VirtualBox

source: vbox/trunk/src/VBox/Devices/Bus/DevIommuIntel.cpp@ 89589

最後變更 在這個檔案從89589是 89589,由 vboxsync 提交於 4 年 前

Intel IOMMU: bugref:9967 Padding and avoid including iommu-intel.h in DevIommuIntel.h.

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Author Date Id Revision
檔案大小: 195.5 KB
 
1/* $Id: DevIommuIntel.cpp 89589 2021-06-10 08:41:38Z vboxsync $ */
2/** @file
3 * IOMMU - Input/Output Memory Management Unit - Intel implementation.
4 */
5
6/*
7 * Copyright (C) 2021 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DEV_IOMMU
23#include "VBoxDD.h"
24#include "DevIommuIntel.h"
25
26#include <VBox/iommu-intel.h>
27#include <iprt/mem.h>
28#include <iprt/string.h>
29
30
31/*********************************************************************************************************************************
32* Defined Constants And Macros *
33*********************************************************************************************************************************/
34/** Gets the low uint32_t of a uint64_t or something equivalent.
35 *
36 * This is suitable for casting constants outside code (since RT_LO_U32 can't be
37 * used as it asserts for correctness when compiling on certain compilers). */
38#define DMAR_LO_U32(a) (uint32_t)(UINT32_MAX & (a))
39
40/** Gets the high uint32_t of a uint64_t or something equivalent.
41 *
42 * This is suitable for casting constants outside code (since RT_HI_U32 can't be
43 * used as it asserts for correctness when compiling on certain compilers). */
44#define DMAR_HI_U32(a) (uint32_t)((a) >> 32)
45
46/** Asserts MMIO access' offset and size are valid or returns appropriate error
47 * code suitable for returning from MMIO access handlers. */
48#define DMAR_ASSERT_MMIO_ACCESS_RET(a_off, a_cb) \
49 do { \
50 AssertReturn((a_cb) == 4 || (a_cb) == 8, VINF_IOM_MMIO_UNUSED_FF); \
51 AssertReturn(!((a_off) & ((a_cb) - 1)), VINF_IOM_MMIO_UNUSED_FF); \
52 } while (0)
53
54/** Checks if the MMIO offset is valid. */
55#define DMAR_IS_MMIO_OFF_VALID(a_off) ( (a_off) < DMAR_MMIO_GROUP_0_OFF_END \
56 || (a_off) - DMAR_MMIO_GROUP_1_OFF_FIRST < DMAR_MMIO_GROUP_1_SIZE)
57
58/** Acquires the DMAR lock but returns with the given busy error code on failure. */
59#define DMAR_LOCK_RET(a_pDevIns, a_pThisCC, a_rcBusy) \
60 do { \
61 if ((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), (a_rcBusy)) == VINF_SUCCESS) \
62 { /* likely */ } \
63 else \
64 return (a_rcBusy); \
65 } while (0)
66
67/** Acquires the DMAR lock (not expected to fail). */
68#ifdef IN_RING3
69# define DMAR_LOCK(a_pDevIns, a_pThisCC) (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), VERR_IGNORED)
70#else
71# define DMAR_LOCK(a_pDevIns, a_pThisCC) \
72 do { \
73 int const rcLock = (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), VINF_SUCCESS); \
74 AssertRC(rcLock); \
75 } while (0)
76#endif
77
78/** Release the DMAR lock. */
79#define DMAR_UNLOCK(a_pDevIns, a_pThisCC) (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnUnlock(a_pDevIns)
80
81/** Asserts that the calling thread owns the DMAR lock. */
82#define DMAR_ASSERT_LOCK_IS_OWNER(a_pDevIns, a_pThisCC) \
83 do { \
84 Assert((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLockIsOwner(a_pDevIns)); \
85 RT_NOREF1(a_pThisCC); \
86 } while (0)
87
88/** Asserts that the calling thread does not own the DMAR lock. */
89#define DMAR_ASSERT_LOCK_IS_NOT_OWNER(a_pDevIns, a_pThisCC) \
90 do { \
91 Assert((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLockIsOwner(a_pDevIns) == false); \
92 RT_NOREF1(a_pThisCC); \
93 } while (0)
94
95/** The number of fault recording registers our implementation supports.
96 * Normal guest operation shouldn't trigger faults anyway, so we only support the
97 * minimum number of registers (which is 1).
98 *
99 * See Intel VT-d spec. 10.4.2 "Capability Register" (CAP_REG.NFR). */
100#define DMAR_FRCD_REG_COUNT UINT32_C(1)
101
102/** Number of register groups (used in saved states). */
103#define DMAR_MMIO_GROUP_COUNT 2
104/** Offset of first register in group 0. */
105#define DMAR_MMIO_GROUP_0_OFF_FIRST VTD_MMIO_OFF_VER_REG
106/** Offset of last register in group 0 (inclusive). */
107#define DMAR_MMIO_GROUP_0_OFF_LAST VTD_MMIO_OFF_MTRR_PHYSMASK9_REG
108/** Last valid offset in group 0 (exclusive). */
109#define DMAR_MMIO_GROUP_0_OFF_END (DMAR_MMIO_GROUP_0_OFF_LAST + 8 /* sizeof MTRR_PHYSMASK9_REG */)
110/** Size of the group 0 (in bytes). */
111#define DMAR_MMIO_GROUP_0_SIZE (DMAR_MMIO_GROUP_0_OFF_END - DMAR_MMIO_GROUP_0_OFF_FIRST)
112/**< Implementation-specific MMIO offset of IVA_REG. */
113#define DMAR_MMIO_OFF_IVA_REG 0xe50
114/**< Implementation-specific MMIO offset of IOTLB_REG. */
115#define DMAR_MMIO_OFF_IOTLB_REG 0xe58
116/**< Implementation-specific MMIO offset of FRCD_LO_REG. */
117#define DMAR_MMIO_OFF_FRCD_LO_REG 0xe70
118/**< Implementation-specific MMIO offset of FRCD_HI_REG. */
119#define DMAR_MMIO_OFF_FRCD_HI_REG 0xe78
120AssertCompile(!(DMAR_MMIO_OFF_FRCD_LO_REG & 0xf));
121
122/** Offset of first register in group 1. */
123#define DMAR_MMIO_GROUP_1_OFF_FIRST VTD_MMIO_OFF_VCCAP_REG
124/** Offset of last register in group 1 (inclusive). */
125#define DMAR_MMIO_GROUP_1_OFF_LAST (DMAR_MMIO_OFF_FRCD_LO_REG + 8) * DMAR_FRCD_REG_COUNT
126/** Last valid offset in group 1 (exclusive). */
127#define DMAR_MMIO_GROUP_1_OFF_END (DMAR_MMIO_GROUP_1_OFF_LAST + 8 /* sizeof FRCD_HI_REG */)
128/** Size of the group 1 (in bytes). */
129#define DMAR_MMIO_GROUP_1_SIZE (DMAR_MMIO_GROUP_1_OFF_END - DMAR_MMIO_GROUP_1_OFF_FIRST)
130
131/** DMAR implementation's major version number (exposed to software).
132 * We report 6 as the major version since we support queued-invalidations as
133 * software may make assumptions based on that.
134 *
135 * See Intel VT-d spec. 10.4.7 "Context Command Register" (CCMD_REG.CAIG). */
136#define DMAR_VER_MAJOR 6
137/** DMAR implementation's minor version number (exposed to software). */
138#define DMAR_VER_MINOR 0
139
140/** Number of domain supported (0=16, 1=64, 2=256, 3=1K, 4=4K, 5=16K, 6=64K,
141 * 7=Reserved). */
142#define DMAR_ND 6
143
144/** @name DMAR_PERM_XXX: DMA request permissions.
145 * The order of R, W, X bits is important as it corresponds to those bits in
146 * page-table entries.
147 *
148 * @{ */
149/** DMA request permission: Read. */
150#define DMAR_PERM_READ RT_BIT(0)
151/** DMA request permission: Write. */
152#define DMAR_PERM_WRITE RT_BIT(1)
153/** DMA request permission: Execute (ER). */
154#define DMAR_PERM_EXE RT_BIT(2)
155/** DMA request permission: Supervisor privilege (PR). */
156#define DMAR_PERM_PRIV RT_BIT(3)
157/** DMA request permissions: All. */
158#define DMAR_PERM_ALL (DMAR_PERM_READ | DMAR_PERM_WRITE | DMAR_PERM_EXE | DMAR_PERM_PRIV)
159/** @} */
160
161/** Release log prefix string. */
162#define DMAR_LOG_PFX "Intel-IOMMU"
163/** The current saved state version. */
164#define DMAR_SAVED_STATE_VERSION 1
165
166
167/*********************************************************************************************************************************
168* Structures and Typedefs *
169*********************************************************************************************************************************/
170/**
171 * DMAR error diagnostics.
172 * Sorted alphabetically so it's easier to add and locate items, no other reason.
173 *
174 * @note Members of this enum are used as array indices, so no gaps in enum
175 * values are not allowed. Update g_apszDmarDiagDesc when you modify
176 * fields in this enum.
177 */
178typedef enum
179{
180 /* No error, this must be zero! */
181 kDmarDiag_None = 0,
182
183 /* Address Translation Faults. */
184 kDmarDiag_At_Lm_CtxEntry_Not_Present,
185 kDmarDiag_At_Lm_CtxEntry_Read_Failed,
186 kDmarDiag_At_Lm_CtxEntry_Rsvd,
187 kDmarDiag_At_Lm_Pt_At_Block,
188 kDmarDiag_At_Lm_Pt_Aw_Invalid,
189 kDmarDiag_At_Lm_RootEntry_Not_Present,
190 kDmarDiag_At_Lm_RootEntry_Read_Failed,
191 kDmarDiag_At_Lm_RootEntry_Rsvd,
192 kDmarDiag_At_Lm_Tt_Invalid,
193 kDmarDiag_At_Lm_Ut_At_Block,
194 kDmarDiag_At_Lm_Ut_Aw_Invalid,
195 kDmarDiag_At_Rta_Adms_Not_Supported,
196 kDmarDiag_At_Rta_Rsvd,
197 kDmarDiag_At_Rta_Smts_Not_Supported,
198 kDmarDiag_At_Xm_AddrIn_Invalid,
199 kDmarDiag_At_Xm_AddrOut_Invalid,
200 kDmarDiag_At_Xm_Perm_Denied,
201 kDmarDiag_At_Xm_Pte_Rsvd,
202 kDmarDiag_At_Xm_Pte_Sllps_Invalid,
203 kDmarDiag_At_Xm_Read_Pte_Failed,
204 kDmarDiag_At_Xm_Slpptr_Read_Failed,
205
206 /* CCMD_REG faults. */
207 kDmarDiag_CcmdReg_Not_Supported,
208 kDmarDiag_CcmdReg_Qi_Enabled,
209 kDmarDiag_CcmdReg_Ttm_Invalid,
210
211 /* IQA_REG faults. */
212 kDmarDiag_IqaReg_Dsc_Fetch_Error,
213 kDmarDiag_IqaReg_Dw_128_Invalid,
214 kDmarDiag_IqaReg_Dw_256_Invalid,
215
216 /* Invalidation Queue Error Info. */
217 kDmarDiag_Iqei_Dsc_Type_Invalid,
218 kDmarDiag_Iqei_Inv_Wait_Dsc_0_1_Rsvd,
219 kDmarDiag_Iqei_Inv_Wait_Dsc_2_3_Rsvd,
220 kDmarDiag_Iqei_Inv_Wait_Dsc_Invalid,
221 kDmarDiag_Iqei_Ttm_Rsvd,
222
223 /* IQT_REG faults. */
224 kDmarDiag_IqtReg_Qt_Invalid,
225 kDmarDiag_IqtReg_Qt_Not_Aligned,
226
227 /* Interrupt Remapping Faults. */
228 kDmarDiag_Ir_Cfi_Blocked,
229 kDmarDiag_Ir_Rfi_Intr_Index_Invalid,
230 kDmarDiag_Ir_Rfi_Irte_Mode_Invalid,
231 kDmarDiag_Ir_Rfi_Irte_Not_Present,
232 kDmarDiag_Ir_Rfi_Irte_Read_Failed,
233 kDmarDiag_Ir_Rfi_Irte_Rsvd,
234 kDmarDiag_Ir_Rfi_Irte_Svt_Bus,
235 kDmarDiag_Ir_Rfi_Irte_Svt_Masked,
236 kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd,
237 kDmarDiag_Ir_Rfi_Rsvd,
238
239 /* Member for determining array index limit. */
240 kDmarDiag_End,
241
242 /* Usual 32-bit type size hack. */
243 kDmarDiag_32Bit_Hack = 0x7fffffff
244} DMARDIAG;
245AssertCompileSize(DMARDIAG, 4);
246
247/** DMAR diagnostic enum description expansion.
248 * The below construct ensures typos in the input to this macro are caught
249 * during compile time. */
250#define DMARDIAG_DESC(a_Name) RT_CONCAT(kDmarDiag_, a_Name) < kDmarDiag_End ? RT_STR(a_Name) : "Ignored"
251
252/** DMAR diagnostics description for members in DMARDIAG. */
253static const char *const g_apszDmarDiagDesc[] =
254{
255 DMARDIAG_DESC(None ),
256
257 /* Address Translation Faults. */
258 DMARDIAG_DESC(At_Lm_CtxEntry_Not_Present ),
259 DMARDIAG_DESC(At_Lm_CtxEntry_Read_Failed ),
260 DMARDIAG_DESC(At_Lm_CtxEntry_Rsvd ),
261 DMARDIAG_DESC(At_Lm_Pt_At_Block ),
262 DMARDIAG_DESC(At_Lm_Pt_Aw_Invalid ),
263 DMARDIAG_DESC(At_Lm_RootEntry_Not_Present),
264 DMARDIAG_DESC(At_Lm_RootEntry_Read_Failed),
265 DMARDIAG_DESC(At_Lm_RootEntry_Rsvd ),
266 DMARDIAG_DESC(At_Lm_Tt_Invalid ),
267 DMARDIAG_DESC(At_Lm_Ut_At_Block ),
268 DMARDIAG_DESC(At_Lm_Ut_Aw_Invalid ),
269 DMARDIAG_DESC(At_Rta_Adms_Not_Supported ),
270 DMARDIAG_DESC(At_Rta_Rsvd ),
271 DMARDIAG_DESC(At_Rta_Smts_Not_Supported ),
272 DMARDIAG_DESC(At_Xm_AddrIn_Invalid ),
273 DMARDIAG_DESC(At_Xm_AddrOut_Invalid ),
274 DMARDIAG_DESC(At_Xm_Perm_Denied ),
275 DMARDIAG_DESC(At_Xm_Pte_Rsvd ),
276 DMARDIAG_DESC(At_Xm_Pte_Sllps_Invalid ),
277 DMARDIAG_DESC(At_Xm_Read_Pte_Failed ),
278 DMARDIAG_DESC(At_Xm_Slpptr_Read_Failed ),
279
280 /* CCMD_REG faults. */
281 DMARDIAG_DESC(CcmdReg_Not_Supported ),
282 DMARDIAG_DESC(CcmdReg_Qi_Enabled ),
283 DMARDIAG_DESC(CcmdReg_Ttm_Invalid ),
284
285 /* IQA_REG faults. */
286 DMARDIAG_DESC(IqaReg_Dsc_Fetch_Error ),
287 DMARDIAG_DESC(IqaReg_Dw_128_Invalid ),
288 DMARDIAG_DESC(IqaReg_Dw_256_Invalid ),
289
290 /* Invalidation Queue Error Info. */
291 DMARDIAG_DESC(Iqei_Dsc_Type_Invalid ),
292 DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_0_1_Rsvd ),
293 DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_2_3_Rsvd ),
294 DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_Invalid ),
295 DMARDIAG_DESC(Iqei_Ttm_Rsvd ),
296
297 /* IQT_REG faults. */
298 DMARDIAG_DESC(IqtReg_Qt_Invalid ),
299 DMARDIAG_DESC(IqtReg_Qt_Not_Aligned ),
300
301 /* Interrupt remapping faults. */
302 DMARDIAG_DESC(Ir_Cfi_Blocked ),
303 DMARDIAG_DESC(Ir_Rfi_Intr_Index_Invalid ),
304 DMARDIAG_DESC(Ir_Rfi_Irte_Mode_Invalid ),
305 DMARDIAG_DESC(Ir_Rfi_Irte_Not_Present ),
306 DMARDIAG_DESC(Ir_Rfi_Irte_Read_Failed ),
307 DMARDIAG_DESC(Ir_Rfi_Irte_Rsvd ),
308 DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Bus ),
309 DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Masked ),
310 DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Rsvd ),
311 DMARDIAG_DESC(Ir_Rfi_Rsvd ),
312 /* kDmarDiag_End */
313};
314AssertCompile(RT_ELEMENTS(g_apszDmarDiagDesc) == kDmarDiag_End);
315#undef DMARDIAG_DESC
316
317/**
318 * The shared DMAR device state.
319 */
320typedef struct DMAR
321{
322 /** IOMMU device index. */
323 uint32_t idxIommu;
324 /** Padding. */
325 uint32_t u32Padding0;
326
327 /** Registers (group 0). */
328 uint8_t abRegs0[DMAR_MMIO_GROUP_0_SIZE];
329 /** Registers (group 1). */
330 uint8_t abRegs1[DMAR_MMIO_GROUP_1_SIZE];
331
332 /** @name Lazily activated registers.
333 * These are the active values for lazily activated registers. Software is free to
334 * modify the actual register values while remapping/translation is enabled but they
335 * take effect only when explicitly signaled by software, hence we need to hold the
336 * active values separately.
337 * @{ */
338 /** Currently active IRTA_REG. */
339 uint64_t uIrtaReg;
340 /** Currently active RTADDR_REG. */
341 uint64_t uRtaddrReg;
342 /** @} */
343
344 /** @name Register copies for a tiny bit faster and more convenient access.
345 * @{ */
346 /** Copy of VER_REG. */
347 uint8_t uVerReg;
348 /** Alignment. */
349 uint8_t abPadding0[7];
350 /** Copy of CAP_REG. */
351 uint64_t fCapReg;
352 /** Copy of ECAP_REG. */
353 uint64_t fExtCapReg;
354 /** @} */
355
356 /** Host-address width (HAW) base address mask. */
357 uint64_t fHawBaseMask;
358 /** Maximum guest-address width (MGAW) invalid address mask. */
359 uint64_t fMgawInvMask;
360 /** Maximum supported paging level (3, 4 or 5). */
361 uint8_t cMaxPagingLevel;
362 /** DMA request valid permissions mask. */
363 uint8_t fPermValidMask;
364 /** Alignment. */
365 uint8_t abPadding1[6];
366
367 /** The event semaphore the invalidation-queue thread waits on. */
368 SUPSEMEVENT hEvtInvQueue;
369 /** Error diagnostic. */
370 DMARDIAG enmDiag;
371 /** Padding. */
372 uint32_t uPadding0;
373 /** The MMIO handle. */
374 IOMMMIOHANDLE hMmio;
375
376#ifdef VBOX_WITH_STATISTICS
377 STAMCOUNTER StatMmioReadR3; /**< Number of MMIO reads in R3. */
378 STAMCOUNTER StatMmioReadRZ; /**< Number of MMIO reads in RZ. */
379 STAMCOUNTER StatMmioWriteR3; /**< Number of MMIO writes in R3. */
380 STAMCOUNTER StatMmioWriteRZ; /**< Number of MMIO writes in RZ. */
381
382 STAMCOUNTER StatMsiRemapCfiR3; /**< Number of compatibility-format interrupts remap requests in R3. */
383 STAMCOUNTER StatMsiRemapCfiRZ; /**< Number of compatibility-format interrupts remap requests in RZ. */
384 STAMCOUNTER StatMsiRemapRfiR3; /**< Number of remappable-format interrupts remap requests in R3. */
385 STAMCOUNTER StatMsiRemapRfiRZ; /**< Number of remappable-format interrupts remap requests in RZ. */
386
387 STAMCOUNTER StatMemReadR3; /**< Number of memory read translation requests in R3. */
388 STAMCOUNTER StatMemReadRZ; /**< Number of memory read translation requests in RZ. */
389 STAMCOUNTER StatMemWriteR3; /**< Number of memory write translation requests in R3. */
390 STAMCOUNTER StatMemWriteRZ; /**< Number of memory write translation requests in RZ. */
391
392 STAMCOUNTER StatMemBulkReadR3; /**< Number of memory read bulk translation requests in R3. */
393 STAMCOUNTER StatMemBulkReadRZ; /**< Number of memory read bulk translation requests in RZ. */
394 STAMCOUNTER StatMemBulkWriteR3; /**< Number of memory write bulk translation requests in R3. */
395 STAMCOUNTER StatMemBulkWriteRZ; /**< Number of memory write bulk translation requests in RZ. */
396
397 STAMCOUNTER StatCcInvDsc; /**< Number of Context-cache descriptors processed. */
398 STAMCOUNTER StatIotlbInvDsc; /**< Number of IOTLB descriptors processed. */
399 STAMCOUNTER StatDevtlbInvDsc; /**< Number of Device-TLB descriptors processed. */
400 STAMCOUNTER StatIecInvDsc; /**< Number of Interrupt-Entry cache descriptors processed. */
401 STAMCOUNTER StatInvWaitDsc; /**< Number of Invalidation wait descriptors processed. */
402 STAMCOUNTER StatPasidIotlbInvDsc; /**< Number of PASID-based IOTLB descriptors processed. */
403 STAMCOUNTER StatPasidCacheInvDsc; /**< Number of PASID-cache descriptors processed. */
404 STAMCOUNTER StatPasidDevtlbInvDsc; /**< Number of PASID-based device-TLB descriptors processed. */
405#endif
406} DMAR;
407/** Pointer to the DMAR device state. */
408typedef DMAR *PDMAR;
409/** Pointer to the const DMAR device state. */
410typedef DMAR const *PCDMAR;
411AssertCompileMemberAlignment(DMAR, abRegs0, 8);
412AssertCompileMemberAlignment(DMAR, abRegs1, 8);
413
414/**
415 * The ring-3 DMAR device state.
416 */
417typedef struct DMARR3
418{
419 /** Device instance. */
420 PPDMDEVINSR3 pDevInsR3;
421 /** The IOMMU helper. */
422 R3PTRTYPE(PCPDMIOMMUHLPR3) pIommuHlpR3;
423 /** The invalidation-queue thread. */
424 R3PTRTYPE(PPDMTHREAD) pInvQueueThread;
425} DMARR3;
426/** Pointer to the ring-3 DMAR device state. */
427typedef DMARR3 *PDMARR3;
428/** Pointer to the const ring-3 DMAR device state. */
429typedef DMARR3 const *PCDMARR3;
430
431/**
432 * The ring-0 DMAR device state.
433 */
434typedef struct DMARR0
435{
436 /** Device instance. */
437 PPDMDEVINSR0 pDevInsR0;
438 /** The IOMMU helper. */
439 R0PTRTYPE(PCPDMIOMMUHLPR0) pIommuHlpR0;
440} DMARR0;
441/** Pointer to the ring-0 IOMMU device state. */
442typedef DMARR0 *PDMARR0;
443/** Pointer to the const ring-0 IOMMU device state. */
444typedef DMARR0 const *PCDMARR0;
445
446/**
447 * The raw-mode DMAR device state.
448 */
449typedef struct DMARRC
450{
451 /** Device instance. */
452 PPDMDEVINSRC pDevInsRC;
453 /** The IOMMU helper. */
454 RCPTRTYPE(PCPDMIOMMUHLPRC) pIommuHlpRC;
455} DMARRC;
456/** Pointer to the raw-mode DMAR device state. */
457typedef DMARRC *PDMARRC;
458/** Pointer to the const raw-mode DMAR device state. */
459typedef DMARRC const *PCIDMARRC;
460
461/** The DMAR device state for the current context. */
462typedef CTX_SUFF(DMAR) DMARCC;
463/** Pointer to the DMAR device state for the current context. */
464typedef CTX_SUFF(PDMAR) PDMARCC;
465/** Pointer to the const DMAR device state for the current context. */
466typedef CTX_SUFF(PDMAR) const PCDMARCC;
467
468/**
469 * DMAR originated events that generate interrupts.
470 */
471typedef enum DMAREVENTTYPE
472{
473 /** Invalidation completion event. */
474 DMAREVENTTYPE_INV_COMPLETE = 0,
475 /** Fault event. */
476 DMAREVENTTYPE_FAULT
477} DMAREVENTTYPE;
478
479/**
480 * I/O Page.
481 */
482typedef struct DMARIOPAGE
483{
484 /** The base DMA address of a page. */
485 RTGCPHYS GCPhysBase;
486 /** The page shift. */
487 uint8_t cShift;
488 /** The permissions of this page (DMAR_PERM_XXX). */
489 uint8_t fPerm;
490} DMARIOPAGE;
491/** Pointer to an I/O page. */
492typedef DMARIOPAGE *PDMARIOPAGE;
493/** Pointer to a const I/O address range. */
494typedef DMARIOPAGE const *PCDMARIOPAGE;
495
496/**
497 * I/O Address Range.
498 */
499typedef struct DMARIOADDRRANGE
500{
501 /** The starting DMA address of this range. */
502 uint64_t uAddr;
503 /** The size of the range (in bytes). */
504 size_t cb;
505 /** The permissions of this range (DMAR_PERM_XXX). */
506 uint8_t fPerm;
507} DMARIOADDRRANGE;
508/** Pointer to an I/O address range. */
509typedef DMARIOADDRRANGE *PDMARIOADDRRANGE;
510/** Pointer to a const I/O address range. */
511typedef DMARIOADDRRANGE const *PCDMARIOADDRRANGE;
512
513/**
514 * DMA Memory Request (Input).
515 */
516typedef struct DMARMEMREQIN
517{
518 /** The address range being accessed. */
519 DMARIOADDRRANGE AddrRange;
520 /** The source device ID (bus, device, function). */
521 uint16_t idDevice;
522 /** The PASID if present (can be NIL_PCIPASID). */
523 PCIPASID Pasid;
524 /* The address translation type. */
525 PCIADDRTYPE enmAddrType;
526 /** The request type. */
527 VTDREQTYPE enmReqType;
528} DMARMEMREQIN;
529/** Pointer to a DMA memory request input. */
530typedef DMARMEMREQIN *PDMARMEMREQIN;
531/** Pointer to a const DMA memory input. */
532typedef DMARMEMREQIN const *PCDMARMEMREQIN;
533
534/**
535 * DMA Memory Request (Output).
536 */
537typedef struct DMARMEMREQOUT
538{
539 /** The address range of the translated region. */
540 DMARIOADDRRANGE AddrRange;
541 /** The domain ID of the translated region. */
542 uint16_t idDomain;
543} DMARMEMREQOUT;
544/** Pointer to a DMA memory request output. */
545typedef DMARMEMREQOUT *PDMARMEMREQOUT;
546/** Pointer to a const DMA memory request output. */
547typedef DMARMEMREQOUT const *PCDMARMEMREQOUT;
548
549/**
550 * DMA Memory Request (Auxiliary Info).
551 * These get updated and used as part of the translation process.
552 */
553typedef struct DMARMEMREQAUX
554{
555 /** The table translation mode (VTD_TTM_XXX). */
556 uint8_t fTtm;
557 /** The fault processing disabled (FPD) bit. */
558 uint8_t fFpd;
559 /** The paging level of the translation. */
560 uint8_t cPagingLevel;
561 uint8_t abPadding[5];
562 /** The address of the first-level page-table. */
563 uint64_t GCPhysFlPt;
564 /** The address of second-level page-table. */
565 uint64_t GCPhysSlPt;
566} DMARMEMREQAUX;
567/** Pointer to a DMA memory request output. */
568typedef DMARMEMREQAUX *PDMARMEMREQAUX;
569/** Pointer to a const DMA memory request output. */
570typedef DMARMEMREQAUX const *PCDMARMEMREQAUX;
571
572/**
573 * DMA Memory Request Remapping Information.
574 */
575typedef struct DMARMEMREQREMAP
576{
577 /** The DMA memory request input. */
578 DMARMEMREQIN In;
579 /** DMA memory request auxiliary information. */
580 DMARMEMREQAUX Aux;
581 /** The DMA memory request output. */
582 DMARMEMREQOUT Out;
583} DMARMEMREQREMAP;
584/** Pointer to a DMA remap info. */
585typedef DMARMEMREQREMAP *PDMARMEMREQREMAP;
586/** Pointer to a const DMA remap info. */
587typedef DMARMEMREQREMAP const *PCDMARMEMREQREMAP;
588
589/**
590 * Callback function to lookup a DMA address.
591 *
592 * @returns VBox status code.
593 * @param pDevIns The IOMMU device instance.
594 * @param pMemReqIn The DMA memory request input.
595 * @param pMemReqAux The DMA memory request auxiliary info.
596 * @param pIoPageOut Where to store the output of the lookup.
597 */
598typedef DECLCALLBACKTYPE(int, FNDMADDRLOOKUP,(PPDMDEVINS pDevIns, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux,
599 PDMARIOPAGE pIoPageOut));
600/** Pointer to a DMA address-lookup function. */
601typedef FNDMADDRLOOKUP *PFNDMADDRLOOKUP;
602
603
604/*********************************************************************************************************************************
605* Global Variables *
606*********************************************************************************************************************************/
607/**
608 * Read-write masks for DMAR registers (group 0).
609 */
610static uint32_t const g_au32RwMasks0[] =
611{
612 /* Offset Register Low High */
613 /* 0x000 VER_REG */ VTD_VER_REG_RW_MASK,
614 /* 0x004 Reserved */ 0,
615 /* 0x008 CAP_REG */ DMAR_LO_U32(VTD_CAP_REG_RW_MASK), DMAR_HI_U32(VTD_CAP_REG_RW_MASK),
616 /* 0x010 ECAP_REG */ DMAR_LO_U32(VTD_ECAP_REG_RW_MASK), DMAR_HI_U32(VTD_ECAP_REG_RW_MASK),
617 /* 0x018 GCMD_REG */ VTD_GCMD_REG_RW_MASK,
618 /* 0x01c GSTS_REG */ VTD_GSTS_REG_RW_MASK,
619 /* 0x020 RTADDR_REG */ DMAR_LO_U32(VTD_RTADDR_REG_RW_MASK), DMAR_HI_U32(VTD_RTADDR_REG_RW_MASK),
620 /* 0x028 CCMD_REG */ DMAR_LO_U32(VTD_CCMD_REG_RW_MASK), DMAR_HI_U32(VTD_CCMD_REG_RW_MASK),
621 /* 0x030 Reserved */ 0,
622 /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW_MASK,
623 /* 0x038 FECTL_REG */ VTD_FECTL_REG_RW_MASK,
624 /* 0x03c FEDATA_REG */ VTD_FEDATA_REG_RW_MASK,
625 /* 0x040 FEADDR_REG */ VTD_FEADDR_REG_RW_MASK,
626 /* 0x044 FEUADDR_REG */ VTD_FEUADDR_REG_RW_MASK,
627 /* 0x048 Reserved */ 0, 0,
628 /* 0x050 Reserved */ 0, 0,
629 /* 0x058 AFLOG_REG */ DMAR_LO_U32(VTD_AFLOG_REG_RW_MASK), DMAR_HI_U32(VTD_AFLOG_REG_RW_MASK),
630 /* 0x060 Reserved */ 0,
631 /* 0x064 PMEN_REG */ 0, /* RO as we don't support PLMR and PHMR. */
632 /* 0x068 PLMBASE_REG */ 0, /* RO as we don't support PLMR. */
633 /* 0x06c PLMLIMIT_REG */ 0, /* RO as we don't support PLMR. */
634 /* 0x070 PHMBASE_REG */ 0, 0, /* RO as we don't support PHMR. */
635 /* 0x078 PHMLIMIT_REG */ 0, 0, /* RO as we don't support PHMR. */
636 /* 0x080 IQH_REG */ DMAR_LO_U32(VTD_IQH_REG_RW_MASK), DMAR_HI_U32(VTD_IQH_REG_RW_MASK),
637 /* 0x088 IQT_REG */ DMAR_LO_U32(VTD_IQT_REG_RW_MASK), DMAR_HI_U32(VTD_IQT_REG_RW_MASK),
638 /* 0x090 IQA_REG */ DMAR_LO_U32(VTD_IQA_REG_RW_MASK), DMAR_HI_U32(VTD_IQA_REG_RW_MASK),
639 /* 0x098 Reserved */ 0,
640 /* 0x09c ICS_REG */ VTD_ICS_REG_RW_MASK,
641 /* 0x0a0 IECTL_REG */ VTD_IECTL_REG_RW_MASK,
642 /* 0x0a4 IEDATA_REG */ VTD_IEDATA_REG_RW_MASK,
643 /* 0x0a8 IEADDR_REG */ VTD_IEADDR_REG_RW_MASK,
644 /* 0x0ac IEUADDR_REG */ VTD_IEUADDR_REG_RW_MASK,
645 /* 0x0b0 IQERCD_REG */ DMAR_LO_U32(VTD_IQERCD_REG_RW_MASK), DMAR_HI_U32(VTD_IQERCD_REG_RW_MASK),
646 /* 0x0b8 IRTA_REG */ DMAR_LO_U32(VTD_IRTA_REG_RW_MASK), DMAR_HI_U32(VTD_IRTA_REG_RW_MASK),
647 /* 0x0c0 PQH_REG */ DMAR_LO_U32(VTD_PQH_REG_RW_MASK), DMAR_HI_U32(VTD_PQH_REG_RW_MASK),
648 /* 0x0c8 PQT_REG */ DMAR_LO_U32(VTD_PQT_REG_RW_MASK), DMAR_HI_U32(VTD_PQT_REG_RW_MASK),
649 /* 0x0d0 PQA_REG */ DMAR_LO_U32(VTD_PQA_REG_RW_MASK), DMAR_HI_U32(VTD_PQA_REG_RW_MASK),
650 /* 0x0d8 Reserved */ 0,
651 /* 0x0dc PRS_REG */ VTD_PRS_REG_RW_MASK,
652 /* 0x0e0 PECTL_REG */ VTD_PECTL_REG_RW_MASK,
653 /* 0x0e4 PEDATA_REG */ VTD_PEDATA_REG_RW_MASK,
654 /* 0x0e8 PEADDR_REG */ VTD_PEADDR_REG_RW_MASK,
655 /* 0x0ec PEUADDR_REG */ VTD_PEUADDR_REG_RW_MASK,
656 /* 0x0f0 Reserved */ 0, 0,
657 /* 0x0f8 Reserved */ 0, 0,
658 /* 0x100 MTRRCAP_REG */ DMAR_LO_U32(VTD_MTRRCAP_REG_RW_MASK), DMAR_HI_U32(VTD_MTRRCAP_REG_RW_MASK),
659 /* 0x108 MTRRDEF_REG */ 0, 0, /* RO as we don't support MTS. */
660 /* 0x110 Reserved */ 0, 0,
661 /* 0x118 Reserved */ 0, 0,
662 /* 0x120 MTRR_FIX64_00000_REG */ 0, 0, /* RO as we don't support MTS. */
663 /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0,
664 /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0,
665 /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0,
666 /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0,
667 /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0,
668 /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0,
669 /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0,
670 /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0,
671 /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0,
672 /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0,
673 /* 0x178 Reserved */ 0, 0,
674 /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0, /* RO as we don't support MTS. */
675 /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0,
676 /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0,
677 /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0,
678 /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0,
679 /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0,
680 /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0,
681 /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0,
682 /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0,
683 /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0,
684 /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0,
685 /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0,
686 /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0,
687 /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0,
688 /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0,
689 /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0,
690 /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0,
691 /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0,
692 /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0,
693 /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0,
694};
695AssertCompile(sizeof(g_au32RwMasks0) == DMAR_MMIO_GROUP_0_SIZE);
696
697/**
698 * Read-only Status, Write-1-to-clear masks for DMAR registers (group 0).
699 */
700static uint32_t const g_au32Rw1cMasks0[] =
701{
702 /* Offset Register Low High */
703 /* 0x000 VER_REG */ 0,
704 /* 0x004 Reserved */ 0,
705 /* 0x008 CAP_REG */ 0, 0,
706 /* 0x010 ECAP_REG */ 0, 0,
707 /* 0x018 GCMD_REG */ 0,
708 /* 0x01c GSTS_REG */ 0,
709 /* 0x020 RTADDR_REG */ 0, 0,
710 /* 0x028 CCMD_REG */ 0, 0,
711 /* 0x030 Reserved */ 0,
712 /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW1C_MASK,
713 /* 0x038 FECTL_REG */ 0,
714 /* 0x03c FEDATA_REG */ 0,
715 /* 0x040 FEADDR_REG */ 0,
716 /* 0x044 FEUADDR_REG */ 0,
717 /* 0x048 Reserved */ 0, 0,
718 /* 0x050 Reserved */ 0, 0,
719 /* 0x058 AFLOG_REG */ 0, 0,
720 /* 0x060 Reserved */ 0,
721 /* 0x064 PMEN_REG */ 0,
722 /* 0x068 PLMBASE_REG */ 0,
723 /* 0x06c PLMLIMIT_REG */ 0,
724 /* 0x070 PHMBASE_REG */ 0, 0,
725 /* 0x078 PHMLIMIT_REG */ 0, 0,
726 /* 0x080 IQH_REG */ 0, 0,
727 /* 0x088 IQT_REG */ 0, 0,
728 /* 0x090 IQA_REG */ 0, 0,
729 /* 0x098 Reserved */ 0,
730 /* 0x09c ICS_REG */ VTD_ICS_REG_RW1C_MASK,
731 /* 0x0a0 IECTL_REG */ 0,
732 /* 0x0a4 IEDATA_REG */ 0,
733 /* 0x0a8 IEADDR_REG */ 0,
734 /* 0x0ac IEUADDR_REG */ 0,
735 /* 0x0b0 IQERCD_REG */ 0, 0,
736 /* 0x0b8 IRTA_REG */ 0, 0,
737 /* 0x0c0 PQH_REG */ 0, 0,
738 /* 0x0c8 PQT_REG */ 0, 0,
739 /* 0x0d0 PQA_REG */ 0, 0,
740 /* 0x0d8 Reserved */ 0,
741 /* 0x0dc PRS_REG */ 0,
742 /* 0x0e0 PECTL_REG */ 0,
743 /* 0x0e4 PEDATA_REG */ 0,
744 /* 0x0e8 PEADDR_REG */ 0,
745 /* 0x0ec PEUADDR_REG */ 0,
746 /* 0x0f0 Reserved */ 0, 0,
747 /* 0x0f8 Reserved */ 0, 0,
748 /* 0x100 MTRRCAP_REG */ 0, 0,
749 /* 0x108 MTRRDEF_REG */ 0, 0,
750 /* 0x110 Reserved */ 0, 0,
751 /* 0x118 Reserved */ 0, 0,
752 /* 0x120 MTRR_FIX64_00000_REG */ 0, 0,
753 /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0,
754 /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0,
755 /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0,
756 /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0,
757 /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0,
758 /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0,
759 /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0,
760 /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0,
761 /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0,
762 /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0,
763 /* 0x178 Reserved */ 0, 0,
764 /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0,
765 /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0,
766 /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0,
767 /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0,
768 /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0,
769 /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0,
770 /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0,
771 /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0,
772 /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0,
773 /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0,
774 /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0,
775 /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0,
776 /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0,
777 /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0,
778 /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0,
779 /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0,
780 /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0,
781 /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0,
782 /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0,
783 /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0,
784};
785AssertCompile(sizeof(g_au32Rw1cMasks0) == DMAR_MMIO_GROUP_0_SIZE);
786
787/**
788 * Read-write masks for DMAR registers (group 1).
789 */
790static uint32_t const g_au32RwMasks1[] =
791{
792 /* Offset Register Low High */
793 /* 0xe00 VCCAP_REG */ DMAR_LO_U32(VTD_VCCAP_REG_RW_MASK), DMAR_HI_U32(VTD_VCCAP_REG_RW_MASK),
794 /* 0xe08 VCMD_EO_REG */ DMAR_LO_U32(VTD_VCMD_EO_REG_RW_MASK), DMAR_HI_U32(VTD_VCMD_EO_REG_RW_MASK),
795 /* 0xe10 VCMD_REG */ 0, 0, /* RO: VCS not supported. */
796 /* 0xe18 VCMDRSVD_REG */ 0, 0,
797 /* 0xe20 VCRSP_REG */ 0, 0, /* RO: VCS not supported. */
798 /* 0xe28 VCRSPRSVD_REG */ 0, 0,
799 /* 0xe30 Reserved */ 0, 0,
800 /* 0xe38 Reserved */ 0, 0,
801 /* 0xe40 Reserved */ 0, 0,
802 /* 0xe48 Reserved */ 0, 0,
803 /* 0xe50 IVA_REG */ DMAR_LO_U32(VTD_IVA_REG_RW_MASK), DMAR_HI_U32(VTD_IVA_REG_RW_MASK),
804 /* 0xe58 IOTLB_REG */ DMAR_LO_U32(VTD_IOTLB_REG_RW_MASK), DMAR_HI_U32(VTD_IOTLB_REG_RW_MASK),
805 /* 0xe60 Reserved */ 0, 0,
806 /* 0xe68 Reserved */ 0, 0,
807 /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW_MASK),
808 /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW_MASK),
809};
810AssertCompile(sizeof(g_au32RwMasks1) == DMAR_MMIO_GROUP_1_SIZE);
811AssertCompile((DMAR_MMIO_OFF_FRCD_LO_REG - DMAR_MMIO_GROUP_1_OFF_FIRST) + DMAR_FRCD_REG_COUNT * 2 * sizeof(uint64_t) );
812
813/**
814 * Read-only Status, Write-1-to-clear masks for DMAR registers (group 1).
815 */
816static uint32_t const g_au32Rw1cMasks1[] =
817{
818 /* Offset Register Low High */
819 /* 0xe00 VCCAP_REG */ 0, 0,
820 /* 0xe08 VCMD_EO_REG */ 0, 0,
821 /* 0xe10 VCMD_REG */ 0, 0,
822 /* 0xe18 VCMDRSVD_REG */ 0, 0,
823 /* 0xe20 VCRSP_REG */ 0, 0,
824 /* 0xe28 VCRSPRSVD_REG */ 0, 0,
825 /* 0xe30 Reserved */ 0, 0,
826 /* 0xe38 Reserved */ 0, 0,
827 /* 0xe40 Reserved */ 0, 0,
828 /* 0xe48 Reserved */ 0, 0,
829 /* 0xe50 IVA_REG */ 0, 0,
830 /* 0xe58 IOTLB_REG */ 0, 0,
831 /* 0xe60 Reserved */ 0, 0,
832 /* 0xe68 Reserved */ 0, 0,
833 /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW1C_MASK),
834 /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW1C_MASK),
835};
836AssertCompile(sizeof(g_au32Rw1cMasks1) == DMAR_MMIO_GROUP_1_SIZE);
837
838/** Array of RW masks for each register group. */
839static uint8_t const *g_apbRwMasks[] = { (uint8_t *)&g_au32RwMasks0[0], (uint8_t *)&g_au32RwMasks1[0] };
840
841/** Array of RW1C masks for each register group. */
842static uint8_t const *g_apbRw1cMasks[] = { (uint8_t *)&g_au32Rw1cMasks0[0], (uint8_t *)&g_au32Rw1cMasks1[0] };
843
844/* Masks arrays must be identical in size (even bounds checking code assumes this). */
845AssertCompile(sizeof(g_apbRw1cMasks) == sizeof(g_apbRwMasks));
846
847/** Array of valid domain-ID bits. */
848static uint16_t const g_auNdMask[] = { 0xf, 0x3f, 0xff, 0x3ff, 0xfff, 0x3fff, 0xffff, 0 };
849AssertCompile(RT_ELEMENTS(g_auNdMask) >= DMAR_ND);
850
851
852#ifndef VBOX_DEVICE_STRUCT_TESTCASE
853/** @todo Add IOMMU struct size/alignment verification, see
854 * Devices/testcase/Makefile.kmk and
855 * Devices/testcase/tstDeviceStructSize[RC].cpp */
856
857/**
858 * Returns the supported adjusted guest-address width (SAGAW) given the maximum
859 * guest address width (MGAW).
860 *
861 * @returns The CAP_REG.SAGAW value.
862 * @param uMgaw The CAP_REG.MGAW value.
863 */
864static uint8_t vtdCapRegGetSagaw(uint8_t uMgaw)
865{
866 /*
867 * It doesn't make sense to me that a CPU (or IOMMU hardware) will ever support
868 * 5-level paging but not 4 or 3-level paging. So smaller page-table levels
869 * are always OR'ed in below.
870 *
871 * The bit values below (57, 48, 39 bits) represents the levels of page-table walks
872 * for 4KB base page size (5-level, 4-level and 3-level paging respectively).
873 *
874 * See Intel VT-d spec. 10.4.2 "Capability Register".
875 */
876 ++uMgaw;
877 uint8_t const fSagaw = uMgaw >= 57 ? RT_BIT(3) | RT_BIT(2) | RT_BIT(1)
878 : uMgaw >= 48 ? RT_BIT(2) | RT_BIT(1)
879 : uMgaw >= 39 ? RT_BIT(1)
880 : 0;
881 return fSagaw;
882}
883
884
885/**
886 * Returns the maximum supported paging level given the supported adjusted
887 * guest-address width (SAGAW) field.
888 *
889 * @returns The highest paging level supported, 0 if invalid.
890 * @param fSagaw The CAP_REG.SAGAW value.
891 */
892static uint8_t vtdCapRegGetMaxPagingLevel(uint8_t fSagaw)
893{
894 uint8_t const cMaxPagingLevel = fSagaw & RT_BIT(3) ? 5
895 : fSagaw & RT_BIT(2) ? 4
896 : fSagaw & RT_BIT(1) ? 3
897 : 0;
898 return cMaxPagingLevel;
899}
900
901
902/**
903 * Returns whether the interrupt remapping (IR) fault is qualified or not.
904 *
905 * @returns @c true if qualified, @c false otherwise.
906 * @param enmIrFault The interrupt remapping fault condition.
907 */
908static bool vtdIrFaultIsQualified(VTDIRFAULT enmIrFault)
909{
910 switch (enmIrFault)
911 {
912 case VTDIRFAULT_IRTE_NOT_PRESENT:
913 case VTDIRFAULT_IRTE_PRESENT_RSVD:
914 case VTDIRFAULT_IRTE_PRESENT_INVALID:
915 case VTDIRFAULT_PID_READ_FAILED:
916 case VTDIRFAULT_PID_RSVD:
917 return true;
918 default:
919 return false;
920 }
921}
922
923
924/**
925 * Returns table translation mode's descriptive name.
926 *
927 * @returns The descriptive name.
928 * @param uTtm The RTADDR_REG.TTM value.
929 */
930static const char* vtdRtaddrRegGetTtmDesc(uint8_t uTtm)
931{
932 Assert(!(uTtm & 3));
933 static const char* s_apszTtmNames[] =
934 {
935 "Legacy Mode",
936 "Scalable Mode",
937 "Reserved",
938 "Abort-DMA Mode"
939 };
940 return s_apszTtmNames[uTtm & (RT_ELEMENTS(s_apszTtmNames) - 1)];
941}
942
943
944/**
945 * Gets the index of the group the register belongs to given its MMIO offset.
946 *
947 * @returns The group index.
948 * @param offReg The MMIO offset of the register.
949 * @param cbReg The size of the access being made (for bounds checking on
950 * debug builds).
951 */
952DECLINLINE(uint8_t) dmarRegGetGroupIndex(uint16_t offReg, uint8_t cbReg)
953{
954 uint16_t const offLast = offReg + cbReg - 1;
955 AssertCompile(DMAR_MMIO_GROUP_0_OFF_FIRST == 0);
956 AssertMsg(DMAR_IS_MMIO_OFF_VALID(offLast), ("off=%#x cb=%u\n", offReg, cbReg));
957 return !(offLast < DMAR_MMIO_GROUP_0_OFF_END);
958}
959
960
961/**
962 * Gets the group the register belongs to given its MMIO offset.
963 *
964 * @returns Pointer to the first element of the register group.
965 * @param pThis The shared DMAR device state.
966 * @param offReg The MMIO offset of the register.
967 * @param cbReg The size of the access being made (for bounds checking on
968 * debug builds).
969 * @param pIdxGroup Where to store the index of the register group the register
970 * belongs to.
971 */
972DECLINLINE(uint8_t *) dmarRegGetGroup(PDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup)
973{
974 *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg);
975 uint8_t *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] };
976 return apbRegs[*pIdxGroup];
977}
978
979
980/**
981 * Const/read-only version of dmarRegGetGroup.
982 *
983 * @copydoc dmarRegGetGroup
984 */
985DECLINLINE(uint8_t const*) dmarRegGetGroupRo(PCDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup)
986{
987 *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg);
988 uint8_t const *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] };
989 return apbRegs[*pIdxGroup];
990}
991
992
993/**
994 * Writes a 32-bit register with the exactly the supplied value.
995 *
996 * @param pThis The shared DMAR device state.
997 * @param offReg The MMIO offset of the register.
998 * @param uReg The 32-bit value to write.
999 */
1000static void dmarRegWriteRaw32(PDMAR pThis, uint16_t offReg, uint32_t uReg)
1001{
1002 uint8_t idxGroup;
1003 uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint32_t), &idxGroup);
1004 NOREF(idxGroup);
1005 *(uint32_t *)(pabRegs + offReg) = uReg;
1006}
1007
1008
1009/**
1010 * Writes a 64-bit register with the exactly the supplied value.
1011 *
1012 * @param pThis The shared DMAR device state.
1013 * @param offReg The MMIO offset of the register.
1014 * @param uReg The 64-bit value to write.
1015 */
1016static void dmarRegWriteRaw64(PDMAR pThis, uint16_t offReg, uint64_t uReg)
1017{
1018 uint8_t idxGroup;
1019 uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint64_t), &idxGroup);
1020 NOREF(idxGroup);
1021 *(uint64_t *)(pabRegs + offReg) = uReg;
1022}
1023
1024
1025/**
1026 * Reads a 32-bit register with exactly the value it contains.
1027 *
1028 * @returns The raw register value.
1029 * @param pThis The shared DMAR device state.
1030 * @param offReg The MMIO offset of the register.
1031 */
1032static uint32_t dmarRegReadRaw32(PCDMAR pThis, uint16_t offReg)
1033{
1034 uint8_t idxGroup;
1035 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup);
1036 NOREF(idxGroup);
1037 return *(uint32_t *)(pabRegs + offReg);
1038}
1039
1040
1041/**
1042 * Reads a 64-bit register with exactly the value it contains.
1043 *
1044 * @returns The raw register value.
1045 * @param pThis The shared DMAR device state.
1046 * @param offReg The MMIO offset of the register.
1047 */
1048static uint64_t dmarRegReadRaw64(PCDMAR pThis, uint16_t offReg)
1049{
1050 uint8_t idxGroup;
1051 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup);
1052 NOREF(idxGroup);
1053 return *(uint64_t *)(pabRegs + offReg);
1054}
1055
1056
1057/**
1058 * Reads a 32-bit register with exactly the value it contains along with their
1059 * corresponding masks
1060 *
1061 * @param pThis The shared DMAR device state.
1062 * @param offReg The MMIO offset of the register.
1063 * @param puReg Where to store the raw 32-bit register value.
1064 * @param pfRwMask Where to store the RW mask corresponding to this register.
1065 * @param pfRw1cMask Where to store the RW1C mask corresponding to this register.
1066 */
1067static void dmarRegReadRaw32Ex(PCDMAR pThis, uint16_t offReg, uint32_t *puReg, uint32_t *pfRwMask, uint32_t *pfRw1cMask)
1068{
1069 uint8_t idxGroup;
1070 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup);
1071 Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks));
1072 uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup];
1073 uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup];
1074 *puReg = *(uint32_t *)(pabRegs + offReg);
1075 *pfRwMask = *(uint32_t *)(pabRwMasks + offReg);
1076 *pfRw1cMask = *(uint32_t *)(pabRw1cMasks + offReg);
1077}
1078
1079
1080/**
1081 * Reads a 64-bit register with exactly the value it contains along with their
1082 * corresponding masks.
1083 *
1084 * @param pThis The shared DMAR device state.
1085 * @param offReg The MMIO offset of the register.
1086 * @param puReg Where to store the raw 64-bit register value.
1087 * @param pfRwMask Where to store the RW mask corresponding to this register.
1088 * @param pfRw1cMask Where to store the RW1C mask corresponding to this register.
1089 */
1090static void dmarRegReadRaw64Ex(PCDMAR pThis, uint16_t offReg, uint64_t *puReg, uint64_t *pfRwMask, uint64_t *pfRw1cMask)
1091{
1092 uint8_t idxGroup;
1093 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup);
1094 Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks));
1095 uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup];
1096 uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup];
1097 *puReg = *(uint64_t *)(pabRegs + offReg);
1098 *pfRwMask = *(uint64_t *)(pabRwMasks + offReg);
1099 *pfRw1cMask = *(uint64_t *)(pabRw1cMasks + offReg);
1100}
1101
1102
1103/**
1104 * Writes a 32-bit register as it would be when written by software.
1105 * This will preserve read-only bits, mask off reserved bits and clear RW1C bits.
1106 *
1107 * @returns The value that's actually written to the register.
1108 * @param pThis The shared DMAR device state.
1109 * @param offReg The MMIO offset of the register.
1110 * @param uReg The 32-bit value to write.
1111 * @param puPrev Where to store the register value prior to writing.
1112 */
1113static uint32_t dmarRegWrite32(PDMAR pThis, uint16_t offReg, uint32_t uReg, uint32_t *puPrev)
1114{
1115 /* Read current value from the 32-bit register. */
1116 uint32_t uCurReg;
1117 uint32_t fRwMask;
1118 uint32_t fRw1cMask;
1119 dmarRegReadRaw32Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask);
1120 *puPrev = uCurReg;
1121
1122 uint32_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */
1123 uint32_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */
1124 uint32_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */
1125 uint32_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits;
1126
1127 /* Write new value to the 32-bit register. */
1128 dmarRegWriteRaw32(pThis, offReg, uNewReg);
1129 return uNewReg;
1130}
1131
1132
1133/**
1134 * Writes a 64-bit register as it would be when written by software.
1135 * This will preserve read-only bits, mask off reserved bits and clear RW1C bits.
1136 *
1137 * @returns The value that's actually written to the register.
1138 * @param pThis The shared DMAR device state.
1139 * @param offReg The MMIO offset of the register.
1140 * @param uReg The 64-bit value to write.
1141 * @param puPrev Where to store the register value prior to writing.
1142 */
1143static uint64_t dmarRegWrite64(PDMAR pThis, uint16_t offReg, uint64_t uReg, uint64_t *puPrev)
1144{
1145 /* Read current value from the 64-bit register. */
1146 uint64_t uCurReg;
1147 uint64_t fRwMask;
1148 uint64_t fRw1cMask;
1149 dmarRegReadRaw64Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask);
1150 *puPrev = uCurReg;
1151
1152 uint64_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */
1153 uint64_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */
1154 uint64_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */
1155 uint64_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits;
1156
1157 /* Write new value to the 64-bit register. */
1158 dmarRegWriteRaw64(pThis, offReg, uNewReg);
1159 return uNewReg;
1160}
1161
1162
1163/**
1164 * Reads a 32-bit register as it would be when read by software.
1165 *
1166 * @returns The register value.
1167 * @param pThis The shared DMAR device state.
1168 * @param offReg The MMIO offset of the register.
1169 */
1170static uint32_t dmarRegRead32(PCDMAR pThis, uint16_t offReg)
1171{
1172 return dmarRegReadRaw32(pThis, offReg);
1173}
1174
1175
1176/**
1177 * Reads a 64-bit register as it would be when read by software.
1178 *
1179 * @returns The register value.
1180 * @param pThis The shared DMAR device state.
1181 * @param offReg The MMIO offset of the register.
1182 */
1183static uint64_t dmarRegRead64(PCDMAR pThis, uint16_t offReg)
1184{
1185 return dmarRegReadRaw64(pThis, offReg);
1186}
1187
1188
1189/**
1190 * Modifies a 32-bit register.
1191 *
1192 * @param pThis The shared DMAR device state.
1193 * @param offReg The MMIO offset of the register.
1194 * @param fAndMask The AND mask (applied first).
1195 * @param fOrMask The OR mask.
1196 * @remarks This does NOT apply RO or RW1C masks while modifying the
1197 * register.
1198 */
1199static void dmarRegChangeRaw32(PDMAR pThis, uint16_t offReg, uint32_t fAndMask, uint32_t fOrMask)
1200{
1201 uint32_t uReg = dmarRegReadRaw32(pThis, offReg);
1202 uReg = (uReg & fAndMask) | fOrMask;
1203 dmarRegWriteRaw32(pThis, offReg, uReg);
1204}
1205
1206
1207/**
1208 * Modifies a 64-bit register.
1209 *
1210 * @param pThis The shared DMAR device state.
1211 * @param offReg The MMIO offset of the register.
1212 * @param fAndMask The AND mask (applied first).
1213 * @param fOrMask The OR mask.
1214 * @remarks This does NOT apply RO or RW1C masks while modifying the
1215 * register.
1216 */
1217static void dmarRegChangeRaw64(PDMAR pThis, uint16_t offReg, uint64_t fAndMask, uint64_t fOrMask)
1218{
1219 uint64_t uReg = dmarRegReadRaw64(pThis, offReg);
1220 uReg = (uReg & fAndMask) | fOrMask;
1221 dmarRegWriteRaw64(pThis, offReg, uReg);
1222}
1223
1224
1225/**
1226 * Checks if the invalidation-queue is empty.
1227 *
1228 * Extended version which optionally returns the current queue head and tail
1229 * offsets.
1230 *
1231 * @returns @c true if empty, @c false otherwise.
1232 * @param pThis The shared DMAR device state.
1233 * @param poffQh Where to store the queue head offset. Optional, can be NULL.
1234 * @param poffQt Where to store the queue tail offset. Optional, can be NULL.
1235 */
1236static bool dmarInvQueueIsEmptyEx(PCDMAR pThis, uint32_t *poffQh, uint32_t *poffQt)
1237{
1238 /* Read only the low-32 bits of the queue head and queue tail as high bits are all RsvdZ.*/
1239 uint32_t const uIqtReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQT_REG);
1240 uint32_t const uIqhReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQH_REG);
1241
1242 /* Don't bother masking QT, QH since other bits are RsvdZ. */
1243 Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK));
1244 Assert(!(uIqhReg & ~VTD_BF_IQH_REG_QH_MASK));
1245 if (poffQh)
1246 *poffQh = uIqhReg;
1247 if (poffQt)
1248 *poffQt = uIqtReg;
1249 return uIqtReg == uIqhReg;
1250}
1251
1252
1253/**
1254 * Checks if the invalidation-queue is empty.
1255 *
1256 * @returns @c true if empty, @c false otherwise.
1257 * @param pThis The shared DMAR device state.
1258 */
1259static bool dmarInvQueueIsEmpty(PCDMAR pThis)
1260{
1261 return dmarInvQueueIsEmptyEx(pThis, NULL /* poffQh */, NULL /* poffQt */);
1262}
1263
1264
1265/**
1266 * Checks if the invalidation-queue is capable of processing requests.
1267 *
1268 * @returns @c true if the invalidation-queue can process requests, @c false
1269 * otherwise.
1270 * @param pThis The shared DMAR device state.
1271 */
1272static bool dmarInvQueueCanProcessRequests(PCDMAR pThis)
1273{
1274 /* Check if queued-invalidation is enabled. */
1275 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
1276 if (uGstsReg & VTD_BF_GSTS_REG_QIES_MASK)
1277 {
1278 /* Check if there are no invalidation-queue or timeout errors. */
1279 uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
1280 if (!(uFstsReg & (VTD_BF_FSTS_REG_IQE_MASK | VTD_BF_FSTS_REG_ITE_MASK)))
1281 return true;
1282 }
1283 return false;
1284}
1285
1286
1287/**
1288 * Wakes up the invalidation-queue thread if there are requests to be processed.
1289 *
1290 * @param pDevIns The IOMMU device instance.
1291 */
1292static void dmarInvQueueThreadWakeUpIfNeeded(PPDMDEVINS pDevIns)
1293{
1294 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1295 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1296 LogFlowFunc(("\n"));
1297
1298 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1299
1300 if ( dmarInvQueueCanProcessRequests(pThis)
1301 && !dmarInvQueueIsEmpty(pThis))
1302 {
1303 Log4Func(("Signaling the invalidation-queue thread\n"));
1304 PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue);
1305 }
1306}
1307
1308
1309/**
1310 * Raises an event on behalf of the DMAR.
1311 *
1312 * These are events that are generated by the DMAR itself (like faults and
1313 * invalidation completion notifications).
1314 *
1315 * @param pDevIns The IOMMU device instance.
1316 * @param enmEventType The DMAR event type.
1317 *
1318 * @remarks The DMAR lock must be held while calling this function.
1319 */
1320static void dmarEventRaiseInterrupt(PPDMDEVINS pDevIns, DMAREVENTTYPE enmEventType)
1321{
1322 uint16_t offCtlReg;
1323 uint32_t fIntrMaskedMask;
1324 uint32_t fIntrPendingMask;
1325 uint16_t offMsiAddrLoReg;
1326 uint16_t offMsiAddrHiReg;
1327 uint16_t offMsiDataReg;
1328 switch (enmEventType)
1329 {
1330 case DMAREVENTTYPE_INV_COMPLETE:
1331 {
1332 offCtlReg = VTD_MMIO_OFF_IECTL_REG;
1333 fIntrMaskedMask = VTD_BF_IECTL_REG_IM_MASK;
1334 fIntrPendingMask = VTD_BF_IECTL_REG_IP_MASK;
1335 offMsiAddrLoReg = VTD_MMIO_OFF_IEADDR_REG;
1336 offMsiAddrHiReg = VTD_MMIO_OFF_IEUADDR_REG;
1337 offMsiDataReg = VTD_MMIO_OFF_IEDATA_REG;
1338 break;
1339 }
1340
1341 case DMAREVENTTYPE_FAULT:
1342 {
1343 offCtlReg = VTD_MMIO_OFF_FECTL_REG;
1344 fIntrMaskedMask = VTD_BF_FECTL_REG_IM_MASK;
1345 fIntrPendingMask = VTD_BF_FECTL_REG_IP_MASK;
1346 offMsiAddrLoReg = VTD_MMIO_OFF_FEADDR_REG;
1347 offMsiAddrHiReg = VTD_MMIO_OFF_FEUADDR_REG;
1348 offMsiDataReg = VTD_MMIO_OFF_FEDATA_REG;
1349 break;
1350 }
1351
1352 default:
1353 {
1354 /* Shouldn't ever happen. */
1355 AssertMsgFailedReturnVoid(("DMAR event type %#x unknown!\n", enmEventType));
1356 }
1357 }
1358
1359 /* Check if software has masked the interrupt. */
1360 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1361 uint32_t uCtlReg = dmarRegReadRaw32(pThis, offCtlReg);
1362 if (!(uCtlReg & fIntrMaskedMask))
1363 {
1364 /*
1365 * Interrupt is unmasked, raise it.
1366 * Interrupts generated by the DMAR have trigger mode and level as 0.
1367 * See Intel spec. 5.1.6 "Remapping Hardware Event Interrupt Programming".
1368 */
1369 MSIMSG Msi;
1370 Msi.Addr.au32[0] = dmarRegReadRaw32(pThis, offMsiAddrLoReg);
1371 Msi.Addr.au32[1] = (pThis->fExtCapReg & VTD_BF_ECAP_REG_EIM_MASK) ? dmarRegReadRaw32(pThis, offMsiAddrHiReg) : 0;
1372 Msi.Data.u32 = dmarRegReadRaw32(pThis, offMsiDataReg);
1373 Assert(Msi.Data.n.u1Level == 0);
1374 Assert(Msi.Data.n.u1TriggerMode == 0);
1375
1376 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1377 pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi(pDevIns, &Msi, 0 /* uTagSrc */);
1378
1379 /* Clear interrupt pending bit. */
1380 uCtlReg &= ~fIntrPendingMask;
1381 dmarRegWriteRaw32(pThis, offCtlReg, uCtlReg);
1382 }
1383 else
1384 {
1385 /* Interrupt is masked, set the interrupt pending bit. */
1386 uCtlReg |= fIntrPendingMask;
1387 dmarRegWriteRaw32(pThis, offCtlReg, uCtlReg);
1388 }
1389}
1390
1391
1392/**
1393 * Raises an interrupt in response to a fault event.
1394 *
1395 * @param pDevIns The IOMMU device instance.
1396 *
1397 * @remarks This assumes the caller has already set the required status bits in the
1398 * FSTS_REG (namely one or more of PPF, PFO, IQE, ICE or ITE bits).
1399 */
1400static void dmarFaultEventRaiseInterrupt(PPDMDEVINS pDevIns)
1401{
1402 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1403 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1404 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1405
1406#ifdef RT_STRICT
1407 {
1408 uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
1409 uint32_t const fFaultMask = VTD_BF_FSTS_REG_PPF_MASK | VTD_BF_FSTS_REG_PFO_MASK
1410 /* | VTD_BF_FSTS_REG_APF_MASK | VTD_BF_FSTS_REG_AFO_MASK */ /* AFL not supported */
1411 /* | VTD_BF_FSTS_REG_ICE_MASK | VTD_BF_FSTS_REG_ITE_MASK */ /* Device-TLBs not supported */
1412 | VTD_BF_FSTS_REG_IQE_MASK;
1413 Assert(uFstsReg & fFaultMask);
1414 }
1415#endif
1416 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_FAULT);
1417}
1418
1419
1420#ifdef IN_RING3
1421/**
1422 * Raises an interrupt in response to an invalidation (complete) event.
1423 *
1424 * @param pDevIns The IOMMU device instance.
1425 */
1426static void dmarR3InvEventRaiseInterrupt(PPDMDEVINS pDevIns)
1427{
1428 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1429 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1430 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1431
1432 uint32_t const uIcsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_ICS_REG);
1433 if (!(uIcsReg & VTD_BF_ICS_REG_IWC_MASK))
1434 {
1435 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_ICS_REG, UINT32_MAX, VTD_BF_ICS_REG_IWC_MASK);
1436 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_INV_COMPLETE);
1437 }
1438}
1439#endif /* IN_RING3 */
1440
1441
1442/**
1443 * Checks if a primary fault can be recorded.
1444 *
1445 * @returns @c true if the fault can be recorded, @c false otherwise.
1446 * @param pDevIns The IOMMU device instance.
1447 * @param pThis The shared DMAR device state.
1448 *
1449 * @remarks Warning: This function has side-effects wrt the DMAR register state. Do
1450 * NOT call it unless there is a fault condition!
1451 */
1452static bool dmarPrimaryFaultCanRecord(PPDMDEVINS pDevIns, PDMAR pThis)
1453{
1454 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1455 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1456
1457 uint32_t uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
1458 if (uFstsReg & VTD_BF_FSTS_REG_PFO_MASK)
1459 return false;
1460
1461 /*
1462 * If we add more FRCD registers, we'll have to loop through them here.
1463 * Since we support only one FRCD_REG, we don't support "compression of multiple faults",
1464 * nor do we need to increment FRI.
1465 *
1466 * See Intel VT-d spec. 7.2.1 "Primary Fault Logging".
1467 */
1468 AssertCompile(DMAR_FRCD_REG_COUNT == 1);
1469 uint64_t const uFrcdRegHi = dmarRegReadRaw64(pThis, DMAR_MMIO_OFF_FRCD_HI_REG);
1470 if (uFrcdRegHi & VTD_BF_1_FRCD_REG_F_MASK)
1471 {
1472 uFstsReg |= VTD_BF_FSTS_REG_PFO_MASK;
1473 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, uFstsReg);
1474 return false;
1475 }
1476
1477 return true;
1478}
1479
1480
1481/**
1482 * Records a primary fault.
1483 *
1484 * @param pDevIns The IOMMU device instance.
1485 * @param uFrcdHi The FRCD_HI_REG value for this fault.
1486 * @param uFrcdLo The FRCD_LO_REG value for this fault.
1487 */
1488static void dmarPrimaryFaultRecord(PPDMDEVINS pDevIns, uint64_t uFrcdHi, uint64_t uFrcdLo)
1489{
1490 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1491 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1492
1493 DMAR_LOCK(pDevIns, pThisCC);
1494
1495 /* We don't support advance fault logging. */
1496 Assert(!(dmarRegRead32(pThis, VTD_MMIO_OFF_GSTS_REG) & VTD_BF_GSTS_REG_AFLS_MASK));
1497
1498 if (dmarPrimaryFaultCanRecord(pDevIns, pThis))
1499 {
1500 /* Update the fault recording registers with the fault information. */
1501 dmarRegWriteRaw64(pThis, DMAR_MMIO_OFF_FRCD_HI_REG, uFrcdHi);
1502 dmarRegWriteRaw64(pThis, DMAR_MMIO_OFF_FRCD_LO_REG, uFrcdLo);
1503
1504 /* Set the Pending Primary Fault (PPF) field in the status register. */
1505 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, UINT32_MAX, VTD_BF_FSTS_REG_PPF_MASK);
1506
1507 /* Raise interrupt if necessary. */
1508 dmarFaultEventRaiseInterrupt(pDevIns);
1509 }
1510
1511 DMAR_UNLOCK(pDevIns, pThisCC);
1512}
1513
1514
1515/**
1516 * Records an interrupt request fault.
1517 *
1518 * @param pDevIns The IOMMU device instance.
1519 * @param enmDiag The diagnostic reason.
1520 * @param idDevice The device ID (bus, device, function).
1521 * @param idxIntr The interrupt index.
1522 * @param pIrte The IRTE that caused this fault. Can be NULL if the fault is
1523 * not qualified.
1524 */
1525static void dmarIrFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, uint16_t idDevice, uint16_t idxIntr, PCVTD_IRTE_T pIrte)
1526{
1527 /*
1528 * Update the diagnostic reason (even if software wants to supress faults).
1529 */
1530 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1531 pThis->enmDiag = enmDiag;
1532
1533 /*
1534 * Figure out the fault reason to report to software from our diagnostic code.
1535 * The case labels below are sorted alphabetically for convenience.
1536 */
1537 VTDIRFAULT enmIrFault;
1538 switch (enmDiag)
1539 {
1540 case kDmarDiag_Ir_Cfi_Blocked: enmIrFault = VTDIRFAULT_CFI_BLOCKED; break;
1541 case kDmarDiag_Ir_Rfi_Intr_Index_Invalid: enmIrFault = VTDIRFAULT_INTR_INDEX_INVALID; break;
1542 case kDmarDiag_Ir_Rfi_Irte_Mode_Invalid: enmIrFault = VTDIRFAULT_IRTE_PRESENT_RSVD; break;
1543 case kDmarDiag_Ir_Rfi_Irte_Not_Present: enmIrFault = VTDIRFAULT_IRTE_NOT_PRESENT; break;
1544 case kDmarDiag_Ir_Rfi_Irte_Read_Failed: enmIrFault = VTDIRFAULT_IRTE_READ_FAILED; break;
1545 case kDmarDiag_Ir_Rfi_Irte_Rsvd:
1546 case kDmarDiag_Ir_Rfi_Irte_Svt_Bus:
1547 case kDmarDiag_Ir_Rfi_Irte_Svt_Masked:
1548 case kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd: enmIrFault = VTDIRFAULT_IRTE_PRESENT_RSVD; break;
1549 case kDmarDiag_Ir_Rfi_Rsvd: enmIrFault = VTDIRFAULT_REMAPPABLE_INTR_RSVD; break;
1550
1551 /* Shouldn't ever happen. */
1552 default:
1553 {
1554 AssertLogRelMsgFailedReturnVoid(("%s: Invalid interrupt remapping fault diagnostic code %#x\n", DMAR_LOG_PFX,
1555 enmDiag));
1556 }
1557 }
1558
1559 /*
1560 * Qualified faults are those that can be suppressed by software using the FPD bit
1561 * in the interrupt-remapping table entry.
1562 */
1563 bool fFpd;
1564 bool const fQualifiedFault = vtdIrFaultIsQualified(enmIrFault);
1565 if (fQualifiedFault)
1566 {
1567 AssertReturnVoid(pIrte);
1568 fFpd = RT_BOOL(pIrte->au64[0] & VTD_BF_0_IRTE_FPD_MASK);
1569 }
1570 else
1571 fFpd = false;
1572
1573 if (!fFpd)
1574 {
1575 /* Construct and record the error. */
1576 uint64_t const uFrcdHi = RT_BF_MAKE(VTD_BF_1_FRCD_REG_SID, idDevice)
1577 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_FR, enmIrFault)
1578 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_F, 1);
1579 uint64_t const uFrcdLo = (uint64_t)idxIntr << 48;
1580 dmarPrimaryFaultRecord(pDevIns, uFrcdHi, uFrcdLo);
1581 }
1582}
1583
1584
1585/**
1586 * Records an address translation fault.
1587 *
1588 * @param pDevIns The IOMMU device instance.
1589 * @param enmDiag The diagnostic reason.
1590 * @param pMemReqIn The DMA memory request input.
1591 * @param pMemReqAux The DMA memory request auxiliary info.
1592 */
1593static void dmarAtFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux)
1594{
1595 /*
1596 * Update the diagnostic reason (even if software wants to supress faults).
1597 */
1598 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1599 pThis->enmDiag = enmDiag;
1600
1601 /*
1602 * Qualified faults are those that can be suppressed by software using the FPD bit
1603 * in the context entry, scalable-mode context entry etc.
1604 */
1605 if (!pMemReqAux->fFpd)
1606 {
1607 /*
1608 * Figure out the fault reason to report to software from our diagnostic code.
1609 * The case labels below are sorted alphabetically for convenience.
1610 */
1611 VTDATFAULT enmAtFault;
1612 bool const fLm = pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE;
1613 switch (enmDiag)
1614 {
1615 /* LM (Legacy Mode) faults. */
1616 case kDmarDiag_At_Lm_CtxEntry_Not_Present: enmAtFault = VTDATFAULT_LCT_2; break;
1617 case kDmarDiag_At_Lm_CtxEntry_Read_Failed: enmAtFault = VTDATFAULT_LCT_1; break;
1618 case kDmarDiag_At_Lm_CtxEntry_Rsvd: enmAtFault = VTDATFAULT_LCT_3; break;
1619 case kDmarDiag_At_Lm_Pt_At_Block: enmAtFault = VTDATFAULT_LCT_5; break;
1620 case kDmarDiag_At_Lm_Pt_Aw_Invalid: enmAtFault = VTDATFAULT_LGN_1_3; break;
1621 case kDmarDiag_At_Lm_RootEntry_Not_Present: enmAtFault = VTDATFAULT_LRT_2; break;
1622 case kDmarDiag_At_Lm_RootEntry_Read_Failed: enmAtFault = VTDATFAULT_LRT_1; break;
1623 case kDmarDiag_At_Lm_RootEntry_Rsvd: enmAtFault = VTDATFAULT_LRT_3; break;
1624 case kDmarDiag_At_Lm_Tt_Invalid: enmAtFault = VTDATFAULT_LCT_4_2; break;
1625 case kDmarDiag_At_Lm_Ut_At_Block: enmAtFault = VTDATFAULT_LCT_5; break;
1626 case kDmarDiag_At_Lm_Ut_Aw_Invalid: enmAtFault = VTDATFAULT_LCT_4_1; break;
1627
1628 /* RTA (Root Table Address) faults. */
1629 case kDmarDiag_At_Rta_Adms_Not_Supported: enmAtFault = VTDATFAULT_RTA_1_1; break;
1630 case kDmarDiag_At_Rta_Rsvd: enmAtFault = VTDATFAULT_RTA_1_2; break;
1631 case kDmarDiag_At_Rta_Smts_Not_Supported: enmAtFault = VTDATFAULT_RTA_1_3; break;
1632
1633 /* XM (Legacy mode or Scalable Mode) faults. */
1634 case kDmarDiag_At_Xm_AddrIn_Invalid: enmAtFault = fLm ? VTDATFAULT_LGN_1_1 : VTDATFAULT_SGN_5; break;
1635 case kDmarDiag_At_Xm_AddrOut_Invalid: enmAtFault = fLm ? VTDATFAULT_LGN_4 : VTDATFAULT_SGN_8; break;
1636 case kDmarDiag_At_Xm_Perm_Denied: enmAtFault = fLm ? VTDATFAULT_LSL_2 : VTDATFAULT_SSL_2; break;
1637 case kDmarDiag_At_Xm_Pte_Rsvd:
1638 case kDmarDiag_At_Xm_Pte_Sllps_Invalid: enmAtFault = fLm ? VTDATFAULT_LSL_2 : VTDATFAULT_SSL_3; break;
1639 case kDmarDiag_At_Xm_Read_Pte_Failed: enmAtFault = fLm ? VTDATFAULT_LSL_1 : VTDATFAULT_SSL_1; break;
1640 case kDmarDiag_At_Xm_Slpptr_Read_Failed: enmAtFault = fLm ? VTDATFAULT_LCT_4_3 : VTDATFAULT_SSL_4; break;
1641
1642 /* Shouldn't ever happen. */
1643 default:
1644 {
1645 AssertLogRelMsgFailedReturnVoid(("%s: Invalid address translation fault diagnostic code %#x\n",
1646 DMAR_LOG_PFX, enmDiag));
1647 }
1648 }
1649
1650 /* Construct and record the error. */
1651 uint16_t const idDevice = pMemReqIn->idDevice;
1652 uint8_t const fType1 = pMemReqIn->enmReqType & RT_BIT(1);
1653 uint8_t const fType2 = pMemReqIn->enmReqType & RT_BIT(0);
1654 uint8_t const fExec = pMemReqIn->AddrRange.fPerm & DMAR_PERM_EXE;
1655 uint8_t const fPriv = pMemReqIn->AddrRange.fPerm & DMAR_PERM_PRIV;
1656 bool const fHasPasid = PCIPASID_IS_VALID(pMemReqIn->Pasid);
1657 uint32_t const uPasid = PCIPASID_VAL(pMemReqIn->Pasid);
1658 PCIADDRTYPE const enmAt = pMemReqIn->enmAddrType;
1659
1660 uint64_t const uFrcdHi = RT_BF_MAKE(VTD_BF_1_FRCD_REG_SID, idDevice)
1661 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_T2, fType2)
1662 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PP, fHasPasid)
1663 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_EXE, fExec)
1664 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PRIV, fPriv)
1665 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_FR, enmAtFault)
1666 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PV, uPasid)
1667 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_AT, enmAt)
1668 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_T1, fType1)
1669 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_F, 1);
1670 uint64_t const uFrcdLo = pMemReqIn->AddrRange.uAddr & X86_PAGE_BASE_MASK;
1671 dmarPrimaryFaultRecord(pDevIns, uFrcdHi, uFrcdLo);
1672 }
1673}
1674
1675
1676/**
1677 * Records an IQE fault.
1678 *
1679 * @param pDevIns The IOMMU device instance.
1680 * @param enmIqei The IQE information.
1681 * @param enmDiag The diagnostic reason.
1682 */
1683static void dmarIqeFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTDIQEI enmIqei)
1684{
1685 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1686 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1687
1688 DMAR_LOCK(pDevIns, pThisCC);
1689
1690 /* Update the diagnostic reason. */
1691 pThis->enmDiag = enmDiag;
1692
1693 /* Set the error bit. */
1694 uint32_t const fIqe = RT_BF_MAKE(VTD_BF_FSTS_REG_IQE, 1);
1695 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, UINT32_MAX, fIqe);
1696
1697 /* Set the error information. */
1698 uint64_t const fIqei = RT_BF_MAKE(VTD_BF_IQERCD_REG_IQEI, enmIqei);
1699 dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG, UINT64_MAX, fIqei);
1700
1701 dmarFaultEventRaiseInterrupt(pDevIns);
1702
1703 DMAR_UNLOCK(pDevIns, pThisCC);
1704}
1705
1706
1707/**
1708 * Handles writes to GCMD_REG.
1709 *
1710 * @returns Strict VBox status code.
1711 * @param pDevIns The IOMMU device instance.
1712 * @param uGcmdReg The value written to GCMD_REG.
1713 */
1714static VBOXSTRICTRC dmarGcmdRegWrite(PPDMDEVINS pDevIns, uint32_t uGcmdReg)
1715{
1716 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1717 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
1718 uint32_t const fChanged = uGstsReg ^ uGcmdReg;
1719 uint64_t const fExtCapReg = pThis->fExtCapReg;
1720
1721 /* Queued-invalidation. */
1722 if ( (fExtCapReg & VTD_BF_ECAP_REG_QI_MASK)
1723 && (fChanged & VTD_BF_GCMD_REG_QIE_MASK))
1724 {
1725 if (uGcmdReg & VTD_BF_GCMD_REG_QIE_MASK)
1726 {
1727 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_QIES_MASK);
1728 dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
1729 }
1730 else
1731 {
1732 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_QIES_MASK, 0 /* fOrMask */);
1733 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IQH_REG, 0);
1734 }
1735 }
1736
1737 if (fExtCapReg & VTD_BF_ECAP_REG_IR_MASK)
1738 {
1739 /* Set Interrupt Remapping Table Pointer (SIRTP). */
1740 if (uGcmdReg & VTD_BF_GCMD_REG_SIRTP_MASK)
1741 {
1742 /** @todo Perform global invalidation of all interrupt-entry cache when ESIRTPS is
1743 * supported. */
1744 pThis->uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG);
1745 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_IRTPS_MASK);
1746 }
1747
1748 /* Interrupt remapping. */
1749 if (fChanged & VTD_BF_GCMD_REG_IRE_MASK)
1750 {
1751 if (uGcmdReg & VTD_BF_GCMD_REG_IRE_MASK)
1752 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_IRES_MASK);
1753 else
1754 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_IRES_MASK, 0 /* fOrMask */);
1755 }
1756
1757 /* Compatibility format interrupts. */
1758 if (fChanged & VTD_BF_GCMD_REG_CFI_MASK)
1759 {
1760 if (uGcmdReg & VTD_BF_GCMD_REG_CFI_MASK)
1761 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_CFIS_MASK);
1762 else
1763 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_CFIS_MASK, 0 /* fOrMask */);
1764 }
1765 }
1766
1767 /* Set Root Table Pointer (SRTP). */
1768 if (uGcmdReg & VTD_BF_GCMD_REG_SRTP_MASK)
1769 {
1770 /** @todo Perform global invalidation of all remapping translation caches when
1771 * ESRTPS is supported. */
1772 pThis->uRtaddrReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_RTADDR_REG);
1773 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_RTPS_MASK);
1774 }
1775
1776 /* Translation (DMA remapping). */
1777 if (fChanged & VTD_BF_GCMD_REG_TE_MASK)
1778 {
1779 if (uGcmdReg & VTD_BF_GCMD_REG_TE_MASK)
1780 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_TES_MASK);
1781 else
1782 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_TES_MASK, 0 /* fOrMask */);
1783 }
1784
1785 return VINF_SUCCESS;
1786}
1787
1788
1789/**
1790 * Handles writes to CCMD_REG.
1791 *
1792 * @returns Strict VBox status code.
1793 * @param pDevIns The IOMMU device instance.
1794 * @param offReg The MMIO register offset.
1795 * @param cbReg The size of the MMIO access (in bytes).
1796 * @param uCcmdReg The value written to CCMD_REG.
1797 */
1798static VBOXSTRICTRC dmarCcmdRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint8_t cbReg, uint64_t uCcmdReg)
1799{
1800 /* At present, we only care about responding to high 32-bits writes, low 32-bits are data. */
1801 if (offReg + cbReg > VTD_MMIO_OFF_CCMD_REG + 4)
1802 {
1803 /* Check if we need to invalidate the context-context. */
1804 bool const fIcc = RT_BF_GET(uCcmdReg, VTD_BF_CCMD_REG_ICC);
1805 if (fIcc)
1806 {
1807 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1808 uint8_t const uMajorVersion = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MAX);
1809 if (uMajorVersion < 6)
1810 {
1811 /* Register-based invalidation can only be used when queued-invalidations are not enabled. */
1812 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
1813 if (!(uGstsReg & VTD_BF_GSTS_REG_QIES_MASK))
1814 {
1815 /* Verify table translation mode is legacy. */
1816 uint8_t const fTtm = RT_BF_GET(pThis->uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
1817 if (fTtm == VTD_TTM_LEGACY_MODE)
1818 {
1819 /** @todo Invalidate. */
1820 return VINF_SUCCESS;
1821 }
1822 pThis->enmDiag = kDmarDiag_CcmdReg_Ttm_Invalid;
1823 }
1824 else
1825 pThis->enmDiag = kDmarDiag_CcmdReg_Qi_Enabled;
1826 }
1827 else
1828 pThis->enmDiag = kDmarDiag_CcmdReg_Not_Supported;
1829 dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_CCMD_REG_CAIG_MASK, 0 /* fOrMask */);
1830 }
1831 }
1832 return VINF_SUCCESS;
1833}
1834
1835
1836/**
1837 * Handles writes to FECTL_REG.
1838 *
1839 * @returns Strict VBox status code.
1840 * @param pDevIns The IOMMU device instance.
1841 * @param uFectlReg The value written to FECTL_REG.
1842 */
1843static VBOXSTRICTRC dmarFectlRegWrite(PPDMDEVINS pDevIns, uint32_t uFectlReg)
1844{
1845 /*
1846 * If software unmasks the interrupt when the interrupt is pending, we must raise
1847 * the interrupt now (which will consequently clear the interrupt pending (IP) bit).
1848 */
1849 if ( (uFectlReg & VTD_BF_FECTL_REG_IP_MASK)
1850 && ~(uFectlReg & VTD_BF_FECTL_REG_IM_MASK))
1851 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_FAULT);
1852 return VINF_SUCCESS;
1853}
1854
1855
1856/**
1857 * Handles writes to FSTS_REG.
1858 *
1859 * @returns Strict VBox status code.
1860 * @param pDevIns The IOMMU device instance.
1861 * @param uFstsReg The value written to FSTS_REG.
1862 * @param uPrev The value in FSTS_REG prior to writing it.
1863 */
1864static VBOXSTRICTRC dmarFstsRegWrite(PPDMDEVINS pDevIns, uint32_t uFstsReg, uint32_t uPrev)
1865{
1866 /*
1867 * If software clears other status bits in FSTS_REG (pertaining to primary fault logging),
1868 * the interrupt pending (IP) bit must be cleared.
1869 *
1870 * See Intel VT-d spec. 10.4.10 "Fault Event Control Register".
1871 */
1872 uint32_t const fChanged = uPrev ^ uFstsReg;
1873 if (fChanged & ( VTD_BF_FSTS_REG_ICE_MASK | VTD_BF_FSTS_REG_ITE_MASK
1874 | VTD_BF_FSTS_REG_IQE_MASK | VTD_BF_FSTS_REG_PFO_MASK))
1875 {
1876 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1877 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, ~VTD_BF_FECTL_REG_IP_MASK, 0 /* fOrMask */);
1878 }
1879 return VINF_SUCCESS;
1880}
1881
1882
1883/**
1884 * Handles writes to IQT_REG.
1885 *
1886 * @returns Strict VBox status code.
1887 * @param pDevIns The IOMMU device instance.
1888 * @param offReg The MMIO register offset.
1889 * @param uIqtReg The value written to IQT_REG.
1890 */
1891static VBOXSTRICTRC dmarIqtRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqtReg)
1892{
1893 /* We only care about the low 32-bits, high 32-bits are reserved. */
1894 Assert(offReg == VTD_MMIO_OFF_IQT_REG);
1895 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1896
1897 /* Paranoia. */
1898 Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK));
1899
1900 uint32_t const offQt = uIqtReg;
1901 uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
1902 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
1903
1904 /* If the descriptor width is 256-bits, the queue tail offset must be aligned accordingly. */
1905 if ( fDw != VTD_IQA_REG_DW_256_BIT
1906 || !(offQt & RT_BIT(4)))
1907 dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
1908 else
1909 {
1910 /* Hardware treats bit 4 as RsvdZ in this situation, so clear it. */
1911 dmarRegChangeRaw32(pThis, offReg, ~RT_BIT(4), 0 /* fOrMask */);
1912 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_Not_Aligned, VTDIQEI_QUEUE_TAIL_MISALIGNED);
1913 }
1914 return VINF_SUCCESS;
1915}
1916
1917
1918/**
1919 * Handles writes to IQA_REG.
1920 *
1921 * @returns Strict VBox status code.
1922 * @param pDevIns The IOMMU device instance.
1923 * @param offReg The MMIO register offset.
1924 * @param uIqaReg The value written to IQA_REG.
1925 */
1926static VBOXSTRICTRC dmarIqaRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqaReg)
1927{
1928 /* At present, we only care about the low 32-bits, high 32-bits are data. */
1929 Assert(offReg == VTD_MMIO_OFF_IQA_REG); NOREF(offReg);
1930
1931 /** @todo What happens if IQA_REG is written when dmarInvQueueCanProcessRequests
1932 * returns true? The Intel VT-d spec. doesn't state anywhere that it
1933 * cannot happen or that it's ignored when it does happen. */
1934
1935 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1936 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
1937 if (fDw == VTD_IQA_REG_DW_256_BIT)
1938 {
1939 bool const fSupports256BitDw = (pThis->fExtCapReg & (VTD_BF_ECAP_REG_SMTS_MASK | VTD_BF_ECAP_REG_ADMS_MASK));
1940 if (fSupports256BitDw)
1941 { /* likely */ }
1942 else
1943 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dw_256_Invalid, VTDIQEI_INVALID_DESCRIPTOR_WIDTH);
1944 }
1945 /* else: 128-bit descriptor width is validated lazily, see explanation in dmarR3InvQueueProcessRequests. */
1946
1947 return VINF_SUCCESS;
1948}
1949
1950
1951/**
1952 * Handles writes to ICS_REG.
1953 *
1954 * @returns Strict VBox status code.
1955 * @param pDevIns The IOMMU device instance.
1956 * @param uIcsReg The value written to ICS_REG.
1957 */
1958static VBOXSTRICTRC dmarIcsRegWrite(PPDMDEVINS pDevIns, uint32_t uIcsReg)
1959{
1960 /*
1961 * If the IP field is set when software services the interrupt condition,
1962 * (by clearing the IWC field), the IP field must be cleared.
1963 */
1964 if (!(uIcsReg & VTD_BF_ICS_REG_IWC_MASK))
1965 {
1966 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1967 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_IECTL_REG, ~VTD_BF_IECTL_REG_IP_MASK, 0 /* fOrMask */);
1968 }
1969 return VINF_SUCCESS;
1970}
1971
1972
1973/**
1974 * Handles writes to IECTL_REG.
1975 *
1976 * @returns Strict VBox status code.
1977 * @param pDevIns The IOMMU device instance.
1978 * @param uIectlReg The value written to IECTL_REG.
1979 */
1980static VBOXSTRICTRC dmarIectlRegWrite(PPDMDEVINS pDevIns, uint32_t uIectlReg)
1981{
1982 /*
1983 * If software unmasks the interrupt when the interrupt is pending, we must raise
1984 * the interrupt now (which will consequently clear the interrupt pending (IP) bit).
1985 */
1986 if ( (uIectlReg & VTD_BF_IECTL_REG_IP_MASK)
1987 && ~(uIectlReg & VTD_BF_IECTL_REG_IM_MASK))
1988 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_INV_COMPLETE);
1989 return VINF_SUCCESS;
1990}
1991
1992
1993/**
1994 * Handles writes to FRCD_REG (High 64-bits).
1995 *
1996 * @returns Strict VBox status code.
1997 * @param pDevIns The IOMMU device instance.
1998 * @param offReg The MMIO register offset.
1999 * @param cbReg The size of the MMIO access (in bytes).
2000 * @param uFrcdHiReg The value written to FRCD_REG.
2001 * @param uPrev The value in FRCD_REG prior to writing it.
2002 */
2003static VBOXSTRICTRC dmarFrcdHiRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint8_t cbReg, uint64_t uFrcdHiReg, uint64_t uPrev)
2004{
2005 /* We only care about responding to high 32-bits, low 32-bits are read-only. */
2006 if (offReg + cbReg > DMAR_MMIO_OFF_FRCD_HI_REG + 4)
2007 {
2008 /*
2009 * If software cleared the RW1C F (fault) bit in all FRCD_REGs, hardware clears the
2010 * Primary Pending Fault (PPF) and the interrupt pending (IP) bits. Our implementation
2011 * has only 1 FRCD register.
2012 *
2013 * See Intel VT-d spec. 10.4.10 "Fault Event Control Register".
2014 */
2015 AssertCompile(DMAR_FRCD_REG_COUNT == 1);
2016 uint64_t const fChanged = uPrev ^ uFrcdHiReg;
2017 if (fChanged & VTD_BF_1_FRCD_REG_F_MASK)
2018 {
2019 Assert(!(uFrcdHiReg & VTD_BF_1_FRCD_REG_F_MASK)); /* Software should only ever be able to clear this bit. */
2020 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2021 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, ~VTD_BF_FSTS_REG_PPF_MASK, 0 /* fOrMask */);
2022 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, ~VTD_BF_FECTL_REG_IP_MASK, 0 /* fOrMask */);
2023 }
2024 }
2025 return VINF_SUCCESS;
2026}
2027
2028
2029/**
2030 * Performs a PCI target abort for a DMA remapping (DR) operation.
2031 *
2032 * @param pDevIns The IOMMU device instance.
2033 */
2034static void dmarDrTargetAbort(PPDMDEVINS pDevIns)
2035{
2036 /** @todo r=ramshankar: I don't know for sure if a PCI target abort is caused or not
2037 * as the Intel VT-d spec. is vague. Wording seems to suggest it does, but
2038 * who knows. */
2039 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
2040 uint16_t const u16Status = PDMPciDevGetStatus(pPciDev) | VBOX_PCI_STATUS_SIG_TARGET_ABORT;
2041 PDMPciDevSetStatus(pPciDev, u16Status);
2042}
2043
2044
2045/**
2046 * Checks whether the address width (AW) is supported by our hardware
2047 * implementation for legacy mode address translation.
2048 *
2049 * @returns @c true if it's supported, @c false otherwise.
2050 * @param pThis The shared DMAR device state.
2051 * @param pCtxEntry The context entry.
2052 * @param pcPagingLevel Where to store the paging level. Optional, can be NULL.
2053 */
2054static bool dmarDrLegacyModeIsAwValid(PCDMAR pThis, PCVTD_CONTEXT_ENTRY_T pCtxEntry, uint8_t *pcPagingLevel)
2055{
2056 uint8_t const fTt = RT_BF_GET(pCtxEntry->au64[0], VTD_BF_0_CONTEXT_ENTRY_TT);
2057 uint8_t const fAw = RT_BF_GET(pCtxEntry->au64[1], VTD_BF_1_CONTEXT_ENTRY_AW);
2058 uint8_t const fAwMask = RT_BIT(fAw);
2059 uint8_t const fSagaw = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SAGAW);
2060 Assert(!(fSagaw & ~(RT_BIT(1) | RT_BIT(2) | RT_BIT(3))));
2061
2062 uint8_t const cPagingLevel = fAw + 2;
2063 if (pcPagingLevel)
2064 *pcPagingLevel = cPagingLevel;
2065
2066 /* With pass-through, the address width must be the largest AGAW supported by hardware. */
2067 if (fTt == VTD_TT_UNTRANSLATED_PT)
2068 {
2069 Assert(pThis->cMaxPagingLevel >= 3 && pThis->cMaxPagingLevel <= 5); /* Paranoia. */
2070 return cPagingLevel == pThis->cMaxPagingLevel;
2071 }
2072
2073 /* The address width must be any of the ones supported by hardware. */
2074 if (fAw < 4)
2075 return (fSagaw & fAwMask) != 0;
2076
2077 return false;
2078}
2079
2080
2081/**
2082 * Reads a root entry from guest memory.
2083 *
2084 * @returns VBox status code.
2085 * @param pDevIns The IOMMU device instance.
2086 * @param uRtaddrReg The current RTADDR_REG value.
2087 * @param idxRootEntry The index of the root entry to read.
2088 * @param pRootEntry Where to store the read root entry.
2089 */
2090static int dmarDrReadRootEntry(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, uint8_t idxRootEntry, PVTD_ROOT_ENTRY_T pRootEntry)
2091{
2092 size_t const cbRootEntry = sizeof(*pRootEntry);
2093 RTGCPHYS const GCPhysRootEntry = (uRtaddrReg & VTD_BF_RTADDR_REG_RTA_MASK) + (idxRootEntry * cbRootEntry);
2094 return PDMDevHlpPhysReadMeta(pDevIns, GCPhysRootEntry, pRootEntry, cbRootEntry);
2095}
2096
2097
2098/**
2099 * Reads a context entry from guest memory.
2100 *
2101 * @returns VBox status code.
2102 * @param pDevIns The IOMMU device instance.
2103 * @param GCPhysCtxTable The physical address of the context table.
2104 * @param idxCtxEntry The index of the context entry to read.
2105 * @param pCtxEntry Where to store the read context entry.
2106 */
2107static int dmarDrReadCtxEntry(PPDMDEVINS pDevIns, RTGCPHYS GCPhysCtxTable, uint8_t idxCtxEntry, PVTD_CONTEXT_ENTRY_T pCtxEntry)
2108{
2109 /* We don't verify bits 63:HAW of GCPhysCtxTable is 0 since reading from such an address should fail anyway. */
2110 size_t const cbCtxEntry = sizeof(*pCtxEntry);
2111 RTGCPHYS const GCPhysCtxEntry = GCPhysCtxTable + (idxCtxEntry * cbCtxEntry);
2112 return PDMDevHlpPhysReadMeta(pDevIns, GCPhysCtxEntry, pCtxEntry, cbCtxEntry);
2113}
2114
2115
2116/**
2117 * Validates and updates the output I/O page of a translation.
2118 *
2119 * @returns VBox status code.
2120 * @param pDevIns The IOMMU device instance.
2121 * @param GCPhysBase The output address of the translation.
2122 * @param cShift The page shift of the translated address.
2123 * @param fPerm The permissions granted for the translated region.
2124 * @param pMemReqIn The DMA memory request input.
2125 * @param pMemReqAux The DMA memory request auxiliary info.
2126 * @param pIoPageOut Where to store the output of the translation.
2127 */
2128static int dmarDrUpdateIoPageOut(PPDMDEVINS pDevIns, RTGCPHYS GCPhysBase, uint8_t cShift, uint8_t fPerm,
2129 PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux, PDMARIOPAGE pIoPageOut)
2130{
2131 Assert(!(GCPhysBase & X86_PAGE_4K_OFFSET_MASK));
2132
2133 /* Ensure the output address is not in the interrupt address range. */
2134 if (GCPhysBase - VBOX_MSI_ADDR_BASE >= VBOX_MSI_ADDR_SIZE)
2135 {
2136 pIoPageOut->GCPhysBase = GCPhysBase;
2137 pIoPageOut->cShift = cShift;
2138 pIoPageOut->fPerm = fPerm;
2139 return VINF_SUCCESS;
2140 }
2141
2142 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_AddrOut_Invalid, pMemReqIn, pMemReqAux);
2143 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2144}
2145
2146
2147/**
2148 * Performs second level translation by walking the I/O page tables.
2149 *
2150 * This is a DMA address-lookup callback function which performs the translation
2151 * (and access control) as part of the lookup.
2152 *
2153 * @returns VBox status code.
2154 * @param pDevIns The IOMMU device instance.
2155 * @param pMemReqIn The DMA memory request input.
2156 * @param pMemReqAux The DMA memory request auxiliary info.
2157 * @param pIoPageOut Where to store the output of the translation.
2158 */
2159static DECLCALLBACK(int) dmarDrSecondLevelTranslate(PPDMDEVINS pDevIns, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux,
2160 PDMARIOPAGE pIoPageOut)
2161{
2162 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
2163
2164 /* Sanity. */
2165 Assert(pIoPageOut);
2166 Assert(pMemReqIn->AddrRange.fPerm & (DMAR_PERM_READ | DMAR_PERM_WRITE));
2167 Assert( pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE
2168 || pMemReqAux->fTtm == VTD_TTM_SCALABLE_MODE);
2169 Assert(!(pMemReqAux->GCPhysSlPt & X86_PAGE_4K_OFFSET_MASK));
2170
2171 /* Mask of valid paging entry bits. */
2172 static uint64_t const s_auPtEntityRsvd[] = { VTD_SL_PTE_VALID_MASK,
2173 VTD_SL_PDE_VALID_MASK,
2174 VTD_SL_PDPE_VALID_MASK,
2175 VTD_SL_PML4E_VALID_MASK,
2176 VTD_SL_PML5E_VALID_MASK };
2177
2178 /* Paranoia. */
2179 Assert(pMemReqAux->cPagingLevel >= 3 && pMemReqAux->cPagingLevel <= 5);
2180 AssertCompile(RT_ELEMENTS(s_auPtEntityRsvd) == 5);
2181
2182 /* Second-level translations restricts input address to an implementation-specific MGAW. */
2183 uint64_t const uAddrIn = pMemReqIn->AddrRange.uAddr;
2184 if (!(uAddrIn & pThis->fMgawInvMask))
2185 { /* likely */ }
2186 else
2187 {
2188 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_AddrIn_Invalid, pMemReqIn, pMemReqAux);
2189 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2190 }
2191
2192 /*
2193 * Traverse the I/O page table starting with the SLPTPTR (second-level page table pointer).
2194 * Unlike AMD IOMMU paging, here there is no feature for "skipping" levels.
2195 */
2196 uint64_t uPtEntity = pMemReqAux->GCPhysSlPt;
2197 for (int8_t idxLevel = pMemReqAux->cPagingLevel - 1; idxLevel >= 0; idxLevel--)
2198 {
2199 /*
2200 * Read the paging entry for the current level.
2201 */
2202 uint8_t const cLevelShift = X86_PAGE_4K_SHIFT + (idxLevel * 9);
2203 {
2204 uint16_t const idxPte = (uAddrIn >> cLevelShift) & UINT64_C(0x1ff);
2205 uint16_t const offPte = idxPte << 3;
2206 RTGCPHYS const GCPhysPtEntity = (uPtEntity & X86_PAGE_4K_BASE_MASK) | offPte;
2207 int const rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysPtEntity, &uPtEntity, sizeof(uPtEntity));
2208 if (RT_SUCCESS(rc))
2209 { /* likely */ }
2210 else
2211 {
2212 if ((GCPhysPtEntity & X86_PAGE_BASE_MASK) == pMemReqAux->GCPhysSlPt)
2213 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Slpptr_Read_Failed, pMemReqIn, pMemReqAux);
2214 else
2215 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Read_Pte_Failed, pMemReqIn, pMemReqAux);
2216 break;
2217 }
2218 }
2219
2220 /*
2221 * Check I/O permissions.
2222 * This must be done prior to check reserved bits for properly reporting errors SSL.2 and SSL.3.
2223 * See Intel spec. 7.1.3 "Fault conditions and Remapping hardware behavior for various request".
2224 */
2225 uint8_t const fReqPerm = pMemReqIn->AddrRange.fPerm & pThis->fPermValidMask;
2226 uint8_t const fPtPerm = uPtEntity & pThis->fPermValidMask;
2227 Assert(!(fReqPerm & DMAR_PERM_EXE)); /* No Execute-requests support yet. */
2228 Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_SLADS_MASK)); /* No Second-level access/dirty support. */
2229 if ((fPtPerm & fReqPerm) == fReqPerm)
2230 { /* likely */ }
2231 else
2232 {
2233 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Perm_Denied, pMemReqIn, pMemReqAux);
2234 break;
2235 }
2236
2237 /*
2238 * Validate reserved bits of the current paging entry.
2239 */
2240 if (!(uPtEntity & ~s_auPtEntityRsvd[idxLevel]))
2241 { /* likely */ }
2242 else
2243 {
2244 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Pte_Rsvd, pMemReqIn, pMemReqAux);
2245 break;
2246 }
2247
2248 /*
2249 * Check if this is a 1GB page or a 2MB page.
2250 */
2251 AssertCompile(VTD_BF_SL_PDE_PS_MASK == VTD_BF_SL_PDPE_PS_MASK);
2252 uint8_t const fLargePage = RT_BF_GET(uPtEntity, VTD_BF_SL_PDE_PS);
2253 if (fLargePage && idxLevel > 0)
2254 {
2255 Assert(idxLevel == 1 || idxLevel == 2); /* Is guaranteed by the reserved bits check above. */
2256 uint8_t const fSllpsMask = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SLLPS);
2257 if (fSllpsMask & RT_BIT(idxLevel - 1))
2258 {
2259 /*
2260 * We don't support MTS (asserted below), hence IPAT and EMT fields of the paging entity are ignored.
2261 * All other reserved bits are identical to the regular page-size paging entity which we've already
2262 * checked above.
2263 */
2264 Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_MTS_MASK));
2265
2266 RTGCPHYS const GCPhysBase = uPtEntity & X86_GET_PAGE_BASE_MASK(cLevelShift);
2267 return dmarDrUpdateIoPageOut(pDevIns, GCPhysBase, cLevelShift, fPtPerm, pMemReqIn, pMemReqAux, pIoPageOut);
2268 }
2269
2270 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Xm_Pte_Sllps_Invalid, pMemReqIn, pMemReqAux);
2271 break;
2272 }
2273
2274 /*
2275 * If this is the final PTE, compute the translation address and we're done.
2276 */
2277 if (idxLevel == 0)
2278 {
2279 RTGCPHYS const GCPhysBase = uPtEntity & X86_GET_PAGE_BASE_MASK(cLevelShift);
2280 return dmarDrUpdateIoPageOut(pDevIns, GCPhysBase, cLevelShift, fPtPerm, pMemReqIn, pMemReqAux, pIoPageOut);
2281 }
2282 }
2283
2284 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2285}
2286
2287
2288/**
2289 * Checks whether two consecutive I/O page results of a DMA memory request
2290 * translates to a physically contiguous region.
2291 *
2292 * @returns @c true if the I/O pages are contiguous, @c false otherwise.
2293 * @param pIoPagePrev The previous I/O page.
2294 * @param pIoPage The current I/O page.
2295 */
2296static bool dmarIsIoPageAccessContig(PCDMARIOPAGE pIoPagePrev, PCDMARIOPAGE pIoPage)
2297{
2298 /* Paranoia: Permissions for pages of a DMA memory request must be identical. */
2299 Assert(pIoPagePrev->fPerm == pIoPage->fPerm);
2300
2301 size_t const cbPrev = RT_BIT_64(pIoPagePrev->cShift);
2302 RTGCPHYS const GCPhysPrev = pIoPagePrev->GCPhysBase;
2303 RTGCPHYS const GCPhys = pIoPage->GCPhysBase;
2304#ifdef RT_STRICT
2305 /* Paranoia: Ensure offset bits are 0. */
2306 {
2307 uint64_t const fOffMaskPrev = X86_GET_PAGE_OFFSET_MASK(pIoPagePrev->cShift);
2308 uint64_t const fOffMask = X86_GET_PAGE_OFFSET_MASK(pIoPage->cShift);
2309 Assert(!(GCPhysPrev & fOffMaskPrev));
2310 Assert(!(GCPhys & fOffMask));
2311 }
2312#endif
2313 return GCPhysPrev + cbPrev == GCPhys;
2314}
2315
2316
2317/**
2318 * Looks up the range of addresses for a DMA memory request remapping.
2319 *
2320 * @returns VBox status code.
2321 * @param pDevIns The IOMMU device instance.
2322 * @param pfnLookup The DMA address lookup function.
2323 * @param pMemReqRemap The DMA memory request remapping info.
2324 */
2325static int dmarDrMemRangeLookup(PPDMDEVINS pDevIns, PFNDMADDRLOOKUP pfnLookup, PDMARMEMREQREMAP pMemReqRemap)
2326{
2327 AssertPtr(pfnLookup);
2328
2329 RTGCPHYS GCPhysAddr = NIL_RTGCPHYS;
2330 DMARMEMREQIN MemReqIn = pMemReqRemap->In;
2331 uint64_t const uAddrIn = MemReqIn.AddrRange.uAddr;
2332 size_t const cbAddrIn = MemReqIn.AddrRange.cb;
2333 uint64_t uAddrInBase = MemReqIn.AddrRange.uAddr & X86_PAGE_4K_BASE_MASK;
2334 uint64_t offAddrIn = MemReqIn.AddrRange.uAddr & X86_PAGE_4K_OFFSET_MASK;
2335 size_t cbRemaining = cbAddrIn;
2336
2337 int rc;
2338 DMARIOPAGE IoPagePrev;
2339 RT_ZERO(IoPagePrev);
2340 for (;;)
2341 {
2342 /* Update the input memory request with the next address in our range that needs translation. */
2343 MemReqIn.AddrRange.uAddr = uAddrInBase;
2344 MemReqIn.AddrRange.cb = cbRemaining; /* Not currently accessed by pfnLookup, but keep things consistent. */
2345
2346 DMARIOPAGE IoPage;
2347 rc = pfnLookup(pDevIns, &MemReqIn, &pMemReqRemap->Aux, &IoPage);
2348 if (RT_SUCCESS(rc))
2349 {
2350 Assert(IoPage.cShift >= X86_PAGE_4K_SHIFT && IoPage.cShift <= X86_PAGE_1G_SHIFT);
2351
2352 /* Store the translated address before continuing to access more pages. */
2353 if (cbRemaining == cbAddrIn)
2354 {
2355 uint64_t const fOffMask = X86_GET_PAGE_OFFSET_MASK(IoPage.cShift);
2356 uint64_t const offAddrOut = uAddrIn & fOffMask;
2357 Assert(!(IoPage.GCPhysBase & fOffMask));
2358 GCPhysAddr = IoPage.GCPhysBase | offAddrOut;
2359 }
2360 /* Check if addresses translated so far result in a physically contiguous region. */
2361 else if (!dmarIsIoPageAccessContig(&IoPagePrev, &IoPage))
2362 {
2363 rc = VERR_OUT_OF_RANGE;
2364 break;
2365 }
2366
2367 /* Store the I/O page lookup from the first/previous access. */
2368 IoPagePrev = IoPage;
2369
2370 /* Check if we need to access more pages. */
2371 size_t const cbPage = RT_BIT_64(IoPage.cShift);
2372 if (cbRemaining > cbPage - offAddrIn)
2373 {
2374 cbRemaining -= (cbPage - offAddrIn); /* Calculate how much more we need to access. */
2375 uAddrInBase += cbPage; /* Update address of the next access. */
2376 offAddrIn = 0; /* After first page, all pages are accessed from offset 0. */
2377 }
2378 else
2379 {
2380 /* Caller (PDM) doesn't expect more data accessed than what was requested. */
2381 cbRemaining = 0;
2382 break;
2383 }
2384 }
2385 else
2386 break;
2387 }
2388
2389 pMemReqRemap->Out.AddrRange.uAddr = GCPhysAddr;
2390 pMemReqRemap->Out.AddrRange.cb = cbAddrIn - cbRemaining;
2391 pMemReqRemap->Out.AddrRange.fPerm = IoPagePrev.fPerm;
2392 return rc;
2393}
2394
2395
2396/**
2397 * Handles legacy mode DMA address remapping.
2398 *
2399 * @returns VBox status code.
2400 * @param pDevIns The IOMMU device instance.
2401 * @param uRtaddrReg The current RTADDR_REG value.
2402 * @param pMemReqRemap The DMA memory request remapping info.
2403 */
2404static int dmarDrLegacyModeRemapAddr(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
2405{
2406 PCDMARMEMREQIN pMemReqIn = &pMemReqRemap->In;
2407 PDMARMEMREQAUX pMemReqAux = &pMemReqRemap->Aux;
2408 PDMARMEMREQOUT pMemReqOut = &pMemReqRemap->Out;
2409 Assert(pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE); /* Paranoia. */
2410
2411 /* Read the root-entry from guest memory. */
2412 uint8_t const idxRootEntry = RT_HI_U8(pMemReqIn->idDevice);
2413 VTD_ROOT_ENTRY_T RootEntry;
2414 int rc = dmarDrReadRootEntry(pDevIns, uRtaddrReg, idxRootEntry, &RootEntry);
2415 if (RT_SUCCESS(rc))
2416 {
2417 /* Check if the root entry is present (must be done before validating reserved bits). */
2418 uint64_t const uRootEntryQword0 = RootEntry.au64[0];
2419 uint64_t const uRootEntryQword1 = RootEntry.au64[1];
2420 bool const fRootEntryPresent = RT_BF_GET(uRootEntryQword0, VTD_BF_0_ROOT_ENTRY_P);
2421 if (fRootEntryPresent)
2422 {
2423 /* Validate reserved bits in the root entry. */
2424 if ( !(uRootEntryQword0 & ~VTD_ROOT_ENTRY_0_VALID_MASK)
2425 && !(uRootEntryQword1 & ~VTD_ROOT_ENTRY_1_VALID_MASK))
2426 {
2427 /* Read the context-entry from guest memory. */
2428 RTGCPHYS const GCPhysCtxTable = uRootEntryQword0 & VTD_BF_0_ROOT_ENTRY_CTP_MASK;
2429 uint8_t const idxCtxEntry = RT_LO_U8(pMemReqIn->idDevice);
2430 VTD_CONTEXT_ENTRY_T CtxEntry;
2431 rc = dmarDrReadCtxEntry(pDevIns, GCPhysCtxTable, idxCtxEntry, &CtxEntry);
2432 if (RT_SUCCESS(rc))
2433 {
2434 uint64_t const uCtxEntryQword0 = CtxEntry.au64[0];
2435 uint64_t const uCtxEntryQword1 = CtxEntry.au64[1];
2436
2437 /* Note the FPD bit which software can use to supress translation faults from here on in. */
2438 pMemReqAux->fFpd = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_FPD);
2439
2440 /* Check if the context-entry is present (must be done before validating reserved bits). */
2441 bool const fCtxEntryPresent = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_P);
2442 if (fCtxEntryPresent)
2443 {
2444 /* Validate reserved bits in the context-entry. */
2445 if ( !(uCtxEntryQword0 & ~VTD_CONTEXT_ENTRY_0_VALID_MASK)
2446 && !(uCtxEntryQword1 & ~VTD_CONTEXT_ENTRY_1_VALID_MASK))
2447 {
2448 /* Get the domain ID for this mapping. */
2449 pMemReqOut->idDomain = RT_BF_GET(uCtxEntryQword1, VTD_BF_1_CONTEXT_ENTRY_DID);
2450
2451 /* Validate the translation type (TT). */
2452 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
2453 uint8_t const fTt = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_TT);
2454 switch (fTt)
2455 {
2456 case VTD_TT_UNTRANSLATED_SLP:
2457 {
2458 /*
2459 * Untranslated requests are translated using second-level paging structures referenced
2460 * through SLPTPTR. Translated requests and Translation Requests are blocked.
2461 */
2462 if (pMemReqIn->enmAddrType == PCIADDRTYPE_UNTRANSLATED)
2463 {
2464 /* Validate the address width and get the paging level. */
2465 uint8_t cPagingLevel;
2466 if (dmarDrLegacyModeIsAwValid(pThis, &CtxEntry, &cPagingLevel))
2467 {
2468 /*
2469 * The second-level page table is located at the physical address specified
2470 * in the context entry with which we can finally perform second-level translation.
2471 */
2472 pMemReqAux->cPagingLevel = cPagingLevel;
2473 pMemReqAux->GCPhysSlPt = uCtxEntryQword0 & VTD_BF_0_CONTEXT_ENTRY_SLPTPTR_MASK;
2474 return dmarDrMemRangeLookup(pDevIns, dmarDrSecondLevelTranslate, pMemReqRemap);
2475 }
2476 else
2477 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Ut_Aw_Invalid, pMemReqIn, pMemReqAux);
2478 }
2479 else
2480 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Ut_At_Block, pMemReqIn, pMemReqAux);
2481 break;
2482 }
2483
2484 case VTD_TT_UNTRANSLATED_PT:
2485 {
2486 /*
2487 * Untranslated requests are processed as pass-through (PT) if PT is supported.
2488 * Translated and translation requests are blocked. If PT isn't supported this TT value
2489 * is reserved which I assume raises a fault (hence fallthru below).
2490 */
2491 if (pThis->fExtCapReg & VTD_BF_ECAP_REG_PT_MASK)
2492 {
2493 if (pMemReqRemap->In.enmAddrType == PCIADDRTYPE_UNTRANSLATED)
2494 {
2495 if (dmarDrLegacyModeIsAwValid(pThis, &CtxEntry, NULL /* pcPagingLevel */))
2496 {
2497 PDMARMEMREQOUT pOut = &pMemReqRemap->Out;
2498 PCDMARMEMREQIN pIn = &pMemReqRemap->In;
2499 pOut->AddrRange.uAddr = pIn->AddrRange.uAddr & X86_PAGE_4K_BASE_MASK;
2500 pOut->AddrRange.cb = pIn->AddrRange.cb;
2501 pOut->AddrRange.fPerm = DMAR_PERM_ALL;
2502 return VINF_SUCCESS;
2503 }
2504 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Pt_Aw_Invalid, pMemReqIn, pMemReqAux);
2505 }
2506 else
2507 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Pt_At_Block, pMemReqIn, pMemReqAux);
2508 break;
2509 }
2510 RT_FALL_THRU();
2511 }
2512
2513 case VTD_TT_UNTRANSLATED_DEV_TLB:
2514 {
2515 /*
2516 * Untranslated, translated and translation requests are supported but requires
2517 * device-TLB support. We don't support device-TLBs, so it's treated as reserved.
2518 */
2519 Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_DT_MASK));
2520 RT_FALL_THRU();
2521 }
2522
2523 default:
2524 {
2525 /* Any other TT value is reserved. */
2526 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_Tt_Invalid, pMemReqIn, pMemReqAux);
2527 break;
2528 }
2529 }
2530 }
2531 else
2532 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_CtxEntry_Rsvd, pMemReqIn, pMemReqAux);
2533 }
2534 else
2535 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_CtxEntry_Not_Present, pMemReqIn, pMemReqAux);
2536 }
2537 else
2538 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_CtxEntry_Read_Failed, pMemReqIn, pMemReqAux);
2539 }
2540 else
2541 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_RootEntry_Rsvd, pMemReqIn, pMemReqAux);
2542 }
2543 else
2544 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_RootEntry_Not_Present, pMemReqIn, pMemReqAux);
2545 }
2546 else
2547 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Lm_RootEntry_Read_Failed, pMemReqIn, pMemReqAux);
2548 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2549}
2550
2551
2552/**
2553 * Handles remapping of DMA address requests in scalable mode.
2554 *
2555 * @returns VBox status code.
2556 * @param pDevIns The IOMMU device instance.
2557 * @param uRtaddrReg The current RTADDR_REG value.
2558 * @param pMemReqRemap The DMA memory request remapping info.
2559 */
2560static int dmarDrScalableModeRemapAddr(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
2561{
2562 RT_NOREF2(uRtaddrReg, pMemReqRemap);
2563 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2564 Assert(pThis->fExtCapReg & VTD_BF_ECAP_REG_SMTS_MASK);
2565 return VERR_NOT_IMPLEMENTED;
2566}
2567
2568
2569/**
2570 * Gets the DMA access permissions and the address-translation request
2571 * type given the PDM IOMMU memory access flags.
2572 *
2573 * @param pDevIns The IOMMU device instance.
2574 * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
2575 * @param fBulk Whether this is a bulk memory access (used for
2576 * statistics).
2577 * @param penmReqType Where to store the address-translation request type.
2578 * @param pfReqPerm Where to store the DMA access permissions.
2579 */
2580static void dmarDrGetPermAndReqType(PPDMDEVINS pDevIns, uint32_t fFlags, bool fBulk, PVTDREQTYPE penmReqType, uint8_t *pfReqPerm)
2581{
2582 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2583 if (fFlags & PDMIOMMU_MEM_F_READ)
2584 {
2585 *penmReqType = VTDREQTYPE_READ;
2586 *pfReqPerm = DMAR_PERM_READ;
2587#ifdef VBOX_WITH_STATISTICS
2588 if (!fBulk)
2589 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemRead));
2590 else
2591 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemBulkRead));
2592#else
2593 RT_NOREF2(pThis, fBulk);
2594#endif
2595 }
2596 else
2597 {
2598 *penmReqType = VTDREQTYPE_WRITE;
2599 *pfReqPerm = DMAR_PERM_WRITE;
2600#ifdef VBOX_WITH_STATISTICS
2601 if (!fBulk)
2602 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemWrite));
2603 else
2604 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemBulkWrite));
2605#else
2606 RT_NOREF2(pThis, fBulk);
2607#endif
2608 }
2609}
2610
2611
2612/**
2613 * Handles DMA remapping based on the table translation mode (TTM).
2614 *
2615 * @returns VBox status code.
2616 * @param pDevIns The IOMMU device instance.
2617 * @param uRtaddrReg The current RTADDR_REG value.
2618 * @param pMemReqRemap The DMA memory request remapping info.
2619 */
2620static int dmarDrMemReqRemap(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
2621{
2622 int rc;
2623 switch (pMemReqRemap->Aux.fTtm)
2624 {
2625 case VTD_TTM_LEGACY_MODE:
2626 {
2627 rc = dmarDrLegacyModeRemapAddr(pDevIns, uRtaddrReg, pMemReqRemap);
2628 break;
2629 }
2630
2631 case VTD_TTM_SCALABLE_MODE:
2632 {
2633 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
2634 if (pThis->fExtCapReg & VTD_BF_ECAP_REG_SMTS_MASK)
2635 rc = dmarDrScalableModeRemapAddr(pDevIns, uRtaddrReg, pMemReqRemap);
2636 else
2637 {
2638 rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2639 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Rta_Smts_Not_Supported, &pMemReqRemap->In, &pMemReqRemap->Aux);
2640 }
2641 break;
2642 }
2643
2644 case VTD_TTM_ABORT_DMA_MODE:
2645 {
2646 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
2647 if (pThis->fExtCapReg & VTD_BF_ECAP_REG_ADMS_MASK)
2648 dmarDrTargetAbort(pDevIns);
2649 else
2650 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Rta_Adms_Not_Supported, &pMemReqRemap->In, &pMemReqRemap->Aux);
2651 rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2652 break;
2653 }
2654
2655 default:
2656 {
2657 rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2658 dmarAtFaultRecord(pDevIns, kDmarDiag_At_Rta_Rsvd, &pMemReqRemap->In, &pMemReqRemap->Aux);
2659 break;
2660 }
2661 }
2662 return rc;
2663}
2664
2665
2666/**
2667 * Memory access bulk (one or more 4K pages) request from a device.
2668 *
2669 * @returns VBox status code.
2670 * @param pDevIns The IOMMU device instance.
2671 * @param idDevice The device ID (bus, device, function).
2672 * @param cIovas The number of addresses being accessed.
2673 * @param pauIovas The I/O virtual addresses for each page being accessed.
2674 * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
2675 * @param paGCPhysSpa Where to store the translated physical addresses.
2676 *
2677 * @thread Any.
2678 */
2679static DECLCALLBACK(int) iommuIntelMemBulkAccess(PPDMDEVINS pDevIns, uint16_t idDevice, size_t cIovas, uint64_t const *pauIovas,
2680 uint32_t fFlags, PRTGCPHYS paGCPhysSpa)
2681{
2682 /* Validate. */
2683 AssertPtr(pDevIns);
2684 Assert(cIovas > 0);
2685 AssertPtr(pauIovas);
2686 AssertPtr(paGCPhysSpa);
2687 Assert(!(fFlags & ~PDMIOMMU_MEM_F_VALID_MASK));
2688
2689 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2690 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
2691
2692 DMAR_LOCK(pDevIns, pThisCC);
2693 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
2694 uint64_t const uRtaddrReg = pThis->uRtaddrReg;
2695 DMAR_UNLOCK(pDevIns, pThisCC);
2696
2697 if (uGstsReg & VTD_BF_GSTS_REG_TES_MASK)
2698 {
2699 VTDREQTYPE enmReqType;
2700 uint8_t fReqPerm;
2701 dmarDrGetPermAndReqType(pDevIns, fFlags, true /* fBulk */, &enmReqType, &fReqPerm);
2702
2703 DMARMEMREQREMAP MemReqRemap;
2704 RT_ZERO(MemReqRemap);
2705 MemReqRemap.In.AddrRange.cb = X86_PAGE_SIZE;
2706 MemReqRemap.In.AddrRange.fPerm = fReqPerm;
2707 MemReqRemap.In.idDevice = idDevice;
2708 MemReqRemap.In.Pasid = NIL_PCIPASID;
2709 MemReqRemap.In.enmAddrType = PCIADDRTYPE_UNTRANSLATED;
2710 MemReqRemap.In.enmReqType = enmReqType;
2711 MemReqRemap.Aux.fTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
2712 MemReqRemap.Out.AddrRange.uAddr = NIL_RTGCPHYS;
2713
2714 for (size_t i = 0; i < cIovas; i++)
2715 {
2716 MemReqRemap.In.AddrRange.uAddr = pauIovas[i] & X86_PAGE_BASE_MASK;
2717 int const rc = dmarDrMemReqRemap(pDevIns, uRtaddrReg, &MemReqRemap);
2718 if (RT_SUCCESS(rc))
2719 {
2720 paGCPhysSpa[i] = MemReqRemap.Out.AddrRange.uAddr | (pauIovas[i] & X86_PAGE_OFFSET_MASK);
2721 Assert(MemReqRemap.Out.AddrRange.cb == MemReqRemap.In.AddrRange.cb);
2722 }
2723 else
2724 {
2725 LogFlowFunc(("idDevice=%#x uIova=%#RX64 fPerm=%#x rc=%Rrc\n", idDevice, pauIovas[i], fReqPerm, rc));
2726 return rc;
2727 }
2728 }
2729 }
2730 else
2731 {
2732 /* Addresses are forwarded without translation when the translation is disabled. */
2733 for (size_t i = 0; i < cIovas; i++)
2734 paGCPhysSpa[i] = pauIovas[i];
2735 }
2736
2737 return VINF_SUCCESS;
2738}
2739
2740
2741/**
2742 * Memory access transaction from a device.
2743 *
2744 * @returns VBox status code.
2745 * @param pDevIns The IOMMU device instance.
2746 * @param idDevice The device ID (bus, device, function).
2747 * @param uIova The I/O virtual address being accessed.
2748 * @param cbIova The size of the access.
2749 * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
2750 * @param pGCPhysSpa Where to store the translated system physical address.
2751 * @param pcbContiguous Where to store the number of contiguous bytes translated
2752 * and permission-checked.
2753 *
2754 * @thread Any.
2755 */
2756static DECLCALLBACK(int) iommuIntelMemAccess(PPDMDEVINS pDevIns, uint16_t idDevice, uint64_t uIova, size_t cbIova,
2757 uint32_t fFlags, PRTGCPHYS pGCPhysSpa, size_t *pcbContiguous)
2758{
2759 /* Validate. */
2760 AssertPtr(pDevIns);
2761 AssertPtr(pGCPhysSpa);
2762 AssertPtr(pcbContiguous);
2763 Assert(cbIova > 0); /** @todo Are we going to support ZLR (zero-length reads to write-only pages)? */
2764 Assert(!(fFlags & ~PDMIOMMU_MEM_F_VALID_MASK));
2765
2766 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2767 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
2768
2769 DMAR_LOCK(pDevIns, pThisCC);
2770 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
2771 uint64_t const uRtaddrReg = pThis->uRtaddrReg;
2772 DMAR_UNLOCK(pDevIns, pThisCC);
2773
2774 if (uGstsReg & VTD_BF_GSTS_REG_TES_MASK)
2775 {
2776 VTDREQTYPE enmReqType;
2777 uint8_t fReqPerm;
2778 dmarDrGetPermAndReqType(pDevIns, fFlags, false /* fBulk */, &enmReqType, &fReqPerm);
2779
2780 DMARMEMREQREMAP MemReqRemap;
2781 RT_ZERO(MemReqRemap);
2782 MemReqRemap.In.AddrRange.uAddr = uIova;
2783 MemReqRemap.In.AddrRange.cb = cbIova;
2784 MemReqRemap.In.AddrRange.fPerm = fReqPerm;
2785 MemReqRemap.In.idDevice = idDevice;
2786 MemReqRemap.In.Pasid = NIL_PCIPASID;
2787 MemReqRemap.In.enmAddrType = PCIADDRTYPE_UNTRANSLATED;
2788 MemReqRemap.In.enmReqType = enmReqType;
2789 MemReqRemap.Aux.fTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
2790 MemReqRemap.Out.AddrRange.uAddr = NIL_RTGCPHYS;
2791
2792 int const rc = dmarDrMemReqRemap(pDevIns, uRtaddrReg, &MemReqRemap);
2793 *pGCPhysSpa = MemReqRemap.Out.AddrRange.uAddr;
2794 *pcbContiguous = MemReqRemap.Out.AddrRange.cb;
2795 return rc;
2796 }
2797
2798 *pGCPhysSpa = uIova;
2799 *pcbContiguous = cbIova;
2800 return VINF_SUCCESS;
2801}
2802
2803
2804/**
2805 * Reads an IRTE from guest memory.
2806 *
2807 * @returns VBox status code.
2808 * @param pDevIns The IOMMU device instance.
2809 * @param uIrtaReg The IRTA_REG.
2810 * @param idxIntr The interrupt index.
2811 * @param pIrte Where to store the read IRTE.
2812 */
2813static int dmarIrReadIrte(PPDMDEVINS pDevIns, uint64_t uIrtaReg, uint16_t idxIntr, PVTD_IRTE_T pIrte)
2814{
2815 Assert(idxIntr < VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg));
2816
2817 size_t const cbIrte = sizeof(*pIrte);
2818 RTGCPHYS const GCPhysIrte = (uIrtaReg & VTD_BF_IRTA_REG_IRTA_MASK) + (idxIntr * cbIrte);
2819 return PDMDevHlpPhysReadMeta(pDevIns, GCPhysIrte, pIrte, cbIrte);
2820}
2821
2822
2823/**
2824 * Remaps the source MSI to the destination MSI given the IRTE.
2825 *
2826 * @param fExtIntrMode Whether extended interrupt mode is enabled (i.e
2827 * IRTA_REG.EIME).
2828 * @param pIrte The IRTE used for the remapping.
2829 * @param pMsiIn The source MSI (currently unused).
2830 * @param pMsiOut Where to store the remapped MSI.
2831 */
2832static void dmarIrRemapFromIrte(bool fExtIntrMode, PCVTD_IRTE_T pIrte, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
2833{
2834 NOREF(pMsiIn);
2835 uint64_t const uIrteQword0 = pIrte->au64[0];
2836
2837 /*
2838 * Let's start with a clean slate and preserve unspecified bits if the need arises.
2839 * For instance, address bits 1:0 is supposed to be "ignored" by remapping hardware,
2840 * but it's not clear if hardware zeroes out these bits in the remapped MSI or if
2841 * it copies it from the source MSI.
2842 */
2843 RT_ZERO(*pMsiOut);
2844 pMsiOut->Addr.n.u1DestMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DM);
2845 pMsiOut->Addr.n.u1RedirHint = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_RH);
2846 pMsiOut->Addr.n.u12Addr = VBOX_MSI_ADDR_BASE >> VBOX_MSI_ADDR_SHIFT;
2847 if (fExtIntrMode)
2848 {
2849 /*
2850 * Apparently the DMAR stuffs the high 24-bits of the destination ID into the
2851 * high 24-bits of the upper 32-bits of the message address, see @bugref{9967#c22}.
2852 */
2853 uint32_t const idDest = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DST);
2854 pMsiOut->Addr.n.u8DestId = idDest;
2855 pMsiOut->Addr.n.u32Rsvd0 = idDest & UINT32_C(0xffffff00);
2856 }
2857 else
2858 pMsiOut->Addr.n.u8DestId = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DST_XAPIC);
2859
2860 pMsiOut->Data.n.u8Vector = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_V);
2861 pMsiOut->Data.n.u3DeliveryMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DLM);
2862 pMsiOut->Data.n.u1Level = 1;
2863 pMsiOut->Data.n.u1TriggerMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_TM);
2864}
2865
2866
2867/**
2868 * Handles remapping of interrupts in remappable interrupt format.
2869 *
2870 * @returns VBox status code.
2871 * @param pDevIns The IOMMU device instance.
2872 * @param uIrtaReg The IRTA_REG.
2873 * @param idDevice The device ID (bus, device, function).
2874 * @param pMsiIn The source MSI.
2875 * @param pMsiOut Where to store the remapped MSI.
2876 */
2877static int dmarIrRemapIntr(PPDMDEVINS pDevIns, uint64_t uIrtaReg, uint16_t idDevice, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
2878{
2879 Assert(pMsiIn->Addr.dmar_remap.fIntrFormat == VTD_INTR_FORMAT_REMAPPABLE);
2880
2881 /* Validate reserved bits in the interrupt request. */
2882 AssertCompile(VTD_REMAPPABLE_MSI_ADDR_VALID_MASK == UINT32_MAX);
2883 if (!(pMsiIn->Data.u32 & ~VTD_REMAPPABLE_MSI_DATA_VALID_MASK))
2884 {
2885 /* Compute the index into the interrupt remap table. */
2886 uint16_t const uHandleHi = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_HANDLE_HI);
2887 uint16_t const uHandleLo = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_HANDLE_LO);
2888 uint16_t const uHandle = uHandleLo | (uHandleHi << 15);
2889 bool const fSubHandleValid = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_SHV);
2890 uint16_t const idxIntr = fSubHandleValid
2891 ? uHandle + RT_BF_GET(pMsiIn->Data.u32, VTD_BF_REMAPPABLE_MSI_DATA_SUBHANDLE)
2892 : uHandle;
2893
2894 /* Validate the index. */
2895 uint32_t const cEntries = VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg);
2896 if (idxIntr < cEntries)
2897 {
2898 /** @todo Implement and read IRTE from interrupt-entry cache here. */
2899
2900 /* Read the interrupt remap table entry (IRTE) at the index. */
2901 VTD_IRTE_T Irte;
2902 int rc = dmarIrReadIrte(pDevIns, uIrtaReg, idxIntr, &Irte);
2903 if (RT_SUCCESS(rc))
2904 {
2905 /* Check if the IRTE is present (this must be done -before- checking reserved bits). */
2906 uint64_t const uIrteQword0 = Irte.au64[0];
2907 uint64_t const uIrteQword1 = Irte.au64[1];
2908 bool const fPresent = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_P);
2909 if (fPresent)
2910 {
2911 /* Validate reserved bits in the IRTE. */
2912 bool const fExtIntrMode = RT_BF_GET(uIrtaReg, VTD_BF_IRTA_REG_EIME);
2913 uint64_t const fQw0ValidMask = fExtIntrMode ? VTD_IRTE_0_X2APIC_VALID_MASK : VTD_IRTE_0_XAPIC_VALID_MASK;
2914 if ( !(uIrteQword0 & ~fQw0ValidMask)
2915 && !(uIrteQword1 & ~VTD_IRTE_1_VALID_MASK))
2916 {
2917 /* Validate requester id (the device ID) as configured in the IRTE. */
2918 bool fSrcValid;
2919 DMARDIAG enmIrDiag;
2920 uint8_t const fSvt = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SVT);
2921 switch (fSvt)
2922 {
2923 case VTD_IRTE_SVT_NONE:
2924 {
2925 fSrcValid = true;
2926 enmIrDiag = kDmarDiag_None;
2927 break;
2928 }
2929
2930 case VTD_IRTE_SVT_VALIDATE_MASK:
2931 {
2932 static uint16_t const s_afValidMasks[] = { 0xffff, 0xfffb, 0xfff9, 0xfff8 };
2933 uint8_t const idxMask = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SQ) & 3;
2934 uint16_t const fValidMask = s_afValidMasks[idxMask];
2935 uint16_t const idSource = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SID);
2936 fSrcValid = (idDevice & fValidMask) == (idSource & fValidMask);
2937 enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Masked;
2938 break;
2939 }
2940
2941 case VTD_IRTE_SVT_VALIDATE_BUS_RANGE:
2942 {
2943 uint16_t const idSource = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SID);
2944 uint8_t const uBusFirst = RT_HI_U8(idSource);
2945 uint8_t const uBusLast = RT_LO_U8(idSource);
2946 uint8_t const idDeviceBus = idDevice >> VBOX_PCI_BUS_SHIFT;
2947 fSrcValid = (idDeviceBus >= uBusFirst && idDeviceBus <= uBusLast);
2948 enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Bus;
2949 break;
2950 }
2951
2952 default:
2953 {
2954 fSrcValid = false;
2955 enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd;
2956 break;
2957 }
2958 }
2959
2960 if (fSrcValid)
2961 {
2962 uint8_t const fPostedMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_IM);
2963 if (!fPostedMode)
2964 {
2965 dmarIrRemapFromIrte(fExtIntrMode, &Irte, pMsiIn, pMsiOut);
2966 return VINF_SUCCESS;
2967 }
2968 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Mode_Invalid, idDevice, idxIntr, &Irte);
2969 }
2970 else
2971 dmarIrFaultRecord(pDevIns, enmIrDiag, idDevice, idxIntr, &Irte);
2972 }
2973 else
2974 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Rsvd, idDevice, idxIntr, &Irte);
2975 }
2976 else
2977 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Not_Present, idDevice, idxIntr, &Irte);
2978 }
2979 else
2980 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Read_Failed, idDevice, idxIntr, NULL /* pIrte */);
2981 }
2982 else
2983 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Intr_Index_Invalid, idDevice, idxIntr, NULL /* pIrte */);
2984 }
2985 else
2986 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Rsvd, idDevice, 0 /* idxIntr */, NULL /* pIrte */);
2987 return VERR_IOMMU_INTR_REMAP_DENIED;
2988}
2989
2990
2991/**
2992 * Interrupt remap request from a device.
2993 *
2994 * @returns VBox status code.
2995 * @param pDevIns The IOMMU device instance.
2996 * @param idDevice The device ID (bus, device, function).
2997 * @param pMsiIn The source MSI.
2998 * @param pMsiOut Where to store the remapped MSI.
2999 */
3000static DECLCALLBACK(int) iommuIntelMsiRemap(PPDMDEVINS pDevIns, uint16_t idDevice, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
3001{
3002 /* Validate. */
3003 Assert(pDevIns);
3004 Assert(pMsiIn);
3005 Assert(pMsiOut);
3006 RT_NOREF1(idDevice);
3007
3008 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3009 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
3010
3011 /* Lock and read all registers required for interrupt remapping up-front. */
3012 DMAR_LOCK(pDevIns, pThisCC);
3013 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
3014 uint64_t const uIrtaReg = pThis->uIrtaReg;
3015 DMAR_UNLOCK(pDevIns, pThisCC);
3016
3017 /* Check if interrupt remapping is enabled. */
3018 if (uGstsReg & VTD_BF_GSTS_REG_IRES_MASK)
3019 {
3020 bool const fIsRemappable = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_INTR_FMT);
3021 if (!fIsRemappable)
3022 {
3023 /* Handle compatibility format interrupts. */
3024 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemapCfi));
3025
3026 /* If EIME is enabled or CFIs are disabled, block the interrupt. */
3027 if ( (uIrtaReg & VTD_BF_IRTA_REG_EIME_MASK)
3028 || !(uGstsReg & VTD_BF_GSTS_REG_CFIS_MASK))
3029 {
3030 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Cfi_Blocked, VTDIRFAULT_CFI_BLOCKED, idDevice, 0 /* idxIntr */);
3031 return VERR_IOMMU_INTR_REMAP_DENIED;
3032 }
3033
3034 /* Interrupt isn't subject to remapping, pass-through the interrupt. */
3035 *pMsiOut = *pMsiIn;
3036 return VINF_SUCCESS;
3037 }
3038
3039 /* Handle remappable format interrupts. */
3040 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemapRfi));
3041 return dmarIrRemapIntr(pDevIns, uIrtaReg, idDevice, pMsiIn, pMsiOut);
3042 }
3043
3044 /* Interrupt-remapping isn't enabled, all interrupts are pass-through. */
3045 *pMsiOut = *pMsiIn;
3046 return VINF_SUCCESS;
3047}
3048
3049
3050/**
3051 * @callback_method_impl{FNIOMMMIONEWWRITE}
3052 */
3053static DECLCALLBACK(VBOXSTRICTRC) dmarMmioWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, unsigned cb)
3054{
3055 RT_NOREF1(pvUser);
3056 DMAR_ASSERT_MMIO_ACCESS_RET(off, cb);
3057
3058 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3059 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioWrite));
3060
3061 uint16_t const offReg = off;
3062 uint16_t const offLast = offReg + cb - 1;
3063 if (DMAR_IS_MMIO_OFF_VALID(offLast))
3064 {
3065 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
3066 DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_WRITE);
3067
3068 uint64_t uPrev = 0;
3069 uint64_t const uRegWritten = cb == 8 ? dmarRegWrite64(pThis, offReg, *(uint64_t *)pv, &uPrev)
3070 : dmarRegWrite32(pThis, offReg, *(uint32_t *)pv, (uint32_t *)&uPrev);
3071 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
3072 switch (off)
3073 {
3074 case VTD_MMIO_OFF_GCMD_REG: /* 32-bit */
3075 {
3076 rcStrict = dmarGcmdRegWrite(pDevIns, uRegWritten);
3077 break;
3078 }
3079
3080 case VTD_MMIO_OFF_CCMD_REG: /* 64-bit */
3081 case VTD_MMIO_OFF_CCMD_REG + 4:
3082 {
3083 rcStrict = dmarCcmdRegWrite(pDevIns, offReg, cb, uRegWritten);
3084 break;
3085 }
3086
3087 case VTD_MMIO_OFF_FSTS_REG: /* 32-bit */
3088 {
3089 rcStrict = dmarFstsRegWrite(pDevIns, uRegWritten, uPrev);
3090 break;
3091 }
3092
3093 case VTD_MMIO_OFF_FECTL_REG: /* 32-bit */
3094 {
3095 rcStrict = dmarFectlRegWrite(pDevIns, uRegWritten);
3096 break;
3097 }
3098
3099 case VTD_MMIO_OFF_IQT_REG: /* 64-bit */
3100 /* VTD_MMIO_OFF_IQT_REG + 4: */ /* High 32-bits reserved. */
3101 {
3102 rcStrict = dmarIqtRegWrite(pDevIns, offReg, uRegWritten);
3103 break;
3104 }
3105
3106 case VTD_MMIO_OFF_IQA_REG: /* 64-bit */
3107 /* VTD_MMIO_OFF_IQA_REG + 4: */ /* High 32-bits data. */
3108 {
3109 rcStrict = dmarIqaRegWrite(pDevIns, offReg, uRegWritten);
3110 break;
3111 }
3112
3113 case VTD_MMIO_OFF_ICS_REG: /* 32-bit */
3114 {
3115 rcStrict = dmarIcsRegWrite(pDevIns, uRegWritten);
3116 break;
3117 }
3118
3119 case VTD_MMIO_OFF_IECTL_REG: /* 32-bit */
3120 {
3121 rcStrict = dmarIectlRegWrite(pDevIns, uRegWritten);
3122 break;
3123 }
3124
3125 case DMAR_MMIO_OFF_FRCD_HI_REG: /* 64-bit */
3126 case DMAR_MMIO_OFF_FRCD_HI_REG + 4:
3127 {
3128 rcStrict = dmarFrcdHiRegWrite(pDevIns, offReg, cb, uRegWritten, uPrev);
3129 break;
3130 }
3131 }
3132
3133 DMAR_UNLOCK(pDevIns, pThisCC);
3134 LogFlowFunc(("offReg=%#x uRegWritten=%#RX64 rc=%Rrc\n", offReg, uRegWritten, VBOXSTRICTRC_VAL(rcStrict)));
3135 return rcStrict;
3136 }
3137
3138 return VINF_IOM_MMIO_UNUSED_FF;
3139}
3140
3141
3142/**
3143 * @callback_method_impl{FNIOMMMIONEWREAD}
3144 */
3145static DECLCALLBACK(VBOXSTRICTRC) dmarMmioRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb)
3146{
3147 RT_NOREF1(pvUser);
3148 DMAR_ASSERT_MMIO_ACCESS_RET(off, cb);
3149
3150 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3151 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioRead));
3152
3153 uint16_t const offReg = off;
3154 uint16_t const offLast = offReg + cb - 1;
3155 if (DMAR_IS_MMIO_OFF_VALID(offLast))
3156 {
3157 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
3158 DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_READ);
3159
3160 if (cb == 8)
3161 {
3162 *(uint64_t *)pv = dmarRegRead64(pThis, offReg);
3163 LogFlowFunc(("offReg=%#x pv=%#RX64\n", offReg, *(uint64_t *)pv));
3164 }
3165 else
3166 {
3167 *(uint32_t *)pv = dmarRegRead32(pThis, offReg);
3168 LogFlowFunc(("offReg=%#x pv=%#RX32\n", offReg, *(uint32_t *)pv));
3169 }
3170
3171 DMAR_UNLOCK(pDevIns, pThisCC);
3172 return VINF_SUCCESS;
3173 }
3174
3175 return VINF_IOM_MMIO_UNUSED_FF;
3176}
3177
3178
3179#ifdef IN_RING3
3180/**
3181 * Process requests in the invalidation queue.
3182 *
3183 * @param pDevIns The IOMMU device instance.
3184 * @param pvRequests The requests to process.
3185 * @param cbRequests The size of all requests (in bytes).
3186 * @param fDw The descriptor width (VTD_IQA_REG_DW_128_BIT or
3187 * VTD_IQA_REG_DW_256_BIT).
3188 * @param fTtm The table translation mode. Must not be VTD_TTM_RSVD.
3189 */
3190static void dmarR3InvQueueProcessRequests(PPDMDEVINS pDevIns, void const *pvRequests, uint32_t cbRequests, uint8_t fDw,
3191 uint8_t fTtm)
3192{
3193#define DMAR_IQE_FAULT_RECORD_RET(a_enmDiag, a_enmIqei) \
3194 do \
3195 { \
3196 dmarIqeFaultRecord(pDevIns, (a_enmDiag), (a_enmIqei)); \
3197 return; \
3198 } while (0)
3199
3200 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3201 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3202
3203 DMAR_ASSERT_LOCK_IS_NOT_OWNER(pDevIns, pThisR3);
3204 Assert(fTtm != VTD_TTM_RSVD); /* Should've beeen handled by caller. */
3205
3206 /*
3207 * The below check is redundant since we check both TTM and DW for each
3208 * descriptor type we process. However, the order of errors reported by hardware
3209 * may differ hence this is kept commented out but not removed if we need to
3210 * change this in the future.
3211 *
3212 * In our implementation, we would report the descriptor type as invalid,
3213 * while on real hardware it may report descriptor width as invalid.
3214 * The Intel VT-d spec. is not clear which error takes preceedence.
3215 */
3216#if 0
3217 /*
3218 * Verify that 128-bit descriptors are not used when operating in scalable mode.
3219 * We don't check this while software writes IQA_REG but defer it until now because
3220 * RTADDR_REG can be updated lazily (via GCMD_REG.SRTP). The 256-bit descriptor check
3221 * -IS- performed when software writes IQA_REG since it only requires checking against
3222 * immutable hardware features.
3223 */
3224 if ( fTtm != VTD_TTM_SCALABLE_MODE
3225 || fDw != VTD_IQA_REG_DW_128_BIT)
3226 { /* likely */ }
3227 else
3228 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_IqaReg_Dw_128_Invalid, VTDIQEI_INVALID_DESCRIPTOR_WIDTH);
3229#endif
3230
3231 /*
3232 * Process requests in FIFO order.
3233 */
3234 uint8_t const cbDsc = fDw == VTD_IQA_REG_DW_256_BIT ? 32 : 16;
3235 for (uint32_t offDsc = 0; offDsc < cbRequests; offDsc += cbDsc)
3236 {
3237 uint64_t const *puDscQwords = (uint64_t const *)((uintptr_t)pvRequests + offDsc);
3238 uint64_t const uQword0 = puDscQwords[0];
3239 uint64_t const uQword1 = puDscQwords[1];
3240 uint8_t const fDscType = VTD_GENERIC_INV_DSC_GET_TYPE(uQword0);
3241 switch (fDscType)
3242 {
3243 case VTD_INV_WAIT_DSC_TYPE:
3244 {
3245 /* Validate descriptor type. */
3246 if ( fTtm == VTD_TTM_LEGACY_MODE
3247 || fDw == VTD_IQA_REG_DW_256_BIT)
3248 { /* likely */ }
3249 else
3250 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_Invalid, VTDIQEI_INVALID_DESCRIPTOR_TYPE);
3251
3252 /* Validate reserved bits. */
3253 uint64_t const fValidMask0 = !(pThis->fExtCapReg & VTD_BF_ECAP_REG_PDS_MASK)
3254 ? VTD_INV_WAIT_DSC_0_VALID_MASK & ~VTD_BF_0_INV_WAIT_DSC_PD_MASK
3255 : VTD_INV_WAIT_DSC_0_VALID_MASK;
3256 if ( !(uQword0 & ~fValidMask0)
3257 && !(uQword1 & ~VTD_INV_WAIT_DSC_1_VALID_MASK))
3258 { /* likely */ }
3259 else
3260 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_0_1_Rsvd, VTDIQEI_RSVD_FIELD_VIOLATION);
3261
3262 if (fDw == VTD_IQA_REG_DW_256_BIT)
3263 {
3264 if ( !puDscQwords[2]
3265 && !puDscQwords[3])
3266 { /* likely */ }
3267 else
3268 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_2_3_Rsvd, VTDIQEI_RSVD_FIELD_VIOLATION);
3269 }
3270
3271 /* Perform status write (this must be done prior to generating the completion interrupt). */
3272 bool const fSw = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_SW);
3273 if (fSw)
3274 {
3275 uint32_t const uStatus = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_STDATA);
3276 RTGCPHYS const GCPhysStatus = uQword1 & VTD_BF_1_INV_WAIT_DSC_STADDR_MASK;
3277 int const rc = PDMDevHlpPhysWrite(pDevIns, GCPhysStatus, (void const*)&uStatus, sizeof(uStatus));
3278 AssertRC(rc);
3279 }
3280
3281 /* Generate invalidation event interrupt. */
3282 bool const fIf = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_IF);
3283 if (fIf)
3284 {
3285 DMAR_LOCK(pDevIns, pThisR3);
3286 dmarR3InvEventRaiseInterrupt(pDevIns);
3287 DMAR_UNLOCK(pDevIns, pThisR3);
3288 }
3289
3290 STAM_COUNTER_INC(&pThis->StatInvWaitDsc);
3291 break;
3292 }
3293
3294 case VTD_CC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatCcInvDsc); break;
3295 case VTD_IOTLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatIotlbInvDsc); break;
3296 case VTD_DEV_TLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatDevtlbInvDsc); break;
3297 case VTD_IEC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatIecInvDsc); break;
3298 case VTD_P_IOTLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidIotlbInvDsc); break;
3299 case VTD_PC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidCacheInvDsc); break;
3300 case VTD_P_DEV_TLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidDevtlbInvDsc); break;
3301 default:
3302 {
3303 /* Stop processing further requests. */
3304 LogFunc(("Invalid descriptor type: %#x\n", fDscType));
3305 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Dsc_Type_Invalid, VTDIQEI_INVALID_DESCRIPTOR_TYPE);
3306 }
3307 }
3308 }
3309#undef DMAR_IQE_FAULT_RECORD_RET
3310}
3311
3312
3313/**
3314 * The invalidation-queue thread.
3315 *
3316 * @returns VBox status code.
3317 * @param pDevIns The IOMMU device instance.
3318 * @param pThread The command thread.
3319 */
3320static DECLCALLBACK(int) dmarR3InvQueueThread(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
3321{
3322 NOREF(pThread);
3323 LogFlowFunc(("\n"));
3324
3325 if (pThread->enmState == PDMTHREADSTATE_INITIALIZING)
3326 return VINF_SUCCESS;
3327
3328 /*
3329 * Pre-allocate the maximum size of the invalidation queue allowed by the spec.
3330 * This prevents trashing the heap as well as deal with out-of-memory situations
3331 * up-front while starting the VM. It also simplifies the code from having to
3332 * dynamically grow/shrink the allocation based on how software sizes the queue.
3333 * Guests normally don't alter the queue size all the time, but that's not an
3334 * assumption we can make.
3335 */
3336 uint8_t const cMaxPages = 1 << VTD_BF_IQA_REG_QS_MASK;
3337 size_t const cbMaxQs = cMaxPages << X86_PAGE_SHIFT;
3338 void *pvRequests = RTMemAllocZ(cbMaxQs);
3339 AssertPtrReturn(pvRequests, VERR_NO_MEMORY);
3340
3341 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3342 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3343
3344 while (pThread->enmState == PDMTHREADSTATE_RUNNING)
3345 {
3346 /*
3347 * Sleep until we are woken up.
3348 */
3349 {
3350 int const rc = PDMDevHlpSUPSemEventWaitNoResume(pDevIns, pThis->hEvtInvQueue, RT_INDEFINITE_WAIT);
3351 AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_INTERRUPTED, ("%Rrc\n", rc), rc);
3352 if (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING))
3353 break;
3354 }
3355
3356 DMAR_LOCK(pDevIns, pThisR3);
3357 if (dmarInvQueueCanProcessRequests(pThis))
3358 {
3359 uint32_t offQueueHead;
3360 uint32_t offQueueTail;
3361 bool const fIsEmpty = dmarInvQueueIsEmptyEx(pThis, &offQueueHead, &offQueueTail);
3362 if (!fIsEmpty)
3363 {
3364 /*
3365 * Get the current queue size, descriptor width, queue base address and the
3366 * table translation mode while the lock is still held.
3367 */
3368 uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
3369 uint8_t const cQueuePages = 1 << (uIqaReg & VTD_BF_IQA_REG_QS_MASK);
3370 uint32_t const cbQueue = cQueuePages << X86_PAGE_SHIFT;
3371 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
3372 uint8_t const fTtm = RT_BF_GET(pThis->uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
3373 RTGCPHYS const GCPhysRequests = (uIqaReg & VTD_BF_IQA_REG_IQA_MASK) + offQueueHead;
3374
3375 /* Paranoia. */
3376 Assert(cbQueue <= cbMaxQs);
3377 Assert(!(offQueueTail & ~VTD_BF_IQT_REG_QT_MASK));
3378 Assert(!(offQueueHead & ~VTD_BF_IQH_REG_QH_MASK));
3379 Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueTail & RT_BIT(4)));
3380 Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueHead & RT_BIT(4)));
3381 Assert(offQueueHead < cbQueue);
3382
3383 /*
3384 * A table translation mode of "reserved" isn't valid for any descriptor type.
3385 * However, RTADDR_REG can be modified in parallel to invalidation-queue processing,
3386 * but if ESRTPS is support, we will perform a global invalidation when software
3387 * changes RTADDR_REG, or it's the responsibility of software to do it explicitly.
3388 * So caching TTM while reading all descriptors should not be a problem.
3389 *
3390 * Also, validate the queue tail offset as it's mutable by software.
3391 */
3392 if ( fTtm != VTD_TTM_RSVD
3393 && offQueueTail < cbQueue)
3394 {
3395 /* Don't hold the lock while reading (a potentially large amount of) requests */
3396 DMAR_UNLOCK(pDevIns, pThisR3);
3397
3398 int rc;
3399 uint32_t cbRequests;
3400 if (offQueueTail > offQueueHead)
3401 {
3402 /* The requests have not wrapped around, read them in one go. */
3403 cbRequests = offQueueTail - offQueueHead;
3404 rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests, pvRequests, cbRequests);
3405 }
3406 else
3407 {
3408 /* The requests have wrapped around, read forward and wrapped-around. */
3409 uint32_t const cbForward = cbQueue - offQueueHead;
3410 rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests, pvRequests, cbForward);
3411
3412 uint32_t const cbWrapped = offQueueTail;
3413 if ( RT_SUCCESS(rc)
3414 && cbWrapped > 0)
3415 {
3416 rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests + cbForward,
3417 (void *)((uintptr_t)pvRequests + cbForward), cbWrapped);
3418 }
3419 cbRequests = cbForward + cbWrapped;
3420 }
3421
3422 /* Re-acquire the lock since we need to update device state. */
3423 DMAR_LOCK(pDevIns, pThisR3);
3424
3425 if (RT_SUCCESS(rc))
3426 {
3427 /* Indicate to software we've fetched all requests. */
3428 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_IQH_REG, offQueueTail);
3429
3430 /* Don't hold the lock while processing requests. */
3431 DMAR_UNLOCK(pDevIns, pThisR3);
3432
3433 /* Process all requests. */
3434 Assert(cbRequests <= cbQueue);
3435 dmarR3InvQueueProcessRequests(pDevIns, pvRequests, cbRequests, fDw, fTtm);
3436
3437 /*
3438 * We've processed all requests and the lock shouldn't be held at this point.
3439 * Using 'continue' here allows us to skip re-acquiring the lock just to release
3440 * it again before going back to the thread loop. It's a bit ugly but it certainly
3441 * helps with performance.
3442 */
3443 DMAR_ASSERT_LOCK_IS_NOT_OWNER(pDevIns, pThisR3);
3444 continue;
3445 }
3446 else
3447 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dsc_Fetch_Error, VTDIQEI_FETCH_DESCRIPTOR_ERR);
3448 }
3449 else
3450 {
3451 if (fTtm == VTD_TTM_RSVD)
3452 dmarIqeFaultRecord(pDevIns, kDmarDiag_Iqei_Ttm_Rsvd, VTDIQEI_INVALID_TTM);
3453 else
3454 {
3455 Assert(offQueueTail >= cbQueue);
3456 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_Invalid, VTDIQEI_INVALID_TAIL_PTR);
3457 }
3458 }
3459 }
3460 }
3461 DMAR_UNLOCK(pDevIns, pThisR3);
3462 }
3463
3464 RTMemFree(pvRequests);
3465 pvRequests = NULL;
3466
3467 LogFlowFunc(("Invalidation-queue thread terminating\n"));
3468 return VINF_SUCCESS;
3469}
3470
3471
3472/**
3473 * Wakes up the invalidation-queue thread so it can respond to a state
3474 * change.
3475 *
3476 * @returns VBox status code.
3477 * @param pDevIns The IOMMU device instance.
3478 * @param pThread The invalidation-queue thread.
3479 *
3480 * @thread EMT.
3481 */
3482static DECLCALLBACK(int) dmarR3InvQueueThreadWakeUp(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
3483{
3484 RT_NOREF(pThread);
3485 LogFlowFunc(("\n"));
3486 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3487 return PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue);
3488}
3489
3490
3491/**
3492 * @callback_method_impl{FNDBGFHANDLERDEV}
3493 */
3494static DECLCALLBACK(void) dmarR3DbgInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
3495{
3496 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3497 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3498 bool const fVerbose = RTStrCmp(pszArgs, "verbose") == 0;
3499
3500 /*
3501 * We lock the device to get a consistent register state as it is
3502 * ASSUMED pHlp->pfnPrintf is expensive, so we copy the registers (the
3503 * ones we care about here) into temporaries and release the lock ASAP.
3504 *
3505 * Order of register being read and outputted is in accordance with the
3506 * spec. for no particular reason.
3507 * See Intel VT-d spec. 10.4 "Register Descriptions".
3508 */
3509 DMAR_LOCK(pDevIns, pThisR3);
3510
3511 DMARDIAG const enmDiag = pThis->enmDiag;
3512 uint32_t const uVerReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_VER_REG);
3513 uint64_t const uCapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CAP_REG);
3514 uint64_t const uEcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_ECAP_REG);
3515 uint32_t const uGcmdReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GCMD_REG);
3516 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
3517 uint64_t const uRtaddrReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_RTADDR_REG);
3518 uint64_t const uCcmdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CCMD_REG);
3519 uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
3520 uint32_t const uFectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FECTL_REG);
3521 uint32_t const uFedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEDATA_REG);
3522 uint32_t const uFeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEADDR_REG);
3523 uint32_t const uFeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEUADDR_REG);
3524 uint64_t const uAflogReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_AFLOG_REG);
3525 uint32_t const uPmenReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PMEN_REG);
3526 uint32_t const uPlmbaseReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMBASE_REG);
3527 uint32_t const uPlmlimitReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMLIMIT_REG);
3528 uint64_t const uPhmbaseReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMBASE_REG);
3529 uint64_t const uPhmlimitReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMLIMIT_REG);
3530 uint64_t const uIqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQH_REG);
3531 uint64_t const uIqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQT_REG);
3532 uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
3533 uint32_t const uIcsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_ICS_REG);
3534 uint32_t const uIectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IECTL_REG);
3535 uint32_t const uIedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEDATA_REG);
3536 uint32_t const uIeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEADDR_REG);
3537 uint32_t const uIeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEUADDR_REG);
3538 uint64_t const uIqercdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG);
3539 uint64_t const uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG);
3540 uint64_t const uPqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQH_REG);
3541 uint64_t const uPqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQT_REG);
3542 uint64_t const uPqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQA_REG);
3543 uint32_t const uPrsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PRS_REG);
3544 uint32_t const uPectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PECTL_REG);
3545 uint32_t const uPedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEDATA_REG);
3546 uint32_t const uPeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEADDR_REG);
3547 uint32_t const uPeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEUADDR_REG);
3548 uint64_t const uMtrrcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRCAP_REG);
3549 uint64_t const uMtrrdefReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRDEF_REG);
3550
3551 DMAR_UNLOCK(pDevIns, pThisR3);
3552
3553 const char *const pszDiag = enmDiag < RT_ELEMENTS(g_apszDmarDiagDesc) ? g_apszDmarDiagDesc[enmDiag] : "(Unknown)";
3554 pHlp->pfnPrintf(pHlp, "Intel-IOMMU:\n");
3555 pHlp->pfnPrintf(pHlp, " Diag = %s\n", pszDiag);
3556
3557 /*
3558 * Non-verbose output.
3559 */
3560 if (!fVerbose)
3561 {
3562 pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg);
3563 pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg);
3564 pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg);
3565 pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg);
3566 pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg);
3567 pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg);
3568 pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg);
3569 pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg);
3570 pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg);
3571 pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg);
3572 pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg);
3573 pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg);
3574 pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg);
3575 pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg);
3576 pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg);
3577 pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg);
3578 pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg);
3579 pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg);
3580 pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg);
3581 pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg);
3582 pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg);
3583 pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg);
3584 pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg);
3585 pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg);
3586 pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg);
3587 pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg);
3588 pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg);
3589 pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg);
3590 pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg);
3591 pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg);
3592 pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg);
3593 pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg);
3594 pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg);
3595 pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg);
3596 pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg);
3597 pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg);
3598 pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg);
3599 pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg);
3600 pHlp->pfnPrintf(pHlp, "\n");
3601 return;
3602 }
3603
3604 /*
3605 * Verbose output.
3606 */
3607 pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg);
3608 {
3609 pHlp->pfnPrintf(pHlp, " MAJ = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MAX));
3610 pHlp->pfnPrintf(pHlp, " MIN = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MIN));
3611 }
3612 pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg);
3613 {
3614 uint8_t const uMgaw = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MGAW);
3615 uint8_t const uNfr = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_NFR);
3616 pHlp->pfnPrintf(pHlp, " ND = %u\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ND));
3617 pHlp->pfnPrintf(pHlp, " AFL = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_AFL));
3618 pHlp->pfnPrintf(pHlp, " RWBF = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_RWBF));
3619 pHlp->pfnPrintf(pHlp, " PLMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PLMR));
3620 pHlp->pfnPrintf(pHlp, " PHMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PHMR));
3621 pHlp->pfnPrintf(pHlp, " CM = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_CM));
3622 pHlp->pfnPrintf(pHlp, " SAGAW = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SAGAW));
3623 pHlp->pfnPrintf(pHlp, " MGAW = %#x (%u bits)\n", uMgaw, uMgaw + 1);
3624 pHlp->pfnPrintf(pHlp, " ZLR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ZLR));
3625 pHlp->pfnPrintf(pHlp, " FRO = %#x bytes\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FRO));
3626 pHlp->pfnPrintf(pHlp, " SLLPS = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SLLPS));
3627 pHlp->pfnPrintf(pHlp, " PSI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PSI));
3628 pHlp->pfnPrintf(pHlp, " NFR = %u (%u FRCD register%s)\n", uNfr, uNfr + 1, uNfr > 0 ? "s" : "");
3629 pHlp->pfnPrintf(pHlp, " MAMV = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MAMV));
3630 pHlp->pfnPrintf(pHlp, " DWD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DWD));
3631 pHlp->pfnPrintf(pHlp, " DRD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DRD));
3632 pHlp->pfnPrintf(pHlp, " FL1GP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL1GP));
3633 pHlp->pfnPrintf(pHlp, " PI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PI));
3634 pHlp->pfnPrintf(pHlp, " FL5LP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL5LP));
3635 pHlp->pfnPrintf(pHlp, " ESIRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESIRTPS));
3636 pHlp->pfnPrintf(pHlp, " ESRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESRTPS));
3637 }
3638 pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg);
3639 {
3640 uint8_t const uPss = RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PSS);
3641 pHlp->pfnPrintf(pHlp, " C = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_C));
3642 pHlp->pfnPrintf(pHlp, " QI = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_QI));
3643 pHlp->pfnPrintf(pHlp, " DT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DT));
3644 pHlp->pfnPrintf(pHlp, " IR = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IR));
3645 pHlp->pfnPrintf(pHlp, " EIM = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EIM));
3646 pHlp->pfnPrintf(pHlp, " PT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PT));
3647 pHlp->pfnPrintf(pHlp, " SC = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SC));
3648 pHlp->pfnPrintf(pHlp, " IRO = %#x bytes\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IRO));
3649 pHlp->pfnPrintf(pHlp, " MHMV = %#x\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MHMV));
3650 pHlp->pfnPrintf(pHlp, " MTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MTS));
3651 pHlp->pfnPrintf(pHlp, " NEST = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NEST));
3652 pHlp->pfnPrintf(pHlp, " PRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PRS));
3653 pHlp->pfnPrintf(pHlp, " ERS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ERS));
3654 pHlp->pfnPrintf(pHlp, " SRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SRS));
3655 pHlp->pfnPrintf(pHlp, " NWFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NWFS));
3656 pHlp->pfnPrintf(pHlp, " EAFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EAFS));
3657 pHlp->pfnPrintf(pHlp, " PSS = %u (%u bits)\n", uPss, uPss > 0 ? uPss + 1 : 0);
3658 pHlp->pfnPrintf(pHlp, " PASID = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PASID));
3659 pHlp->pfnPrintf(pHlp, " DIT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DIT));
3660 pHlp->pfnPrintf(pHlp, " PDS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PDS));
3661 pHlp->pfnPrintf(pHlp, " SMTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMTS));
3662 pHlp->pfnPrintf(pHlp, " VCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_VCS));
3663 pHlp->pfnPrintf(pHlp, " SLADS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLADS));
3664 pHlp->pfnPrintf(pHlp, " SLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLTS));
3665 pHlp->pfnPrintf(pHlp, " FLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_FLTS));
3666 pHlp->pfnPrintf(pHlp, " SMPWCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMPWCS));
3667 pHlp->pfnPrintf(pHlp, " RPS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPS));
3668 pHlp->pfnPrintf(pHlp, " ADMS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ADMS));
3669 pHlp->pfnPrintf(pHlp, " RPRIVS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPRIVS));
3670 }
3671 pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg);
3672 {
3673 uint8_t const fCfi = RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_CFI);
3674 pHlp->pfnPrintf(pHlp, " CFI = %u (%s)\n", fCfi, fCfi ? "Passthrough" : "Blocked");
3675 pHlp->pfnPrintf(pHlp, " SIRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SIRTP));
3676 pHlp->pfnPrintf(pHlp, " IRE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_IRE));
3677 pHlp->pfnPrintf(pHlp, " QIE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_QIE));
3678 pHlp->pfnPrintf(pHlp, " WBF = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_WBF));
3679 pHlp->pfnPrintf(pHlp, " EAFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL));
3680 pHlp->pfnPrintf(pHlp, " SFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL));
3681 pHlp->pfnPrintf(pHlp, " SRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SRTP));
3682 pHlp->pfnPrintf(pHlp, " TE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_TE));
3683 }
3684 pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg);
3685 {
3686 uint8_t const fCfis = RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_CFIS);
3687 pHlp->pfnPrintf(pHlp, " CFIS = %u (%s)\n", fCfis, fCfis ? "Passthrough" : "Blocked");
3688 pHlp->pfnPrintf(pHlp, " IRTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRTPS));
3689 pHlp->pfnPrintf(pHlp, " IRES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRES));
3690 pHlp->pfnPrintf(pHlp, " QIES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_QIES));
3691 pHlp->pfnPrintf(pHlp, " WBFS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_WBFS));
3692 pHlp->pfnPrintf(pHlp, " AFLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_AFLS));
3693 pHlp->pfnPrintf(pHlp, " FLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_FLS));
3694 pHlp->pfnPrintf(pHlp, " RTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_RTPS));
3695 pHlp->pfnPrintf(pHlp, " TES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_TES));
3696 }
3697 pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg);
3698 {
3699 uint8_t const uTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
3700 pHlp->pfnPrintf(pHlp, " RTA = %#RX64\n", uRtaddrReg & VTD_BF_RTADDR_REG_RTA_MASK);
3701 pHlp->pfnPrintf(pHlp, " TTM = %u (%s)\n", uTtm, vtdRtaddrRegGetTtmDesc(uTtm));
3702 }
3703 pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg);
3704 pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg);
3705 {
3706 pHlp->pfnPrintf(pHlp, " PFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PFO));
3707 pHlp->pfnPrintf(pHlp, " PPF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PPF));
3708 pHlp->pfnPrintf(pHlp, " AFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_AFO));
3709 pHlp->pfnPrintf(pHlp, " APF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_APF));
3710 pHlp->pfnPrintf(pHlp, " IQE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_IQE));
3711 pHlp->pfnPrintf(pHlp, " ICS = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ICE));
3712 pHlp->pfnPrintf(pHlp, " ITE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ITE));
3713 pHlp->pfnPrintf(pHlp, " FRI = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_FRI));
3714 }
3715 pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg);
3716 {
3717 pHlp->pfnPrintf(pHlp, " IM = %RTbool\n", RT_BF_GET(uFectlReg, VTD_BF_FECTL_REG_IM));
3718 pHlp->pfnPrintf(pHlp, " IP = %RTbool\n", RT_BF_GET(uFectlReg, VTD_BF_FECTL_REG_IP));
3719 }
3720 pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg);
3721 pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg);
3722 pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg);
3723 pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg);
3724 pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg);
3725 pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg);
3726 pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg);
3727 pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg);
3728 pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg);
3729 pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg);
3730 pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg);
3731 pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg);
3732 {
3733 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
3734 uint8_t const fQs = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_QS);
3735 uint8_t const cQueuePages = 1 << fQs;
3736 pHlp->pfnPrintf(pHlp, " DW = %u (%s)\n", fDw, fDw == VTD_IQA_REG_DW_128_BIT ? "128-bit" : "256-bit");
3737 pHlp->pfnPrintf(pHlp, " QS = %u (%u page%s)\n", fQs, cQueuePages, cQueuePages > 1 ? "s" : "");
3738 }
3739 pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg);
3740 {
3741 pHlp->pfnPrintf(pHlp, " IWC = %u\n", RT_BF_GET(uIcsReg, VTD_BF_ICS_REG_IWC));
3742 }
3743 pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg);
3744 {
3745 pHlp->pfnPrintf(pHlp, " IM = %RTbool\n", RT_BF_GET(uIectlReg, VTD_BF_IECTL_REG_IM));
3746 pHlp->pfnPrintf(pHlp, " IP = %RTbool\n", RT_BF_GET(uIectlReg, VTD_BF_IECTL_REG_IP));
3747 }
3748 pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg);
3749 pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg);
3750 pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg);
3751 pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg);
3752 {
3753 pHlp->pfnPrintf(pHlp, " ICESID = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_ICESID));
3754 pHlp->pfnPrintf(pHlp, " ITESID = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_ITESID));
3755 pHlp->pfnPrintf(pHlp, " IQEI = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_IQEI));
3756 }
3757 pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg);
3758 {
3759 uint32_t const cIrtEntries = VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg);
3760 uint32_t const cbIrt = sizeof(VTD_IRTE_T) * cIrtEntries;
3761 pHlp->pfnPrintf(pHlp, " IRTA = %#RX64\n", uIrtaReg & VTD_BF_IRTA_REG_IRTA_MASK);
3762 pHlp->pfnPrintf(pHlp, " EIME = %RTbool\n", RT_BF_GET(uIrtaReg, VTD_BF_IRTA_REG_EIME));
3763 pHlp->pfnPrintf(pHlp, " S = %u entries (%u bytes)\n", cIrtEntries, cbIrt);
3764 }
3765 pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg);
3766 pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg);
3767 pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg);
3768 pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg);
3769 pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg);
3770 pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg);
3771 pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg);
3772 pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg);
3773 pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg);
3774 pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg);
3775 pHlp->pfnPrintf(pHlp, "\n");
3776}
3777
3778
3779/**
3780 * Initializes all registers in the DMAR unit.
3781 *
3782 * @param pDevIns The IOMMU device instance.
3783 */
3784static void dmarR3RegsInit(PPDMDEVINS pDevIns)
3785{
3786 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3787 LogFlowFunc(("\n"));
3788
3789 /*
3790 * Wipe all registers (required on reset).
3791 */
3792 RT_ZERO(pThis->abRegs0);
3793 RT_ZERO(pThis->abRegs1);
3794
3795 /*
3796 * Initialize registers not mutable by software prior to initializing other registers.
3797 */
3798 /* VER_REG */
3799 {
3800 pThis->uVerReg = RT_BF_MAKE(VTD_BF_VER_REG_MIN, DMAR_VER_MINOR)
3801 | RT_BF_MAKE(VTD_BF_VER_REG_MAX, DMAR_VER_MAJOR);
3802 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_VER_REG, pThis->uVerReg);
3803 }
3804
3805 uint8_t const fFlts = 0; /* First-level translation support. */
3806 uint8_t const fSlts = 1; /* Second-level translation support. */
3807 uint8_t const fPt = 1; /* Pass-Through support. */
3808 uint8_t const fSmts = fFlts & fSlts & fPt; /* Scalable mode translation support.*/
3809 uint8_t const fNest = 0; /* Nested translation support. */
3810
3811 /* CAP_REG */
3812 {
3813 uint8_t cGstPhysAddrBits;
3814 uint8_t cGstLinearAddrBits;
3815 PDMDevHlpCpuGetGuestAddrWidths(pDevIns, &cGstPhysAddrBits, &cGstLinearAddrBits);
3816
3817 uint8_t const fFl1gp = 1; /* First-level 1GB pages support. */
3818 uint8_t const fFl5lp = 1; /* First-level 5-level paging support (PML5E). */
3819 uint8_t const fSl2mp = 1; /* Second-level 2MB pages support. */
3820 uint8_t const fSl2gp = fSl2mp & 1; /* Second-level 1GB pages support. */
3821 uint8_t const fSllps = fSl2mp | (fSl2gp << 1); /* Second-level large page support. */
3822 uint8_t const fMamv = (fSl2gp ? X86_PAGE_1G_SHIFT /* Maximum address mask value (for 2nd-level invalidations). */
3823 : X86_PAGE_2M_SHIFT)
3824 - X86_PAGE_4K_SHIFT;
3825 uint8_t const fNd = DMAR_ND; /* Number of domains supported. */
3826 uint8_t const fPsi = 1; /* Page selective invalidation. */
3827 uint8_t const uMgaw = cGstPhysAddrBits - 1; /* Maximum guest address width. */
3828 uint8_t const fSagaw = vtdCapRegGetSagaw(uMgaw); /* Supported adjust guest address width. */
3829 uint16_t const offFro = DMAR_MMIO_OFF_FRCD_LO_REG >> 4; /* MMIO offset of FRCD registers. */
3830 uint8_t const fEsrtps = 1; /* Enhanced SRTPS (auto invalidate cache on SRTP). */
3831 uint8_t const fEsirtps = 1; /* Enhanced SIRTPS (auto invalidate cache on SIRTP). */
3832 AssertCompile(DMAR_ND <= 6);
3833
3834 pThis->fCapReg = RT_BF_MAKE(VTD_BF_CAP_REG_ND, fNd)
3835 | RT_BF_MAKE(VTD_BF_CAP_REG_AFL, 0) /* Advanced fault logging not supported. */
3836 | RT_BF_MAKE(VTD_BF_CAP_REG_RWBF, 0) /* Software need not flush write-buffers. */
3837 | RT_BF_MAKE(VTD_BF_CAP_REG_PLMR, 0) /* Protected Low-Memory Region not supported. */
3838 | RT_BF_MAKE(VTD_BF_CAP_REG_PHMR, 0) /* Protected High-Memory Region not supported. */
3839 | RT_BF_MAKE(VTD_BF_CAP_REG_CM, 1) /* Software should invalidate on mapping structure changes. */
3840 | RT_BF_MAKE(VTD_BF_CAP_REG_SAGAW, fSlts ? fSagaw : 0)
3841 | RT_BF_MAKE(VTD_BF_CAP_REG_MGAW, uMgaw)
3842 | RT_BF_MAKE(VTD_BF_CAP_REG_ZLR, 1) /** @todo Figure out if/how to support zero-length reads. */
3843 | RT_BF_MAKE(VTD_BF_CAP_REG_FRO, offFro)
3844 | RT_BF_MAKE(VTD_BF_CAP_REG_SLLPS, fSlts & fSllps)
3845 | RT_BF_MAKE(VTD_BF_CAP_REG_PSI, fPsi)
3846 | RT_BF_MAKE(VTD_BF_CAP_REG_NFR, DMAR_FRCD_REG_COUNT - 1)
3847 | RT_BF_MAKE(VTD_BF_CAP_REG_MAMV, fPsi & fMamv)
3848 | RT_BF_MAKE(VTD_BF_CAP_REG_DWD, 1)
3849 | RT_BF_MAKE(VTD_BF_CAP_REG_DRD, 1)
3850 | RT_BF_MAKE(VTD_BF_CAP_REG_FL1GP, fFlts & fFl1gp)
3851 | RT_BF_MAKE(VTD_BF_CAP_REG_PI, 0) /* Posted Interrupts not supported. */
3852 | RT_BF_MAKE(VTD_BF_CAP_REG_FL5LP, fFlts & fFl5lp)
3853 | RT_BF_MAKE(VTD_BF_CAP_REG_ESIRTPS, fEsirtps)
3854 | RT_BF_MAKE(VTD_BF_CAP_REG_ESRTPS, fEsrtps);
3855 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_CAP_REG, pThis->fCapReg);
3856
3857 pThis->fHawBaseMask = ~(UINT64_MAX << cGstPhysAddrBits) & X86_PAGE_4K_BASE_MASK;
3858 pThis->fMgawInvMask = UINT64_MAX << cGstPhysAddrBits;
3859 pThis->cMaxPagingLevel = vtdCapRegGetMaxPagingLevel(fSagaw);
3860 }
3861
3862 /* ECAP_REG */
3863 {
3864 uint8_t const fQi = 1; /* Queued-invalidations. */
3865 uint8_t const fIr = !!(DMAR_ACPI_DMAR_FLAGS & ACPI_DMAR_F_INTR_REMAP); /* Interrupt remapping support. */
3866 uint8_t const fMhmv = 0xf; /* Maximum handle mask value. */
3867 uint16_t const offIro = DMAR_MMIO_OFF_IVA_REG >> 4; /* MMIO offset of IOTLB registers. */
3868 uint8_t const fEim = 1; /* Extended interrupt mode.*/
3869 uint8_t const fAdms = 1; /* Abort DMA mode support. */
3870 uint8_t const fErs = 0; /* Execute Request (not supported). */
3871
3872 pThis->fExtCapReg = RT_BF_MAKE(VTD_BF_ECAP_REG_C, 0) /* Accesses don't snoop CPU cache. */
3873 | RT_BF_MAKE(VTD_BF_ECAP_REG_QI, fQi)
3874 | RT_BF_MAKE(VTD_BF_ECAP_REG_DT, 0) /* Device-TLBs not supported. */
3875 | RT_BF_MAKE(VTD_BF_ECAP_REG_IR, fQi & fIr)
3876 | RT_BF_MAKE(VTD_BF_ECAP_REG_EIM, fIr & fEim)
3877 | RT_BF_MAKE(VTD_BF_ECAP_REG_PT, fPt)
3878 | RT_BF_MAKE(VTD_BF_ECAP_REG_SC, 0) /* Snoop control not supported. */
3879 | RT_BF_MAKE(VTD_BF_ECAP_REG_IRO, offIro)
3880 | RT_BF_MAKE(VTD_BF_ECAP_REG_MHMV, fIr & fMhmv)
3881 | RT_BF_MAKE(VTD_BF_ECAP_REG_MTS, 0) /* Memory type not supported. */
3882 | RT_BF_MAKE(VTD_BF_ECAP_REG_NEST, fNest)
3883 | RT_BF_MAKE(VTD_BF_ECAP_REG_PRS, 0) /* 0 as DT not supported. */
3884 | RT_BF_MAKE(VTD_BF_ECAP_REG_ERS, fErs)
3885 | RT_BF_MAKE(VTD_BF_ECAP_REG_SRS, 0) /* Supervisor request not supported. */
3886 | RT_BF_MAKE(VTD_BF_ECAP_REG_NWFS, 0) /* 0 as DT not supported. */
3887 | RT_BF_MAKE(VTD_BF_ECAP_REG_EAFS, 0) /* 0 as SMPWCS not supported. */
3888 | RT_BF_MAKE(VTD_BF_ECAP_REG_PSS, 0) /* 0 as PASID not supported. */
3889 | RT_BF_MAKE(VTD_BF_ECAP_REG_PASID, 0) /* PASID not supported. */
3890 | RT_BF_MAKE(VTD_BF_ECAP_REG_DIT, 0) /* 0 as DT not supported. */
3891 | RT_BF_MAKE(VTD_BF_ECAP_REG_PDS, 0) /* 0 as DT not supported. */
3892 | RT_BF_MAKE(VTD_BF_ECAP_REG_SMTS, fSmts)
3893 | RT_BF_MAKE(VTD_BF_ECAP_REG_VCS, 0) /* 0 as PASID not supported (commands seem PASID specific). */
3894 | RT_BF_MAKE(VTD_BF_ECAP_REG_SLADS, 0) /* Second-level accessed/dirty not supported. */
3895 | RT_BF_MAKE(VTD_BF_ECAP_REG_SLTS, fSlts)
3896 | RT_BF_MAKE(VTD_BF_ECAP_REG_FLTS, fFlts)
3897 | RT_BF_MAKE(VTD_BF_ECAP_REG_SMPWCS, 0) /* 0 as PASID not supported. */
3898 | RT_BF_MAKE(VTD_BF_ECAP_REG_RPS, 0) /* We don't support RID_PASID field in SM context entry. */
3899 | RT_BF_MAKE(VTD_BF_ECAP_REG_ADMS, fAdms)
3900 | RT_BF_MAKE(VTD_BF_ECAP_REG_RPRIVS, 0); /* 0 as SRS not supported. */
3901 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_ECAP_REG, pThis->fExtCapReg);
3902
3903 pThis->fPermValidMask = DMAR_PERM_READ | DMAR_PERM_WRITE;
3904 if (fErs)
3905 pThis->fPermValidMask = DMAR_PERM_EXE;
3906 }
3907
3908 /*
3909 * Initialize registers mutable by software.
3910 */
3911 /* FECTL_REG */
3912 {
3913 uint32_t const uCtl = RT_BF_MAKE(VTD_BF_FECTL_REG_IM, 1);
3914 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, uCtl);
3915 }
3916
3917 /* ICETL_REG */
3918 {
3919 uint32_t const uCtl = RT_BF_MAKE(VTD_BF_IECTL_REG_IM, 1);
3920 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IECTL_REG, uCtl);
3921 }
3922
3923#ifdef VBOX_STRICT
3924 Assert(!RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_PRS)); /* PECTL_REG - Reserved if don't support PRS. */
3925 Assert(!RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_MTS)); /* MTRRCAP_REG - Reserved if we don't support MTS. */
3926#endif
3927}
3928
3929
3930/**
3931 * @callback_method_impl{FNSSMDEVSAVEEXEC}
3932 */
3933static DECLCALLBACK(int) dmarR3SaveExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
3934{
3935 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
3936 PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
3937 LogFlowFunc(("\n"));
3938
3939 /* First, save software-immutable registers that we validate on state load. */
3940 pHlp->pfnSSMPutU32(pSSM, pThis->uVerReg);
3941 pHlp->pfnSSMPutU64(pSSM, pThis->fCapReg);
3942 pHlp->pfnSSMPutU64(pSSM, pThis->fExtCapReg);
3943
3944 /* Save MMIO registers. */
3945 pHlp->pfnSSMPutU32(pSSM, DMAR_MMIO_GROUP_COUNT);
3946 pHlp->pfnSSMPutU32(pSSM, sizeof(pThis->abRegs0));
3947 pHlp->pfnSSMPutMem(pSSM, &pThis->abRegs0[0], sizeof(pThis->abRegs0));
3948 pHlp->pfnSSMPutU32(pSSM, sizeof(pThis->abRegs1));
3949 pHlp->pfnSSMPutMem(pSSM, &pThis->abRegs1[0], sizeof(pThis->abRegs1));
3950
3951 /* Save lazily activated registers. */
3952 pHlp->pfnSSMPutU64(pSSM, pThis->uIrtaReg);
3953 pHlp->pfnSSMPutU64(pSSM, pThis->uRtaddrReg);
3954
3955 /* Save terminator marker and return status. */
3956 return pHlp->pfnSSMPutU32(pSSM, UINT32_MAX);
3957}
3958
3959
3960/**
3961 * @callback_method_impl{FNSSMDEVLOADEXEC}
3962 */
3963static DECLCALLBACK(int) dmarR3LoadExec(PPDMDEVINS pDevIns, PSSMHANDLE pSSM, uint32_t uVersion, uint32_t uPass)
3964{
3965 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3966 PCPDMDEVHLPR3 pHlp = pDevIns->pHlpR3;
3967 int const rcDataErr = VERR_SSM_UNEXPECTED_DATA;
3968 int const rcFmtErr = VERR_SSM_DATA_UNIT_FORMAT_CHANGED;
3969 LogFlowFunc(("\n"));
3970
3971 /*
3972 * Validate saved-state version.
3973 */
3974 AssertReturn(uPass == SSM_PASS_FINAL, VERR_WRONG_ORDER);
3975 if (uVersion != DMAR_SAVED_STATE_VERSION)
3976 {
3977 LogRel(("%s: Invalid saved-state version %#x\n", DMAR_LOG_PFX, uVersion));
3978 return VERR_SSM_UNSUPPORTED_DATA_UNIT_VERSION;
3979 }
3980
3981 /*
3982 * Load and validate software-immutable registers.
3983 * The features we had exposed to the guest (in the saved state) must be identical
3984 * to what is currently emulated.
3985 */
3986 {
3987 /* VER_REG */
3988 uint32_t uVerReg;
3989 int rc = pHlp->pfnSSMGetU32(pSSM, &uVerReg);
3990 AssertRCReturn(rc, rc);
3991 AssertLogRelMsgReturn(uVerReg == pThis->uVerReg,
3992 ("%s: VER_REG mismatch (expected %#RX32 got %#RX32)\n", DMAR_LOG_PFX, pThis->uVerReg, uVerReg),
3993 rcDataErr);
3994 /* CAP_REG */
3995 uint64_t fCapReg;
3996 pHlp->pfnSSMGetU64(pSSM, &fCapReg);
3997 AssertLogRelMsgReturn(fCapReg == pThis->fCapReg,
3998 ("%s: CAP_REG mismatch (expected %#RX64 got %#RX64)\n", DMAR_LOG_PFX, pThis->fCapReg, fCapReg),
3999 rcDataErr);
4000 /* ECAP_REG */
4001 uint64_t fExtCapReg;
4002 pHlp->pfnSSMGetU64(pSSM, &fExtCapReg);
4003 AssertLogRelMsgReturn(fExtCapReg == pThis->fExtCapReg,
4004 ("%s: ECAP_REG mismatch (expected %#RX64 got %#RX64)\n", DMAR_LOG_PFX, pThis->fExtCapReg,
4005 fExtCapReg), rcDataErr);
4006 }
4007
4008 /*
4009 * Load MMIO registers.
4010 */
4011 {
4012 /* Group count. */
4013 uint32_t cRegGroups;
4014 pHlp->pfnSSMGetU32(pSSM, &cRegGroups);
4015 AssertLogRelMsgReturn(cRegGroups == DMAR_MMIO_GROUP_COUNT,
4016 ("%s: MMIO group count mismatch (expected %u got %u)\n", DMAR_LOG_PFX, DMAR_MMIO_GROUP_COUNT,
4017 cRegGroups), rcFmtErr);
4018 /* Group 0. */
4019 uint32_t cbRegs0;
4020 pHlp->pfnSSMGetU32(pSSM, &cbRegs0);
4021 AssertLogRelMsgReturn(cbRegs0 == sizeof(pThis->abRegs0),
4022 ("%s: MMIO group 0 size mismatch (expected %u got %u)\n", DMAR_LOG_PFX, sizeof(pThis->abRegs0),
4023 cbRegs0), rcFmtErr);
4024 pHlp->pfnSSMGetMem(pSSM, &pThis->abRegs0[0], cbRegs0);
4025 /* Group 1. */
4026 uint32_t cbRegs1;
4027 pHlp->pfnSSMGetU32(pSSM, &cbRegs1);
4028 AssertLogRelMsgReturn(cbRegs1 == sizeof(pThis->abRegs1),
4029 ("%s: MMIO group 1 size mismatch (expected %u got %u)\n", DMAR_LOG_PFX, sizeof(pThis->abRegs1),
4030 cbRegs1), rcFmtErr);
4031 pHlp->pfnSSMGetMem(pSSM, &pThis->abRegs1[0], cbRegs1);
4032 }
4033
4034 /*
4035 * Load lazily activated registers.
4036 */
4037 {
4038 /* Active IRTA_REG. */
4039 pHlp->pfnSSMGetU64(pSSM, &pThis->uIrtaReg);
4040 AssertLogRelMsgReturn(!(pThis->uIrtaReg & ~VTD_IRTA_REG_RW_MASK),
4041 ("%s: IRTA_REG reserved bits set %#RX64\n", DMAR_LOG_PFX, pThis->uIrtaReg), rcDataErr);
4042 /* Active RTADDR_REG. */
4043 pHlp->pfnSSMGetU64(pSSM, &pThis->uRtaddrReg);
4044 AssertLogRelMsgReturn(!(pThis->uRtaddrReg & ~VTD_RTADDR_REG_RW_MASK),
4045 ("%s: RTADDR_REG reserved bits set %#RX64\n", DMAR_LOG_PFX, pThis->uRtaddrReg), rcDataErr);
4046 }
4047
4048 /*
4049 * Verify terminator marker.
4050 */
4051 {
4052 uint32_t uEndMarker;
4053 int const rc = pHlp->pfnSSMGetU32(pSSM, &uEndMarker);
4054 AssertRCReturn(rc, rc);
4055 AssertLogRelMsgReturn(uEndMarker == UINT32_MAX,
4056 ("%s: End marker mismatch (expected %#RX32 got %#RX32)\n", DMAR_LOG_PFX, UINT32_MAX, uEndMarker),
4057 rcFmtErr);
4058 }
4059 return VINF_SUCCESS;
4060}
4061
4062
4063/**
4064 * @callback_method_impl{FNSSMDEVLOADDONE}
4065 */
4066static DECLCALLBACK(int) dmarR3LoadDone(PPDMDEVINS pDevIns, PSSMHANDLE pSSM)
4067{
4068 PDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PDMARR3);
4069 LogFlowFunc(("\n"));
4070 RT_NOREF(pSSM);
4071 AssertPtrReturn(pThisR3, VERR_INVALID_POINTER);
4072
4073 DMAR_LOCK(pDevIns, pThisR3);
4074 dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
4075 DMAR_UNLOCK(pDevIns, pThisR3);
4076 return VINF_SUCCESS;
4077}
4078
4079
4080/**
4081 * @interface_method_impl{PDMDEVREG,pfnReset}
4082 */
4083static DECLCALLBACK(void) iommuIntelR3Reset(PPDMDEVINS pDevIns)
4084{
4085 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
4086 LogFlowFunc(("\n"));
4087
4088 DMAR_LOCK(pDevIns, pThisR3);
4089 dmarR3RegsInit(pDevIns);
4090 DMAR_UNLOCK(pDevIns, pThisR3);
4091}
4092
4093
4094/**
4095 * @interface_method_impl{PDMDEVREG,pfnDestruct}
4096 */
4097static DECLCALLBACK(int) iommuIntelR3Destruct(PPDMDEVINS pDevIns)
4098{
4099 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
4100 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
4101 LogFlowFunc(("\n"));
4102
4103 DMAR_LOCK(pDevIns, pThisR3);
4104
4105 if (pThis->hEvtInvQueue != NIL_SUPSEMEVENT)
4106 {
4107 PDMDevHlpSUPSemEventClose(pDevIns, pThis->hEvtInvQueue);
4108 pThis->hEvtInvQueue = NIL_SUPSEMEVENT;
4109 }
4110
4111 DMAR_UNLOCK(pDevIns, pThisR3);
4112 return VINF_SUCCESS;
4113}
4114
4115
4116/**
4117 * @interface_method_impl{PDMDEVREG,pfnConstruct}
4118 */
4119static DECLCALLBACK(int) iommuIntelR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
4120{
4121 RT_NOREF(pCfg);
4122
4123 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
4124 PDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PDMARR3);
4125 pThisR3->pDevInsR3 = pDevIns;
4126
4127 LogFlowFunc(("iInstance=%d\n", iInstance));
4128 NOREF(iInstance);
4129
4130 /*
4131 * Register the IOMMU with PDM.
4132 */
4133 PDMIOMMUREGR3 IommuReg;
4134 RT_ZERO(IommuReg);
4135 IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
4136 IommuReg.pfnMemAccess = iommuIntelMemAccess;
4137 IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess;
4138 IommuReg.pfnMsiRemap = iommuIntelMsiRemap;
4139 IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
4140 int rc = PDMDevHlpIommuRegister(pDevIns, &IommuReg, &pThisR3->CTX_SUFF(pIommuHlp), &pThis->idxIommu);
4141 if (RT_FAILURE(rc))
4142 return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to register ourselves as an IOMMU device"));
4143 if (pThisR3->CTX_SUFF(pIommuHlp)->u32Version != PDM_IOMMUHLPR3_VERSION)
4144 return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
4145 N_("IOMMU helper version mismatch; got %#x expected %#x"),
4146 pThisR3->CTX_SUFF(pIommuHlp)->u32Version, PDM_IOMMUHLPR3_VERSION);
4147 if (pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd != PDM_IOMMUHLPR3_VERSION)
4148 return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
4149 N_("IOMMU helper end-version mismatch; got %#x expected %#x"),
4150 pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd, PDM_IOMMUHLPR3_VERSION);
4151 AssertPtr(pThisR3->pIommuHlpR3->pfnLock);
4152 AssertPtr(pThisR3->pIommuHlpR3->pfnUnlock);
4153 AssertPtr(pThisR3->pIommuHlpR3->pfnLockIsOwner);
4154 AssertPtr(pThisR3->pIommuHlpR3->pfnSendMsi);
4155
4156 /*
4157 * Use PDM's critical section (via helpers) for the IOMMU device.
4158 */
4159 rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
4160 AssertRCReturn(rc, rc);
4161
4162 /*
4163 * Initialize PCI configuration registers.
4164 */
4165 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
4166 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
4167
4168 /* Header. */
4169 PDMPciDevSetVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */
4170 PDMPciDevSetDeviceId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */
4171 PDMPciDevSetRevisionId(pPciDev, DMAR_PCI_REVISION_ID); /* VirtualBox specific device implementation revision */
4172 PDMPciDevSetClassBase(pPciDev, VBOX_PCI_CLASS_SYSTEM); /* System Base Peripheral */
4173 PDMPciDevSetClassSub(pPciDev, VBOX_PCI_SUB_SYSTEM_OTHER); /* Other */
4174 PDMPciDevSetHeaderType(pPciDev, 0); /* Single function, type 0 */
4175 PDMPciDevSetSubSystemId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */
4176 PDMPciDevSetSubSystemVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */
4177
4178 /** @todo Chipset spec says PCI Express Capability Id. Relevant for us? */
4179 PDMPciDevSetStatus(pPciDev, 0);
4180 PDMPciDevSetCapabilityList(pPciDev, 0);
4181 /** @todo VTBAR at 0x180? */
4182
4183 /*
4184 * Register the PCI function with PDM.
4185 */
4186 rc = PDMDevHlpPCIRegister(pDevIns, pPciDev);
4187 AssertLogRelRCReturn(rc, rc);
4188
4189 /*
4190 * Register MMIO region.
4191 */
4192 AssertCompile(!(DMAR_MMIO_BASE_PHYSADDR & X86_PAGE_4K_OFFSET_MASK));
4193 rc = PDMDevHlpMmioCreateAndMap(pDevIns, DMAR_MMIO_BASE_PHYSADDR, DMAR_MMIO_SIZE, dmarMmioWrite, dmarMmioRead,
4194 IOMMMIO_FLAGS_READ_DWORD_QWORD | IOMMMIO_FLAGS_WRITE_DWORD_QWORD_ZEROED, "Intel-IOMMU",
4195 &pThis->hMmio);
4196 AssertLogRelRCReturn(rc, rc);
4197
4198 /*
4199 * Register saved state handlers.
4200 */
4201 rc = PDMDevHlpSSMRegisterEx(pDevIns, DMAR_SAVED_STATE_VERSION, sizeof(DMAR), NULL /* pszBefore */,
4202 NULL /* pfnLivePrep */, NULL /* pfnLiveExec */, NULL /* pfnLiveVote */,
4203 NULL /* pfnSavePrep */, dmarR3SaveExec, NULL /* pfnSaveDone */,
4204 NULL /* pfnLoadPrep */, dmarR3LoadExec, dmarR3LoadDone);
4205 AssertLogRelRCReturn(rc, rc);
4206
4207 /*
4208 * Register debugger info items.
4209 */
4210 rc = PDMDevHlpDBGFInfoRegister(pDevIns, "iommu", "Display IOMMU state.", dmarR3DbgInfo);
4211 AssertLogRelRCReturn(rc, rc);
4212
4213#ifdef VBOX_WITH_STATISTICS
4214 /*
4215 * Statistics.
4216 */
4217 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadR3, STAMTYPE_COUNTER, "R3/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in R3");
4218 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadRZ, STAMTYPE_COUNTER, "RZ/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in RZ.");
4219
4220 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteR3, STAMTYPE_COUNTER, "R3/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in R3.");
4221 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteRZ, STAMTYPE_COUNTER, "RZ/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in RZ.");
4222
4223 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapCfiR3, STAMTYPE_COUNTER, "R3/MsiRemapCfi", STAMUNIT_OCCURENCES, "Number of compatibility-format interrupt remap requests in R3.");
4224 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapCfiRZ, STAMTYPE_COUNTER, "RZ/MsiRemapCfi", STAMUNIT_OCCURENCES, "Number of compatibility-format interrupt remap requests in RZ.");
4225 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRfiR3, STAMTYPE_COUNTER, "R3/MsiRemapRfi", STAMUNIT_OCCURENCES, "Number of remappable-format interrupt remap requests in R3.");
4226 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRfiRZ, STAMTYPE_COUNTER, "RZ/MsiRemapRfi", STAMUNIT_OCCURENCES, "Number of remappable-format interrupt remap requests in RZ.");
4227
4228 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadR3, STAMTYPE_COUNTER, "R3/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in R3.");
4229 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadRZ, STAMTYPE_COUNTER, "RZ/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in RZ.");
4230
4231 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteR3, STAMTYPE_COUNTER, "R3/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in R3.");
4232 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteRZ, STAMTYPE_COUNTER, "RZ/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in RZ.");
4233
4234 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadR3, STAMTYPE_COUNTER, "R3/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in R3.");
4235 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadRZ, STAMTYPE_COUNTER, "RZ/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in RZ.");
4236
4237 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteR3, STAMTYPE_COUNTER, "R3/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in R3.");
4238 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteRZ, STAMTYPE_COUNTER, "RZ/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in RZ.");
4239
4240 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCcInvDsc, STAMTYPE_COUNTER, "R3/QI/CcInv", STAMUNIT_OCCURENCES, "Number of cc_inv_dsc processed.");
4241 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIotlbInvDsc, STAMTYPE_COUNTER, "R3/QI/IotlbInv", STAMUNIT_OCCURENCES, "Number of iotlb_inv_dsc processed.");
4242 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatDevtlbInvDsc, STAMTYPE_COUNTER, "R3/QI/DevtlbInv", STAMUNIT_OCCURENCES, "Number of dev_tlb_inv_dsc processed.");
4243 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIecInvDsc, STAMTYPE_COUNTER, "R3/QI/IecInv", STAMUNIT_OCCURENCES, "Number of iec_inv processed.");
4244 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatInvWaitDsc, STAMTYPE_COUNTER, "R3/QI/InvWait", STAMUNIT_OCCURENCES, "Number of inv_wait_dsc processed.");
4245 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidIotlbInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidIotlbInv", STAMUNIT_OCCURENCES, "Number of p_iotlb_inv_dsc processed.");
4246 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidCacheInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidCacheInv", STAMUNIT_OCCURENCES, "Number of pc_inv_dsc pprocessed.");
4247 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidDevtlbInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidDevtlbInv", STAMUNIT_OCCURENCES, "Number of p_dev_tlb_inv_dsc processed.");
4248#endif
4249
4250 /*
4251 * Initialize registers.
4252 */
4253 dmarR3RegsInit(pDevIns);
4254
4255 /*
4256 * Create invalidation-queue thread and semaphore.
4257 */
4258 char szInvQueueThread[32];
4259 RT_ZERO(szInvQueueThread);
4260 RTStrPrintf(szInvQueueThread, sizeof(szInvQueueThread), "IOMMU-QI-%u", iInstance);
4261 rc = PDMDevHlpThreadCreate(pDevIns, &pThisR3->pInvQueueThread, pThis, dmarR3InvQueueThread, dmarR3InvQueueThreadWakeUp,
4262 0 /* cbStack */, RTTHREADTYPE_IO, szInvQueueThread);
4263 AssertLogRelRCReturn(rc, rc);
4264
4265 rc = PDMDevHlpSUPSemEventCreate(pDevIns, &pThis->hEvtInvQueue);
4266 AssertLogRelRCReturn(rc, rc);
4267
4268 /*
4269 * Log some of the features exposed to software.
4270 */
4271 uint8_t const uVerMax = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MAX);
4272 uint8_t const uVerMin = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MIN);
4273 uint8_t const cMgawBits = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_MGAW) + 1;
4274 uint8_t const fSagaw = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SAGAW);
4275 uint16_t const offFrcd = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_FRO);
4276 uint16_t const offIva = RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_IRO);
4277 LogRel(("%s: Mapped at %#RGp (%u-level page-table supported)\n",
4278 DMAR_LOG_PFX, DMAR_MMIO_BASE_PHYSADDR, pThis->cMaxPagingLevel));
4279 LogRel(("%s: Version=%u.%u Cap=%#RX64 ExtCap=%#RX64 Mgaw=%u bits Sagaw=%#x HawBaseMask=%#RX64 MgawInvMask=%#RX64 FRO=%#x IRO=%#x\n",
4280 DMAR_LOG_PFX, uVerMax, uVerMin, pThis->fCapReg, pThis->fExtCapReg, cMgawBits, fSagaw, pThis->fHawBaseMask,
4281 pThis->fMgawInvMask, offFrcd, offIva));
4282 return VINF_SUCCESS;
4283}
4284
4285#else
4286
4287/**
4288 * @callback_method_impl{PDMDEVREGR0,pfnConstruct}
4289 */
4290static DECLCALLBACK(int) iommuIntelRZConstruct(PPDMDEVINS pDevIns)
4291{
4292 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
4293 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
4294 PDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PDMARCC);
4295 pThisCC->CTX_SUFF(pDevIns) = pDevIns;
4296
4297 /* We will use PDM's critical section (via helpers) for the IOMMU device. */
4298 int rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
4299 AssertRCReturn(rc, rc);
4300
4301 /* Set up the MMIO RZ handlers. */
4302 rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hMmio, dmarMmioWrite, dmarMmioRead, NULL /* pvUser */);
4303 AssertRCReturn(rc, rc);
4304
4305 /* Set up the IOMMU RZ callbacks. */
4306 PDMIOMMUREGCC IommuReg;
4307 RT_ZERO(IommuReg);
4308 IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
4309 IommuReg.idxIommu = pThis->idxIommu;
4310 IommuReg.pfnMemAccess = iommuIntelMemAccess;
4311 IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess;
4312 IommuReg.pfnMsiRemap = iommuIntelMsiRemap;
4313 IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
4314
4315 rc = PDMDevHlpIommuSetUpContext(pDevIns, &IommuReg, &pThisCC->CTX_SUFF(pIommuHlp));
4316 AssertRCReturn(rc, rc);
4317 AssertPtrReturn(pThisCC->CTX_SUFF(pIommuHlp), VERR_IOMMU_IPE_1);
4318 AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32Version == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH);
4319 AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32TheEnd == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH);
4320 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnLock);
4321 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnUnlock);
4322 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnLockIsOwner);
4323 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi);
4324
4325 return VINF_SUCCESS;
4326}
4327
4328#endif
4329
4330
4331/**
4332 * The device registration structure.
4333 */
4334PDMDEVREG const g_DeviceIommuIntel =
4335{
4336 /* .u32Version = */ PDM_DEVREG_VERSION,
4337 /* .uReserved0 = */ 0,
4338 /* .szName = */ "iommu-intel",
4339 /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ | PDM_DEVREG_FLAGS_NEW_STYLE,
4340 /* .fClass = */ PDM_DEVREG_CLASS_PCI_BUILTIN,
4341 /* .cMaxInstances = */ 1,
4342 /* .uSharedVersion = */ 42,
4343 /* .cbInstanceShared = */ sizeof(DMAR),
4344 /* .cbInstanceCC = */ sizeof(DMARCC),
4345 /* .cbInstanceRC = */ sizeof(DMARRC),
4346 /* .cMaxPciDevices = */ 1,
4347 /* .cMaxMsixVectors = */ 0,
4348 /* .pszDescription = */ "IOMMU (Intel)",
4349#if defined(IN_RING3)
4350 /* .pszRCMod = */ "VBoxDDRC.rc",
4351 /* .pszR0Mod = */ "VBoxDDR0.r0",
4352 /* .pfnConstruct = */ iommuIntelR3Construct,
4353 /* .pfnDestruct = */ iommuIntelR3Destruct,
4354 /* .pfnRelocate = */ NULL,
4355 /* .pfnMemSetup = */ NULL,
4356 /* .pfnPowerOn = */ NULL,
4357 /* .pfnReset = */ iommuIntelR3Reset,
4358 /* .pfnSuspend = */ NULL,
4359 /* .pfnResume = */ NULL,
4360 /* .pfnAttach = */ NULL,
4361 /* .pfnDetach = */ NULL,
4362 /* .pfnQueryInterface = */ NULL,
4363 /* .pfnInitComplete = */ NULL,
4364 /* .pfnPowerOff = */ NULL,
4365 /* .pfnSoftReset = */ NULL,
4366 /* .pfnReserved0 = */ NULL,
4367 /* .pfnReserved1 = */ NULL,
4368 /* .pfnReserved2 = */ NULL,
4369 /* .pfnReserved3 = */ NULL,
4370 /* .pfnReserved4 = */ NULL,
4371 /* .pfnReserved5 = */ NULL,
4372 /* .pfnReserved6 = */ NULL,
4373 /* .pfnReserved7 = */ NULL,
4374#elif defined(IN_RING0)
4375 /* .pfnEarlyConstruct = */ NULL,
4376 /* .pfnConstruct = */ iommuIntelRZConstruct,
4377 /* .pfnDestruct = */ NULL,
4378 /* .pfnFinalDestruct = */ NULL,
4379 /* .pfnRequest = */ NULL,
4380 /* .pfnReserved0 = */ NULL,
4381 /* .pfnReserved1 = */ NULL,
4382 /* .pfnReserved2 = */ NULL,
4383 /* .pfnReserved3 = */ NULL,
4384 /* .pfnReserved4 = */ NULL,
4385 /* .pfnReserved5 = */ NULL,
4386 /* .pfnReserved6 = */ NULL,
4387 /* .pfnReserved7 = */ NULL,
4388#elif defined(IN_RC)
4389 /* .pfnConstruct = */ iommuIntelRZConstruct,
4390 /* .pfnReserved0 = */ NULL,
4391 /* .pfnReserved1 = */ NULL,
4392 /* .pfnReserved2 = */ NULL,
4393 /* .pfnReserved3 = */ NULL,
4394 /* .pfnReserved4 = */ NULL,
4395 /* .pfnReserved5 = */ NULL,
4396 /* .pfnReserved6 = */ NULL,
4397 /* .pfnReserved7 = */ NULL,
4398#else
4399# error "Not in IN_RING3, IN_RING0 or IN_RC!"
4400#endif
4401 /* .u32VersionEnd = */ PDM_DEVREG_VERSION
4402};
4403
4404#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
4405
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette