }
3425 return VINF_SUCCESS;
3426}
3427
3428
3429/**
3430 * Dumps a PAE shadow page directory table.
3431 *
3432 * @returns VBox status code (VINF_SUCCESS).
3433 * @param pVM The VM handle.
3434 * @param HCPhys The physical address of the page directory table.
3435 * @param u64Address The virtual address of the page table starts.
3436 * @param cr4 The CR4, PSE is currently used.
3437 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3438 * @param cMaxDepth The maxium depth.
3439 * @param pHlp Pointer to the output functions.
3440 */
3441static int pgmR3DumpHierarchyHCPaePD(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3442{
3443 PX86PDPAE pPD = (PX86PDPAE)MMPagePhys2Page(pVM, HCPhys);
3444 if (!pPD)
3445 {
3446 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory at HCPhys=%RHp was not found in the page pool!\n",
3447 fLongMode ? 16 : 8, u64Address, HCPhys);
3448 return VERR_INVALID_PARAMETER;
3449 }
3450 const bool fBigPagesSupported = fLongMode || !!(cr4 & X86_CR4_PSE);
3451
3452 int rc = VINF_SUCCESS;
3453 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3454 {
3455 X86PDEPAE Pde = pPD->a[i];
3456 if (Pde.n.u1Present)
3457 {
3458 if (fBigPagesSupported && Pde.b.u1Size)
3459 pHlp->pfnPrintf(pHlp,
3460 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3461 ? "%016llx 2 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n"
3462 : "%08llx 1 | P %c %c %c %c %c %s %s %s %s 4M %c%c%c %016llx\n",
3463 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3464 Pde.b.u1Write ? 'W' : 'R',
3465 Pde.b.u1User ? 'U' : 'S',
3466 Pde.b.u1Accessed ? 'A' : '-',
3467 Pde.b.u1Dirty ? 'D' : '-',
3468 Pde.b.u1Global ? 'G' : '-',
3469 Pde.b.u1WriteThru ? "WT" : "--",
3470 Pde.b.u1CacheDisable? "CD" : "--",
3471 Pde.b.u1PAT ? "AT" : "--",
3472 Pde.b.u1NoExecute ? "NX" : "--",
3473 Pde.u & RT_BIT_64(9) ? '1' : '0',
3474 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3475 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3476 Pde.u & X86_PDE_PAE_PG_MASK);
3477 else
3478 {
3479 pHlp->pfnPrintf(pHlp,
3480 fLongMode /*P R S A D G WT CD AT NX 4M a p ? */
3481 ? "%016llx 2 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n"
3482 : "%08llx 1 | P %c %c %c %c %c %s %s .. %s 4K %c%c%c %016llx\n",
3483 u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT),
3484 Pde.n.u1Write ? 'W' : 'R',
3485 Pde.n.u1User ? 'U' : 'S',
3486 Pde.n.u1Accessed ? 'A' : '-',
3487 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3488 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3489 Pde.n.u1WriteThru ? "WT" : "--",
3490 Pde.n.u1CacheDisable? "CD" : "--",
3491 Pde.n.u1NoExecute ? "NX" : "--",
3492 Pde.u & RT_BIT_64(9) ? '1' : '0',
3493 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3494 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3495 Pde.u & X86_PDE_PAE_PG_MASK);
3496 if (cMaxDepth >= 1)
3497 {
3498 /** @todo what about using the page pool for mapping PTs? */
3499 uint64_t u64AddressPT = u64Address + ((uint64_t)i << X86_PD_PAE_SHIFT);
3500 RTHCPHYS HCPhysPT = Pde.u & X86_PDE_PAE_PG_MASK;
3501 PX86PTPAE pPT = NULL;
3502 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3503 pPT = (PX86PTPAE)MMPagePhys2Page(pVM, HCPhysPT);
3504 else
3505 {
3506 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3507 {
3508 uint64_t off = u64AddressPT - pMap->GCPtr;
3509 if (off < pMap->cb)
3510 {
3511 const int iPDE = (uint32_t)(off >> X86_PD_SHIFT);
3512 const int iSub = (int)((off >> X86_PD_PAE_SHIFT) & 1); /* MSC is a pain sometimes */
3513 if ((iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0) != HCPhysPT)
3514 pHlp->pfnPrintf(pHlp, "%0*llx error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3515 fLongMode ? 16 : 8, u64AddressPT, iPDE,
3516 iSub ? pMap->aPTs[iPDE].HCPhysPaePT1 : pMap->aPTs[iPDE].HCPhysPaePT0, HCPhysPT);
3517 pPT = &pMap->aPTs[iPDE].paPaePTsR3[iSub];
3518 }
3519 }
3520 }
3521 int rc2 = VERR_INVALID_PARAMETER;
3522 if (pPT)
3523 rc2 = pgmR3DumpHierarchyHCPaePT(pVM, pPT, u64AddressPT, fLongMode, cMaxDepth - 1, pHlp);
3524 else
3525 pHlp->pfnPrintf(pHlp, "%0*llx error! Page table at HCPhys=%RHp was not found in the page pool!\n",
3526 fLongMode ? 16 : 8, u64AddressPT, HCPhysPT);
3527 if (rc2 < rc && RT_SUCCESS(rc))
3528 rc = rc2;
3529 }
3530 }
3531 }
3532 }
3533 return rc;
3534}
3535
3536
3537/**
3538 * Dumps a PAE shadow page directory pointer table.
3539 *
3540 * @returns VBox status code (VINF_SUCCESS).
3541 * @param pVM The VM handle.
3542 * @param HCPhys The physical address of the page directory pointer table.
3543 * @param u64Address The virtual address of the page table starts.
3544 * @param cr4 The CR4, PSE is currently used.
3545 * @param fLongMode Set if this a long mode table; clear if it's a legacy mode table.
3546 * @param cMaxDepth The maxium depth.
3547 * @param pHlp Pointer to the output functions.
3548 */
3549static int pgmR3DumpHierarchyHCPaePDPT(PVM pVM, RTHCPHYS HCPhys, uint64_t u64Address, uint32_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3550{
3551 PX86PDPT pPDPT = (PX86PDPT)MMPagePhys2Page(pVM, HCPhys);
3552 if (!pPDPT)
3553 {
3554 pHlp->pfnPrintf(pHlp, "%0*llx error! Page directory pointer table at HCPhys=%RHp was not found in the page pool!\n",
3555 fLongMode ? 16 : 8, u64Address, HCPhys);
3556 return VERR_INVALID_PARAMETER;
3557 }
3558
3559 int rc = VINF_SUCCESS;
3560 const unsigned c = fLongMode ? RT_ELEMENTS(pPDPT->a) : X86_PG_PAE_PDPE_ENTRIES;
3561 for (unsigned i = 0; i < c; i++)
3562 {
3563 X86PDPE Pdpe = pPDPT->a[i];
3564 if (Pdpe.n.u1Present)
3565 {
3566 if (fLongMode)
3567 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3568 "%016llx 1 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3569 u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3570 Pdpe.lm.u1Write ? 'W' : 'R',
3571 Pdpe.lm.u1User ? 'U' : 'S',
3572 Pdpe.lm.u1Accessed ? 'A' : '-',
3573 Pdpe.lm.u3Reserved & 1? '?' : '.', /* ignored */
3574 Pdpe.lm.u3Reserved & 4? '!' : '.', /* mbz */
3575 Pdpe.lm.u1WriteThru ? "WT" : "--",
3576 Pdpe.lm.u1CacheDisable? "CD" : "--",
3577 Pdpe.lm.u3Reserved & 2? "!" : "..",/* mbz */
3578 Pdpe.lm.u1NoExecute ? "NX" : "--",
3579 Pdpe.u & RT_BIT(9) ? '1' : '0',
3580 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3581 Pdpe.u & RT_BIT(11) ? '1' : '0',
3582 Pdpe.u & X86_PDPE_PG_MASK);
3583 else
3584 pHlp->pfnPrintf(pHlp, /*P G WT CD AT NX 4M a p ? */
3585 "%08x 0 | P %c %s %s %s %s .. %c%c%c %016llx\n",
3586 i << X86_PDPT_SHIFT,
3587 Pdpe.n.u4Reserved & 1? '!' : '.', /* mbz */
3588 Pdpe.n.u4Reserved & 4? '!' : '.', /* mbz */
3589 Pdpe.n.u1WriteThru ? "WT" : "--",
3590 Pdpe.n.u1CacheDisable? "CD" : "--",
3591 Pdpe.n.u4Reserved & 2? "!" : "..",/* mbz */
3592 Pdpe.u & RT_BIT(9) ? '1' : '0',
3593 Pdpe.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3594 Pdpe.u & RT_BIT(11) ? '1' : '0',
3595 Pdpe.u & X86_PDPE_PG_MASK);
3596 if (cMaxDepth >= 1)
3597 {
3598 int rc2 = pgmR3DumpHierarchyHCPaePD(pVM, Pdpe.u & X86_PDPE_PG_MASK, u64Address + ((uint64_t)i << X86_PDPT_SHIFT),
3599 cr4, fLongMode, cMaxDepth - 1, pHlp);
3600 if (rc2 < rc && RT_SUCCESS(rc))
3601 rc = rc2;
3602 }
3603 }
3604 }
3605 return rc;
3606}
3607
3608
3609/**
3610 * Dumps a 32-bit shadow page table.
3611 *
3612 * @returns VBox status code (VINF_SUCCESS).
3613 * @param pVM The VM handle.
3614 * @param HCPhys The physical address of the table.
3615 * @param cr4 The CR4, PSE is currently used.
3616 * @param cMaxDepth The maxium depth.
3617 * @param pHlp Pointer to the output functions.
3618 */
3619static int pgmR3DumpHierarchyHcPaePML4(PVM pVM, RTHCPHYS HCPhys, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3620{
3621 PX86PML4 pPML4 = (PX86PML4)MMPagePhys2Page(pVM, HCPhys);
3622 if (!pPML4)
3623 {
3624 pHlp->pfnPrintf(pHlp, "Page map level 4 at HCPhys=%RHp was not found in the page pool!\n", HCPhys);
3625 return VERR_INVALID_PARAMETER;
3626 }
3627
3628 int rc = VINF_SUCCESS;
3629 for (unsigned i = 0; i < RT_ELEMENTS(pPML4->a); i++)
3630 {
3631 X86PML4E Pml4e = pPML4->a[i];
3632 if (Pml4e.n.u1Present)
3633 {
3634 uint64_t u64Address = ((uint64_t)i << X86_PML4_SHIFT) | (((uint64_t)i >> (X86_PML4_SHIFT - X86_PDPT_SHIFT - 1)) * 0xffff000000000000ULL);
3635 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a p ? */
3636 "%016llx 0 | P %c %c %c %c %c %s %s %s %s .. %c%c%c %016llx\n",
3637 u64Address,
3638 Pml4e.n.u1Write ? 'W' : 'R',
3639 Pml4e.n.u1User ? 'U' : 'S',
3640 Pml4e.n.u1Accessed ? 'A' : '-',
3641 Pml4e.n.u3Reserved & 1? '?' : '.', /* ignored */
3642 Pml4e.n.u3Reserved & 4? '!' : '.', /* mbz */
3643 Pml4e.n.u1WriteThru ? "WT" : "--",
3644 Pml4e.n.u1CacheDisable? "CD" : "--",
3645 Pml4e.n.u3Reserved & 2? "!" : "..",/* mbz */
3646 Pml4e.n.u1NoExecute ? "NX" : "--",
3647 Pml4e.u & RT_BIT(9) ? '1' : '0',
3648 Pml4e.u & PGM_PLXFLAGS_PERMANENT ? 'p' : '-',
3649 Pml4e.u & RT_BIT(11) ? '1' : '0',
3650 Pml4e.u & X86_PML4E_PG_MASK);
3651
3652 if (cMaxDepth >= 1)
3653 {
3654 int rc2 = pgmR3DumpHierarchyHCPaePDPT(pVM, Pml4e.u & X86_PML4E_PG_MASK, u64Address, cr4, true, cMaxDepth - 1, pHlp);
3655 if (rc2 < rc && RT_SUCCESS(rc))
3656 rc = rc2;
3657 }
3658 }
3659 }
3660 return rc;
3661}
3662
3663
3664/**
3665 * Dumps a 32-bit shadow page table.
3666 *
3667 * @returns VBox status code (VINF_SUCCESS).
3668 * @param pVM The VM handle.
3669 * @param pPT Pointer to the page table.
3670 * @param u32Address The virtual address this table starts at.
3671 * @param pHlp Pointer to the output functions.
3672 */
3673int pgmR3DumpHierarchyHC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, PCDBGFINFOHLP pHlp)
3674{
3675 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3676 {
3677 X86PTE Pte = pPT->a[i];
3678 if (Pte.n.u1Present)
3679 {
3680 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3681 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3682 u32Address + (i << X86_PT_SHIFT),
3683 Pte.n.u1Write ? 'W' : 'R',
3684 Pte.n.u1User ? 'U' : 'S',
3685 Pte.n.u1Accessed ? 'A' : '-',
3686 Pte.n.u1Dirty ? 'D' : '-',
3687 Pte.n.u1Global ? 'G' : '-',
3688 Pte.n.u1WriteThru ? "WT" : "--",
3689 Pte.n.u1CacheDisable? "CD" : "--",
3690 Pte.n.u1PAT ? "AT" : "--",
3691 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3692 Pte.u & RT_BIT(10) ? '1' : '0',
3693 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3694 Pte.u & X86_PDE_PG_MASK);
3695 }
3696 }
3697 return VINF_SUCCESS;
3698}
3699
3700
3701/**
3702 * Dumps a 32-bit shadow page directory and page tables.
3703 *
3704 * @returns VBox status code (VINF_SUCCESS).
3705 * @param pVM The VM handle.
3706 * @param cr3 The root of the hierarchy.
3707 * @param cr4 The CR4, PSE is currently used.
3708 * @param cMaxDepth How deep into the hierarchy the dumper should go.
3709 * @param pHlp Pointer to the output functions.
3710 */
3711int pgmR3DumpHierarchyHC32BitPD(PVM pVM, uint32_t cr3, uint32_t cr4, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3712{
3713 PX86PD pPD = (PX86PD)MMPagePhys2Page(pVM, cr3 & X86_CR3_PAGE_MASK);
3714 if (!pPD)
3715 {
3716 pHlp->pfnPrintf(pHlp, "Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK);
3717 return VERR_INVALID_PARAMETER;
3718 }
3719
3720 int rc = VINF_SUCCESS;
3721 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3722 {
3723 X86PDE Pde = pPD->a[i];
3724 if (Pde.n.u1Present)
3725 {
3726 const uint32_t u32Address = i << X86_PD_SHIFT;
3727 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3728 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3729 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3730 u32Address,
3731 Pde.b.u1Write ? 'W' : 'R',
3732 Pde.b.u1User ? 'U' : 'S',
3733 Pde.b.u1Accessed ? 'A' : '-',
3734 Pde.b.u1Dirty ? 'D' : '-',
3735 Pde.b.u1Global ? 'G' : '-',
3736 Pde.b.u1WriteThru ? "WT" : "--",
3737 Pde.b.u1CacheDisable? "CD" : "--",
3738 Pde.b.u1PAT ? "AT" : "--",
3739 Pde.u & RT_BIT_64(9) ? '1' : '0',
3740 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3741 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3742 Pde.u & X86_PDE4M_PG_MASK);
3743 else
3744 {
3745 pHlp->pfnPrintf(pHlp, /*P R S A D G WT CD AT NX 4M a m d */
3746 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3747 u32Address,
3748 Pde.n.u1Write ? 'W' : 'R',
3749 Pde.n.u1User ? 'U' : 'S',
3750 Pde.n.u1Accessed ? 'A' : '-',
3751 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3752 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3753 Pde.n.u1WriteThru ? "WT" : "--",
3754 Pde.n.u1CacheDisable? "CD" : "--",
3755 Pde.u & RT_BIT_64(9) ? '1' : '0',
3756 Pde.u & PGM_PDFLAGS_MAPPING ? 'm' : '-',
3757 Pde.u & PGM_PDFLAGS_TRACK_DIRTY ? 'd' : '-',
3758 Pde.u & X86_PDE_PG_MASK);
3759 if (cMaxDepth >= 1)
3760 {
3761 /** @todo what about using the page pool for mapping PTs? */
3762 RTHCPHYS HCPhys = Pde.u & X86_PDE_PG_MASK;
3763 PX86PT pPT = NULL;
3764 if (!(Pde.u & PGM_PDFLAGS_MAPPING))
3765 pPT = (PX86PT)MMPagePhys2Page(pVM, HCPhys);
3766 else
3767 {
3768 for (PPGMMAPPING pMap = pVM->pgm.s.pMappingsR3; pMap; pMap = pMap->pNextR3)
3769 if (u32Address - pMap->GCPtr < pMap->cb)
3770 {
3771 int iPDE = (u32Address - pMap->GCPtr) >> X86_PD_SHIFT;
3772 if (pMap->aPTs[iPDE].HCPhysPT != HCPhys)
3773 pHlp->pfnPrintf(pHlp, "%08x error! Mapping error! PT %d has HCPhysPT=%RHp not %RHp is in the PD.\n",
3774 u32Address, iPDE, pMap->aPTs[iPDE].HCPhysPT, HCPhys);
3775 pPT = pMap->aPTs[iPDE].pPTR3;
3776 }
3777 }
3778 int rc2 = VERR_INVALID_PARAMETER;
3779 if (pPT)
3780 rc2 = pgmR3DumpHierarchyHC32BitPT(pVM, pPT, u32Address, pHlp);
3781 else
3782 pHlp->pfnPrintf(pHlp, "%08x error! Page table at %#x was not found in the page pool!\n", u32Address, HCPhys);
3783 if (rc2 < rc && RT_SUCCESS(rc))
3784 rc = rc2;
3785 }
3786 }
3787 }
3788 }
3789
3790 return rc;
3791}
3792
3793
3794/**
3795 * Dumps a 32-bit shadow page table.
3796 *
3797 * @returns VBox status code (VINF_SUCCESS).
3798 * @param pVM The VM handle.
3799 * @param pPT Pointer to the page table.
3800 * @param u32Address The virtual address this table starts at.
3801 * @param PhysSearch Address to search for.
3802 */
3803int pgmR3DumpHierarchyGC32BitPT(PVM pVM, PX86PT pPT, uint32_t u32Address, RTGCPHYS PhysSearch)
3804{
3805 for (unsigned i = 0; i < RT_ELEMENTS(pPT->a); i++)
3806 {
3807 X86PTE Pte = pPT->a[i];
3808 if (Pte.n.u1Present)
3809 {
3810 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3811 "%08x 1 | P %c %c %c %c %c %s %s %s .. 4K %c%c%c %08x\n",
3812 u32Address + (i << X86_PT_SHIFT),
3813 Pte.n.u1Write ? 'W' : 'R',
3814 Pte.n.u1User ? 'U' : 'S',
3815 Pte.n.u1Accessed ? 'A' : '-',
3816 Pte.n.u1Dirty ? 'D' : '-',
3817 Pte.n.u1Global ? 'G' : '-',
3818 Pte.n.u1WriteThru ? "WT" : "--",
3819 Pte.n.u1CacheDisable? "CD" : "--",
3820 Pte.n.u1PAT ? "AT" : "--",
3821 Pte.u & PGM_PTFLAGS_TRACK_DIRTY ? 'd' : '-',
3822 Pte.u & RT_BIT(10) ? '1' : '0',
3823 Pte.u & PGM_PTFLAGS_CSAM_VALIDATED ? 'v' : '-',
3824 Pte.u & X86_PDE_PG_MASK));
3825
3826 if ((Pte.u & X86_PDE_PG_MASK) == PhysSearch)
3827 {
3828 uint64_t fPageShw = 0;
3829 RTHCPHYS pPhysHC = 0;
3830
3831 /** @todo SMP support!! */
3832 PGMShwGetPage(&pVM->aCpus[0], (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), &fPageShw, &pPhysHC);
3833 Log(("Found %RGp at %RGv -> flags=%llx\n", PhysSearch, (RTGCPTR)(u32Address + (i << X86_PT_SHIFT)), fPageShw));
3834 }
3835 }
3836 }
3837 return VINF_SUCCESS;
3838}
3839
3840
3841/**
3842 * Dumps a 32-bit guest page directory and page tables.
3843 *
3844 * @returns VBox status code (VINF_SUCCESS).
3845 * @param pVM The VM handle.
3846 * @param cr3 The root of the hierarchy.
3847 * @param cr4 The CR4, PSE is currently used.
3848 * @param PhysSearch Address to search for.
3849 */
3850VMMR3DECL(int) PGMR3DumpHierarchyGC(PVM pVM, uint64_t cr3, uint64_t cr4, RTGCPHYS PhysSearch)
3851{
3852 bool fLongMode = false;
3853 const unsigned cch = fLongMode ? 16 : 8; NOREF(cch);
3854 PX86PD pPD = 0;
3855
3856 int rc = PGM_GCPHYS_2_PTR(pVM, cr3 & X86_CR3_PAGE_MASK, &pPD);
3857 if (RT_FAILURE(rc) || !pPD)
3858 {
3859 Log(("Page directory at %#x was not found in the page pool!\n", cr3 & X86_CR3_PAGE_MASK));
3860 return VERR_INVALID_PARAMETER;
3861 }
3862
3863 Log(("cr3=%08x cr4=%08x%s\n"
3864 "%-*s P - Present\n"
3865 "%-*s | R/W - Read (0) / Write (1)\n"
3866 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3867 "%-*s | | | A - Accessed\n"
3868 "%-*s | | | | D - Dirty\n"
3869 "%-*s | | | | | G - Global\n"
3870 "%-*s | | | | | | WT - Write thru\n"
3871 "%-*s | | | | | | | CD - Cache disable\n"
3872 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3873 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3874 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3875 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3876 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3877 "%-*s Level | | | | | | | | | | | | Page\n"
3878 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3879 - W U - - - -- -- -- -- -- 010 */
3880 , cr3, cr4, fLongMode ? " Long Mode" : "",
3881 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3882 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address"));
3883
3884 for (unsigned i = 0; i < RT_ELEMENTS(pPD->a); i++)
3885 {
3886 X86PDE Pde = pPD->a[i];
3887 if (Pde.n.u1Present)
3888 {
3889 const uint32_t u32Address = i << X86_PD_SHIFT;
3890
3891 if ((cr4 & X86_CR4_PSE) && Pde.b.u1Size)
3892 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3893 "%08x 0 | P %c %c %c %c %c %s %s %s .. 4M %c%c%c %08x\n",
3894 u32Address,
3895 Pde.b.u1Write ? 'W' : 'R',
3896 Pde.b.u1User ? 'U' : 'S',
3897 Pde.b.u1Accessed ? 'A' : '-',
3898 Pde.b.u1Dirty ? 'D' : '-',
3899 Pde.b.u1Global ? 'G' : '-',
3900 Pde.b.u1WriteThru ? "WT" : "--",
3901 Pde.b.u1CacheDisable? "CD" : "--",
3902 Pde.b.u1PAT ? "AT" : "--",
3903 Pde.u & RT_BIT(9) ? '1' : '0',
3904 Pde.u & RT_BIT(10) ? '1' : '0',
3905 Pde.u & RT_BIT(11) ? '1' : '0',
3906 pgmGstGet4MBPhysPage(&pVM->pgm.s, Pde)));
3907 /** @todo PhysSearch */
3908 else
3909 {
3910 Log(( /*P R S A D G WT CD AT NX 4M a m d */
3911 "%08x 0 | P %c %c %c %c %c %s %s .. .. 4K %c%c%c %08x\n",
3912 u32Address,
3913 Pde.n.u1Write ? 'W' : 'R',
3914 Pde.n.u1User ? 'U' : 'S',
3915 Pde.n.u1Accessed ? 'A' : '-',
3916 Pde.n.u1Reserved0 ? '?' : '.', /* ignored */
3917 Pde.n.u1Reserved1 ? '?' : '.', /* ignored */
3918 Pde.n.u1WriteThru ? "WT" : "--",
3919 Pde.n.u1CacheDisable? "CD" : "--",
3920 Pde.u & RT_BIT(9) ? '1' : '0',
3921 Pde.u & RT_BIT(10) ? '1' : '0',
3922 Pde.u & RT_BIT(11) ? '1' : '0',
3923 Pde.u & X86_PDE_PG_MASK));
3924 ////if (cMaxDepth >= 1)
3925 {
3926 /** @todo what about using the page pool for mapping PTs? */
3927 RTGCPHYS GCPhys = Pde.u & X86_PDE_PG_MASK;
3928 PX86PT pPT = NULL;
3929
3930 rc = PGM_GCPHYS_2_PTR(pVM, GCPhys, &pPT);
3931
3932 int rc2 = VERR_INVALID_PARAMETER;
3933 if (pPT)
3934 rc2 = pgmR3DumpHierarchyGC32BitPT(pVM, pPT, u32Address, PhysSearch);
3935 else
3936 Log(("%08x error! Page table at %#x was not found in the page pool!\n", u32Address, GCPhys));
3937 if (rc2 < rc && RT_SUCCESS(rc))
3938 rc = rc2;
3939 }
3940 }
3941 }
3942 }
3943
3944 return rc;
3945}
3946
3947
3948/**
3949 * Dumps a page table hierarchy use only physical addresses and cr4/lm flags.
3950 *
3951 * @returns VBox status code (VINF_SUCCESS).
3952 * @param pVM The VM handle.
3953 * @param cr3 The root of the hierarchy.
3954 * @param cr4 The cr4, only PAE and PSE is currently used.
3955 * @param fLongMode Set if long mode, false if not long mode.
3956 * @param cMaxDepth Number of levels to dump.
3957 * @param pHlp Pointer to the output functions.
3958 */
3959VMMR3DECL(int) PGMR3DumpHierarchyHC(PVM pVM, uint64_t cr3, uint64_t cr4, bool fLongMode, unsigned cMaxDepth, PCDBGFINFOHLP pHlp)
3960{
3961 if (!pHlp)
3962 pHlp = DBGFR3InfoLogHlp();
3963 if (!cMaxDepth)
3964 return VINF_SUCCESS;
3965 const unsigned cch = fLongMode ? 16 : 8;
3966 pHlp->pfnPrintf(pHlp,
3967 "cr3=%08x cr4=%08x%s\n"
3968 "%-*s P - Present\n"
3969 "%-*s | R/W - Read (0) / Write (1)\n"
3970 "%-*s | | U/S - User (1) / Supervisor (0)\n"
3971 "%-*s | | | A - Accessed\n"
3972 "%-*s | | | | D - Dirty\n"
3973 "%-*s | | | | | G - Global\n"
3974 "%-*s | | | | | | WT - Write thru\n"
3975 "%-*s | | | | | | | CD - Cache disable\n"
3976 "%-*s | | | | | | | | AT - Attribute table (PAT)\n"
3977 "%-*s | | | | | | | | | NX - No execute (K8)\n"
3978 "%-*s | | | | | | | | | | 4K/4M/2M - Page size.\n"
3979 "%-*s | | | | | | | | | | | AVL - a=allocated; m=mapping; d=track dirty;\n"
3980 "%-*s | | | | | | | | | | | | p=permanent; v=validated;\n"
3981 "%-*s Level | | | | | | | | | | | | Page\n"
3982 /* xxxx n **** P R S A D G WT CD AT NX 4M AVL xxxxxxxxxxxxx
3983 - W U - - - -- -- -- -- -- 010 */
3984 , cr3, cr4, fLongMode ? " Long Mode" : "",
3985 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "",
3986 cch, "", cch, "", cch, "", cch, "", cch, "", cch, "", cch, "Address");
3987 if (cr4 & X86_CR4_PAE)
3988 {
3989 if (fLongMode)
3990 return pgmR3DumpHierarchyHcPaePML4(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
3991 return pgmR3DumpHierarchyHCPaePDPT(pVM, cr3 & X86_CR3_PAE_PAGE_MASK, 0, cr4, false, cMaxDepth, pHlp);
3992 }
3993 return pgmR3DumpHierarchyHC32BitPD(pVM, cr3 & X86_CR3_PAGE_MASK, cr4, cMaxDepth, pHlp);
3994}
3995
3996#ifdef VBOX_WITH_DEBUGGER
3997
3998/**
3999 * The '.pgmram' command.
4000 *
4001 * @returns VBox status.
4002 * @param pCmd Pointer to the command descriptor (as registered).
4003 * @param pCmdHlp Pointer to command helper functions.
4004 * @param pVM Pointer to the current VM (if any).
4005 * @param paArgs Pointer to (readonly) array of arguments.
4006 * @param cArgs Number of arguments in the array.
4007 */
4008static DECLCALLBACK(int) pgmR3CmdRam(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4009{
4010 /*
4011 * Validate input.
4012 */
4013 if (!pVM)
4014 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4015 if (!pVM->pgm.s.pRamRangesRC)
4016 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Sorry, no Ram is registered.\n");
4017
4018 /*
4019 * Dump the ranges.
4020 */
4021 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "From - To (incl) pvHC\n");
4022 PPGMRAMRANGE pRam;
4023 for (pRam = pVM->pgm.s.pRamRangesR3; pRam; pRam = pRam->pNextR3)
4024 {
4025 rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL,
4026 "%RGp - %RGp %p\n",
4027 pRam->GCPhys, pRam->GCPhysLast, pRam->pvR3);
4028 if (RT_FAILURE(rc))
4029 return rc;
4030 }
4031
4032 return VINF_SUCCESS;
4033}
4034
4035
4036/**
4037 * The '.pgmerror' and '.pgmerroroff' commands.
4038 *
4039 * @returns VBox status.
4040 * @param pCmd Pointer to the command descriptor (as registered).
4041 * @param pCmdHlp Pointer to command helper functions.
4042 * @param pVM Pointer to the current VM (if any).
4043 * @param paArgs Pointer to (readonly) array of arguments.
4044 * @param cArgs Number of arguments in the array.
4045 */
4046static DECLCALLBACK(int) pgmR3CmdError(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4047{
4048 /*
4049 * Validate input.
4050 */
4051 if (!pVM)
4052 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4053 AssertReturn(cArgs == 0 || (cArgs == 1 && paArgs[0].enmType == DBGCVAR_TYPE_STRING),
4054 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Hit bug in the parser.\n"));
4055
4056 if (!cArgs)
4057 {
4058 /*
4059 * Print the list of error injection locations with status.
4060 */
4061 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "PGM error inject locations:\n");
4062 pCmdHlp->pfnPrintf(pCmdHlp, NULL, " handy - %RTbool\n", pVM->pgm.s.fErrInjHandyPages);
4063 }
4064 else
4065 {
4066
4067 /*
4068 * String switch on where to inject the error.
4069 */
4070 bool const fNewState = !strcmp(pCmd->pszCmd, "pgmerror");
4071 const char *pszWhere = paArgs[0].u.pszString;
4072 if (!strcmp(pszWhere, "handy"))
4073 ASMAtomicWriteBool(&pVM->pgm.s.fErrInjHandyPages, fNewState);
4074 else
4075 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 'where' value: %s.\n", pszWhere);
4076 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "done\n");
4077 }
4078 return VINF_SUCCESS;
4079}
4080
4081
4082/**
4083 * The '.pgmsync' command.
4084 *
4085 * @returns VBox status.
4086 * @param pCmd Pointer to the command descriptor (as registered).
4087 * @param pCmdHlp Pointer to command helper functions.
4088 * @param pVM Pointer to the current VM (if any).
4089 * @param paArgs Pointer to (readonly) array of arguments.
4090 * @param cArgs Number of arguments in the array.
4091 */
4092static DECLCALLBACK(int) pgmR3CmdSync(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4093{
4094 /** @todo SMP support */
4095 PVMCPU pVCpu = &pVM->aCpus[0];
4096
4097 /*
4098 * Validate input.
4099 */
4100 if (!pVM)
4101 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4102
4103 /*
4104 * Force page directory sync.
4105 */
4106 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4107
4108 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Forcing page directory sync.\n");
4109 if (RT_FAILURE(rc))
4110 return rc;
4111
4112 return VINF_SUCCESS;
4113}
4114
4115
4116#ifdef VBOX_STRICT
4117/**
4118 * The '.pgmassertcr3' command.
4119 *
4120 * @returns VBox status.
4121 * @param pCmd Pointer to the command descriptor (as registered).
4122 * @param pCmdHlp Pointer to command helper functions.
4123 * @param pVM Pointer to the current VM (if any).
4124 * @param paArgs Pointer to (readonly) array of arguments.
4125 * @param cArgs Number of arguments in the array.
4126 */
4127static DECLCALLBACK(int) pgmR3CmdAssertCR3(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4128{
4129 /** @todo SMP support!! */
4130 PVMCPU pVCpu = &pVM->aCpus[0];
4131
4132 /*
4133 * Validate input.
4134 */
4135 if (!pVM)
4136 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4137
4138 int rc = pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Checking shadow CR3 page tables for consistency.\n");
4139 if (RT_FAILURE(rc))
4140 return rc;
4141
4142 PGMAssertCR3(pVM, pVCpu, CPUMGetGuestCR3(pVCpu), CPUMGetGuestCR4(pVCpu));
4143
4144 return VINF_SUCCESS;
4145}
4146#endif /* VBOX_STRICT */
4147
4148
4149/**
4150 * The '.pgmsyncalways' command.
4151 *
4152 * @returns VBox status.
4153 * @param pCmd Pointer to the command descriptor (as registered).
4154 * @param pCmdHlp Pointer to command helper functions.
4155 * @param pVM Pointer to the current VM (if any).
4156 * @param paArgs Pointer to (readonly) array of arguments.
4157 * @param cArgs Number of arguments in the array.
4158 */
4159static DECLCALLBACK(int) pgmR3CmdSyncAlways(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4160{
4161 /** @todo SMP support!! */
4162 PVMCPU pVCpu = &pVM->aCpus[0];
4163
4164 /*
4165 * Validate input.
4166 */
4167 if (!pVM)
4168 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4169
4170 /*
4171 * Force page directory sync.
4172 */
4173 if (pVCpu->pgm.s.fSyncFlags & PGM_SYNC_ALWAYS)
4174 {
4175 ASMAtomicAndU32(&pVCpu->pgm.s.fSyncFlags, ~PGM_SYNC_ALWAYS);
4176 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Disabled permanent forced page directory syncing.\n");
4177 }
4178 else
4179 {
4180 ASMAtomicOrU32(&pVCpu->pgm.s.fSyncFlags, PGM_SYNC_ALWAYS);
4181 VMCPU_FF_SET(pVCpu, VMCPU_FF_PGM_SYNC_CR3);
4182 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Enabled permanent forced page directory syncing.\n");
4183 }
4184}
4185
4186
4187/**
4188 * The '.pgmsyncalways' command.
4189 *
4190 * @returns VBox status.
4191 * @param pCmd Pointer to the command descriptor (as registered).
4192 * @param pCmdHlp Pointer to command helper functions.
4193 * @param pVM Pointer to the current VM (if any).
4194 * @param paArgs Pointer to (readonly) array of arguments.
4195 * @param cArgs Number of arguments in the array.
4196 */
4197static DECLCALLBACK(int) pgmR3CmdPhysToFile(PCDBGCCMD pCmd, PDBGCCMDHLP pCmdHlp, PVM pVM, PCDBGCVAR paArgs, unsigned cArgs, PDBGCVAR pResult)
4198{
4199 /*
4200 * Validate input.
4201 */
4202 if (!pVM)
4203 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: The command requires a VM to be selected.\n");
4204 if ( cArgs < 1
4205 || cArgs > 2
4206 || paArgs[0].enmType != DBGCVAR_TYPE_STRING
4207 || ( cArgs > 1
4208 && paArgs[1].enmType != DBGCVAR_TYPE_STRING))
4209 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: parser error, invalid arguments.\n");
4210 if ( cArgs >= 2
4211 && strcmp(paArgs[1].u.pszString, "nozero"))
4212 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: Invalid 2nd argument '%s', must be 'nozero'.\n", paArgs[1].u.pszString);
4213 bool fIncZeroPgs = cArgs < 2;
4214
4215 /*
4216 * Open the output file and get the ram parameters.
4217 */
4218 RTFILE hFile;
4219 int rc = RTFileOpen(&hFile, paArgs[0].u.pszString, RTFILE_O_WRITE | RTFILE_O_CREATE_REPLACE | RTFILE_O_DENY_WRITE);
4220 if (RT_FAILURE(rc))
4221 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileOpen(,'%s',) -> %Rrc.\n", paArgs[0].u.pszString, rc);
4222
4223 uint32_t cbRamHole = 0;
4224 CFGMR3QueryU32Def(CFGMR3GetRoot(pVM), "RamHoleSize", &cbRamHole, MM_RAM_HOLE_SIZE_DEFAULT);
4225 uint64_t cbRam = 0;
4226 CFGMR3QueryU64Def(CFGMR3GetRoot(pVM), "RamSize", &cbRam, 0);
4227 RTGCPHYS GCPhysEnd = cbRam + cbRamHole;
4228
4229 /*
4230 * Dump the physical memory, page by page.
4231 */
4232 RTGCPHYS GCPhys = 0;
4233 char abZeroPg[PAGE_SIZE];
4234 RT_ZERO(abZeroPg);
4235
4236 pgmLock(pVM);
4237 for (PPGMRAMRANGE pRam = pVM->pgm.s.pRamRangesR3;
4238 pRam && pRam->GCPhys < GCPhysEnd && RT_SUCCESS(rc);
4239 pRam = pRam->pNextR3)
4240 {
4241 /* fill the gap */
4242 if (pRam->GCPhys > GCPhys && fIncZeroPgs)
4243 {
4244 while (pRam->GCPhys > GCPhys && RT_SUCCESS(rc))
4245 {
4246 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4247 GCPhys += PAGE_SIZE;
4248 }
4249 }
4250
4251 PCPGMPAGE pPage = &pRam->aPages[0];
4252 while (GCPhys < pRam->GCPhysLast && RT_SUCCESS(rc))
4253 {
4254 if (PGM_PAGE_IS_ZERO(pPage))
4255 {
4256 if (fIncZeroPgs)
4257 {
4258 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4259 if (RT_FAILURE(rc))
4260 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4261 }
4262 }
4263 else
4264 {
4265 switch (PGM_PAGE_GET_TYPE(pPage))
4266 {
4267 case PGMPAGETYPE_RAM:
4268 case PGMPAGETYPE_ROM_SHADOW: /* trouble?? */
4269 case PGMPAGETYPE_ROM:
4270 case PGMPAGETYPE_MMIO2:
4271 {
4272 void const *pvPage;
4273 PGMPAGEMAPLOCK Lock;
4274 rc = PGMPhysGCPhys2CCPtrReadOnly(pVM, GCPhys, &pvPage, &Lock);
4275 if (RT_SUCCESS(rc))
4276 {
4277 rc = RTFileWrite(hFile, pvPage, PAGE_SIZE, NULL);
4278 PGMPhysReleasePageMappingLock(pVM, &Lock);
4279 if (RT_FAILURE(rc))
4280 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4281 }
4282 else
4283 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: PGMPhysGCPhys2CCPtrReadOnly -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4284 break;
4285 }
4286
4287 default:
4288 AssertFailed();
4289 case PGMPAGETYPE_MMIO2_ALIAS_MMIO:
4290 case PGMPAGETYPE_MMIO:
4291 if (fIncZeroPgs)
4292 {
4293 rc = RTFileWrite(hFile, abZeroPg, PAGE_SIZE, NULL);
4294 if (RT_FAILURE(rc))
4295 pCmdHlp->pfnPrintf(pCmdHlp, NULL, "error: RTFileWrite -> %Rrc at GCPhys=%RGp.\n", rc, GCPhys);
4296 }
4297 break;
4298 }
4299 }
4300
4301
4302 /* advance */
4303 GCPhys += PAGE_SIZE;
4304 pPage++;
4305 }
4306 }
4307 pgmUnlock(pVM);
4308
4309 RTFileClose(hFile);
4310 if (RT_SUCCESS(rc))
4311 return pCmdHlp->pfnPrintf(pCmdHlp, NULL, "Successfully saved physical memory to '%s'.\n", paArgs[0].u.pszString);
4312 return VINF_SUCCESS;
4313}
4314
4315#endif /* VBOX_WITH_DEBUGGER */
4316
4317/**
4318 * pvUser argument of the pgmR3CheckIntegrity*Node callbacks.
4319 */
4320typedef struct PGMCHECKINTARGS
4321{
4322 bool fLeftToRight; /**< true: left-to-right; false: right-to-left. */
4323 PPGMPHYSHANDLER pPrevPhys;
4324 PPGMVIRTHANDLER pPrevVirt;
4325 PPGMPHYS2VIRTHANDLER pPrevPhys2Virt;
4326 PVM pVM;
4327} PGMCHECKINTARGS, *PPGMCHECKINTARGS;
4328
4329/**
4330 * Validate a node in the physical handler tree.
4331 *
4332 * @returns 0 on if ok, other wise 1.
4333 * @param pNode The handler node.
4334 * @param pvUser pVM.
4335 */
4336static DECLCALLBACK(int) pgmR3CheckIntegrityPhysHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4337{
4338 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4339 PPGMPHYSHANDLER pCur = (PPGMPHYSHANDLER)pNode;
4340 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4341 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4342 AssertReleaseMsg( !pArgs->pPrevPhys
4343 || (pArgs->fLeftToRight ? pArgs->pPrevPhys->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys->Core.KeyLast > pCur->Core.Key),
4344 ("pPrevPhys=%p %RGp-%RGp %s\n"
4345 " pCur=%p %RGp-%RGp %s\n",
4346 pArgs->pPrevPhys, pArgs->pPrevPhys->Core.Key, pArgs->pPrevPhys->Core.KeyLast, pArgs->pPrevPhys->pszDesc,
4347 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4348 pArgs->pPrevPhys = pCur;
4349 return 0;
4350}
4351
4352
4353/**
4354 * Validate a node in the virtual handler tree.
4355 *
4356 * @returns 0 on if ok, other wise 1.
4357 * @param pNode The handler node.
4358 * @param pvUser pVM.
4359 */
4360static DECLCALLBACK(int) pgmR3CheckIntegrityVirtHandlerNode(PAVLROGCPTRNODECORE pNode, void *pvUser)
4361{
4362 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4363 PPGMVIRTHANDLER pCur = (PPGMVIRTHANDLER)pNode;
4364 AssertReleaseReturn(!((uintptr_t)pCur & 7), 1);
4365 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGv-%RGv %s\n", pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4366 AssertReleaseMsg( !pArgs->pPrevVirt
4367 || (pArgs->fLeftToRight ? pArgs->pPrevVirt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevVirt->Core.KeyLast > pCur->Core.Key),
4368 ("pPrevVirt=%p %RGv-%RGv %s\n"
4369 " pCur=%p %RGv-%RGv %s\n",
4370 pArgs->pPrevVirt, pArgs->pPrevVirt->Core.Key, pArgs->pPrevVirt->Core.KeyLast, pArgs->pPrevVirt->pszDesc,
4371 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc));
4372 for (unsigned iPage = 0; iPage < pCur->cPages; iPage++)
4373 {
4374 AssertReleaseMsg(pCur->aPhysToVirt[iPage].offVirtHandler == -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage]),
4375 ("pCur=%p %RGv-%RGv %s\n"
4376 "iPage=%d offVirtHandle=%#x expected %#x\n",
4377 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->pszDesc,
4378 iPage, pCur->aPhysToVirt[iPage].offVirtHandler, -RT_OFFSETOF(PGMVIRTHANDLER, aPhysToVirt[iPage])));
4379 }
4380 pArgs->pPrevVirt = pCur;
4381 return 0;
4382}
4383
4384
4385/**
4386 * Validate a node in the virtual handler tree.
4387 *
4388 * @returns 0 on if ok, other wise 1.
4389 * @param pNode The handler node.
4390 * @param pvUser pVM.
4391 */
4392static DECLCALLBACK(int) pgmR3CheckIntegrityPhysToVirtHandlerNode(PAVLROGCPHYSNODECORE pNode, void *pvUser)
4393{
4394 PPGMCHECKINTARGS pArgs = (PPGMCHECKINTARGS)pvUser;
4395 PPGMPHYS2VIRTHANDLER pCur = (PPGMPHYS2VIRTHANDLER)pNode;
4396 AssertReleaseMsgReturn(!((uintptr_t)pCur & 3), ("\n"), 1);
4397 AssertReleaseMsgReturn(!(pCur->offVirtHandler & 3), ("\n"), 1);
4398 AssertReleaseMsg(pCur->Core.Key <= pCur->Core.KeyLast,("pCur=%p %RGp-%RGp\n", pCur, pCur->Core.Key, pCur->Core.KeyLast));
4399 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4400 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4401 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4402 " pCur=%p %RGp-%RGp\n",
4403 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4404 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4405 AssertReleaseMsg( !pArgs->pPrevPhys2Virt
4406 || (pArgs->fLeftToRight ? pArgs->pPrevPhys2Virt->Core.KeyLast < pCur->Core.Key : pArgs->pPrevPhys2Virt->Core.KeyLast > pCur->Core.Key),
4407 ("pPrevPhys2Virt=%p %RGp-%RGp\n"
4408 " pCur=%p %RGp-%RGp\n",
4409 pArgs->pPrevPhys2Virt, pArgs->pPrevPhys2Virt->Core.Key, pArgs->pPrevPhys2Virt->Core.KeyLast,
4410 pCur, pCur->Core.Key, pCur->Core.KeyLast));
4411 AssertReleaseMsg((pCur->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD),
4412 ("pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4413 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4414 if (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK)
4415 {
4416 PPGMPHYS2VIRTHANDLER pCur2 = pCur;
4417 for (;;)
4418 {
4419 pCur2 = (PPGMPHYS2VIRTHANDLER)((intptr_t)pCur + (pCur->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK));
4420 AssertReleaseMsg(pCur2 != pCur,
4421 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4422 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias));
4423 AssertReleaseMsg((pCur2->offNextAlias & (PGMPHYS2VIRTHANDLER_IN_TREE | PGMPHYS2VIRTHANDLER_IS_HEAD)) == PGMPHYS2VIRTHANDLER_IN_TREE,
4424 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4425 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4426 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4427 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4428 AssertReleaseMsg((pCur2->Core.Key ^ pCur->Core.Key) < PAGE_SIZE,
4429 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4430 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4431 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4432 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4433 AssertReleaseMsg((pCur2->Core.KeyLast ^ pCur->Core.KeyLast) < PAGE_SIZE,
4434 (" pCur=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n"
4435 "pCur2=%p:{.Core.Key=%RGp, .Core.KeyLast=%RGp, .offVirtHandler=%#RX32, .offNextAlias=%#RX32}\n",
4436 pCur, pCur->Core.Key, pCur->Core.KeyLast, pCur->offVirtHandler, pCur->offNextAlias,
4437 pCur2, pCur2->Core.Key, pCur2->Core.KeyLast, pCur2->offVirtHandler, pCur2->offNextAlias));
4438 if (!(pCur2->offNextAlias & PGMPHYS2VIRTHANDLER_OFF_MASK))
4439 break;
4440 }
4441 }
4442
4443 pArgs->pPrevPhys2Virt = pCur;
4444 return 0;
4445}
4446
4447
4448/**
4449 * Perform an integrity check on the PGM component.
4450 *
4451 * @returns VINF_SUCCESS if everything is fine.
4452 * @returns VBox error status after asserting on integrity breach.
4453 * @param pVM The VM handle.
4454 */
4455VMMR3DECL(int) PGMR3CheckIntegrity(PVM pVM)
4456{
4457 AssertReleaseReturn(pVM->pgm.s.offVM, VERR_INTERNAL_ERROR);
4458
4459 /*
4460 * Check the trees.
4461 */
4462 int cErrors = 0;
4463 const static PGMCHECKINTARGS s_LeftToRight = { true, NULL, NULL, NULL, pVM };
4464 const static PGMCHECKINTARGS s_RightToLeft = { false, NULL, NULL, NULL, pVM };
4465 PGMCHECKINTARGS Args = s_LeftToRight;
4466 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, true, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4467 Args = s_RightToLeft;
4468 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysHandlers, false, pgmR3CheckIntegrityPhysHandlerNode, &Args);
4469 Args = s_LeftToRight;
4470 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4471 Args = s_RightToLeft;
4472 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->VirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4473 Args = s_LeftToRight;
4474 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, true, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4475 Args = s_RightToLeft;
4476 cErrors += RTAvlroGCPtrDoWithAll( &pVM->pgm.s.pTreesR3->HyperVirtHandlers, false, pgmR3CheckIntegrityVirtHandlerNode, &Args);
4477 Args = s_LeftToRight;
4478 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, true, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4479 Args = s_RightToLeft;
4480 cErrors += RTAvlroGCPhysDoWithAll(&pVM->pgm.s.pTreesR3->PhysToVirtHandlers, false, pgmR3CheckIntegrityPhysToVirtHandlerNode, &Args);
4481
4482 return !cErrors ? VINF_SUCCESS : VERR_INTERNAL_ERROR;
4483}
4484
4485
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette