VirtualBox

source: vbox/trunk/src/VBox/Devices/Bus/DevIommuIntel.cpp@ 89513

最後變更 在這個檔案從89513是 89513,由 vboxsync 提交於 4 年 前

Intel IOMMU: bugref:9967 Fix bug while parsing the physical address out of the root-entry.

  • 屬性 svn:eol-style 設為 native
  • 屬性 svn:keywords 設為 Author Date Id Revision
檔案大小: 184.3 KB
 
1/* $Id: DevIommuIntel.cpp 89513 2021-06-04 16:52:42Z vboxsync $ */
2/** @file
3 * IOMMU - Input/Output Memory Management Unit - Intel implementation.
4 */
5
6/*
7 * Copyright (C) 2021 Oracle Corporation
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.alldomusa.eu.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 */
17
18
19/*********************************************************************************************************************************
20* Header Files *
21*********************************************************************************************************************************/
22#define LOG_GROUP LOG_GROUP_DEV_IOMMU
23#include "VBoxDD.h"
24#include "DevIommuIntel.h"
25
26#include <iprt/mem.h>
27#include <iprt/string.h>
28
29
30/*********************************************************************************************************************************
31* Defined Constants And Macros *
32*********************************************************************************************************************************/
33/** Gets the low uint32_t of a uint64_t or something equivalent.
34 *
35 * This is suitable for casting constants outside code (since RT_LO_U32 can't be
36 * used as it asserts for correctness when compiling on certain compilers). */
37#define DMAR_LO_U32(a) (uint32_t)(UINT32_MAX & (a))
38
39/** Gets the high uint32_t of a uint64_t or something equivalent.
40 *
41 * This is suitable for casting constants outside code (since RT_HI_U32 can't be
42 * used as it asserts for correctness when compiling on certain compilers). */
43#define DMAR_HI_U32(a) (uint32_t)((a) >> 32)
44
45/** Asserts MMIO access' offset and size are valid or returns appropriate error
46 * code suitable for returning from MMIO access handlers. */
47#define DMAR_ASSERT_MMIO_ACCESS_RET(a_off, a_cb) \
48 do { \
49 AssertReturn((a_cb) == 4 || (a_cb) == 8, VINF_IOM_MMIO_UNUSED_FF); \
50 AssertReturn(!((a_off) & ((a_cb) - 1)), VINF_IOM_MMIO_UNUSED_FF); \
51 } while (0)
52
53/** Checks if the MMIO offset is valid. */
54#define DMAR_IS_MMIO_OFF_VALID(a_off) ( (a_off) < DMAR_MMIO_GROUP_0_OFF_END \
55 || (a_off) - DMAR_MMIO_GROUP_1_OFF_FIRST < DMAR_MMIO_GROUP_1_SIZE)
56
57/** Acquires the DMAR lock but returns with the given busy error code on failure. */
58#define DMAR_LOCK_RET(a_pDevIns, a_pThisCC, a_rcBusy) \
59 do { \
60 if ((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), (a_rcBusy)) == VINF_SUCCESS) \
61 { /* likely */ } \
62 else \
63 return (a_rcBusy); \
64 } while (0)
65
66/** Acquires the DMAR lock (not expected to fail). */
67#ifdef IN_RING3
68# define DMAR_LOCK(a_pDevIns, a_pThisCC) (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), VERR_IGNORED)
69#else
70# define DMAR_LOCK(a_pDevIns, a_pThisCC) \
71 do { \
72 int const rcLock = (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLock((a_pDevIns), VINF_SUCCESS); \
73 AssertRC(rcLock); \
74 } while (0)
75#endif
76
77/** Release the DMAR lock. */
78#define DMAR_UNLOCK(a_pDevIns, a_pThisCC) (a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnUnlock(a_pDevIns)
79
80/** Asserts that the calling thread owns the DMAR lock. */
81#define DMAR_ASSERT_LOCK_IS_OWNER(a_pDevIns, a_pThisCC) \
82 do { \
83 Assert((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLockIsOwner(a_pDevIns)); \
84 RT_NOREF1(a_pThisCC); \
85 } while (0)
86
87/** Asserts that the calling thread does not own the DMAR lock. */
88#define DMAR_ASSERT_LOCK_IS_NOT_OWNER(a_pDevIns, a_pThisCC) \
89 do { \
90 Assert((a_pThisCC)->CTX_SUFF(pIommuHlp)->pfnLockIsOwner(a_pDevIns) == false); \
91 RT_NOREF1(a_pThisCC); \
92 } while (0)
93
94/** The number of fault recording registers our implementation supports.
95 * Normal guest operation shouldn't trigger faults anyway, so we only support the
96 * minimum number of registers (which is 1).
97 *
98 * See Intel VT-d spec. 10.4.2 "Capability Register" (CAP_REG.NFR). */
99#define DMAR_FRCD_REG_COUNT UINT32_C(1)
100
101/** Offset of first register in group 0. */
102#define DMAR_MMIO_GROUP_0_OFF_FIRST VTD_MMIO_OFF_VER_REG
103/** Offset of last register in group 0 (inclusive). */
104#define DMAR_MMIO_GROUP_0_OFF_LAST VTD_MMIO_OFF_MTRR_PHYSMASK9_REG
105/** Last valid offset in group 0 (exclusive). */
106#define DMAR_MMIO_GROUP_0_OFF_END (DMAR_MMIO_GROUP_0_OFF_LAST + 8 /* sizeof MTRR_PHYSMASK9_REG */)
107/** Size of the group 0 (in bytes). */
108#define DMAR_MMIO_GROUP_0_SIZE (DMAR_MMIO_GROUP_0_OFF_END - DMAR_MMIO_GROUP_0_OFF_FIRST)
109/**< Implementation-specific MMIO offset of IVA_REG. */
110#define DMAR_MMIO_OFF_IVA_REG 0xe50
111/**< Implementation-specific MMIO offset of IOTLB_REG. */
112#define DMAR_MMIO_OFF_IOTLB_REG 0xe58
113/**< Implementation-specific MMIO offset of FRCD_LO_REG. */
114#define DMAR_MMIO_OFF_FRCD_LO_REG 0xe70
115/**< Implementation-specific MMIO offset of FRCD_HI_REG. */
116#define DMAR_MMIO_OFF_FRCD_HI_REG 0xe78
117AssertCompile(!(DMAR_MMIO_OFF_FRCD_LO_REG & 0xf));
118
119/** Offset of first register in group 1. */
120#define DMAR_MMIO_GROUP_1_OFF_FIRST VTD_MMIO_OFF_VCCAP_REG
121/** Offset of last register in group 1 (inclusive). */
122#define DMAR_MMIO_GROUP_1_OFF_LAST (DMAR_MMIO_OFF_FRCD_LO_REG + 8) * DMAR_FRCD_REG_COUNT
123/** Last valid offset in group 1 (exclusive). */
124#define DMAR_MMIO_GROUP_1_OFF_END (DMAR_MMIO_GROUP_1_OFF_LAST + 8 /* sizeof FRCD_HI_REG */)
125/** Size of the group 1 (in bytes). */
126#define DMAR_MMIO_GROUP_1_SIZE (DMAR_MMIO_GROUP_1_OFF_END - DMAR_MMIO_GROUP_1_OFF_FIRST)
127
128/** DMAR implementation's major version number (exposed to software).
129 * We report 6 as the major version since we support queued-invalidations as
130 * software may make assumptions based on that.
131 *
132 * See Intel VT-d spec. 10.4.7 "Context Command Register" (CCMD_REG.CAIG). */
133#define DMAR_VER_MAJOR 6
134/** DMAR implementation's minor version number (exposed to software). */
135#define DMAR_VER_MINOR 0
136
137/** Number of domain supported (0=16, 1=64, 2=256, 3=1K, 4=4K, 5=16K, 6=64K,
138 * 7=Reserved). */
139#define DMAR_ND 6
140
141/** @name DMAR_PERM_XXX: DMA request permissions.
142 * The order of R, W, X bits is important as it corresponds to those bits in
143 * page-table entries.
144 *
145 * @{ */
146/** DMA request permission: Read. */
147#define DMAR_PERM_READ RT_BIT(0)
148/** DMA request permission: Write. */
149#define DMAR_PERM_WRITE RT_BIT(1)
150/** DMA request permission: Execute (ER). */
151#define DMAR_PERM_EXE RT_BIT(2)
152/** DMA request permission: Supervisor privilege (PR). */
153#define DMAR_PERM_PRIV RT_BIT(3)
154/** DMA request permissions: All. */
155#define DMAR_PERM_ALL (DMAR_PERM_READ | DMAR_PERM_WRITE | DMAR_PERM_EXE | DMAR_PERM_PRIV)
156/** @} */
157
158/** Release log prefix string. */
159#define DMAR_LOG_PFX "Intel-IOMMU"
160/** The current saved state version. */
161#define DMAR_SAVED_STATE_VERSION 1
162
163
164/*********************************************************************************************************************************
165* Structures and Typedefs *
166*********************************************************************************************************************************/
167/**
168 * DMAR error diagnostics.
169 * Sorted alphabetically so it's easier to add and locate items, no other reason.
170 *
171 * @note Members of this enum are used as array indices, so no gaps in enum
172 * values are not allowed. Update g_apszDmarDiagDesc when you modify
173 * fields in this enum.
174 */
175typedef enum
176{
177 /* No error, this must be zero! */
178 kDmarDiag_None = 0,
179
180 /* Address Translation Faults. */
181 kDmarDiag_Atf_Lct_1,
182 kDmarDiag_Atf_Lct_2,
183 kDmarDiag_Atf_Lct_3,
184 kDmarDiag_Atf_Lct_4_1,
185 kDmarDiag_Atf_Lct_4_2,
186 kDmarDiag_Atf_Lct_4_3,
187 kDmarDiag_Atf_Lct_5,
188 kDmarDiag_Atf_Lgn_1_1,
189 kDmarDiag_Atf_Lgn_1_2,
190 kDmarDiag_Atf_Lgn_1_3,
191 kDmarDiag_Atf_Lgn_4,
192 kDmarDiag_Atf_Lrt_1,
193 kDmarDiag_Atf_Lrt_2,
194 kDmarDiag_Atf_Lrt_3,
195 kDmarDiag_Atf_Lsl_1,
196 kDmarDiag_Atf_Lsl_2,
197 kDmarDiag_Atf_Lsl_2_LargePage,
198 kDmarDiag_Atf_Rta_1_1,
199 kDmarDiag_Atf_Rta_1_2,
200 kDmarDiag_Atf_Rta_1_3,
201 kDmarDiag_Atf_Sgn_5,
202 kDmarDiag_Atf_Sgn_8,
203 kDmarDiag_Atf_Ssl_1,
204 kDmarDiag_Atf_Ssl_2,
205 kDmarDiag_Atf_Ssl_3,
206 kDmarDiag_Atf_Ssl_3_LargePage,
207
208 /* CCMD_REG faults. */
209 kDmarDiag_CcmdReg_NotSupported,
210 kDmarDiag_CcmdReg_Qi_Enabled,
211 kDmarDiag_CcmdReg_Ttm_Invalid,
212
213 /* IQA_REG faults. */
214 kDmarDiag_IqaReg_Dsc_Fetch_Error,
215 kDmarDiag_IqaReg_Dw_128_Invalid,
216 kDmarDiag_IqaReg_Dw_256_Invalid,
217
218 /* Invalidation Queue Error Info. */
219 kDmarDiag_Iqei_Dsc_Type_Invalid,
220 kDmarDiag_Iqei_Inv_Wait_Dsc_0_1_Rsvd,
221 kDmarDiag_Iqei_Inv_Wait_Dsc_2_3_Rsvd,
222 kDmarDiag_Iqei_Inv_Wait_Dsc_Invalid,
223 kDmarDiag_Iqei_Ttm_Rsvd,
224
225 /* IQT_REG faults. */
226 kDmarDiag_IqtReg_Qt_Invalid,
227 kDmarDiag_IqtReg_Qt_NotAligned,
228
229 /* Compatibility Format Interrupt Faults. */
230 kDmarDiag_Ir_Cfi_Blocked,
231
232 /* Remappable Format Interrupt Faults. */
233 kDmarDiag_Ir_Rfi_Intr_Index_Invalid,
234 kDmarDiag_Ir_Rfi_Irte_Mode_Invalid,
235 kDmarDiag_Ir_Rfi_Irte_Not_Present,
236 kDmarDiag_Ir_Rfi_Irte_Read_Failed,
237 kDmarDiag_Ir_Rfi_Irte_Rsvd,
238 kDmarDiag_Ir_Rfi_Irte_Svt_Bus,
239 kDmarDiag_Ir_Rfi_Irte_Svt_Masked,
240 kDmarDiag_Ir_Rfi_Irte_Svt_Rsvd,
241 kDmarDiag_Ir_Rfi_Rsvd,
242
243 /* Member for determining array index limit. */
244 kDmarDiag_End,
245
246 /* Usual 32-bit type size hack. */
247 kDmarDiag_32Bit_Hack = 0x7fffffff
248} DMARDIAG;
249AssertCompileSize(DMARDIAG, 4);
250
251/** DMAR diagnostic enum description expansion.
252 * The below construct ensures typos in the input to this macro are caught
253 * during compile time. */
254#define DMARDIAG_DESC(a_Name) RT_CONCAT(kDmarDiag_, a_Name) < kDmarDiag_End ? RT_STR(a_Name) : "Ignored"
255
256/** DMAR diagnostics description for members in DMARDIAG. */
257static const char *const g_apszDmarDiagDesc[] =
258{
259 DMARDIAG_DESC(None ),
260 DMARDIAG_DESC(Atf_Lct_1 ),
261 DMARDIAG_DESC(Atf_Lct_2 ),
262 DMARDIAG_DESC(Atf_Lct_3 ),
263 DMARDIAG_DESC(Atf_Lct_4_1 ),
264 DMARDIAG_DESC(Atf_Lct_4_2 ),
265 DMARDIAG_DESC(Atf_Lct_4_3 ),
266 DMARDIAG_DESC(Atf_Lct_5 ),
267 DMARDIAG_DESC(Atf_Lgn_1_1 ),
268 DMARDIAG_DESC(Atf_Lgn_1_2 ),
269 DMARDIAG_DESC(Atf_Lgn_1_3 ),
270 DMARDIAG_DESC(Atf_Lgn_4 ),
271 DMARDIAG_DESC(Atf_Lrt_1 ),
272 DMARDIAG_DESC(Atf_Lrt_2 ),
273 DMARDIAG_DESC(Atf_Lrt_3 ),
274 DMARDIAG_DESC(Atf_Lsl_1 ),
275 DMARDIAG_DESC(Atf_Lsl_2 ),
276 DMARDIAG_DESC(Atf_Lsl_2_LargePage ),
277 DMARDIAG_DESC(Atf_Rta_1_1 ),
278 DMARDIAG_DESC(Atf_Rta_1_2 ),
279 DMARDIAG_DESC(Atf_Rta_1_3 ),
280 DMARDIAG_DESC(Atf_Sgn_5 ),
281 DMARDIAG_DESC(Atf_Sgn_8 ),
282 DMARDIAG_DESC(Atf_Ssl_1 ),
283 DMARDIAG_DESC(Atf_Ssl_2 ),
284 DMARDIAG_DESC(Atf_Ssl_3 ),
285 DMARDIAG_DESC(Atf_Ssl_3_LargePage ),
286 DMARDIAG_DESC(CcmdReg_NotSupported ),
287 DMARDIAG_DESC(CcmdReg_Qi_Enabled ),
288 DMARDIAG_DESC(CcmdReg_Ttm_Invalid ),
289 DMARDIAG_DESC(IqaReg_Dsc_Fetch_Error ),
290 DMARDIAG_DESC(IqaReg_Dw_128_Invalid ),
291 DMARDIAG_DESC(IqaReg_Dw_256_Invalid ),
292 DMARDIAG_DESC(Iqei_Dsc_Type_Invalid ),
293 DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_0_1_Rsvd),
294 DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_2_3_Rsvd),
295 DMARDIAG_DESC(Iqei_Inv_Wait_Dsc_Invalid ),
296 DMARDIAG_DESC(Iqei_Ttm_Rsvd ),
297 DMARDIAG_DESC(IqtReg_Qt_Invalid ),
298 DMARDIAG_DESC(IqtReg_Qt_NotAligned ),
299 DMARDIAG_DESC(Ir_Cfi_Blocked ),
300 DMARDIAG_DESC(Ir_Rfi_Intr_Index_Invalid ),
301 DMARDIAG_DESC(Ir_Rfi_Irte_Mode_Invalid ),
302 DMARDIAG_DESC(Ir_Rfi_Irte_Not_Present ),
303 DMARDIAG_DESC(Ir_Rfi_Irte_Read_Failed ),
304 DMARDIAG_DESC(Ir_Rfi_Irte_Rsvd ),
305 DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Bus ),
306 DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Masked ),
307 DMARDIAG_DESC(Ir_Rfi_Irte_Svt_Rsvd ),
308 DMARDIAG_DESC(Ir_Rfi_Rsvd ),
309 /* kDmarDiag_End */
310};
311AssertCompile(RT_ELEMENTS(g_apszDmarDiagDesc) == kDmarDiag_End);
312#undef DMARDIAG_DESC
313
314/**
315 * The shared DMAR device state.
316 */
317typedef struct DMAR
318{
319 /** IOMMU device index. */
320 uint32_t idxIommu;
321 /** DMAR magic. */
322 uint32_t u32Magic;
323
324 /** Registers (group 0). */
325 uint8_t abRegs0[DMAR_MMIO_GROUP_0_SIZE];
326 /** Registers (group 1). */
327 uint8_t abRegs1[DMAR_MMIO_GROUP_1_SIZE];
328
329 /** @name Lazily activated registers.
330 * These are the active values for lazily activated registers. Software is free to
331 * modify the actual register values while remapping/translation is enabled but they
332 * take effect only when explicitly signaled by software, hence we need to hold the
333 * active values separately.
334 * @{ */
335 /** Currently active IRTA_REG. */
336 uint64_t uIrtaReg;
337 /** Currently active RTADDR_REG. */
338 uint64_t uRtaddrReg;
339 /** @} */
340
341 /** @name Register copies for a tiny bit faster and more convenient access.
342 * @{ */
343 /** Copy of VER_REG. */
344 uint8_t uVerReg;
345 /** Alignment. */
346 uint8_t abPadding[7];
347 /** Copy of CAP_REG. */
348 uint64_t fCapReg;
349 /** Copy of ECAP_REG. */
350 uint64_t fExtCapReg;
351 /** @} */
352
353 /** Host-address width (HAW) base address mask. */
354 uint64_t fHawBaseMask;
355 /** Maximum guest-address width (MGAW) invalid address mask. */
356 uint64_t fMgawInvMask;
357 /** Maximum supported paging level (3, 4 or 5). */
358 uint8_t cMaxPagingLevel;
359 /** DMA request valid permissions mask. */
360 uint8_t fPermValidMask;
361
362 /** The event semaphore the invalidation-queue thread waits on. */
363 SUPSEMEVENT hEvtInvQueue;
364 /** Padding. */
365 uint32_t uPadding0;
366 /** Error diagnostic. */
367 DMARDIAG enmDiag;
368 /** The MMIO handle. */
369 IOMMMIOHANDLE hMmio;
370
371#ifdef VBOX_WITH_STATISTICS
372 STAMCOUNTER StatMmioReadR3; /**< Number of MMIO reads in R3. */
373 STAMCOUNTER StatMmioReadRZ; /**< Number of MMIO reads in RZ. */
374 STAMCOUNTER StatMmioWriteR3; /**< Number of MMIO writes in R3. */
375 STAMCOUNTER StatMmioWriteRZ; /**< Number of MMIO writes in RZ. */
376
377 STAMCOUNTER StatMsiRemapCfiR3; /**< Number of compatibility-format interrupts remap requests in R3. */
378 STAMCOUNTER StatMsiRemapCfiRZ; /**< Number of compatibility-format interrupts remap requests in RZ. */
379 STAMCOUNTER StatMsiRemapRfiR3; /**< Number of remappable-format interrupts remap requests in R3. */
380 STAMCOUNTER StatMsiRemapRfiRZ; /**< Number of remappable-format interrupts remap requests in RZ. */
381
382 STAMCOUNTER StatMemReadR3; /**< Number of memory read translation requests in R3. */
383 STAMCOUNTER StatMemReadRZ; /**< Number of memory read translation requests in RZ. */
384 STAMCOUNTER StatMemWriteR3; /**< Number of memory write translation requests in R3. */
385 STAMCOUNTER StatMemWriteRZ; /**< Number of memory write translation requests in RZ. */
386
387 STAMCOUNTER StatMemBulkReadR3; /**< Number of memory read bulk translation requests in R3. */
388 STAMCOUNTER StatMemBulkReadRZ; /**< Number of memory read bulk translation requests in RZ. */
389 STAMCOUNTER StatMemBulkWriteR3; /**< Number of memory write bulk translation requests in R3. */
390 STAMCOUNTER StatMemBulkWriteRZ; /**< Number of memory write bulk translation requests in RZ. */
391
392 STAMCOUNTER StatCcInvDsc; /**< Number of Context-cache descriptors processed. */
393 STAMCOUNTER StatIotlbInvDsc; /**< Number of IOTLB descriptors processed. */
394 STAMCOUNTER StatDevtlbInvDsc; /**< Number of Device-TLB descriptors processed. */
395 STAMCOUNTER StatIecInvDsc; /**< Number of Interrupt-Entry cache descriptors processed. */
396 STAMCOUNTER StatInvWaitDsc; /**< Number of Invalidation wait descriptors processed. */
397 STAMCOUNTER StatPasidIotlbInvDsc; /**< Number of PASID-based IOTLB descriptors processed. */
398 STAMCOUNTER StatPasidCacheInvDsc; /**< Number of PASID-cache descriptors processed. */
399 STAMCOUNTER StatPasidDevtlbInvDsc; /**< Number of PASID-based device-TLB descriptors processed. */
400#endif
401} DMAR;
402/** Pointer to the DMAR device state. */
403typedef DMAR *PDMAR;
404/** Pointer to the const DMAR device state. */
405typedef DMAR const *PCDMAR;
406AssertCompileMemberAlignment(DMAR, abRegs0, 8);
407AssertCompileMemberAlignment(DMAR, abRegs1, 8);
408
409/**
410 * The ring-3 DMAR device state.
411 */
412typedef struct DMARR3
413{
414 /** Device instance. */
415 PPDMDEVINSR3 pDevInsR3;
416 /** The IOMMU helper. */
417 R3PTRTYPE(PCPDMIOMMUHLPR3) pIommuHlpR3;
418 /** The invalidation-queue thread. */
419 R3PTRTYPE(PPDMTHREAD) pInvQueueThread;
420} DMARR3;
421/** Pointer to the ring-3 DMAR device state. */
422typedef DMARR3 *PDMARR3;
423/** Pointer to the const ring-3 DMAR device state. */
424typedef DMARR3 const *PCDMARR3;
425
426/**
427 * The ring-0 DMAR device state.
428 */
429typedef struct DMARR0
430{
431 /** Device instance. */
432 PPDMDEVINSR0 pDevInsR0;
433 /** The IOMMU helper. */
434 R0PTRTYPE(PCPDMIOMMUHLPR0) pIommuHlpR0;
435} DMARR0;
436/** Pointer to the ring-0 IOMMU device state. */
437typedef DMARR0 *PDMARR0;
438/** Pointer to the const ring-0 IOMMU device state. */
439typedef DMARR0 const *PCDMARR0;
440
441/**
442 * The raw-mode DMAR device state.
443 */
444typedef struct DMARRC
445{
446 /** Device instance. */
447 PPDMDEVINSRC pDevInsRC;
448 /** The IOMMU helper. */
449 RCPTRTYPE(PCPDMIOMMUHLPRC) pIommuHlpRC;
450} DMARRC;
451/** Pointer to the raw-mode DMAR device state. */
452typedef DMARRC *PDMARRC;
453/** Pointer to the const raw-mode DMAR device state. */
454typedef DMARRC const *PCIDMARRC;
455
456/** The DMAR device state for the current context. */
457typedef CTX_SUFF(DMAR) DMARCC;
458/** Pointer to the DMAR device state for the current context. */
459typedef CTX_SUFF(PDMAR) PDMARCC;
460/** Pointer to the const DMAR device state for the current context. */
461typedef CTX_SUFF(PDMAR) const PCDMARCC;
462
463/**
464 * DMAR originated events that generate interrupts.
465 */
466typedef enum DMAREVENTTYPE
467{
468 /** Invalidation completion event. */
469 DMAREVENTTYPE_INV_COMPLETE = 0,
470 /** Fault event. */
471 DMAREVENTTYPE_FAULT
472} DMAREVENTTYPE;
473
474/**
475 * I/O Page.
476 */
477typedef struct DMARIOPAGE
478{
479 /** The base DMA address of a page. */
480 RTGCPHYS GCPhysBase;
481 /** The page shift. */
482 uint8_t cShift;
483 /** The permissions of this page (DMAR_PERM_XXX). */
484 uint8_t fPerm;
485} DMARIOPAGE;
486/** Pointer to an I/O page. */
487typedef DMARIOPAGE *PDMARIOPAGE;
488/** Pointer to a const I/O address range. */
489typedef DMARIOPAGE const *PCDMARIOPAGE;
490
491/**
492 * I/O Address Range.
493 */
494typedef struct DMARIOADDRRANGE
495{
496 /** The starting DMA address of this range. */
497 uint64_t uAddr;
498 /** The size of the range (in bytes). */
499 size_t cb;
500 /** The permissions of this range (DMAR_PERM_XXX). */
501 uint8_t fPerm;
502} DMARIOADDRRANGE;
503/** Pointer to an I/O address range. */
504typedef DMARIOADDRRANGE *PDMARIOADDRRANGE;
505/** Pointer to a const I/O address range. */
506typedef DMARIOADDRRANGE const *PCDMARIOADDRRANGE;
507
508/**
509 * DMA Memory Request (Input).
510 */
511typedef struct DMARMEMREQIN
512{
513 /** The address range being accessed. */
514 DMARIOADDRRANGE AddrRange;
515 /** The source device ID (bus, device, function). */
516 uint16_t idDevice;
517 /** The PASID if present (can be NIL_PCIPASID). */
518 PCIPASID Pasid;
519 /* The address translation type. */
520 PCIADDRTYPE enmAddrType;
521 /** The request type. */
522 VTDREQTYPE enmReqType;
523} DMARMEMREQIN;
524/** Pointer to a DMA memory request input. */
525typedef DMARMEMREQIN *PDMARMEMREQIN;
526/** Pointer to a const DMA memory input. */
527typedef DMARMEMREQIN const *PCDMARMEMREQIN;
528
529/**
530 * DMA Memory Request (Output).
531 */
532typedef struct DMARMEMREQOUT
533{
534 /** The address range of the translated region. */
535 DMARIOADDRRANGE AddrRange;
536 /** The domain ID of the translated region. */
537 uint16_t idDomain;
538} DMARMEMREQOUT;
539/** Pointer to a DMA memory request output. */
540typedef DMARMEMREQOUT *PDMARMEMREQOUT;
541/** Pointer to a const DMA memory request output. */
542typedef DMARMEMREQOUT const *PCDMARMEMREQOUT;
543
544/**
545 * DMA Memory Request (Auxiliary Info).
546 * These get updated and used as part of the translation process.
547 */
548typedef struct DMARMEMREQAUX
549{
550 /** The table translation mode (VTD_TTM_XXX). */
551 uint8_t fTtm;
552 /** The fault processing disabled (FPD) bit. */
553 uint8_t fFpd;
554 /** The paging level of the translation. */
555 uint8_t cPagingLevel;
556 uint8_t afPadding[5];
557 /** The first-level page-table pointer. */
558 uint64_t uFlptPtr;
559 /** The second-level page-table pointer. */
560 uint64_t uSlptPtr;
561} DMARMEMREQAUX;
562/** Pointer to a DMA memory request output. */
563typedef DMARMEMREQAUX *PDMARMEMREQAUX;
564/** Pointer to a const DMA memory request output. */
565typedef DMARMEMREQAUX const *PCDMARMEMREQAUX;
566
567/**
568 * DMA Memory Request Remapping Information.
569 */
570typedef struct DMARMEMREQREMAP
571{
572 /** The DMA memory request input. */
573 DMARMEMREQIN In;
574 /** DMA memory request auxiliary information. */
575 DMARMEMREQAUX Aux;
576 /** The DMA memory request output. */
577 DMARMEMREQOUT Out;
578} DMARMEMREQREMAP;
579/** Pointer to a DMA remap info. */
580typedef DMARMEMREQREMAP *PDMARMEMREQREMAP;
581/** Pointer to a const DMA remap info. */
582typedef DMARMEMREQREMAP const *PCDMARMEMREQREMAP;
583
584typedef DECLCALLBACKTYPE(int, FNDMADDRLOOKUP,(PPDMDEVINS pDevIns, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux,
585 PDMARIOPAGE pIoPageOut));
586typedef FNDMADDRLOOKUP *PFNDMADDRLOOKUP;
587
588
589/*********************************************************************************************************************************
590* Global Variables *
591*********************************************************************************************************************************/
592/**
593 * Read-write masks for DMAR registers (group 0).
594 */
595static uint32_t const g_au32RwMasks0[] =
596{
597 /* Offset Register Low High */
598 /* 0x000 VER_REG */ VTD_VER_REG_RW_MASK,
599 /* 0x004 Reserved */ 0,
600 /* 0x008 CAP_REG */ DMAR_LO_U32(VTD_CAP_REG_RW_MASK), DMAR_HI_U32(VTD_CAP_REG_RW_MASK),
601 /* 0x010 ECAP_REG */ DMAR_LO_U32(VTD_ECAP_REG_RW_MASK), DMAR_HI_U32(VTD_ECAP_REG_RW_MASK),
602 /* 0x018 GCMD_REG */ VTD_GCMD_REG_RW_MASK,
603 /* 0x01c GSTS_REG */ VTD_GSTS_REG_RW_MASK,
604 /* 0x020 RTADDR_REG */ DMAR_LO_U32(VTD_RTADDR_REG_RW_MASK), DMAR_HI_U32(VTD_RTADDR_REG_RW_MASK),
605 /* 0x028 CCMD_REG */ DMAR_LO_U32(VTD_CCMD_REG_RW_MASK), DMAR_HI_U32(VTD_CCMD_REG_RW_MASK),
606 /* 0x030 Reserved */ 0,
607 /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW_MASK,
608 /* 0x038 FECTL_REG */ VTD_FECTL_REG_RW_MASK,
609 /* 0x03c FEDATA_REG */ VTD_FEDATA_REG_RW_MASK,
610 /* 0x040 FEADDR_REG */ VTD_FEADDR_REG_RW_MASK,
611 /* 0x044 FEUADDR_REG */ VTD_FEUADDR_REG_RW_MASK,
612 /* 0x048 Reserved */ 0, 0,
613 /* 0x050 Reserved */ 0, 0,
614 /* 0x058 AFLOG_REG */ DMAR_LO_U32(VTD_AFLOG_REG_RW_MASK), DMAR_HI_U32(VTD_AFLOG_REG_RW_MASK),
615 /* 0x060 Reserved */ 0,
616 /* 0x064 PMEN_REG */ 0, /* RO as we don't support PLMR and PHMR. */
617 /* 0x068 PLMBASE_REG */ 0, /* RO as we don't support PLMR. */
618 /* 0x06c PLMLIMIT_REG */ 0, /* RO as we don't support PLMR. */
619 /* 0x070 PHMBASE_REG */ 0, 0, /* RO as we don't support PHMR. */
620 /* 0x078 PHMLIMIT_REG */ 0, 0, /* RO as we don't support PHMR. */
621 /* 0x080 IQH_REG */ DMAR_LO_U32(VTD_IQH_REG_RW_MASK), DMAR_HI_U32(VTD_IQH_REG_RW_MASK),
622 /* 0x088 IQT_REG */ DMAR_LO_U32(VTD_IQT_REG_RW_MASK), DMAR_HI_U32(VTD_IQT_REG_RW_MASK),
623 /* 0x090 IQA_REG */ DMAR_LO_U32(VTD_IQA_REG_RW_MASK), DMAR_HI_U32(VTD_IQA_REG_RW_MASK),
624 /* 0x098 Reserved */ 0,
625 /* 0x09c ICS_REG */ VTD_ICS_REG_RW_MASK,
626 /* 0x0a0 IECTL_REG */ VTD_IECTL_REG_RW_MASK,
627 /* 0x0a4 IEDATA_REG */ VTD_IEDATA_REG_RW_MASK,
628 /* 0x0a8 IEADDR_REG */ VTD_IEADDR_REG_RW_MASK,
629 /* 0x0ac IEUADDR_REG */ VTD_IEUADDR_REG_RW_MASK,
630 /* 0x0b0 IQERCD_REG */ DMAR_LO_U32(VTD_IQERCD_REG_RW_MASK), DMAR_HI_U32(VTD_IQERCD_REG_RW_MASK),
631 /* 0x0b8 IRTA_REG */ DMAR_LO_U32(VTD_IRTA_REG_RW_MASK), DMAR_HI_U32(VTD_IRTA_REG_RW_MASK),
632 /* 0x0c0 PQH_REG */ DMAR_LO_U32(VTD_PQH_REG_RW_MASK), DMAR_HI_U32(VTD_PQH_REG_RW_MASK),
633 /* 0x0c8 PQT_REG */ DMAR_LO_U32(VTD_PQT_REG_RW_MASK), DMAR_HI_U32(VTD_PQT_REG_RW_MASK),
634 /* 0x0d0 PQA_REG */ DMAR_LO_U32(VTD_PQA_REG_RW_MASK), DMAR_HI_U32(VTD_PQA_REG_RW_MASK),
635 /* 0x0d8 Reserved */ 0,
636 /* 0x0dc PRS_REG */ VTD_PRS_REG_RW_MASK,
637 /* 0x0e0 PECTL_REG */ VTD_PECTL_REG_RW_MASK,
638 /* 0x0e4 PEDATA_REG */ VTD_PEDATA_REG_RW_MASK,
639 /* 0x0e8 PEADDR_REG */ VTD_PEADDR_REG_RW_MASK,
640 /* 0x0ec PEUADDR_REG */ VTD_PEUADDR_REG_RW_MASK,
641 /* 0x0f0 Reserved */ 0, 0,
642 /* 0x0f8 Reserved */ 0, 0,
643 /* 0x100 MTRRCAP_REG */ DMAR_LO_U32(VTD_MTRRCAP_REG_RW_MASK), DMAR_HI_U32(VTD_MTRRCAP_REG_RW_MASK),
644 /* 0x108 MTRRDEF_REG */ 0, 0, /* RO as we don't support MTS. */
645 /* 0x110 Reserved */ 0, 0,
646 /* 0x118 Reserved */ 0, 0,
647 /* 0x120 MTRR_FIX64_00000_REG */ 0, 0, /* RO as we don't support MTS. */
648 /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0,
649 /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0,
650 /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0,
651 /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0,
652 /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0,
653 /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0,
654 /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0,
655 /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0,
656 /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0,
657 /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0,
658 /* 0x178 Reserved */ 0, 0,
659 /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0, /* RO as we don't support MTS. */
660 /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0,
661 /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0,
662 /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0,
663 /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0,
664 /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0,
665 /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0,
666 /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0,
667 /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0,
668 /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0,
669 /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0,
670 /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0,
671 /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0,
672 /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0,
673 /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0,
674 /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0,
675 /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0,
676 /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0,
677 /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0,
678 /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0,
679};
680AssertCompile(sizeof(g_au32RwMasks0) == DMAR_MMIO_GROUP_0_SIZE);
681
682/**
683 * Read-only Status, Write-1-to-clear masks for DMAR registers (group 0).
684 */
685static uint32_t const g_au32Rw1cMasks0[] =
686{
687 /* Offset Register Low High */
688 /* 0x000 VER_REG */ 0,
689 /* 0x004 Reserved */ 0,
690 /* 0x008 CAP_REG */ 0, 0,
691 /* 0x010 ECAP_REG */ 0, 0,
692 /* 0x018 GCMD_REG */ 0,
693 /* 0x01c GSTS_REG */ 0,
694 /* 0x020 RTADDR_REG */ 0, 0,
695 /* 0x028 CCMD_REG */ 0, 0,
696 /* 0x030 Reserved */ 0,
697 /* 0x034 FSTS_REG */ VTD_FSTS_REG_RW1C_MASK,
698 /* 0x038 FECTL_REG */ 0,
699 /* 0x03c FEDATA_REG */ 0,
700 /* 0x040 FEADDR_REG */ 0,
701 /* 0x044 FEUADDR_REG */ 0,
702 /* 0x048 Reserved */ 0, 0,
703 /* 0x050 Reserved */ 0, 0,
704 /* 0x058 AFLOG_REG */ 0, 0,
705 /* 0x060 Reserved */ 0,
706 /* 0x064 PMEN_REG */ 0,
707 /* 0x068 PLMBASE_REG */ 0,
708 /* 0x06c PLMLIMIT_REG */ 0,
709 /* 0x070 PHMBASE_REG */ 0, 0,
710 /* 0x078 PHMLIMIT_REG */ 0, 0,
711 /* 0x080 IQH_REG */ 0, 0,
712 /* 0x088 IQT_REG */ 0, 0,
713 /* 0x090 IQA_REG */ 0, 0,
714 /* 0x098 Reserved */ 0,
715 /* 0x09c ICS_REG */ VTD_ICS_REG_RW1C_MASK,
716 /* 0x0a0 IECTL_REG */ 0,
717 /* 0x0a4 IEDATA_REG */ 0,
718 /* 0x0a8 IEADDR_REG */ 0,
719 /* 0x0ac IEUADDR_REG */ 0,
720 /* 0x0b0 IQERCD_REG */ 0, 0,
721 /* 0x0b8 IRTA_REG */ 0, 0,
722 /* 0x0c0 PQH_REG */ 0, 0,
723 /* 0x0c8 PQT_REG */ 0, 0,
724 /* 0x0d0 PQA_REG */ 0, 0,
725 /* 0x0d8 Reserved */ 0,
726 /* 0x0dc PRS_REG */ 0,
727 /* 0x0e0 PECTL_REG */ 0,
728 /* 0x0e4 PEDATA_REG */ 0,
729 /* 0x0e8 PEADDR_REG */ 0,
730 /* 0x0ec PEUADDR_REG */ 0,
731 /* 0x0f0 Reserved */ 0, 0,
732 /* 0x0f8 Reserved */ 0, 0,
733 /* 0x100 MTRRCAP_REG */ 0, 0,
734 /* 0x108 MTRRDEF_REG */ 0, 0,
735 /* 0x110 Reserved */ 0, 0,
736 /* 0x118 Reserved */ 0, 0,
737 /* 0x120 MTRR_FIX64_00000_REG */ 0, 0,
738 /* 0x128 MTRR_FIX16K_80000_REG */ 0, 0,
739 /* 0x130 MTRR_FIX16K_A0000_REG */ 0, 0,
740 /* 0x138 MTRR_FIX4K_C0000_REG */ 0, 0,
741 /* 0x140 MTRR_FIX4K_C8000_REG */ 0, 0,
742 /* 0x148 MTRR_FIX4K_D0000_REG */ 0, 0,
743 /* 0x150 MTRR_FIX4K_D8000_REG */ 0, 0,
744 /* 0x158 MTRR_FIX4K_E0000_REG */ 0, 0,
745 /* 0x160 MTRR_FIX4K_E8000_REG */ 0, 0,
746 /* 0x168 MTRR_FIX4K_F0000_REG */ 0, 0,
747 /* 0x170 MTRR_FIX4K_F8000_REG */ 0, 0,
748 /* 0x178 Reserved */ 0, 0,
749 /* 0x180 MTRR_PHYSBASE0_REG */ 0, 0,
750 /* 0x188 MTRR_PHYSMASK0_REG */ 0, 0,
751 /* 0x190 MTRR_PHYSBASE1_REG */ 0, 0,
752 /* 0x198 MTRR_PHYSMASK1_REG */ 0, 0,
753 /* 0x1a0 MTRR_PHYSBASE2_REG */ 0, 0,
754 /* 0x1a8 MTRR_PHYSMASK2_REG */ 0, 0,
755 /* 0x1b0 MTRR_PHYSBASE3_REG */ 0, 0,
756 /* 0x1b8 MTRR_PHYSMASK3_REG */ 0, 0,
757 /* 0x1c0 MTRR_PHYSBASE4_REG */ 0, 0,
758 /* 0x1c8 MTRR_PHYSMASK4_REG */ 0, 0,
759 /* 0x1d0 MTRR_PHYSBASE5_REG */ 0, 0,
760 /* 0x1d8 MTRR_PHYSMASK5_REG */ 0, 0,
761 /* 0x1e0 MTRR_PHYSBASE6_REG */ 0, 0,
762 /* 0x1e8 MTRR_PHYSMASK6_REG */ 0, 0,
763 /* 0x1f0 MTRR_PHYSBASE7_REG */ 0, 0,
764 /* 0x1f8 MTRR_PHYSMASK7_REG */ 0, 0,
765 /* 0x200 MTRR_PHYSBASE8_REG */ 0, 0,
766 /* 0x208 MTRR_PHYSMASK8_REG */ 0, 0,
767 /* 0x210 MTRR_PHYSBASE9_REG */ 0, 0,
768 /* 0x218 MTRR_PHYSMASK9_REG */ 0, 0,
769};
770AssertCompile(sizeof(g_au32Rw1cMasks0) == DMAR_MMIO_GROUP_0_SIZE);
771
772/**
773 * Read-write masks for DMAR registers (group 1).
774 */
775static uint32_t const g_au32RwMasks1[] =
776{
777 /* Offset Register Low High */
778 /* 0xe00 VCCAP_REG */ DMAR_LO_U32(VTD_VCCAP_REG_RW_MASK), DMAR_HI_U32(VTD_VCCAP_REG_RW_MASK),
779 /* 0xe08 VCMD_EO_REG */ DMAR_LO_U32(VTD_VCMD_EO_REG_RW_MASK), DMAR_HI_U32(VTD_VCMD_EO_REG_RW_MASK),
780 /* 0xe10 VCMD_REG */ 0, 0, /* RO: VCS not supported. */
781 /* 0xe18 VCMDRSVD_REG */ 0, 0,
782 /* 0xe20 VCRSP_REG */ 0, 0, /* RO: VCS not supported. */
783 /* 0xe28 VCRSPRSVD_REG */ 0, 0,
784 /* 0xe30 Reserved */ 0, 0,
785 /* 0xe38 Reserved */ 0, 0,
786 /* 0xe40 Reserved */ 0, 0,
787 /* 0xe48 Reserved */ 0, 0,
788 /* 0xe50 IVA_REG */ DMAR_LO_U32(VTD_IVA_REG_RW_MASK), DMAR_HI_U32(VTD_IVA_REG_RW_MASK),
789 /* 0xe58 IOTLB_REG */ DMAR_LO_U32(VTD_IOTLB_REG_RW_MASK), DMAR_HI_U32(VTD_IOTLB_REG_RW_MASK),
790 /* 0xe60 Reserved */ 0, 0,
791 /* 0xe68 Reserved */ 0, 0,
792 /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW_MASK),
793 /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW_MASK),
794};
795AssertCompile(sizeof(g_au32RwMasks1) == DMAR_MMIO_GROUP_1_SIZE);
796AssertCompile((DMAR_MMIO_OFF_FRCD_LO_REG - DMAR_MMIO_GROUP_1_OFF_FIRST) + DMAR_FRCD_REG_COUNT * 2 * sizeof(uint64_t) );
797
798/**
799 * Read-only Status, Write-1-to-clear masks for DMAR registers (group 1).
800 */
801static uint32_t const g_au32Rw1cMasks1[] =
802{
803 /* Offset Register Low High */
804 /* 0xe00 VCCAP_REG */ 0, 0,
805 /* 0xe08 VCMD_EO_REG */ 0, 0,
806 /* 0xe10 VCMD_REG */ 0, 0,
807 /* 0xe18 VCMDRSVD_REG */ 0, 0,
808 /* 0xe20 VCRSP_REG */ 0, 0,
809 /* 0xe28 VCRSPRSVD_REG */ 0, 0,
810 /* 0xe30 Reserved */ 0, 0,
811 /* 0xe38 Reserved */ 0, 0,
812 /* 0xe40 Reserved */ 0, 0,
813 /* 0xe48 Reserved */ 0, 0,
814 /* 0xe50 IVA_REG */ 0, 0,
815 /* 0xe58 IOTLB_REG */ 0, 0,
816 /* 0xe60 Reserved */ 0, 0,
817 /* 0xe68 Reserved */ 0, 0,
818 /* 0xe70 FRCD_REG_LO */ DMAR_LO_U32(VTD_FRCD_REG_LO_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_LO_RW1C_MASK),
819 /* 0xe78 FRCD_REG_HI */ DMAR_LO_U32(VTD_FRCD_REG_HI_RW1C_MASK), DMAR_HI_U32(VTD_FRCD_REG_HI_RW1C_MASK),
820};
821AssertCompile(sizeof(g_au32Rw1cMasks1) == DMAR_MMIO_GROUP_1_SIZE);
822
823/** Array of RW masks for each register group. */
824static uint8_t const *g_apbRwMasks[] = { (uint8_t *)&g_au32RwMasks0[0], (uint8_t *)&g_au32RwMasks1[0] };
825
826/** Array of RW1C masks for each register group. */
827static uint8_t const *g_apbRw1cMasks[] = { (uint8_t *)&g_au32Rw1cMasks0[0], (uint8_t *)&g_au32Rw1cMasks1[0] };
828
829/* Masks arrays must be identical in size (even bounds checking code assumes this). */
830AssertCompile(sizeof(g_apbRw1cMasks) == sizeof(g_apbRwMasks));
831
832/** Array of valid domain-ID bits. */
833static uint16_t const g_auNdMask[] = { 0xf, 0x3f, 0xff, 0x3ff, 0xfff, 0x3fff, 0xffff, 0 };
834AssertCompile(RT_ELEMENTS(g_auNdMask) >= DMAR_ND);
835
836
837#ifndef VBOX_DEVICE_STRUCT_TESTCASE
838/** @todo Add IOMMU struct size/alignment verification, see
839 * Devices/testcase/Makefile.kmk and
840 * Devices/testcase/tstDeviceStructSize[RC].cpp */
841
842/**
843 * Returns the supported adjusted guest-address width (SAGAW) given the maximum
844 * guest address width (MGAW).
845 *
846 * @returns The CAP_REG.SAGAW value.
847 * @param uMgaw The CAP_REG.MGAW value.
848 */
849static uint8_t vtdCapRegGetSagaw(uint8_t uMgaw)
850{
851 /*
852 * It doesn't make sense to me that a CPU (or IOMMU hardware) will ever support
853 * 5-level paging but not 4 or 3-level paging. So smaller page-table levels
854 * are always OR'ed in below.
855 *
856 * The bit values below (57, 48, 39 bits) represents the levels of page-table walks
857 * for 4KB base page size (5-level, 4-level and 3-level paging respectively).
858 *
859 * See Intel VT-d spec. 10.4.2 "Capability Register".
860 */
861 ++uMgaw;
862 uint8_t const fSagaw = uMgaw >= 57 ? RT_BIT(3) | RT_BIT(2) | RT_BIT(1)
863 : uMgaw >= 48 ? RT_BIT(2) | RT_BIT(1)
864 : uMgaw >= 39 ? RT_BIT(1)
865 : 0;
866 return fSagaw;
867}
868
869
870/**
871 * Returns the maximum supported paging level given the supported adjusted
872 * guest-address width (SAGAW) field.
873 *
874 * @returns The highest paging level supported, 0 if invalid.
875 * @param fSagaw The CAP_REG.SAGAW value.
876 */
877static uint8_t vtdCapRegGetMaxPagingLevel(uint8_t fSagaw)
878{
879 uint8_t const cMaxPagingLevel = fSagaw & RT_BIT(3) ? 5
880 : fSagaw & RT_BIT(2) ? 4
881 : fSagaw & RT_BIT(1) ? 3
882 : 0;
883 return cMaxPagingLevel;
884}
885
886
887/**
888 * Returns whether the interrupt remapping (IR) fault is qualified or not.
889 *
890 * @returns @c true if qualified, @c false otherwise.
891 * @param enmIrFault The interrupt remapping fault condition.
892 */
893static bool vtdIrFaultIsQualified(VTDIRFAULT enmIrFault)
894{
895 switch (enmIrFault)
896 {
897 case VTDIRFAULT_IRTE_NOT_PRESENT:
898 case VTDIRFAULT_IRTE_PRESENT_RSVD:
899 case VTDIRFAULT_IRTE_PRESENT_INVALID:
900 case VTDIRFAULT_PID_READ_FAILED:
901 case VTDIRFAULT_PID_RSVD:
902 return true;
903 default:
904 return false;
905 }
906}
907
908
909/**
910 * Returns table translation mode's descriptive name.
911 *
912 * @returns The descriptive name.
913 * @param uTtm The RTADDR_REG.TTM value.
914 */
915static const char* vtdRtaddrRegGetTtmDesc(uint8_t uTtm)
916{
917 Assert(!(uTtm & 3));
918 static const char* s_apszTtmNames[] =
919 {
920 "Legacy Mode",
921 "Scalable Mode",
922 "Reserved",
923 "Abort-DMA Mode"
924 };
925 return s_apszTtmNames[uTtm & (RT_ELEMENTS(s_apszTtmNames) - 1)];
926}
927
928
929/**
930 * Gets the index of the group the register belongs to given its MMIO offset.
931 *
932 * @returns The group index.
933 * @param offReg The MMIO offset of the register.
934 * @param cbReg The size of the access being made (for bounds checking on
935 * debug builds).
936 */
937DECLINLINE(uint8_t) dmarRegGetGroupIndex(uint16_t offReg, uint8_t cbReg)
938{
939 uint16_t const offLast = offReg + cbReg - 1;
940 AssertCompile(DMAR_MMIO_GROUP_0_OFF_FIRST == 0);
941 AssertMsg(DMAR_IS_MMIO_OFF_VALID(offLast), ("off=%#x cb=%u\n", offReg, cbReg));
942 return !(offLast < DMAR_MMIO_GROUP_0_OFF_END);
943}
944
945
946/**
947 * Gets the group the register belongs to given its MMIO offset.
948 *
949 * @returns Pointer to the first element of the register group.
950 * @param pThis The shared DMAR device state.
951 * @param offReg The MMIO offset of the register.
952 * @param cbReg The size of the access being made (for bounds checking on
953 * debug builds).
954 * @param pIdxGroup Where to store the index of the register group the register
955 * belongs to.
956 */
957DECLINLINE(uint8_t *) dmarRegGetGroup(PDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup)
958{
959 *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg);
960 uint8_t *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] };
961 return apbRegs[*pIdxGroup];
962}
963
964
965/**
966 * Const/read-only version of dmarRegGetGroup.
967 *
968 * @copydoc dmarRegGetGroup
969 */
970DECLINLINE(uint8_t const*) dmarRegGetGroupRo(PCDMAR pThis, uint16_t offReg, uint8_t cbReg, uint8_t *pIdxGroup)
971{
972 *pIdxGroup = dmarRegGetGroupIndex(offReg, cbReg);
973 uint8_t const *apbRegs[] = { &pThis->abRegs0[0], &pThis->abRegs1[0] };
974 return apbRegs[*pIdxGroup];
975}
976
977
978/**
979 * Writes a 32-bit register with the exactly the supplied value.
980 *
981 * @param pThis The shared DMAR device state.
982 * @param offReg The MMIO offset of the register.
983 * @param uReg The 32-bit value to write.
984 */
985static void dmarRegWriteRaw32(PDMAR pThis, uint16_t offReg, uint32_t uReg)
986{
987 uint8_t idxGroup;
988 uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint32_t), &idxGroup);
989 NOREF(idxGroup);
990 *(uint32_t *)(pabRegs + offReg) = uReg;
991}
992
993
994/**
995 * Writes a 64-bit register with the exactly the supplied value.
996 *
997 * @param pThis The shared DMAR device state.
998 * @param offReg The MMIO offset of the register.
999 * @param uReg The 64-bit value to write.
1000 */
1001static void dmarRegWriteRaw64(PDMAR pThis, uint16_t offReg, uint64_t uReg)
1002{
1003 uint8_t idxGroup;
1004 uint8_t *pabRegs = dmarRegGetGroup(pThis, offReg, sizeof(uint64_t), &idxGroup);
1005 NOREF(idxGroup);
1006 *(uint64_t *)(pabRegs + offReg) = uReg;
1007}
1008
1009
1010/**
1011 * Reads a 32-bit register with exactly the value it contains.
1012 *
1013 * @returns The raw register value.
1014 * @param pThis The shared DMAR device state.
1015 * @param offReg The MMIO offset of the register.
1016 */
1017static uint32_t dmarRegReadRaw32(PCDMAR pThis, uint16_t offReg)
1018{
1019 uint8_t idxGroup;
1020 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup);
1021 NOREF(idxGroup);
1022 return *(uint32_t *)(pabRegs + offReg);
1023}
1024
1025
1026/**
1027 * Reads a 64-bit register with exactly the value it contains.
1028 *
1029 * @returns The raw register value.
1030 * @param pThis The shared DMAR device state.
1031 * @param offReg The MMIO offset of the register.
1032 */
1033static uint64_t dmarRegReadRaw64(PCDMAR pThis, uint16_t offReg)
1034{
1035 uint8_t idxGroup;
1036 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup);
1037 NOREF(idxGroup);
1038 return *(uint64_t *)(pabRegs + offReg);
1039}
1040
1041
1042/**
1043 * Reads a 32-bit register with exactly the value it contains along with their
1044 * corresponding masks
1045 *
1046 * @param pThis The shared DMAR device state.
1047 * @param offReg The MMIO offset of the register.
1048 * @param puReg Where to store the raw 32-bit register value.
1049 * @param pfRwMask Where to store the RW mask corresponding to this register.
1050 * @param pfRw1cMask Where to store the RW1C mask corresponding to this register.
1051 */
1052static void dmarRegReadRaw32Ex(PCDMAR pThis, uint16_t offReg, uint32_t *puReg, uint32_t *pfRwMask, uint32_t *pfRw1cMask)
1053{
1054 uint8_t idxGroup;
1055 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint32_t), &idxGroup);
1056 Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks));
1057 uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup];
1058 uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup];
1059 *puReg = *(uint32_t *)(pabRegs + offReg);
1060 *pfRwMask = *(uint32_t *)(pabRwMasks + offReg);
1061 *pfRw1cMask = *(uint32_t *)(pabRw1cMasks + offReg);
1062}
1063
1064
1065/**
1066 * Reads a 64-bit register with exactly the value it contains along with their
1067 * corresponding masks.
1068 *
1069 * @param pThis The shared DMAR device state.
1070 * @param offReg The MMIO offset of the register.
1071 * @param puReg Where to store the raw 64-bit register value.
1072 * @param pfRwMask Where to store the RW mask corresponding to this register.
1073 * @param pfRw1cMask Where to store the RW1C mask corresponding to this register.
1074 */
1075static void dmarRegReadRaw64Ex(PCDMAR pThis, uint16_t offReg, uint64_t *puReg, uint64_t *pfRwMask, uint64_t *pfRw1cMask)
1076{
1077 uint8_t idxGroup;
1078 uint8_t const *pabRegs = dmarRegGetGroupRo(pThis, offReg, sizeof(uint64_t), &idxGroup);
1079 Assert(idxGroup < RT_ELEMENTS(g_apbRwMasks));
1080 uint8_t const *pabRwMasks = g_apbRwMasks[idxGroup];
1081 uint8_t const *pabRw1cMasks = g_apbRw1cMasks[idxGroup];
1082 *puReg = *(uint64_t *)(pabRegs + offReg);
1083 *pfRwMask = *(uint64_t *)(pabRwMasks + offReg);
1084 *pfRw1cMask = *(uint64_t *)(pabRw1cMasks + offReg);
1085}
1086
1087
1088/**
1089 * Writes a 32-bit register as it would be when written by software.
1090 * This will preserve read-only bits, mask off reserved bits and clear RW1C bits.
1091 *
1092 * @returns The value that's actually written to the register.
1093 * @param pThis The shared DMAR device state.
1094 * @param offReg The MMIO offset of the register.
1095 * @param uReg The 32-bit value to write.
1096 * @param puPrev Where to store the register value prior to writing.
1097 */
1098static uint32_t dmarRegWrite32(PDMAR pThis, uint16_t offReg, uint32_t uReg, uint32_t *puPrev)
1099{
1100 /* Read current value from the 32-bit register. */
1101 uint32_t uCurReg;
1102 uint32_t fRwMask;
1103 uint32_t fRw1cMask;
1104 dmarRegReadRaw32Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask);
1105 *puPrev = uCurReg;
1106
1107 uint32_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */
1108 uint32_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */
1109 uint32_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */
1110 uint32_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits;
1111
1112 /* Write new value to the 32-bit register. */
1113 dmarRegWriteRaw32(pThis, offReg, uNewReg);
1114 return uNewReg;
1115}
1116
1117
1118/**
1119 * Writes a 64-bit register as it would be when written by software.
1120 * This will preserve read-only bits, mask off reserved bits and clear RW1C bits.
1121 *
1122 * @returns The value that's actually written to the register.
1123 * @param pThis The shared DMAR device state.
1124 * @param offReg The MMIO offset of the register.
1125 * @param uReg The 64-bit value to write.
1126 * @param puPrev Where to store the register value prior to writing.
1127 */
1128static uint64_t dmarRegWrite64(PDMAR pThis, uint16_t offReg, uint64_t uReg, uint64_t *puPrev)
1129{
1130 /* Read current value from the 64-bit register. */
1131 uint64_t uCurReg;
1132 uint64_t fRwMask;
1133 uint64_t fRw1cMask;
1134 dmarRegReadRaw64Ex(pThis, offReg, &uCurReg, &fRwMask, &fRw1cMask);
1135 *puPrev = uCurReg;
1136
1137 uint64_t const fRoBits = uCurReg & ~fRwMask; /* Preserve current read-only and reserved bits. */
1138 uint64_t const fRwBits = uReg & fRwMask; /* Merge newly written read/write bits. */
1139 uint64_t const fRw1cBits = uReg & fRw1cMask; /* Clear 1s written to RW1C bits. */
1140 uint64_t const uNewReg = (fRoBits | fRwBits) & ~fRw1cBits;
1141
1142 /* Write new value to the 64-bit register. */
1143 dmarRegWriteRaw64(pThis, offReg, uNewReg);
1144 return uNewReg;
1145}
1146
1147
1148/**
1149 * Reads a 32-bit register as it would be when read by software.
1150 *
1151 * @returns The register value.
1152 * @param pThis The shared DMAR device state.
1153 * @param offReg The MMIO offset of the register.
1154 */
1155static uint32_t dmarRegRead32(PCDMAR pThis, uint16_t offReg)
1156{
1157 return dmarRegReadRaw32(pThis, offReg);
1158}
1159
1160
1161/**
1162 * Reads a 64-bit register as it would be when read by software.
1163 *
1164 * @returns The register value.
1165 * @param pThis The shared DMAR device state.
1166 * @param offReg The MMIO offset of the register.
1167 */
1168static uint64_t dmarRegRead64(PCDMAR pThis, uint16_t offReg)
1169{
1170 return dmarRegReadRaw64(pThis, offReg);
1171}
1172
1173
1174/**
1175 * Modifies a 32-bit register.
1176 *
1177 * @param pThis The shared DMAR device state.
1178 * @param offReg The MMIO offset of the register.
1179 * @param fAndMask The AND mask (applied first).
1180 * @param fOrMask The OR mask.
1181 * @remarks This does NOT apply RO or RW1C masks while modifying the
1182 * register.
1183 */
1184static void dmarRegChangeRaw32(PDMAR pThis, uint16_t offReg, uint32_t fAndMask, uint32_t fOrMask)
1185{
1186 uint32_t uReg = dmarRegReadRaw32(pThis, offReg);
1187 uReg = (uReg & fAndMask) | fOrMask;
1188 dmarRegWriteRaw32(pThis, offReg, uReg);
1189}
1190
1191
1192/**
1193 * Modifies a 64-bit register.
1194 *
1195 * @param pThis The shared DMAR device state.
1196 * @param offReg The MMIO offset of the register.
1197 * @param fAndMask The AND mask (applied first).
1198 * @param fOrMask The OR mask.
1199 * @remarks This does NOT apply RO or RW1C masks while modifying the
1200 * register.
1201 */
1202static void dmarRegChangeRaw64(PDMAR pThis, uint16_t offReg, uint64_t fAndMask, uint64_t fOrMask)
1203{
1204 uint64_t uReg = dmarRegReadRaw64(pThis, offReg);
1205 uReg = (uReg & fAndMask) | fOrMask;
1206 dmarRegWriteRaw64(pThis, offReg, uReg);
1207}
1208
1209
1210/**
1211 * Checks if the invalidation-queue is empty.
1212 *
1213 * Extended version which optionally returns the current queue head and tail
1214 * offsets.
1215 *
1216 * @returns @c true if empty, @c false otherwise.
1217 * @param pThis The shared DMAR device state.
1218 * @param poffQh Where to store the queue head offset. Optional, can be NULL.
1219 * @param poffQt Where to store the queue tail offset. Optional, can be NULL.
1220 */
1221static bool dmarInvQueueIsEmptyEx(PCDMAR pThis, uint32_t *poffQh, uint32_t *poffQt)
1222{
1223 /* Read only the low-32 bits of the queue head and queue tail as high bits are all RsvdZ.*/
1224 uint32_t const uIqtReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQT_REG);
1225 uint32_t const uIqhReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IQH_REG);
1226
1227 /* Don't bother masking QT, QH since other bits are RsvdZ. */
1228 Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK));
1229 Assert(!(uIqhReg & ~VTD_BF_IQH_REG_QH_MASK));
1230 if (poffQh)
1231 *poffQh = uIqhReg;
1232 if (poffQt)
1233 *poffQt = uIqtReg;
1234 return uIqtReg == uIqhReg;
1235}
1236
1237
1238/**
1239 * Checks if the invalidation-queue is empty.
1240 *
1241 * @returns @c true if empty, @c false otherwise.
1242 * @param pThis The shared DMAR device state.
1243 */
1244static bool dmarInvQueueIsEmpty(PCDMAR pThis)
1245{
1246 return dmarInvQueueIsEmptyEx(pThis, NULL /* poffQh */, NULL /* poffQt */);
1247}
1248
1249
1250/**
1251 * Checks if the invalidation-queue is capable of processing requests.
1252 *
1253 * @returns @c true if the invalidation-queue can process requests, @c false
1254 * otherwise.
1255 * @param pThis The shared DMAR device state.
1256 */
1257static bool dmarInvQueueCanProcessRequests(PCDMAR pThis)
1258{
1259 /* Check if queued-invalidation is enabled. */
1260 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
1261 if (uGstsReg & VTD_BF_GSTS_REG_QIES_MASK)
1262 {
1263 /* Check if there are no invalidation-queue or timeout errors. */
1264 uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
1265 if (!(uFstsReg & (VTD_BF_FSTS_REG_IQE_MASK | VTD_BF_FSTS_REG_ITE_MASK)))
1266 return true;
1267 }
1268 return false;
1269}
1270
1271
1272/**
1273 * Wakes up the invalidation-queue thread if there are requests to be processed.
1274 *
1275 * @param pDevIns The IOMMU device instance.
1276 */
1277static void dmarInvQueueThreadWakeUpIfNeeded(PPDMDEVINS pDevIns)
1278{
1279 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1280 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1281 Log4Func(("\n"));
1282
1283 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1284
1285 if ( dmarInvQueueCanProcessRequests(pThis)
1286 && !dmarInvQueueIsEmpty(pThis))
1287 {
1288 Log4Func(("Signaling the invalidation-queue thread\n"));
1289 PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue);
1290 }
1291}
1292
1293
1294/**
1295 * Raises an event on behalf of the DMAR.
1296 *
1297 * These are events that are generated by the DMAR itself (like faults and
1298 * invalidation completion notifications).
1299 *
1300 * @param pDevIns The IOMMU device instance.
1301 * @param enmEventType The DMAR event type.
1302 *
1303 * @remarks The DMAR lock must be held while calling this function.
1304 */
1305static void dmarEventRaiseInterrupt(PPDMDEVINS pDevIns, DMAREVENTTYPE enmEventType)
1306{
1307 uint16_t offCtlReg;
1308 uint32_t fIntrMaskedMask;
1309 uint32_t fIntrPendingMask;
1310 uint16_t offMsiAddrLoReg;
1311 uint16_t offMsiAddrHiReg;
1312 uint16_t offMsiDataReg;
1313 switch (enmEventType)
1314 {
1315 case DMAREVENTTYPE_INV_COMPLETE:
1316 {
1317 offCtlReg = VTD_MMIO_OFF_IECTL_REG;
1318 fIntrMaskedMask = VTD_BF_IECTL_REG_IM_MASK;
1319 fIntrPendingMask = VTD_BF_IECTL_REG_IP_MASK;
1320 offMsiAddrLoReg = VTD_MMIO_OFF_IEADDR_REG;
1321 offMsiAddrHiReg = VTD_MMIO_OFF_IEUADDR_REG;
1322 offMsiDataReg = VTD_MMIO_OFF_IEDATA_REG;
1323 break;
1324 }
1325
1326 case DMAREVENTTYPE_FAULT:
1327 {
1328 offCtlReg = VTD_MMIO_OFF_FECTL_REG;
1329 fIntrMaskedMask = VTD_BF_FECTL_REG_IM_MASK;
1330 fIntrPendingMask = VTD_BF_FECTL_REG_IP_MASK;
1331 offMsiAddrLoReg = VTD_MMIO_OFF_FEADDR_REG;
1332 offMsiAddrHiReg = VTD_MMIO_OFF_FEUADDR_REG;
1333 offMsiDataReg = VTD_MMIO_OFF_FEDATA_REG;
1334 break;
1335 }
1336
1337 default:
1338 {
1339 /* Shouldn't ever happen. */
1340 AssertMsgFailedReturnVoid(("DMAR event type %#x unknown!\n", enmEventType));
1341 }
1342 }
1343
1344 /* Check if software has masked the interrupt. */
1345 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1346 uint32_t uCtlReg = dmarRegReadRaw32(pThis, offCtlReg);
1347 if (!(uCtlReg & fIntrMaskedMask))
1348 {
1349 /*
1350 * Interrupt is unmasked, raise it.
1351 * Interrupts generated by the DMAR have trigger mode and level as 0.
1352 * See Intel spec. 5.1.6 "Remapping Hardware Event Interrupt Programming".
1353 */
1354 MSIMSG Msi;
1355 Msi.Addr.au32[0] = dmarRegReadRaw32(pThis, offMsiAddrLoReg);
1356 Msi.Addr.au32[1] = (pThis->fExtCapReg & VTD_BF_ECAP_REG_EIM_MASK) ? dmarRegReadRaw32(pThis, offMsiAddrHiReg) : 0;
1357 Msi.Data.u32 = dmarRegReadRaw32(pThis, offMsiDataReg);
1358 Assert(Msi.Data.n.u1Level == 0);
1359 Assert(Msi.Data.n.u1TriggerMode == 0);
1360
1361 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1362 pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi(pDevIns, &Msi, 0 /* uTagSrc */);
1363
1364 /* Clear interrupt pending bit. */
1365 uCtlReg &= ~fIntrPendingMask;
1366 dmarRegWriteRaw32(pThis, offCtlReg, uCtlReg);
1367 }
1368 else
1369 {
1370 /* Interrupt is masked, set the interrupt pending bit. */
1371 uCtlReg |= fIntrPendingMask;
1372 dmarRegWriteRaw32(pThis, offCtlReg, uCtlReg);
1373 }
1374}
1375
1376
1377/**
1378 * Raises an interrupt in response to a fault event.
1379 *
1380 * @param pDevIns The IOMMU device instance.
1381 *
1382 * @remarks This assumes the caller has already set the required status bits in the
1383 * FSTS_REG (namely one or more of PPF, PFO, IQE, ICE or ITE bits).
1384 */
1385static void dmarFaultEventRaiseInterrupt(PPDMDEVINS pDevIns)
1386{
1387 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1388 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1389 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1390
1391#ifdef RT_STRICT
1392 {
1393 uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
1394 uint32_t const fFaultMask = VTD_BF_FSTS_REG_PPF_MASK | VTD_BF_FSTS_REG_PFO_MASK
1395 /* | VTD_BF_FSTS_REG_APF_MASK | VTD_BF_FSTS_REG_AFO_MASK */ /* AFL not supported */
1396 /* | VTD_BF_FSTS_REG_ICE_MASK | VTD_BF_FSTS_REG_ITE_MASK */ /* Device-TLBs not supported */
1397 | VTD_BF_FSTS_REG_IQE_MASK;
1398 Assert(uFstsReg & fFaultMask);
1399 }
1400#endif
1401 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_FAULT);
1402}
1403
1404
1405#ifdef IN_RING3
1406/**
1407 * Raises an interrupt in response to an invalidation (complete) event.
1408 *
1409 * @param pDevIns The IOMMU device instance.
1410 */
1411static void dmarR3InvEventRaiseInterrupt(PPDMDEVINS pDevIns)
1412{
1413 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1414 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1415 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1416
1417 uint32_t const uIcsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_ICS_REG);
1418 if (!(uIcsReg & VTD_BF_ICS_REG_IWC_MASK))
1419 {
1420 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_ICS_REG, UINT32_MAX, VTD_BF_ICS_REG_IWC_MASK);
1421 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_INV_COMPLETE);
1422 }
1423}
1424#endif /* IN_RING3 */
1425
1426
1427/**
1428 * Checks if a primary fault can be recorded.
1429 *
1430 * @returns @c true if the fault can be recorded, @c false otherwise.
1431 * @param pDevIns The IOMMU device instance.
1432 * @param pThis The shared DMAR device state.
1433 *
1434 * @remarks Warning: This function has side-effects wrt the DMAR register state. Do
1435 * NOT call it unless there is a fault condition!
1436 */
1437static bool dmarPrimaryFaultCanRecord(PPDMDEVINS pDevIns, PDMAR pThis)
1438{
1439 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1440 DMAR_ASSERT_LOCK_IS_OWNER(pDevIns, pThisCC);
1441
1442 uint32_t uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
1443 if (uFstsReg & VTD_BF_FSTS_REG_PFO_MASK)
1444 return false;
1445
1446 /*
1447 * If we add more FRCD registers, we'll have to loop through them here.
1448 * Since we support only one FRCD_REG, we don't support "compression of multiple faults",
1449 * nor do we need to increment FRI.
1450 *
1451 * See Intel VT-d spec. 7.2.1 "Primary Fault Logging".
1452 */
1453 AssertCompile(DMAR_FRCD_REG_COUNT == 1);
1454 uint64_t const uFrcdRegHi = dmarRegReadRaw64(pThis, DMAR_MMIO_OFF_FRCD_HI_REG);
1455 if (uFrcdRegHi & VTD_BF_1_FRCD_REG_F_MASK)
1456 {
1457 uFstsReg |= VTD_BF_FSTS_REG_PFO_MASK;
1458 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, uFstsReg);
1459 return false;
1460 }
1461
1462 return true;
1463}
1464
1465
1466/**
1467 * Records a primary fault.
1468 *
1469 * @param pDevIns The IOMMU device instance.
1470 * @param uFrcdHi The FRCD_HI_REG value for this fault.
1471 * @param uFrcdLo The FRCD_LO_REG value for this fault.
1472 */
1473static void dmarPrimaryFaultRecord(PPDMDEVINS pDevIns, uint64_t uFrcdHi, uint64_t uFrcdLo)
1474{
1475 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1476 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1477
1478 DMAR_LOCK(pDevIns, pThisCC);
1479
1480 /* We don't support advance fault logging. */
1481 Assert(!(dmarRegRead32(pThis, VTD_MMIO_OFF_GSTS_REG) & VTD_BF_GSTS_REG_AFLS_MASK));
1482
1483 if (dmarPrimaryFaultCanRecord(pDevIns, pThis))
1484 {
1485 /* Update the fault recording registers with the fault information. */
1486 dmarRegWriteRaw64(pThis, DMAR_MMIO_OFF_FRCD_HI_REG, uFrcdHi);
1487 dmarRegWriteRaw64(pThis, DMAR_MMIO_OFF_FRCD_LO_REG, uFrcdLo);
1488
1489 /* Set the Pending Primary Fault (PPF) field in the status register. */
1490 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, UINT32_MAX, VTD_BF_FSTS_REG_PPF_MASK);
1491
1492 /* Raise interrupt if necessary. */
1493 dmarFaultEventRaiseInterrupt(pDevIns);
1494 }
1495
1496 DMAR_UNLOCK(pDevIns, pThisCC);
1497}
1498
1499
1500/**
1501 * Records an interrupt request fault.
1502 *
1503 * @param pDevIns The IOMMU device instance.
1504 * @param enmDiag The diagnostic reason.
1505 * @param enmIrFault The interrupt fault reason.
1506 * @param idDevice The device ID (bus, device, function).
1507 * @param idxIntr The interrupt index.
1508 */
1509static void dmarIrFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTDIRFAULT enmIrFault, uint16_t idDevice, uint16_t idxIntr)
1510{
1511 /* Update the diagnostic reason. */
1512 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1513 pThis->enmDiag = enmDiag;
1514
1515 uint64_t const uFrcdHi = RT_BF_MAKE(VTD_BF_1_FRCD_REG_SID, idDevice)
1516 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_FR, enmIrFault)
1517 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_F, 1);
1518 uint64_t const uFrcdLo = (uint64_t)idxIntr << 48;
1519 dmarPrimaryFaultRecord(pDevIns, uFrcdHi, uFrcdLo);
1520}
1521
1522
1523/**
1524 * Records a qualified interrupt request fault.
1525 *
1526 * Qualified faults are those that can be suppressed by software using the FPD bit
1527 * in the IRTE.
1528 *
1529 * @param pDevIns The IOMMU device instance.
1530 * @param enmDiag The diagnostic reason.
1531 * @param enmIrFault The interrupt fault reason.
1532 * @param idDevice The device ID (bus, device, function).
1533 * @param idxIntr The interrupt index.
1534 * @param pIrte The IRTE that caused this fault.
1535 */
1536static void dmarIrFaultRecordQualified(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTDIRFAULT enmIrFault, uint16_t idDevice,
1537 uint16_t idxIntr, PCVTD_IRTE_T pIrte)
1538{
1539 Assert(vtdIrFaultIsQualified(enmIrFault));
1540 Assert(pIrte);
1541 if (!(pIrte->au64[0] & VTD_BF_0_IRTE_FPD_MASK))
1542 return dmarIrFaultRecord(pDevIns, enmDiag, enmIrFault, idDevice, idxIntr);
1543
1544 /* Update the diagnostic reason (even if software wants to supress faults). */
1545 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1546 pThis->enmDiag = enmDiag;
1547}
1548
1549
1550/**
1551 * Records an address translation fault (extended version).
1552 *
1553 * @param pDevIns The IOMMU device instance.
1554 * @param enmDiag The diagnostic reason.
1555 * @param enmAtFault The address translation fault reason.
1556 * @param pMemReqIn The DMA memory request input.
1557 * @param pMemReqAux The DMA memory request auxiliary info.
1558 */
1559static void dmarAtFaultRecordEx(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTDATFAULT enmAtFault, PCDMARMEMREQIN pMemReqIn,
1560 PCDMARMEMREQAUX pMemReqAux)
1561{
1562 /* Update the diagnostic reason (even if software wants to supress faults). */
1563 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1564 pThis->enmDiag = enmDiag;
1565
1566 /*
1567 * Qualified faults are those that can be suppressed by software using the FPD bit
1568 * in the contex entry, scalable-mode context entry etc.
1569 */
1570 if (!pMemReqAux->fFpd)
1571 {
1572 uint16_t const idDevice = pMemReqIn->idDevice;
1573 uint8_t const fType1 = pMemReqIn->enmReqType & RT_BIT(1);
1574 uint8_t const fType2 = pMemReqIn->enmReqType & RT_BIT(0);
1575 uint8_t const fExec = pMemReqIn->AddrRange.fPerm & DMAR_PERM_EXE;
1576 uint8_t const fPriv = pMemReqIn->AddrRange.fPerm & DMAR_PERM_PRIV;
1577 bool const fHasPasid = PCIPASID_IS_VALID(pMemReqIn->Pasid);
1578 uint32_t const uPasid = PCIPASID_VAL(pMemReqIn->Pasid);
1579 PCIADDRTYPE const enmAt = pMemReqIn->enmAddrType;
1580
1581 uint64_t const uFrcdHi = RT_BF_MAKE(VTD_BF_1_FRCD_REG_SID, idDevice)
1582 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_T2, fType2)
1583 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PP, fHasPasid)
1584 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_EXE, fExec)
1585 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PRIV, fPriv)
1586 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_FR, enmAtFault)
1587 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_PV, uPasid)
1588 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_AT, enmAt)
1589 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_T1, fType1)
1590 | RT_BF_MAKE(VTD_BF_1_FRCD_REG_F, 1);
1591 uint64_t const uFrcdLo = pMemReqIn->AddrRange.uAddr & X86_PAGE_BASE_MASK;
1592 dmarPrimaryFaultRecord(pDevIns, uFrcdHi, uFrcdLo);
1593 }
1594}
1595
1596
1597/**
1598 * Records an address translation fault.
1599 *
1600 * @param pDevIns The IOMMU device instance.
1601 * @param enmDiag The diagnostic reason.
1602 * @param enmAtFault The address translation fault reason.
1603 * @param pMemReqRemap The DMA memory request remapping info.
1604 */
1605static void dmarAtFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTDATFAULT enmAtFault, PCDMARMEMREQREMAP pMemReqRemap)
1606{
1607 dmarAtFaultRecordEx(pDevIns, enmDiag, enmAtFault, &pMemReqRemap->In, &pMemReqRemap->Aux);
1608}
1609
1610
1611/**
1612 * Records an IQE fault.
1613 *
1614 * @param pDevIns The IOMMU device instance.
1615 * @param enmIqei The IQE information.
1616 * @param enmDiag The diagnostic reason.
1617 */
1618static void dmarIqeFaultRecord(PPDMDEVINS pDevIns, DMARDIAG enmDiag, VTDIQEI enmIqei)
1619{
1620 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1621 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
1622
1623 DMAR_LOCK(pDevIns, pThisCC);
1624
1625 /* Update the diagnostic reason. */
1626 pThis->enmDiag = enmDiag;
1627
1628 /* Set the error bit. */
1629 uint32_t const fIqe = RT_BF_MAKE(VTD_BF_FSTS_REG_IQE, 1);
1630 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, UINT32_MAX, fIqe);
1631
1632 /* Set the error information. */
1633 uint64_t const fIqei = RT_BF_MAKE(VTD_BF_IQERCD_REG_IQEI, enmIqei);
1634 dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG, UINT64_MAX, fIqei);
1635
1636 dmarFaultEventRaiseInterrupt(pDevIns);
1637
1638 DMAR_UNLOCK(pDevIns, pThisCC);
1639}
1640
1641
1642/**
1643 * Handles writes to GCMD_REG.
1644 *
1645 * @returns Strict VBox status code.
1646 * @param pDevIns The IOMMU device instance.
1647 * @param uGcmdReg The value written to GCMD_REG.
1648 */
1649static VBOXSTRICTRC dmarGcmdRegWrite(PPDMDEVINS pDevIns, uint32_t uGcmdReg)
1650{
1651 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1652 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
1653 uint32_t const fChanged = uGstsReg ^ uGcmdReg;
1654 uint64_t const fExtCapReg = pThis->fExtCapReg;
1655
1656 /* Queued-invalidation. */
1657 if ( (fExtCapReg & VTD_BF_ECAP_REG_QI_MASK)
1658 && (fChanged & VTD_BF_GCMD_REG_QIE_MASK))
1659 {
1660 if (uGcmdReg & VTD_BF_GCMD_REG_QIE_MASK)
1661 {
1662 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_QIES_MASK);
1663 dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
1664 }
1665 else
1666 {
1667 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_QIES_MASK, 0 /* fOrMask */);
1668 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IQH_REG, 0);
1669 }
1670 }
1671
1672 if (fExtCapReg & VTD_BF_ECAP_REG_IR_MASK)
1673 {
1674 /* Set Interrupt Remapping Table Pointer (SIRTP). */
1675 if (uGcmdReg & VTD_BF_GCMD_REG_SIRTP_MASK)
1676 {
1677 /** @todo Perform global invalidation of all interrupt-entry cache when ESIRTPS is
1678 * supported. */
1679 pThis->uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG);
1680 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_IRTPS_MASK);
1681 }
1682
1683 /* Interrupt remapping. */
1684 if (fChanged & VTD_BF_GCMD_REG_IRE_MASK)
1685 {
1686 if (uGcmdReg & VTD_BF_GCMD_REG_IRE_MASK)
1687 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_IRES_MASK);
1688 else
1689 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_IRES_MASK, 0 /* fOrMask */);
1690 }
1691
1692 /* Compatibility format interrupts. */
1693 if (fChanged & VTD_BF_GCMD_REG_CFI_MASK)
1694 {
1695 if (uGcmdReg & VTD_BF_GCMD_REG_CFI_MASK)
1696 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_CFIS_MASK);
1697 else
1698 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_CFIS_MASK, 0 /* fOrMask */);
1699 }
1700 }
1701
1702 /* Set Root Table Pointer (SRTP). */
1703 if (uGcmdReg & VTD_BF_GCMD_REG_SRTP_MASK)
1704 {
1705 /** @todo Perform global invalidation of all remapping translation caches when
1706 * ESRTPS is supported. */
1707 pThis->uRtaddrReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_RTADDR_REG);
1708 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_RTPS_MASK);
1709 }
1710
1711 /* Translation (DMA remapping). */
1712 if (fChanged & VTD_BF_GCMD_REG_TE_MASK)
1713 {
1714 if (uGcmdReg & VTD_BF_GCMD_REG_TE_MASK)
1715 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, UINT32_MAX, VTD_BF_GSTS_REG_TES_MASK);
1716 else
1717 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_GSTS_REG_TES_MASK, 0 /* fOrMask */);
1718 }
1719
1720 return VINF_SUCCESS;
1721}
1722
1723
1724/**
1725 * Handles writes to CCMD_REG.
1726 *
1727 * @returns Strict VBox status code.
1728 * @param pDevIns The IOMMU device instance.
1729 * @param offReg The MMIO register offset.
1730 * @param cbReg The size of the MMIO access (in bytes).
1731 * @param uCcmdReg The value written to CCMD_REG.
1732 */
1733static VBOXSTRICTRC dmarCcmdRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint8_t cbReg, uint64_t uCcmdReg)
1734{
1735 /* At present, we only care about responding to high 32-bits writes, low 32-bits are data. */
1736 if (offReg + cbReg > VTD_MMIO_OFF_CCMD_REG + 4)
1737 {
1738 /* Check if we need to invalidate the context-context. */
1739 bool const fIcc = RT_BF_GET(uCcmdReg, VTD_BF_CCMD_REG_ICC);
1740 if (fIcc)
1741 {
1742 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1743 uint8_t const uMajorVersion = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MAX);
1744 if (uMajorVersion < 6)
1745 {
1746 /* Register-based invalidation can only be used when queued-invalidations are not enabled. */
1747 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
1748 if (!(uGstsReg & VTD_BF_GSTS_REG_QIES_MASK))
1749 {
1750 /* Verify table translation mode is legacy. */
1751 uint8_t const fTtm = RT_BF_GET(pThis->uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
1752 if (fTtm == VTD_TTM_LEGACY_MODE)
1753 {
1754 /** @todo Invalidate. */
1755 return VINF_SUCCESS;
1756 }
1757 pThis->enmDiag = kDmarDiag_CcmdReg_Ttm_Invalid;
1758 }
1759 else
1760 pThis->enmDiag = kDmarDiag_CcmdReg_Qi_Enabled;
1761 }
1762 else
1763 pThis->enmDiag = kDmarDiag_CcmdReg_NotSupported;
1764 dmarRegChangeRaw64(pThis, VTD_MMIO_OFF_GSTS_REG, ~VTD_BF_CCMD_REG_CAIG_MASK, 0 /* fOrMask */);
1765 }
1766 }
1767 return VINF_SUCCESS;
1768}
1769
1770
1771/**
1772 * Handles writes to FECTL_REG.
1773 *
1774 * @returns Strict VBox status code.
1775 * @param pDevIns The IOMMU device instance.
1776 * @param uFectlReg The value written to FECTL_REG.
1777 */
1778static VBOXSTRICTRC dmarFectlRegWrite(PPDMDEVINS pDevIns, uint32_t uFectlReg)
1779{
1780 /*
1781 * If software unmasks the interrupt when the interrupt is pending, we must raise
1782 * the interrupt now (which will consequently clear the interrupt pending (IP) bit).
1783 */
1784 if ( (uFectlReg & VTD_BF_FECTL_REG_IP_MASK)
1785 && ~(uFectlReg & VTD_BF_FECTL_REG_IM_MASK))
1786 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_FAULT);
1787 return VINF_SUCCESS;
1788}
1789
1790
1791/**
1792 * Handles writes to FSTS_REG.
1793 *
1794 * @returns Strict VBox status code.
1795 * @param pDevIns The IOMMU device instance.
1796 * @param uFstsReg The value written to FSTS_REG.
1797 * @param uPrev The value in FSTS_REG prior to writing it.
1798 */
1799static VBOXSTRICTRC dmarFstsRegWrite(PPDMDEVINS pDevIns, uint32_t uFstsReg, uint32_t uPrev)
1800{
1801 /*
1802 * If software clears other status bits in FSTS_REG (pertaining to primary fault logging),
1803 * the interrupt pending (IP) bit must be cleared.
1804 *
1805 * See Intel VT-d spec. 10.4.10 "Fault Event Control Register".
1806 */
1807 uint32_t const fChanged = uPrev ^ uFstsReg;
1808 if (fChanged & ( VTD_BF_FSTS_REG_ICE_MASK | VTD_BF_FSTS_REG_ITE_MASK
1809 | VTD_BF_FSTS_REG_IQE_MASK | VTD_BF_FSTS_REG_PFO_MASK))
1810 {
1811 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1812 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, ~VTD_BF_FECTL_REG_IP_MASK, 0 /* fOrMask */);
1813 }
1814 return VINF_SUCCESS;
1815}
1816
1817
1818/**
1819 * Handles writes to IQT_REG.
1820 *
1821 * @returns Strict VBox status code.
1822 * @param pDevIns The IOMMU device instance.
1823 * @param offReg The MMIO register offset.
1824 * @param uIqtReg The value written to IQT_REG.
1825 */
1826static VBOXSTRICTRC dmarIqtRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqtReg)
1827{
1828 /* We only care about the low 32-bits, high 32-bits are reserved. */
1829 Assert(offReg == VTD_MMIO_OFF_IQT_REG);
1830 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1831
1832 /* Paranoia. */
1833 Assert(!(uIqtReg & ~VTD_BF_IQT_REG_QT_MASK));
1834
1835 uint32_t const offQt = uIqtReg;
1836 uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
1837 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
1838
1839 /* If the descriptor width is 256-bits, the queue tail offset must be aligned accordingly. */
1840 if ( fDw != VTD_IQA_REG_DW_256_BIT
1841 || !(offQt & RT_BIT(4)))
1842 dmarInvQueueThreadWakeUpIfNeeded(pDevIns);
1843 else
1844 {
1845 /* Hardware treats bit 4 as RsvdZ in this situation, so clear it. */
1846 dmarRegChangeRaw32(pThis, offReg, ~RT_BIT(4), 0 /* fOrMask */);
1847 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_NotAligned, VTDIQEI_QUEUE_TAIL_MISALIGNED);
1848 }
1849 return VINF_SUCCESS;
1850}
1851
1852
1853/**
1854 * Handles writes to IQA_REG.
1855 *
1856 * @returns Strict VBox status code.
1857 * @param pDevIns The IOMMU device instance.
1858 * @param offReg The MMIO register offset.
1859 * @param uIqaReg The value written to IQA_REG.
1860 */
1861static VBOXSTRICTRC dmarIqaRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint64_t uIqaReg)
1862{
1863 /* At present, we only care about the low 32-bits, high 32-bits are data. */
1864 Assert(offReg == VTD_MMIO_OFF_IQA_REG); NOREF(offReg);
1865
1866 /** @todo What happens if IQA_REG is written when dmarInvQueueCanProcessRequests
1867 * returns true? The Intel VT-d spec. doesn't state anywhere that it
1868 * cannot happen or that it's ignored when it does happen. */
1869
1870 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1871 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
1872 if (fDw == VTD_IQA_REG_DW_256_BIT)
1873 {
1874 bool const fSupports256BitDw = (pThis->fExtCapReg & (VTD_BF_ECAP_REG_SMTS_MASK | VTD_BF_ECAP_REG_ADMS_MASK));
1875 if (fSupports256BitDw)
1876 { /* likely */ }
1877 else
1878 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dw_256_Invalid, VTDIQEI_INVALID_DESCRIPTOR_WIDTH);
1879 }
1880 /* else: 128-bit descriptor width is validated lazily, see explanation in dmarR3InvQueueProcessRequests. */
1881
1882 return VINF_SUCCESS;
1883}
1884
1885
1886/**
1887 * Handles writes to ICS_REG.
1888 *
1889 * @returns Strict VBox status code.
1890 * @param pDevIns The IOMMU device instance.
1891 * @param uIcsReg The value written to ICS_REG.
1892 */
1893static VBOXSTRICTRC dmarIcsRegWrite(PPDMDEVINS pDevIns, uint32_t uIcsReg)
1894{
1895 /*
1896 * If the IP field is set when software services the interrupt condition,
1897 * (by clearing the IWC field), the IP field must be cleared.
1898 */
1899 if (!(uIcsReg & VTD_BF_ICS_REG_IWC_MASK))
1900 {
1901 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1902 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_IECTL_REG, ~VTD_BF_IECTL_REG_IP_MASK, 0 /* fOrMask */);
1903 }
1904 return VINF_SUCCESS;
1905}
1906
1907
1908/**
1909 * Handles writes to IECTL_REG.
1910 *
1911 * @returns Strict VBox status code.
1912 * @param pDevIns The IOMMU device instance.
1913 * @param uIectlReg The value written to IECTL_REG.
1914 */
1915static VBOXSTRICTRC dmarIectlRegWrite(PPDMDEVINS pDevIns, uint32_t uIectlReg)
1916{
1917 /*
1918 * If software unmasks the interrupt when the interrupt is pending, we must raise
1919 * the interrupt now (which will consequently clear the interrupt pending (IP) bit).
1920 */
1921 if ( (uIectlReg & VTD_BF_IECTL_REG_IP_MASK)
1922 && ~(uIectlReg & VTD_BF_IECTL_REG_IM_MASK))
1923 dmarEventRaiseInterrupt(pDevIns, DMAREVENTTYPE_INV_COMPLETE);
1924 return VINF_SUCCESS;
1925}
1926
1927
1928/**
1929 * Handles writes to FRCD_REG (High 64-bits).
1930 *
1931 * @returns Strict VBox status code.
1932 * @param pDevIns The IOMMU device instance.
1933 * @param offReg The MMIO register offset.
1934 * @param cbReg The size of the MMIO access (in bytes).
1935 * @param uFrcdHiReg The value written to FRCD_REG.
1936 * @param uPrev The value in FRCD_REG prior to writing it.
1937 */
1938static VBOXSTRICTRC dmarFrcdHiRegWrite(PPDMDEVINS pDevIns, uint16_t offReg, uint8_t cbReg, uint64_t uFrcdHiReg, uint64_t uPrev)
1939{
1940 /* We only care about responding to high 32-bits, low 32-bits are read-only. */
1941 if (offReg + cbReg > DMAR_MMIO_OFF_FRCD_HI_REG + 4)
1942 {
1943 /*
1944 * If software cleared the RW1C F (fault) bit in all FRCD_REGs, hardware clears the
1945 * Primary Pending Fault (PPF) and the interrupt pending (IP) bits. Our implementation
1946 * has only 1 FRCD register.
1947 *
1948 * See Intel VT-d spec. 10.4.10 "Fault Event Control Register".
1949 */
1950 AssertCompile(DMAR_FRCD_REG_COUNT == 1);
1951 uint64_t const fChanged = uPrev ^ uFrcdHiReg;
1952 if (fChanged & VTD_BF_1_FRCD_REG_F_MASK)
1953 {
1954 Assert(!(uFrcdHiReg & VTD_BF_1_FRCD_REG_F_MASK)); /* Software should only ever be able to clear this bit. */
1955 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
1956 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FSTS_REG, ~VTD_BF_FSTS_REG_PPF_MASK, 0 /* fOrMask */);
1957 dmarRegChangeRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, ~VTD_BF_FECTL_REG_IP_MASK, 0 /* fOrMask */);
1958 }
1959 }
1960 return VINF_SUCCESS;
1961}
1962
1963
1964/**
1965 * Performs a PCI target abort for a DMA remapping (DR) operation.
1966 *
1967 * @param pDevIns The IOMMU device instance.
1968 */
1969static void dmarDrTargetAbort(PPDMDEVINS pDevIns)
1970{
1971 /** @todo r=ramshankar: I don't know for sure if a PCI target abort is caused or not
1972 * as the Intel VT-d spec. is vague. Wording seems to suggest it does, but
1973 * who knows. */
1974 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
1975 uint16_t const u16Status = PDMPciDevGetStatus(pPciDev) | VBOX_PCI_STATUS_SIG_TARGET_ABORT;
1976 PDMPciDevSetStatus(pPciDev, u16Status);
1977}
1978
1979
1980/**
1981 * Checks whether the address width (AW) is supported by our hardware
1982 * implementation for legacy mode address translation.
1983 *
1984 * @returns @c true if it's supported, @c false otherwise.
1985 * @param pThis The shared DMAR device state.
1986 * @param pCtxEntry The context entry.
1987 * @param pcPagingLevel Where to store the paging level. Optional, can be NULL.
1988 */
1989static bool dmarDrLegacyModeIsAwValid(PCDMAR pThis, PCVTD_CONTEXT_ENTRY_T pCtxEntry, uint8_t *pcPagingLevel)
1990{
1991 uint8_t const fTt = RT_BF_GET(pCtxEntry->au64[0], VTD_BF_0_CONTEXT_ENTRY_TT);
1992 uint8_t const fAw = RT_BF_GET(pCtxEntry->au64[1], VTD_BF_1_CONTEXT_ENTRY_AW);
1993 uint8_t const fAwMask = RT_BIT(fAw);
1994 uint8_t const fSagaw = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SAGAW);
1995 Assert(!(fSagaw & ~(RT_BIT(1) | RT_BIT(2) | RT_BIT(3))));
1996
1997 uint8_t const cPagingLevel = fAw + 2;
1998 if (pcPagingLevel)
1999 *pcPagingLevel = cPagingLevel;
2000
2001 /* With pass-through, the address width must be the largest AGAW supported by hardware. */
2002 if (fTt == VTD_TT_UNTRANSLATED_PT)
2003 {
2004 Assert(pThis->cMaxPagingLevel >= 3 && pThis->cMaxPagingLevel <= 5); /* Paranoia. */
2005 return cPagingLevel == pThis->cMaxPagingLevel;
2006 }
2007
2008 /* The address width must be any of the ones supported by hardware. */
2009 if (fAw < 4)
2010 return (fSagaw & fAwMask) != 0;
2011
2012 return false;
2013}
2014
2015
2016/**
2017 * Reads a root entry from guest memory.
2018 *
2019 * @returns VBox status code.
2020 * @param pDevIns The IOMMU device instance.
2021 * @param uRtaddrReg The current RTADDR_REG value.
2022 * @param idxRootEntry The index of the root entry to read.
2023 * @param pRootEntry Where to store the read root entry.
2024 */
2025static int dmarDrReadRootEntry(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, uint8_t idxRootEntry, PVTD_ROOT_ENTRY_T pRootEntry)
2026{
2027 size_t const cbRootEntry = sizeof(*pRootEntry);
2028 RTGCPHYS const GCPhysRootEntry = (uRtaddrReg & VTD_BF_RTADDR_REG_RTA_MASK) + (idxRootEntry * cbRootEntry);
2029 return PDMDevHlpPhysReadMeta(pDevIns, GCPhysRootEntry, pRootEntry, cbRootEntry);
2030}
2031
2032
2033/**
2034 * Reads a context entry from guest memory.
2035 *
2036 * @returns VBox status code.
2037 * @param pDevIns The IOMMU device instance.
2038 * @param GCPhysCtxTable The physical address of the context table.
2039 * @param idxCtxEntry The index of the context entry to read.
2040 * @param pCtxEntry Where to store the read context entry.
2041 */
2042static int dmarDrReadCtxEntry(PPDMDEVINS pDevIns, RTGCPHYS GCPhysCtxTable, uint8_t idxCtxEntry, PVTD_CONTEXT_ENTRY_T pCtxEntry)
2043{
2044 /* We don't verify bits 63:HAW of GCPhysCtxTable is 0 since reading from such an address should fail anyway. */
2045 size_t const cbCtxEntry = sizeof(*pCtxEntry);
2046 RTGCPHYS const GCPhysCtxEntry = GCPhysCtxTable + (idxCtxEntry * cbCtxEntry);
2047 return PDMDevHlpPhysReadMeta(pDevIns, GCPhysCtxEntry, pCtxEntry, cbCtxEntry);
2048}
2049
2050
2051/**
2052 * Reads a second-level paging entry from guest memory.
2053 *
2054 * @returns VBox status code.
2055 * @param pDevIns The IOMMU device instance.
2056 * @param GCPhysSlptPtr The physical address of the SLPTPTR.
2057 * @param pSlpEntry Where to store the read SLPTPTR.
2058 */
2059static int dmarDrReadSlpPtr(PPDMDEVINS pDevIns, RTGCPHYS GCPhysSlptPtr, PVTD_SLP_ENTRY_T pSlpEntry)
2060{
2061 /* We don't verify bits 63:HAW of GCPhysSlptPtr is 0 since reading from such an address should fail anyway. */
2062 return PDMDevHlpPhysReadMeta(pDevIns, GCPhysSlptPtr, pSlpEntry, sizeof(*pSlpEntry));
2063}
2064
2065
2066/**
2067 * Validates and updates the output I/O page of a translation.
2068 *
2069 * @returns VBox status code.
2070 * @param pDevIns The IOMMU device instance.
2071 * @param GCPhysBase The output address of the translation.
2072 * @param cShift The page shift of the translated address.
2073 * @param fPerm The permissions granted for the translated region.
2074 * @param pMemReqIn The DMA memory request input.
2075 * @param pMemReqAux The DMA memory request auxiliary info.
2076 * @param pIoPageOut Where to store the output of the translation.
2077 */
2078static int dmarDrUpdateIoPageOut(PPDMDEVINS pDevIns, RTGCPHYS GCPhysBase, uint8_t cShift, uint8_t fPerm,
2079 PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux, PDMARIOPAGE pIoPageOut)
2080{
2081 Assert(!(GCPhysBase & X86_PAGE_4K_OFFSET_MASK));
2082
2083 /* Ensure the output address is not in the interrupt address range. */
2084 if (GCPhysBase - VBOX_MSI_ADDR_BASE >= VBOX_MSI_ADDR_SIZE)
2085 {
2086 pIoPageOut->GCPhysBase = GCPhysBase;
2087 pIoPageOut->cShift = cShift;
2088 pIoPageOut->fPerm = fPerm;
2089 return VINF_SUCCESS;
2090 }
2091
2092 if (pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE)
2093 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Lgn_4, VTDATFAULT_LGN_4, pMemReqIn, pMemReqAux);
2094 else
2095 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Sgn_8, VTDATFAULT_SGN_8, pMemReqIn, pMemReqAux);
2096 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2097}
2098
2099
2100/**
2101 * Performs second level translation.
2102 *
2103 * This is a DMA address lookup callback function which performs the translation
2104 * (and access control) as part of the lookup.
2105 *
2106 * @returns VBox status code.
2107 * @param pDevIns The IOMMU device instance.
2108 * @param pMemReqIn The DMA memory request input.
2109 * @param pMemReqAux The DMA memory request auxiliary info.
2110 * @param pIoPageOut Where to store the output of the translation.
2111 */
2112static DECLCALLBACK(int) dmarDrSecondLevelTranslate(PPDMDEVINS pDevIns, PCDMARMEMREQIN pMemReqIn, PCDMARMEMREQAUX pMemReqAux,
2113 PDMARIOPAGE pIoPageOut)
2114{
2115 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
2116
2117 /* Sanity. */
2118 Assert(pIoPageOut);
2119 Assert(pMemReqIn->AddrRange.fPerm & (DMAR_PERM_READ | DMAR_PERM_WRITE));
2120 Assert( pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE
2121 || pMemReqAux->fTtm == VTD_TTM_SCALABLE_MODE);
2122
2123 /* Mask of valid paging entry bits. */
2124 static uint64_t const s_auPtEntityRsvd[] = { VTD_SL_PTE_VALID_MASK,
2125 VTD_SL_PDE_VALID_MASK,
2126 VTD_SL_PDPE_VALID_MASK,
2127 VTD_SL_PML4E_VALID_MASK,
2128 VTD_SL_PML5E_VALID_MASK };
2129
2130 /* Paranoia. */
2131 Assert(pMemReqAux->cPagingLevel >= 3 && pMemReqAux->cPagingLevel <= 5);
2132 AssertCompile(RT_ELEMENTS(s_auPtEntityRsvd) == 5);
2133
2134 /* Second-level translations restricts input address to an implementation-specific MGAW. */
2135 uint64_t const uAddrIn = pMemReqIn->AddrRange.uAddr;
2136 if (!(uAddrIn & pThis->fMgawInvMask))
2137 { /* likely */ }
2138 else
2139 {
2140 if (pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE)
2141 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Lgn_1_1, VTDATFAULT_LGN_1_1, pMemReqIn, pMemReqAux);
2142 else
2143 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Sgn_5, VTDATFAULT_SGN_5, pMemReqIn, pMemReqAux);
2144 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2145 }
2146
2147 /*
2148 * Traverse the I/O page table starting with the SLPTPTR (second-level page table pointer).
2149 * Unlike AMD IOMMU paging, here there is no feature for "skipping" levels.
2150 */
2151 uint64_t uPtEntity = pMemReqAux->uSlptPtr;
2152 int8_t iLevel = pMemReqAux->cPagingLevel - 1;
2153 uint8_t cLevelShift = X86_PAGE_4K_SHIFT + (iLevel * 9);
2154 Assert(iLevel >= 2);
2155 for (;;)
2156 {
2157 /*
2158 * Check I/O permissions.
2159 * This must be done prior to check reserved bits for properly reporting errors SSL.2 and SSL.3.
2160 *
2161 * See Intel spec. 7.1.3 "Fault conditions and Remapping hardware behavior for various request".
2162 */
2163 uint8_t const fReqPerm = pMemReqIn->AddrRange.fPerm & pThis->fPermValidMask;
2164 uint8_t const fPtPerm = uPtEntity & pThis->fPermValidMask;
2165 Assert(!(fReqPerm & DMAR_PERM_EXE)); /* No Execute-requests support yet. */
2166 Assert(pThis->fExtCapReg & VTD_BF_ECAP_REG_SLADS_MASK); /* No Second-level access/dirty support. */
2167 if ((fPtPerm & fReqPerm) == fReqPerm)
2168 { /* likely */ }
2169 else
2170 {
2171 if (pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE)
2172 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Lsl_2, VTDATFAULT_LSL_2, pMemReqIn, pMemReqAux);
2173 else
2174 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Ssl_2, VTDATFAULT_SSL_2, pMemReqIn, pMemReqAux);
2175 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2176 }
2177
2178 /*
2179 * Validate reserved bits of the current paging entry.
2180 */
2181 if (!(uPtEntity & ~s_auPtEntityRsvd[iLevel]))
2182 { /* likely */ }
2183 else
2184 {
2185 if (pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE)
2186 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Lsl_2, VTDATFAULT_LSL_2, pMemReqIn, pMemReqAux);
2187 else
2188 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Ssl_3, VTDATFAULT_SSL_3, pMemReqIn, pMemReqAux);
2189 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2190 }
2191
2192 /*
2193 * Check if this is a 1GB page or a 2MB page.
2194 */
2195 AssertCompile(VTD_BF_SL_PDE_PS_MASK == VTD_BF_SL_PDPE_PS_MASK);
2196 uint8_t const fLargePage = RT_BF_GET(uPtEntity, VTD_BF_SL_PDE_PS);
2197 if (fLargePage && iLevel > 0)
2198 {
2199 Assert(iLevel == 1 || iLevel == 2); /* Is guaranteed by the reserved bits check above. */
2200 uint8_t const fSllpsMask = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SLLPS);
2201 if (fSllpsMask & RT_BIT(iLevel - 1))
2202 {
2203 /*
2204 * We don't support MTS (asserted below), hence IPAT and EMT fields of the paging entity are ignored.
2205 * All other reserved bits are identical to the regular page-size paging entity which we've already
2206 * checked above.
2207 */
2208 Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_MTS_MASK));
2209
2210 RTGCPHYS const GCPhysBase = uPtEntity & X86_GET_PAGE_BASE_MASK(cLevelShift);
2211 return dmarDrUpdateIoPageOut(pDevIns, GCPhysBase, cLevelShift, fPtPerm, pMemReqIn, pMemReqAux, pIoPageOut);
2212 }
2213
2214 if (pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE)
2215 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Lsl_2_LargePage, VTDATFAULT_LSL_2, pMemReqIn, pMemReqAux);
2216 else
2217 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Ssl_3_LargePage, VTDATFAULT_SSL_3, pMemReqIn, pMemReqAux);
2218 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2219 }
2220
2221 /*
2222 * If this is the final PTE, compute the translation address and we're done.
2223 */
2224 if (iLevel == 0)
2225 {
2226 RTGCPHYS const GCPhysBase = uPtEntity & X86_GET_PAGE_BASE_MASK(cLevelShift);
2227 return dmarDrUpdateIoPageOut(pDevIns, GCPhysBase, cLevelShift, fPtPerm, pMemReqIn, pMemReqAux, pIoPageOut);
2228 }
2229
2230 /*
2231 * Move to the next level.
2232 */
2233 --iLevel;
2234 cLevelShift = X86_PAGE_4K_SHIFT + (iLevel * 9);
2235
2236 /*
2237 * Read the paging entry for the next level.
2238 */
2239 {
2240 uint16_t const idxPte = (uAddrIn >> cLevelShift) & UINT64_C(0x1ff);
2241 uint64_t const offPte = idxPte << 3;
2242 RTGCPHYS const GCPhysPtEntity = uPtEntity | offPte;
2243 int const rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysPtEntity, &uPtEntity, sizeof(uPtEntity));
2244 if (RT_SUCCESS(rc))
2245 { /* likely */ }
2246 else
2247 {
2248 if (pMemReqAux->fTtm == VTD_TTM_LEGACY_MODE)
2249 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Lsl_1, VTDATFAULT_LSL_1, pMemReqIn, pMemReqAux);
2250 else
2251 dmarAtFaultRecordEx(pDevIns, kDmarDiag_Atf_Ssl_1, VTDATFAULT_SSL_1, pMemReqIn, pMemReqAux);
2252 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2253 }
2254 }
2255 }
2256}
2257
2258
2259/**
2260 * Checks whether two consecutive I/O page results of a DMA memory request
2261 * translates to a physically contiguous region.
2262 *
2263 * @returns @c true if the I/O pages are contiguous, @c false otherwise.
2264 * @param pIoPagePrev The previous I/O page.
2265 * @param pIoPage The current I/O page.
2266 */
2267static bool dmarIsIoPageAccessContig(PCDMARIOPAGE pIoPagePrev, PCDMARIOPAGE pIoPage)
2268{
2269 /* Paranoia: Permissions for pages of a DMA memory request must be identical. */
2270 Assert(pIoPagePrev->fPerm == pIoPage->fPerm);
2271
2272 size_t const cbPrev = RT_BIT_64(pIoPagePrev->cShift);
2273 RTGCPHYS const GCPhysPrev = pIoPagePrev->GCPhysBase;
2274 RTGCPHYS const GCPhys = pIoPage->GCPhysBase;
2275#ifdef RT_STRICT
2276 /* Paranoia: Ensure offset bits are 0. */
2277 {
2278 uint64_t const fOffMaskPrev = X86_GET_PAGE_OFFSET_MASK(pIoPagePrev->cShift);
2279 uint64_t const fOffMask = X86_GET_PAGE_OFFSET_MASK(pIoPage->cShift);
2280 Assert(!(GCPhysPrev & fOffMaskPrev));
2281 Assert(!(GCPhys & fOffMask));
2282 }
2283#endif
2284 return GCPhysPrev + cbPrev == GCPhys;
2285}
2286
2287
2288/**
2289 * Looks up the range of addresses for a DMA memory request remapping.
2290 *
2291 * @returns VBox status code.
2292 * @param pDevIns The IOMMU device instance.
2293 * @param pfnLookup The DMA address lookup function.
2294 * @param pMemReqRemap The DMA memory request remapping info.
2295 */
2296static int dmarDrMemRangeLookup(PPDMDEVINS pDevIns, PFNDMADDRLOOKUP pfnLookup, PDMARMEMREQREMAP pMemReqRemap)
2297{
2298 RTGCPHYS GCPhysAddr = NIL_RTGCPHYS;
2299 DMARMEMREQIN MemReqIn = pMemReqRemap->In;
2300 uint64_t const uAddrIn = MemReqIn.AddrRange.uAddr;
2301 size_t const cbAddrIn = MemReqIn.AddrRange.cb;
2302 uint64_t uAddrInBase = MemReqIn.AddrRange.uAddr & X86_PAGE_4K_BASE_MASK;
2303 uint64_t offAddrIn = MemReqIn.AddrRange.uAddr & X86_PAGE_4K_OFFSET_MASK;
2304 size_t cbRemaining = cbAddrIn;
2305
2306 int rc;
2307 DMARIOPAGE IoPagePrev;
2308 RT_ZERO(IoPagePrev);
2309 for (;;)
2310 {
2311 /* Update the input memory request with the next address in our range that needs translation. */
2312 MemReqIn.AddrRange.uAddr = uAddrInBase;
2313 MemReqIn.AddrRange.cb = cbRemaining; /* Not currently accessed by pfnLookup, but keep things consistent. */
2314
2315 DMARIOPAGE IoPage;
2316 rc = pfnLookup(pDevIns, &MemReqIn, &pMemReqRemap->Aux, &IoPage);
2317 if (RT_SUCCESS(rc))
2318 {
2319 Assert(IoPage.cShift >= X86_PAGE_4K_SHIFT && IoPage.cShift <= X86_PAGE_1G_SHIFT);
2320
2321 /* Store the translated address before continuing to access more pages. */
2322 if (cbRemaining == cbAddrIn)
2323 {
2324 uint64_t const fOffMask = X86_GET_PAGE_OFFSET_MASK(IoPage.cShift);
2325 uint64_t const offAddrOut = uAddrIn & fOffMask;
2326 Assert(!(IoPage.GCPhysBase & fOffMask));
2327 GCPhysAddr = IoPage.GCPhysBase | offAddrOut;
2328 }
2329 /* Check if addresses translated so far result in a physically contiguous region. */
2330 else if (!dmarIsIoPageAccessContig(&IoPagePrev, &IoPage))
2331 {
2332 rc = VERR_OUT_OF_RANGE;
2333 break;
2334 }
2335
2336 /* Store the I/O page lookup from the first/previous access. */
2337 IoPagePrev = IoPage;
2338
2339 /* Check if we need to access more pages. */
2340 size_t const cbPage = RT_BIT_64(IoPage.cShift);
2341 if (cbRemaining > cbPage - offAddrIn)
2342 {
2343 cbRemaining -= (cbPage - offAddrIn); /* Calculate how much more we need to access. */
2344 uAddrInBase += cbPage; /* Update address of the next access. */
2345 offAddrIn = 0; /* After first page, all pages are accessed from offset 0. */
2346 }
2347 else
2348 {
2349 /* Caller (PDM) doesn't expect more data accessed than what was requested. */
2350 cbRemaining = 0;
2351 break;
2352 }
2353 }
2354 else
2355 break;
2356 }
2357
2358 pMemReqRemap->Out.AddrRange.uAddr = GCPhysAddr;
2359 pMemReqRemap->Out.AddrRange.cb = cbAddrIn - cbRemaining;
2360 pMemReqRemap->Out.AddrRange.fPerm = IoPagePrev.fPerm;
2361 return rc;
2362}
2363
2364
2365/**
2366 * Handles legacy mode DMA address remapping.
2367 *
2368 * @returns VBox status code.
2369 * @param pDevIns The IOMMU device instance.
2370 * @param uRtaddrReg The current RTADDR_REG value.
2371 * @param pMemReqRemap The DMA memory request remapping info.
2372 */
2373static int dmarDrLegacyModeRemapAddr(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
2374{
2375 Assert(pMemReqRemap->Aux.fTtm == VTD_TTM_LEGACY_MODE); /* Paranoia. */
2376
2377 /* Read the root-entry from guest memory. */
2378 uint8_t const idxRootEntry = RT_HI_U8(pMemReqRemap->In.idDevice);
2379 VTD_ROOT_ENTRY_T RootEntry;
2380 int rc = dmarDrReadRootEntry(pDevIns, uRtaddrReg, idxRootEntry, &RootEntry);
2381 if (RT_SUCCESS(rc))
2382 {
2383 /* Check if the root entry is present (must be done before validating reserved bits). */
2384 uint64_t const uRootEntryQword0 = RootEntry.au64[0];
2385 uint64_t const uRootEntryQword1 = RootEntry.au64[1];
2386 bool const fRootEntryPresent = RT_BF_GET(uRootEntryQword0, VTD_BF_0_ROOT_ENTRY_P);
2387 if (fRootEntryPresent)
2388 {
2389 /* Validate reserved bits in the root entry. */
2390 if ( !(uRootEntryQword0 & ~VTD_ROOT_ENTRY_0_VALID_MASK)
2391 && !(uRootEntryQword1 & ~VTD_ROOT_ENTRY_1_VALID_MASK))
2392 {
2393 /* Read the context-entry from guest memory. */
2394 RTGCPHYS const GCPhysCtxTable = uRootEntryQword0 & VTD_BF_0_ROOT_ENTRY_CTP_MASK;
2395 uint8_t const idxCtxEntry = RT_LO_U8(pMemReqRemap->In.idDevice);
2396 VTD_CONTEXT_ENTRY_T CtxEntry;
2397 rc = dmarDrReadCtxEntry(pDevIns, GCPhysCtxTable, idxCtxEntry, &CtxEntry);
2398 if (RT_SUCCESS(rc))
2399 {
2400 uint64_t const uCtxEntryQword0 = CtxEntry.au64[0];
2401 uint64_t const uCtxEntryQword1 = CtxEntry.au64[1];
2402
2403 /* Note the FPD bit which software can use to supress translation faults from here on in. */
2404 pMemReqRemap->Aux.fFpd = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_FPD);
2405
2406 /* Check if the context-entry is present (must be done before validating reserved bits). */
2407 bool const fCtxEntryPresent = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_P);
2408 if (fCtxEntryPresent)
2409 {
2410 /* Validate reserved bits in the context-entry. */
2411 if ( !(uCtxEntryQword0 & ~VTD_CONTEXT_ENTRY_0_VALID_MASK)
2412 && !(uCtxEntryQword1 & ~VTD_CONTEXT_ENTRY_1_VALID_MASK))
2413 {
2414 /* Get the domain ID for this mapping. */
2415 pMemReqRemap->Out.idDomain = RT_BF_GET(uCtxEntryQword1, VTD_BF_1_CONTEXT_ENTRY_DID);
2416
2417 /* Validate the translation type (TT). */
2418 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PCDMAR);
2419 uint8_t const fTt = RT_BF_GET(uCtxEntryQword0, VTD_BF_0_CONTEXT_ENTRY_TT);
2420 switch (fTt)
2421 {
2422 case VTD_TT_UNTRANSLATED_SLP:
2423 {
2424 /*
2425 * Untranslated requests are translated using second-level paging structures referenced
2426 * through SLPTPTR. Translated requests and Translation Requests are blocked.
2427 */
2428 if (pMemReqRemap->In.enmAddrType == PCIADDRTYPE_UNTRANSLATED)
2429 {
2430 /* Validate the address width and get the paging level. */
2431 uint8_t cPagingLevel;
2432 if (dmarDrLegacyModeIsAwValid(pThis, &CtxEntry, &cPagingLevel))
2433 {
2434 /* Read the SLPTPTR from guest memory. */
2435 VTD_SLP_ENTRY_T SlptPtr;
2436 RTGCPHYS const GCPhysSlptPtr = uCtxEntryQword0 & VTD_BF_0_CONTEXT_ENTRY_SLPTPTR_MASK;
2437 rc = dmarDrReadSlpPtr(pDevIns, GCPhysSlptPtr, &SlptPtr);
2438 if (RT_SUCCESS(rc))
2439 {
2440 /* Finally... perform second-level translation. */
2441 pMemReqRemap->Aux.uSlptPtr = SlptPtr;
2442 pMemReqRemap->Aux.cPagingLevel = cPagingLevel;
2443 return dmarDrMemRangeLookup(pDevIns, dmarDrSecondLevelTranslate, pMemReqRemap);
2444 }
2445 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_4_3, VTDATFAULT_LCT_4_3, pMemReqRemap);
2446 }
2447 else
2448 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_4_1, VTDATFAULT_LCT_4_1, pMemReqRemap);
2449 }
2450 else
2451 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_5, VTDATFAULT_LCT_5, pMemReqRemap);
2452 break;
2453 }
2454
2455 case VTD_TT_UNTRANSLATED_PT:
2456 {
2457 /*
2458 * Untranslated requests are processed as pass-through (PT) if PT is supported.
2459 * Translated and translation requests are blocked. If PT isn't supported this TT value
2460 * is reserved which I assume raises a fault (hence fallthru below).
2461 */
2462 if (pThis->fExtCapReg & VTD_BF_ECAP_REG_PT_MASK)
2463 {
2464 if (pMemReqRemap->In.enmAddrType == PCIADDRTYPE_UNTRANSLATED)
2465 {
2466 if (dmarDrLegacyModeIsAwValid(pThis, &CtxEntry, NULL /* pcPagingLevel */))
2467 {
2468 PDMARMEMREQOUT pOut = &pMemReqRemap->Out;
2469 PCDMARMEMREQIN pIn = &pMemReqRemap->In;
2470 pOut->AddrRange.uAddr = pIn->AddrRange.uAddr & X86_PAGE_4K_BASE_MASK;
2471 pOut->AddrRange.cb = pIn->AddrRange.cb;
2472 pOut->AddrRange.fPerm = DMAR_PERM_ALL;
2473 return VINF_SUCCESS;
2474 }
2475 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lgn_1_3, VTDATFAULT_LGN_1_3, pMemReqRemap);
2476 }
2477 else
2478 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_5, VTDATFAULT_LCT_5, pMemReqRemap);
2479 break;
2480 }
2481 RT_FALL_THRU();
2482 }
2483
2484 case VTD_TT_UNTRANSLATED_DEV_TLB:
2485 {
2486 /*
2487 * Untranslated, translated and translation requests are supported but requires
2488 * device-TLB support. We don't support device-TLBs, so it's treated as reserved.
2489 */
2490 Assert(!(pThis->fExtCapReg & VTD_BF_ECAP_REG_DT_MASK));
2491 RT_FALL_THRU();
2492 }
2493
2494 default:
2495 {
2496 /* Any other TT value is reserved. */
2497 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_4_2, VTDATFAULT_LCT_4_2, pMemReqRemap);
2498 break;
2499 }
2500 }
2501 }
2502 else
2503 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_3, VTDATFAULT_LCT_3, pMemReqRemap);
2504 }
2505 else
2506 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_2, VTDATFAULT_LCT_2, pMemReqRemap);
2507 }
2508 else
2509 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lct_1, VTDATFAULT_LCT_1, pMemReqRemap);
2510 }
2511 else
2512 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lrt_3, VTDATFAULT_LRT_3, pMemReqRemap);
2513 }
2514 else
2515 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lrt_2, VTDATFAULT_LRT_2, pMemReqRemap);
2516 }
2517 else
2518 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Lrt_1, VTDATFAULT_LRT_1, pMemReqRemap);
2519 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2520}
2521
2522
2523/**
2524 * Handles remapping of DMA address requests in scalable mode.
2525 *
2526 * @returns VBox status code.
2527 * @param pDevIns The IOMMU device instance.
2528 * @param uRtaddrReg The current RTADDR_REG value.
2529 * @param pMemReqRemap The DMA memory request remapping info.
2530 */
2531static int dmarDrScalableModeRemapAddr(PPDMDEVINS pDevIns, uint64_t uRtaddrReg, PDMARMEMREQREMAP pMemReqRemap)
2532{
2533 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2534 if (pThis->fExtCapReg & VTD_BF_ECAP_REG_SMTS_MASK)
2535 {
2536 RT_NOREF1(uRtaddrReg);
2537 return VERR_NOT_IMPLEMENTED;
2538 }
2539
2540 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Rta_1_3, VTDATFAULT_RTA_1_3, pMemReqRemap);
2541 return VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2542}
2543
2544
2545/**
2546 * Memory access bulk (one or more 4K pages) request from a device.
2547 *
2548 * @returns VBox status code.
2549 * @param pDevIns The IOMMU device instance.
2550 * @param idDevice The device ID (bus, device, function).
2551 * @param cIovas The number of addresses being accessed.
2552 * @param pauIovas The I/O virtual addresses for each page being accessed.
2553 * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
2554 * @param paGCPhysSpa Where to store the translated physical addresses.
2555 *
2556 * @thread Any.
2557 */
2558static DECLCALLBACK(int) iommuIntelMemBulkAccess(PPDMDEVINS pDevIns, uint16_t idDevice, size_t cIovas, uint64_t const *pauIovas,
2559 uint32_t fFlags, PRTGCPHYS paGCPhysSpa)
2560{
2561 RT_NOREF6(pDevIns, idDevice, cIovas, pauIovas, fFlags, paGCPhysSpa);
2562 return VERR_NOT_IMPLEMENTED;
2563}
2564
2565
2566/**
2567 * Memory access transaction from a device.
2568 *
2569 * @returns VBox status code.
2570 * @param pDevIns The IOMMU device instance.
2571 * @param idDevice The device ID (bus, device, function).
2572 * @param uIova The I/O virtual address being accessed.
2573 * @param cbIova The size of the access.
2574 * @param fFlags The access flags, see PDMIOMMU_MEM_F_XXX.
2575 * @param pGCPhysSpa Where to store the translated system physical address.
2576 * @param pcbContiguous Where to store the number of contiguous bytes translated
2577 * and permission-checked.
2578 *
2579 * @thread Any.
2580 */
2581static DECLCALLBACK(int) iommuIntelMemAccess(PPDMDEVINS pDevIns, uint16_t idDevice, uint64_t uIova, size_t cbIova,
2582 uint32_t fFlags, PRTGCPHYS pGCPhysSpa, size_t *pcbContiguous)
2583{
2584 /* Validate. */
2585 AssertPtr(pDevIns);
2586 AssertPtr(pGCPhysSpa);
2587 AssertPtr(pcbContiguous);
2588 Assert(cbIova > 0); /** @todo Are we going to support ZLR (zero-length reads to write-only pages)? */
2589 Assert(!(fFlags & ~PDMIOMMU_MEM_F_VALID_MASK));
2590
2591 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2592 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
2593
2594 DMAR_LOCK(pDevIns, pThisCC);
2595 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
2596 uint64_t const uRtaddrReg = pThis->uRtaddrReg;
2597 DMAR_UNLOCK(pDevIns, pThisCC);
2598
2599 if (uGstsReg & VTD_BF_GSTS_REG_TES_MASK)
2600 {
2601 VTDREQTYPE enmReqType;
2602 uint8_t fReqPerm;
2603 if (fFlags & PDMIOMMU_MEM_F_READ)
2604 {
2605 enmReqType = VTDREQTYPE_READ;
2606 fReqPerm = DMAR_PERM_READ;
2607 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemRead));
2608 }
2609 else
2610 {
2611 enmReqType = VTDREQTYPE_WRITE;
2612 fReqPerm = DMAR_PERM_WRITE;
2613 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMemWrite));
2614 }
2615
2616 uint8_t const fTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
2617 DMARMEMREQREMAP MemReqRemap;
2618 RT_ZERO(MemReqRemap);
2619 MemReqRemap.In.AddrRange.uAddr = uIova;
2620 MemReqRemap.In.AddrRange.cb = cbIova;
2621 MemReqRemap.In.AddrRange.fPerm = fReqPerm;
2622 MemReqRemap.In.idDevice = idDevice;
2623 MemReqRemap.In.Pasid = NIL_PCIPASID;
2624 MemReqRemap.In.enmAddrType = PCIADDRTYPE_UNTRANSLATED;
2625 MemReqRemap.In.enmReqType = enmReqType;
2626 MemReqRemap.Aux.fTtm = fTtm;
2627 MemReqRemap.Out.AddrRange.uAddr = NIL_RTGCPHYS;
2628
2629 int rc;
2630 switch (fTtm)
2631 {
2632 case VTD_TTM_LEGACY_MODE:
2633 {
2634 rc = dmarDrLegacyModeRemapAddr(pDevIns, uRtaddrReg, &MemReqRemap);
2635 break;
2636 }
2637
2638 case VTD_TTM_SCALABLE_MODE:
2639 {
2640 rc = dmarDrScalableModeRemapAddr(pDevIns, uRtaddrReg, &MemReqRemap);
2641 break;
2642 }
2643
2644 case VTD_TTM_ABORT_DMA_MODE:
2645 {
2646 rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2647 if (pThis->fExtCapReg & VTD_BF_ECAP_REG_ADMS_MASK)
2648 dmarDrTargetAbort(pDevIns);
2649 else
2650 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Rta_1_1, VTDATFAULT_RTA_1_1, &MemReqRemap);
2651 break;
2652 }
2653
2654 default:
2655 {
2656 rc = VERR_IOMMU_ADDR_TRANSLATION_FAILED;
2657 dmarAtFaultRecord(pDevIns, kDmarDiag_Atf_Rta_1_2, VTDATFAULT_RTA_1_2, &MemReqRemap);
2658 break;
2659 }
2660 }
2661
2662 *pGCPhysSpa = MemReqRemap.Out.AddrRange.uAddr;
2663 *pcbContiguous = MemReqRemap.Out.AddrRange.cb;
2664 return rc;
2665 }
2666
2667 *pGCPhysSpa = uIova;
2668 *pcbContiguous = cbIova;
2669 return VINF_SUCCESS;
2670}
2671
2672
2673/**
2674 * Reads an IRTE from guest memory.
2675 *
2676 * @returns VBox status code.
2677 * @param pDevIns The IOMMU device instance.
2678 * @param uIrtaReg The IRTA_REG.
2679 * @param idxIntr The interrupt index.
2680 * @param pIrte Where to store the read IRTE.
2681 */
2682static int dmarIrReadIrte(PPDMDEVINS pDevIns, uint64_t uIrtaReg, uint16_t idxIntr, PVTD_IRTE_T pIrte)
2683{
2684 Assert(idxIntr < VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg));
2685
2686 size_t const cbIrte = sizeof(*pIrte);
2687 RTGCPHYS const GCPhysIrte = (uIrtaReg & VTD_BF_IRTA_REG_IRTA_MASK) + (idxIntr * cbIrte);
2688 return PDMDevHlpPhysReadMeta(pDevIns, GCPhysIrte, pIrte, cbIrte);
2689}
2690
2691
2692/**
2693 * Remaps the source MSI to the destination MSI given the IRTE.
2694 *
2695 * @param fExtIntrMode Whether extended interrupt mode is enabled (i.e
2696 * IRTA_REG.EIME).
2697 * @param pIrte The IRTE used for the remapping.
2698 * @param pMsiIn The source MSI (currently unused).
2699 * @param pMsiOut Where to store the remapped MSI.
2700 */
2701static void dmarIrRemapFromIrte(bool fExtIntrMode, PCVTD_IRTE_T pIrte, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
2702{
2703 NOREF(pMsiIn);
2704 uint64_t const uIrteQword0 = pIrte->au64[0];
2705
2706 /*
2707 * Let's start with a clean slate and preserve unspecified bits if the need arises.
2708 * For instance, address bits 1:0 is supposed to be "ignored" by remapping hardware,
2709 * but it's not clear if hardware zeroes out these bits in the remapped MSI or if
2710 * it copies it from the source MSI.
2711 */
2712 RT_ZERO(*pMsiOut);
2713 pMsiOut->Addr.n.u1DestMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DM);
2714 pMsiOut->Addr.n.u1RedirHint = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_RH);
2715 pMsiOut->Addr.n.u12Addr = VBOX_MSI_ADDR_BASE >> VBOX_MSI_ADDR_SHIFT;
2716 if (fExtIntrMode)
2717 {
2718 /*
2719 * Apparently the DMAR stuffs the high 24-bits of the destination ID into the
2720 * high 24-bits of the upper 32-bits of the message address, see @bugref{9967#c22}.
2721 */
2722 uint32_t const idDest = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DST);
2723 pMsiOut->Addr.n.u8DestId = idDest;
2724 pMsiOut->Addr.n.u32Rsvd0 = idDest & UINT32_C(0xffffff00);
2725 }
2726 else
2727 pMsiOut->Addr.n.u8DestId = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DST_XAPIC);
2728
2729 pMsiOut->Data.n.u8Vector = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_V);
2730 pMsiOut->Data.n.u3DeliveryMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_DLM);
2731 pMsiOut->Data.n.u1Level = 1;
2732 pMsiOut->Data.n.u1TriggerMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_TM);
2733}
2734
2735
2736/**
2737 * Handles remapping of interrupts in remappable interrupt format.
2738 *
2739 * @returns VBox status code.
2740 * @param pDevIns The IOMMU device instance.
2741 * @param uIrtaReg The IRTA_REG.
2742 * @param idDevice The device ID (bus, device, function).
2743 * @param pMsiIn The source MSI.
2744 * @param pMsiOut Where to store the remapped MSI.
2745 */
2746static int dmarIrRemapIntr(PPDMDEVINS pDevIns, uint64_t uIrtaReg, uint16_t idDevice, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
2747{
2748 Assert(pMsiIn->Addr.dmar_remap.fIntrFormat == VTD_INTR_FORMAT_REMAPPABLE);
2749
2750 /* Validate reserved bits in the interrupt request. */
2751 AssertCompile(VTD_REMAPPABLE_MSI_ADDR_VALID_MASK == UINT32_MAX);
2752 if (!(pMsiIn->Data.u32 & ~VTD_REMAPPABLE_MSI_DATA_VALID_MASK))
2753 {
2754 /* Compute the index into the interrupt remap table. */
2755 uint16_t const uHandleHi = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_HANDLE_HI);
2756 uint16_t const uHandleLo = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_HANDLE_LO);
2757 uint16_t const uHandle = uHandleLo | (uHandleHi << 15);
2758 bool const fSubHandleValid = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_SHV);
2759 uint16_t const idxIntr = fSubHandleValid
2760 ? uHandle + RT_BF_GET(pMsiIn->Data.u32, VTD_BF_REMAPPABLE_MSI_DATA_SUBHANDLE)
2761 : uHandle;
2762
2763 /* Validate the index. */
2764 uint32_t const cEntries = VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg);
2765 if (idxIntr < cEntries)
2766 {
2767 /** @todo Implement and read IRTE from interrupt-entry cache here. */
2768
2769 /* Read the interrupt remap table entry (IRTE) at the index. */
2770 VTD_IRTE_T Irte;
2771 int rc = dmarIrReadIrte(pDevIns, uIrtaReg, idxIntr, &Irte);
2772 if (RT_SUCCESS(rc))
2773 {
2774 /* Check if the IRTE is present (this must be done -before- checking reserved bits). */
2775 uint64_t const uIrteQword0 = Irte.au64[0];
2776 uint64_t const uIrteQword1 = Irte.au64[1];
2777 bool const fPresent = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_P);
2778 if (fPresent)
2779 {
2780 /* Validate reserved bits in the IRTE. */
2781 bool const fExtIntrMode = RT_BF_GET(uIrtaReg, VTD_BF_IRTA_REG_EIME);
2782 uint64_t const fQw0ValidMask = fExtIntrMode ? VTD_IRTE_0_X2APIC_VALID_MASK : VTD_IRTE_0_XAPIC_VALID_MASK;
2783 if ( !(uIrteQword0 & ~fQw0ValidMask)
2784 && !(uIrteQword1 & ~VTD_IRTE_1_VALID_MASK))
2785 {
2786 /* Validate requester id (the device ID) as configured in the IRTE. */
2787 bool fSrcValid;
2788 DMARDIAG enmIrDiag;
2789 uint8_t const fSvt = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SVT);
2790 switch (fSvt)
2791 {
2792 case VTD_IRTE_SVT_NONE:
2793 {
2794 fSrcValid = true;
2795 enmIrDiag = kDmarDiag_None;
2796 break;
2797 }
2798
2799 case VTD_IRTE_SVT_VALIDATE_MASK:
2800 {
2801 static uint16_t const s_afValidMasks[] = { 0xffff, 0xfffb, 0xfff9, 0xfff8 };
2802 uint8_t const idxMask = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SQ) & 3;
2803 uint16_t const fValidMask = s_afValidMasks[idxMask];
2804 uint16_t const idSource = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SID);
2805 fSrcValid = (idDevice & fValidMask) == (idSource & fValidMask);
2806 enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Masked;
2807 break;
2808 }
2809
2810 case VTD_IRTE_SVT_VALIDATE_BUS_RANGE:
2811 {
2812 uint16_t const idSource = RT_BF_GET(uIrteQword1, VTD_BF_1_IRTE_SID);
2813 uint8_t const uBusFirst = RT_HI_U8(idSource);
2814 uint8_t const uBusLast = RT_LO_U8(idSource);
2815 uint8_t const idDeviceBus = idDevice >> VBOX_PCI_BUS_SHIFT;
2816 fSrcValid = (idDeviceBus >= uBusFirst && idDeviceBus <= uBusLast);
2817 enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Bus;
2818 break;
2819 }
2820
2821 default:
2822 {
2823 fSrcValid = false;
2824 enmIrDiag = kDmarDiag_Ir_Rfi_Irte_Svt_Bus;
2825 break;
2826 }
2827 }
2828
2829 if (fSrcValid)
2830 {
2831 uint8_t const fPostedMode = RT_BF_GET(uIrteQword0, VTD_BF_0_IRTE_IM);
2832 if (!fPostedMode)
2833 {
2834 dmarIrRemapFromIrte(fExtIntrMode, &Irte, pMsiIn, pMsiOut);
2835 return VINF_SUCCESS;
2836 }
2837 dmarIrFaultRecordQualified(pDevIns, kDmarDiag_Ir_Rfi_Irte_Mode_Invalid,
2838 VTDIRFAULT_IRTE_PRESENT_RSVD, idDevice, idxIntr, &Irte);
2839 }
2840 else
2841 dmarIrFaultRecordQualified(pDevIns, enmIrDiag, VTDIRFAULT_IRTE_PRESENT_RSVD, idDevice, idxIntr,
2842 &Irte);
2843 }
2844 else
2845 dmarIrFaultRecordQualified(pDevIns, kDmarDiag_Ir_Rfi_Irte_Rsvd, VTDIRFAULT_IRTE_PRESENT_RSVD,
2846 idDevice, idxIntr, &Irte);
2847 }
2848 else
2849 dmarIrFaultRecordQualified(pDevIns, kDmarDiag_Ir_Rfi_Irte_Not_Present, VTDIRFAULT_IRTE_NOT_PRESENT,
2850 idDevice, idxIntr, &Irte);
2851 }
2852 else
2853 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Irte_Read_Failed, VTDIRFAULT_IRTE_READ_FAILED, idDevice, idxIntr);
2854 }
2855 else
2856 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Intr_Index_Invalid, VTDIRFAULT_INTR_INDEX_INVALID, idDevice, idxIntr);
2857 }
2858 else
2859 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Rfi_Rsvd, VTDIRFAULT_REMAPPABLE_INTR_RSVD, idDevice, 0 /* idxIntr */);
2860 return VERR_IOMMU_INTR_REMAP_DENIED;
2861}
2862
2863
2864/**
2865 * Interrupt remap request from a device.
2866 *
2867 * @returns VBox status code.
2868 * @param pDevIns The IOMMU device instance.
2869 * @param idDevice The device ID (bus, device, function).
2870 * @param pMsiIn The source MSI.
2871 * @param pMsiOut Where to store the remapped MSI.
2872 */
2873static DECLCALLBACK(int) iommuIntelMsiRemap(PPDMDEVINS pDevIns, uint16_t idDevice, PCMSIMSG pMsiIn, PMSIMSG pMsiOut)
2874{
2875 /* Validate. */
2876 Assert(pDevIns);
2877 Assert(pMsiIn);
2878 Assert(pMsiOut);
2879 RT_NOREF1(idDevice);
2880
2881 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2882 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
2883
2884 /* Lock and read all registers required for interrupt remapping up-front. */
2885 DMAR_LOCK(pDevIns, pThisCC);
2886 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
2887 uint64_t const uIrtaReg = pThis->uIrtaReg;
2888 DMAR_UNLOCK(pDevIns, pThisCC);
2889
2890 /* Check if interrupt remapping is enabled. */
2891 if (uGstsReg & VTD_BF_GSTS_REG_IRES_MASK)
2892 {
2893 bool const fIsRemappable = RT_BF_GET(pMsiIn->Addr.au32[0], VTD_BF_REMAPPABLE_MSI_ADDR_INTR_FMT);
2894 if (!fIsRemappable)
2895 {
2896 /* Handle compatibility format interrupts. */
2897 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemapCfi));
2898
2899 /* If EIME is enabled or CFIs are disabled, block the interrupt. */
2900 if ( (uIrtaReg & VTD_BF_IRTA_REG_EIME_MASK)
2901 || !(uGstsReg & VTD_BF_GSTS_REG_CFIS_MASK))
2902 {
2903 dmarIrFaultRecord(pDevIns, kDmarDiag_Ir_Cfi_Blocked, VTDIRFAULT_CFI_BLOCKED, idDevice, 0 /* idxIntr */);
2904 return VERR_IOMMU_INTR_REMAP_DENIED;
2905 }
2906
2907 /* Interrupt isn't subject to remapping, pass-through the interrupt. */
2908 *pMsiOut = *pMsiIn;
2909 return VINF_SUCCESS;
2910 }
2911
2912 /* Handle remappable format interrupts. */
2913 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMsiRemapRfi));
2914 return dmarIrRemapIntr(pDevIns, uIrtaReg, idDevice, pMsiIn, pMsiOut);
2915 }
2916
2917 /* Interrupt-remapping isn't enabled, all interrupts are pass-through. */
2918 *pMsiOut = *pMsiIn;
2919 return VINF_SUCCESS;
2920}
2921
2922
2923/**
2924 * @callback_method_impl{FNIOMMMIONEWWRITE}
2925 */
2926static DECLCALLBACK(VBOXSTRICTRC) dmarMmioWrite(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void const *pv, unsigned cb)
2927{
2928 RT_NOREF1(pvUser);
2929 DMAR_ASSERT_MMIO_ACCESS_RET(off, cb);
2930
2931 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
2932 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioWrite));
2933
2934 uint16_t const offReg = off;
2935 uint16_t const offLast = offReg + cb - 1;
2936 if (DMAR_IS_MMIO_OFF_VALID(offLast))
2937 {
2938 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
2939 DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_WRITE);
2940
2941 uint64_t uPrev = 0;
2942 uint64_t const uRegWritten = cb == 8 ? dmarRegWrite64(pThis, offReg, *(uint64_t *)pv, &uPrev)
2943 : dmarRegWrite32(pThis, offReg, *(uint32_t *)pv, (uint32_t *)&uPrev);
2944 VBOXSTRICTRC rcStrict = VINF_SUCCESS;
2945 switch (off)
2946 {
2947 case VTD_MMIO_OFF_GCMD_REG: /* 32-bit */
2948 {
2949 rcStrict = dmarGcmdRegWrite(pDevIns, uRegWritten);
2950 break;
2951 }
2952
2953 case VTD_MMIO_OFF_CCMD_REG: /* 64-bit */
2954 case VTD_MMIO_OFF_CCMD_REG + 4:
2955 {
2956 rcStrict = dmarCcmdRegWrite(pDevIns, offReg, cb, uRegWritten);
2957 break;
2958 }
2959
2960 case VTD_MMIO_OFF_FSTS_REG: /* 32-bit */
2961 {
2962 rcStrict = dmarFstsRegWrite(pDevIns, uRegWritten, uPrev);
2963 break;
2964 }
2965
2966 case VTD_MMIO_OFF_FECTL_REG: /* 32-bit */
2967 {
2968 rcStrict = dmarFectlRegWrite(pDevIns, uRegWritten);
2969 break;
2970 }
2971
2972 case VTD_MMIO_OFF_IQT_REG: /* 64-bit */
2973 /* VTD_MMIO_OFF_IQT_REG + 4: */ /* High 32-bits reserved. */
2974 {
2975 rcStrict = dmarIqtRegWrite(pDevIns, offReg, uRegWritten);
2976 break;
2977 }
2978
2979 case VTD_MMIO_OFF_IQA_REG: /* 64-bit */
2980 /* VTD_MMIO_OFF_IQA_REG + 4: */ /* High 32-bits data. */
2981 {
2982 rcStrict = dmarIqaRegWrite(pDevIns, offReg, uRegWritten);
2983 break;
2984 }
2985
2986 case VTD_MMIO_OFF_ICS_REG: /* 32-bit */
2987 {
2988 rcStrict = dmarIcsRegWrite(pDevIns, uRegWritten);
2989 break;
2990 }
2991
2992 case VTD_MMIO_OFF_IECTL_REG: /* 32-bit */
2993 {
2994 rcStrict = dmarIectlRegWrite(pDevIns, uRegWritten);
2995 break;
2996 }
2997
2998 case DMAR_MMIO_OFF_FRCD_HI_REG: /* 64-bit */
2999 case DMAR_MMIO_OFF_FRCD_HI_REG + 4:
3000 {
3001 rcStrict = dmarFrcdHiRegWrite(pDevIns, offReg, cb, uRegWritten, uPrev);
3002 break;
3003 }
3004 }
3005
3006 DMAR_UNLOCK(pDevIns, pThisCC);
3007 LogFlowFunc(("offReg=%#x uRegWritten=%#RX64 rc=%Rrc\n", offReg, uRegWritten, VBOXSTRICTRC_VAL(rcStrict)));
3008 return rcStrict;
3009 }
3010
3011 return VINF_IOM_MMIO_UNUSED_FF;
3012}
3013
3014
3015/**
3016 * @callback_method_impl{FNIOMMMIONEWREAD}
3017 */
3018static DECLCALLBACK(VBOXSTRICTRC) dmarMmioRead(PPDMDEVINS pDevIns, void *pvUser, RTGCPHYS off, void *pv, unsigned cb)
3019{
3020 RT_NOREF1(pvUser);
3021 DMAR_ASSERT_MMIO_ACCESS_RET(off, cb);
3022
3023 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3024 STAM_COUNTER_INC(&pThis->CTX_SUFF_Z(StatMmioRead));
3025
3026 uint16_t const offReg = off;
3027 uint16_t const offLast = offReg + cb - 1;
3028 if (DMAR_IS_MMIO_OFF_VALID(offLast))
3029 {
3030 PCDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARCC);
3031 DMAR_LOCK_RET(pDevIns, pThisCC, VINF_IOM_R3_MMIO_READ);
3032
3033 if (cb == 8)
3034 {
3035 *(uint64_t *)pv = dmarRegRead64(pThis, offReg);
3036 LogFlowFunc(("offReg=%#x pv=%#RX64\n", offReg, *(uint64_t *)pv));
3037 }
3038 else
3039 {
3040 *(uint32_t *)pv = dmarRegRead32(pThis, offReg);
3041 LogFlowFunc(("offReg=%#x pv=%#RX32\n", offReg, *(uint32_t *)pv));
3042 }
3043
3044 DMAR_UNLOCK(pDevIns, pThisCC);
3045 return VINF_SUCCESS;
3046 }
3047
3048 return VINF_IOM_MMIO_UNUSED_FF;
3049}
3050
3051
3052#ifdef IN_RING3
3053/**
3054 * Process requests in the invalidation queue.
3055 *
3056 * @param pDevIns The IOMMU device instance.
3057 * @param pvRequests The requests to process.
3058 * @param cbRequests The size of all requests (in bytes).
3059 * @param fDw The descriptor width (VTD_IQA_REG_DW_128_BIT or
3060 * VTD_IQA_REG_DW_256_BIT).
3061 * @param fTtm The table translation mode. Must not be VTD_TTM_RSVD.
3062 */
3063static void dmarR3InvQueueProcessRequests(PPDMDEVINS pDevIns, void const *pvRequests, uint32_t cbRequests, uint8_t fDw,
3064 uint8_t fTtm)
3065{
3066#define DMAR_IQE_FAULT_RECORD_RET(a_enmDiag, a_enmIqei) \
3067 do \
3068 { \
3069 dmarIqeFaultRecord(pDevIns, (a_enmDiag), (a_enmIqei)); \
3070 return; \
3071 } while (0)
3072
3073 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3074 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3075
3076 DMAR_ASSERT_LOCK_IS_NOT_OWNER(pDevIns, pThisR3);
3077 Assert(fTtm != VTD_TTM_RSVD); /* Should've beeen handled by caller. */
3078
3079 /*
3080 * The below check is redundant since we check both TTM and DW for each
3081 * descriptor type we process. However, the error reported by hardware
3082 * may differ hence this is kept commented out but not removed from the code
3083 * if we need to change this in the future.
3084 *
3085 * In our implementation, we would report the descriptor type as invalid,
3086 * while on real hardware it may report descriptor width as invalid.
3087 * The Intel VT-d spec. is not clear which error takes preceedence.
3088 */
3089#if 0
3090 /*
3091 * Verify that 128-bit descriptors are not used when operating in scalable mode.
3092 * We don't check this while software writes IQA_REG but defer it until now because
3093 * RTADDR_REG can be updated lazily (via GCMD_REG.SRTP). The 256-bit descriptor check
3094 * -IS- performed when software writes IQA_REG since it only requires checking against
3095 * immutable hardware features.
3096 */
3097 if ( fTtm != VTD_TTM_SCALABLE_MODE
3098 || fDw != VTD_IQA_REG_DW_128_BIT)
3099 { /* likely */ }
3100 else
3101 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_IqaReg_Dw_128_Invalid, VTDIQEI_INVALID_DESCRIPTOR_WIDTH);
3102#endif
3103
3104 /*
3105 * Process requests in FIFO order.
3106 */
3107 uint8_t const cbDsc = fDw == VTD_IQA_REG_DW_256_BIT ? 32 : 16;
3108 for (uint32_t offDsc = 0; offDsc < cbRequests; offDsc += cbDsc)
3109 {
3110 uint64_t const *puDscQwords = (uint64_t const *)((uintptr_t)pvRequests + offDsc);
3111 uint64_t const uQword0 = puDscQwords[0];
3112 uint64_t const uQword1 = puDscQwords[1];
3113 uint8_t const fDscType = VTD_GENERIC_INV_DSC_GET_TYPE(uQword0);
3114 switch (fDscType)
3115 {
3116 case VTD_INV_WAIT_DSC_TYPE:
3117 {
3118 /* Validate descriptor type. */
3119 if ( fTtm == VTD_TTM_LEGACY_MODE
3120 || fDw == VTD_IQA_REG_DW_256_BIT)
3121 { /* likely */ }
3122 else
3123 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_Invalid, VTDIQEI_INVALID_DESCRIPTOR_TYPE);
3124
3125 /* Validate reserved bits. */
3126 uint64_t const fValidMask0 = !(pThis->fExtCapReg & VTD_BF_ECAP_REG_PDS_MASK)
3127 ? VTD_INV_WAIT_DSC_0_VALID_MASK & ~VTD_BF_0_INV_WAIT_DSC_PD_MASK
3128 : VTD_INV_WAIT_DSC_0_VALID_MASK;
3129 if ( !(uQword0 & ~fValidMask0)
3130 && !(uQword1 & ~VTD_INV_WAIT_DSC_1_VALID_MASK))
3131 { /* likely */ }
3132 else
3133 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_0_1_Rsvd, VTDIQEI_RSVD_FIELD_VIOLATION);
3134
3135 if (fDw == VTD_IQA_REG_DW_256_BIT)
3136 {
3137 if ( !puDscQwords[2]
3138 && !puDscQwords[3])
3139 { /* likely */ }
3140 else
3141 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Inv_Wait_Dsc_2_3_Rsvd, VTDIQEI_RSVD_FIELD_VIOLATION);
3142 }
3143
3144 /* Perform status write (this must be done prior to generating the completion interrupt). */
3145 bool const fSw = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_SW);
3146 if (fSw)
3147 {
3148 uint32_t const uStatus = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_STDATA);
3149 RTGCPHYS const GCPhysStatus = uQword1 & VTD_BF_1_INV_WAIT_DSC_STADDR_MASK;
3150 int const rc = PDMDevHlpPhysWrite(pDevIns, GCPhysStatus, (void const*)&uStatus, sizeof(uStatus));
3151 AssertRC(rc);
3152 }
3153
3154 /* Generate invalidation event interrupt. */
3155 bool const fIf = RT_BF_GET(uQword0, VTD_BF_0_INV_WAIT_DSC_IF);
3156 if (fIf)
3157 {
3158 DMAR_LOCK(pDevIns, pThisR3);
3159 dmarR3InvEventRaiseInterrupt(pDevIns);
3160 DMAR_UNLOCK(pDevIns, pThisR3);
3161 }
3162
3163 STAM_COUNTER_INC(&pThis->StatInvWaitDsc);
3164 break;
3165 }
3166
3167 case VTD_CC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatCcInvDsc); break;
3168 case VTD_IOTLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatIotlbInvDsc); break;
3169 case VTD_DEV_TLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatDevtlbInvDsc); break;
3170 case VTD_IEC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatIecInvDsc); break;
3171 case VTD_P_IOTLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidIotlbInvDsc); break;
3172 case VTD_PC_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidCacheInvDsc); break;
3173 case VTD_P_DEV_TLB_INV_DSC_TYPE: STAM_COUNTER_INC(&pThis->StatPasidDevtlbInvDsc); break;
3174 default:
3175 {
3176 /* Stop processing further requests. */
3177 LogFunc(("Invalid descriptor type: %#x\n", fDscType));
3178 DMAR_IQE_FAULT_RECORD_RET(kDmarDiag_Iqei_Dsc_Type_Invalid, VTDIQEI_INVALID_DESCRIPTOR_TYPE);
3179 }
3180 }
3181 }
3182#undef DMAR_IQE_FAULT_RECORD_RET
3183}
3184
3185
3186/**
3187 * The invalidation-queue thread.
3188 *
3189 * @returns VBox status code.
3190 * @param pDevIns The IOMMU device instance.
3191 * @param pThread The command thread.
3192 */
3193static DECLCALLBACK(int) dmarR3InvQueueThread(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
3194{
3195 NOREF(pThread);
3196 LogFlowFunc(("\n"));
3197
3198 if (pThread->enmState == PDMTHREADSTATE_INITIALIZING)
3199 return VINF_SUCCESS;
3200
3201 /*
3202 * Pre-allocate the maximum size of the invalidation queue allowed by the spec.
3203 * This prevents trashing the heap as well as deal with out-of-memory situations
3204 * up-front while starting the VM. It also simplifies the code from having to
3205 * dynamically grow/shrink the allocation based on how software sizes the queue.
3206 * Guests normally don't alter the queue size all the time, but that's not an
3207 * assumption we can make.
3208 */
3209 uint8_t const cMaxPages = 1 << VTD_BF_IQA_REG_QS_MASK;
3210 size_t const cbMaxQs = cMaxPages << X86_PAGE_SHIFT;
3211 void *pvRequests = RTMemAllocZ(cbMaxQs);
3212 AssertPtrReturn(pvRequests, VERR_NO_MEMORY);
3213
3214 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3215 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3216
3217 while (pThread->enmState == PDMTHREADSTATE_RUNNING)
3218 {
3219 /*
3220 * Sleep until we are woken up.
3221 */
3222 {
3223 int const rc = PDMDevHlpSUPSemEventWaitNoResume(pDevIns, pThis->hEvtInvQueue, RT_INDEFINITE_WAIT);
3224 AssertLogRelMsgReturn(RT_SUCCESS(rc) || rc == VERR_INTERRUPTED, ("%Rrc\n", rc), rc);
3225 if (RT_UNLIKELY(pThread->enmState != PDMTHREADSTATE_RUNNING))
3226 break;
3227 }
3228
3229 DMAR_LOCK(pDevIns, pThisR3);
3230 if (dmarInvQueueCanProcessRequests(pThis))
3231 {
3232 uint32_t offQueueHead;
3233 uint32_t offQueueTail;
3234 bool const fIsEmpty = dmarInvQueueIsEmptyEx(pThis, &offQueueHead, &offQueueTail);
3235 if (!fIsEmpty)
3236 {
3237 /*
3238 * Get the current queue size, descriptor width, queue base address and the
3239 * table translation mode while the lock is still held.
3240 */
3241 uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
3242 uint8_t const cQueuePages = 1 << (uIqaReg & VTD_BF_IQA_REG_QS_MASK);
3243 uint32_t const cbQueue = cQueuePages << X86_PAGE_SHIFT;
3244 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
3245 uint8_t const fTtm = RT_BF_GET(pThis->uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
3246 RTGCPHYS const GCPhysRequests = (uIqaReg & VTD_BF_IQA_REG_IQA_MASK) + offQueueHead;
3247
3248 /* Paranoia. */
3249 Assert(cbQueue <= cbMaxQs);
3250 Assert(!(offQueueTail & ~VTD_BF_IQT_REG_QT_MASK));
3251 Assert(!(offQueueHead & ~VTD_BF_IQH_REG_QH_MASK));
3252 Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueTail & RT_BIT(4)));
3253 Assert(fDw != VTD_IQA_REG_DW_256_BIT || !(offQueueHead & RT_BIT(4)));
3254 Assert(offQueueHead < cbQueue);
3255
3256 /*
3257 * A table translation mode of "reserved" isn't valid for any descriptor type.
3258 * However, RTADDR_REG can be modified in parallel to invalidation-queue processing,
3259 * but if ESRTPS is support, we will perform a global invalidation when software
3260 * changes RTADDR_REG, or it's the responsibility of software to do it explicitly.
3261 * So caching TTM while reading all descriptors should not be a problem.
3262 *
3263 * Also, validate the queue tail offset as it's mutable by software.
3264 */
3265 if ( fTtm != VTD_TTM_RSVD
3266 && offQueueTail < cbQueue)
3267 {
3268 /* Don't hold the lock while reading (a potentially large amount of) requests */
3269 DMAR_UNLOCK(pDevIns, pThisR3);
3270
3271 int rc;
3272 uint32_t cbRequests;
3273 if (offQueueTail > offQueueHead)
3274 {
3275 /* The requests have not wrapped around, read them in one go. */
3276 cbRequests = offQueueTail - offQueueHead;
3277 rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests, pvRequests, cbRequests);
3278 }
3279 else
3280 {
3281 /* The requests have wrapped around, read forward and wrapped-around. */
3282 uint32_t const cbForward = cbQueue - offQueueHead;
3283 rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests, pvRequests, cbForward);
3284
3285 uint32_t const cbWrapped = offQueueTail;
3286 if ( RT_SUCCESS(rc)
3287 && cbWrapped > 0)
3288 {
3289 rc = PDMDevHlpPhysReadMeta(pDevIns, GCPhysRequests + cbForward,
3290 (void *)((uintptr_t)pvRequests + cbForward), cbWrapped);
3291 }
3292 cbRequests = cbForward + cbWrapped;
3293 }
3294
3295 /* Re-acquire the lock since we need to update device state. */
3296 DMAR_LOCK(pDevIns, pThisR3);
3297
3298 if (RT_SUCCESS(rc))
3299 {
3300 /* Indicate to software we've fetched all requests. */
3301 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_IQH_REG, offQueueTail);
3302
3303 /* Don't hold the lock while processing requests. */
3304 DMAR_UNLOCK(pDevIns, pThisR3);
3305
3306 /* Process all requests. */
3307 Assert(cbRequests <= cbQueue);
3308 dmarR3InvQueueProcessRequests(pDevIns, pvRequests, cbRequests, fDw, fTtm);
3309
3310 /*
3311 * We've processed all requests and the lock shouldn't be held at this point.
3312 * Using 'continue' here allows us to skip re-acquiring the lock just to release
3313 * it again before going back to the thread loop. It's a bit ugly but it certainly
3314 * helps with performance.
3315 */
3316 DMAR_ASSERT_LOCK_IS_NOT_OWNER(pDevIns, pThisR3);
3317 continue;
3318 }
3319 else
3320 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqaReg_Dsc_Fetch_Error, VTDIQEI_FETCH_DESCRIPTOR_ERR);
3321 }
3322 else
3323 {
3324 if (fTtm == VTD_TTM_RSVD)
3325 dmarIqeFaultRecord(pDevIns, kDmarDiag_Iqei_Ttm_Rsvd, VTDIQEI_INVALID_TTM);
3326 else
3327 {
3328 Assert(offQueueTail >= cbQueue);
3329 dmarIqeFaultRecord(pDevIns, kDmarDiag_IqtReg_Qt_Invalid, VTDIQEI_INVALID_TAIL_PTR);
3330 }
3331 }
3332 }
3333 }
3334 DMAR_UNLOCK(pDevIns, pThisR3);
3335 }
3336
3337 RTMemFree(pvRequests);
3338 pvRequests = NULL;
3339
3340 LogFlowFunc(("Invalidation-queue thread terminating\n"));
3341 return VINF_SUCCESS;
3342}
3343
3344
3345/**
3346 * Wakes up the invalidation-queue thread so it can respond to a state
3347 * change.
3348 *
3349 * @returns VBox status code.
3350 * @param pDevIns The IOMMU device instance.
3351 * @param pThread The invalidation-queue thread.
3352 *
3353 * @thread EMT.
3354 */
3355static DECLCALLBACK(int) dmarR3InvQueueThreadWakeUp(PPDMDEVINS pDevIns, PPDMTHREAD pThread)
3356{
3357 RT_NOREF(pThread);
3358 LogFlowFunc(("\n"));
3359 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3360 return PDMDevHlpSUPSemEventSignal(pDevIns, pThis->hEvtInvQueue);
3361}
3362
3363
3364/**
3365 * @callback_method_impl{FNDBGFHANDLERDEV}
3366 */
3367static DECLCALLBACK(void) dmarR3DbgInfo(PPDMDEVINS pDevIns, PCDBGFINFOHLP pHlp, const char *pszArgs)
3368{
3369 PCDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3370 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3371 bool const fVerbose = RTStrCmp(pszArgs, "verbose") == 0;
3372
3373 /*
3374 * We lock the device to get a consistent register state as it is
3375 * ASSUMED pHlp->pfnPrintf is expensive, so we copy the registers (the
3376 * ones we care about here) into temporaries and release the lock ASAP.
3377 *
3378 * Order of register being read and outputted is in accordance with the
3379 * spec. for no particular reason.
3380 * See Intel VT-d spec. 10.4 "Register Descriptions".
3381 */
3382 DMAR_LOCK(pDevIns, pThisR3);
3383
3384 DMARDIAG const enmDiag = pThis->enmDiag;
3385 uint32_t const uVerReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_VER_REG);
3386 uint64_t const uCapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CAP_REG);
3387 uint64_t const uEcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_ECAP_REG);
3388 uint32_t const uGcmdReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GCMD_REG);
3389 uint32_t const uGstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_GSTS_REG);
3390 uint64_t const uRtaddrReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_RTADDR_REG);
3391 uint64_t const uCcmdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_CCMD_REG);
3392 uint32_t const uFstsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FSTS_REG);
3393 uint32_t const uFectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FECTL_REG);
3394 uint32_t const uFedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEDATA_REG);
3395 uint32_t const uFeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEADDR_REG);
3396 uint32_t const uFeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_FEUADDR_REG);
3397 uint64_t const uAflogReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_AFLOG_REG);
3398 uint32_t const uPmenReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PMEN_REG);
3399 uint32_t const uPlmbaseReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMBASE_REG);
3400 uint32_t const uPlmlimitReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PLMLIMIT_REG);
3401 uint64_t const uPhmbaseReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMBASE_REG);
3402 uint64_t const uPhmlimitReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PHMLIMIT_REG);
3403 uint64_t const uIqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQH_REG);
3404 uint64_t const uIqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQT_REG);
3405 uint64_t const uIqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQA_REG);
3406 uint32_t const uIcsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_ICS_REG);
3407 uint32_t const uIectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IECTL_REG);
3408 uint32_t const uIedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEDATA_REG);
3409 uint32_t const uIeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEADDR_REG);
3410 uint32_t const uIeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_IEUADDR_REG);
3411 uint64_t const uIqercdReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IQERCD_REG);
3412 uint64_t const uIrtaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_IRTA_REG);
3413 uint64_t const uPqhReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQH_REG);
3414 uint64_t const uPqtReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQT_REG);
3415 uint64_t const uPqaReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_PQA_REG);
3416 uint32_t const uPrsReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PRS_REG);
3417 uint32_t const uPectlReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PECTL_REG);
3418 uint32_t const uPedataReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEDATA_REG);
3419 uint32_t const uPeaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEADDR_REG);
3420 uint32_t const uPeuaddrReg = dmarRegReadRaw32(pThis, VTD_MMIO_OFF_PEUADDR_REG);
3421 uint64_t const uMtrrcapReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRCAP_REG);
3422 uint64_t const uMtrrdefReg = dmarRegReadRaw64(pThis, VTD_MMIO_OFF_MTRRDEF_REG);
3423
3424 DMAR_UNLOCK(pDevIns, pThisR3);
3425
3426 const char *const pszDiag = enmDiag < RT_ELEMENTS(g_apszDmarDiagDesc) ? g_apszDmarDiagDesc[enmDiag] : "(Unknown)";
3427 pHlp->pfnPrintf(pHlp, "Intel-IOMMU:\n");
3428 pHlp->pfnPrintf(pHlp, " Diag = %s\n", pszDiag);
3429
3430 /*
3431 * Non-verbose output.
3432 */
3433 if (!fVerbose)
3434 {
3435 pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg);
3436 pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg);
3437 pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg);
3438 pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg);
3439 pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg);
3440 pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg);
3441 pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg);
3442 pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg);
3443 pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg);
3444 pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg);
3445 pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg);
3446 pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg);
3447 pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg);
3448 pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg);
3449 pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg);
3450 pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg);
3451 pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg);
3452 pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg);
3453 pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg);
3454 pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg);
3455 pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg);
3456 pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg);
3457 pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg);
3458 pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg);
3459 pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg);
3460 pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg);
3461 pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg);
3462 pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg);
3463 pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg);
3464 pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg);
3465 pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg);
3466 pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg);
3467 pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg);
3468 pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg);
3469 pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg);
3470 pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg);
3471 pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg);
3472 pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg);
3473 pHlp->pfnPrintf(pHlp, "\n");
3474 return;
3475 }
3476
3477 /*
3478 * Verbose output.
3479 */
3480 pHlp->pfnPrintf(pHlp, " VER_REG = %#RX32\n", uVerReg);
3481 {
3482 pHlp->pfnPrintf(pHlp, " MAJ = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MAX));
3483 pHlp->pfnPrintf(pHlp, " MIN = %#x\n", RT_BF_GET(uVerReg, VTD_BF_VER_REG_MIN));
3484 }
3485 pHlp->pfnPrintf(pHlp, " CAP_REG = %#RX64\n", uCapReg);
3486 {
3487 uint8_t const uMgaw = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MGAW);
3488 uint8_t const uNfr = RT_BF_GET(uCapReg, VTD_BF_CAP_REG_NFR);
3489 pHlp->pfnPrintf(pHlp, " ND = %u\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ND));
3490 pHlp->pfnPrintf(pHlp, " AFL = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_AFL));
3491 pHlp->pfnPrintf(pHlp, " RWBF = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_RWBF));
3492 pHlp->pfnPrintf(pHlp, " PLMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PLMR));
3493 pHlp->pfnPrintf(pHlp, " PHMR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PHMR));
3494 pHlp->pfnPrintf(pHlp, " CM = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_CM));
3495 pHlp->pfnPrintf(pHlp, " SAGAW = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SAGAW));
3496 pHlp->pfnPrintf(pHlp, " MGAW = %#x (%u bits)\n", uMgaw, uMgaw + 1);
3497 pHlp->pfnPrintf(pHlp, " ZLR = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ZLR));
3498 pHlp->pfnPrintf(pHlp, " FRO = %#x bytes\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FRO));
3499 pHlp->pfnPrintf(pHlp, " SLLPS = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_SLLPS));
3500 pHlp->pfnPrintf(pHlp, " PSI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PSI));
3501 pHlp->pfnPrintf(pHlp, " NFR = %u (%u FRCD register%s)\n", uNfr, uNfr + 1, uNfr > 0 ? "s" : "");
3502 pHlp->pfnPrintf(pHlp, " MAMV = %#x\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_MAMV));
3503 pHlp->pfnPrintf(pHlp, " DWD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DWD));
3504 pHlp->pfnPrintf(pHlp, " DRD = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_DRD));
3505 pHlp->pfnPrintf(pHlp, " FL1GP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL1GP));
3506 pHlp->pfnPrintf(pHlp, " PI = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_PI));
3507 pHlp->pfnPrintf(pHlp, " FL5LP = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_FL5LP));
3508 pHlp->pfnPrintf(pHlp, " ESIRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESIRTPS));
3509 pHlp->pfnPrintf(pHlp, " ESRTPS = %RTbool\n", RT_BF_GET(uCapReg, VTD_BF_CAP_REG_ESRTPS));
3510 }
3511 pHlp->pfnPrintf(pHlp, " ECAP_REG = %#RX64\n", uEcapReg);
3512 {
3513 uint8_t const uPss = RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PSS);
3514 pHlp->pfnPrintf(pHlp, " C = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_C));
3515 pHlp->pfnPrintf(pHlp, " QI = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_QI));
3516 pHlp->pfnPrintf(pHlp, " DT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DT));
3517 pHlp->pfnPrintf(pHlp, " IR = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IR));
3518 pHlp->pfnPrintf(pHlp, " EIM = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EIM));
3519 pHlp->pfnPrintf(pHlp, " PT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PT));
3520 pHlp->pfnPrintf(pHlp, " SC = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SC));
3521 pHlp->pfnPrintf(pHlp, " IRO = %#x bytes\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_IRO));
3522 pHlp->pfnPrintf(pHlp, " MHMV = %#x\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MHMV));
3523 pHlp->pfnPrintf(pHlp, " MTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_MTS));
3524 pHlp->pfnPrintf(pHlp, " NEST = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NEST));
3525 pHlp->pfnPrintf(pHlp, " PRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PRS));
3526 pHlp->pfnPrintf(pHlp, " ERS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ERS));
3527 pHlp->pfnPrintf(pHlp, " SRS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SRS));
3528 pHlp->pfnPrintf(pHlp, " NWFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_NWFS));
3529 pHlp->pfnPrintf(pHlp, " EAFS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_EAFS));
3530 pHlp->pfnPrintf(pHlp, " PSS = %u (%u bits)\n", uPss, uPss > 0 ? uPss + 1 : 0);
3531 pHlp->pfnPrintf(pHlp, " PASID = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PASID));
3532 pHlp->pfnPrintf(pHlp, " DIT = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_DIT));
3533 pHlp->pfnPrintf(pHlp, " PDS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_PDS));
3534 pHlp->pfnPrintf(pHlp, " SMTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMTS));
3535 pHlp->pfnPrintf(pHlp, " VCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_VCS));
3536 pHlp->pfnPrintf(pHlp, " SLADS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLADS));
3537 pHlp->pfnPrintf(pHlp, " SLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SLTS));
3538 pHlp->pfnPrintf(pHlp, " FLTS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_FLTS));
3539 pHlp->pfnPrintf(pHlp, " SMPWCS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_SMPWCS));
3540 pHlp->pfnPrintf(pHlp, " RPS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPS));
3541 pHlp->pfnPrintf(pHlp, " ADMS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_ADMS));
3542 pHlp->pfnPrintf(pHlp, " RPRIVS = %RTbool\n", RT_BF_GET(uEcapReg, VTD_BF_ECAP_REG_RPRIVS));
3543 }
3544 pHlp->pfnPrintf(pHlp, " GCMD_REG = %#RX32\n", uGcmdReg);
3545 {
3546 uint8_t const fCfi = RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_CFI);
3547 pHlp->pfnPrintf(pHlp, " CFI = %u (%s)\n", fCfi, fCfi ? "Passthrough" : "Blocked");
3548 pHlp->pfnPrintf(pHlp, " SIRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SIRTP));
3549 pHlp->pfnPrintf(pHlp, " IRE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_IRE));
3550 pHlp->pfnPrintf(pHlp, " QIE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_QIE));
3551 pHlp->pfnPrintf(pHlp, " WBF = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_WBF));
3552 pHlp->pfnPrintf(pHlp, " EAFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL));
3553 pHlp->pfnPrintf(pHlp, " SFL = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SFL));
3554 pHlp->pfnPrintf(pHlp, " SRTP = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_SRTP));
3555 pHlp->pfnPrintf(pHlp, " TE = %u\n", RT_BF_GET(uGcmdReg, VTD_BF_GCMD_REG_TE));
3556 }
3557 pHlp->pfnPrintf(pHlp, " GSTS_REG = %#RX32\n", uGstsReg);
3558 {
3559 uint8_t const fCfis = RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_CFIS);
3560 pHlp->pfnPrintf(pHlp, " CFIS = %u (%s)\n", fCfis, fCfis ? "Passthrough" : "Blocked");
3561 pHlp->pfnPrintf(pHlp, " IRTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRTPS));
3562 pHlp->pfnPrintf(pHlp, " IRES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_IRES));
3563 pHlp->pfnPrintf(pHlp, " QIES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_QIES));
3564 pHlp->pfnPrintf(pHlp, " WBFS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_WBFS));
3565 pHlp->pfnPrintf(pHlp, " AFLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_AFLS));
3566 pHlp->pfnPrintf(pHlp, " FLS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_FLS));
3567 pHlp->pfnPrintf(pHlp, " RTPS = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_RTPS));
3568 pHlp->pfnPrintf(pHlp, " TES = %u\n", RT_BF_GET(uGstsReg, VTD_BF_GSTS_REG_TES));
3569 }
3570 pHlp->pfnPrintf(pHlp, " RTADDR_REG = %#RX64\n", uRtaddrReg);
3571 {
3572 uint8_t const uTtm = RT_BF_GET(uRtaddrReg, VTD_BF_RTADDR_REG_TTM);
3573 pHlp->pfnPrintf(pHlp, " RTA = %#RX64\n", uRtaddrReg & VTD_BF_RTADDR_REG_RTA_MASK);
3574 pHlp->pfnPrintf(pHlp, " TTM = %u (%s)\n", uTtm, vtdRtaddrRegGetTtmDesc(uTtm));
3575 }
3576 pHlp->pfnPrintf(pHlp, " CCMD_REG = %#RX64\n", uCcmdReg);
3577 pHlp->pfnPrintf(pHlp, " FSTS_REG = %#RX32\n", uFstsReg);
3578 {
3579 pHlp->pfnPrintf(pHlp, " PFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PFO));
3580 pHlp->pfnPrintf(pHlp, " PPF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_PPF));
3581 pHlp->pfnPrintf(pHlp, " AFO = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_AFO));
3582 pHlp->pfnPrintf(pHlp, " APF = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_APF));
3583 pHlp->pfnPrintf(pHlp, " IQE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_IQE));
3584 pHlp->pfnPrintf(pHlp, " ICS = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ICE));
3585 pHlp->pfnPrintf(pHlp, " ITE = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_ITE));
3586 pHlp->pfnPrintf(pHlp, " FRI = %u\n", RT_BF_GET(uFstsReg, VTD_BF_FSTS_REG_FRI));
3587 }
3588 pHlp->pfnPrintf(pHlp, " FECTL_REG = %#RX32\n", uFectlReg);
3589 {
3590 pHlp->pfnPrintf(pHlp, " IM = %RTbool\n", RT_BF_GET(uFectlReg, VTD_BF_FECTL_REG_IM));
3591 pHlp->pfnPrintf(pHlp, " IP = %RTbool\n", RT_BF_GET(uFectlReg, VTD_BF_FECTL_REG_IP));
3592 }
3593 pHlp->pfnPrintf(pHlp, " FEDATA_REG = %#RX32\n", uFedataReg);
3594 pHlp->pfnPrintf(pHlp, " FEADDR_REG = %#RX32\n", uFeaddrReg);
3595 pHlp->pfnPrintf(pHlp, " FEUADDR_REG = %#RX32\n", uFeuaddrReg);
3596 pHlp->pfnPrintf(pHlp, " AFLOG_REG = %#RX64\n", uAflogReg);
3597 pHlp->pfnPrintf(pHlp, " PMEN_REG = %#RX32\n", uPmenReg);
3598 pHlp->pfnPrintf(pHlp, " PLMBASE_REG = %#RX32\n", uPlmbaseReg);
3599 pHlp->pfnPrintf(pHlp, " PLMLIMIT_REG = %#RX32\n", uPlmlimitReg);
3600 pHlp->pfnPrintf(pHlp, " PHMBASE_REG = %#RX64\n", uPhmbaseReg);
3601 pHlp->pfnPrintf(pHlp, " PHMLIMIT_REG = %#RX64\n", uPhmlimitReg);
3602 pHlp->pfnPrintf(pHlp, " IQH_REG = %#RX64\n", uIqhReg);
3603 pHlp->pfnPrintf(pHlp, " IQT_REG = %#RX64\n", uIqtReg);
3604 pHlp->pfnPrintf(pHlp, " IQA_REG = %#RX64\n", uIqaReg);
3605 {
3606 uint8_t const fDw = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_DW);
3607 uint8_t const fQs = RT_BF_GET(uIqaReg, VTD_BF_IQA_REG_QS);
3608 uint8_t const cQueuePages = 1 << fQs;
3609 pHlp->pfnPrintf(pHlp, " DW = %u (%s)\n", fDw, fDw == VTD_IQA_REG_DW_128_BIT ? "128-bit" : "256-bit");
3610 pHlp->pfnPrintf(pHlp, " QS = %u (%u page%s)\n", fQs, cQueuePages, cQueuePages > 1 ? "s" : "");
3611 }
3612 pHlp->pfnPrintf(pHlp, " ICS_REG = %#RX32\n", uIcsReg);
3613 {
3614 pHlp->pfnPrintf(pHlp, " IWC = %u\n", RT_BF_GET(uIcsReg, VTD_BF_ICS_REG_IWC));
3615 }
3616 pHlp->pfnPrintf(pHlp, " IECTL_REG = %#RX32\n", uIectlReg);
3617 {
3618 pHlp->pfnPrintf(pHlp, " IM = %RTbool\n", RT_BF_GET(uIectlReg, VTD_BF_IECTL_REG_IM));
3619 pHlp->pfnPrintf(pHlp, " IP = %RTbool\n", RT_BF_GET(uIectlReg, VTD_BF_IECTL_REG_IP));
3620 }
3621 pHlp->pfnPrintf(pHlp, " IEDATA_REG = %#RX32\n", uIedataReg);
3622 pHlp->pfnPrintf(pHlp, " IEADDR_REG = %#RX32\n", uIeaddrReg);
3623 pHlp->pfnPrintf(pHlp, " IEUADDR_REG = %#RX32\n", uIeuaddrReg);
3624 pHlp->pfnPrintf(pHlp, " IQERCD_REG = %#RX64\n", uIqercdReg);
3625 {
3626 pHlp->pfnPrintf(pHlp, " ICESID = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_ICESID));
3627 pHlp->pfnPrintf(pHlp, " ITESID = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_ITESID));
3628 pHlp->pfnPrintf(pHlp, " IQEI = %#RX32\n", RT_BF_GET(uIqercdReg, VTD_BF_IQERCD_REG_IQEI));
3629 }
3630 pHlp->pfnPrintf(pHlp, " IRTA_REG = %#RX64\n", uIrtaReg);
3631 {
3632 uint32_t const cIrtEntries = VTD_IRTA_REG_GET_ENTRY_COUNT(uIrtaReg);
3633 uint32_t const cbIrt = sizeof(VTD_IRTE_T) * cIrtEntries;
3634 pHlp->pfnPrintf(pHlp, " IRTA = %#RX64\n", uIrtaReg & VTD_BF_IRTA_REG_IRTA_MASK);
3635 pHlp->pfnPrintf(pHlp, " EIME = %RTbool\n", RT_BF_GET(uIrtaReg, VTD_BF_IRTA_REG_EIME));
3636 pHlp->pfnPrintf(pHlp, " S = %u entries (%u bytes)\n", cIrtEntries, cbIrt);
3637 }
3638 pHlp->pfnPrintf(pHlp, " PQH_REG = %#RX64\n", uPqhReg);
3639 pHlp->pfnPrintf(pHlp, " PQT_REG = %#RX64\n", uPqtReg);
3640 pHlp->pfnPrintf(pHlp, " PQA_REG = %#RX64\n", uPqaReg);
3641 pHlp->pfnPrintf(pHlp, " PRS_REG = %#RX32\n", uPrsReg);
3642 pHlp->pfnPrintf(pHlp, " PECTL_REG = %#RX32\n", uPectlReg);
3643 pHlp->pfnPrintf(pHlp, " PEDATA_REG = %#RX32\n", uPedataReg);
3644 pHlp->pfnPrintf(pHlp, " PEADDR_REG = %#RX32\n", uPeaddrReg);
3645 pHlp->pfnPrintf(pHlp, " PEUADDR_REG = %#RX32\n", uPeuaddrReg);
3646 pHlp->pfnPrintf(pHlp, " MTRRCAP_REG = %#RX64\n", uMtrrcapReg);
3647 pHlp->pfnPrintf(pHlp, " MTRRDEF_REG = %#RX64\n", uMtrrdefReg);
3648 pHlp->pfnPrintf(pHlp, "\n");
3649}
3650
3651
3652/**
3653 * Initializes all registers in the DMAR unit.
3654 *
3655 * @param pDevIns The IOMMU device instance.
3656 */
3657static void dmarR3RegsInit(PPDMDEVINS pDevIns)
3658{
3659 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3660
3661 /*
3662 * Wipe all registers (required on reset).
3663 */
3664 RT_ZERO(pThis->abRegs0);
3665 RT_ZERO(pThis->abRegs1);
3666
3667 /*
3668 * Initialize registers not mutable by software prior to initializing other registers.
3669 */
3670 /* VER_REG */
3671 {
3672 pThis->uVerReg = RT_BF_MAKE(VTD_BF_VER_REG_MIN, DMAR_VER_MINOR)
3673 | RT_BF_MAKE(VTD_BF_VER_REG_MAX, DMAR_VER_MAJOR);
3674 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_VER_REG, pThis->uVerReg);
3675 }
3676
3677 uint8_t const fFlts = 1; /* First-level translation support. */
3678 uint8_t const fSlts = 1; /* Second-level translation support. */
3679 uint8_t const fPt = 1; /* Pass-Through support. */
3680 uint8_t const fSmts = fFlts & fSlts & fPt; /* Scalable mode translation support.*/
3681 uint8_t const fNest = 0; /* Nested translation support. */
3682
3683 /* CAP_REG */
3684 {
3685 uint8_t cGstPhysAddrBits;
3686 uint8_t cGstLinearAddrBits;
3687 PDMDevHlpCpuGetGuestAddrWidths(pDevIns, &cGstPhysAddrBits, &cGstLinearAddrBits);
3688
3689 uint8_t const fFl1gp = 1; /* First-level 1GB pages support. */
3690 uint8_t const fFl5lp = 1; /* First-level 5-level paging support (PML5E). */
3691 uint8_t const fSl2mp = 1; /* Second-level 2MB pages support. */
3692 uint8_t const fSl2gp = fSl2mp & 1; /* Second-level 1GB pages support. */
3693 uint8_t const fSllps = fSl2mp | (fSl2gp << 1); /* Second-level large page support. */
3694 uint8_t const fMamv = (fSl2gp ? X86_PAGE_1G_SHIFT /* Maximum address mask value (for 2nd-level invalidations). */
3695 : X86_PAGE_2M_SHIFT)
3696 - X86_PAGE_4K_SHIFT;
3697 uint8_t const fNd = DMAR_ND; /* Number of domains supported. */
3698 uint8_t const fPsi = 1; /* Page selective invalidation. */
3699 uint8_t const uMgaw = cGstPhysAddrBits - 1; /* Maximum guest address width. */
3700 uint8_t const fSagaw = vtdCapRegGetSagaw(uMgaw); /* Supported adjust guest address width. */
3701 uint16_t const offFro = DMAR_MMIO_OFF_FRCD_LO_REG >> 4; /* MMIO offset of FRCD registers. */
3702 uint8_t const fEsrtps = 1; /* Enhanced SRTPS (auto invalidate cache on SRTP). */
3703 uint8_t const fEsirtps = 1; /* Enhanced SIRTPS (auto invalidate cache on SIRTP). */
3704 AssertCompile(DMAR_ND <= 6);
3705
3706 pThis->fCapReg = RT_BF_MAKE(VTD_BF_CAP_REG_ND, fNd)
3707 | RT_BF_MAKE(VTD_BF_CAP_REG_AFL, 0) /* Advanced fault logging not supported. */
3708 | RT_BF_MAKE(VTD_BF_CAP_REG_RWBF, 0) /* Software need not flush write-buffers. */
3709 | RT_BF_MAKE(VTD_BF_CAP_REG_PLMR, 0) /* Protected Low-Memory Region not supported. */
3710 | RT_BF_MAKE(VTD_BF_CAP_REG_PHMR, 0) /* Protected High-Memory Region not supported. */
3711 | RT_BF_MAKE(VTD_BF_CAP_REG_CM, 1) /* Software should invalidate on mapping structure changes. */
3712 | RT_BF_MAKE(VTD_BF_CAP_REG_SAGAW, fSlts ? fSagaw : 0)
3713 | RT_BF_MAKE(VTD_BF_CAP_REG_MGAW, uMgaw)
3714 | RT_BF_MAKE(VTD_BF_CAP_REG_ZLR, 1) /** @todo Figure out if/how to support zero-length reads. */
3715 | RT_BF_MAKE(VTD_BF_CAP_REG_FRO, offFro)
3716 | RT_BF_MAKE(VTD_BF_CAP_REG_SLLPS, fSlts & fSllps)
3717 | RT_BF_MAKE(VTD_BF_CAP_REG_PSI, fPsi)
3718 | RT_BF_MAKE(VTD_BF_CAP_REG_NFR, DMAR_FRCD_REG_COUNT - 1)
3719 | RT_BF_MAKE(VTD_BF_CAP_REG_MAMV, fPsi & fMamv)
3720 | RT_BF_MAKE(VTD_BF_CAP_REG_DWD, 1)
3721 | RT_BF_MAKE(VTD_BF_CAP_REG_DRD, 1)
3722 | RT_BF_MAKE(VTD_BF_CAP_REG_FL1GP, fFlts & fFl1gp)
3723 | RT_BF_MAKE(VTD_BF_CAP_REG_PI, 0) /* Posted Interrupts not supported. */
3724 | RT_BF_MAKE(VTD_BF_CAP_REG_FL5LP, fFlts & fFl5lp)
3725 | RT_BF_MAKE(VTD_BF_CAP_REG_ESIRTPS, fEsirtps)
3726 | RT_BF_MAKE(VTD_BF_CAP_REG_ESRTPS, fEsrtps);
3727 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_CAP_REG, pThis->fCapReg);
3728
3729 pThis->fHawBaseMask = ~(UINT64_MAX << cGstPhysAddrBits) & X86_PAGE_4K_BASE_MASK;
3730 pThis->fMgawInvMask = UINT64_MAX << cGstPhysAddrBits;
3731 pThis->cMaxPagingLevel = vtdCapRegGetMaxPagingLevel(fSagaw);
3732 }
3733
3734 /* ECAP_REG */
3735 {
3736 uint8_t const fQi = 1; /* Queued-invalidations. */
3737 uint8_t const fIr = !!(DMAR_ACPI_DMAR_FLAGS & ACPI_DMAR_F_INTR_REMAP); /* Interrupt remapping support. */
3738 uint8_t const fMhmv = 0xf; /* Maximum handle mask value. */
3739 uint16_t const offIro = DMAR_MMIO_OFF_IVA_REG >> 4; /* MMIO offset of IOTLB registers. */
3740 uint8_t const fEim = 1; /* Extended interrupt mode.*/
3741 uint8_t const fAdms = 1; /* Abort DMA mode support. */
3742 uint8_t const fErs = 0; /* Execute Request (not supported). */
3743
3744 pThis->fExtCapReg = RT_BF_MAKE(VTD_BF_ECAP_REG_C, 0) /* Accesses don't snoop CPU cache. */
3745 | RT_BF_MAKE(VTD_BF_ECAP_REG_QI, fQi)
3746 | RT_BF_MAKE(VTD_BF_ECAP_REG_DT, 0) /* Device-TLBs not supported. */
3747 | RT_BF_MAKE(VTD_BF_ECAP_REG_IR, fQi & fIr)
3748 | RT_BF_MAKE(VTD_BF_ECAP_REG_EIM, fIr & fEim)
3749 | RT_BF_MAKE(VTD_BF_ECAP_REG_PT, fPt)
3750 | RT_BF_MAKE(VTD_BF_ECAP_REG_SC, 0) /* Snoop control not supported. */
3751 | RT_BF_MAKE(VTD_BF_ECAP_REG_IRO, offIro)
3752 | RT_BF_MAKE(VTD_BF_ECAP_REG_MHMV, fIr & fMhmv)
3753 | RT_BF_MAKE(VTD_BF_ECAP_REG_MTS, 0) /* Memory type not supported. */
3754 | RT_BF_MAKE(VTD_BF_ECAP_REG_NEST, fNest)
3755 | RT_BF_MAKE(VTD_BF_ECAP_REG_PRS, 0) /* 0 as DT not supported. */
3756 | RT_BF_MAKE(VTD_BF_ECAP_REG_ERS, fErs)
3757 | RT_BF_MAKE(VTD_BF_ECAP_REG_SRS, 0) /* Supervisor request not supported. */
3758 | RT_BF_MAKE(VTD_BF_ECAP_REG_NWFS, 0) /* 0 as DT not supported. */
3759 | RT_BF_MAKE(VTD_BF_ECAP_REG_EAFS, 0) /* 0 as SMPWCS not supported. */
3760 | RT_BF_MAKE(VTD_BF_ECAP_REG_PSS, 0) /* 0 as PASID not supported. */
3761 | RT_BF_MAKE(VTD_BF_ECAP_REG_PASID, 0) /* PASID not supported. */
3762 | RT_BF_MAKE(VTD_BF_ECAP_REG_DIT, 0) /* 0 as DT not supported. */
3763 | RT_BF_MAKE(VTD_BF_ECAP_REG_PDS, 0) /* 0 as DT not supported. */
3764 | RT_BF_MAKE(VTD_BF_ECAP_REG_SMTS, fSmts)
3765 | RT_BF_MAKE(VTD_BF_ECAP_REG_VCS, 0) /* 0 as PASID not supported (commands seem PASID specific). */
3766 | RT_BF_MAKE(VTD_BF_ECAP_REG_SLADS, 0) /* Second-level accessed/dirty not supported. */
3767 | RT_BF_MAKE(VTD_BF_ECAP_REG_SLTS, fSlts)
3768 | RT_BF_MAKE(VTD_BF_ECAP_REG_FLTS, fFlts)
3769 | RT_BF_MAKE(VTD_BF_ECAP_REG_SMPWCS, 0) /* 0 as PASID not supported. */
3770 | RT_BF_MAKE(VTD_BF_ECAP_REG_RPS, 0) /* We don't support RID_PASID field in SM context entry. */
3771 | RT_BF_MAKE(VTD_BF_ECAP_REG_ADMS, fAdms)
3772 | RT_BF_MAKE(VTD_BF_ECAP_REG_RPRIVS, 0); /* 0 as SRS not supported. */
3773 dmarRegWriteRaw64(pThis, VTD_MMIO_OFF_ECAP_REG, pThis->fExtCapReg);
3774
3775 pThis->fPermValidMask = DMAR_PERM_READ | DMAR_PERM_WRITE;
3776 if (fErs)
3777 pThis->fPermValidMask = DMAR_PERM_EXE;
3778 }
3779
3780 /*
3781 * Initialize registers mutable by software.
3782 */
3783 /* FECTL_REG */
3784 {
3785 uint32_t const uCtl = RT_BF_MAKE(VTD_BF_FECTL_REG_IM, 1);
3786 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_FECTL_REG, uCtl);
3787 }
3788
3789 /* ICETL_REG */
3790 {
3791 uint32_t const uCtl = RT_BF_MAKE(VTD_BF_IECTL_REG_IM, 1);
3792 dmarRegWriteRaw32(pThis, VTD_MMIO_OFF_IECTL_REG, uCtl);
3793 }
3794
3795#ifdef VBOX_STRICT
3796 Assert(!RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_PRS)); /* PECTL_REG - Reserved if don't support PRS. */
3797 Assert(!RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_MTS)); /* MTRRCAP_REG - Reserved if we don't support MTS. */
3798#endif
3799}
3800
3801
3802/**
3803 * @interface_method_impl{PDMDEVREG,pfnReset}
3804 */
3805static DECLCALLBACK(void) iommuIntelR3Reset(PPDMDEVINS pDevIns)
3806{
3807 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3808 LogFlowFunc(("\n"));
3809
3810 DMAR_LOCK(pDevIns, pThisR3);
3811 dmarR3RegsInit(pDevIns);
3812 DMAR_UNLOCK(pDevIns, pThisR3);
3813}
3814
3815
3816/**
3817 * @interface_method_impl{PDMDEVREG,pfnDestruct}
3818 */
3819static DECLCALLBACK(int) iommuIntelR3Destruct(PPDMDEVINS pDevIns)
3820{
3821 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3822 PCDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PCDMARR3);
3823 LogFlowFunc(("\n"));
3824
3825 DMAR_LOCK(pDevIns, pThisR3);
3826
3827 if (pThis->hEvtInvQueue != NIL_SUPSEMEVENT)
3828 {
3829 PDMDevHlpSUPSemEventClose(pDevIns, pThis->hEvtInvQueue);
3830 pThis->hEvtInvQueue = NIL_SUPSEMEVENT;
3831 }
3832
3833 DMAR_UNLOCK(pDevIns, pThisR3);
3834 return VINF_SUCCESS;
3835}
3836
3837
3838/**
3839 * @interface_method_impl{PDMDEVREG,pfnConstruct}
3840 */
3841static DECLCALLBACK(int) iommuIntelR3Construct(PPDMDEVINS pDevIns, int iInstance, PCFGMNODE pCfg)
3842{
3843 RT_NOREF(pCfg);
3844
3845 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
3846 PDMARR3 pThisR3 = PDMDEVINS_2_DATA_CC(pDevIns, PDMARR3);
3847 pThisR3->pDevInsR3 = pDevIns;
3848
3849 LogFlowFunc(("iInstance=%d\n", iInstance));
3850 NOREF(iInstance);
3851
3852 /*
3853 * Register the IOMMU with PDM.
3854 */
3855 PDMIOMMUREGR3 IommuReg;
3856 RT_ZERO(IommuReg);
3857 IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
3858 IommuReg.pfnMemAccess = iommuIntelMemAccess;
3859 IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess;
3860 IommuReg.pfnMsiRemap = iommuIntelMsiRemap;
3861 IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
3862 int rc = PDMDevHlpIommuRegister(pDevIns, &IommuReg, &pThisR3->CTX_SUFF(pIommuHlp), &pThis->idxIommu);
3863 if (RT_FAILURE(rc))
3864 return PDMDEV_SET_ERROR(pDevIns, rc, N_("Failed to register ourselves as an IOMMU device"));
3865 if (pThisR3->CTX_SUFF(pIommuHlp)->u32Version != PDM_IOMMUHLPR3_VERSION)
3866 return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
3867 N_("IOMMU helper version mismatch; got %#x expected %#x"),
3868 pThisR3->CTX_SUFF(pIommuHlp)->u32Version, PDM_IOMMUHLPR3_VERSION);
3869 if (pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd != PDM_IOMMUHLPR3_VERSION)
3870 return PDMDevHlpVMSetError(pDevIns, VERR_VERSION_MISMATCH, RT_SRC_POS,
3871 N_("IOMMU helper end-version mismatch; got %#x expected %#x"),
3872 pThisR3->CTX_SUFF(pIommuHlp)->u32TheEnd, PDM_IOMMUHLPR3_VERSION);
3873 AssertPtr(pThisR3->pIommuHlpR3->pfnLock);
3874 AssertPtr(pThisR3->pIommuHlpR3->pfnUnlock);
3875 AssertPtr(pThisR3->pIommuHlpR3->pfnLockIsOwner);
3876 AssertPtr(pThisR3->pIommuHlpR3->pfnSendMsi);
3877
3878 /*
3879 * Use PDM's critical section (via helpers) for the IOMMU device.
3880 */
3881 rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
3882 AssertRCReturn(rc, rc);
3883
3884 /*
3885 * Initialize PCI configuration registers.
3886 */
3887 PPDMPCIDEV pPciDev = pDevIns->apPciDevs[0];
3888 PDMPCIDEV_ASSERT_VALID(pDevIns, pPciDev);
3889
3890 /* Header. */
3891 PDMPciDevSetVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */
3892 PDMPciDevSetDeviceId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */
3893 PDMPciDevSetRevisionId(pPciDev, DMAR_PCI_REVISION_ID); /* VirtualBox specific device implementation revision */
3894 PDMPciDevSetClassBase(pPciDev, VBOX_PCI_CLASS_SYSTEM); /* System Base Peripheral */
3895 PDMPciDevSetClassSub(pPciDev, VBOX_PCI_SUB_SYSTEM_OTHER); /* Other */
3896 PDMPciDevSetHeaderType(pPciDev, 0); /* Single function, type 0 */
3897 PDMPciDevSetSubSystemId(pPciDev, DMAR_PCI_DEVICE_ID); /* VirtualBox DMAR device */
3898 PDMPciDevSetSubSystemVendorId(pPciDev, DMAR_PCI_VENDOR_ID); /* Intel */
3899
3900 /** @todo Chipset spec says PCI Express Capability Id. Relevant for us? */
3901 PDMPciDevSetStatus(pPciDev, 0);
3902 PDMPciDevSetCapabilityList(pPciDev, 0);
3903
3904 /** @todo VTBAR at 0x180? */
3905
3906 /*
3907 * Register the PCI function with PDM.
3908 */
3909 rc = PDMDevHlpPCIRegister(pDevIns, pPciDev);
3910 AssertLogRelRCReturn(rc, rc);
3911
3912 /** @todo Register MSI but what's the MSI capability offset? */
3913#if 0
3914 /*
3915 * Register MSI support for the PCI device.
3916 * This must be done -after- registering it as a PCI device!
3917 */
3918#endif
3919
3920 /*
3921 * Register MMIO region.
3922 */
3923 AssertCompile(!(DMAR_MMIO_BASE_PHYSADDR & X86_PAGE_4K_OFFSET_MASK));
3924 rc = PDMDevHlpMmioCreateAndMap(pDevIns, DMAR_MMIO_BASE_PHYSADDR, DMAR_MMIO_SIZE, dmarMmioWrite, dmarMmioRead,
3925 IOMMMIO_FLAGS_READ_DWORD_QWORD | IOMMMIO_FLAGS_WRITE_DWORD_QWORD_ZEROED, "Intel-IOMMU",
3926 &pThis->hMmio);
3927 AssertLogRelRCReturn(rc, rc);
3928
3929 /*
3930 * Register debugger info items.
3931 */
3932 rc = PDMDevHlpDBGFInfoRegister(pDevIns, "iommu", "Display IOMMU state.", dmarR3DbgInfo);
3933 AssertLogRelRCReturn(rc, rc);
3934
3935#ifdef VBOX_WITH_STATISTICS
3936 /*
3937 * Statistics.
3938 */
3939 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadR3, STAMTYPE_COUNTER, "R3/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in R3");
3940 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioReadRZ, STAMTYPE_COUNTER, "RZ/MmioRead", STAMUNIT_OCCURENCES, "Number of MMIO reads in RZ.");
3941
3942 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteR3, STAMTYPE_COUNTER, "R3/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in R3.");
3943 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMmioWriteRZ, STAMTYPE_COUNTER, "RZ/MmioWrite", STAMUNIT_OCCURENCES, "Number of MMIO writes in RZ.");
3944
3945 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapCfiR3, STAMTYPE_COUNTER, "R3/MsiRemapCfi", STAMUNIT_OCCURENCES, "Number of compatibility-format interrupt remap requests in R3.");
3946 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapCfiRZ, STAMTYPE_COUNTER, "RZ/MsiRemapCfi", STAMUNIT_OCCURENCES, "Number of compatibility-format interrupt remap requests in RZ.");
3947 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRfiR3, STAMTYPE_COUNTER, "R3/MsiRemapRfi", STAMUNIT_OCCURENCES, "Number of remappable-format interrupt remap requests in R3.");
3948 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMsiRemapRfiRZ, STAMTYPE_COUNTER, "RZ/MsiRemapRfi", STAMUNIT_OCCURENCES, "Number of remappable-format interrupt remap requests in RZ.");
3949
3950 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadR3, STAMTYPE_COUNTER, "R3/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in R3.");
3951 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemReadRZ, STAMTYPE_COUNTER, "RZ/MemRead", STAMUNIT_OCCURENCES, "Number of memory read translation requests in RZ.");
3952
3953 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteR3, STAMTYPE_COUNTER, "R3/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in R3.");
3954 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemWriteRZ, STAMTYPE_COUNTER, "RZ/MemWrite", STAMUNIT_OCCURENCES, "Number of memory write translation requests in RZ.");
3955
3956 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadR3, STAMTYPE_COUNTER, "R3/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in R3.");
3957 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkReadRZ, STAMTYPE_COUNTER, "RZ/MemBulkRead", STAMUNIT_OCCURENCES, "Number of memory bulk read translation requests in RZ.");
3958
3959 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteR3, STAMTYPE_COUNTER, "R3/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in R3.");
3960 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatMemBulkWriteRZ, STAMTYPE_COUNTER, "RZ/MemBulkWrite", STAMUNIT_OCCURENCES, "Number of memory bulk write translation requests in RZ.");
3961
3962 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatCcInvDsc, STAMTYPE_COUNTER, "R3/QI/CcInv", STAMUNIT_OCCURENCES, "Number of cc_inv_dsc processed.");
3963 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIotlbInvDsc, STAMTYPE_COUNTER, "R3/QI/IotlbInv", STAMUNIT_OCCURENCES, "Number of iotlb_inv_dsc processed.");
3964 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatDevtlbInvDsc, STAMTYPE_COUNTER, "R3/QI/DevtlbInv", STAMUNIT_OCCURENCES, "Number of dev_tlb_inv_dsc processed.");
3965 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatIecInvDsc, STAMTYPE_COUNTER, "R3/QI/IecInv", STAMUNIT_OCCURENCES, "Number of iec_inv processed.");
3966 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatInvWaitDsc, STAMTYPE_COUNTER, "R3/QI/InvWait", STAMUNIT_OCCURENCES, "Number of inv_wait_dsc processed.");
3967 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidIotlbInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidIotlbInv", STAMUNIT_OCCURENCES, "Number of p_iotlb_inv_dsc processed.");
3968 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidCacheInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidCacheInv", STAMUNIT_OCCURENCES, "Number of pc_inv_dsc pprocessed.");
3969 PDMDevHlpSTAMRegister(pDevIns, &pThis->StatPasidDevtlbInvDsc, STAMTYPE_COUNTER, "R3/QI/PasidDevtlbInv", STAMUNIT_OCCURENCES, "Number of p_dev_tlb_inv_dsc processed.");
3970#endif
3971
3972 /*
3973 * Initialize registers.
3974 */
3975 dmarR3RegsInit(pDevIns);
3976
3977 /*
3978 * Create invalidation-queue thread and semaphore.
3979 */
3980 char szInvQueueThread[32];
3981 RT_ZERO(szInvQueueThread);
3982 RTStrPrintf(szInvQueueThread, sizeof(szInvQueueThread), "IOMMU-QI-%u", iInstance);
3983 rc = PDMDevHlpThreadCreate(pDevIns, &pThisR3->pInvQueueThread, pThis, dmarR3InvQueueThread, dmarR3InvQueueThreadWakeUp,
3984 0 /* cbStack */, RTTHREADTYPE_IO, szInvQueueThread);
3985 AssertLogRelRCReturn(rc, rc);
3986
3987 rc = PDMDevHlpSUPSemEventCreate(pDevIns, &pThis->hEvtInvQueue);
3988 AssertLogRelRCReturn(rc, rc);
3989
3990 /*
3991 * Log some of the features exposed to software.
3992 */
3993 uint8_t const uVerMax = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MAX);
3994 uint8_t const uVerMin = RT_BF_GET(pThis->uVerReg, VTD_BF_VER_REG_MIN);
3995 uint8_t const cMgawBits = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_MGAW) + 1;
3996 uint8_t const fSagaw = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_SAGAW);
3997 uint16_t const offFrcd = RT_BF_GET(pThis->fCapReg, VTD_BF_CAP_REG_FRO);
3998 uint16_t const offIva = RT_BF_GET(pThis->fExtCapReg, VTD_BF_ECAP_REG_IRO);
3999 LogRel(("%s: Mapped at %#RGp (%u-level page-table supported)\n",
4000 DMAR_LOG_PFX, DMAR_MMIO_BASE_PHYSADDR, pThis->cMaxPagingLevel));
4001 LogRel(("%s: Version=%u.%u Cap=%#RX64 ExtCap=%#RX64 Mgaw=%u bits Sagaw=%#x HawBaseMask=%#RX64 MgawInvMask=%#RX64 FRO=%#x IRO=%#x\n",
4002 DMAR_LOG_PFX, uVerMax, uVerMin, pThis->fCapReg, pThis->fExtCapReg, cMgawBits, fSagaw, pThis->fHawBaseMask,
4003 pThis->fMgawInvMask, offFrcd, offIva));
4004 return VINF_SUCCESS;
4005}
4006
4007#else
4008
4009/**
4010 * @callback_method_impl{PDMDEVREGR0,pfnConstruct}
4011 */
4012static DECLCALLBACK(int) iommuIntelRZConstruct(PPDMDEVINS pDevIns)
4013{
4014 PDMDEV_CHECK_VERSIONS_RETURN(pDevIns);
4015 PDMAR pThis = PDMDEVINS_2_DATA(pDevIns, PDMAR);
4016 PDMARCC pThisCC = PDMDEVINS_2_DATA_CC(pDevIns, PDMARCC);
4017 pThisCC->CTX_SUFF(pDevIns) = pDevIns;
4018
4019 /* We will use PDM's critical section (via helpers) for the IOMMU device. */
4020 int rc = PDMDevHlpSetDeviceCritSect(pDevIns, PDMDevHlpCritSectGetNop(pDevIns));
4021 AssertRCReturn(rc, rc);
4022
4023 /* Set up the MMIO RZ handlers. */
4024 rc = PDMDevHlpMmioSetUpContext(pDevIns, pThis->hMmio, dmarMmioWrite, dmarMmioRead, NULL /* pvUser */);
4025 AssertRCReturn(rc, rc);
4026
4027 /* Set up the IOMMU RZ callbacks. */
4028 PDMIOMMUREGCC IommuReg;
4029 RT_ZERO(IommuReg);
4030 IommuReg.u32Version = PDM_IOMMUREGCC_VERSION;
4031 IommuReg.idxIommu = pThis->idxIommu;
4032 IommuReg.pfnMemAccess = iommuIntelMemAccess;
4033 IommuReg.pfnMemBulkAccess = iommuIntelMemBulkAccess;
4034 IommuReg.pfnMsiRemap = iommuIntelMsiRemap;
4035 IommuReg.u32TheEnd = PDM_IOMMUREGCC_VERSION;
4036
4037 rc = PDMDevHlpIommuSetUpContext(pDevIns, &IommuReg, &pThisCC->CTX_SUFF(pIommuHlp));
4038 AssertRCReturn(rc, rc);
4039 AssertPtrReturn(pThisCC->CTX_SUFF(pIommuHlp), VERR_IOMMU_IPE_1);
4040 AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32Version == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH);
4041 AssertReturn(pThisCC->CTX_SUFF(pIommuHlp)->u32TheEnd == CTX_MID(PDM_IOMMUHLP,_VERSION), VERR_VERSION_MISMATCH);
4042 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnLock);
4043 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnUnlock);
4044 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnLockIsOwner);
4045 AssertPtr(pThisCC->CTX_SUFF(pIommuHlp)->pfnSendMsi);
4046
4047 return VINF_SUCCESS;
4048}
4049
4050#endif
4051
4052
4053/**
4054 * The device registration structure.
4055 */
4056PDMDEVREG const g_DeviceIommuIntel =
4057{
4058 /* .u32Version = */ PDM_DEVREG_VERSION,
4059 /* .uReserved0 = */ 0,
4060 /* .szName = */ "iommu-intel",
4061 /* .fFlags = */ PDM_DEVREG_FLAGS_DEFAULT_BITS | PDM_DEVREG_FLAGS_RZ | PDM_DEVREG_FLAGS_NEW_STYLE,
4062 /* .fClass = */ PDM_DEVREG_CLASS_PCI_BUILTIN,
4063 /* .cMaxInstances = */ 1,
4064 /* .uSharedVersion = */ 42,
4065 /* .cbInstanceShared = */ sizeof(DMAR),
4066 /* .cbInstanceCC = */ sizeof(DMARCC),
4067 /* .cbInstanceRC = */ sizeof(DMARRC),
4068 /* .cMaxPciDevices = */ 1,
4069 /* .cMaxMsixVectors = */ 0,
4070 /* .pszDescription = */ "IOMMU (Intel)",
4071#if defined(IN_RING3)
4072 /* .pszRCMod = */ "VBoxDDRC.rc",
4073 /* .pszR0Mod = */ "VBoxDDR0.r0",
4074 /* .pfnConstruct = */ iommuIntelR3Construct,
4075 /* .pfnDestruct = */ iommuIntelR3Destruct,
4076 /* .pfnRelocate = */ NULL,
4077 /* .pfnMemSetup = */ NULL,
4078 /* .pfnPowerOn = */ NULL,
4079 /* .pfnReset = */ iommuIntelR3Reset,
4080 /* .pfnSuspend = */ NULL,
4081 /* .pfnResume = */ NULL,
4082 /* .pfnAttach = */ NULL,
4083 /* .pfnDetach = */ NULL,
4084 /* .pfnQueryInterface = */ NULL,
4085 /* .pfnInitComplete = */ NULL,
4086 /* .pfnPowerOff = */ NULL,
4087 /* .pfnSoftReset = */ NULL,
4088 /* .pfnReserved0 = */ NULL,
4089 /* .pfnReserved1 = */ NULL,
4090 /* .pfnReserved2 = */ NULL,
4091 /* .pfnReserved3 = */ NULL,
4092 /* .pfnReserved4 = */ NULL,
4093 /* .pfnReserved5 = */ NULL,
4094 /* .pfnReserved6 = */ NULL,
4095 /* .pfnReserved7 = */ NULL,
4096#elif defined(IN_RING0)
4097 /* .pfnEarlyConstruct = */ NULL,
4098 /* .pfnConstruct = */ iommuIntelRZConstruct,
4099 /* .pfnDestruct = */ NULL,
4100 /* .pfnFinalDestruct = */ NULL,
4101 /* .pfnRequest = */ NULL,
4102 /* .pfnReserved0 = */ NULL,
4103 /* .pfnReserved1 = */ NULL,
4104 /* .pfnReserved2 = */ NULL,
4105 /* .pfnReserved3 = */ NULL,
4106 /* .pfnReserved4 = */ NULL,
4107 /* .pfnReserved5 = */ NULL,
4108 /* .pfnReserved6 = */ NULL,
4109 /* .pfnReserved7 = */ NULL,
4110#elif defined(IN_RC)
4111 /* .pfnConstruct = */ iommuIntelRZConstruct,
4112 /* .pfnReserved0 = */ NULL,
4113 /* .pfnReserved1 = */ NULL,
4114 /* .pfnReserved2 = */ NULL,
4115 /* .pfnReserved3 = */ NULL,
4116 /* .pfnReserved4 = */ NULL,
4117 /* .pfnReserved5 = */ NULL,
4118 /* .pfnReserved6 = */ NULL,
4119 /* .pfnReserved7 = */ NULL,
4120#else
4121# error "Not in IN_RING3, IN_RING0 or IN_RC!"
4122#endif
4123 /* .u32VersionEnd = */ PDM_DEVREG_VERSION
4124};
4125
4126#endif /* !VBOX_DEVICE_STRUCT_TESTCASE */
4127
注意: 瀏覽 TracBrowser 來幫助您使用儲存庫瀏覽器

© 2025 Oracle Support Privacy / Do Not Sell My Info Terms of Use Trademark Policy Automated Access Etiquette