VirtualBox

source: vbox/trunk/src/VBox/Main/src-server/ApplianceImplImport.cpp@ 60220

最後變更 在這個檔案從60220是 60220,由 vboxsync 提交於 9 年 前

bugref:8249. Added an attribute certificate into IAppliance interface. Added an attribute pCertificateInfo and a function getCertificate() into the class Appliance

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Author Date Id Revision
檔案大小: 174.6 KB
 
1/* $Id: ApplianceImplImport.cpp 60220 2016-03-28 12:30:50Z vboxsync $ */
2/** @file
3 * IAppliance and IVirtualSystem COM class implementations.
4 */
5
6/*
7 * Copyright (C) 2008-2016 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18#include <iprt/alloca.h>
19#include <iprt/path.h>
20#include <iprt/dir.h>
21#include <iprt/file.h>
22#include <iprt/s3.h>
23#include <iprt/sha.h>
24#include <iprt/manifest.h>
25#include <iprt/tar.h>
26#include <iprt/zip.h>
27#include <iprt/stream.h>
28#include <iprt/crypto/digest.h>
29#include <iprt/crypto/pkix.h>
30#include <iprt/crypto/store.h>
31#include <iprt/crypto/x509.h>
32
33#include <VBox/vd.h>
34#include <VBox/com/array.h>
35
36#include "ApplianceImpl.h"
37#include "VirtualBoxImpl.h"
38#include "GuestOSTypeImpl.h"
39#include "ProgressImpl.h"
40#include "MachineImpl.h"
41#include "MediumImpl.h"
42#include "MediumFormatImpl.h"
43#include "SystemPropertiesImpl.h"
44#include "HostImpl.h"
45
46#include "AutoCaller.h"
47#include "Logging.h"
48
49#include "ApplianceImplPrivate.h"
50#include "CertificateImpl.h"
51
52#include <VBox/param.h>
53#include <VBox/version.h>
54#include <VBox/settings.h>
55
56#include <set>
57
58using namespace std;
59
60////////////////////////////////////////////////////////////////////////////////
61//
62// IAppliance public methods
63//
64////////////////////////////////////////////////////////////////////////////////
65
66/**
67 * Public method implementation. This opens the OVF with ovfreader.cpp.
68 * Thread implementation is in Appliance::readImpl().
69 *
70 * @param aFile
71 * @return
72 */
73HRESULT Appliance::read(const com::Utf8Str &aFile,
74 ComPtr<IProgress> &aProgress)
75{
76 AutoWriteLock alock(this COMMA_LOCKVAL_SRC_POS);
77
78 if (!i_isApplianceIdle())
79 return E_ACCESSDENIED;
80
81 if (m->pReader)
82 {
83 delete m->pReader;
84 m->pReader = NULL;
85 }
86
87 // see if we can handle this file; for now we insist it has an ovf/ova extension
88 if ( !aFile.endsWith(".ovf", Utf8Str::CaseInsensitive)
89 && !aFile.endsWith(".ova", Utf8Str::CaseInsensitive))
90 return setError(VBOX_E_FILE_ERROR, tr("Appliance file must have .ovf or .ova extension"));
91
92 ComObjPtr<Progress> progress;
93 try
94 {
95 /* Parse all necessary info out of the URI */
96 i_parseURI(aFile, m->locInfo);
97 i_readImpl(m->locInfo, progress);
98 }
99 catch (HRESULT aRC)
100 {
101 return aRC;
102 }
103
104 /* Return progress to the caller */
105 progress.queryInterfaceTo(aProgress.asOutParam());
106 return S_OK;
107}
108
109/**
110 * Public method implementation. This looks at the output of ovfreader.cpp and creates
111 * VirtualSystemDescription instances.
112 * @return
113 */
114HRESULT Appliance::interpret()
115{
116 // @todo:
117 // - don't use COM methods but the methods directly (faster, but needs appropriate
118 // locking of that objects itself (s. HardDisk))
119 // - Appropriate handle errors like not supported file formats
120 AutoWriteLock alock(this COMMA_LOCKVAL_SRC_POS);
121
122 if (!i_isApplianceIdle())
123 return E_ACCESSDENIED;
124
125 HRESULT rc = S_OK;
126
127 /* Clear any previous virtual system descriptions */
128 m->virtualSystemDescriptions.clear();
129
130 if (!m->pReader)
131 return setError(E_FAIL,
132 tr("Cannot interpret appliance without reading it first (call read() before interpret())"));
133
134 // Change the appliance state so we can safely leave the lock while doing time-consuming
135 // disk imports; also the below method calls do all kinds of locking which conflicts with
136 // the appliance object lock
137 m->state = Data::ApplianceImporting;
138 alock.release();
139
140 /* Try/catch so we can clean up on error */
141 try
142 {
143 list<ovf::VirtualSystem>::const_iterator it;
144 /* Iterate through all virtual systems */
145 for (it = m->pReader->m_llVirtualSystems.begin();
146 it != m->pReader->m_llVirtualSystems.end();
147 ++it)
148 {
149 const ovf::VirtualSystem &vsysThis = *it;
150
151 ComObjPtr<VirtualSystemDescription> pNewDesc;
152 rc = pNewDesc.createObject();
153 if (FAILED(rc)) throw rc;
154 rc = pNewDesc->init();
155 if (FAILED(rc)) throw rc;
156
157 // if the virtual system in OVF had a <vbox:Machine> element, have the
158 // VirtualBox settings code parse that XML now
159 if (vsysThis.pelmVBoxMachine)
160 pNewDesc->i_importVBoxMachineXML(*vsysThis.pelmVBoxMachine);
161
162 // Guest OS type
163 // This is taken from one of three places, in this order:
164 Utf8Str strOsTypeVBox;
165 Utf8StrFmt strCIMOSType("%RU32", (uint32_t)vsysThis.cimos);
166 // 1) If there is a <vbox:Machine>, then use the type from there.
167 if ( vsysThis.pelmVBoxMachine
168 && pNewDesc->m->pConfig->machineUserData.strOsType.isNotEmpty()
169 )
170 strOsTypeVBox = pNewDesc->m->pConfig->machineUserData.strOsType;
171 // 2) Otherwise, if there is OperatingSystemSection/vbox:OSType, use that one.
172 else if (vsysThis.strTypeVBox.isNotEmpty()) // OVFReader has found vbox:OSType
173 strOsTypeVBox = vsysThis.strTypeVBox;
174 // 3) Otherwise, make a best guess what the vbox type is from the OVF (CIM) OS type.
175 else
176 convertCIMOSType2VBoxOSType(strOsTypeVBox, vsysThis.cimos, vsysThis.strCimosDesc);
177 pNewDesc->i_addEntry(VirtualSystemDescriptionType_OS,
178 "",
179 strCIMOSType,
180 strOsTypeVBox);
181
182 /* VM name */
183 Utf8Str nameVBox;
184 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
185 if ( vsysThis.pelmVBoxMachine
186 && pNewDesc->m->pConfig->machineUserData.strName.isNotEmpty())
187 nameVBox = pNewDesc->m->pConfig->machineUserData.strName;
188 else
189 nameVBox = vsysThis.strName;
190 /* If there isn't any name specified create a default one out
191 * of the OS type */
192 if (nameVBox.isEmpty())
193 nameVBox = strOsTypeVBox;
194 i_searchUniqueVMName(nameVBox);
195 pNewDesc->i_addEntry(VirtualSystemDescriptionType_Name,
196 "",
197 vsysThis.strName,
198 nameVBox);
199
200 /* Based on the VM name, create a target machine path. */
201 Bstr bstrMachineFilename;
202 rc = mVirtualBox->ComposeMachineFilename(Bstr(nameVBox).raw(),
203 NULL /* aGroup */,
204 NULL /* aCreateFlags */,
205 NULL /* aBaseFolder */,
206 bstrMachineFilename.asOutParam());
207 if (FAILED(rc)) throw rc;
208 /* Determine the machine folder from that */
209 Utf8Str strMachineFolder = Utf8Str(bstrMachineFilename).stripFilename();
210
211 /* VM Product */
212 if (!vsysThis.strProduct.isEmpty())
213 pNewDesc->i_addEntry(VirtualSystemDescriptionType_Product,
214 "",
215 vsysThis.strProduct,
216 vsysThis.strProduct);
217
218 /* VM Vendor */
219 if (!vsysThis.strVendor.isEmpty())
220 pNewDesc->i_addEntry(VirtualSystemDescriptionType_Vendor,
221 "",
222 vsysThis.strVendor,
223 vsysThis.strVendor);
224
225 /* VM Version */
226 if (!vsysThis.strVersion.isEmpty())
227 pNewDesc->i_addEntry(VirtualSystemDescriptionType_Version,
228 "",
229 vsysThis.strVersion,
230 vsysThis.strVersion);
231
232 /* VM ProductUrl */
233 if (!vsysThis.strProductUrl.isEmpty())
234 pNewDesc->i_addEntry(VirtualSystemDescriptionType_ProductUrl,
235 "",
236 vsysThis.strProductUrl,
237 vsysThis.strProductUrl);
238
239 /* VM VendorUrl */
240 if (!vsysThis.strVendorUrl.isEmpty())
241 pNewDesc->i_addEntry(VirtualSystemDescriptionType_VendorUrl,
242 "",
243 vsysThis.strVendorUrl,
244 vsysThis.strVendorUrl);
245
246 /* VM description */
247 if (!vsysThis.strDescription.isEmpty())
248 pNewDesc->i_addEntry(VirtualSystemDescriptionType_Description,
249 "",
250 vsysThis.strDescription,
251 vsysThis.strDescription);
252
253 /* VM license */
254 if (!vsysThis.strLicenseText.isEmpty())
255 pNewDesc->i_addEntry(VirtualSystemDescriptionType_License,
256 "",
257 vsysThis.strLicenseText,
258 vsysThis.strLicenseText);
259
260 /* Now that we know the OS type, get our internal defaults based on that. */
261 ComPtr<IGuestOSType> pGuestOSType;
262 rc = mVirtualBox->GetGuestOSType(Bstr(strOsTypeVBox).raw(), pGuestOSType.asOutParam());
263 if (FAILED(rc)) throw rc;
264
265 /* CPU count */
266 ULONG cpuCountVBox;
267 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
268 if ( vsysThis.pelmVBoxMachine
269 && pNewDesc->m->pConfig->hardwareMachine.cCPUs)
270 cpuCountVBox = pNewDesc->m->pConfig->hardwareMachine.cCPUs;
271 else
272 cpuCountVBox = vsysThis.cCPUs;
273 /* Check for the constraints */
274 if (cpuCountVBox > SchemaDefs::MaxCPUCount)
275 {
276 i_addWarning(tr("The virtual system \"%s\" claims support for %u CPU's, but VirtualBox has support for "
277 "max %u CPU's only."),
278 vsysThis.strName.c_str(), cpuCountVBox, SchemaDefs::MaxCPUCount);
279 cpuCountVBox = SchemaDefs::MaxCPUCount;
280 }
281 if (vsysThis.cCPUs == 0)
282 cpuCountVBox = 1;
283 pNewDesc->i_addEntry(VirtualSystemDescriptionType_CPU,
284 "",
285 Utf8StrFmt("%RU32", (uint32_t)vsysThis.cCPUs),
286 Utf8StrFmt("%RU32", (uint32_t)cpuCountVBox));
287
288 /* RAM */
289 uint64_t ullMemSizeVBox;
290 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
291 if ( vsysThis.pelmVBoxMachine
292 && pNewDesc->m->pConfig->hardwareMachine.ulMemorySizeMB)
293 ullMemSizeVBox = pNewDesc->m->pConfig->hardwareMachine.ulMemorySizeMB;
294 else
295 ullMemSizeVBox = vsysThis.ullMemorySize / _1M;
296 /* Check for the constraints */
297 if ( ullMemSizeVBox != 0
298 && ( ullMemSizeVBox < MM_RAM_MIN_IN_MB
299 || ullMemSizeVBox > MM_RAM_MAX_IN_MB
300 )
301 )
302 {
303 i_addWarning(tr("The virtual system \"%s\" claims support for %llu MB RAM size, but VirtualBox has "
304 "support for min %u & max %u MB RAM size only."),
305 vsysThis.strName.c_str(), ullMemSizeVBox, MM_RAM_MIN_IN_MB, MM_RAM_MAX_IN_MB);
306 ullMemSizeVBox = RT_MIN(RT_MAX(ullMemSizeVBox, MM_RAM_MIN_IN_MB), MM_RAM_MAX_IN_MB);
307 }
308 if (vsysThis.ullMemorySize == 0)
309 {
310 /* If the RAM of the OVF is zero, use our predefined values */
311 ULONG memSizeVBox2;
312 rc = pGuestOSType->COMGETTER(RecommendedRAM)(&memSizeVBox2);
313 if (FAILED(rc)) throw rc;
314 /* VBox stores that in MByte */
315 ullMemSizeVBox = (uint64_t)memSizeVBox2;
316 }
317 pNewDesc->i_addEntry(VirtualSystemDescriptionType_Memory,
318 "",
319 Utf8StrFmt("%RU64", (uint64_t)vsysThis.ullMemorySize),
320 Utf8StrFmt("%RU64", (uint64_t)ullMemSizeVBox));
321
322 /* Audio */
323 Utf8Str strSoundCard;
324 Utf8Str strSoundCardOrig;
325 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
326 if ( vsysThis.pelmVBoxMachine
327 && pNewDesc->m->pConfig->hardwareMachine.audioAdapter.fEnabled)
328 {
329 strSoundCard = Utf8StrFmt("%RU32",
330 (uint32_t)pNewDesc->m->pConfig->hardwareMachine.audioAdapter.controllerType);
331 }
332 else if (vsysThis.strSoundCardType.isNotEmpty())
333 {
334 /* Set the AC97 always for the simple OVF case.
335 * @todo: figure out the hardware which could be possible */
336 strSoundCard = Utf8StrFmt("%RU32", (uint32_t)AudioControllerType_AC97);
337 strSoundCardOrig = vsysThis.strSoundCardType;
338 }
339 if (strSoundCard.isNotEmpty())
340 pNewDesc->i_addEntry(VirtualSystemDescriptionType_SoundCard,
341 "",
342 strSoundCardOrig,
343 strSoundCard);
344
345#ifdef VBOX_WITH_USB
346 /* USB Controller */
347 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
348 if ( ( vsysThis.pelmVBoxMachine
349 && pNewDesc->m->pConfig->hardwareMachine.usbSettings.llUSBControllers.size() > 0)
350 || vsysThis.fHasUsbController)
351 pNewDesc->i_addEntry(VirtualSystemDescriptionType_USBController, "", "", "");
352#endif /* VBOX_WITH_USB */
353
354 /* Network Controller */
355 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
356 if (vsysThis.pelmVBoxMachine)
357 {
358 uint32_t maxNetworkAdapters = Global::getMaxNetworkAdapters(pNewDesc->m->pConfig->hardwareMachine.chipsetType);
359
360 const settings::NetworkAdaptersList &llNetworkAdapters = pNewDesc->m->pConfig->hardwareMachine.llNetworkAdapters;
361 /* Check for the constrains */
362 if (llNetworkAdapters.size() > maxNetworkAdapters)
363 i_addWarning(tr("The virtual system \"%s\" claims support for %zu network adapters, but VirtualBox "
364 "has support for max %u network adapter only."),
365 vsysThis.strName.c_str(), llNetworkAdapters.size(), maxNetworkAdapters);
366 /* Iterate through all network adapters. */
367 settings::NetworkAdaptersList::const_iterator it1;
368 size_t a = 0;
369 for (it1 = llNetworkAdapters.begin();
370 it1 != llNetworkAdapters.end() && a < maxNetworkAdapters;
371 ++it1, ++a)
372 {
373 if (it1->fEnabled)
374 {
375 Utf8Str strMode = convertNetworkAttachmentTypeToString(it1->mode);
376 pNewDesc->i_addEntry(VirtualSystemDescriptionType_NetworkAdapter,
377 "", // ref
378 strMode, // orig
379 Utf8StrFmt("%RU32", (uint32_t)it1->type), // conf
380 0,
381 Utf8StrFmt("slot=%RU32;type=%s", it1->ulSlot, strMode.c_str())); // extra conf
382 }
383 }
384 }
385 /* else we use the ovf configuration. */
386 else if (vsysThis.llEthernetAdapters.size() > 0)
387 {
388 size_t cEthernetAdapters = vsysThis.llEthernetAdapters.size();
389 uint32_t maxNetworkAdapters = Global::getMaxNetworkAdapters(ChipsetType_PIIX3);
390
391 /* Check for the constrains */
392 if (cEthernetAdapters > maxNetworkAdapters)
393 i_addWarning(tr("The virtual system \"%s\" claims support for %zu network adapters, but VirtualBox "
394 "has support for max %u network adapter only."),
395 vsysThis.strName.c_str(), cEthernetAdapters, maxNetworkAdapters);
396
397 /* Get the default network adapter type for the selected guest OS */
398 NetworkAdapterType_T defaultAdapterVBox = NetworkAdapterType_Am79C970A;
399 rc = pGuestOSType->COMGETTER(AdapterType)(&defaultAdapterVBox);
400 if (FAILED(rc)) throw rc;
401
402 ovf::EthernetAdaptersList::const_iterator itEA;
403 /* Iterate through all abstract networks. Ignore network cards
404 * which exceed the limit of VirtualBox. */
405 size_t a = 0;
406 for (itEA = vsysThis.llEthernetAdapters.begin();
407 itEA != vsysThis.llEthernetAdapters.end() && a < maxNetworkAdapters;
408 ++itEA, ++a)
409 {
410 const ovf::EthernetAdapter &ea = *itEA; // logical network to connect to
411 Utf8Str strNetwork = ea.strNetworkName;
412 // make sure it's one of these two
413 if ( (strNetwork.compare("Null", Utf8Str::CaseInsensitive))
414 && (strNetwork.compare("NAT", Utf8Str::CaseInsensitive))
415 && (strNetwork.compare("Bridged", Utf8Str::CaseInsensitive))
416 && (strNetwork.compare("Internal", Utf8Str::CaseInsensitive))
417 && (strNetwork.compare("HostOnly", Utf8Str::CaseInsensitive))
418 && (strNetwork.compare("Generic", Utf8Str::CaseInsensitive))
419 )
420 strNetwork = "Bridged"; // VMware assumes this is the default apparently
421
422 /* Figure out the hardware type */
423 NetworkAdapterType_T nwAdapterVBox = defaultAdapterVBox;
424 if (!ea.strAdapterType.compare("PCNet32", Utf8Str::CaseInsensitive))
425 {
426 /* If the default adapter is already one of the two
427 * PCNet adapters use the default one. If not use the
428 * Am79C970A as fallback. */
429 if (!(defaultAdapterVBox == NetworkAdapterType_Am79C970A ||
430 defaultAdapterVBox == NetworkAdapterType_Am79C973))
431 nwAdapterVBox = NetworkAdapterType_Am79C970A;
432 }
433#ifdef VBOX_WITH_E1000
434 /* VMWare accidentally write this with VirtualCenter 3.5,
435 so make sure in this case always to use the VMWare one */
436 else if (!ea.strAdapterType.compare("E10000", Utf8Str::CaseInsensitive))
437 nwAdapterVBox = NetworkAdapterType_I82545EM;
438 else if (!ea.strAdapterType.compare("E1000", Utf8Str::CaseInsensitive))
439 {
440 /* Check if this OVF was written by VirtualBox */
441 if (Utf8Str(vsysThis.strVirtualSystemType).contains("virtualbox", Utf8Str::CaseInsensitive))
442 {
443 /* If the default adapter is already one of the three
444 * E1000 adapters use the default one. If not use the
445 * I82545EM as fallback. */
446 if (!(defaultAdapterVBox == NetworkAdapterType_I82540EM ||
447 defaultAdapterVBox == NetworkAdapterType_I82543GC ||
448 defaultAdapterVBox == NetworkAdapterType_I82545EM))
449 nwAdapterVBox = NetworkAdapterType_I82540EM;
450 }
451 else
452 /* Always use this one since it's what VMware uses */
453 nwAdapterVBox = NetworkAdapterType_I82545EM;
454 }
455#endif /* VBOX_WITH_E1000 */
456
457 pNewDesc->i_addEntry(VirtualSystemDescriptionType_NetworkAdapter,
458 "", // ref
459 ea.strNetworkName, // orig
460 Utf8StrFmt("%RU32", (uint32_t)nwAdapterVBox), // conf
461 0,
462 Utf8StrFmt("type=%s", strNetwork.c_str())); // extra conf
463 }
464 }
465
466 /* If there is a <vbox:Machine>, we always prefer the setting from there. */
467 bool fFloppy = false;
468 bool fDVD = false;
469 if (vsysThis.pelmVBoxMachine)
470 {
471 settings::StorageControllersList &llControllers = pNewDesc->m->pConfig->storageMachine.llStorageControllers;
472 settings::StorageControllersList::iterator it3;
473 for (it3 = llControllers.begin();
474 it3 != llControllers.end();
475 ++it3)
476 {
477 settings::AttachedDevicesList &llAttachments = it3->llAttachedDevices;
478 settings::AttachedDevicesList::iterator it4;
479 for (it4 = llAttachments.begin();
480 it4 != llAttachments.end();
481 ++it4)
482 {
483 fDVD |= it4->deviceType == DeviceType_DVD;
484 fFloppy |= it4->deviceType == DeviceType_Floppy;
485 if (fFloppy && fDVD)
486 break;
487 }
488 if (fFloppy && fDVD)
489 break;
490 }
491 }
492 else
493 {
494 fFloppy = vsysThis.fHasFloppyDrive;
495 fDVD = vsysThis.fHasCdromDrive;
496 }
497 /* Floppy Drive */
498 if (fFloppy)
499 pNewDesc->i_addEntry(VirtualSystemDescriptionType_Floppy, "", "", "");
500 /* CD Drive */
501 if (fDVD)
502 pNewDesc->i_addEntry(VirtualSystemDescriptionType_CDROM, "", "", "");
503
504 /* Hard disk Controller */
505 uint16_t cIDEused = 0;
506 uint16_t cSATAused = 0; NOREF(cSATAused);
507 uint16_t cSCSIused = 0; NOREF(cSCSIused);
508 ovf::ControllersMap::const_iterator hdcIt;
509 /* Iterate through all hard disk controllers */
510 for (hdcIt = vsysThis.mapControllers.begin();
511 hdcIt != vsysThis.mapControllers.end();
512 ++hdcIt)
513 {
514 const ovf::HardDiskController &hdc = hdcIt->second;
515 Utf8Str strControllerID = Utf8StrFmt("%RI32", (uint32_t)hdc.idController);
516
517 switch (hdc.system)
518 {
519 case ovf::HardDiskController::IDE:
520 /* Check for the constrains */
521 if (cIDEused < 4)
522 {
523 // @todo: figure out the IDE types
524 /* Use PIIX4 as default */
525 Utf8Str strType = "PIIX4";
526 if (!hdc.strControllerType.compare("PIIX3", Utf8Str::CaseInsensitive))
527 strType = "PIIX3";
528 else if (!hdc.strControllerType.compare("ICH6", Utf8Str::CaseInsensitive))
529 strType = "ICH6";
530 pNewDesc->i_addEntry(VirtualSystemDescriptionType_HardDiskControllerIDE,
531 strControllerID, // strRef
532 hdc.strControllerType, // aOvfValue
533 strType); // aVBoxValue
534 }
535 else
536 /* Warn only once */
537 if (cIDEused == 2)
538 i_addWarning(tr("The virtual \"%s\" system requests support for more than two "
539 "IDE controller channels, but VirtualBox supports only two."),
540 vsysThis.strName.c_str());
541
542 ++cIDEused;
543 break;
544
545 case ovf::HardDiskController::SATA:
546 /* Check for the constrains */
547 if (cSATAused < 1)
548 {
549 // @todo: figure out the SATA types
550 /* We only support a plain AHCI controller, so use them always */
551 pNewDesc->i_addEntry(VirtualSystemDescriptionType_HardDiskControllerSATA,
552 strControllerID,
553 hdc.strControllerType,
554 "AHCI");
555 }
556 else
557 {
558 /* Warn only once */
559 if (cSATAused == 1)
560 i_addWarning(tr("The virtual system \"%s\" requests support for more than one "
561 "SATA controller, but VirtualBox has support for only one"),
562 vsysThis.strName.c_str());
563
564 }
565 ++cSATAused;
566 break;
567
568 case ovf::HardDiskController::SCSI:
569 /* Check for the constrains */
570 if (cSCSIused < 1)
571 {
572 VirtualSystemDescriptionType_T vsdet = VirtualSystemDescriptionType_HardDiskControllerSCSI;
573 Utf8Str hdcController = "LsiLogic";
574 if (!hdc.strControllerType.compare("lsilogicsas", Utf8Str::CaseInsensitive))
575 {
576 // OVF considers SAS a variant of SCSI but VirtualBox considers it a class of its own
577 vsdet = VirtualSystemDescriptionType_HardDiskControllerSAS;
578 hdcController = "LsiLogicSas";
579 }
580 else if (!hdc.strControllerType.compare("BusLogic", Utf8Str::CaseInsensitive))
581 hdcController = "BusLogic";
582 pNewDesc->i_addEntry(vsdet,
583 strControllerID,
584 hdc.strControllerType,
585 hdcController);
586 }
587 else
588 i_addWarning(tr("The virtual system \"%s\" requests support for an additional "
589 "SCSI controller of type \"%s\" with ID %s, but VirtualBox presently "
590 "supports only one SCSI controller."),
591 vsysThis.strName.c_str(),
592 hdc.strControllerType.c_str(),
593 strControllerID.c_str());
594 ++cSCSIused;
595 break;
596 }
597 }
598
599 /* Hard disks */
600 if (vsysThis.mapVirtualDisks.size() > 0)
601 {
602 ovf::VirtualDisksMap::const_iterator itVD;
603 /* Iterate through all hard disks ()*/
604 for (itVD = vsysThis.mapVirtualDisks.begin();
605 itVD != vsysThis.mapVirtualDisks.end();
606 ++itVD)
607 {
608 const ovf::VirtualDisk &hd = itVD->second;
609 /* Get the associated disk image */
610 ovf::DiskImage di;
611 std::map<RTCString, ovf::DiskImage>::iterator foundDisk;
612
613 foundDisk = m->pReader->m_mapDisks.find(hd.strDiskId);
614 if (foundDisk == m->pReader->m_mapDisks.end())
615 continue;
616 else
617 {
618 di = foundDisk->second;
619 }
620
621 /*
622 * Figure out from URI which format the image of disk has.
623 * URI must have inside section <Disk> .
624 * But there aren't strong requirements about correspondence one URI for one disk virtual format.
625 * So possibly, we aren't able to recognize some URIs.
626 */
627
628 ComObjPtr<MediumFormat> mediumFormat;
629 rc = i_findMediumFormatFromDiskImage(di, mediumFormat);
630 if (FAILED(rc))
631 throw rc;
632
633 Bstr bstrFormatName;
634 rc = mediumFormat->COMGETTER(Name)(bstrFormatName.asOutParam());
635 if (FAILED(rc))
636 throw rc;
637 Utf8Str vdf = Utf8Str(bstrFormatName);
638
639 // @todo:
640 // - figure out all possible vmdk formats we also support
641 // - figure out if there is a url specifier for vhd already
642 // - we need a url specifier for the vdi format
643
644 if (vdf.compare("VMDK", Utf8Str::CaseInsensitive) == 0)
645 {
646 /* If the href is empty use the VM name as filename */
647 Utf8Str strFilename = di.strHref;
648 if (!strFilename.length())
649 strFilename = Utf8StrFmt("%s.vmdk", hd.strDiskId.c_str());
650
651 Utf8Str strTargetPath = Utf8Str(strMachineFolder);
652 strTargetPath.append(RTPATH_DELIMITER).append(di.strHref);
653 /*
654 * Remove last extension from the file name if the file is compressed
655 */
656 if (di.strCompression.compare("gzip", Utf8Str::CaseInsensitive)==0)
657 {
658 strTargetPath.stripSuffix();
659 }
660
661 i_searchUniqueDiskImageFilePath(strTargetPath);
662
663 /* find the description for the hard disk controller
664 * that has the same ID as hd.idController */
665 const VirtualSystemDescriptionEntry *pController;
666 if (!(pController = pNewDesc->i_findControllerFromID(hd.idController)))
667 throw setError(E_FAIL,
668 tr("Cannot find hard disk controller with OVF instance ID %RI32 "
669 "to which disk \"%s\" should be attached"),
670 hd.idController,
671 di.strHref.c_str());
672
673 /* controller to attach to, and the bus within that controller */
674 Utf8StrFmt strExtraConfig("controller=%RI16;channel=%RI16",
675 pController->ulIndex,
676 hd.ulAddressOnParent);
677 pNewDesc->i_addEntry(VirtualSystemDescriptionType_HardDiskImage,
678 hd.strDiskId,
679 di.strHref,
680 strTargetPath,
681 di.ulSuggestedSizeMB,
682 strExtraConfig);
683 }
684 else if (vdf.compare("RAW", Utf8Str::CaseInsensitive) == 0)
685 {
686 /* If the href is empty use the VM name as filename */
687 Utf8Str strFilename = di.strHref;
688 if (!strFilename.length())
689 strFilename = Utf8StrFmt("%s.iso", hd.strDiskId.c_str());
690
691 Utf8Str strTargetPath = Utf8Str(strMachineFolder)
692 .append(RTPATH_DELIMITER)
693 .append(di.strHref);
694 /*
695 * Remove last extension from the file name if the file is compressed
696 */
697 if (di.strCompression.compare("gzip", Utf8Str::CaseInsensitive)==0)
698 {
699 strTargetPath.stripSuffix();
700 }
701
702 i_searchUniqueDiskImageFilePath(strTargetPath);
703
704 /* find the description for the hard disk controller
705 * that has the same ID as hd.idController */
706 const VirtualSystemDescriptionEntry *pController;
707 if (!(pController = pNewDesc->i_findControllerFromID(hd.idController)))
708 throw setError(E_FAIL,
709 tr("Cannot find disk controller with OVF instance ID %RI32 "
710 "to which disk \"%s\" should be attached"),
711 hd.idController,
712 di.strHref.c_str());
713
714 /* controller to attach to, and the bus within that controller */
715 Utf8StrFmt strExtraConfig("controller=%RI16;channel=%RI16",
716 pController->ulIndex,
717 hd.ulAddressOnParent);
718 pNewDesc->i_addEntry(VirtualSystemDescriptionType_HardDiskImage,
719 hd.strDiskId,
720 di.strHref,
721 strTargetPath,
722 di.ulSuggestedSizeMB,
723 strExtraConfig);
724 }
725 else
726 throw setError(VBOX_E_FILE_ERROR,
727 tr("Unsupported format for virtual disk image %s in OVF: \"%s\""),
728 di.strHref.c_str(),
729 di.strFormat.c_str());
730 }
731 }
732
733 m->virtualSystemDescriptions.push_back(pNewDesc);
734 }
735 }
736 catch (HRESULT aRC)
737 {
738 /* On error we clear the list & return */
739 m->virtualSystemDescriptions.clear();
740 rc = aRC;
741 }
742
743 // reset the appliance state
744 alock.acquire();
745 m->state = Data::ApplianceIdle;
746
747 return rc;
748}
749
750/**
751 * Public method implementation. This creates one or more new machines according to the
752 * VirtualSystemScription instances created by Appliance::Interpret().
753 * Thread implementation is in Appliance::i_importImpl().
754 * @param aProgress
755 * @return
756 */
757HRESULT Appliance::importMachines(const std::vector<ImportOptions_T> &aOptions,
758 ComPtr<IProgress> &aProgress)
759{
760 AutoWriteLock alock(this COMMA_LOCKVAL_SRC_POS);
761
762 if (aOptions.size())
763 {
764 m->optListImport.setCapacity(aOptions.size());
765 for (size_t i = 0; i < aOptions.size(); ++i)
766 {
767 m->optListImport.insert(i, aOptions[i]);
768 }
769 }
770
771 AssertReturn(!( m->optListImport.contains(ImportOptions_KeepAllMACs)
772 && m->optListImport.contains(ImportOptions_KeepNATMACs) )
773 , E_INVALIDARG);
774
775 // do not allow entering this method if the appliance is busy reading or writing
776 if (!i_isApplianceIdle())
777 return E_ACCESSDENIED;
778
779 if (!m->pReader)
780 return setError(E_FAIL,
781 tr("Cannot import machines without reading it first (call read() before i_importMachines())"));
782
783 ComObjPtr<Progress> progress;
784 HRESULT rc = S_OK;
785 try
786 {
787 rc = i_importImpl(m->locInfo, progress);
788 }
789 catch (HRESULT aRC)
790 {
791 rc = aRC;
792 }
793
794 if (SUCCEEDED(rc))
795 /* Return progress to the caller */
796 progress.queryInterfaceTo(aProgress.asOutParam());
797
798 return rc;
799}
800
801////////////////////////////////////////////////////////////////////////////////
802//
803// Appliance private methods
804//
805////////////////////////////////////////////////////////////////////////////////
806
807/**
808 * Ensures that there is a look-ahead object ready.
809 *
810 * @returns true if there's an object handy, false if end-of-stream.
811 * @throws HRESULT if the next object isn't a regular file. Sets error info
812 * (which is why it's a method on Appliance and not the
813 * ImportStack).
814 */
815bool Appliance::i_importEnsureOvaLookAhead(ImportStack &stack)
816{
817 Assert(stack.hVfsFssOva != NULL);
818 if (stack.hVfsIosOvaLookAhead == NIL_RTVFSIOSTREAM)
819 {
820 RTStrFree(stack.pszOvaLookAheadName);
821 stack.pszOvaLookAheadName = NULL;
822
823 RTVFSOBJTYPE enmType;
824 RTVFSOBJ hVfsObj;
825 int vrc = RTVfsFsStrmNext(stack.hVfsFssOva, &stack.pszOvaLookAheadName, &enmType, &hVfsObj);
826 if (RT_SUCCESS(vrc))
827 {
828 stack.hVfsIosOvaLookAhead = RTVfsObjToIoStream(hVfsObj);
829 RTVfsObjRelease(hVfsObj);
830 if ( ( enmType != RTVFSOBJTYPE_FILE
831 && enmType != RTVFSOBJTYPE_IO_STREAM)
832 || stack.hVfsIosOvaLookAhead == NIL_RTVFSIOSTREAM)
833 throw setError(VBOX_E_FILE_ERROR,
834 tr("Malformed OVA. '%s' is not a regular file (%d)."), stack.pszOvaLookAheadName, enmType);
835 }
836 else if (vrc == VERR_EOF)
837 return false;
838 else
839 throw setErrorVrc(vrc, tr("RTVfsFsStrmNext failed (%Rrc)"), vrc);
840 }
841 return true;
842}
843
844HRESULT Appliance::i_preCheckImageAvailability(ImportStack &stack)
845{
846 if (i_importEnsureOvaLookAhead(stack))
847 return S_OK;
848 throw setError(VBOX_E_FILE_ERROR, tr("Unexpected end of OVA package"));
849 /** @todo r=bird: dunno why this bother returning a value and the caller
850 * having a special 'continue' case for it. It always threw all non-OK
851 * status codes. It's possibly to handle out of order stuff, so that
852 * needs adding to the testcase! */
853}
854
855/**
856 * Setup automatic I/O stream digest calculation, adding it to hOurManifest.
857 *
858 * @returns Passthru I/O stream, of @a hVfsIos if no digest calc needed.
859 * @param hVfsIos The stream to wrap. Always consumed.
860 * @param pszManifestEntry The manifest entry.
861 * @throws Nothing.
862 */
863RTVFSIOSTREAM Appliance::i_importSetupDigestCalculationForGivenIoStream(RTVFSIOSTREAM hVfsIos, const char *pszManifestEntry)
864{
865 int vrc;
866 Assert(!RTManifestPtIosIsInstanceOf(hVfsIos));
867
868 if (m->fDigestTypes == 0)
869 return hVfsIos;
870
871 /* Create the manifest if necessary. */
872 if (m->hOurManifest == NIL_RTMANIFEST)
873 {
874 vrc = RTManifestCreate(0 /*fFlags*/, &m->hOurManifest);
875 AssertRCReturnStmt(vrc, RTVfsIoStrmRelease(hVfsIos), NIL_RTVFSIOSTREAM);
876 }
877
878 /* Setup the stream. */
879 RTVFSIOSTREAM hVfsIosPt;
880 vrc = RTManifestEntryAddPassthruIoStream(m->hOurManifest, hVfsIos, pszManifestEntry, m->fDigestTypes,
881 true /*fReadOrWrite*/, &hVfsIosPt);
882
883 RTVfsIoStrmRelease(hVfsIos); /* always consumed! */
884 if (RT_SUCCESS(vrc))
885 return hVfsIosPt;
886
887 setErrorVrc(vrc, "RTManifestEntryAddPassthruIoStream failed with rc=%Rrc", vrc);
888 return NIL_RTVFSIOSTREAM;
889}
890
891/**
892 * Opens a source file (for reading obviously).
893 *
894 * @param rstrSrcPath The source file to open.
895 * @param pszManifestEntry The manifest entry of the source file. This is
896 * used when constructing our manifest using a pass
897 * thru.
898 * @returns I/O stream handle to the source file.
899 * @throws HRESULT error status, error info set.
900 */
901RTVFSIOSTREAM Appliance::i_importOpenSourceFile(ImportStack &stack, Utf8Str const &rstrSrcPath, const char *pszManifestEntry)
902{
903 /*
904 * Open the source file. Special considerations for OVAs.
905 */
906 RTVFSIOSTREAM hVfsIosSrc;
907 if (stack.hVfsFssOva != NIL_RTVFSFSSTREAM)
908 {
909 for (uint32_t i = 0;; i++)
910 {
911 if (!i_importEnsureOvaLookAhead(stack))
912 throw setErrorBoth(VBOX_E_FILE_ERROR, VERR_EOF,
913 tr("Unexpected end of OVA / internal error - missing '%s' (skipped %u)"),
914 rstrSrcPath.c_str(), i);
915 if (RTStrICmp(stack.pszOvaLookAheadName, rstrSrcPath.c_str()) == 0)
916 break;
917
918 /* release the current object, loop to get the next. */
919 RTVfsIoStrmRelease(stack.claimOvaLookAHead());
920 }
921 hVfsIosSrc = stack.claimOvaLookAHead();
922 }
923 else
924 {
925 int vrc = RTVfsIoStrmOpenNormal(rstrSrcPath.c_str(), RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_NONE, &hVfsIosSrc);
926 if (RT_FAILURE(vrc))
927 throw setErrorVrc(vrc, tr("Error opening '%s' for reading (%Rrc)"), rstrSrcPath.c_str(), vrc);
928 }
929
930 /*
931 * Digest calculation filtering.
932 */
933 hVfsIosSrc = i_importSetupDigestCalculationForGivenIoStream(hVfsIosSrc, pszManifestEntry);
934 if (hVfsIosSrc == NIL_RTVFSIOSTREAM)
935 throw E_FAIL;
936
937 return hVfsIosSrc;
938}
939
940/**
941 * Creates the destination file and fills it with bytes from the source stream.
942 *
943 * This assumes that we digest the source when fDigestTypes is non-zero, and
944 * thus calls RTManifestPtIosAddEntryNow when done.
945 *
946 * @param rstrDstPath The path to the destination file. Missing path
947 * components will be created.
948 * @param hVfsIosSrc The source I/O stream.
949 * @param rstrSrcLogNm The name of the source for logging and error
950 * messages.
951 * @returns COM status code.
952 * @throws Nothing (as the caller has VFS handles to release).
953 */
954HRESULT Appliance::i_importCreateAndWriteDestinationFile(Utf8Str const &rstrDstPath, RTVFSIOSTREAM hVfsIosSrc,
955 Utf8Str const &rstrSrcLogNm)
956{
957 int vrc;
958
959 /*
960 * Create the output file, including necessary paths.
961 * Any existing file will be overwritten.
962 */
963 HRESULT hrc = VirtualBox::i_ensureFilePathExists(rstrDstPath, true /*fCreate*/);
964 if (SUCCEEDED(hrc))
965 {
966 RTVFSIOSTREAM hVfsIosDst;
967 vrc = RTVfsIoStrmOpenNormal(rstrDstPath.c_str(),
968 RTFILE_O_CREATE_REPLACE | RTFILE_O_WRITE | RTFILE_O_DENY_ALL,
969 &hVfsIosDst);
970 if (RT_SUCCESS(vrc))
971 {
972 /*
973 * Pump the bytes thru. If we fail, delete the output file.
974 */
975 vrc = RTVfsUtilPumpIoStreams(hVfsIosSrc, hVfsIosDst, 0);
976 if (RT_SUCCESS(vrc))
977 hrc = S_OK;
978 else
979 hrc = setErrorVrc(vrc, tr("Error occured decompressing '%s' to '%s' (%Rrc)"),
980 rstrSrcLogNm.c_str(), rstrDstPath.c_str(), vrc);
981 uint32_t cRefs = RTVfsIoStrmRelease(hVfsIosDst);
982 AssertMsg(cRefs == 0, ("cRefs=%u\n", cRefs)); NOREF(cRefs);
983 if (RT_FAILURE(vrc))
984 RTFileDelete(rstrDstPath.c_str());
985 }
986 else
987 hrc = setErrorVrc(vrc, tr("Error opening destionation image '%s' for writing (%Rrc)"), rstrDstPath.c_str(), vrc);
988 }
989 return hrc;
990}
991
992
993/**
994 *
995 * @param pszManifestEntry The manifest entry of the source file. This is
996 * used when constructing our manifest using a pass
997 * thru.
998 * @throws HRESULT error status, error info set.
999 */
1000void Appliance::i_importCopyFile(ImportStack &stack, Utf8Str const &rstrSrcPath, Utf8Str const &rstrDstPath,
1001 const char *pszManifestEntry)
1002{
1003 /*
1004 * Open the file (throws error) and add a read ahead thread so we can do
1005 * concurrent reads (+digest) and writes.
1006 */
1007 RTVFSIOSTREAM hVfsIosSrc = i_importOpenSourceFile(stack, rstrSrcPath, pszManifestEntry);
1008 RTVFSIOSTREAM hVfsIosReadAhead;
1009 int vrc = RTVfsCreateReadAheadForIoStream(hVfsIosSrc, 0 /*fFlags*/, 0 /*cBuffers=default*/, 0 /*cbBuffers=default*/,
1010 &hVfsIosReadAhead);
1011 if (RT_FAILURE(vrc))
1012 {
1013 RTVfsIoStrmRelease(hVfsIosSrc);
1014 throw setErrorVrc(vrc, tr("Error initializing read ahead thread for '%s' (%Rrc)"), rstrSrcPath.c_str(), vrc);
1015 }
1016
1017 /*
1018 * Write the destination file (nothrow).
1019 */
1020 HRESULT hrc = i_importCreateAndWriteDestinationFile(rstrDstPath, hVfsIosReadAhead, rstrSrcPath);
1021 RTVfsIoStrmRelease(hVfsIosReadAhead);
1022
1023 /*
1024 * Before releasing the source stream, make sure we've successfully added
1025 * the digest to our manifest.
1026 */
1027 if (SUCCEEDED(hrc) && m->fDigestTypes)
1028 {
1029 vrc = RTManifestPtIosAddEntryNow(hVfsIosSrc);
1030 if (RT_FAILURE(vrc))
1031 hrc = setErrorVrc(vrc, tr("RTManifestPtIosAddEntryNow failed with %Rrc"), vrc);
1032 }
1033
1034 uint32_t cRefs = RTVfsIoStrmRelease(hVfsIosSrc);
1035 AssertMsg(cRefs == 0, ("cRefs=%u\n", cRefs)); NOREF(cRefs);
1036 if (SUCCEEDED(hrc))
1037 return;
1038 throw hrc;
1039}
1040
1041/**
1042 *
1043 * @param pszManifestEntry The manifest entry of the source file. This is
1044 * used when constructing our manifest using a pass
1045 * thru.
1046 * @throws HRESULT error status, error info set.
1047 */
1048void Appliance::i_importDecompressFile(ImportStack &stack, Utf8Str const &rstrSrcPath, Utf8Str const &rstrDstPath,
1049 const char *pszManifestEntry)
1050{
1051 RTVFSIOSTREAM hVfsIosSrcCompressed = i_importOpenSourceFile(stack, rstrSrcPath, pszManifestEntry);
1052
1053 /*
1054 * Add a read ahead thread here. This means reading and digest calculation
1055 * is done on one thread, while unpacking and writing is one on this thread.
1056 */
1057 RTVFSIOSTREAM hVfsIosReadAhead;
1058 int vrc = RTVfsCreateReadAheadForIoStream(hVfsIosSrcCompressed, 0 /*fFlags*/, 0 /*cBuffers=default*/,
1059 0 /*cbBuffers=default*/, &hVfsIosReadAhead);
1060 if (RT_FAILURE(vrc))
1061 {
1062 RTVfsIoStrmRelease(hVfsIosSrcCompressed);
1063 throw setErrorVrc(vrc, tr("Error initializing read ahead thread for '%s' (%Rrc)"), rstrSrcPath.c_str(), vrc);
1064 }
1065
1066 /*
1067 * Add decompression step.
1068 */
1069 RTVFSIOSTREAM hVfsIosSrc;
1070 vrc = RTZipGzipDecompressIoStream(hVfsIosReadAhead, 0, &hVfsIosSrc);
1071 RTVfsIoStrmRelease(hVfsIosReadAhead);
1072 if (RT_FAILURE(vrc))
1073 {
1074 RTVfsIoStrmRelease(hVfsIosSrcCompressed);
1075 throw setErrorVrc(vrc, tr("Error initializing gzip decompression for '%s' (%Rrc)"), rstrSrcPath.c_str(), vrc);
1076 }
1077
1078 /*
1079 * Write the stream to the destination file (nothrow).
