VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/os2/memobj-r0drv-os2.cpp@ 27737

最後變更 在這個檔案從27737是 26847,由 vboxsync 提交於 15 年 前

Don't pass uAlignment=0 to rtR0MemObjNativeAllocPhys, resolve the alias like is done for the other APIs.

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id
檔案大小: 18.2 KB
 
1/* $Id: memobj-r0drv-os2.cpp 26847 2010-02-26 13:19:14Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, OS/2.
4 */
5
6/*
7 * Copyright (c) 2007 knut st. osmundsen <[email protected]>
8 *
9 * Permission is hereby granted, free of charge, to any person
10 * obtaining a copy of this software and associated documentation
11 * files (the "Software"), to deal in the Software without
12 * restriction, including without limitation the rights to use,
13 * copy, modify, merge, publish, distribute, sublicense, and/or sell
14 * copies of the Software, and to permit persons to whom the
15 * Software is furnished to do so, subject to the following
16 * conditions:
17 *
18 * The above copyright notice and this permission notice shall be
19 * included in all copies or substantial portions of the Software.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
22 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
23 * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
24 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
25 * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
26 * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
27 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
28 * OTHER DEALINGS IN THE SOFTWARE.
29 */
30
31
32/*******************************************************************************
33* Header Files *
34*******************************************************************************/
35#include "the-os2-kernel.h"
36
37#include <iprt/memobj.h>
38#include <iprt/mem.h>
39#include <iprt/err.h>
40#include <iprt/assert.h>
41#include <iprt/log.h>
42#include <iprt/param.h>
43#include <iprt/process.h>
44#include "internal/memobj.h"
45
46
47/*******************************************************************************
48* Structures and Typedefs *
49*******************************************************************************/
50/**
51 * The OS/2 version of the memory object structure.
52 */
53typedef struct RTR0MEMOBJDARWIN
54{
55 /** The core structure. */
56 RTR0MEMOBJINTERNAL Core;
57 /** Lock for the ring-3 / ring-0 pinned objectes.
58 * This member might not be allocated for some object types. */
59 KernVMLock_t Lock;
60 /** Array of physical pages.
61 * This array can be 0 in length for some object types. */
62 KernPageList_t aPages[1];
63} RTR0MEMOBJOS2, *PRTR0MEMOBJOS2;
64
65
66/*******************************************************************************
67* Internal Functions *
68*******************************************************************************/
69static void rtR0MemObjFixPageList(KernPageList_t *paPages, ULONG cPages, ULONG cPagesRet);
70
71
72int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
73{
74 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)pMem;
75 int rc;
76
77 switch (pMemOs2->Core.enmType)
78 {
79 case RTR0MEMOBJTYPE_PHYS_NC:
80 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
81 return VERR_INTERNAL_ERROR;
82 break;
83
84 case RTR0MEMOBJTYPE_PHYS:
85 if (!pMemOs2->Core.pv)
86 break;
87
88 case RTR0MEMOBJTYPE_MAPPING:
89 if (pMemOs2->Core.u.Mapping.R0Process == NIL_RTR0PROCESS)
90 break;
91
92 /* fall thru */
93 case RTR0MEMOBJTYPE_PAGE:
94 case RTR0MEMOBJTYPE_LOW:
95 case RTR0MEMOBJTYPE_CONT:
96 rc = KernVMFree(pMemOs2->Core.pv);
97 AssertMsg(!rc, ("rc=%d type=%d pv=%p cb=%#zx\n", rc, pMemOs2->Core.enmType, pMemOs2->Core.pv, pMemOs2->Core.cb));
98 break;
99
100 case RTR0MEMOBJTYPE_LOCK:
101 rc = KernVMUnlock(&pMemOs2->Lock);
102 AssertMsg(!rc, ("rc=%d\n", rc));
103 break;
104
105 case RTR0MEMOBJTYPE_RES_VIRT:
106 default:
107 AssertMsgFailed(("enmType=%d\n", pMemOs2->Core.enmType));
108 return VERR_INTERNAL_ERROR;
109 }
110
111 return VINF_SUCCESS;
112}
113
114
115int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
116{
117 NOREF(fExecutable);
118
119 /* create the object. */
120 const ULONG cPages = cb >> PAGE_SHIFT;
121 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_PAGE, NULL, cb);
122 if (!pMemOs2)
123 return VERR_NO_MEMORY;
124
125 /* do the allocation. */
126 int rc = KernVMAlloc(cb, VMDHA_FIXED, &pMemOs2->Core.pv, (PPVOID)-1, NULL);
127 if (!rc)
128 {
129 ULONG cPagesRet = cPages;
130 rc = KernLinToPageList(pMemOs2->Core.pv, cb, &pMemOs2->aPages[0], &cPagesRet);
131 if (!rc)
132 {
133 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
134 *ppMem = &pMemOs2->Core;
135 return VINF_SUCCESS;
136 }
137 KernVMFree(pMemOs2->Core.pv);
138 }
139 rtR0MemObjDelete(&pMemOs2->Core);
140 return RTErrConvertFromOS2(rc);
141}
142
143
144int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
145{
146 NOREF(fExecutable);
147
148 /* create the object. */
149 const ULONG cPages = cb >> PAGE_SHIFT;
150 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOW, NULL, cb);
151 if (!pMemOs2)
152 return VERR_NO_MEMORY;
153
154 /* do the allocation. */
155 int rc = KernVMAlloc(cb, VMDHA_FIXED, &pMemOs2->Core.pv, (PPVOID)-1, NULL);
156 if (!rc)
157 {
158 ULONG cPagesRet = cPages;
159 rc = KernLinToPageList(pMemOs2->Core.pv, cb, &pMemOs2->aPages[0], &cPagesRet);
160 if (!rc)
161 {
162 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
163 *ppMem = &pMemOs2->Core;
164 return VINF_SUCCESS;
165 }
166 KernVMFree(pMemOs2->Core.pv);
167 }
168 rtR0MemObjDelete(&pMemOs2->Core);
169 return RTErrConvertFromOS2(rc);
170}
171
172
173int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
174{
175 NOREF(fExecutable);
176
177 /* create the object. */
178 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_CONT, NULL, cb);
179 if (!pMemOs2)
180 return VERR_NO_MEMORY;
181
182 /* do the allocation. */
183 ULONG ulPhys = ~0UL;
184 int rc = KernVMAlloc(cb, VMDHA_FIXED | VMDHA_CONTIG, &pMemOs2->Core.pv, (PPVOID)&ulPhys, NULL);
185 if (!rc)
186 {
187 Assert(ulPhys != ~0UL);
188 pMemOs2->Core.u.Cont.Phys = ulPhys;
189 *ppMem = &pMemOs2->Core;
190 return VINF_SUCCESS;
191 }
192 rtR0MemObjDelete(&pMemOs2->Core);
193 return RTErrConvertFromOS2(rc);
194}
195
196
197int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest, size_t uAlignment)
198{
199 AssertMsgReturn(PhysHighest >= 16 *_1M, ("PhysHigest=%RHp\n", PhysHighest), VERR_NOT_IMPLEMENTED);
200
201 /** @todo alignment */
202 if (uAlignment != PAGE_SIZE)
203 return VERR_NOT_SUPPORTED;
204
205 /* create the object. */
206 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_PHYS, NULL, cb);
207 if (!pMemOs2)
208 return VERR_NO_MEMORY;
209
210 /* do the allocation. */
211 ULONG ulPhys = ~0UL;
212 int rc = KernVMAlloc(cb, VMDHA_FIXED | VMDHA_CONTIG | (PhysHighest < _4G ? VMDHA_16M : 0), &pMemOs2->Core.pv, (PPVOID)&ulPhys, NULL);
213 if (!rc)
214 {
215 Assert(ulPhys != ~0UL);
216 pMemOs2->Core.u.Phys.fAllocated = true;
217 pMemOs2->Core.u.Phys.PhysBase = ulPhys;
218 *ppMem = &pMemOs2->Core;
219 return VINF_SUCCESS;
220 }
221 rtR0MemObjDelete(&pMemOs2->Core);
222 return RTErrConvertFromOS2(rc);
223}
224
225
226int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
227{
228 /** @todo rtR0MemObjNativeAllocPhys / darwin. */
229 return rtR0MemObjNativeAllocPhys(ppMem, cb, PhysHighest, PAGE_SIZE);
230}
231
232
233int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb)
234{
235 /* create the object. */
236 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_PHYS, NULL, cb);
237 if (!pMemOs2)
238 return VERR_NO_MEMORY;
239
240 /* there is no allocation here, right? it needs to be mapped somewhere first. */
241 pMemOs2->Core.u.Phys.fAllocated = false;
242 pMemOs2->Core.u.Phys.PhysBase = Phys;
243 *ppMem = &pMemOs2->Core;
244 return VINF_SUCCESS;
245}
246
247
248int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
249{
250 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
251
252 /* create the object. */
253 const ULONG cPages = cb >> PAGE_SHIFT;
254 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOCK, (void *)R3Ptr, cb);
255 if (!pMemOs2)
256 return VERR_NO_MEMORY;
257
258 /* lock it. */
259 ULONG cPagesRet = cPages;
260 int rc = KernVMLock(VMDHL_LONG | (fAccess & RTMEM_PROT_WRITE ? VMDHL_WRITE : 0),
261 (void *)R3Ptr, cb, &pMemOs2->Lock, &pMemOs2->aPages[0], &cPagesRet);
262 if (!rc)
263 {
264 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
265 Assert(cb == pMemOs2->Core.cb);
266 Assert(R3Ptr == (RTR3PTR)pMemOs2->Core.pv);
267 pMemOs2->Core.u.Lock.R0Process = R0Process;
268 *ppMem = &pMemOs2->Core;
269 return VINF_SUCCESS;
270 }
271 rtR0MemObjDelete(&pMemOs2->Core);
272 return RTErrConvertFromOS2(rc);
273}
274
275
276int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
277{
278 /* create the object. */
279 const ULONG cPages = cb >> PAGE_SHIFT;
280 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, aPages[cPages]), RTR0MEMOBJTYPE_LOCK, pv, cb);
281 if (!pMemOs2)
282 return VERR_NO_MEMORY;
283
284 /* lock it. */
285 ULONG cPagesRet = cPages;
286 int rc = KernVMLock(VMDHL_LONG | (fAccess & RTMEM_PROT_WRITE ? VMDHL_WRITE : 0),
287 pv, cb, &pMemOs2->Lock, &pMemOs2->aPages[0], &cPagesRet);
288 if (!rc)
289 {
290 rtR0MemObjFixPageList(&pMemOs2->aPages[0], cPages, cPagesRet);
291 pMemOs2->Core.u.Lock.R0Process = NIL_RTR0PROCESS;
292 *ppMem = &pMemOs2->Core;
293 return VINF_SUCCESS;
294 }
295 rtR0MemObjDelete(&pMemOs2->Core);
296 return RTErrConvertFromOS2(rc);
297}
298
299
300int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
301{
302 return VERR_NOT_IMPLEMENTED;
303}
304
305
306int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
307{
308 return VERR_NOT_IMPLEMENTED;
309}
310
311
312int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
313 unsigned fProt, size_t offSub, size_t cbSub)
314{
315 AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
316 AssertMsgReturn(pvFixed == (void *)-1, ("%p\n", pvFixed), VERR_NOT_SUPPORTED);
317
318 /*
319 * Check that the specified alignment is supported.
320 */
321 if (uAlignment > PAGE_SIZE)
322 return VERR_NOT_SUPPORTED;
323
324
325/** @todo finish the implementation. */
326
327 int rc;
328 void *pvR0 = NULL;
329 PRTR0MEMOBJOS2 pMemToMapOs2 = (PRTR0MEMOBJOS2)pMemToMap;
330 switch (pMemToMapOs2->Core.enmType)
331 {
332 /*
333 * These has kernel mappings.
334 */
335 case RTR0MEMOBJTYPE_PAGE:
336 case RTR0MEMOBJTYPE_LOW:
337 case RTR0MEMOBJTYPE_CONT:
338 pvR0 = pMemToMapOs2->Core.pv;
339 break;
340
341 case RTR0MEMOBJTYPE_PHYS:
342 pvR0 = pMemToMapOs2->Core.pv;
343 if (!pvR0)
344 {
345 /* no ring-0 mapping, so allocate a mapping in the process. */
346 AssertMsgReturn(fProt & RTMEM_PROT_WRITE, ("%#x\n", fProt), VERR_NOT_SUPPORTED);
347 Assert(!pMemToMapOs2->Core.u.Phys.fAllocated);
348 ULONG ulPhys = pMemToMapOs2->Core.u.Phys.PhysBase;
349 rc = KernVMAlloc(pMemToMapOs2->Core.cb, VMDHA_PHYS, &pvR0, (PPVOID)&ulPhys, NULL);
350 if (rc)
351 return RTErrConvertFromOS2(rc);
352 pMemToMapOs2->Core.pv = pvR0;
353 }
354 break;
355
356 case RTR0MEMOBJTYPE_PHYS_NC:
357 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
358 return VERR_NOT_IMPLEMENTED;
359 break;
360
361 case RTR0MEMOBJTYPE_LOCK:
362 if (pMemToMapOs2->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
363 return VERR_NOT_SUPPORTED; /** @todo implement this... */
364 pvR0 = pMemToMapOs2->Core.pv;
365 break;
366
367 case RTR0MEMOBJTYPE_RES_VIRT:
368 case RTR0MEMOBJTYPE_MAPPING:
369 default:
370 AssertMsgFailed(("enmType=%d\n", pMemToMapOs2->Core.enmType));
371 return VERR_INTERNAL_ERROR;
372 }
373
374 /*
375 * Create a dummy mapping object for it.
376 *
377 * All mappings are read/write/execute in OS/2 and there isn't
378 * any cache options, so sharing is ok. And the main memory object
379 * isn't actually freed until all the mappings have been freed up
380 * (reference counting).
381 */
382 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_MAPPING, pvR0, pMemToMapOs2->Core.cb);
383 if (pMemOs2)
384 {
385 pMemOs2->Core.u.Mapping.R0Process = NIL_RTR0PROCESS;
386 *ppMem = &pMemOs2->Core;
387 return VINF_SUCCESS;
388 }
389 return VERR_NO_MEMORY;
390}
391
392
393int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
394{
395 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
396 AssertMsgReturn(R3PtrFixed == (RTR3PTR)-1, ("%p\n", R3PtrFixed), VERR_NOT_SUPPORTED);
397 if (uAlignment > PAGE_SIZE)
398 return VERR_NOT_SUPPORTED;
399
400 int rc;
401 void *pvR0;
402 void *pvR3 = NULL;
403 PRTR0MEMOBJOS2 pMemToMapOs2 = (PRTR0MEMOBJOS2)pMemToMap;
404 switch (pMemToMapOs2->Core.enmType)
405 {
406 /*
407 * These has kernel mappings.
408 */
409 case RTR0MEMOBJTYPE_PAGE:
410 case RTR0MEMOBJTYPE_LOW:
411 case RTR0MEMOBJTYPE_CONT:
412 pvR0 = pMemToMapOs2->Core.pv;
413 break;
414
415 case RTR0MEMOBJTYPE_PHYS:
416 pvR0 = pMemToMapOs2->Core.pv;
417#if 0/* this is wrong. */
418 if (!pvR0)
419 {
420 /* no ring-0 mapping, so allocate a mapping in the process. */
421 AssertMsgReturn(fProt & RTMEM_PROT_WRITE, ("%#x\n", fProt), VERR_NOT_SUPPORTED);
422 Assert(!pMemToMapOs2->Core.u.Phys.fAllocated);
423 ULONG ulPhys = pMemToMapOs2->Core.u.Phys.PhysBase;
424 rc = KernVMAlloc(pMemToMapOs2->Core.cb, VMDHA_PHYS | VMDHA_PROCESS, &pvR3, (PPVOID)&ulPhys, NULL);
425 if (rc)
426 return RTErrConvertFromOS2(rc);
427 }
428 break;
429#endif
430 return VERR_NOT_SUPPORTED;
431
432 case RTR0MEMOBJTYPE_PHYS_NC:
433 AssertMsgFailed(("RTR0MEMOBJTYPE_PHYS_NC\n"));
434 return VERR_NOT_IMPLEMENTED;
435 break;
436
437 case RTR0MEMOBJTYPE_LOCK:
438 if (pMemToMapOs2->Core.u.Lock.R0Process != NIL_RTR0PROCESS)
439 return VERR_NOT_SUPPORTED; /** @todo implement this... */
440 pvR0 = pMemToMapOs2->Core.pv;
441 break;
442
443 case RTR0MEMOBJTYPE_RES_VIRT:
444 case RTR0MEMOBJTYPE_MAPPING:
445 default:
446 AssertMsgFailed(("enmType=%d\n", pMemToMapOs2->Core.enmType));
447 return VERR_INTERNAL_ERROR;
448 }
449
450 /*
451 * Map the ring-0 memory into the current process.
452 */
453 if (!pvR3)
454 {
455 Assert(pvR0);
456 ULONG flFlags = 0;
457 if (uAlignment == PAGE_SIZE)
458 flFlags |= VMDHGP_4MB;
459 if (fProt & RTMEM_PROT_WRITE)
460 flFlags |= VMDHGP_WRITE;
461 rc = RTR0Os2DHVMGlobalToProcess(flFlags, pvR0, pMemToMapOs2->Core.cb, &pvR3);
462 if (rc)
463 return RTErrConvertFromOS2(rc);
464 }
465 Assert(pvR3);
466
467 /*
468 * Create a mapping object for it.
469 */
470 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJOS2, Lock), RTR0MEMOBJTYPE_MAPPING, pvR3, pMemToMapOs2->Core.cb);
471 if (pMemOs2)
472 {
473 Assert(pMemOs2->Core.pv == pvR3);
474 pMemOs2->Core.u.Mapping.R0Process = R0Process;
475 *ppMem = &pMemOs2->Core;
476 return VINF_SUCCESS;
477 }
478 KernVMFree(pvR3);
479 return VERR_NO_MEMORY;
480}
481
482
483int rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
484{
485 NOREF(pMem);
486 NOREF(offSub);
487 NOREF(cbSub);
488 NOREF(fProt);
489 return VERR_NOT_SUPPORTED;
490}
491
492
493RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
494{
495 PRTR0MEMOBJOS2 pMemOs2 = (PRTR0MEMOBJOS2)pMem;
496
497 switch (pMemOs2->Core.enmType)
498 {
499 case RTR0MEMOBJTYPE_PAGE:
500 case RTR0MEMOBJTYPE_LOW:
501 case RTR0MEMOBJTYPE_LOCK:
502 case RTR0MEMOBJTYPE_PHYS_NC:
503 return pMemOs2->aPages[iPage].Addr;
504
505 case RTR0MEMOBJTYPE_CONT:
506 return pMemOs2->Core.u.Cont.Phys + (iPage << PAGE_SHIFT);
507
508 case RTR0MEMOBJTYPE_PHYS:
509 return pMemOs2->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
510
511 case RTR0MEMOBJTYPE_RES_VIRT:
512 case RTR0MEMOBJTYPE_MAPPING:
513 default:
514 return NIL_RTHCPHYS;
515 }
516}
517
518
519/**
520 * Expands the page list so we can index pages directly.
521 *
522 * @param paPages The page list array to fix.
523 * @param cPages The number of pages that's supposed to go into the list.
524 * @param cPagesRet The actual number of pages in the list.
525 */
526static void rtR0MemObjFixPageList(KernPageList_t *paPages, ULONG cPages, ULONG cPagesRet)
527{
528 Assert(cPages >= cPagesRet);
529 if (cPages != cPagesRet)
530 {
531 ULONG iIn = cPagesRet;
532 ULONG iOut = cPages;
533 do
534 {
535 iIn--;
536 iOut--;
537 Assert(iIn <= iOut);
538
539 KernPageList_t Page = paPages[iIn];
540 Assert(!(Page.Addr & PAGE_OFFSET_MASK));
541 Assert(Page.Size == RT_ALIGN_Z(Page.Size, PAGE_SIZE));
542
543 if (Page.Size > PAGE_SIZE)
544 {
545 do
546 {
547 Page.Size -= PAGE_SIZE;
548 paPages[iOut].Addr = Page.Addr + Page.Size;
549 paPages[iOut].Size = PAGE_SIZE;
550 iOut--;
551 } while (Page.Size > PAGE_SIZE);
552 }
553
554 paPages[iOut].Addr = Page.Addr;
555 paPages[iOut].Size = PAGE_SIZE;
556 } while ( iIn != iOut
557 && iIn > 0);
558 }
559}
560
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette