VirtualBox

source: vbox/trunk/src/VBox/Runtime/r0drv/nt/memobj-r0drv-nt.cpp@ 25720

最後變更 在這個檔案從25720是 23610,由 vboxsync 提交於 15 年 前

IPRT,VMM,SUPDrv,VBGLR0: Added a parameter to RTR0MemObjLockUser/Kernel that indicates read/write intent so we can correctly lock readonly memory on Windows and OS/2. (Guest property strings, see #4238.)

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Id
檔案大小: 27.7 KB
 
1/* $Id: memobj-r0drv-nt.cpp 23610 2009-10-07 21:22:10Z vboxsync $ */
2/** @file
3 * IPRT - Ring-0 Memory Objects, NT.
4 */
5
6/*
7 * Copyright (C) 2006-2007 Sun Microsystems, Inc.
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 *
26 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa
27 * Clara, CA 95054 USA or visit http://www.sun.com if you need
28 * additional information or have any questions.
29 */
30
31
32/*******************************************************************************
33* Header Files *
34*******************************************************************************/
35#include "the-nt-kernel.h"
36
37#include <iprt/memobj.h>
38#include <iprt/alloc.h>
39#include <iprt/assert.h>
40#include <iprt/log.h>
41#include <iprt/param.h>
42#include <iprt/string.h>
43#include <iprt/process.h>
44#include "internal/memobj.h"
45
46
47/*******************************************************************************
48* Defined Constants And Macros *
49*******************************************************************************/
50/** Maximum number of bytes we try to lock down in one go.
51 * This is supposed to have a limit right below 256MB, but this appears
52 * to actually be much lower. The values here have been determined experimentally.
53 */
54#ifdef RT_ARCH_X86
55# define MAX_LOCK_MEM_SIZE (32*1024*1024) /* 32MB */
56#endif
57#ifdef RT_ARCH_AMD64
58# define MAX_LOCK_MEM_SIZE (24*1024*1024) /* 24MB */
59#endif
60
61
62/*******************************************************************************
63* Structures and Typedefs *
64*******************************************************************************/
65/**
66 * The NT version of the memory object structure.
67 */
68typedef struct RTR0MEMOBJNT
69{
70 /** The core structure. */
71 RTR0MEMOBJINTERNAL Core;
72#ifndef IPRT_TARGET_NT4
73 /** Used MmAllocatePagesForMdl(). */
74 bool fAllocatedPagesForMdl;
75#endif
76 /** Pointer returned by MmSecureVirtualMemory */
77 PVOID pvSecureMem;
78 /** The number of PMDLs (memory descriptor lists) in the array. */
79 uint32_t cMdls;
80 /** Array of MDL pointers. (variable size) */
81 PMDL apMdls[1];
82} RTR0MEMOBJNT, *PRTR0MEMOBJNT;
83
84
85int rtR0MemObjNativeFree(RTR0MEMOBJ pMem)
86{
87 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;
88
89 /*
90 * Deal with it on a per type basis (just as a variation).
91 */
92 switch (pMemNt->Core.enmType)
93 {
94 case RTR0MEMOBJTYPE_LOW:
95#ifndef IPRT_TARGET_NT4
96 if (pMemNt->fAllocatedPagesForMdl)
97 {
98 Assert(pMemNt->Core.pv && pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
99 MmUnmapLockedPages(pMemNt->Core.pv, pMemNt->apMdls[0]);
100 pMemNt->Core.pv = NULL;
101 if (pMemNt->pvSecureMem)
102 {
103 MmUnsecureVirtualMemory(pMemNt->pvSecureMem);
104 pMemNt->pvSecureMem = NULL;
105 }
106
107 MmFreePagesFromMdl(pMemNt->apMdls[0]);
108 ExFreePool(pMemNt->apMdls[0]);
109 pMemNt->apMdls[0] = NULL;
110 pMemNt->cMdls = 0;
111 break;
112 }
113#endif
114 AssertFailed();
115 break;
116
117 case RTR0MEMOBJTYPE_PAGE:
118 Assert(pMemNt->Core.pv);
119 ExFreePool(pMemNt->Core.pv);
120 pMemNt->Core.pv = NULL;
121
122 Assert(pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
123 IoFreeMdl(pMemNt->apMdls[0]);
124 pMemNt->apMdls[0] = NULL;
125 pMemNt->cMdls = 0;
126 break;
127
128 case RTR0MEMOBJTYPE_CONT:
129 Assert(pMemNt->Core.pv);
130 MmFreeContiguousMemory(pMemNt->Core.pv);
131 pMemNt->Core.pv = NULL;
132
133 Assert(pMemNt->cMdls == 1 && pMemNt->apMdls[0]);
134 IoFreeMdl(pMemNt->apMdls[0]);
135 pMemNt->apMdls[0] = NULL;
136 pMemNt->cMdls = 0;
137 break;
138
139 case RTR0MEMOBJTYPE_PHYS:
140 case RTR0MEMOBJTYPE_PHYS_NC:
141#ifndef IPRT_TARGET_NT4
142 if (pMemNt->fAllocatedPagesForMdl)
143 {
144 MmFreePagesFromMdl(pMemNt->apMdls[0]);
145 ExFreePool(pMemNt->apMdls[0]);
146 pMemNt->apMdls[0] = NULL;
147 pMemNt->cMdls = 0;
148 break;
149 }
150#endif
151 AssertFailed();
152 break;
153
154 case RTR0MEMOBJTYPE_LOCK:
155 if (pMemNt->pvSecureMem)
156 {
157 MmUnsecureVirtualMemory(pMemNt->pvSecureMem);
158 pMemNt->pvSecureMem = NULL;
159 }
160 for (uint32_t i = 0; i < pMemNt->cMdls; i++)
161 {
162 MmUnlockPages(pMemNt->apMdls[i]);
163 IoFreeMdl(pMemNt->apMdls[i]);
164 pMemNt->apMdls[i] = NULL;
165 }
166 break;
167
168 case RTR0MEMOBJTYPE_RES_VIRT:
169/* if (pMemNt->Core.u.ResVirt.R0Process == NIL_RTR0PROCESS)
170 {
171 }
172 else
173 {
174 }*/
175 AssertMsgFailed(("RTR0MEMOBJTYPE_RES_VIRT\n"));
176 return VERR_INTERNAL_ERROR;
177 break;
178
179 case RTR0MEMOBJTYPE_MAPPING:
180 {
181 Assert(pMemNt->cMdls == 0 && pMemNt->Core.pv);
182 PRTR0MEMOBJNT pMemNtParent = (PRTR0MEMOBJNT)pMemNt->Core.uRel.Child.pParent;
183 Assert(pMemNtParent);
184 if (pMemNtParent->cMdls)
185 {
186 Assert(pMemNtParent->cMdls == 1 && pMemNtParent->apMdls[0]);
187 Assert( pMemNt->Core.u.Mapping.R0Process == NIL_RTR0PROCESS
188 || pMemNt->Core.u.Mapping.R0Process == RTR0ProcHandleSelf());
189 MmUnmapLockedPages(pMemNt->Core.pv, pMemNtParent->apMdls[0]);
190 }
191 else
192 {
193 Assert( pMemNtParent->Core.enmType == RTR0MEMOBJTYPE_PHYS
194 && !pMemNtParent->Core.u.Phys.fAllocated);
195 Assert(pMemNt->Core.u.Mapping.R0Process == NIL_RTR0PROCESS);
196 MmUnmapIoSpace(pMemNt->Core.pv, pMemNt->Core.cb);
197 }
198 pMemNt->Core.pv = NULL;
199 break;
200 }
201
202 default:
203 AssertMsgFailed(("enmType=%d\n", pMemNt->Core.enmType));
204 return VERR_INTERNAL_ERROR;
205 }
206
207 return VINF_SUCCESS;
208}
209
210
211int rtR0MemObjNativeAllocPage(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
212{
213 AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
214
215 /*
216 * Try allocate the memory and create an MDL for them so
217 * we can query the physical addresses and do mappings later
218 * without running into out-of-memory conditions and similar problems.