1080 */
1081 HRESULT hrc = i_importCreateAndWriteDestinationFile(rstrDstPath, hVfsIosSrc, rstrSrcPath);
1082
1083 /*
1084 * Before releasing the source stream, make sure we've successfully added
1085 * the digest to our manifest.
1086 */
1087 if (SUCCEEDED(hrc) && m->fDigestTypes)
1088 {
1089 vrc = RTManifestPtIosAddEntryNow(hVfsIosSrcCompressed);
1090 if (RT_FAILURE(vrc))
1091 hrc = setErrorVrc(vrc, tr("RTManifestPtIosAddEntryNow failed with %Rrc"), vrc);
1092 }
1093
1094 uint32_t cRefs = RTVfsIoStrmRelease(hVfsIosSrc);
1095 AssertMsg(cRefs == 0, ("cRefs=%u\n", cRefs)); NOREF(cRefs);
1096
1097 cRefs = RTVfsIoStrmRelease(hVfsIosSrcCompressed);
1098 AssertMsg(cRefs == 0, ("cRefs=%u\n", cRefs)); NOREF(cRefs);
1099
1100 if (SUCCEEDED(hrc))
1101 return;
1102 throw hrc;
1103}
1104
1105/*******************************************************************************
1106 * Read stuff
1107 ******************************************************************************/
1108
1109/**
1110 * Implementation for reading an OVF (via task).
1111 *
1112 * This starts a new thread which will call
1113 * Appliance::taskThreadImportOrExport() which will then call readFS(). This
1114 * will then open the OVF with ovfreader.cpp.
1115 *
1116 * This is in a separate private method because it is used from two locations:
1117 *
1118 * 1) from the public Appliance::Read().
1119 *
1120 * 2) in a second worker thread; in that case, Appliance::ImportMachines() called Appliance::i_importImpl(), which
1121 * called Appliance::readFSOVA(), which called Appliance::i_importImpl(), which then called this again.
1122 *
1123 * @param aLocInfo The OVF location.
1124 * @param aProgress Where to return the progress object.
1125 * @throws COM error codes will be thrown.
1126 */
1127void Appliance::i_readImpl(const LocationInfo &aLocInfo, ComObjPtr<Progress> &aProgress)
1128{
1129 BstrFmt bstrDesc = BstrFmt(tr("Reading appliance '%s'"),
1130 aLocInfo.strPath.c_str());
1131 HRESULT rc;
1132 /* Create the progress object */
1133 aProgress.createObject();
1134 if (aLocInfo.storageType == VFSType_File)
1135 /* 1 operation only */
1136 rc = aProgress->init(mVirtualBox, static_cast<IAppliance*>(this),
1137 bstrDesc.raw(),
1138 TRUE /* aCancelable */);
1139 else
1140 /* 4/5 is downloading, 1/5 is reading */
1141 rc = aProgress->init(mVirtualBox, static_cast<IAppliance*>(this),
1142 bstrDesc.raw(),
1143 TRUE /* aCancelable */,
1144 2, // ULONG cOperations,
1145 5, // ULONG ulTotalOperationsWeight,
1146 BstrFmt(tr("Download appliance '%s'"),
1147 aLocInfo.strPath.c_str()).raw(), // CBSTR bstrFirstOperationDescription,
1148 4); // ULONG ulFirstOperationWeight,
1149 if (FAILED(rc)) throw rc;
1150
1151 /* Initialize our worker task */
1152 TaskOVF *task = NULL;
1153 try
1154 {
1155 task = new TaskOVF(this, TaskOVF::Read, aLocInfo, aProgress);
1156 }
1157 catch (...)
1158 {
1159 throw setError(VBOX_E_OBJECT_NOT_FOUND,
1160 tr("Could not create TaskOVF object for reading the OVF from disk"));
1161 }
1162
1163 rc = task->createThread();
1164 if (FAILED(rc)) throw rc;
1165}
1166
1167/**
1168 * Actual worker code for reading an OVF from disk. This is called from Appliance::taskThreadImportOrExport()
1169 * and therefore runs on the OVF read worker thread. This opens the OVF with ovfreader.cpp.
1170 *
1171 * This runs in one context:
1172 *
1173 * 1) in a first worker thread; in that case, Appliance::Read() called Appliance::readImpl();
1174 *
1175 * @param pTask
1176 * @return
1177 */
1178HRESULT Appliance::i_readFS(TaskOVF *pTask)
1179{
1180 LogFlowFuncEnter();
1181 LogFlowFunc(("Appliance %p\n", this));
1182
1183 AutoCaller autoCaller(this);
1184 if (FAILED(autoCaller.rc())) return autoCaller.rc();
1185
1186 AutoWriteLock appLock(this COMMA_LOCKVAL_SRC_POS);
1187
1188 HRESULT rc;
1189 if (pTask->locInfo.strPath.endsWith(".ovf", Utf8Str::CaseInsensitive))
1190 rc = i_readFSOVF(pTask);
1191 else
1192 rc = i_readFSOVA(pTask);
1193
1194 LogFlowFunc(("rc=%Rhrc\n", rc));
1195 LogFlowFuncLeave();
1196
1197 return rc;
1198}
1199
1200HRESULT Appliance::i_readFSOVF(TaskOVF *pTask)
1201{
1202 LogFlowFunc(("'%s'\n", pTask->locInfo.strPath.c_str()));
1203
1204 /*
1205 * Allocate a buffer for filenames and prep it for suffix appending.
1206 */
1207 char *pszNameBuf = (char *)alloca(pTask->locInfo.strPath.length() + 16);
1208 AssertReturn(pszNameBuf, VERR_NO_TMP_MEMORY);
1209 memcpy(pszNameBuf, pTask->locInfo.strPath.c_str(), pTask->locInfo.strPath.length() + 1);
1210 RTPathStripSuffix(pszNameBuf);
1211 size_t const cchBaseName = strlen(pszNameBuf);
1212
1213 /*
1214 * Open the OVF file first since that is what this is all about.
1215 */
1216 RTVFSIOSTREAM hIosOvf;
1217 int vrc = RTVfsIoStrmOpenNormal(pTask->locInfo.strPath.c_str(),
1218 RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_NONE, &hIosOvf);
1219 if (RT_FAILURE(vrc))
1220 return setErrorVrc(vrc, tr("Failed to open OVF file '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc);
1221
1222 HRESULT hrc = i_readOVFFile(pTask, hIosOvf, RTPathFilename(pTask->locInfo.strPath.c_str())); /* consumes hIosOvf */
1223 if (FAILED(hrc))
1224 return hrc;
1225
1226 /*
1227 * Try open the manifest file (for signature purposes and to determine digest type(s)).
1228 */
1229 RTVFSIOSTREAM hIosMf;
1230 strcpy(&pszNameBuf[cchBaseName], ".mf");
1231 vrc = RTVfsIoStrmOpenNormal(pszNameBuf, RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_NONE, &hIosMf);
1232 if (RT_SUCCESS(vrc))
1233 {
1234 const char * const pszFilenamePart = RTPathFilename(pszNameBuf);
1235 hrc = i_readManifestFile(pTask, hIosMf /*consumed*/, pszFilenamePart);
1236 if (FAILED(hrc))
1237 return hrc;
1238
1239 /*
1240 * Check for the signature file.
1241 */
1242 RTVFSIOSTREAM hIosCert;
1243 strcpy(&pszNameBuf[cchBaseName], ".cert");
1244 vrc = RTVfsIoStrmOpenNormal(pszNameBuf, RTFILE_O_OPEN | RTFILE_O_READ | RTFILE_O_DENY_NONE, &hIosCert);
1245 if (RT_SUCCESS(vrc))
1246 {
1247 hrc = i_readSignatureFile(pTask, hIosCert /*consumed*/, pszFilenamePart);
1248 if (FAILED(hrc))
1249 return hrc;
1250 }
1251 else if (vrc != VERR_FILE_NOT_FOUND && vrc != VERR_PATH_NOT_FOUND)
1252 return setErrorVrc(vrc, tr("Failed to open the signature file '%s' (%Rrc)"), pszNameBuf, vrc);
1253
1254 }
1255 else if (vrc == VERR_FILE_NOT_FOUND || vrc == VERR_PATH_NOT_FOUND)
1256 {
1257 m->fDeterminedDigestTypes = true;
1258 m->fDigestTypes = 0;
1259 }
1260 else
1261 return setErrorVrc(vrc, tr("Failed to open the manifest file '%s' (%Rrc)"), pszNameBuf, vrc);
1262
1263 /*
1264 * Do tail processing (check the signature).
1265 */
1266 hrc = i_readTailProcessing(pTask);
1267
1268 LogFlowFunc(("returns %Rhrc\n", hrc));
1269 return hrc;
1270}
1271
1272HRESULT Appliance::i_readFSOVA(TaskOVF *pTask)
1273{
1274 LogFlowFunc(("'%s'\n", pTask->locInfo.strPath.c_str()));
1275
1276 /*
1277 * Open the tar file as file stream.
1278 */
1279 RTVFSIOSTREAM hVfsIosOva;
1280 int vrc = RTVfsIoStrmOpenNormal(pTask->locInfo.strPath.c_str(),
1281 RTFILE_O_READ | RTFILE_O_DENY_NONE | RTFILE_O_OPEN, &hVfsIosOva);
1282 if (RT_FAILURE(vrc))
1283 return setErrorVrc(vrc, tr("Error opening the OVA file '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc);
1284
1285 RTVFSFSSTREAM hVfsFssOva;
1286 vrc = RTZipTarFsStreamFromIoStream(hVfsIosOva, 0 /*fFlags*/, &hVfsFssOva);
1287 RTVfsIoStrmRelease(hVfsIosOva);
1288 if (RT_FAILURE(vrc))
1289 return setErrorVrc(vrc, tr("Error reading the OVA file '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc);
1290
1291 /*
1292 * Since jumping thru an OVA file with seekable disk backing is rather
1293 * efficient, we can process .ovf, .mf and .cert files here without any
1294 * strict ordering restrictions.
1295 *
1296 * (Technically, the .ovf-file comes first, while the manifest and its
1297 * optional signature file either follows immediately or at the very end of
1298 * the OVA. The manifest is optional.)
1299 */
1300 char *pszOvfNameBase = NULL;
1301 size_t cchOvfNameBase = 0;
1302 unsigned cLeftToFind = 3;
1303 HRESULT hrc = S_OK;
1304 do
1305 {
1306 char *pszName = NULL;
1307 RTVFSOBJTYPE enmType;
1308 RTVFSOBJ hVfsObj;
1309 vrc = RTVfsFsStrmNext(hVfsFssOva, &pszName, &enmType, &hVfsObj);
1310 if (RT_FAILURE(vrc))
1311 {
1312 if (vrc != VERR_EOF)
1313 hrc = setErrorVrc(vrc, tr("Error reading OVA '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc);
1314 break;
1315 }
1316
1317 /* We only care about entries that are files. Get the I/O stream handle for them. */
1318 if ( enmType == RTVFSOBJTYPE_IO_STREAM
1319 || enmType == RTVFSOBJTYPE_FILE)
1320 {
1321 /* Find the suffix and check if this is a possibly interesting file. */
1322 char *pszSuffix = strrchr(pszName, '.');
1323 if ( pszSuffix
1324 && ( RTStrICmp(pszSuffix + 1, "ovf") == 0
1325 || RTStrICmp(pszSuffix + 1, "mf") == 0
1326 || RTStrICmp(pszSuffix + 1, "cert") == 0) )
1327 {
1328 /* Match the OVF base name. */
1329 *pszSuffix = '\0';
1330 if ( pszOvfNameBase == NULL
1331 || RTStrICmp(pszName, pszOvfNameBase) == 0)
1332 {
1333 *pszSuffix = '.';
1334
1335 /* Since we're pretty sure we'll be processing this file, get the I/O stream. */
1336 RTVFSIOSTREAM hVfsIos = RTVfsObjToIoStream(hVfsObj);
1337 Assert(hVfsIos != NIL_RTVFSIOSTREAM);
1338
1339 /* Check for the OVF (should come first). */
1340 if (RTStrICmp(pszSuffix + 1, "ovf") == 0)
1341 {
1342 if (pszOvfNameBase == NULL)
1343 {
1344 hrc = i_readOVFFile(pTask, hVfsIos, pszName);
1345 hVfsIos = NIL_RTVFSIOSTREAM;
1346
1347 /* Set the base name. */
1348 *pszSuffix = '\0';
1349 pszOvfNameBase = pszName;
1350 cchOvfNameBase = strlen(pszName);
1351 pszName = NULL;
1352 cLeftToFind--;
1353 }
1354 else
1355 LogRel(("i_readFSOVA: '%s' contains more than one OVF file ('%s'), picking the first one\n",
1356 pTask->locInfo.strPath.c_str(), pszName));
1357 }
1358 /* Check for manifest. */
1359 else if (RTStrICmp(pszSuffix + 1, "mf") == 0)
1360 {
1361 if (m->hMemFileTheirManifest == NIL_RTVFSFILE)
1362 {
1363 hrc = i_readManifestFile(pTask, hVfsIos, pszName);
1364 hVfsIos = NIL_RTVFSIOSTREAM; /*consumed*/
1365 cLeftToFind--;
1366 }
1367 else
1368 LogRel(("i_readFSOVA: '%s' contains more than one manifest file ('%s'), picking the first one\n",
1369 pTask->locInfo.strPath.c_str(), pszName));
1370 }
1371 /* Check for signature. */
1372 else if (RTStrICmp(pszSuffix + 1, "cert") == 0)
1373 {
1374 if (!m->fSignerCertLoaded)
1375 {
1376 hrc = i_readSignatureFile(pTask, hVfsIos, pszName);
1377 hVfsIos = NIL_RTVFSIOSTREAM; /*consumed*/
1378 cLeftToFind--;
1379 }
1380 else
1381 LogRel(("i_readFSOVA: '%s' contains more than one signature file ('%s'), picking the first one\n",
1382 pTask->locInfo.strPath.c_str(), pszName));
1383 }
1384 else
1385 AssertFailed();
1386 if (hVfsIos != NIL_RTVFSIOSTREAM)
1387 RTVfsIoStrmRelease(hVfsIos);
1388 }
1389 }
1390 }
1391 RTVfsObjRelease(hVfsObj);
1392 RTStrFree(pszName);
1393 } while (cLeftToFind > 0 && SUCCEEDED(hrc));
1394
1395 RTVfsFsStrmRelease(hVfsFssOva);
1396 RTStrFree(pszOvfNameBase);
1397
1398 /*
1399 * Check that we found and OVF file.
1400 */
1401 if (SUCCEEDED(hrc) && !pszOvfNameBase)
1402 hrc = setError(VBOX_E_FILE_ERROR, tr("OVA '%s' does not contain an .ovf-file"), pTask->locInfo.strPath.c_str());
1403 if (SUCCEEDED(hrc))
1404 {
1405 /*
1406 * Do tail processing (check the signature).
1407 */
1408 hrc = i_readTailProcessing(pTask);
1409 }
1410 LogFlowFunc(("returns %Rhrc\n", hrc));
1411 return hrc;
1412}
1413
1414/**
1415 * Reads & parses the OVF file.
1416 *
1417 * @param pTask The read task.
1418 * @param hVfsIosOvf The I/O stream for the OVF. The reference is
1419 * always consumed.
1420 * @param pszManifestEntry The manifest entry name.
1421 * @returns COM status code, error info set.
1422 * @throws Nothing
1423 */
1424HRESULT Appliance::i_readOVFFile(TaskOVF *pTask, RTVFSIOSTREAM hVfsIosOvf, const char *pszManifestEntry)
1425{
1426 LogFlowFunc(("%s[%s]\n", pTask->locInfo.strPath.c_str(), pszManifestEntry));
1427
1428 /*
1429 * Set the OVF manifest entry name (needed for tweaking the manifest
1430 * validation during import).
1431 */
1432 try { m->strOvfManifestEntry = pszManifestEntry; }
1433 catch (...) { return E_OUTOFMEMORY; }
1434
1435 /*
1436 * Set up digest calculation.
1437 */
1438 hVfsIosOvf = i_importSetupDigestCalculationForGivenIoStream(hVfsIosOvf, pszManifestEntry);
1439 if (hVfsIosOvf == NIL_RTVFSIOSTREAM)
1440 return VBOX_E_FILE_ERROR;
1441
1442 /*
1443 * Read the OVF into a memory buffer and parse it.
1444 */
1445 void *pvBufferedOvf;
1446 size_t cbBufferedOvf;
1447 int vrc = RTVfsIoStrmReadAll(hVfsIosOvf, &pvBufferedOvf, &cbBufferedOvf);
1448 uint32_t cRefs = RTVfsIoStrmRelease(hVfsIosOvf); /* consumes stream handle. */
1449 Assert(cRefs == 0);
1450 if (RT_FAILURE(vrc))
1451 return setErrorVrc(vrc, tr("Could not read the OVF file for '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc);
1452
1453 HRESULT hrc;
1454 try
1455 {
1456 m->pReader = new ovf::OVFReader(pvBufferedOvf, cbBufferedOvf, pTask->locInfo.strPath);
1457 hrc = S_OK;
1458 }
1459 catch (RTCError &rXcpt) // includes all XML exceptions
1460 {
1461 hrc = setError(VBOX_E_FILE_ERROR, rXcpt.what());
1462 }
1463 catch (HRESULT aRC)
1464 {
1465 hrc = aRC;
1466 }
1467 catch (...)
1468 {
1469 hrc = E_FAIL;
1470 }
1471 LogFlowFunc(("OVFReader(%s) -> rc=%Rhrc\n", pTask->locInfo.strPath.c_str(), hrc));
1472
1473 RTVfsIoStrmReadAllFree(pvBufferedOvf, cbBufferedOvf);
1474 if (SUCCEEDED(hrc))
1475 {
1476 /*
1477 * If we see an OVF v2.0 envelope, select only the SHA-256 digest.
1478 */
1479 if ( !m->fDeterminedDigestTypes
1480 && m->pReader->m_envelopeData.getOVFVersion() == ovf::OVFVersion_2_0)
1481 m->fDigestTypes &= ~RTMANIFEST_ATTR_SHA256;
1482 }
1483
1484 return hrc;
1485}
1486
1487/**
1488 * Reads & parses the manifest file.
1489 *
1490 * @param pTask The read task.
1491 * @param hVfsIosMf The I/O stream for the manifest file. The
1492 * reference is always consumed.
1493 * @param pszSubFileNm The manifest filename (no path) for error
1494 * messages and logging.
1495 * @returns COM status code, error info set.
1496 * @throws Nothing
1497 */
1498HRESULT Appliance::i_readManifestFile(TaskOVF *pTask, RTVFSIOSTREAM hVfsIosMf, const char *pszSubFileNm)
1499{
1500 LogFlowFunc(("%s[%s]\n", pTask->locInfo.strPath.c_str(), pszSubFileNm));
1501
1502 /*
1503 * Copy the manifest into a memory backed file so we can later do signature
1504 * validation indepentend of the algorithms used by the signature.
1505 */
1506 int vrc = RTVfsMemorizeIoStreamAsFile(hVfsIosMf, RTFILE_O_READ, &m->hMemFileTheirManifest);
1507 RTVfsIoStrmRelease(hVfsIosMf); /* consumes stream handle. */
1508 if (RT_FAILURE(vrc))
1509 return setErrorVrc(vrc, tr("Error reading the manifest file '%s' for '%s' (%Rrc)"),
1510 pszSubFileNm, pTask->locInfo.strPath.c_str(), vrc);
1511
1512 /*
1513 * Parse the manifest.
1514 */
1515 Assert(m->hTheirManifest == NIL_RTMANIFEST);
1516 vrc = RTManifestCreate(0 /*fFlags*/, &m->hTheirManifest);
1517 AssertStmt(RT_SUCCESS(vrc), Global::vboxStatusCodeToCOM(vrc));
1518
1519 char szErr[256];
1520 RTVFSIOSTREAM hVfsIos = RTVfsFileToIoStream(m->hMemFileTheirManifest);
1521 vrc = RTManifestReadStandardEx(m->hTheirManifest, hVfsIos, szErr, sizeof(szErr));
1522 RTVfsIoStrmRelease(hVfsIos);
1523 if (RT_FAILURE(vrc))
1524 throw setErrorVrc(vrc, tr("Failed to parse manifest file '%s' for '%s' (%Rrc): %s"),
1525 pszSubFileNm, pTask->locInfo.strPath.c_str(), vrc, szErr);
1526
1527 /*
1528 * Check which digest files are used.
1529 * Note! the file could be empty, in which case fDigestTypes is set to 0.
1530 */
1531 vrc = RTManifestQueryAllAttrTypes(m->hTheirManifest, true /*fEntriesOnly*/, &m->fDigestTypes);
1532 AssertRCReturn(vrc, Global::vboxStatusCodeToCOM(vrc));
1533 m->fDeterminedDigestTypes = true;
1534
1535 m->fSha256 = RT_BOOL(m->fDigestTypes & RTMANIFEST_ATTR_SHA256); /** @todo retire this member */
1536 return S_OK;
1537}
1538
1539/**
1540 * Reads the signature & certificate file.
1541 *
1542 * @param pTask The read task.
1543 * @param hVfsIosCert The I/O stream for the signature file. The
1544 * reference is always consumed.
1545 * @param pszSubFileNm The signature filename (no path) for error
1546 * messages and logging. Used to construct
1547 * .mf-file name.
1548 * @returns COM status code, error info set.
1549 * @throws Nothing
1550 */
1551HRESULT Appliance::i_readSignatureFile(TaskOVF *pTask, RTVFSIOSTREAM hVfsIosCert, const char *pszSubFileNm)
1552{
1553 LogFlowFunc(("%s[%s]\n", pTask->locInfo.strPath.c_str(), pszSubFileNm));
1554
1555 /*
1556 * Construct the manifest filename from pszSubFileNm.
1557 */
1558 Utf8Str strManifestName;
1559 try
1560 {
1561 const char *pszSuffix = strrchr(pszSubFileNm, '.');
1562 AssertReturn(pszSuffix, E_FAIL);
1563 strManifestName = Utf8Str(pszSubFileNm, pszSuffix - pszSubFileNm);
1564 strManifestName.append(".mf");
1565 }
1566 catch (...)
1567 {
1568 return E_OUTOFMEMORY;
1569 }
1570
1571 /*
1572 * Copy the manifest into a memory buffer. We'll do the signature processing
1573 * later to not force any specific order in the OVAs or any other archive we
1574 * may be accessing later.
1575 */
1576 void *pvSignature;
1577 size_t cbSignature;
1578 int vrc = RTVfsIoStrmReadAll(hVfsIosCert, &pvSignature, &cbSignature);
1579 RTVfsIoStrmRelease(hVfsIosCert); /* consumes stream handle. */
1580 if (RT_FAILURE(vrc))
1581 return setErrorVrc(vrc, tr("Error reading the signature file '%s' for '%s' (%Rrc)"),
1582 pszSubFileNm, pTask->locInfo.strPath.c_str(), vrc);
1583
1584 /*
1585 * Parse the signing certificate. Unlike the manifest parser we use below,
1586 * this API ignores parse of the file that aren't relevant.
1587 */
1588 RTERRINFOSTATIC StaticErrInfo;
1589 vrc = RTCrX509Certificate_ReadFromBuffer(&m->SignerCert, pvSignature, cbSignature, 0 /*fFlags*/,
1590 &g_RTAsn1DefaultAllocator, RTErrInfoInitStatic(&StaticErrInfo), pszSubFileNm);
1591 HRESULT hrc;
1592 if (RT_SUCCESS(vrc))
1593 {
1594 m->fSignerCertLoaded = true;
1595 m->fCertificateIsSelfSigned = RTCrX509Certificate_IsSelfSigned(&m->SignerCert);
1596
1597 /*
1598 * Find the start of the certificate part of the file, so we can avoid
1599 * upsetting the manifest parser with it.
1600 */
1601 char *pszSplit = (char *)RTCrPemFindFirstSectionInContent(pvSignature, cbSignature,
1602 g_aRTCrX509CertificateMarkers, g_cRTCrX509CertificateMarkers);
1603 if (pszSplit)
1604 while ( pszSplit != (char *)pvSignature
1605 && pszSplit[-1] != '\n'
1606 && pszSplit[-1] != '\r')
1607 pszSplit--;
1608 else
1609 {
1610 AssertLogRelMsgFailed(("Failed to find BEGIN CERTIFICATE markers in '%s'::'%s' - impossible unless it's a DER encoded certificate!",
1611 pTask->locInfo.strPath.c_str(), pszSubFileNm));
1612 pszSplit = (char *)pvSignature + cbSignature;
1613 }
1614 *pszSplit = '\0';
1615
1616 /*
1617 * Now, read the manifest part. We use the IPRT manifest reader here
1618 * to avoid duplicating code and be somewhat flexible wrt the digest
1619 * type choosen by the signer.
1620 */
1621 RTMANIFEST hSignedDigestManifest;
1622 vrc = RTManifestCreate(0 /*fFlags*/, &hSignedDigestManifest);
1623 if (RT_SUCCESS(vrc))
1624 {
1625 RTVFSIOSTREAM hVfsIosTmp;
1626 vrc = RTVfsIoStrmFromBuffer(RTFILE_O_READ, pvSignature, pszSplit - (char *)pvSignature, &hVfsIosTmp);
1627 if (RT_SUCCESS(vrc))
1628 {
1629 vrc = RTManifestReadStandardEx(hSignedDigestManifest, hVfsIosTmp, StaticErrInfo.szMsg, sizeof(StaticErrInfo.szMsg));
1630 RTVfsIoStrmRelease(hVfsIosTmp);
1631 if (RT_SUCCESS(vrc))
1632 {
1633 /*
1634 * Get signed digest, we prefer SHA-2, so explicitly query those first.
1635 */
1636 uint32_t fDigestType;
1637 char szSignedDigest[_8K + 1];
1638 vrc = RTManifestEntryQueryAttr(hSignedDigestManifest, strManifestName.c_str(), NULL,
1639 RTMANIFEST_ATTR_SHA512 | RTMANIFEST_ATTR_SHA256,
1640 szSignedDigest, sizeof(szSignedDigest), &fDigestType);
1641 if (vrc == VERR_MANIFEST_ATTR_TYPE_NOT_FOUND)
1642 vrc = RTManifestEntryQueryAttr(hSignedDigestManifest, strManifestName.c_str(), NULL,
1643 RTMANIFEST_ATTR_ANY, szSignedDigest, sizeof(szSignedDigest), &fDigestType);
1644 if (RT_SUCCESS(vrc))
1645 {
1646 const char *pszSignedDigest = RTStrStrip(szSignedDigest);
1647 size_t cbSignedDigest = strlen(pszSignedDigest) / 2;
1648 uint8_t abSignedDigest[sizeof(szSignedDigest) / 2];
1649 vrc = RTStrConvertHexBytes(szSignedDigest, abSignedDigest, cbSignedDigest, 0 /*fFlags*/);
1650 if (RT_SUCCESS(vrc))
1651 {
1652 /*
1653 * Convert it to RTDIGESTTYPE_XXX and save the binary value for later use.
1654 */
1655 switch (fDigestType)
1656 {
1657 case RTMANIFEST_ATTR_SHA1: m->enmSignedDigestType = RTDIGESTTYPE_SHA1; break;
1658 case RTMANIFEST_ATTR_SHA256: m->enmSignedDigestType = RTDIGESTTYPE_SHA256; break;
1659 case RTMANIFEST_ATTR_SHA512: m->enmSignedDigestType = RTDIGESTTYPE_SHA512; break;
1660 case RTMANIFEST_ATTR_MD5: m->enmSignedDigestType = RTDIGESTTYPE_MD5; break;
1661 default: AssertFailed(); m->enmSignedDigestType = RTDIGESTTYPE_INVALID; break;
1662 }
1663 if (m->enmSignedDigestType != RTDIGESTTYPE_INVALID)
1664 {
1665 m->pbSignedDigest = (uint8_t *)RTMemDup(abSignedDigest, cbSignedDigest);
1666 m->cbSignedDigest = cbSignedDigest;
1667 hrc = S_OK;
1668 }
1669 else
1670 hrc = setError(E_FAIL, tr("Unsupported signed digest type (%#x)"), fDigestType);
1671 }
1672 else
1673 hrc = setErrorVrc(vrc, tr("Error reading signed manifest digest: %Rrc"), vrc);
1674 }
1675 else if (vrc == VERR_NOT_FOUND)
1676 hrc = setErrorVrc(vrc, tr("Could not locate signed digest for '%s' in the cert-file for '%s'"),
1677 strManifestName.c_str(), pTask->locInfo.strPath.c_str());
1678 else
1679 hrc = setErrorVrc(vrc, tr("RTManifestEntryQueryAttr failed unexpectedly: %Rrc"), vrc);
1680 }
1681 else
1682 hrc = setErrorVrc(vrc, tr("Error parsing the .cert-file for '%s': %s"),
1683 pTask->locInfo.strPath.c_str(), StaticErrInfo.szMsg);
1684 }
1685 else
1686 hrc = E_OUTOFMEMORY;
1687 RTManifestRelease(hSignedDigestManifest);
1688 }
1689 else
1690 hrc = E_OUTOFMEMORY;
1691 }
1692 else
1693 hrc = setErrorVrc(vrc, tr("Error reading the signer's certificate from '%s' for '%s' (%Rrc): %s"),
1694 pszSubFileNm, pTask->locInfo.strPath.c_str(), vrc, StaticErrInfo.Core.pszMsg);
1695
1696 RTVfsIoStrmReadAllFree(pvSignature, cbSignature);
1697 LogFlowFunc(("returns %Rhrc (%Rrc)\n", hrc, vrc));
1698 return hrc;
1699}
1700
1701
1702/**
1703 * Does tail processing after the files have been read in.
1704 *
1705 * @param pTask The read task.
1706 * @returns COM status.
1707 * @throws Nothing!
1708 */
1709HRESULT Appliance::i_readTailProcessing(TaskOVF *pTask)
1710{
1711 /*
1712 * Parse and validate the signature file.
1713 *
1714 * The signature file has two parts, manifest part and a PEM encoded
1715 * certificate. The former contains an entry for the manifest file with a
1716 * digest that is encrypted with the certificate in the latter part.
1717 */
1718 if (m->pbSignedDigest)
1719 {
1720 /* Since we're validating the digest of the manifest, there have to be
1721 a manifest. We cannot allow a the manifest to be missing. */
1722 if (m->hMemFileTheirManifest == NIL_RTVFSFILE)
1723 return setError(VBOX_E_FILE_ERROR, tr("Found .cert-file but no .mf-file for '%s'"), pTask->locInfo.strPath.c_str());
1724
1725 /*
1726 * Validate the signed digest.
1727 *
1728 * It's possible we should allow the user to ignore signature
1729 * mismatches, but for now it is a solid show stopper.
1730 */
1731 HRESULT hrc;
1732 RTERRINFOSTATIC StaticErrInfo;
1733
1734 /* Calc the digest of the manifest using the algorithm found above. */
1735 RTCRDIGEST hDigest;
1736 int vrc = RTCrDigestCreateByType(&hDigest, m->enmSignedDigestType);
1737 if (RT_SUCCESS(vrc))
1738 {
1739 vrc = RTCrDigestUpdateFromVfsFile(hDigest, m->hMemFileTheirManifest, true /*fRewindFile*/);
1740 if (RT_SUCCESS(vrc))
1741 {
1742 /* Compare the signed digest with the one we just calculated. (This
1743 API will do the verification twice, once using IPRT's own crypto
1744 and once using OpenSSL. Both must OK it for success.) */
1745 vrc = RTCrPkixPubKeyVerifySignedDigest(&m->SignerCert.TbsCertificate.SubjectPublicKeyInfo.Algorithm.Algorithm,
1746 &m->SignerCert.TbsCertificate.SubjectPublicKeyInfo.Algorithm.Parameters,
1747 &m->SignerCert.TbsCertificate.SubjectPublicKeyInfo.SubjectPublicKey,
1748 m->pbSignedDigest, m->cbSignedDigest, hDigest,
1749 RTErrInfoInitStatic(&StaticErrInfo));
1750 if (RT_SUCCESS(vrc))
1751 {
1752 m->fSignatureValid = true;
1753 hrc = S_OK;
1754 }
1755 else if (vrc == VERR_CR_PKIX_SIGNATURE_MISMATCH)
1756 hrc = setErrorVrc(vrc, tr("The manifest signature does not match"));
1757 else
1758 hrc = setErrorVrc(vrc,
1759 tr("Error validating the manifest signature (%Rrc, %s)"), vrc, StaticErrInfo.Core.pszMsg);
1760 }
1761 else
1762 hrc = setErrorVrc(vrc, tr("RTCrDigestUpdateFromVfsFile failed: %Rrc"), vrc);
1763 RTCrDigestRelease(hDigest);
1764 }
1765 else
1766 hrc = setErrorVrc(vrc, tr("RTCrDigestCreateByType failed: %Rrc"), vrc);
1767
1768 /*
1769 * Validate the certificate.
1770 *
1771 * We don't fail here on if we cannot validate the certificate, we postpone
1772 * that till the import stage, so that we can allow the user to ignore it.
1773 *
1774 * The certificate validity time is deliberately left as warnings as the
1775 * OVF specification does not provision for any timestamping of the
1776 * signature. This is course a security concern, but the whole signing
1777 * of OVFs is currently weirdly trusting (self signed * certs), so this
1778 * is the least of our current problems.
1779 *
1780 * While we try build and verify certificate paths properly, the
1781 * "neighbours" quietly ignores this and seems only to check the signature
1782 * and not whether the certificate is trusted. Also, we don't currently
1783 * complain about self-signed certificates either (ditto "neighbours").
1784 * The OVF creator is also a bit restricted wrt to helping us build the
1785 * path as he cannot supply intermediate certificates. Anyway, we issue
1786 * warnings (goes to /dev/null, am I right?) for self-signed certificates
1787 * and certificates we cannot build and verify a root path for.
1788 *
1789 * (The OVF sillibuggers should've used PKCS#7, CMS or something else
1790 * that's already been standardized instead of combining manifests with
1791 * certificate PEM files in some very restrictive manner! I wonder if
1792 * we could add a PKCS#7 section to the .cert file in addition to the CERT
1793 * and manifest stuff dictated by the standard. Would depend on how others
1794 * deal with it.)
1795 */
1796 Assert(!m->fCertificateValid);
1797 Assert(m->fCertificateMissingPath);
1798 Assert(!m->fCertificateValidTime);
1799 Assert(m->strCertError.isEmpty());
1800 Assert(m->fCertificateIsSelfSigned == RTCrX509Certificate_IsSelfSigned(&m->SignerCert));
1801
1802 HRESULT hrc2 = S_OK;
1803 if (m->fCertificateIsSelfSigned)
1804 {
1805 /*
1806 * It's a self signed certificate. We assume the frontend will
1807 * present this fact to the user and give a choice whether this
1808 * is acceptible. But, first make sure it makes internal sense.
1809 */
1810 m->fCertificateMissingPath = false;
1811 vrc = RTCrX509Certificate_VerifySignatureSelfSigned(&m->SignerCert, RTErrInfoInitStatic(&StaticErrInfo));
1812 if (RT_SUCCESS(vrc))
1813 {
1814 m->fCertificateValid = true;
1815
1816 /* Check whether the certificate is currently valid, just warn if not. */
1817 RTTIMESPEC Now;
1818 if (RTCrX509Validity_IsValidAtTimeSpec(&m->SignerCert.TbsCertificate.Validity, RTTimeNow(&Now)))
1819 {
1820 m->fCertificateValidTime = true;
1821 i_addWarning(tr("A self signed certificate was used to sign '%s'"), pTask->locInfo.strPath.c_str());
1822 }
1823 else
1824 i_addWarning(tr("Self signed certificate used to sign '%s' is not currently valid"),
1825 pTask->locInfo.strPath.c_str());
1826
1827 /* Just warn if it's not a CA. Self-signed certificates are
1828 hardly trustworthy to start with without the user's consent. */
1829 if ( !m->SignerCert.TbsCertificate.T3.pBasicConstraints
1830 || !m->SignerCert.TbsCertificate.T3.pBasicConstraints->CA.fValue)
1831 i_addWarning(tr("Self signed certificate used to sign '%s' is not marked as certificate authority (CA)"),
1832 pTask->locInfo.strPath.c_str());
1833 }
1834 else
1835 {
1836 try { m->strCertError = Utf8StrFmt(tr("Verification of the self signed certificate failed (%Rrc, %s)"),
1837 vrc, StaticErrInfo.Core.pszMsg); }
1838 catch (...) { AssertFailed(); }
1839 i_addWarning(tr("Verification of the self signed certificate used to sign '%s' failed (%Rrc): %s"),
1840 pTask->locInfo.strPath.c_str(), vrc, StaticErrInfo.Core.pszMsg);
1841 }
1842 }
1843 else
1844 {
1845 /*
1846 * The certificate is not self-signed. Use the system certificate
1847 * stores to try build a path that validates successfully.
1848 */
1849 RTCRX509CERTPATHS hCertPaths;
1850 vrc = RTCrX509CertPathsCreate(&hCertPaths, &m->SignerCert);
1851 if (RT_SUCCESS(vrc))
1852 {
1853 /* Get trusted certificates from the system and add them to the path finding mission. */
1854 RTCRSTORE hTrustedCerts;
1855 vrc = RTCrStoreCreateSnapshotOfUserAndSystemTrustedCAsAndCerts(&hTrustedCerts,
1856 RTErrInfoInitStatic(&StaticErrInfo));
1857 if (RT_SUCCESS(vrc))
1858 {
1859 vrc = RTCrX509CertPathsSetTrustedStore(hCertPaths, hTrustedCerts);
1860 if (RT_FAILURE(vrc))
1861 hrc2 = setError(E_FAIL, tr("RTCrX509CertPathsSetTrustedStore failed (%Rrc)"), vrc);
1862 RTCrStoreRelease(hTrustedCerts);
1863 }
1864 else
1865 hrc2 = setError(E_FAIL,
1866 tr("Failed to query trusted CAs and Certificates from the system and for the current user (%Rrc, %s)"),
1867 vrc, StaticErrInfo.Core.pszMsg);
1868
1869 /* Add untrusted intermediate certificates. */
1870 if (RT_SUCCESS(vrc))
1871 {
1872 /// @todo RTCrX509CertPathsSetUntrustedStore(hCertPaths, hAdditionalCerts);
1873 /// By scanning for additional certificates in the .cert file? It would be
1874 /// convenient to be able to supply intermediate certificates for the user,
1875 /// right? Or would that be unacceptable as it may weaken security?
1876 ///
1877 /// Anyway, we should look for intermediate certificates on the system, at
1878 /// least.
1879 }
1880 if (RT_SUCCESS(vrc))
1881 {
1882 /*
1883 * Do the building and verification of certificate paths.
1884 */
1885 vrc = RTCrX509CertPathsBuild(hCertPaths, RTErrInfoInitStatic(&StaticErrInfo));
1886 if (RT_SUCCESS(vrc))
1887 {
1888 vrc = RTCrX509CertPathsValidateAll(hCertPaths, NULL, RTErrInfoInitStatic(&StaticErrInfo));
1889 if (RT_SUCCESS(vrc))
1890 {
1891 /*
1892 * Mark the certificate as good.
1893 */
1894 /** @todo check the certificate purpose? If so, share with self-signed. */
1895 m->fCertificateValid = true;
1896 m->fCertificateMissingPath = false;
1897
1898 /*
1899 * We add a warning if the certificate path isn't valid at the current
1900 * time. Since the time is only considered during path validation and we
1901 * can repeat the validation process (but not building), it's easy to check.
1902 */
1903 RTTIMESPEC Now;
1904 vrc = RTCrX509CertPathsSetValidTimeSpec(hCertPaths, RTTimeNow(&Now));
1905 if (RT_SUCCESS(vrc))
1906 {
1907 vrc = RTCrX509CertPathsValidateAll(hCertPaths, NULL, RTErrInfoInitStatic(&StaticErrInfo));
1908 if (RT_SUCCESS(vrc))
1909 m->fCertificateValidTime = true;
1910 else
1911 i_addWarning(tr("The certificate used to sign '%s' (or a certificate in the path) is not currently valid (%Rrc)"),
1912 pTask->locInfo.strPath.c_str(), vrc);
1913 }
1914 else
1915 hrc2 = setErrorVrc(vrc, "RTCrX509CertPathsSetValidTimeSpec failed: %Rrc", vrc);
1916 }
1917 else if (vrc == VERR_CR_X509_CPV_NO_TRUSTED_PATHS)
1918 {
1919 m->fCertificateValid = true;
1920 i_addWarning(tr("No trusted certificate paths"));
1921
1922 /* Add another warning if the pathless certificate is not valid at present. */
1923 RTTIMESPEC Now;
1924 if (RTCrX509Validity_IsValidAtTimeSpec(&m->SignerCert.TbsCertificate.Validity, RTTimeNow(&Now)))
1925 m->fCertificateValidTime = true;
1926 else
1927 i_addWarning(tr("The certificate used to sign '%s' is not currently valid"),
1928 pTask->locInfo.strPath.c_str());
1929 }
1930 else
1931 hrc2 = setError(E_FAIL, tr("Certificate path validation failed (%Rrc, %s)"),
1932 vrc, StaticErrInfo.Core.pszMsg);
1933 }
1934 else
1935 hrc2 = setError(E_FAIL, tr("Certificate path building failed (%Rrc, %s)"),
1936 vrc, StaticErrInfo.Core.pszMsg);
1937 }
1938 RTCrX509CertPathsRelease(hCertPaths);
1939 }
1940 else
1941 hrc2 = setErrorVrc(vrc, tr("RTCrX509CertPathsCreate failed: %Rrc"), vrc);
1942 }
1943
1944 /* Merge statuses from signature and certificate validation, prefering the signature one. */
1945 if (SUCCEEDED(hrc) && FAILED(hrc2))
1946 hrc = hrc2;
1947 if (FAILED(hrc))
1948 return hrc;
1949 }
1950
1951 /** @todo provide details about the signatory, signature, etc. */
1952 if(m->fSignerCertLoaded)
1953 {
1954 pCertificateInfo->setData(&m->SignerCert);
1955 }
1956
1957 /*
1958 * If there is a manifest, check that the OVF digest matches up (if present).
1959 */
1960
1961 NOREF(pTask);
1962 return S_OK;
1963}
1964
1965
1966
1967/*******************************************************************************
1968 * Import stuff
1969 ******************************************************************************/
1970
1971/**
1972 * Implementation for importing OVF data into VirtualBox. This starts a new thread which will call
1973 * Appliance::taskThreadImportOrExport().
1974 *
1975 * This creates one or more new machines according to the VirtualSystemScription instances created by
1976 * Appliance::Interpret().
1977 *
1978 * This is in a separate private method because it is used from one location:
1979 *
1980 * 1) from the public Appliance::ImportMachines().
1981 *
1982 * @param aLocInfo
1983 * @param aProgress
1984 * @return
1985 */
1986HRESULT Appliance::i_importImpl(const LocationInfo &locInfo,
1987 ComObjPtr<Progress> &progress)
1988{
1989 HRESULT rc = S_OK;
1990
1991 SetUpProgressMode mode;
1992 if (locInfo.storageType == VFSType_File)
1993 mode = ImportFile;
1994 else
1995 mode = ImportS3;
1996
1997 rc = i_setUpProgress(progress,
1998 BstrFmt(tr("Importing appliance '%s'"), locInfo.strPath.c_str()),
1999 mode);
2000 if (FAILED(rc)) throw rc;
2001
2002 /* Initialize our worker task */
2003 TaskOVF* task = NULL;
2004 try
2005 {
2006 task = new TaskOVF(this, TaskOVF::Import, locInfo, progress);
2007 }
2008 catch(...)
2009 {
2010 delete task;
2011 throw rc = setError(VBOX_E_OBJECT_NOT_FOUND,
2012 tr("Could not create TaskOVF object for importing OVF data into VirtualBox"));
2013 }
2014
2015 rc = task->createThread();
2016 if (FAILED(rc)) throw rc;
2017
2018 return rc;
2019}
2020
2021/**
2022 * Actual worker code for importing OVF data into VirtualBox.
2023 *
2024 * This is called from Appliance::taskThreadImportOrExport() and therefore runs
2025 * on the OVF import worker thread. This creates one or more new machines
2026 * according to the VirtualSystemScription instances created by
2027 * Appliance::Interpret().
2028 *
2029 * This runs in two contexts:
2030 *
2031 * 1) in a first worker thread; in that case, Appliance::ImportMachines() called
2032 * Appliance::i_importImpl();
2033 *
2034 * 2) in a second worker thread; in that case, Appliance::ImportMachines()
2035 * called Appliance::i_importImpl(), which called Appliance::i_importFSOVA(),
2036 * which called Appliance::i_importImpl(), which then called this again.
2037 *
2038 * @param pTask The OVF task data.
2039 * @return COM status code.
2040 */
2041HRESULT Appliance::i_importFS(TaskOVF *pTask)
2042{
2043 LogFlowFuncEnter();
2044 LogFlowFunc(("Appliance %p\n", this));
2045
2046 /* Change the appliance state so we can safely leave the lock while doing
2047 * time-consuming disk imports; also the below method calls do all kinds of
2048 * locking which conflicts with the appliance object lock. */
2049 AutoWriteLock writeLock(this COMMA_LOCKVAL_SRC_POS);
2050 /* Check if the appliance is currently busy. */
2051 if (!i_isApplianceIdle())
2052 return E_ACCESSDENIED;
2053 /* Set the internal state to importing. */
2054 m->state = Data::ApplianceImporting;
2055
2056 HRESULT rc = S_OK;
2057
2058 /* Clear the list of imported machines, if any */
2059 m->llGuidsMachinesCreated.clear();
2060
2061 if (pTask->locInfo.strPath.endsWith(".ovf", Utf8Str::CaseInsensitive))
2062 rc = i_importFSOVF(pTask, writeLock);
2063 else
2064 rc = i_importFSOVA(pTask, writeLock);
2065 if (FAILED(rc))
2066 {
2067 /* With _whatever_ error we've had, do a complete roll-back of
2068 * machines and disks we've created */
2069 writeLock.release();
2070 ErrorInfoKeeper eik;
2071 for (list<Guid>::iterator itID = m->llGuidsMachinesCreated.begin();
2072 itID != m->llGuidsMachinesCreated.end();
2073 ++itID)
2074 {
2075 Guid guid = *itID;
2076 Bstr bstrGuid = guid.toUtf16();
2077 ComPtr<IMachine> failedMachine;
2078 HRESULT rc2 = mVirtualBox->FindMachine(bstrGuid.raw(), failedMachine.asOutParam());
2079 if (SUCCEEDED(rc2))
2080 {
2081 SafeIfaceArray<IMedium> aMedia;
2082 rc2 = failedMachine->Unregister(CleanupMode_DetachAllReturnHardDisksOnly, ComSafeArrayAsOutParam(aMedia));
2083 ComPtr<IProgress> pProgress2;
2084 rc2 = failedMachine->DeleteConfig(ComSafeArrayAsInParam(aMedia), pProgress2.asOutParam());
2085 pProgress2->WaitForCompletion(-1);
2086 }
2087 }
2088 writeLock.acquire();
2089 }
2090
2091 /* Reset the state so others can call methods again */
2092 m->state = Data::ApplianceIdle;
2093
2094 LogFlowFunc(("rc=%Rhrc\n", rc));
2095 LogFlowFuncLeave();
2096 return rc;
2097}
2098
2099HRESULT Appliance::i_importFSOVF(TaskOVF *pTask, AutoWriteLockBase &rWriteLock)
2100{
2101 return i_importDoIt(pTask, rWriteLock);
2102}
2103
2104HRESULT Appliance::i_importFSOVA(TaskOVF *pTask, AutoWriteLockBase &rWriteLock)
2105{
2106 LogFlowFuncEnter();
2107
2108 /*
2109 * Open the tar file as file stream.
2110 */
2111 RTVFSIOSTREAM hVfsIosOva;
2112 int vrc = RTVfsIoStrmOpenNormal(pTask->locInfo.strPath.c_str(),
2113 RTFILE_O_READ | RTFILE_O_DENY_NONE | RTFILE_O_OPEN, &hVfsIosOva);
2114 if (RT_FAILURE(vrc))
2115 return setErrorVrc(vrc, tr("Error opening the OVA file '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc);
2116
2117 RTVFSFSSTREAM hVfsFssOva;
2118 vrc = RTZipTarFsStreamFromIoStream(hVfsIosOva, 0 /*fFlags*/, &hVfsFssOva);
2119 RTVfsIoStrmRelease(hVfsIosOva);
2120 if (RT_FAILURE(vrc))
2121 return setErrorVrc(vrc, tr("Error reading the OVA file '%s' (%Rrc)"), pTask->locInfo.strPath.c_str(), vrc);
2122
2123 /*
2124 * Join paths with the i_importFSOVF code.
2125 *
2126 * Note! We don't need to skip the OVF, manifest or signature files, as the
2127 * i_importMachineGeneric, i_importVBoxMachine and i_importOpenSourceFile
2128 * code will deal with this (as there could be other files in the OVA
2129 * that we don't process, like 'de-DE-resources.xml' in EXAMPLE 1,
2130 * Appendix D.1, OVF v2.1.0).
2131 */
2132 HRESULT hrc = i_importDoIt(pTask, rWriteLock, hVfsFssOva);
2133
2134 RTVfsFsStrmRelease(hVfsFssOva);
2135
2136 LogFlowFunc(("returns %Rhrc\n", hrc));
2137 return hrc;
2138}
2139
2140/**
2141 * Does the actual importing after the caller has made the source accessible.
2142 *
2143 * @param pTask The import task.
2144 * @param rWriteLock The write lock the caller's caller is holding,
2145 * will be released for some reason.
2146 * @param hVfsFssOva The file system stream if OVA, NIL if not.
2147 * @returns COM status code.
2148 * @throws Nothing.
2149 */
2150HRESULT Appliance::i_importDoIt(TaskOVF *pTask, AutoWriteLockBase &rWriteLock, RTVFSFSSTREAM hVfsFssOva /*= NIL_RTVFSFSSTREAM*/)
2151{
2152 rWriteLock.release();
2153
2154 HRESULT hrc = E_FAIL;
2155 try
2156 {
2157 /*
2158 * Create the import stack for the rollback on errors.
2159 */
2160 ImportStack stack(pTask->locInfo, m->pReader->m_mapDisks, pTask->pProgress, hVfsFssOva);
2161
2162 try
2163 {
2164 /* Do the importing. */
2165 i_importMachines(stack);
2166
2167 /* We should've processed all the files now, so compare. */
2168 hrc = i_verifyManifestFile(stack);
2169 }
2170 catch (HRESULT hrcXcpt)
2171 {
2172 hrc = hrcXcpt;
2173 }
2174 catch (...)
2175 {
2176 AssertFailed();
2177 hrc = E_FAIL;
2178 }
2179 if (FAILED(hrc))
2180 {
2181 /*
2182 * Restoring original UUID from OVF description file.
2183 * During import VBox creates new UUIDs for imported images and
2184 * assigns them to the images. In case of failure we have to restore
2185 * the original UUIDs because those new UUIDs are obsolete now and
2186 * won't be used anymore.
2187 */
2188 ErrorInfoKeeper eik; /* paranoia */
2189 list< ComObjPtr<VirtualSystemDescription> >::const_iterator itvsd;
2190 /* Iterate through all virtual systems of that appliance */
2191 for (itvsd = m->virtualSystemDescriptions.begin();
2192 itvsd != m->virtualSystemDescriptions.end();
2193 ++itvsd)
2194 {
2195 ComObjPtr<VirtualSystemDescription> vsdescThis = (*itvsd);
2196 settings::MachineConfigFile *pConfig = vsdescThis->m->pConfig;
2197 if(vsdescThis->m->pConfig!=NULL)
2198 stack.restoreOriginalUUIDOfAttachedDevice(pConfig);
2199 }
2200 }
2201 }
2202 catch (...)
2203 {
2204 hrc = E_FAIL;
2205 AssertFailed();
2206 }
2207
2208 rWriteLock.acquire();
2209 return hrc;
2210}
2211
2212/**
2213 * Undocumented, you figure it from the name.
2214 *
2215 * @returns Undocumented
2216 * @param stack Undocumented.
2217 */
2218HRESULT Appliance::i_verifyManifestFile(ImportStack &stack)
2219{
2220 LogFlowThisFuncEnter();
2221 HRESULT hrc;
2222 int vrc;
2223
2224 /*
2225 * No manifest is fine, it always matches.
2226 */
2227 if (m->hTheirManifest == NIL_RTMANIFEST)
2228 hrc = S_OK;
2229 else
2230 {
2231 /*
2232 * Hack: If the manifest we just read doesn't have a digest for the OVF, copy
2233 * it from the manifest we got from the caller.
2234 * @bugref{6022#c119}
2235 */
2236 if ( !RTManifestEntryExists(m->hTheirManifest, m->strOvfManifestEntry.c_str())
2237 && RTManifestEntryExists(m->hOurManifest, m->strOvfManifestEntry.c_str()) )
2238 {
2239 uint32_t fType = 0;
2240 char szDigest[512 + 1];
2241 vrc = RTManifestEntryQueryAttr(m->hOurManifest, m->strOvfManifestEntry.c_str(), NULL, RTMANIFEST_ATTR_ANY,
2242 szDigest, sizeof(szDigest), &fType);
2243 if (RT_SUCCESS(vrc))
2244 vrc = RTManifestEntrySetAttr(m->hTheirManifest, m->strOvfManifestEntry.c_str(),
2245 NULL /*pszAttr*/, szDigest, fType);
2246 if (RT_FAILURE(vrc))
2247 return setError(VBOX_E_IPRT_ERROR, tr("Error fudging missing OVF digest in manifest: %Rrc"), vrc);
2248 }
2249
2250 /*
2251 * Compare with the digests we've created while read/processing the import.
2252 *
2253 * We specify the RTMANIFEST_EQUALS_IGN_MISSING_ATTRS to ignore attributes
2254 * (SHA1, SHA256, etc) that are only present in one of the manifests, as long
2255 * as each entry has at least one common attribute that we can check. This
2256 * is important for the OVF in OVAs, for which we generates several digests
2257 * since we don't know which are actually used in the manifest (OVF comes
2258 * first in an OVA, then manifest).
2259 */
2260 char szErr[256];
2261 vrc = RTManifestEqualsEx(m->hTheirManifest, m->hOurManifest, NULL /*papszIgnoreEntries*/,
2262 NULL /*papszIgnoreAttrs*/, RTMANIFEST_EQUALS_IGN_MISSING_ATTRS, szErr, sizeof(szErr));
2263 if (RT_SUCCESS(vrc))
2264 hrc = S_OK;
2265 else
2266 hrc = setErrorVrc(vrc, tr("Digest mismatch (%Rrc): %s"), vrc, szErr);
2267 }
2268
2269 NOREF(stack);
2270 LogFlowThisFunc(("returns %Rhrc\n", hrc));
2271 return hrc;
2272}
2273
2274/**
2275 * Helper that converts VirtualSystem attachment values into VirtualBox attachment values.
2276 * Throws HRESULT values on errors!
2277 *
2278 * @param hdc in: the HardDiskController structure to attach to.
2279 * @param ulAddressOnParent in: the AddressOnParent parameter from OVF.
2280 * @param controllerType out: the name of the hard disk controller to attach to (e.g. "IDE Controller").
2281 * @param lControllerPort out: the channel (controller port) of the controller to attach to.
2282 * @param lDevice out: the device number to attach to.
2283 */
2284void Appliance::i_convertDiskAttachmentValues(const ovf::HardDiskController &hdc,
2285 uint32_t ulAddressOnParent,
2286 Bstr &controllerType,
2287 int32_t &lControllerPort,
2288 int32_t &lDevice)
2289{
2290 Log(("Appliance::i_convertDiskAttachmentValues: hdc.system=%d, hdc.fPrimary=%d, ulAddressOnParent=%d\n",
2291 hdc.system,
2292 hdc.fPrimary,
2293 ulAddressOnParent));
2294
2295 switch (hdc.system)
2296 {
2297 case ovf::HardDiskController::IDE:
2298 // For the IDE bus, the port parameter can be either 0 or 1, to specify the primary
2299 // or secondary IDE controller, respectively. For the primary controller of the IDE bus,
2300 // the device number can be either 0 or 1, to specify the master or the slave device,
2301 // respectively. For the secondary IDE controller, the device number is always 1 because
2302 // the master device is reserved for the CD-ROM drive.
2303 controllerType = Bstr("IDE Controller");
2304 switch (ulAddressOnParent)
2305 {
2306 case 0: // master
2307 if (!hdc.fPrimary)
2308 {
2309 // secondary master
2310 lControllerPort = (long)1;
2311 lDevice = (long)0;
2312 }
2313 else // primary master
2314 {
2315 lControllerPort = (long)0;
2316 lDevice = (long)0;
2317 }
2318 break;
2319
2320 case 1: // slave
2321 if (!hdc.fPrimary)
2322 {
2323 // secondary slave
2324 lControllerPort = (long)1;
2325 lDevice = (long)1;
2326 }
2327 else // primary slave
2328 {
2329 lControllerPort = (long)0;
2330 lDevice = (long)1;
2331 }
2332 break;
2333
2334 // used by older VBox exports
2335 case 2: // interpret this as secondary master
2336 lControllerPort = (long)1;
2337 lDevice = (long)0;
2338 break;
2339
2340 // used by older VBox exports
2341 case 3: // interpret this as secondary slave
2342 lControllerPort = (long)1;
2343 lDevice = (long)1;
2344 break;
2345
2346 default:
2347 throw setError(VBOX_E_NOT_SUPPORTED,
2348 tr("Invalid channel %RI16 specified; IDE controllers support only 0, 1 or 2"),
2349 ulAddressOnParent);
2350 break;
2351 }
2352 break;
2353
2354 case ovf::HardDiskController::SATA:
2355 controllerType = Bstr("SATA Controller");
2356 lControllerPort = (long)ulAddressOnParent;
2357 lDevice = (long)0;
2358 break;
2359
2360 case ovf::HardDiskController::SCSI:
2361 {
2362 if(hdc.strControllerType.compare("lsilogicsas")==0)
2363 controllerType = Bstr("SAS Controller");
2364 else
2365 controllerType = Bstr("SCSI Controller");
2366 lControllerPort = (long)ulAddressOnParent;
2367 lDevice = (long)0;
2368 }
2369 break;
2370
2371 default: break;
2372 }
2373
2374 Log(("=> lControllerPort=%d, lDevice=%d\n", lControllerPort, lDevice));
2375}
2376
2377/**
2378 * Imports one disk image.
2379 *
2380 * This is common code shared between
2381 * -- i_importMachineGeneric() for the OVF case; in that case the information comes from
2382 * the OVF virtual systems;
2383 * -- i_importVBoxMachine(); in that case, the information comes from the <vbox:Machine>
2384 * tag.
2385 *
2386 * Both ways of describing machines use the OVF disk references section, so in both cases
2387 * the caller needs to pass in the ovf::DiskImage structure from ovfreader.cpp.
2388 *
2389 * As a result, in both cases, if di.strHref is empty, we create a new disk as per the OVF
2390 * spec, even though this cannot really happen in the vbox:Machine case since such data
2391 * would never have been exported.
2392 *
2393 * This advances stack.pProgress by one operation with the disk's weight.
2394 *
2395 * @param di ovfreader.cpp structure describing the disk image from the OVF that is to be imported
2396 * @param strTargetPath Where to create the target image.
2397 * @param pTargetHD out: The newly created target disk. This also gets pushed on stack.llHardDisksCreated for cleanup.
2398 * @param stack
2399 */
2400void Appliance::i_importOneDiskImage(const ovf::DiskImage &di,
2401 Utf8Str *pStrDstPath,
2402 ComObjPtr<Medium> &pTargetHD,
2403 ImportStack &stack)
2404{
2405 ComObjPtr<Progress> pProgress;
2406 pProgress.createObject();
2407 HRESULT rc = pProgress->init(mVirtualBox,
2408 static_cast<IAppliance*>(this),
2409 BstrFmt(tr("Creating medium '%s'"),
2410 pStrDstPath->c_str()).raw(),
2411 TRUE);
2412 if (FAILED(rc)) throw rc;
2413
2414 /* Get the system properties. */
2415 SystemProperties *pSysProps = mVirtualBox->i_getSystemProperties();
2416
2417 /* Keep the source file ref handy for later. */
2418 const Utf8Str &strSourceOVF = di.strHref;
2419
2420 /* Construct source file path */
2421 Utf8Str strSrcFilePath;
2422 if (stack.hVfsFssOva != NIL_RTVFSFSSTREAM)
2423 strSrcFilePath = strSourceOVF;
2424 else
2425 {
2426 strSrcFilePath = stack.strSourceDir;
2427 strSrcFilePath.append(RTPATH_SLASH_STR);
2428 strSrcFilePath.append(strSourceOVF);
2429 }
2430
2431 /* First of all check if the path is an UUID. If so, the user like to
2432 * import the disk into an existing path. This is useful for iSCSI for
2433 * example. */
2434 RTUUID uuid;
2435 int vrc = RTUuidFromStr(&uuid, pStrDstPath->c_str());
2436 if (vrc == VINF_SUCCESS)
2437 {
2438 rc = mVirtualBox->i_findHardDiskById(Guid(uuid), true, &pTargetHD);
2439 if (FAILED(rc)) throw rc;
2440 }
2441 else
2442 {
2443 RTVFSIOSTREAM hVfsIosSrc = NIL_RTVFSIOSTREAM;
2444
2445 /* check read file to GZIP compression */
2446 bool const fGzipped = di.strCompression.compare("gzip",Utf8Str::CaseInsensitive) == 0;
2447 Utf8Str strDeleteTemp;
2448 try
2449 {
2450 Utf8Str strTrgFormat = "VMDK";
2451 ComObjPtr<MediumFormat> trgFormat;
2452 Bstr bstrFormatName;
2453 ULONG lCabs = 0;
2454
2455 char *pszSuff = RTPathSuffix(pStrDstPath->c_str());
2456 if (pszSuff != NULL)
2457 {
2458 /*
2459 * Figure out which format the user like to have. Default is VMDK
2460 * or it can be VDI if according command-line option is set
2461 */
2462
2463 /*
2464 * We need a proper target format
2465 * if target format has been changed by user via GUI import wizard
2466 * or via VBoxManage import command (option --importtovdi)
2467 * then we need properly process such format like ISO
2468 * Because there is no conversion ISO to VDI
2469 */
2470 trgFormat = pSysProps->i_mediumFormatFromExtension(++pszSuff);
2471 if (trgFormat.isNull())
2472 throw setError(E_FAIL, tr("Unsupported medium format for disk image '%s'"), di.strHref.c_str());
2473
2474 rc = trgFormat->COMGETTER(Name)(bstrFormatName.asOutParam());
2475 if (FAILED(rc)) throw rc;
2476
2477 strTrgFormat = Utf8Str(bstrFormatName);
2478
2479 if ( m->optListImport.contains(ImportOptions_ImportToVDI)
2480 && strTrgFormat.compare("RAW", Utf8Str::CaseInsensitive) != 0)
2481 {
2482 /* change the target extension */
2483 strTrgFormat = "vdi";
2484 trgFormat = pSysProps->i_mediumFormatFromExtension(strTrgFormat);
2485 *pStrDstPath = pStrDstPath->stripSuffix();
2486 *pStrDstPath = pStrDstPath->append(".");
2487 *pStrDstPath = pStrDstPath->append(strTrgFormat.c_str());
2488 }
2489
2490 /* Check the capabilities. We need create capabilities. */
2491 lCabs = 0;
2492 com::SafeArray <MediumFormatCapabilities_T> mediumFormatCap;
2493 rc = trgFormat->COMGETTER(Capabilities)(ComSafeArrayAsOutParam(mediumFormatCap));
2494
2495 if (FAILED(rc))
2496 throw rc;
2497
2498 for (ULONG j = 0; j < mediumFormatCap.size(); j++)
2499 lCabs |= mediumFormatCap[j];
2500
2501 if ( !(lCabs & MediumFormatCapabilities_CreateFixed)
2502 && !(lCabs & MediumFormatCapabilities_CreateDynamic) )
2503 throw setError(VBOX_E_NOT_SUPPORTED,
2504 tr("Could not find a valid medium format for the target disk '%s'"),
2505 pStrDstPath->c_str());
2506 }
2507 else
2508 {
2509 throw setError(VBOX_E_FILE_ERROR,
2510 tr("The target disk '%s' has no extension "),
2511 pStrDstPath->c_str(), VERR_INVALID_NAME);
2512 }
2513
2514 /* Create an IMedium object. */
2515 pTargetHD.createObject();
2516
2517 /*CD/DVD case*/
2518 if (strTrgFormat.compare("RAW", Utf8Str::CaseInsensitive) == 0)
2519 {
2520 try
2521 {
2522 if (fGzipped)
2523 i_importDecompressFile(stack, strSrcFilePath, *pStrDstPath, strSourceOVF.c_str());
2524 else
2525 i_importCopyFile(stack, strSrcFilePath, *pStrDstPath, strSourceOVF.c_str());
2526 }
2527 catch (HRESULT /*arc*/)
2528 {
2529 throw;
2530 }
2531
2532 /* Advance to the next operation. */
2533 /* operation's weight, as set up with the IProgress originally */
2534 stack.pProgress->SetNextOperation(BstrFmt(tr("Importing virtual disk image '%s'"),
2535 RTPathFilename(strSourceOVF.c_str())).raw(),
2536 di.ulSuggestedSizeMB);
2537 }
2538 else/* HDD case*/
2539 {
2540 rc = pTargetHD->init(mVirtualBox,
2541 strTrgFormat,
2542 *pStrDstPath,
2543 Guid::Empty /* media registry: none yet */,
2544 DeviceType_HardDisk);
2545 if (FAILED(rc)) throw rc;
2546
2547 /* Now create an empty hard disk. */
2548 rc = mVirtualBox->CreateMedium(Bstr(strTrgFormat).raw(),
2549 Bstr(*pStrDstPath).raw(),
2550 AccessMode_ReadWrite, DeviceType_HardDisk,
2551 ComPtr<IMedium>(pTargetHD).asOutParam());
2552 if (FAILED(rc)) throw rc;
2553
2554 /* If strHref is empty we have to create a new file. */
2555 if (strSourceOVF.isEmpty())
2556 {
2557 com::SafeArray<MediumVariant_T> mediumVariant;
2558 mediumVariant.push_back(MediumVariant_Standard);
2559
2560 /* Kick of the creation of a dynamic growing disk image with the given capacity. */
2561 rc = pTargetHD->CreateBaseStorage(di.iCapacity / _1M,
2562 ComSafeArrayAsInParam(mediumVariant),
2563 ComPtr<IProgress>(pProgress).asOutParam());
2564 if (FAILED(rc)) throw rc;
2565
2566 /* Advance to the next operation. */
2567 /* operation's weight, as set up with the IProgress originally */
2568 stack.pProgress->SetNextOperation(BstrFmt(tr("Creating disk image '%s'"),
2569 pStrDstPath->c_str()).raw(),
2570 di.ulSuggestedSizeMB);
2571 }
2572 else
2573 {
2574 /* We need a proper source format description */
2575 /* Which format to use? */
2576 ComObjPtr<MediumFormat> srcFormat;
2577 rc = i_findMediumFormatFromDiskImage(di, srcFormat);
2578 if (FAILED(rc))
2579 throw setError(VBOX_E_NOT_SUPPORTED,
2580 tr("Could not find a valid medium format for the source disk '%s' "
2581 "Check correctness of the image format URL in the OVF description file "
2582 "or extension of the image"),
2583 RTPathFilename(strSourceOVF.c_str()));
2584
2585 /* If gzipped, decompress the GZIP file and save a new file in the target path */
2586 if (fGzipped)
2587 {
2588 Utf8Str strTargetFilePath(*pStrDstPath);
2589 strTargetFilePath.stripFilename();
2590 strTargetFilePath.append(RTPATH_SLASH_STR);
2591 strTargetFilePath.append("temp_");
2592 strTargetFilePath.append(RTPathFilename(strSrcFilePath.c_str()));
2593 strDeleteTemp = strTargetFilePath;
2594
2595 i_importDecompressFile(stack, strSrcFilePath, strTargetFilePath, strSourceOVF.c_str());
2596
2597 /* Correct the source and the target with the actual values */
2598 strSrcFilePath = strTargetFilePath;
2599
2600 /* Open the new source file. */
2601 vrc = RTVfsIoStrmOpenNormal(strSrcFilePath.c_str(), RTFILE_O_READ | RTFILE_O_DENY_NONE | RTFILE_O_OPEN,
2602 &hVfsIosSrc);
2603 if (RT_FAILURE(vrc))
2604 throw setErrorVrc(vrc, tr("Error opening decompressed image file '%s' (%Rrc)"),
2605 strSrcFilePath.c_str(), vrc);
2606 }
2607 else
2608 hVfsIosSrc = i_importOpenSourceFile(stack, strSrcFilePath, strSourceOVF.c_str());
2609
2610 /* Add a read ahead thread to try speed things up with concurrent reads and
2611 writes going on in different threads. */
2612 RTVFSIOSTREAM hVfsIosReadAhead;
2613 vrc = RTVfsCreateReadAheadForIoStream(hVfsIosSrc, 0 /*fFlags*/, 0 /*cBuffers=default*/,
2614 0 /*cbBuffers=default*/, &hVfsIosReadAhead);
2615 RTVfsIoStrmRelease(hVfsIosSrc);
2616 if (RT_FAILURE(vrc))
2617 throw setErrorVrc(vrc, tr("Error initializing read ahead thread for '%s' (%Rrc)"),
2618 strSrcFilePath.c_str(), vrc);
2619
2620 /* Start the source image cloning operation. */
2621 ComObjPtr<Medium> nullParent;
2622 rc = pTargetHD->i_importFile(strSrcFilePath.c_str(),
2623 srcFormat,
2624 MediumVariant_Standard,
2625 hVfsIosReadAhead,
2626 nullParent,
2627 pProgress);
2628 RTVfsIoStrmRelease(hVfsIosReadAhead);
2629 hVfsIosSrc = NIL_RTVFSIOSTREAM;
2630 if (FAILED(rc))
2631 throw rc;
2632
2633 /* Advance to the next operation. */
2634 /* operation's weight, as set up with the IProgress originally */
2635 stack.pProgress->SetNextOperation(BstrFmt(tr("Importing virtual disk image '%s'"),
2636 RTPathFilename(strSourceOVF.c_str())).raw(),
2637 di.ulSuggestedSizeMB);
2638 }
2639
2640 /* Now wait for the background disk operation to complete; this throws
2641 * HRESULTs on error. */
2642 ComPtr<IProgress> pp(pProgress);
2643 i_waitForAsyncProgress(stack.pProgress, pp);
2644 }
2645 }
2646 catch (...)
2647 {
2648 if (strDeleteTemp.isNotEmpty())
2649 RTFileDelete(strDeleteTemp.c_str());
2650 throw;
2651 }
2652
2653 /* Make sure the source file is closed. */
2654 if (hVfsIosSrc != NIL_RTVFSIOSTREAM)
2655 RTVfsIoStrmRelease(hVfsIosSrc);
2656
2657 /*
2658 * Delete the temp gunzip result, if any.
2659 */
2660 if (strDeleteTemp.isNotEmpty())
2661 {
2662 vrc = RTFileDelete(strSrcFilePath.c_str());
2663 if (RT_FAILURE(vrc))
2664 setWarning(VBOX_E_FILE_ERROR,
2665 tr("Failed to delete the temporary file '%s' (%Rrc)"), strSrcFilePath.c_str(), vrc);
2666 }
2667 }
2668}
2669
2670/**
2671 * Imports one OVF virtual system (described by the given ovf::VirtualSystem and VirtualSystemDescription)
2672 * into VirtualBox by creating an IMachine instance, which is returned.
2673 *
2674 * This throws HRESULT error codes for anything that goes wrong, in which case the caller must clean
2675 * up any leftovers from this function. For this, the given ImportStack instance has received information
2676 * about what needs cleaning up (to support rollback).
2677 *
2678 * @param vsysThis OVF virtual system (machine) to import.
2679 * @param vsdescThis Matching virtual system description (machine) to import.
2680 * @param pNewMachine out: Newly created machine.
2681 * @param stack Cleanup stack for when this throws.
2682 */
2683void Appliance::i_importMachineGeneric(const ovf::VirtualSystem &vsysThis,
2684 ComObjPtr<VirtualSystemDescription> &vsdescThis,
2685 ComPtr<IMachine> &pNewMachine,
2686 ImportStack &stack)
2687{
2688 LogFlowFuncEnter();
2689 HRESULT rc;
2690
2691 // Get the instance of IGuestOSType which matches our string guest OS type so we
2692 // can use recommended defaults for the new machine where OVF doesn't provide any
2693 ComPtr<IGuestOSType> osType;
2694 rc = mVirtualBox->GetGuestOSType(Bstr(stack.strOsTypeVBox).raw(), osType.asOutParam());
2695 if (FAILED(rc)) throw rc;
2696
2697 /* Create the machine */
2698 SafeArray<BSTR> groups; /* no groups */
2699 rc = mVirtualBox->CreateMachine(NULL, /* machine name: use default */
2700 Bstr(stack.strNameVBox).raw(),
2701 ComSafeArrayAsInParam(groups),
2702 Bstr(stack.strOsTypeVBox).raw(),
2703 NULL, /* aCreateFlags */
2704 pNewMachine.asOutParam());
2705 if (FAILED(rc)) throw rc;
2706
2707 // set the description
2708 if (!stack.strDescription.isEmpty())
2709 {
2710 rc = pNewMachine->COMSETTER(Description)(Bstr(stack.strDescription).raw());
2711 if (FAILED(rc)) throw rc;
2712 }
2713
2714 // CPU count
2715 rc = pNewMachine->COMSETTER(CPUCount)(stack.cCPUs);
2716 if (FAILED(rc)) throw rc;
2717
2718 if (stack.fForceHWVirt)
2719 {
2720 rc = pNewMachine->SetHWVirtExProperty(HWVirtExPropertyType_Enabled, TRUE);
2721 if (FAILED(rc)) throw rc;
2722 }
2723
2724 // RAM
2725 rc = pNewMachine->COMSETTER(MemorySize)(stack.ulMemorySizeMB);
2726 if (FAILED(rc)) throw rc;
2727
2728 /* VRAM */
2729 /* Get the recommended VRAM for this guest OS type */
2730 ULONG vramVBox;
2731 rc = osType->COMGETTER(RecommendedVRAM)(&vramVBox);
2732 if (FAILED(rc)) throw rc;
2733
2734 /* Set the VRAM */
2735 rc = pNewMachine->COMSETTER(VRAMSize)(vramVBox);
2736 if (FAILED(rc)) throw rc;
2737
2738 // I/O APIC: Generic OVF has no setting for this. Enable it if we
2739 // import a Windows VM because if if Windows was installed without IOAPIC,
2740 // it will not mind finding an one later on, but if Windows was installed
2741 // _with_ an IOAPIC, it will bluescreen if it's not found
2742 if (!stack.fForceIOAPIC)
2743 {
2744 Bstr bstrFamilyId;
2745 rc = osType->COMGETTER(FamilyId)(bstrFamilyId.asOutParam());
2746 if (FAILED(rc)) throw rc;
2747 if (bstrFamilyId == "Windows")
2748 stack.fForceIOAPIC = true;
2749 }
2750
2751 if (stack.fForceIOAPIC)
2752 {
2753 ComPtr<IBIOSSettings> pBIOSSettings;
2754 rc = pNewMachine->COMGETTER(BIOSSettings)(pBIOSSettings.asOutParam());
2755 if (FAILED(rc)) throw rc;
2756
2757 rc = pBIOSSettings->COMSETTER(IOAPICEnabled)(TRUE);
2758 if (FAILED(rc)) throw rc;
2759 }
2760
2761 if (!stack.strAudioAdapter.isEmpty())
2762 if (stack.strAudioAdapter.compare("null", Utf8Str::CaseInsensitive) != 0)
2763 {
2764 uint32_t audio = RTStrToUInt32(stack.strAudioAdapter.c_str()); // should be 0 for AC97
2765 ComPtr<IAudioAdapter> audioAdapter;
2766 rc = pNewMachine->COMGETTER(AudioAdapter)(audioAdapter.asOutParam());
2767 if (FAILED(rc)) throw rc;
2768 rc = audioAdapter->COMSETTER(Enabled)(true);
2769 if (FAILED(rc)) throw rc;
2770 rc = audioAdapter->COMSETTER(AudioController)(static_cast<AudioControllerType_T>(audio));
2771 if (FAILED(rc)) throw rc;
2772 }
2773
2774#ifdef VBOX_WITH_USB
2775 /* USB Controller */
2776 if (stack.fUSBEnabled)
2777 {
2778 ComPtr<IUSBController> usbController;
2779 rc = pNewMachine->AddUSBController(Bstr("OHCI").raw(), USBControllerType_OHCI, usbController.asOutParam());
2780 if (FAILED(rc)) throw rc;
2781 }
2782#endif /* VBOX_WITH_USB */
2783
2784 /* Change the network adapters */
2785 uint32_t maxNetworkAdapters = Global::getMaxNetworkAdapters(ChipsetType_PIIX3);
2786
2787 std::list<VirtualSystemDescriptionEntry*> vsdeNW = vsdescThis->i_findByType(VirtualSystemDescriptionType_NetworkAdapter);
2788 if (vsdeNW.empty())
2789 {
2790 /* No network adapters, so we have to disable our default one */
2791 ComPtr<INetworkAdapter> nwVBox;
2792 rc = pNewMachine->GetNetworkAdapter(0, nwVBox.asOutParam());
2793 if (FAILED(rc)) throw rc;
2794 rc = nwVBox->COMSETTER(Enabled)(false);
2795 if (FAILED(rc)) throw rc;
2796 }
2797 else if (vsdeNW.size() > maxNetworkAdapters)
2798 throw setError(VBOX_E_FILE_ERROR,
2799 tr("Too many network adapters: OVF requests %d network adapters, "
2800 "but VirtualBox only supports %d"),
2801 vsdeNW.size(), maxNetworkAdapters);
2802 else
2803 {
2804 list<VirtualSystemDescriptionEntry*>::const_iterator nwIt;
2805 size_t a = 0;
2806 for (nwIt = vsdeNW.begin();
2807 nwIt != vsdeNW.end();
2808 ++nwIt, ++a)
2809 {
2810 const VirtualSystemDescriptionEntry* pvsys = *nwIt;
2811
2812 const Utf8Str &nwTypeVBox = pvsys->strVBoxCurrent;
2813 uint32_t tt1 = RTStrToUInt32(nwTypeVBox.c_str());
2814 ComPtr<INetworkAdapter> pNetworkAdapter;
2815 rc = pNewMachine->GetNetworkAdapter((ULONG)a, pNetworkAdapter.asOutParam());
2816 if (FAILED(rc)) throw rc;
2817 /* Enable the network card & set the adapter type */
2818 rc = pNetworkAdapter->COMSETTER(Enabled)(true);
2819 if (FAILED(rc)) throw rc;
2820 rc = pNetworkAdapter->COMSETTER(AdapterType)(static_cast<NetworkAdapterType_T>(tt1));
2821 if (FAILED(rc)) throw rc;
2822
2823 // default is NAT; change to "bridged" if extra conf says so
2824 if (pvsys->strExtraConfigCurrent.endsWith("type=Bridged", Utf8Str::CaseInsensitive))
2825 {
2826 /* Attach to the right interface */
2827 rc = pNetworkAdapter->COMSETTER(AttachmentType)(NetworkAttachmentType_Bridged);
2828 if (FAILED(rc)) throw rc;
2829 ComPtr<IHost> host;
2830 rc = mVirtualBox->COMGETTER(Host)(host.asOutParam());
2831 if (FAILED(rc)) throw rc;
2832 com::SafeIfaceArray<IHostNetworkInterface> nwInterfaces;
2833 rc = host->COMGETTER(NetworkInterfaces)(ComSafeArrayAsOutParam(nwInterfaces));
2834 if (FAILED(rc)) throw rc;
2835 // We search for the first host network interface which
2836 // is usable for bridged networking
2837 for (size_t j = 0;
2838 j < nwInterfaces.size();
2839 ++j)
2840 {
2841 HostNetworkInterfaceType_T itype;
2842 rc = nwInterfaces[j]->COMGETTER(InterfaceType)(&itype);
2843 if (FAILED(rc)) throw rc;
2844 if (itype == HostNetworkInterfaceType_Bridged)
2845 {
2846 Bstr name;
2847 rc = nwInterfaces[j]->COMGETTER(Name)(name.asOutParam());
2848 if (FAILED(rc)) throw rc;
2849 /* Set the interface name to attach to */
2850 rc = pNetworkAdapter->COMSETTER(BridgedInterface)(name.raw());
2851 if (FAILED(rc)) throw rc;
2852 break;
2853 }
2854 }
2855 }
2856 /* Next test for host only interfaces */
2857 else if (pvsys->strExtraConfigCurrent.endsWith("type=HostOnly", Utf8Str::CaseInsensitive))
2858 {
2859 /* Attach to the right interface */
2860 rc = pNetworkAdapter->COMSETTER(AttachmentType)(NetworkAttachmentType_HostOnly);
2861 if (FAILED(rc)) throw rc;
2862 ComPtr<IHost> host;
2863 rc = mVirtualBox->COMGETTER(Host)(host.asOutParam());
2864 if (FAILED(rc)) throw rc;
2865 com::SafeIfaceArray<IHostNetworkInterface> nwInterfaces;
2866 rc = host->COMGETTER(NetworkInterfaces)(ComSafeArrayAsOutParam(nwInterfaces));
2867 if (FAILED(rc)) throw rc;
2868 // We search for the first host network interface which
2869 // is usable for host only networking
2870 for (size_t j = 0;
2871 j < nwInterfaces.size();
2872 ++j)
2873 {
2874 HostNetworkInterfaceType_T itype;
2875 rc = nwInterfaces[j]->COMGETTER(InterfaceType)(&itype);
2876 if (FAILED(rc)) throw rc;
2877 if (itype == HostNetworkInterfaceType_HostOnly)
2878 {
2879 Bstr name;
2880 rc = nwInterfaces[j]->COMGETTER(Name)(name.asOutParam());
2881 if (FAILED(rc)) throw rc;
2882 /* Set the interface name to attach to */
2883 rc = pNetworkAdapter->COMSETTER(HostOnlyInterface)(name.raw());
2884 if (FAILED(rc)) throw rc;
2885 break;
2886 }
2887 }
2888 }
2889 /* Next test for internal interfaces */
2890 else if (pvsys->strExtraConfigCurrent.endsWith("type=Internal", Utf8Str::CaseInsensitive))
2891 {
2892 /* Attach to the right interface */
2893 rc = pNetworkAdapter->COMSETTER(AttachmentType)(NetworkAttachmentType_Internal);
2894 if (FAILED(rc)) throw rc;
2895 }
2896 /* Next test for Generic interfaces */
2897 else if (pvsys->strExtraConfigCurrent.endsWith("type=Generic", Utf8Str::CaseInsensitive))
2898 {
2899 /* Attach to the right interface */
2900 rc = pNetworkAdapter->COMSETTER(AttachmentType)(NetworkAttachmentType_Generic);
2901 if (FAILED(rc)) throw rc;
2902 }
2903
2904 /* Next test for NAT network interfaces */
2905 else if (pvsys->strExtraConfigCurrent.endsWith("type=NATNetwork", Utf8Str::CaseInsensitive))
2906 {
2907 /* Attach to the right interface */
2908 rc = pNetworkAdapter->COMSETTER(AttachmentType)(NetworkAttachmentType_NATNetwork);
2909 if (FAILED(rc)) throw rc;
2910 com::SafeIfaceArray<INATNetwork> nwNATNetworks;
2911 rc = mVirtualBox->COMGETTER(NATNetworks)(ComSafeArrayAsOutParam(nwNATNetworks));
2912 if (FAILED(rc)) throw rc;
2913 // Pick the first NAT network (if there is any)
2914 if (nwNATNetworks.size())
2915 {
2916 Bstr name;
2917 rc = nwNATNetworks[0]->COMGETTER(NetworkName)(name.asOutParam());
2918 if (FAILED(rc)) throw rc;
2919 /* Set the NAT network name to attach to */
2920 rc = pNetworkAdapter->COMSETTER(NATNetwork)(name.raw());
2921 if (FAILED(rc)) throw rc;
2922 break;
2923 }
2924 }
2925 }
2926 }
2927
2928 // IDE Hard disk controller
2929 std::list<VirtualSystemDescriptionEntry*> vsdeHDCIDE =
2930 vsdescThis->i_findByType(VirtualSystemDescriptionType_HardDiskControllerIDE);
2931 /*
2932 * In OVF (at least VMware's version of it), an IDE controller has two ports,
2933 * so VirtualBox's single IDE controller with two channels and two ports each counts as
2934 * two OVF IDE controllers -- so we accept one or two such IDE controllers
2935 */
2936 size_t cIDEControllers = vsdeHDCIDE.size();
2937 if (cIDEControllers > 2)
2938 throw setError(VBOX_E_FILE_ERROR,
2939 tr("Too many IDE controllers in OVF; import facility only supports two"));
2940 if (!vsdeHDCIDE.empty())
2941 {
2942 // one or two IDE controllers present in OVF: add one VirtualBox controller
2943 ComPtr<IStorageController> pController;
2944 rc = pNewMachine->AddStorageController(Bstr("IDE Controller").raw(), StorageBus_IDE, pController.asOutParam());
2945 if (FAILED(rc)) throw rc;
2946
2947 const char *pcszIDEType = vsdeHDCIDE.front()->strVBoxCurrent.c_str();
2948 if (!strcmp(pcszIDEType, "PIIX3"))
2949 rc = pController->COMSETTER(ControllerType)(StorageControllerType_PIIX3);
2950 else if (!strcmp(pcszIDEType, "PIIX4"))
2951 rc = pController->COMSETTER(ControllerType)(StorageControllerType_PIIX4);
2952 else if (!strcmp(pcszIDEType, "ICH6"))
2953 rc = pController->COMSETTER(ControllerType)(StorageControllerType_ICH6);
2954 else
2955 throw setError(VBOX_E_FILE_ERROR,
2956 tr("Invalid IDE controller type \"%s\""),
2957 pcszIDEType);
2958 if (FAILED(rc)) throw rc;
2959 }
2960
2961 /* Hard disk controller SATA */
2962 std::list<VirtualSystemDescriptionEntry*> vsdeHDCSATA =
2963 vsdescThis->i_findByType(VirtualSystemDescriptionType_HardDiskControllerSATA);
2964 if (vsdeHDCSATA.size() > 1)
2965 throw setError(VBOX_E_FILE_ERROR,
2966 tr("Too many SATA controllers in OVF; import facility only supports one"));
2967 if (!vsdeHDCSATA.empty())
2968 {
2969 ComPtr<IStorageController> pController;
2970 const Utf8Str &hdcVBox = vsdeHDCSATA.front()->strVBoxCurrent;
2971 if (hdcVBox == "AHCI")
2972 {
2973 rc = pNewMachine->AddStorageController(Bstr("SATA Controller").raw(),
2974 StorageBus_SATA,
2975 pController.asOutParam());
2976 if (FAILED(rc)) throw rc;
2977 }
2978 else
2979 throw setError(VBOX_E_FILE_ERROR,
2980 tr("Invalid SATA controller type \"%s\""),
2981 hdcVBox.c_str());
2982 }
2983
2984 /* Hard disk controller SCSI */
2985 std::list<VirtualSystemDescriptionEntry*> vsdeHDCSCSI =
2986 vsdescThis->i_findByType(VirtualSystemDescriptionType_HardDiskControllerSCSI);
2987 if (vsdeHDCSCSI.size() > 1)
2988 throw setError(VBOX_E_FILE_ERROR,
2989 tr("Too many SCSI controllers in OVF; import facility only supports one"));
2990 if (!vsdeHDCSCSI.empty())
2991 {
2992 ComPtr<IStorageController> pController;
2993 Bstr bstrName(L"SCSI Controller");
2994 StorageBus_T busType = StorageBus_SCSI;
2995 StorageControllerType_T controllerType;
2996 const Utf8Str &hdcVBox = vsdeHDCSCSI.front()->strVBoxCurrent;
2997 if (hdcVBox == "LsiLogic")
2998 controllerType = StorageControllerType_LsiLogic;
2999 else if (hdcVBox == "LsiLogicSas")
3000 {
3001 // OVF treats LsiLogicSas as a SCSI controller but VBox considers it a class of its own
3002 bstrName = L"SAS Controller";
3003 busType = StorageBus_SAS;
3004 controllerType = StorageControllerType_LsiLogicSas;
3005 }
3006 else if (hdcVBox == "BusLogic")
3007 controllerType = StorageControllerType_BusLogic;
3008 else
3009 throw setError(VBOX_E_FILE_ERROR,
3010 tr("Invalid SCSI controller type \"%s\""),
3011 hdcVBox.c_str());
3012
3013 rc = pNewMachine->AddStorageController(bstrName.raw(), busType, pController.asOutParam());
3014 if (FAILED(rc)) throw rc;
3015 rc = pController->COMSETTER(ControllerType)(controllerType);
3016 if (FAILED(rc)) throw rc;
3017 }
3018
3019 /* Hard disk controller SAS */
3020 std::list<VirtualSystemDescriptionEntry*> vsdeHDCSAS =
3021 vsdescThis->i_findByType(VirtualSystemDescriptionType_HardDiskControllerSAS);
3022 if (vsdeHDCSAS.size() > 1)
3023 throw setError(VBOX_E_FILE_ERROR,
3024 tr("Too many SAS controllers in OVF; import facility only supports one"));
3025 if (!vsdeHDCSAS.empty())
3026 {
3027 ComPtr<IStorageController> pController;
3028 rc = pNewMachine->AddStorageController(Bstr(L"SAS Controller").raw(),
3029 StorageBus_SAS,
3030 pController.asOutParam());
3031 if (FAILED(rc)) throw rc;
3032 rc = pController->COMSETTER(ControllerType)(StorageControllerType_LsiLogicSas);
3033 if (FAILED(rc)) throw rc;
3034 }
3035
3036 /* Now its time to register the machine before we add any hard disks */
3037 rc = mVirtualBox->RegisterMachine(pNewMachine);
3038 if (FAILED(rc)) throw rc;
3039
3040 // store new machine for roll-back in case of errors
3041 Bstr bstrNewMachineId;
3042 rc = pNewMachine->COMGETTER(Id)(bstrNewMachineId.asOutParam());
3043 if (FAILED(rc)) throw rc;
3044 Guid uuidNewMachine(bstrNewMachineId);
3045 m->llGuidsMachinesCreated.push_back(uuidNewMachine);
3046
3047 // Add floppies and CD-ROMs to the appropriate controllers.
3048 std::list<VirtualSystemDescriptionEntry*> vsdeFloppy = vsdescThis->i_findByType(VirtualSystemDescriptionType_Floppy);
3049 if (vsdeFloppy.size() > 1)
3050 throw setError(VBOX_E_FILE_ERROR,
3051 tr("Too many floppy controllers in OVF; import facility only supports one"));
3052 std::list<VirtualSystemDescriptionEntry*> vsdeCDROM = vsdescThis->i_findByType(VirtualSystemDescriptionType_CDROM);
3053 if ( !vsdeFloppy.empty()
3054 || !vsdeCDROM.empty()
3055 )
3056 {
3057 // If there's an error here we need to close the session, so
3058 // we need another try/catch block.
3059
3060 try
3061 {
3062 // to attach things we need to open a session for the new machine
3063 rc = pNewMachine->LockMachine(stack.pSession, LockType_Write);
3064 if (FAILED(rc)) throw rc;
3065 stack.fSessionOpen = true;
3066
3067 ComPtr<IMachine> sMachine;
3068 rc = stack.pSession->COMGETTER(Machine)(sMachine.asOutParam());
3069 if (FAILED(rc)) throw rc;
3070
3071 // floppy first
3072 if (vsdeFloppy.size() == 1)
3073 {
3074 ComPtr<IStorageController> pController;
3075 rc = sMachine->AddStorageController(Bstr("Floppy Controller").raw(),
3076 StorageBus_Floppy,
3077 pController.asOutParam());
3078 if (FAILED(rc)) throw rc;
3079
3080 Bstr bstrName;
3081 rc = pController->COMGETTER(Name)(bstrName.asOutParam());
3082 if (FAILED(rc)) throw rc;
3083
3084 // this is for rollback later
3085 MyHardDiskAttachment mhda;
3086 mhda.pMachine = pNewMachine;
3087 mhda.controllerType = bstrName;
3088 mhda.lControllerPort = 0;
3089 mhda.lDevice = 0;
3090
3091 Log(("Attaching floppy\n"));
3092
3093 rc = sMachine->AttachDevice(mhda.controllerType.raw(),
3094 mhda.lControllerPort,
3095 mhda.lDevice,
3096 DeviceType_Floppy,
3097 NULL);
3098 if (FAILED(rc)) throw rc;
3099
3100 stack.llHardDiskAttachments.push_back(mhda);
3101 }
3102
3103 rc = sMachine->SaveSettings();
3104 if (FAILED(rc)) throw rc;
3105
3106 // only now that we're done with all disks, close the session
3107 rc = stack.pSession->UnlockMachine();
3108 if (FAILED(rc)) throw rc;
3109 stack.fSessionOpen = false;
3110 }
3111 catch(HRESULT aRC)
3112 {
3113 com::ErrorInfo info;
3114
3115 if (stack.fSessionOpen)
3116 stack.pSession->UnlockMachine();
3117
3118 if (info.isFullAvailable())
3119 throw setError(aRC, Utf8Str(info.getText()).c_str());
3120 else
3121 throw setError(aRC, "Unknown error during OVF import");
3122 }
3123 }
3124
3125 // create the hard disks & connect them to the appropriate controllers
3126 std::list<VirtualSystemDescriptionEntry*> avsdeHDs = vsdescThis->i_findByType(VirtualSystemDescriptionType_HardDiskImage);
3127 if (!avsdeHDs.empty())
3128 {
3129 // If there's an error here we need to close the session, so
3130 // we need another try/catch block.
3131 try
3132 {
3133#ifdef LOG_ENABLED
3134 if (LogIsEnabled())
3135 {
3136 size_t i = 0;
3137 for (list<VirtualSystemDescriptionEntry*>::const_iterator itHD = avsdeHDs.begin();
3138 itHD != avsdeHDs.end(); ++itHD, i++)
3139 Log(("avsdeHDs[%zu]: strRef=%s strOvf=%s\n", i, (*itHD)->strRef.c_str(), (*itHD)->strOvf.c_str()));
3140 i = 0;
3141 for (ovf::DiskImagesMap::const_iterator itDisk = stack.mapDisks.begin(); itDisk != stack.mapDisks.end(); ++itDisk)
3142 Log(("mapDisks[%zu]: strDiskId=%s strHref=%s\n",
3143 i, itDisk->second.strDiskId.c_str(), itDisk->second.strHref.c_str()));
3144
3145 }
3146#endif
3147
3148 // to attach things we need to open a session for the new machine
3149 rc = pNewMachine->LockMachine(stack.pSession, LockType_Write);
3150 if (FAILED(rc)) throw rc;
3151 stack.fSessionOpen = true;
3152
3153 /* get VM name from virtual system description. Only one record is possible (size of list is equal 1). */
3154 std::list<VirtualSystemDescriptionEntry*> vmName = vsdescThis->i_findByType(VirtualSystemDescriptionType_Name);
3155 std::list<VirtualSystemDescriptionEntry*>::iterator vmNameIt = vmName.begin();
3156 VirtualSystemDescriptionEntry* vmNameEntry = *vmNameIt;
3157
3158
3159 ovf::DiskImagesMap::const_iterator oit = stack.mapDisks.begin();
3160 std::set<RTCString> disksResolvedNames;
3161
3162 uint32_t cImportedDisks = 0;
3163
3164 while (oit != stack.mapDisks.end() && cImportedDisks != avsdeHDs.size())
3165 {
3166/** @todo r=bird: Most of the code here is duplicated in the other machine
3167 * import method, factor out. */
3168 ovf::DiskImage diCurrent = oit->second;
3169
3170 Log(("diCurrent.strDiskId=%s diCurrent.strHref=%s\n", diCurrent.strDiskId.c_str(), diCurrent.strHref.c_str()));
3171 /* Iterate over all given disk images of the virtual system
3172 * disks description. We need to find the target disk path,
3173 * which could be changed by the user. */
3174 VirtualSystemDescriptionEntry *vsdeTargetHD = NULL;
3175 for (list<VirtualSystemDescriptionEntry*>::const_iterator itHD = avsdeHDs.begin();
3176 itHD != avsdeHDs.end();
3177 ++itHD)
3178 {
3179 VirtualSystemDescriptionEntry *vsdeHD = *itHD;
3180 if (vsdeHD->strRef == diCurrent.strDiskId)
3181 {
3182 vsdeTargetHD = vsdeHD;
3183 break;
3184 }
3185 }
3186 if (!vsdeTargetHD)
3187 {
3188 /* possible case if a disk image belongs to other virtual system (OVF package with multiple VMs inside) */
3189 Log1Warning(("OVA/OVF import: Disk image %s was missed during import of VM %s\n",
3190 oit->first.c_str(), vmNameEntry->strOvf.c_str()));
3191 NOREF(vmNameEntry);
3192 ++oit;
3193 continue;
3194 }
3195
3196 //diCurrent.strDiskId contains the disk identifier (e.g. "vmdisk1"), which should exist
3197 //in the virtual system's disks map under that ID and also in the global images map
3198 ovf::VirtualDisksMap::const_iterator itVDisk = vsysThis.mapVirtualDisks.find(diCurrent.strDiskId);
3199 if (itVDisk == vsysThis.mapVirtualDisks.end())
3200 throw setError(E_FAIL,
3201 tr("Internal inconsistency looking up disk image '%s'"),
3202 diCurrent.strHref.c_str());
3203
3204 /*
3205 * preliminary check availability of the image
3206 * This step is useful if image is placed in the OVA (TAR) package
3207 */
3208 if (stack.hVfsFssOva != NIL_RTVFSFSSTREAM)
3209 {
3210 /* It means that we possibly have imported the storage earlier on the previous loop steps*/
3211 std::set<RTCString>::const_iterator h = disksResolvedNames.find(diCurrent.strHref);
3212 if (h != disksResolvedNames.end())
3213 {
3214 /* Yes, disk name was found, we can skip it*/
3215 ++oit;
3216 continue;
3217 }
3218l_skipped:
3219 rc = i_preCheckImageAvailability(stack);
3220 if (SUCCEEDED(rc))
3221 {
3222 /* current opened file isn't the same as passed one */
3223 if (RTStrICmp(diCurrent.strHref.c_str(), stack.pszOvaLookAheadName) != 0)
3224 {
3225 /* availableImage contains the disk file reference (e.g. "disk1.vmdk"), which should
3226 * exist in the global images map.
3227 * And find the disk from the OVF's disk list */
3228 ovf::DiskImagesMap::const_iterator itDiskImage;
3229 for (itDiskImage = stack.mapDisks.begin();
3230 itDiskImage != stack.mapDisks.end();
3231 itDiskImage++)
3232 if (itDiskImage->second.strHref.compare(stack.pszOvaLookAheadName,
3233 Utf8Str::CaseInsensitive) == 0)
3234 break;
3235 if (itDiskImage == stack.mapDisks.end())
3236 {
3237 LogFunc(("Skipping '%s'\n", stack.pszOvaLookAheadName));
3238 RTVfsIoStrmRelease(stack.claimOvaLookAHead());
3239 goto l_skipped;
3240 }
3241
3242 /* replace with a new found disk image */
3243 diCurrent = *(&itDiskImage->second);
3244
3245 /*
3246 * Again iterate over all given disk images of the virtual system
3247 * disks description using the found disk image
3248 */
3249 for (list<VirtualSystemDescriptionEntry*>::const_iterator itHD = avsdeHDs.begin();
3250 itHD != avsdeHDs.end();
3251 ++itHD)
3252 {
3253 VirtualSystemDescriptionEntry *vsdeHD = *itHD;
3254 if (vsdeHD->strRef == diCurrent.strDiskId)
3255 {
3256 vsdeTargetHD = vsdeHD;
3257 break;
3258 }
3259 }
3260
3261 /*
3262 * in this case it's an error because something is wrong with the OVF description file.
3263 * May be VBox imports OVA package with wrong file sequence inside the archive.
3264 */
3265 if (!vsdeTargetHD)
3266 throw setError(E_FAIL,
3267 tr("Internal inconsistency looking up disk image '%s'"),
3268 diCurrent.strHref.c_str());
3269
3270 itVDisk = vsysThis.mapVirtualDisks.find(diCurrent.strDiskId);
3271 if (itVDisk == vsysThis.mapVirtualDisks.end())
3272 throw setError(E_FAIL,
3273 tr("Internal inconsistency looking up disk image '%s'"),
3274 diCurrent.strHref.c_str());
3275 }
3276 else
3277 {
3278 ++oit;
3279 }
3280 }
3281 else
3282 {
3283 ++oit;
3284 continue;
3285 }
3286 }
3287 else
3288 {
3289 /* just continue with normal files*/
3290 ++oit;
3291 }
3292
3293 /* very important to store disk name for the next checks */
3294 disksResolvedNames.insert(diCurrent.strHref);
3295////// end of duplicated code.
3296 const ovf::VirtualDisk &ovfVdisk = itVDisk->second;
3297
3298 ComObjPtr<Medium> pTargetHD;
3299
3300 Utf8Str savedVBoxCurrent = vsdeTargetHD->strVBoxCurrent;
3301
3302 i_importOneDiskImage(diCurrent,
3303 &vsdeTargetHD->strVBoxCurrent,
3304 pTargetHD,
3305 stack);
3306
3307 // now use the new uuid to attach the disk image to our new machine
3308 ComPtr<IMachine> sMachine;
3309 rc = stack.pSession->COMGETTER(Machine)(sMachine.asOutParam());
3310 if (FAILED(rc))
3311 throw rc;
3312
3313 // find the hard disk controller to which we should attach
3314 ovf::HardDiskController hdc = (*vsysThis.mapControllers.find(ovfVdisk.idController)).second;
3315
3316 // this is for rollback later
3317 MyHardDiskAttachment mhda;
3318 mhda.pMachine = pNewMachine;
3319
3320 i_convertDiskAttachmentValues(hdc,
3321 ovfVdisk.ulAddressOnParent,
3322 mhda.controllerType, // Bstr
3323 mhda.lControllerPort,
3324 mhda.lDevice);
3325
3326 Log(("Attaching disk %s to port %d on device %d\n",
3327 vsdeTargetHD->strVBoxCurrent.c_str(), mhda.lControllerPort, mhda.lDevice));
3328
3329 ComObjPtr<MediumFormat> mediumFormat;
3330 rc = i_findMediumFormatFromDiskImage(diCurrent, mediumFormat);
3331 if (FAILED(rc))
3332 throw rc;
3333
3334 Bstr bstrFormatName;
3335 rc = mediumFormat->COMGETTER(Name)(bstrFormatName.asOutParam());
3336 if (FAILED(rc))
3337 throw rc;
3338
3339 Utf8Str vdf = Utf8Str(bstrFormatName);
3340
3341 if (vdf.compare("RAW", Utf8Str::CaseInsensitive) == 0)
3342 {
3343 ComPtr<IMedium> dvdImage(pTargetHD);
3344
3345 rc = mVirtualBox->OpenMedium(Bstr(vsdeTargetHD->strVBoxCurrent).raw(),
3346 DeviceType_DVD,
3347 AccessMode_ReadWrite,
3348 false,
3349 dvdImage.asOutParam());
3350
3351 if (FAILED(rc))
3352 throw rc;
3353
3354 rc = sMachine->AttachDevice(mhda.controllerType.raw(),// wstring name
3355 mhda.lControllerPort, // long controllerPort
3356 mhda.lDevice, // long device
3357 DeviceType_DVD, // DeviceType_T type
3358 dvdImage);
3359 if (FAILED(rc))
3360 throw rc;
3361 }
3362 else
3363 {
3364 rc = sMachine->AttachDevice(mhda.controllerType.raw(),// wstring name
3365 mhda.lControllerPort, // long controllerPort
3366 mhda.lDevice, // long device
3367 DeviceType_HardDisk, // DeviceType_T type
3368 pTargetHD);
3369
3370 if (FAILED(rc))
3371 throw rc;
3372 }
3373
3374 stack.llHardDiskAttachments.push_back(mhda);
3375
3376 rc = sMachine->SaveSettings();
3377 if (FAILED(rc))
3378 throw rc;
3379
3380 /* restore */
3381 vsdeTargetHD->strVBoxCurrent = savedVBoxCurrent;
3382
3383 ++cImportedDisks;
3384
3385 } // end while(oit != stack.mapDisks.end())
3386
3387 /*
3388 * quantity of the imported disks isn't equal to the size of the avsdeHDs list.
3389 */
3390 if(cImportedDisks < avsdeHDs.size())
3391 {
3392 Log1Warning(("Not all disk images were imported for VM %s. Check OVF description file.",
3393 vmNameEntry->strOvf.c_str()));
3394 }
3395
3396 // only now that we're done with all disks, close the session
3397 rc = stack.pSession->UnlockMachine();
3398 if (FAILED(rc))
3399 throw rc;
3400 stack.fSessionOpen = false;
3401 }
3402 catch(HRESULT aRC)
3403 {
3404 com::ErrorInfo info;
3405 if (stack.fSessionOpen)
3406 stack.pSession->UnlockMachine();
3407
3408 if (info.isFullAvailable())
3409 throw setError(aRC, Utf8Str(info.getText()).c_str());
3410 else
3411 throw setError(aRC, "Unknown error during OVF import");
3412 }
3413 }
3414 LogFlowFuncLeave();
3415}
3416
3417/**
3418 * Imports one OVF virtual system (described by a vbox:Machine tag represented by the given config
3419 * structure) into VirtualBox by creating an IMachine instance, which is returned.
3420 *
3421 * This throws HRESULT error codes for anything that goes wrong, in which case the caller must clean
3422 * up any leftovers from this function. For this, the given ImportStack instance has received information
3423 * about what needs cleaning up (to support rollback).
3424 *
3425 * The machine config stored in the settings::MachineConfigFile structure contains the UUIDs of
3426 * the disk attachments used by the machine when it was exported. We also add vbox:uuid attributes
3427 * to the OVF disks sections so we can look them up. While importing these UUIDs into a second host
3428 * will most probably work, reimporting them into the same host will cause conflicts, so we always
3429 * generate new ones on import. This involves the following:
3430 *
3431 * 1) Scan the machine config for disk attachments.
3432 *
3433 * 2) For each disk attachment found, look up the OVF disk image from the disk references section
3434 * and import the disk into VirtualBox, which creates a new UUID for it. In the machine config,
3435 * replace the old UUID with the new one.
3436 *
3437 * 3) Change the machine config according to the OVF virtual system descriptions, in case the
3438 * caller has modified them using setFinalValues().
3439 *
3440 * 4) Create the VirtualBox machine with the modfified machine config.
3441 *
3442 * @param config
3443 * @param pNewMachine
3444 * @param stack
3445 */
3446void Appliance::i_importVBoxMachine(ComObjPtr<VirtualSystemDescription> &vsdescThis,
3447 ComPtr<IMachine> &pReturnNewMachine,
3448 ImportStack &stack)
3449{
3450 LogFlowFuncEnter();
3451 Assert(vsdescThis->m->pConfig);
3452
3453 HRESULT rc = S_OK;
3454
3455 settings::MachineConfigFile &config = *vsdescThis->m->pConfig;
3456
3457 /*
3458 * step 1): modify machine config according to OVF config, in case the user
3459 * has modified them using setFinalValues()
3460 */
3461
3462 /* OS Type */
3463 config.machineUserData.strOsType = stack.strOsTypeVBox;
3464 /* Description */
3465 config.machineUserData.strDescription = stack.strDescription;
3466 /* CPU count & extented attributes */
3467 config.hardwareMachine.cCPUs = stack.cCPUs;
3468 if (stack.fForceIOAPIC)
3469 config.hardwareMachine.fHardwareVirt = true;
3470 if (stack.fForceIOAPIC)
3471 config.hardwareMachine.biosSettings.fIOAPICEnabled = true;
3472 /* RAM size */
3473 config.hardwareMachine.ulMemorySizeMB = stack.ulMemorySizeMB;
3474
3475/*
3476 <const name="HardDiskControllerIDE" value="14" />
3477 <const name="HardDiskControllerSATA" value="15" />
3478 <const name="HardDiskControllerSCSI" value="16" />
3479 <const name="HardDiskControllerSAS" value="17" />
3480*/
3481
3482#ifdef VBOX_WITH_USB
3483 /* USB controller */
3484 if (stack.fUSBEnabled)
3485 {
3486 /** @todo r=klaus add support for arbitrary USB controller types, this can't handle
3487 * multiple controllers due to its design anyway */
3488 /* usually the OHCI controller is enabled already, need to check */
3489 bool fOHCIEnabled = false;
3490 settings::USBControllerList &llUSBControllers = config.hardwareMachine.usbSettings.llUSBControllers;
3491 settings::USBControllerList::iterator it;
3492 for (it = llUSBControllers.begin(); it != llUSBControllers.end(); ++it)
3493 {
3494 if (it->enmType == USBControllerType_OHCI)
3495 {
3496 fOHCIEnabled = true;
3497 break;
3498 }
3499 }
3500
3501 if (!fOHCIEnabled)
3502 {
3503 settings::USBController ctrl;
3504 ctrl.strName = "OHCI";
3505 ctrl.enmType = USBControllerType_OHCI;
3506
3507 llUSBControllers.push_back(ctrl);
3508 }
3509 }
3510 else
3511 config.hardwareMachine.usbSettings.llUSBControllers.clear();
3512#endif
3513 /* Audio adapter */
3514 if (stack.strAudioAdapter.isNotEmpty())
3515 {
3516 config.hardwareMachine.audioAdapter.fEnabled = true;
3517 config.hardwareMachine.audioAdapter.controllerType = (AudioControllerType_T)stack.strAudioAdapter.toUInt32();
3518 }
3519 else
3520 config.hardwareMachine.audioAdapter.fEnabled = false;
3521 /* Network adapter */
3522 settings::NetworkAdaptersList &llNetworkAdapters = config.hardwareMachine.llNetworkAdapters;
3523 /* First disable all network cards, they will be enabled below again. */
3524 settings::NetworkAdaptersList::iterator it1;
3525 bool fKeepAllMACs = m->optListImport.contains(ImportOptions_KeepAllMACs);
3526 bool fKeepNATMACs = m->optListImport.contains(ImportOptions_KeepNATMACs);
3527 for (it1 = llNetworkAdapters.begin(); it1 != llNetworkAdapters.end(); ++it1)
3528 {
3529 it1->fEnabled = false;
3530 if (!( fKeepAllMACs
3531 || (fKeepNATMACs && it1->mode == NetworkAttachmentType_NAT)
3532 || (fKeepNATMACs && it1->mode == NetworkAttachmentType_NATNetwork)))
3533 Host::i_generateMACAddress(it1->strMACAddress);
3534 }
3535 /* Now iterate over all network entries. */
3536 std::list<VirtualSystemDescriptionEntry*> avsdeNWs = vsdescThis->i_findByType(VirtualSystemDescriptionType_NetworkAdapter);
3537 if (!avsdeNWs.empty())
3538 {
3539 /* Iterate through all network adapter entries and search for the
3540 * corresponding one in the machine config. If one is found, configure
3541 * it based on the user settings. */
3542 list<VirtualSystemDescriptionEntry*>::const_iterator itNW;
3543 for (itNW = avsdeNWs.begin();
3544 itNW != avsdeNWs.end();
3545 ++itNW)
3546 {
3547 VirtualSystemDescriptionEntry *vsdeNW = *itNW;
3548 if ( vsdeNW->strExtraConfigCurrent.startsWith("slot=", Utf8Str::CaseInsensitive)
3549 && vsdeNW->strExtraConfigCurrent.length() > 6)
3550 {
3551 uint32_t iSlot = vsdeNW->strExtraConfigCurrent.substr(5, 1).toUInt32();
3552 /* Iterate through all network adapters in the machine config. */
3553 for (it1 = llNetworkAdapters.begin();
3554 it1 != llNetworkAdapters.end();
3555 ++it1)
3556 {
3557 /* Compare the slots. */
3558 if (it1->ulSlot == iSlot)
3559 {
3560 it1->fEnabled = true;
3561 it1->type = (NetworkAdapterType_T)vsdeNW->strVBoxCurrent.toUInt32();
3562 break;
3563 }
3564 }
3565 }
3566 }
3567 }
3568
3569 /* Floppy controller */
3570 bool fFloppy = vsdescThis->i_findByType(VirtualSystemDescriptionType_Floppy).size() > 0;
3571 /* DVD controller */
3572 bool fDVD = vsdescThis->i_findByType(VirtualSystemDescriptionType_CDROM).size() > 0;
3573 /* Iterate over all storage controller check the attachments and remove
3574 * them when necessary. Also detect broken configs with more than one
3575 * attachment. Old VirtualBox versions (prior to 3.2.10) had all disk
3576 * attachments pointing to the last hard disk image, which causes import
3577 * failures. A long fixed bug, however the OVF files are long lived. */
3578 settings::StorageControllersList &llControllers = config.storageMachine.llStorageControllers;
3579 Guid hdUuid;
3580 uint32_t cDisks = 0;
3581 bool fInconsistent = false;
3582 bool fRepairDuplicate = false;
3583 settings::StorageControllersList::iterator it3;
3584 for (it3 = llControllers.begin();
3585 it3 != llControllers.end();
3586 ++it3)
3587 {
3588 settings::AttachedDevicesList &llAttachments = it3->llAttachedDevices;
3589 settings::AttachedDevicesList::iterator it4 = llAttachments.begin();
3590 while (it4 != llAttachments.end())
3591 {
3592 if ( ( !fDVD
3593 && it4->deviceType == DeviceType_DVD)
3594 ||
3595 ( !fFloppy
3596 && it4->deviceType == DeviceType_Floppy))
3597 {
3598 it4 = llAttachments.erase(it4);
3599 continue;
3600 }
3601 else if (it4->deviceType == DeviceType_HardDisk)
3602 {
3603 const Guid &thisUuid = it4->uuid;
3604 cDisks++;
3605 if (cDisks == 1)
3606 {
3607 if (hdUuid.isZero())
3608 hdUuid = thisUuid;
3609 else
3610 fInconsistent = true;
3611 }
3612 else
3613 {
3614 if (thisUuid.isZero())
3615 fInconsistent = true;
3616 else if (thisUuid == hdUuid)
3617 fRepairDuplicate = true;
3618 }
3619 }
3620 ++it4;
3621 }
3622 }
3623 /* paranoia... */
3624 if (fInconsistent || cDisks == 1)
3625 fRepairDuplicate = false;
3626
3627 /*
3628 * step 2: scan the machine config for media attachments
3629 */
3630 /* get VM name from virtual system description. Only one record is possible (size of list is equal 1). */
3631 std::list<VirtualSystemDescriptionEntry*> vmName = vsdescThis->i_findByType(VirtualSystemDescriptionType_Name);
3632 std::list<VirtualSystemDescriptionEntry*>::iterator vmNameIt = vmName.begin();
3633 VirtualSystemDescriptionEntry* vmNameEntry = *vmNameIt;
3634
3635 /* Get all hard disk descriptions. */
3636 std::list<VirtualSystemDescriptionEntry*> avsdeHDs = vsdescThis->i_findByType(VirtualSystemDescriptionType_HardDiskImage);
3637 std::list<VirtualSystemDescriptionEntry*>::iterator avsdeHDsIt = avsdeHDs.begin();
3638 /* paranoia - if there is no 1:1 match do not try to repair. */
3639 if (cDisks != avsdeHDs.size())
3640 fRepairDuplicate = false;
3641
3642 // there must be an image in the OVF disk structs with the same UUID
3643
3644 ovf::DiskImagesMap::const_iterator oit = stack.mapDisks.begin();
3645 std::set<RTCString> disksResolvedNames;
3646
3647 uint32_t cImportedDisks = 0;
3648
3649 while (oit != stack.mapDisks.end() && cImportedDisks != avsdeHDs.size())
3650 {
3651/** @todo r=bird: Most of the code here is duplicated in the other machine
3652 * import method, factor out. */
3653 ovf::DiskImage diCurrent = oit->second;
3654
3655 Log(("diCurrent.strDiskId=%s diCurrent.strHref=%s\n", diCurrent.strDiskId.c_str(), diCurrent.strHref.c_str()));
3656
3657 /* Iterate over all given disk images of the virtual system
3658 * disks description. We need to find the target disk path,
3659 * which could be changed by the user. */
3660 VirtualSystemDescriptionEntry *vsdeTargetHD = NULL;
3661 for (list<VirtualSystemDescriptionEntry*>::const_iterator itHD = avsdeHDs.begin();
3662 itHD != avsdeHDs.end();
3663 ++itHD)
3664 {
3665 VirtualSystemDescriptionEntry *vsdeHD = *itHD;
3666 if (vsdeHD->strRef == oit->first)
3667 {
3668 vsdeTargetHD = vsdeHD;
3669 break;
3670 }
3671 }
3672 if (!vsdeTargetHD)
3673 {
3674 /* possible case if a disk image belongs to other virtual system (OVF package with multiple VMs inside) */
3675 Log1Warning(("OVA/OVF import: Disk image %s was missed during import of VM %s\n",
3676 oit->first.c_str(), vmNameEntry->strOvf.c_str()));
3677 NOREF(vmNameEntry);
3678 ++oit;
3679 continue;
3680 }
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690 /*
3691 * preliminary check availability of the image
3692 * This step is useful if image is placed in the OVA (TAR) package
3693 */
3694 if (stack.hVfsFssOva != NIL_RTVFSFSSTREAM)
3695 {
3696 /* It means that we possibly have imported the storage earlier on a previous loop step. */
3697 std::set<RTCString>::const_iterator h = disksResolvedNames.find(diCurrent.strHref);
3698 if (h != disksResolvedNames.end())
3699 {
3700 /* Yes, disk name was found, we can skip it*/
3701 ++oit;
3702 continue;
3703 }
3704l_skipped:
3705 rc = i_preCheckImageAvailability(stack);
3706 if (SUCCEEDED(rc))
3707 {
3708 /* current opened file isn't the same as passed one */
3709 if (RTStrICmp(diCurrent.strHref.c_str(), stack.pszOvaLookAheadName) != 0)
3710 {
3711 // availableImage contains the disk identifier (e.g. "vmdisk1"), which should exist
3712 // in the virtual system's disks map under that ID and also in the global images map
3713 // and find the disk from the OVF's disk list
3714 ovf::DiskImagesMap::const_iterator itDiskImage;
3715 for (itDiskImage = stack.mapDisks.begin();
3716 itDiskImage != stack.mapDisks.end();
3717 itDiskImage++)
3718 if (itDiskImage->second.strHref.compare(stack.pszOvaLookAheadName,
3719 Utf8Str::CaseInsensitive) == 0)
3720 break;
3721 if (itDiskImage == stack.mapDisks.end())
3722 {
3723 LogFunc(("Skipping '%s'\n", stack.pszOvaLookAheadName));
3724 RTVfsIoStrmRelease(stack.claimOvaLookAHead());
3725 goto l_skipped;
3726 }
3727 //throw setError(E_FAIL,
3728 // tr("Internal inconsistency looking up disk image '%s'. "
3729 // "Check compliance OVA package structure and file names "
3730 // "references in the section <References> in the OVF file."),
3731 // stack.pszOvaLookAheadName);
3732
3733 /* replace with a new found disk image */
3734 diCurrent = *(&itDiskImage->second);
3735
3736 /*
3737 * Again iterate over all given disk images of the virtual system
3738 * disks description using the found disk image
3739 */
3740 for (list<VirtualSystemDescriptionEntry*>::const_iterator itHD = avsdeHDs.begin();
3741 itHD != avsdeHDs.end();
3742 ++itHD)
3743 {
3744 VirtualSystemDescriptionEntry *vsdeHD = *itHD;
3745 if (vsdeHD->strRef == diCurrent.strDiskId)
3746 {
3747 vsdeTargetHD = vsdeHD;
3748 break;
3749 }
3750 }
3751
3752 /*
3753 * in this case it's an error because something is wrong with the OVF description file.
3754 * May be VBox imports OVA package with wrong file sequence inside the archive.
3755 */
3756 if (!vsdeTargetHD)
3757 throw setError(E_FAIL,
3758 tr("Internal inconsistency looking up disk image '%s'"),
3759 diCurrent.strHref.c_str());
3760
3761
3762
3763
3764
3765 }
3766 else
3767 {
3768 ++oit;
3769 }
3770 }
3771 else
3772 {
3773 ++oit;
3774 continue;
3775 }
3776 }
3777 else
3778 {
3779 /* just continue with normal files*/
3780 ++oit;
3781 }
3782
3783 /* Important! to store disk name for the next checks */
3784 disksResolvedNames.insert(diCurrent.strHref);
3785////// end of duplicated code.
3786 // there must be an image in the OVF disk structs with the same UUID
3787 bool fFound = false;
3788 Utf8Str strUuid;
3789
3790 // for each storage controller...
3791 for (settings::StorageControllersList::iterator sit = config.storageMachine.llStorageControllers.begin();
3792 sit != config.storageMachine.llStorageControllers.end();
3793 ++sit)
3794 {
3795 settings::StorageController &sc = *sit;
3796
3797 // find the OVF virtual system description entry for this storage controller
3798 switch (sc.storageBus)
3799 {
3800 case StorageBus_SATA:
3801 break;
3802 case StorageBus_SCSI:
3803 break;
3804 case StorageBus_IDE:
3805 break;
3806 case StorageBus_SAS:
3807 break;
3808 }
3809
3810 // for each medium attachment to this controller...
3811 for (settings::AttachedDevicesList::iterator dit = sc.llAttachedDevices.begin();
3812 dit != sc.llAttachedDevices.end();
3813 ++dit)
3814 {
3815 settings::AttachedDevice &d = *dit;
3816
3817 if (d.uuid.isZero())
3818 // empty DVD and floppy media
3819 continue;
3820
3821 // When repairing a broken VirtualBox xml config section (written
3822 // by VirtualBox versions earlier than 3.2.10) assume the disks
3823 // show up in the same order as in the OVF description.
3824 if (fRepairDuplicate)
3825 {
3826 VirtualSystemDescriptionEntry *vsdeHD = *avsdeHDsIt;
3827 ovf::DiskImagesMap::const_iterator itDiskImage = stack.mapDisks.find(vsdeHD->strRef);
3828 if (itDiskImage != stack.mapDisks.end())
3829 {
3830 const ovf::DiskImage &di = itDiskImage->second;
3831 d.uuid = Guid(di.uuidVBox);
3832 }
3833 ++avsdeHDsIt;
3834 }
3835
3836 // convert the Guid to string
3837 strUuid = d.uuid.toString();
3838
3839 if (diCurrent.uuidVBox != strUuid)
3840 {
3841 continue;
3842 }
3843
3844 /*
3845 * step 3: import disk
3846 */
3847 Utf8Str savedVBoxCurrent = vsdeTargetHD->strVBoxCurrent;
3848 ComObjPtr<Medium> pTargetHD;
3849
3850 i_importOneDiskImage(diCurrent,
3851 &vsdeTargetHD->strVBoxCurrent,
3852 pTargetHD,
3853 stack);
3854
3855 Bstr hdId;
3856
3857 ComObjPtr<MediumFormat> mediumFormat;
3858 rc = i_findMediumFormatFromDiskImage(diCurrent, mediumFormat);
3859 if (FAILED(rc))
3860 throw rc;
3861
3862 Bstr bstrFormatName;
3863 rc = mediumFormat->COMGETTER(Name)(bstrFormatName.asOutParam());
3864 if (FAILED(rc))
3865 throw rc;
3866
3867 Utf8Str vdf = Utf8Str(bstrFormatName);
3868
3869 if (vdf.compare("RAW", Utf8Str::CaseInsensitive) == 0)
3870 {
3871 ComPtr<IMedium> dvdImage(pTargetHD);
3872
3873 rc = mVirtualBox->OpenMedium(Bstr(vsdeTargetHD->strVBoxCurrent).raw(),
3874 DeviceType_DVD,
3875 AccessMode_ReadWrite,
3876 false,
3877 dvdImage.asOutParam());
3878
3879 if (FAILED(rc)) throw rc;
3880
3881 // ... and replace the old UUID in the machine config with the one of
3882 // the imported disk that was just created
3883 rc = dvdImage->COMGETTER(Id)(hdId.asOutParam());
3884 if (FAILED(rc)) throw rc;
3885 }
3886 else
3887 {
3888 // ... and replace the old UUID in the machine config with the one of
3889 // the imported disk that was just created
3890 rc = pTargetHD->COMGETTER(Id)(hdId.asOutParam());
3891 if (FAILED(rc)) throw rc;
3892 }
3893
3894 /* restore */
3895 vsdeTargetHD->strVBoxCurrent = savedVBoxCurrent;
3896
3897 /*
3898 * 1. saving original UUID for restoring in case of failure.
3899 * 2. replacement of original UUID by new UUID in the current VM config (settings::MachineConfigFile).
3900 */
3901 {
3902 rc = stack.saveOriginalUUIDOfAttachedDevice(d, Utf8Str(hdId));
3903 d.uuid = hdId;
3904 }
3905
3906 fFound = true;
3907 break;
3908 } // for (settings::AttachedDevicesList::const_iterator dit = sc.llAttachedDevices.begin();
3909 } // for (settings::StorageControllersList::const_iterator sit = config.storageMachine.llStorageControllers.begin();
3910
3911 // no disk with such a UUID found:
3912 if (!fFound)
3913 throw setError(E_FAIL,
3914 tr("<vbox:Machine> element in OVF contains a medium attachment for the disk image %s "
3915 "but the OVF describes no such image"),
3916 strUuid.c_str());
3917
3918 ++cImportedDisks;
3919
3920 }// while(oit != stack.mapDisks.end())
3921
3922
3923 /*
3924 * quantity of the imported disks isn't equal to the size of the avsdeHDs list.
3925 */
3926 if(cImportedDisks < avsdeHDs.size())
3927 {
3928 Log1Warning(("Not all disk images were imported for VM %s. Check OVF description file.",
3929 vmNameEntry->strOvf.c_str()));
3930 }
3931
3932 /*
3933 * step 4): create the machine and have it import the config
3934 */
3935
3936 ComObjPtr<Machine> pNewMachine;
3937 rc = pNewMachine.createObject();
3938 if (FAILED(rc)) throw rc;
3939
3940 // this magic constructor fills the new machine object with the MachineConfig
3941 // instance that we created from the vbox:Machine
3942 rc = pNewMachine->init(mVirtualBox,
3943 stack.strNameVBox,// name from OVF preparations; can be suffixed to avoid duplicates
3944 config); // the whole machine config
3945 if (FAILED(rc)) throw rc;
3946
3947 pReturnNewMachine = ComPtr<IMachine>(pNewMachine);
3948
3949 // and register it
3950 rc = mVirtualBox->RegisterMachine(pNewMachine);
3951 if (FAILED(rc)) throw rc;
3952
3953 // store new machine for roll-back in case of errors
3954 Bstr bstrNewMachineId;
3955 rc = pNewMachine->COMGETTER(Id)(bstrNewMachineId.asOutParam());
3956 if (FAILED(rc)) throw rc;
3957 m->llGuidsMachinesCreated.push_back(Guid(bstrNewMachineId));
3958
3959 LogFlowFuncLeave();
3960}
3961
3962/**
3963 * @throws HRESULT errors.
3964 */
3965void Appliance::i_importMachines(ImportStack &stack)
3966{
3967 // this is safe to access because this thread only gets started
3968 const ovf::OVFReader &reader = *m->pReader;
3969
3970 // create a session for the machine + disks we manipulate below
3971 HRESULT rc = stack.pSession.createInprocObject(CLSID_Session);
3972 ComAssertComRCThrowRC(rc);
3973
3974 list<ovf::VirtualSystem>::const_iterator it;
3975 list< ComObjPtr<VirtualSystemDescription> >::const_iterator it1;
3976 /* Iterate through all virtual systems of that appliance */
3977 size_t i = 0;
3978 for (it = reader.m_llVirtualSystems.begin(), it1 = m->virtualSystemDescriptions.begin();
3979 it != reader.m_llVirtualSystems.end() && it1 != m->virtualSystemDescriptions.end();
3980 ++it, ++it1, ++i)
3981 {
3982 const ovf::VirtualSystem &vsysThis = *it;
3983 ComObjPtr<VirtualSystemDescription> vsdescThis = (*it1);
3984
3985 ComPtr<IMachine> pNewMachine;
3986
3987 // there are two ways in which we can create a vbox machine from OVF:
3988 // -- either this OVF was written by vbox 3.2 or later, in which case there is a <vbox:Machine> element
3989 // in the <VirtualSystem>; then the VirtualSystemDescription::Data has a settings::MachineConfigFile
3990 // with all the machine config pretty-parsed;
3991 // -- or this is an OVF from an older vbox or an external source, and then we need to translate the
3992 // VirtualSystemDescriptionEntry and do import work
3993
3994 // Even for the vbox:Machine case, there are a number of configuration items that will be taken from
3995 // the OVF because otherwise the "override import parameters" mechanism in the GUI won't work.
3996
3997 // VM name
3998 std::list<VirtualSystemDescriptionEntry*> vsdeName = vsdescThis->i_findByType(VirtualSystemDescriptionType_Name);
3999 if (vsdeName.size() < 1)
4000 throw setError(VBOX_E_FILE_ERROR,
4001 tr("Missing VM name"));
4002 stack.strNameVBox = vsdeName.front()->strVBoxCurrent;
4003
4004 // have VirtualBox suggest where the filename would be placed so we can
4005 // put the disk images in the same directory
4006 Bstr bstrMachineFilename;
4007 rc = mVirtualBox->ComposeMachineFilename(Bstr(stack.strNameVBox).raw(),
4008 NULL /* aGroup */,
4009 NULL /* aCreateFlags */,
4010 NULL /* aBaseFolder */,
4011 bstrMachineFilename.asOutParam());
4012 if (FAILED(rc)) throw rc;
4013 // and determine the machine folder from that
4014 stack.strMachineFolder = bstrMachineFilename;
4015 stack.strMachineFolder.stripFilename();
4016 LogFunc(("i=%zu strName=%s bstrMachineFilename=%ls\n", i, stack.strNameVBox.c_str(), bstrMachineFilename.raw()));
4017
4018 // guest OS type
4019 std::list<VirtualSystemDescriptionEntry*> vsdeOS;
4020 vsdeOS = vsdescThis->i_findByType(VirtualSystemDescriptionType_OS);
4021 if (vsdeOS.size() < 1)
4022 throw setError(VBOX_E_FILE_ERROR,
4023 tr("Missing guest OS type"));
4024 stack.strOsTypeVBox = vsdeOS.front()->strVBoxCurrent;
4025
4026 // CPU count
4027 std::list<VirtualSystemDescriptionEntry*> vsdeCPU = vsdescThis->i_findByType(VirtualSystemDescriptionType_CPU);
4028 if (vsdeCPU.size() != 1)
4029 throw setError(VBOX_E_FILE_ERROR, tr("CPU count missing"));
4030
4031 stack.cCPUs = vsdeCPU.front()->strVBoxCurrent.toUInt32();
4032 // We need HWVirt & IO-APIC if more than one CPU is requested
4033 if (stack.cCPUs > 1)
4034 {
4035 stack.fForceHWVirt = true;
4036 stack.fForceIOAPIC = true;
4037 }
4038
4039 // RAM
4040 std::list<VirtualSystemDescriptionEntry*> vsdeRAM = vsdescThis->i_findByType(VirtualSystemDescriptionType_Memory);
4041 if (vsdeRAM.size() != 1)
4042 throw setError(VBOX_E_FILE_ERROR, tr("RAM size missing"));
4043 stack.ulMemorySizeMB = (ULONG)vsdeRAM.front()->strVBoxCurrent.toUInt64();
4044
4045#ifdef VBOX_WITH_USB
4046 // USB controller
4047 std::list<VirtualSystemDescriptionEntry*> vsdeUSBController =
4048 vsdescThis->i_findByType(VirtualSystemDescriptionType_USBController);
4049 // USB support is enabled if there's at least one such entry; to disable USB support,
4050 // the type of the USB item would have been changed to "ignore"
4051 stack.fUSBEnabled = !vsdeUSBController.empty();
4052#endif
4053 // audio adapter
4054 std::list<VirtualSystemDescriptionEntry*> vsdeAudioAdapter =
4055 vsdescThis->i_findByType(VirtualSystemDescriptionType_SoundCard);
4056 /* @todo: we support one audio adapter only */
4057 if (!vsdeAudioAdapter.empty())
4058 stack.strAudioAdapter = vsdeAudioAdapter.front()->strVBoxCurrent;
4059
4060 // for the description of the new machine, always use the OVF entry, the user may have changed it in the import config
4061 std::list<VirtualSystemDescriptionEntry*> vsdeDescription =
4062 vsdescThis->i_findByType(VirtualSystemDescriptionType_Description);
4063 if (!vsdeDescription.empty())
4064 stack.strDescription = vsdeDescription.front()->strVBoxCurrent;
4065
4066 // import vbox:machine or OVF now
4067 if (vsdescThis->m->pConfig)
4068 // vbox:Machine config
4069 i_importVBoxMachine(vsdescThis, pNewMachine, stack);
4070 else
4071 // generic OVF config
4072 i_importMachineGeneric(vsysThis, vsdescThis, pNewMachine, stack);
4073
4074 } // for (it = pAppliance->m->llVirtualSystems.begin() ...
4075}
4076
4077HRESULT Appliance::ImportStack::saveOriginalUUIDOfAttachedDevice(settings::AttachedDevice &device,
4078 const Utf8Str &newlyUuid)
4079{
4080 HRESULT rc = S_OK;
4081
4082 /* save for restoring */
4083 mapNewUUIDsToOriginalUUIDs.insert(std::make_pair(newlyUuid, device.uuid.toString()));
4084
4085 return rc;
4086}
4087
4088HRESULT Appliance::ImportStack::restoreOriginalUUIDOfAttachedDevice(settings::MachineConfigFile *config)
4089{
4090 HRESULT rc = S_OK;
4091
4092 settings::StorageControllersList &llControllers = config->storageMachine.llStorageControllers;
4093 settings::StorageControllersList::iterator itscl;
4094 for (itscl = llControllers.begin();
4095 itscl != llControllers.end();
4096 ++itscl)
4097 {
4098 settings::AttachedDevicesList &llAttachments = itscl->llAttachedDevices;
4099 settings::AttachedDevicesList::iterator itadl = llAttachments.begin();
4100 while (itadl != llAttachments.end())
4101 {
4102 std::map<Utf8Str , Utf8Str>::iterator it =
4103 mapNewUUIDsToOriginalUUIDs.find(itadl->uuid.toString());
4104 if(it!=mapNewUUIDsToOriginalUUIDs.end())
4105 {
4106 Utf8Str uuidOriginal = it->second;
4107 itadl->uuid = Guid(uuidOriginal);
4108 mapNewUUIDsToOriginalUUIDs.erase(it->first);
4109 }
4110 ++itadl;
4111 }
4112 }
4113
4114 return rc;
4115}
4116
4117/**
4118 * @throws Nothing
4119 */
4120RTVFSIOSTREAM Appliance::ImportStack::claimOvaLookAHead(void)
4121{
4122 RTVFSIOSTREAM hVfsIos = this->hVfsIosOvaLookAhead;
4123 this->hVfsIosOvaLookAhead = NIL_RTVFSIOSTREAM;
4124 /* We don't free the name since it may be referenced in error messages and such. */
4125 return hVfsIos;
4126}
4127
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette