/* $Id: semevent-r0drv-solaris.c 25717 2010-01-11 13:24:09Z vboxsync $ */ /** @file * IPRT - Semaphores, Ring-0 Driver, Solaris. */ /* * Copyright (C) 2006-2007 Sun Microsystems, Inc. * * This file is part of VirtualBox Open Source Edition (OSE), as * available from http://www.virtualbox.org. This file is free software; * you can redistribute it and/or modify it under the terms of the GNU * General Public License (GPL) as published by the Free Software * Foundation, in version 2 as it comes in the "COPYING" file of the * VirtualBox OSE distribution. VirtualBox OSE is distributed in the * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind. * * The contents of this file may alternatively be used under the terms * of the Common Development and Distribution License Version 1.0 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the * VirtualBox OSE distribution, in which case the provisions of the * CDDL are applicable instead of those of the GPL. * * You may elect to license modified versions of this file under the * terms and conditions of either the GPL or the CDDL or both. * * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa * Clara, CA 95054 USA or visit http://www.sun.com if you need * additional information or have any questions. */ /******************************************************************************* * Header Files * *******************************************************************************/ #include "the-solaris-kernel.h" #include "internal/iprt.h" #include #include #include #include #include #include #include #include "internal/magics.h" /******************************************************************************* * Structures and Typedefs * *******************************************************************************/ /** * Solaris event semaphore. */ typedef struct RTSEMEVENTINTERNAL { /** Magic value (RTSEMEVENT_MAGIC). */ uint32_t volatile u32Magic; /** The number of waiting threads. */ uint32_t volatile cWaiters; /** Set if the event object is signaled. */ uint8_t volatile fSignaled; /** The number of threads in the process of waking up. */ uint32_t volatile cWaking; /** The Solaris mutex protecting this structure and pairing up the with the cv. */ kmutex_t Mtx; /** The Solaris condition variable. */ kcondvar_t Cnd; } RTSEMEVENTINTERNAL, *PRTSEMEVENTINTERNAL; RTDECL(int) RTSemEventCreate(PRTSEMEVENT phEventSem) { return RTSemEventCreateEx(phEventSem, 0 /*fFlags*/, NIL_RTLOCKVALCLASS, NULL); } RTDECL(int) RTSemEventCreateEx(PRTSEMEVENT phEventSem, uint32_t fFlags, RTLOCKVALCLASS hClass, const char *pszNameFmt, ...) { AssertCompile(sizeof(RTSEMEVENTINTERNAL) > sizeof(void *)); AssertReturn(!(fFlags & ~RTSEMEVENT_FLAGS_NO_LOCK_VAL), VERR_INVALID_PARAMETER); AssertPtrReturn(phEventSem, VERR_INVALID_POINTER); RT_ASSERT_PREEMPTIBLE(); PRTSEMEVENTINTERNAL pThis = (PRTSEMEVENTINTERNAL)RTMemAlloc(sizeof(*pThis)); if (!pThis) return VERR_NO_MEMORY; pThis->u32Magic = RTSEMEVENT_MAGIC; pThis->cWaiters = 0; pThis->cWaking = 0; pThis->fSignaled = 0; mutex_init(&pThis->Mtx, "IPRT Event Semaphore", MUTEX_DRIVER, (void *)ipltospl(DISP_LEVEL)); cv_init(&pThis->Cnd, "IPRT CV", CV_DRIVER, NULL); *phEventSem = pThis; return VINF_SUCCESS; } RTDECL(int) RTSemEventDestroy(RTSEMEVENT hEventSem) { PRTSEMEVENTINTERNAL pThis = hEventSem; if (pThis == NIL_RTSEMEVENT) return VINF_SUCCESS; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC, ("u32Magic=%RX32 pThis=%p\n", pThis->u32Magic, pThis), VERR_INVALID_HANDLE); RT_ASSERT_INTS_ON(); mutex_enter(&pThis->Mtx); ASMAtomicIncU32(&pThis->u32Magic); /* make the handle invalid */ if (pThis->cWaiters > 0) { /* abort waiting thread, last man cleans up. */ ASMAtomicXchgU32(&pThis->cWaking, pThis->cWaking + pThis->cWaiters); cv_broadcast(&pThis->Cnd); mutex_exit(&pThis->Mtx); } else if (pThis->cWaking) { /* the last waking thread is gonna do the cleanup */ mutex_exit(&pThis->Mtx); } else { mutex_exit(&pThis->Mtx); cv_destroy(&pThis->Cnd); mutex_destroy(&pThis->Mtx); RTMemFree(pThis); } return VINF_SUCCESS; } RTDECL(int) RTSemEventSignal(RTSEMEVENT hEventSem) { PRTSEMEVENTINTERNAL pThis = (PRTSEMEVENTINTERNAL)hEventSem; RT_ASSERT_PREEMPT_CPUID_VAR(); AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC, ("u32Magic=%RX32 pThis=%p\n", pThis->u32Magic, pThis), VERR_INVALID_HANDLE); RT_ASSERT_INTS_ON(); /* * If we're in interrupt context we need to unpin the underlying current * thread as this could lead to a deadlock (see #4259 for the full explanation) * * Note! This assumes nobody is using the RTThreadPreemptDisable in an * interrupt context and expects it to work right. The swtch will * result in a voluntary preemption. To fix this, we would have to * do our own counting in RTThreadPreemptDisable/Restore like we do * on systems which doesn't do preemption (OS/2, linux, ...) and * check whether preemption was disabled via RTThreadPreemptDisable * or not and only call swtch if RTThreadPreemptDisable wasn't called. */ int fAcquired = mutex_tryenter(&pThis->Mtx); if (!fAcquired) { if (curthread->t_intr && getpil() < DISP_LEVEL) { RTTHREADPREEMPTSTATE PreemptState = RTTHREADPREEMPTSTATE_INITIALIZER; RTThreadPreemptDisable(&PreemptState); preempt(); RTThreadPreemptRestore(&PreemptState); } mutex_enter(&pThis->Mtx); } if (pThis->cWaiters > 0) { ASMAtomicDecU32(&pThis->cWaiters); ASMAtomicIncU32(&pThis->cWaking); cv_signal(&pThis->Cnd); } else ASMAtomicXchgU8(&pThis->fSignaled, true); mutex_exit(&pThis->Mtx); RT_ASSERT_PREEMPT_CPUID(); return VINF_SUCCESS; } static int rtSemEventWait(RTSEMEVENT hEventSem, unsigned cMillies, bool fInterruptible) { int rc; PRTSEMEVENTINTERNAL pThis = (PRTSEMEVENTINTERNAL)hEventSem; AssertPtrReturn(pThis, VERR_INVALID_HANDLE); AssertMsgReturn(pThis->u32Magic == RTSEMEVENT_MAGIC, ("u32Magic=%RX32 pThis=%p\n", pThis->u32Magic, pThis), VERR_INVALID_HANDLE); if (cMillies) RT_ASSERT_PREEMPTIBLE(); mutex_enter(&pThis->Mtx); if (pThis->fSignaled) { Assert(!pThis->cWaiters); ASMAtomicXchgU8(&pThis->fSignaled, false); rc = VINF_SUCCESS; } else if (!cMillies) rc = VERR_TIMEOUT; else { ASMAtomicIncU32(&pThis->cWaiters); /* * Translate milliseconds into ticks and go to sleep. */ if (cMillies != RT_INDEFINITE_WAIT) { clock_t cTicks = drv_usectohz((clock_t)(cMillies * 1000L)); clock_t cTimeout = ddi_get_lbolt(); cTimeout += cTicks; if (fInterruptible) rc = cv_timedwait_sig(&pThis->Cnd, &pThis->Mtx, cTimeout); else rc = cv_timedwait(&pThis->Cnd, &pThis->Mtx, cTimeout); } else { if (fInterruptible) rc = cv_wait_sig(&pThis->Cnd, &pThis->Mtx); else { cv_wait(&pThis->Cnd, &pThis->Mtx); rc = 1; } } if (rc > 0) { /* Retured due to call to cv_signal() or cv_broadcast() */ if (pThis->u32Magic != RTSEMEVENT_MAGIC) { rc = VERR_SEM_DESTROYED; if (!ASMAtomicDecU32(&pThis->cWaking)) { mutex_exit(&pThis->Mtx); cv_destroy(&pThis->Cnd); mutex_destroy(&pThis->Mtx); RTMemFree(pThis); return rc; } } ASMAtomicDecU32(&pThis->cWaking); rc = VINF_SUCCESS; } else if (rc == -1) { /* Returned due to timeout being reached */ if (pThis->cWaiters > 0) ASMAtomicDecU32(&pThis->cWaiters); rc = VERR_TIMEOUT; } else { /* Returned due to pending signal */ if (pThis->cWaiters > 0) ASMAtomicDecU32(&pThis->cWaiters); rc = VERR_INTERRUPTED; } } mutex_exit(&pThis->Mtx); return rc; } RTDECL(int) RTSemEventWait(RTSEMEVENT hEventSem, unsigned cMillies) { return rtSemEventWait(hEventSem, cMillies, false /* not interruptible */); } RTDECL(int) RTSemEventWaitNoResume(RTSEMEVENT hEventSem, unsigned cMillies) { return rtSemEventWait(hEventSem, cMillies, true /* interruptible */); }