219 */
220 int rc = VERR_NO_PAGE_MEMORY;
221 void *pv = ExAllocatePoolWithTag(NonPagedPool, cb, IPRT_NT_POOL_TAG);
222 if (pv)
223 {
224 PMDL pMdl = IoAllocateMdl(pv, (ULONG)cb, FALSE, FALSE, NULL);
225 if (pMdl)
226 {
227 MmBuildMdlForNonPagedPool(pMdl);
228#ifdef RT_ARCH_AMD64
229 MmProtectMdlSystemAddress(pMdl, PAGE_EXECUTE_READWRITE);
230#endif
231
232 /*
233 * Create the IPRT memory object.
234 */
235 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PAGE, pv, cb);
236 if (pMemNt)
237 {
238 pMemNt->cMdls = 1;
239 pMemNt->apMdls[0] = pMdl;
240 *ppMem = &pMemNt->Core;
241 return VINF_SUCCESS;
242 }
243
244 rc = VERR_NO_MEMORY;
245 IoFreeMdl(pMdl);
246 }
247 ExFreePool(pv);
248 }
249 return rc;
250}
251
252
253int rtR0MemObjNativeAllocLow(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
254{
255 AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
256
257 /*
258 * Try see if we get lucky first...
259 * (We could probably just assume we're lucky on NT4.)
260 */
261 int rc = rtR0MemObjNativeAllocPage(ppMem, cb, fExecutable);
262 if (RT_SUCCESS(rc))
263 {
264 size_t iPage = cb >> PAGE_SHIFT;
265 while (iPage-- > 0)
266 if (rtR0MemObjNativeGetPagePhysAddr(*ppMem, iPage) >= _4G)
267 {
268 rc = VERR_NO_MEMORY;
269 break;
270 }
271 if (RT_SUCCESS(rc))
272 return rc;
273
274 /* The following ASSUMES that rtR0MemObjNativeAllocPage returns a completed object. */
275 RTR0MemObjFree(*ppMem, false);
276 *ppMem = NULL;
277 }
278
279#ifndef IPRT_TARGET_NT4
280 /*
281 * Use MmAllocatePagesForMdl to specify the range of physical addresses we wish to use.
282 */
283 PHYSICAL_ADDRESS Zero;
284 Zero.QuadPart = 0;
285 PHYSICAL_ADDRESS HighAddr;
286 HighAddr.QuadPart = _4G - 1;
287 PMDL pMdl = MmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
288 if (pMdl)
289 {
290 if (MmGetMdlByteCount(pMdl) >= cb)
291 {
292 __try
293 {
294 void *pv = MmMapLockedPagesSpecifyCache(pMdl, KernelMode, MmCached, NULL /* no base address */,
295 FALSE /* no bug check on failure */, NormalPagePriority);
296 if (pv)
297 {
298 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_LOW, pv, cb);
299 if (pMemNt)
300 {
301 pMemNt->fAllocatedPagesForMdl = true;
302 pMemNt->cMdls = 1;
303 pMemNt->apMdls[0] = pMdl;
304 *ppMem = &pMemNt->Core;
305 return VINF_SUCCESS;
306 }
307 MmUnmapLockedPages(pv, pMdl);
308 }
309 }
310 __except(EXCEPTION_EXECUTE_HANDLER)
311 {
312 NTSTATUS rcNt = GetExceptionCode();
313 Log(("rtR0MemObjNativeAllocLow: Exception Code %#x\n", rcNt));
314 /* nothing */
315 }
316 }
317 MmFreePagesFromMdl(pMdl);
318 ExFreePool(pMdl);
319 }
320#endif /* !IPRT_TARGET_NT4 */
321
322 /*
323 * Fall back on contiguous memory...
324 */
325 return rtR0MemObjNativeAllocCont(ppMem, cb, fExecutable);
326}
327
328
329/**
330 * Internal worker for rtR0MemObjNativeAllocCont(), rtR0MemObjNativeAllocPhys()
331 * and rtR0MemObjNativeAllocPhysNC() that takes a max physical address in addition
332 * to what rtR0MemObjNativeAllocCont() does.
333 *
334 * @returns IPRT status code.
335 * @param ppMem Where to store the pointer to the ring-0 memory object.
336 * @param cb The size.
337 * @param fExecutable Whether the mapping should be executable or not.
338 * @param PhysHighest The highest physical address for the pages in allocation.
339 */
340static int rtR0MemObjNativeAllocContEx(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable, RTHCPHYS PhysHighest)
341{
342 AssertMsgReturn(cb <= _1G, ("%#x\n", cb), VERR_OUT_OF_RANGE); /* for safe size_t -> ULONG */
343
344 /*
345 * Allocate the memory and create an MDL for it.
346 */
347 PHYSICAL_ADDRESS PhysAddrHighest;
348 PhysAddrHighest.QuadPart = PhysHighest;
349 void *pv = MmAllocateContiguousMemory(cb, PhysAddrHighest);
350 if (!pv)
351 return VERR_NO_MEMORY;
352
353 PMDL pMdl = IoAllocateMdl(pv, (ULONG)cb, FALSE, FALSE, NULL);
354 if (pMdl)
355 {
356 MmBuildMdlForNonPagedPool(pMdl);
357#ifdef RT_ARCH_AMD64
358 MmProtectMdlSystemAddress(pMdl, PAGE_EXECUTE_READWRITE);
359#endif
360
361 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_CONT, pv, cb);
362 if (pMemNt)
363 {
364 pMemNt->Core.u.Cont.Phys = (RTHCPHYS)*MmGetMdlPfnArray(pMdl) << PAGE_SHIFT;
365 pMemNt->cMdls = 1;
366 pMemNt->apMdls[0] = pMdl;
367 *ppMem = &pMemNt->Core;
368 return VINF_SUCCESS;
369 }
370
371 IoFreeMdl(pMdl);
372 }
373 MmFreeContiguousMemory(pv);
374 return VERR_NO_MEMORY;
375}
376
377
378int rtR0MemObjNativeAllocCont(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, bool fExecutable)
379{
380 return rtR0MemObjNativeAllocContEx(ppMem, cb, fExecutable, _4G-1);
381}
382
383
384int rtR0MemObjNativeAllocPhys(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
385{
386#ifndef IPRT_TARGET_NT4
387 /*
388 * Try and see if we're lucky and get a contiguous chunk from MmAllocatePagesForMdl.
389 *
390 * This is preferable to using MmAllocateContiguousMemory because there are
391 * a few situations where the memory shouldn't be mapped, like for instance
392 * VT-x control memory. Since these are rather small allocations (one or
393 * two pages) MmAllocatePagesForMdl will probably be able to satisfy the
394 * request.
395 *
396 * If the allocation is big, the chances are *probably* not very good. The
397 * current limit is kind of random...
398 */
399 if (cb < _128K)
400 {
401 PHYSICAL_ADDRESS Zero;
402 Zero.QuadPart = 0;
403 PHYSICAL_ADDRESS HighAddr;
404 HighAddr.QuadPart = PhysHighest == NIL_RTHCPHYS ? MAXLONGLONG : PhysHighest;
405 PMDL pMdl = MmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
406 if (pMdl)
407 {
408 if (MmGetMdlByteCount(pMdl) >= cb)
409 {
410 PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMdl);
411 PFN_NUMBER Pfn = paPfns[0] + 1;
412 const size_t cPages = cb >> PAGE_SHIFT;
413 size_t iPage;
414 for (iPage = 1; iPage < cPages; iPage++, Pfn++)
415 if (paPfns[iPage] != Pfn)
416 break;
417 if (iPage >= cPages)
418 {
419 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS, NULL, cb);
420 if (pMemNt)
421 {
422 pMemNt->Core.u.Phys.fAllocated = true;
423 pMemNt->Core.u.Phys.PhysBase = (RTHCPHYS)paPfns[0] << PAGE_SHIFT;
424 pMemNt->fAllocatedPagesForMdl = true;
425 pMemNt->cMdls = 1;
426 pMemNt->apMdls[0] = pMdl;
427 *ppMem = &pMemNt->Core;
428 return VINF_SUCCESS;
429 }
430 }
431 }
432 MmFreePagesFromMdl(pMdl);
433 ExFreePool(pMdl);
434 }
435 }
436#endif /* !IPRT_TARGET_NT4 */
437
438 return rtR0MemObjNativeAllocContEx(ppMem, cb, false, PhysHighest);
439}
440
441
442int rtR0MemObjNativeAllocPhysNC(PPRTR0MEMOBJINTERNAL ppMem, size_t cb, RTHCPHYS PhysHighest)
443{
444#ifndef IPRT_TARGET_NT4
445 PHYSICAL_ADDRESS Zero;
446 Zero.QuadPart = 0;
447 PHYSICAL_ADDRESS HighAddr;
448 HighAddr.QuadPart = PhysHighest == NIL_RTHCPHYS ? MAXLONGLONG : PhysHighest;
449 PMDL pMdl = MmAllocatePagesForMdl(Zero, HighAddr, Zero, cb);
450 if (pMdl)
451 {
452 if (MmGetMdlByteCount(pMdl) >= cb)
453 {
454 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS_NC, NULL, cb);
455 if (pMemNt)
456 {
457 pMemNt->fAllocatedPagesForMdl = true;
458 pMemNt->cMdls = 1;
459 pMemNt->apMdls[0] = pMdl;
460 *ppMem = &pMemNt->Core;
461 return VINF_SUCCESS;
462 }
463 }
464 MmFreePagesFromMdl(pMdl);
465 ExFreePool(pMdl);
466 }
467 return VERR_NO_MEMORY;
468#else /* IPRT_TARGET_NT4 */
469 return VERR_NOT_SUPPORTED;
470#endif /* IPRT_TARGET_NT4 */
471}
472
473
474int rtR0MemObjNativeEnterPhys(PPRTR0MEMOBJINTERNAL ppMem, RTHCPHYS Phys, size_t cb)
475{
476 /*
477 * Validate the address range and create a descriptor for it.
478 */
479 PFN_NUMBER Pfn = (PFN_NUMBER)(Phys >> PAGE_SHIFT);
480 if (((RTHCPHYS)Pfn << PAGE_SHIFT) != Phys)
481 return VERR_ADDRESS_TOO_BIG;
482
483 /*
484 * Create the IPRT memory object.
485 */
486 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_PHYS, NULL, cb);
487 if (pMemNt)
488 {
489 pMemNt->Core.u.Phys.PhysBase = Phys;
490 pMemNt->Core.u.Phys.fAllocated = false;
491 *ppMem = &pMemNt->Core;
492 return VINF_SUCCESS;
493 }
494 return VERR_NO_MEMORY;
495}
496
497
498/**
499 * Internal worker for locking down pages.
500 *
501 * @return IPRT status code.
502 *
503 * @param ppMem Where to store the memory object pointer.
504 * @param pv First page.
505 * @param cb Number of bytes.
506 * @param fAccess The desired access, a combination of RTMEM_PROT_READ
507 * and RTMEM_PROT_WRITE.
508 * @param R0Process The process \a pv and \a cb refers to.
509 */
510static int rtR0MemObjNtLock(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
511{
512 /*
513 * Calc the number of MDLs we need and allocate the memory object structure.
514 */
515 size_t cMdls = cb / MAX_LOCK_MEM_SIZE;
516 if (cb % MAX_LOCK_MEM_SIZE)
517 cMdls++;
518 if (cMdls >= UINT32_MAX)
519 return VERR_OUT_OF_RANGE;
520 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(RT_OFFSETOF(RTR0MEMOBJNT, apMdls[cMdls]),
521 RTR0MEMOBJTYPE_LOCK, pv, cb);
522 if (!pMemNt)
523 return VERR_NO_MEMORY;
524
525 /*
526 * Loop locking down the sub parts of the memory.
527 */
528 int rc = VINF_SUCCESS;
529 size_t cbTotal = 0;
530 uint8_t *pb = (uint8_t *)pv;
531 uint32_t iMdl;
532 for (iMdl = 0; iMdl < cMdls; iMdl++)
533 {
534 /*
535 * Calc the Mdl size and allocate it.
536 */
537 size_t cbCur = cb - cbTotal;
538 if (cbCur > MAX_LOCK_MEM_SIZE)
539 cbCur = MAX_LOCK_MEM_SIZE;
540 AssertMsg(cbCur, ("cbCur: 0!\n"));
541 PMDL pMdl = IoAllocateMdl(pb, (ULONG)cbCur, FALSE, FALSE, NULL);
542 if (!pMdl)
543 {
544 rc = VERR_NO_MEMORY;
545 break;
546 }
547
548 /*
549 * Lock the pages.
550 */
551 __try
552 {
553 MmProbeAndLockPages(pMdl,
554 R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode,
555 fAccess == RTMEM_PROT_READ
556 ? IoReadAccess
557 : fAccess == RTMEM_PROT_WRITE
558 ? IoWriteAccess
559 : IoModifyAccess);
560
561 pMemNt->apMdls[iMdl] = pMdl;
562 pMemNt->cMdls++;
563 }
564 __except(EXCEPTION_EXECUTE_HANDLER)
565 {
566 IoFreeMdl(pMdl);
567 rc = VERR_LOCK_FAILED;
568 break;
569 }
570
571 if (R0Process != NIL_RTR0PROCESS)
572 {
573 /* Make sure the user process can't change the allocation. */
574 pMemNt->pvSecureMem = MmSecureVirtualMemory(pv, cb,
575 fAccess & RTMEM_PROT_WRITE
576 ? PAGE_READWRITE
577 : PAGE_READONLY);
578 if (!pMemNt->pvSecureMem)
579 {
580 rc = VERR_NO_MEMORY;
581 break;
582 }
583 }
584
585 /* next */
586 cbTotal += cbCur;
587 pb += cbCur;
588 }
589 if (RT_SUCCESS(rc))
590 {
591 Assert(pMemNt->cMdls == cMdls);
592 pMemNt->Core.u.Lock.R0Process = R0Process;
593 *ppMem = &pMemNt->Core;
594 return rc;
595 }
596
597 /*
598 * We failed, perform cleanups.
599 */
600 while (iMdl-- > 0)
601 {
602 MmUnlockPages(pMemNt->apMdls[iMdl]);
603 IoFreeMdl(pMemNt->apMdls[iMdl]);
604 pMemNt->apMdls[iMdl] = NULL;
605 }
606 if (pMemNt->pvSecureMem)
607 {
608 MmUnsecureVirtualMemory(pMemNt->pvSecureMem);
609 pMemNt->pvSecureMem = NULL;
610 }
611
612 rtR0MemObjDelete(&pMemNt->Core);
613 return rc;
614}
615
616
617int rtR0MemObjNativeLockUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3Ptr, size_t cb, uint32_t fAccess, RTR0PROCESS R0Process)
618{
619 AssertMsgReturn(R0Process == RTR0ProcHandleSelf(), ("%p != %p\n", R0Process, RTR0ProcHandleSelf()), VERR_NOT_SUPPORTED);
620 /* (Can use MmProbeAndLockProcessPages if we need to mess with other processes later.) */
621 return rtR0MemObjNtLock(ppMem, (void *)R3Ptr, cb, fAccess, R0Process);
622}
623
624
625int rtR0MemObjNativeLockKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pv, size_t cb, uint32_t fAccess)
626{
627 return rtR0MemObjNtLock(ppMem, pv, cb, fAccess, NIL_RTR0PROCESS);
628}
629
630
631int rtR0MemObjNativeReserveKernel(PPRTR0MEMOBJINTERNAL ppMem, void *pvFixed, size_t cb, size_t uAlignment)
632{
633 /*
634 * MmCreateSection(SEC_RESERVE) + MmMapViewInSystemSpace perhaps?
635 */
636 return VERR_NOT_IMPLEMENTED;
637}
638
639
640int rtR0MemObjNativeReserveUser(PPRTR0MEMOBJINTERNAL ppMem, RTR3PTR R3PtrFixed, size_t cb, size_t uAlignment, RTR0PROCESS R0Process)
641{
642 /*
643 * ZeCreateSection(SEC_RESERVE) + ZwMapViewOfSection perhaps?
644 */
645 return VERR_NOT_IMPLEMENTED;
646}
647
648
649/**
650 * Internal worker for rtR0MemObjNativeMapKernel and rtR0MemObjNativeMapUser.
651 *
652 * @returns IPRT status code.
653 * @param ppMem Where to store the memory object for the mapping.
654 * @param pMemToMap The memory object to map.
655 * @param pvFixed Where to map it. (void *)-1 if anywhere is fine.
656 * @param uAlignment The alignment requirement for the mapping.
657 * @param fProt The desired page protection for the mapping.
658 * @param R0Process If NIL_RTR0PROCESS map into system (kernel) memory.
659 * If not nil, it's the current process.
660 */
661static int rtR0MemObjNtMap(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
662 unsigned fProt, RTR0PROCESS R0Process)
663{
664 int rc = VERR_MAP_FAILED;
665
666 /*
667 * Check that the specified alignment is supported.
668 */
669 if (uAlignment > PAGE_SIZE)
670 return VERR_NOT_SUPPORTED;
671
672 /*
673 * There are two basic cases here, either we've got an MDL and can
674 * map it using MmMapLockedPages, or we've got a contiguous physical
675 * range (MMIO most likely) and can use MmMapIoSpace.
676 */
677 PRTR0MEMOBJNT pMemNtToMap = (PRTR0MEMOBJNT)pMemToMap;
678 if (pMemNtToMap->cMdls)
679 {
680 /* don't attempt map locked regions with more than one mdl. */
681 if (pMemNtToMap->cMdls != 1)
682 return VERR_NOT_SUPPORTED;
683
684#ifdef IPRT_TARGET_NT4
685 /* NT SP0 can't map to a specific address. */
686 if (pvFixed != (void *)-1)
687 return VERR_NOT_SUPPORTED;
688#endif
689
690 /* we can't map anything to the first page, sorry. */
691 if (pvFixed == 0)
692 return VERR_NOT_SUPPORTED;
693
694 /* only one system mapping for now - no time to figure out MDL restrictions right now. */
695 if ( pMemNtToMap->Core.uRel.Parent.cMappings
696 && R0Process == NIL_RTR0PROCESS)
697 return VERR_NOT_SUPPORTED;
698
699 __try
700 {
701 /** @todo uAlignment */
702 /** @todo How to set the protection on the pages? */
703#ifdef IPRT_TARGET_NT4
704 void *pv = MmMapLockedPages(pMemNtToMap->apMdls[0],
705 R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode);
706#else
707 void *pv = MmMapLockedPagesSpecifyCache(pMemNtToMap->apMdls[0],
708 R0Process == NIL_RTR0PROCESS ? KernelMode : UserMode,
709 MmCached,
710 pvFixed != (void *)-1 ? pvFixed : NULL,
711 FALSE /* no bug check on failure */,
712 NormalPagePriority);
713#endif
714 if (pv)
715 {
716 NOREF(fProt);
717
718 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_MAPPING, pv,
719 pMemNtToMap->Core.cb);
720 if (pMemNt)
721 {
722 pMemNt->Core.u.Mapping.R0Process = R0Process;
723 *ppMem = &pMemNt->Core;
724 return VINF_SUCCESS;
725 }
726
727 rc = VERR_NO_MEMORY;
728 MmUnmapLockedPages(pv, pMemNtToMap->apMdls[0]);
729 }
730 }
731 __except(EXCEPTION_EXECUTE_HANDLER)
732 {
733 NTSTATUS rcNt = GetExceptionCode();
734 Log(("rtR0MemObjNtMap: Exception Code %#x\n", rcNt));
735
736 /* nothing */
737 rc = VERR_MAP_FAILED;
738 }
739
740 }
741 else
742 {
743 AssertReturn( pMemNtToMap->Core.enmType == RTR0MEMOBJTYPE_PHYS
744 && !pMemNtToMap->Core.u.Phys.fAllocated, VERR_INTERNAL_ERROR);
745
746 /* cannot map phys mem to user space (yet). */
747 if (R0Process != NIL_RTR0PROCESS)
748 return VERR_NOT_SUPPORTED;
749
750 /** @todo uAlignment */
751 /** @todo How to set the protection on the pages? */
752 PHYSICAL_ADDRESS Phys;
753 Phys.QuadPart = pMemNtToMap->Core.u.Phys.PhysBase;
754 void *pv = MmMapIoSpace(Phys, pMemNtToMap->Core.cb, MmCached); /** @todo add cache type to fProt. */
755 if (pv)
756 {
757 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)rtR0MemObjNew(sizeof(*pMemNt), RTR0MEMOBJTYPE_MAPPING, pv,
758 pMemNtToMap->Core.cb);
759 if (pMemNt)
760 {
761 pMemNt->Core.u.Mapping.R0Process = R0Process;
762 *ppMem = &pMemNt->Core;
763 return VINF_SUCCESS;
764 }
765
766 rc = VERR_NO_MEMORY;
767 MmUnmapIoSpace(pv, pMemNtToMap->Core.cb);
768 }
769 }
770
771 NOREF(uAlignment); NOREF(fProt);
772 return rc;
773}
774
775
776int rtR0MemObjNativeMapKernel(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, void *pvFixed, size_t uAlignment,
777 unsigned fProt, size_t offSub, size_t cbSub)
778{
779 AssertMsgReturn(!offSub && !cbSub, ("%#x %#x\n", offSub, cbSub), VERR_NOT_SUPPORTED);
780 return rtR0MemObjNtMap(ppMem, pMemToMap, pvFixed, uAlignment, fProt, NIL_RTR0PROCESS);
781}
782
783
784int rtR0MemObjNativeMapUser(PPRTR0MEMOBJINTERNAL ppMem, RTR0MEMOBJ pMemToMap, RTR3PTR R3PtrFixed, size_t uAlignment, unsigned fProt, RTR0PROCESS R0Process)
785{
786 AssertReturn(R0Process == RTR0ProcHandleSelf(), VERR_NOT_SUPPORTED);
787 return rtR0MemObjNtMap(ppMem, pMemToMap, (void *)R3PtrFixed, uAlignment, fProt, R0Process);
788}
789
790
791int rtR0MemObjNativeProtect(PRTR0MEMOBJINTERNAL pMem, size_t offSub, size_t cbSub, uint32_t fProt)
792{
793 NOREF(pMem);
794 NOREF(offSub);
795 NOREF(cbSub);
796 NOREF(fProt);
797 return VERR_NOT_SUPPORTED;
798}
799
800
801RTHCPHYS rtR0MemObjNativeGetPagePhysAddr(PRTR0MEMOBJINTERNAL pMem, size_t iPage)
802{
803 PRTR0MEMOBJNT pMemNt = (PRTR0MEMOBJNT)pMem;
804
805 if (pMemNt->cMdls)
806 {
807 if (pMemNt->cMdls == 1)
808 {
809 PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMemNt->apMdls[0]);
810 return (RTHCPHYS)paPfns[iPage] << PAGE_SHIFT;
811 }
812
813 size_t iMdl = iPage / (MAX_LOCK_MEM_SIZE >> PAGE_SHIFT);
814 size_t iMdlPfn = iPage % (MAX_LOCK_MEM_SIZE >> PAGE_SHIFT);
815 PPFN_NUMBER paPfns = MmGetMdlPfnArray(pMemNt->apMdls[iMdl]);
816 return (RTHCPHYS)paPfns[iMdlPfn] << PAGE_SHIFT;
817 }
818
819 switch (pMemNt->Core.enmType)
820 {
821 case RTR0MEMOBJTYPE_MAPPING:
822 return rtR0MemObjNativeGetPagePhysAddr(pMemNt->Core.uRel.Child.pParent, iPage);
823
824 case RTR0MEMOBJTYPE_PHYS:
825 return pMemNt->Core.u.Phys.PhysBase + (iPage << PAGE_SHIFT);
826
827 case RTR0MEMOBJTYPE_PAGE:
828 case RTR0MEMOBJTYPE_PHYS_NC:
829 case RTR0MEMOBJTYPE_LOW:
830 case RTR0MEMOBJTYPE_CONT:
831 case RTR0MEMOBJTYPE_LOCK:
832 default:
833 AssertMsgFailed(("%d\n", pMemNt->Core.enmType));
834 case RTR0MEMOBJTYPE_RES_VIRT:
835 return NIL_RTHCPHYS;
836 }
837}
838
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette